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INTRODUCTION

Neutron stars play a unique role in physics and astrophysics. On the one
hand, they contain matter under extreme physical conditions, and their theories
are based on risky and far extrapolations of what we consider reliable physical
theories of the structure of matter tested in laboratory. On the other hand, their
observations offer the unique opportunity to test these theories. Moreover, neu-
tron stars are important dramatic personae on the stage of modern astrophysics;
they participate in many astronomical phenomena.

Neutron stars contain the matter of density ranging from a few g cm−3 at their
surface, where the pressure is small, to more than 1015 g cm−3 at the center,
where the pressure exceeds 1036 dyn cm−2. To calculate neutron star structure,
one needs the dependence of the pressure on density, the so called equation of
state (EOS), in this huge density range, taking due account of temperature,
more than 109 K in young neutron stars, and magnetic fields, sometimes above
1015 G.

The present book is mainly devoted to the theory of the EOS of neutron star
matter and its consequences for neutron star structure. As one moves from the
neutron star surface to the center, the methods to calculate the EOS change.
Atomic structure and plasma theories are used for the surface stellar layers.
Deeper layers of the neutron star crust require nuclear theory combined with
plasma physics, both in very exotic density-temperature regimes. Finally, the
neutron star core necessitates many-body theory of dense strongly interacting
systems, together with the physics of strong interactions of elementary particles.

Several not too old books treating the topic of the EOS of neutron stars are
available in the literature. Many aspects of the EOS problem are considered
by Shapiro & Teukolsky (1983) in the monograph Black Holes, White Dwarfs,
and Neutron Stars. However, this excellent book reflects the state of the art by
the beginning of the 1980s. Some aspects of the EOS problem, stellar stability
and equilibrium are described in Stellar Physics by Bisnovatyi-Kogan (2001,
2002). Selected EOS models, based on the relativistic theories of hadronic mat-
ter, are discussed in detail by Glendenning (2000) in the monograph Compact
Stars: Nuclear Physics, Particle Physics, and General Relativity and in the
book by Weber (1999), Pulsars as Astrophysical Laboratories for Nuclear and
Particle Physics. However, neither of these two monographs gives the detailed
description of the variety of possible EOSs in stellar cores and crusts.

The present monograph is complementary to those cited above. We de-
scribe all neutron star layers paying special attention to the theoretical basis of
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calculations, physical properties (especially the EOS) and observational mani-
festations. First we give an overview of neutron star theory and observations.
Then we analyze current EOS models in the neutron star crusts and cores. We
show that when the density increases the models become more numerous and
different but less reliable. The most interesting density range is a few times
the standard nuclear density and higher, where the composition of the matter
becomes largely unknown. According to the different models, this dense matter
may contain nucleons, hyperons, pion or kaon condensates, deconfined quarks
or the mixture of these components. We analyze all these possibilities. Then
we study the variety of models of neutron stars composed of the matter with
the different EOSs. Finally, we compare theoretical neutron star models with
observations and formulate current constraints on the EOS which result from
this comparison.

By the time of this writing (2006) the EOS of the neutron star core remains not
strongly constrained and the problem is thus open. This state of the art makes
the problem especially exciting and intriguing. The progress in the neutron star
theory and observations is tremendous. Forthcoming observations of neutron
stars, combined with new theoretical achievements, should be crucial to strongly
constrain theoretical models and solve thus the main mystery of neutron star
physics — the composition and equation of state in neutron star cores. We
expect that the monograph will be a useful guide-book in achieving this goal.

This book benefited from our teaching experiences at the University of War-
saw and University of Toruń in Poland, at Université de Paris and Observatoire
de Paris in France (PH), and at the Saint-Petersburg State Polytechnical Uni-
versity in Russia (DGY, AYP), as well as at several international schools for
young astrophysicists and physicists.

In our presentation we tried to get to the forefront of theoretical calculations.
Nevertheless, we supplement the analysis of modern techniques and recent
results with the description of the historical development of the ideas. On
many occasions, re-establishing the true sequence of events turned out to be a
fascinating experience. We hope that that the reader will find these fragments
of the text interesting and entertaining.

We have made an effort to present the results of calculations in the form of
formulae, which are easier to use than tables. Sometimes we give a critical
analysis of theories and our suggestions how to improve them. Both the degree
of criticism and the details of suggestions are of course subjective. The prophecy
is a dangerous activity, but we took risks.

We have tried to make this book complete, but of course our selection of topics
reflects our limited research interests and competence. The list of references is
long and reflects the huge work done in the past. We apologize to those authors
whose work was not cited because of the natural limitation of space. The book
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was mainly completed in November 2005 and reflects the state of the neutron
star physics by that time. Some minor addenda were made in August 2006.

Many discoveries related to neutron stars, for instance, the discovery of the
first pulsar or the first binary pulsar, were serendipitous. However, Pasteur once
said that in research “Chance favors only the prepared mind” (in French: “La
chance ne sourit qu’aux esprits bien préparés,” Pasteur 1854). We hope that
this book will serve the cause of preparing the readers for future discoveries.
The book can be useful to those theoreticians and observers who are working
in the field of neutron stars and related fields of physics and astrophysics. We
expect that it can also be useful to students and to many scientists who are just
interested in the fascinating world of neutron stars.

We are grateful to our colleagues who, over the years of book writing, helped
us through their collaboration, discussions, and expertise: M.K. Abubekerov,
N.E. Alexandrovich, D.A. Baiko, D.P. Barsukov, M. Bejger, V.S. Beskin,
G.S. Bisnovatyi-Kogan, S. Bonazzola, A.M. Bykov, B. Carter, G. Chabrier,
N. Chamel, A.M. Cherepashchuk, A.I. Chugunov, H.E. DeWitt, M.E. Gusakov,
D. Gondek-Rosińska, E. Gourgoulhon, V.S. Imshennik, I.L. Iosilevskiy, J. Ka-
l/ użny, A.D. Kaminker, R.P. Kirshner, A.M. Krassilchtchikov, D. Lai, J.M. Lat-
timer, K.P. Levenfish, B. Paczyński, G.G. Pavlov, C.J. Pethick, Yu.A. Shibanov,
P.S. Shternin, R.A. Sunyaev, T. Takatsuka, R. Tamagaki, L. Titarchuk, A.I. Tsy-
gan, V.A. Urpin, D.A. Varshalovich, J. Ventura, J.L. Zdunik, J. Ziól/ kowski. Our
special thanks are to Olga Burstein, Mal/ gosia Haensel, and Marina Potekhina
for their careful attention, permanent support and encouragement.



Chapter 1

OVERVIEW

1.1. Neutron stars
Neutron stars are compact stars which contain matter of supranuclear density

in their interiors (presumably with a large fraction of neutrons). They have
typical masses M ∼ 1.4 M� and radii R ∼ 10 km. Thus, their masses are
close to the solar mass M� = 1.989 × 1033 g, but their radii are ∼ 105 times
smaller than the solar radius R� = 6.96 × 105 km. Accordingly, neutron stars
possess an enormous gravitational energy Egrav and surface gravity g,

Egrav ∼ GM2/R ∼ 5 × 1053 erg ∼ 0.2 Mc2,

g ∼ GM/R2 ∼ 2 × 1014 cm s−2, (1.1)

where G is the gravitational constant and c is the speed of light. Clearly, neutron
stars are very dense. Their mean mass density is

ρ̄ � 3M/(4πR3) � 7 × 1014 g cm−3 ∼ (2 − 3) ρ0, (1.2)

where ρ0 = 2.8 × 1014 g cm−3 is the so called normal nuclear density, the
mass density of nucleon matter in heavy atomic nuclei. The central density of
neutron stars is even larger, reaching (10−20) ρ0. By all means, neutron stars
are the most compact stars known in the Universe.

This book consists of the overview (this Chapter) and main Chapters 2–9. In
the overview we outline the neutron star history (§1.2), the current theoretical
and observational status of the neutron star physics (§§1.3 and 1.4), the relation
of the neutron star physics to other branches of physics and astrophysics (§1.5),
and the contents of the main chapters (§1.6). We hope that the overview can
serve as an introduction to the neutron star physics and can be read indepen-
dently of the main chapters.
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1.2. History: from prediction to discovery
Landau – anticipation. One commonly relates neutron stars with neutrons,
their main ingredients. J. Chadwick announced his discovery of a neutron in a
paper published in Nature on February 27, 1932 (Chadwick 1932). But a year
before Lev Landau had written a paper devoted to dense stars. Landau was
23 at that time; he was a graduate student of the Leningrad Physico-Technical
Institute (now the Ioffe Physico-Technical Institute, St.-Petersburg). The paper
was completed in February 1931 in Zürich (as stated in the original publica-
tion, Landau 1932). The first part was really brilliant. Landau calculated the
maximum mass of white dwarfs, somewhat later than Chandrasekhar (1931)
and independently of him. The second part was more questionable. Landau
speculated on a possible existence of stars more compact than white dwarfs,
containing matter of nuclear density. At that time it was a problem to con-
struct atomic nuclei without neutrons, from protons and electrons, because the
Heisenberg principle forbids to localize the electrons within the nuclei. The
only solution which Landau could propose was to violate the quantum mechan-
ics. Thus, he suggested that “all stars heavier than 1.5 M� certainly possess
regions in which the laws of quantum mechanics (and therefore of quantum
statistics) are violated.” That questionable suggestion might have prevented
readers from reading the article to the end, whereas the last part of the paper
was very important because Landau made a conclusion that in such stars “the
density of matter becomes so great that atomic nuclei come in close contact,
forming one gigantic nucleus.” The last quotation is a concise description of
dense matter in neutron star interiors superficially anticipated by Landau before
the discovery of the neutron.

From Zürich Landau went to Copenhagen, and stayed there from February
25 till March 19, 1931, before returning to Leningrad. It is highly probable that
he discussed his paper with Bohr and Rosenfeld during his stay. The paper was
submitted to Physikalische Zeitschrift der Sowjetunion on January 7, 1932, and
published in the February issue of this journal (Landau 1932). The coincidence
of the publication date with the announcement of the neutron discovery seems
accidental but produced some contradictory comments (see, e.g., Rosenfeld
1974).

Baade and Zwicky – prediction. The actual theoretical prediction of neu-
tron stars was made by W. Baade (Mt. Wilson Observatory) and F. Zwicky
(Caltech) who analyzed observations of supernova explosions and proposed an
explanation of an enormous energy release in these explosions. Their results
were presented at the meeting of the American Physical Society at Stanford
(December 15–16, 1933) and published in the 15 January issue of the Physical
Review (Baade & Zwicky, 1934a). They wrote, in particular: “With all reserve
we advance the view that supernovae represent the transitions from ordinary
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Figure 1.1. A brief summary of the neutron star prediction presented to non-expert readers in
the form of a cartoon in the Los Angeles Times on January 19th, 1934 (reproduced by Kirshner
1977). The sentence in the left box: “Cosmic rays are caused by exploding stars which burn
with a fire equal to 100 million suns and then shrivel from 1/2 million mile diameters to little
spheres 14 miles thick, says Prof. Fritz Zwicky, Swiss Physicist.” Used with the permission of
The Associated Press Copyright c©1934. All rights reserved.

stars to neutron stars, which in their final stages consist of extremely closely
packed neutrons.” It is impossible to formulate the idea more precisely (Fig.
1.1). In the next publication Baade & Zwicky (1934b) explain further that a
neutron star “. . . may possess a very small radius and an extremely high density.
As neutrons can be packed much more closely than ordinary nuclei and elec-
trons, the ‘gravitational packing’ energy in a cold neutron star may become very
large, and, under certain circumstances, may far exceed the ordinary nuclear
packing fractions.” This is again an exact statement. To avoid an illusion that
the authors understood the problem exactly in the same way as we do it now,
we cite their next paper (Baade & Zwicky, 1934c), where they speculate on the
transition of an ordinary star into a neutron star: “If neutrons are produced on
the surface of an ordinary star they will “rain” down towards the center if we
assume that the light pressure on neutrons is practically zero.”
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Theoretical progress before the Second World War. We will be brief here;
more historical remarks can be found in the main part of the book (particularly,
in §5.1). The neutron star history is also described in a comprehensive review
by Baym (1982).

The most crucial ingredient of the neutron star theory is the equation of state
(EOS) of dense matter in neutron star interiors. The term “EOS” has different
meanings. It often means the dependence of the pressure P on mass density
ρ (or associated energy density E = ρ c2) and on temperature T of matter.
Because neutron stars are mainly composed of strongly degenerate fermions
(neutrons, protons, electrons, and others), the temperature dependence is mostly
negligible and the EOS can be calculated at T = 0. The dependence P (ρ) is
needed to build neutron star models (§§1.3.3, 6.4). Sometimes the term “EOS”
means not only P (ρ) but also the composition of the matter and an underlying
microphysical model.

When an ordinary star transforms to a neutron star, the stellar matter under-
goes strong compression accompanied by beta captures of atomic nuclei with
the creation of neutrons. The first attempt to construct the EOS of nuclear mat-
ter in equilibrium with respect to beta-capture and beta-decay processes was
most probably made by Sterne (1933). He considered the matter composed of
electrons, protons, several species of atomic nuclei, and neutrons, particularly
at T → 0. His analysis was naturally oversimplified, according to the today
level, but he predicted the neutronization of matter with increasing ρ.

A splash of interest in neutron stars in 1937–1938 was caused by the problem
of stellar energy. The energy source was unknown then. Gamow (1937) and
Landau (1937) independently suggested that any (normal) star could contain a
neutron star in its core. This would have initiated a slow “accretion” of stellar
matter within the normal star onto its neutron star core, so that the stellar energy
could have been supplied by the gravitational energy release in the course of
that accretion. However, very soon Bethe & Critchfield (1938) showed that the
energy of normal stars is provided by thermonuclear reactions, and the idea was
almost forgotten.

Let us mention the paper by Zwicky (1938) who estimated the maximum
binding energy of a neutron star of mass M (and obtained ∼ 0.42 Mc2). Thanks
to Zwicky, we understand that the term “neutron star mass” is ambiguous. One
should distinguish between the so called baryon mass Mb (the sum of baryon
masses in a neutron star interior) and gravitational mass M obtained from Mb
by subtracting the gravitational binding energy (§6.2). Zwicky (1938) also
noticed that on the surface of the star “. . . the acceleration of gravity [should be]
very high, and light coming from this surface should be subject to enormous
gravitational red shifts [of wavelengths].” He developed the idea of redshifts
in a subsequent lengthy paper (Zwicky, 1939).
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The next most important step was done by R.C. Tolman from Caltech and by
J.R. Oppenheimer & G.M. Volkoff from the University of California, Berkeley.
Their papers (Tolman, 1939; Oppenheimer & Volkoff, 1939) were received in
the Physical Review the same day, January 3, 1939, and appeared in the same
February 15 issue. Both papers contained the derivation of the equation of
hydrostatic equilibrium for a spherically symmetric star in the framework of
General Relativity. This is the basic equation for building neutron star models.
It is called the Tolman-Oppenheimer-Volkoff (or, “for short”, the Oppenheimer-
Volkoff ) equation (see §6.4 for more details). The gravitational neutron star
energy is a sizable fraction of its rest-mass energy, Mc2; neutron stars are so
compact that space-time is essentially curved around and within them, and the
effects of General Relativity are most important.

Tolman and Oppenheimer & Volkoff derived their equation independently
but they certainly communicated and discussed their results. Tolman (1939)
obtained eight exact solutions of the new equation. They do not correspond to
any realistic EOS of the neutron star matter, although they enable one (Oppen-
heimer & Volkoff, 1939) to understand the existence of a maximum mass of
neutron stars. Oppenheimer & Volkoff (1939) used their equation for solving
the most important problem. They numerically calculated neutron star models
for the simplest EOS of stellar matter composed of a noninteracting strongly
degenerate relativistic gas of neutrons. They showed that stable static neutron
stars have the maximum (gravitational) mass, Mmax ≈ 0.71 M�, which is of-
ten called the Oppenheimer-Volkoff mass limit. They worried that their mass
limit is lower than the Chandrasekhar mass limit of white dwarfs, 1.44 M�: this
would hamper the formation of neutron stars from ordinary stars. They under-
stood the simplicity of their model of noninteracting neutrons and discussed a
possible repulsive component of neutron-neutron interaction which may stiffen
the EOS and increase the maximum mass. However, after some discussion,
they pessimistically concluded: “It seems likely that our limit of ∼ 0.7 M� is
near the truth.” Fortunately, their conclusion has turned out to be wrong, al-
though their mass limit is extremely important. Combined with very accurately
measured masses (1.25–1.44) M� of some neutron stars (§9.1) this limit gives
a direct astrophysical evidence of strong repulsive interaction in dense matter
at supranuclear density.

It is worth mentioning that von Neumann and Chandrasekhar obtained the
same general relativistic equation of hydrostatic equilibrium several years ear-
lier, in 1934, to study highly collapsed stars, but their result was not published
(Baym, 1982). This was done at the Trinity College (Cambridge, England) after
Chandrasekhar had constructed models of white dwarfs.

Thus, before the Second World War some elementary EOSs of dense matter
were obtained, and the main equation of the neutron star structure was derived.
More realistic EOSs could not be proposed at that time, because the properties of
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strong interactions and nuclear matter were poorly known. The theoretical basis
was supplemented by the idea that neutron stars should be born in supernova
explosions, relating neutron stars to observational astronomy. With the outbreak
of the War, the interest to neutron stars naturally faded and was renewed much
later.

Theoretical progress: After the Second World War to the discovery of
neutron stars. Until the beginning of the 1960s neutron stars had been treated
as the work of imagination of some (weird) theoreticians, and the theory had
been developing slowly. The situation started changing later, with the hope
to discover neutron stars in observations. Let us outline four main lines of
theoretical studies (additional explanations can be found in §1.3).

(1) EOS of dense matter. The main field of neutron star theory prior to
the discovery was concerned with constructing model EOSs of dense stellar
matter. The progress in this field is described in §5.1. Here we stress the
important contribution of Wheeler and his collaborators in the 1950s (reviewed
by Harrison et al. 1958). They constructed a model of a neutron star crust and
calculated the EOS of neutron star cores composed of free neutrons, protons, and
electrons in beta equilibrium (§5.1). It was Cameron (1959) who emphasized
the utmost importance of nuclear forces for the neutron star structure. He
showed that the inclusion of nuclear forces can considerably stiffen the EOS.
This can increase the maximum mass of neutron stars from the Oppenheimer-
Volkoff limit of ∼ 0.7 M� to about 2 M�, making the formation of neutron
stars in supernova explosions quite realistic. Zeldovich (1961) used a model of
baryon interaction through a massive vector field and constructed a very stiff
EOS with the sound speed lower than the speed of light c, and tending to c in
the very high density limit.

Eventually, it was understood that neutron star cores may contain not only
neutrons, protons and electrons, but also other particles, such as muons, mesons,
and hyperons. First arguments in favor of hyperons were put forward by
Cameron (1959) and Salpeter (1960); some EOSs of hyperonic matter and
associated neutron star models were calculated by several authors, particularly,
by Ambartsumyan & Saakyan (1960) and Tsuruta & Cameron (1966b). Iva-
nenko & Kurdgelaidze (1965, 1969) considered hypothetical quark cores of
neutron stars.

(2) Superfluidity of neutron star matter. Another important step was the the-
oretical prediction of superfluidity of neutron star interiors. This activity was
initiated by the theory of electron superconductivity in metals developed by
Bardeen, Cooper, & Schrieffer (1957) (BCS theory). The electron supercon-
ductivity is explained by Cooper pairing of electrons under a weak attraction
induced by the electron-phonon interaction. A superconducting state appears
with decreasing temperature as a result of a second-order phase transition;
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the typical critical temperatures are Tc ∼ (1–10) K. Microscopically, the phe-
nomenon consists in the appearance of an energy gap ∆ in the electron energy
spectrum near the Fermi level. One year after the publication of the BCS theory
Bohr et al. (1958) suggested that the phenomenon that had much in common
with superconductivity could appear in atomic nuclei. Cooper pairing of nu-
cleons could occur due to the attractive part of their interaction.

Migdal (1959) was one of the first who applied the BCS theory to atomic
nuclei. He remarked also that neutron superfluidity could occur in neutron star
interiors; he predicted the superfluid gap ∆ ∼ 1 MeV and the associated critical
temperature Tc ∼ 1010 K. Five years later Ginzburg & Kirzhnits (1964) in a
brief article estimated the gap produced by the singlet-state pairing of neutrons
at the densities ρ = 1013–1015 g cm−3 and obtained ∆ ∼ (5 − 20) MeV. A
very serious step was made by Wolf (1966). He showed that the singlet-state
neutron pairing operates at subnuclear densities in the inner neutron star crust,
but disappears in the core, since the singlet-state neutron-neutron interaction
becomes repulsive at supranuclear densities. The number density of protons
in the core is smaller than that of neutrons. Accordingly, the singlet-state
proton-proton interaction is mostly attractive there, and it can lead to proton
pairing. The possibility of neutron pairing in the core due to the attractive part of
the triplet-state neutron-neutron interaction was understood later (see §1.3.4).
The results obtained and well established before the discovery of pulsars were
reviewed by Ginzburg (1969). Further progress is outlined in §1.3.4.

It is thought that superfluidity is important for explaining pulsar glitches
(§1.4.4). It affects also the heat capacity and neutrino emission of neutron
stars (§1.3.5), and hence their thermal evolution (§1.3.7). The effect of neutron
superfluidity on the neutrino emission (in the modified Urca process) was first
studied by Wolf (1966).

(3) Neutrino emission from neutron stars. Another line of theoretical studies
was inspired by the expectations at the beginning of the 1960s to discover neu-
tron stars by detecting the thermal radiation from their surfaces (some attempts
are described below). Born hot in supernova explosions (§1.4.2), neutron stars
cool down by the thermal emission of photons from stellar surfaces and the
neutrino emission from stellar interiors. This makes the neutrino processes
vitally important. These processes are outlined in §1.3.5.

Some neutrino processes were proposed in the 1960s. Let us mention the
seminal paper by Chiu & Salpeter (1964) who suggested the modified Urca
process [explained in §1.3.5, Eq. (1.9)] and estimated its neutrino emissivity.
It is the leading neutrino process in the cores of not too massive neutron stars.
First detailed calculations of the neutrino emissivity were performed by sev-
eral authors, particularly by Bahcall & Wolf (1965a) (who also gave detailed
discussion of earlier work).
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Bahcall & Wolf (1965a) also studied a model of dense matter which contains
free pions. It was a progenitor of models of pion-condensed matter introduced
into the neutron star physics in the beginning of the 1970s (§§1.3.2, 7.3). Bahcall
& Wolf considered the neutrino process which consists of two reactions: neutron
beta decay followed by beta capture in the presence of pions. The neutrino
emissivity appeared to be much higher than in the modified Urca process, giving
the first example of the enhanced neutrino emission. Similar enhancement
in a more realistic model of pion-condensed matter was analyzed much later
by Maxwell et al. (1977). More references to earlier papers on the neutrino
emission from neutron stars can be found in Yakovlev et al. (2001).

(4) Neutron star thermal evolution. These studies were also motivated by the
attempts to discover neutron stars. The first estimates of the thermal emission
from cooling neutron stars were most probably done by Stabler (1960). Four
years later Chiu (1964) repeated the estimates and theoretically proved the pos-
sibility to discover neutron stars from their thermal emission. First, simplified
calculations of the neutron star cooling were done by Morton (1964), Chiu &
Salpeter (1964), and Bahcall & Wolf (1965a,b). The latter authors emphasized
the strong dependence of the cooling rate on neutrino emission processes and
pointed out that this dependence can be used to explore the EOS of dense matter
by comparing theoretical cooling models with observations of thermal radia-
tion from neutron stars. The foundation of the strict cooling theory was made
by Tsuruta & Cameron (1966a). In particular, these authors formulated the
main elements of the cooling theory such as the neutrino and photon cooling
stages, the relation between the internal and surface temperatures. A more de-
tailed description of the history of neutron star cooling is given, for instance,
by Yakovlev et al. (1999). The current state of the art is mentioned in §1.3.7.

A search and the discovery. The first serious attempts to discover neutron
stars were made when the era of practical X-ray astronomy began in the 1960s. It
was expected to detect the thermal radiation from surfaces of cooling (isolated)
neutron stars. A star with the surface temperature of ∼ 106 K would mainly
emit soft X-rays which cannot be detected by ground-based facilities. In the
beginning of the 1960s the first X-ray detectors were launched on rockets and
balloons.

The first cosmic X-ray source of non-solar origin, Sco X-1 (in the Scorpius
constellation), was discovered in rocket experiments by Giacconi et al. (1962).
Soon after the same group discovered several X-ray sources.1 The discovery
initiated a great interest in neutron stars but the first attempts failed to prove the
relation between neutron stars and newly discovered compact X-ray sources.
In particular, Bowyer et al. (1964) measured the size of the X-ray source in

1In 2002 R. Giacconi was awarded the Nobel Prize for outstanding contribution into the X-ray astronomy.
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the Crab Nebula from observations during a lunar occultation on July 7, 1964.
Their result, ∼ 1013 km, indicated that the source was much larger than a neu-
tron star should be. Ironically, the Crab Nebula turned out to be an exception:
there was a neutron star there, the famous Crab pulsar, but it was hidden within
a compact plerion pulsar nebula. The Crab Nebula is actually the archetype of
a plerion – a supernova remnant with an active pulsar at its center, powering
the nebula expansion and radiation. Interestingly, just at the same time Karda-
shev (1964) considered a collapse of a magnetized rotating star into a compact
object (collapsar) with the appearance of a surrounding envelope (nebula). He
emphasized that the collapsar can gain rapid rotation during its birth, and its
spin energy can be transferred to the surrounding nebula by the magnetic field.
He assumed that this mechanism can power the Crab Nebula.

Many scientists proposed different methods of discovering neutron stars (as
described, e.g., by Zeldovich & Novikov 1971, Shapiro & Teukolsky 1983, and
Lyne & Graham-Smith 1998). For instance, Zeldovich & Guseynov (1966)
suggested to observe some selected binaries with optical primary components
and invisible secondary components, assuming that neutron stars represent the
invisible components. Pacini (1967), in a paper published in Nature, showed
that a rapidly rotating neutron star with a strong dipole magnetic field could
efficiently transform its rotational energy into electromagnetic radiation and,
subsequently, accelerate particles to high energies. He suggested that the rota-
tional energy loss rate is the same as produced by a magnetic dipole rotating in
vacuum (very close to the modern point of view, see §1.4.4). He, like Karda-
shev, anticipated that such a star could power a surrounding nebula, particularly,
the Crab Nebula.

It was important that Sandage et al. (1966) had identified Sco X-1, the first
detected and the brightest X-ray source, as an optical object of 13th mag-
nitude. Analyzing those observations, Shklovsky (1967) concluded that the
source “. . . corresponds to a neutron star in a state of accretion . . . ” and “. . . the
natural and very efficient supply of gas for such a accretion is a stream of gas,
which flows from a secondary component of a close binary system toward the
primary component which is a neutron star.” Now we know that Sco X-1 is,
indeed, an X-ray binary containing an accreting neutron star but at that time
the Shklovsky’s arguments were mostly ignored by the astrophysical commu-
nity. By 1968, about twenty compact X-ray sources had been observed but
their association with neutron stars seemed to be not convincing. It happened
so that neutron stars were discovered unexpectedly and by absolutely different
methods.

In 1965 Antony Hewish (Cavendish Laboratory, Cambridge, England)
started to construct a new radio telescope. Its wavelength was 3.7 m; it was an
array of 2048 dipole antennae that covered an area of about 18,000 square me-
ters. The telescope differed from the other ones by a good temporal resolution:
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it was designed to study scintillations of radio sources while their radiation
passes through inhomogeneities of solar wind in the interplanetary space (sim-
ilar twinklings of stars are seen by naked eye). The telescope was inexpensive,
about £10,000, because it was mainly built by volunteers. It was completed in
July 1967.

On August 6, 1967, Jocelyn Bell – a graduate student supervised by Hewish
since 1965 – discovered a weak variable radio source (Hewish, 1975). It was ob-
served at night time whereas scintillations of ordinary radio sources are stronger
at day time, when a telescope is directed closer to the Sun. By the end of Septem-
ber the source had been observed several times; it was suggested to be a flare
star. By November 28 the observations had indicated that the source had emit-
ted strictly periodic pulses. The accurate measurement of the period started
on December 11. The period turned out to be wonderfully stable, 1.3373012
s. This produced a suspicion that the signals were of artificial origin, created,
for instance, by space satellites or even by an extraterrestrial civilization. The
signals were even called “LGM” (“little green men”), and it was decided to
postpone the publication of the discovery till the situation would clarify. It
took several weeks to understand that the rapidly pulsating source, the pulsar,
was well outside the solar system. Now it is called PSR B1919+21.2 Pilking-
ton, Scott, and Collins – the colleagues of Hewish and Bell – studied the drift
of the pulsar radio frequency during a pulse. By the beginning of February,
1968, three other pulsars had already been discovered (PSR B1133+16, PSR
B0834+06, and PSR B0950+08). It was suggested that the sources represented
either oscillating white dwarfs or neutron stars.

The discovery was announced in the 24 February 1968 issue of Nature
(Hewish et al., 1968) and produced a sensation. By the end of 1968, in ten
remaining months, over 100 pulsar articles had been published (Will, 1994).
The hypotheses on white dwarfs and oscillating neutron stars were ruled out.
In a strong competition, the idea of Gold (1968) won, that pulsars are rotat-
ing magnetized neutron stars.3 The important piece of evidence was given by
the discovery of the Crab pulsar in 1968. Its pulsation (spin) period was mea-
sured in November 1968 (Comella et al., 1969) and appeared to be very short,
P = 33 ms. White dwarfs could not sustain such a rapid rotation: they would
be destroyed by centrifugal forces.

2The right ascension of 19 hours 19 minutes by Greenwich time, with the 21◦ declination; ‘B’ means that
the pulsar position is given according to the B1950 coordinate system; ‘J’ instead of ‘B’ would mean the use
of the J2000 coordinate system.
3Submitting his paper, Gold was unaware of the earlier paper by Pacini (1967), where the pulsar model had
been suggested (see above). The collaboration between Gold and Pacini “. . . was, of course, soon established
. . . These two men should clearly share the credit for establishing the linkage between pulsars and neutron
stars” (Lyne & Graham-Smith, 1998).
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Thus, pulsars are spinning neutron stars with their magnetic moments in-
clined to spin axes. Their radio emission is generated outside a star, in the
magnetosphere (§1.4.4); it is beamed along the magnetic axis. The beamed
radiation rotates with the star, and a pulsar is detected if its beam crosses the
Earth. Hence, any pulsar operates like a lighthouse, and we detect strictly reg-
ular sequences of radio pulses. The emitted electromagnetic radiation carries
away the rotational energy and momentum, and produces a slow regular spin-
down of the pulsar (an increase of the pulse period). The spindown effect is
really observed. It rules out the model of stellar oscillations (because oscillation
periods are expected to be stable) and confirms thus the pulsar model.

Curiously, in 1965 Hewish and his student Okoye discovered a scintillating
radio source in the Crab nebula (Hewish & Okoye, 1965). Its nature was not
clear and they suggested that it “might be the remains of the original star which
had exploded and which still showed activity in the form of flare-type radio
emission. . . This source later turned out to be none other than the famous Crab
pulsar” (Hewish, 1975). They looked into archives and discovered that the
source had been observed earlier, in April 1962.

In 1974 Hewish was awarded the Nobel Prize for the discovery of pulsars,
but “In some circles, controversy still lingers over the decision of the Swedish
Academy not to include Ms Bell in the award” (Will, 1994).

1.3. Internal structure and processes – Theoretical outlook
After the discovery of pulsars, observations and theory of neutron stars have

been developing at such a rapid pace that we are unable to review the wealth of
outstanding works due to the natural limitation of space. Thus, we briefly outline
the basic contemporary (2006) theoretical ideas (§1.3), and their relations to
observations (§1.4).

1.3.1 Structure
According to current theories, a neutron star can be subdivided into the

atmosphere and four main internal regions: the outer crust, the inner crust, the
outer core, and the inner core as shown in Fig. 1.2. These regions can further
be subdivided into subregions, discussed in the main chapters of this book (for
instance, see Fig. 2.1 in Chapter 2).

The atmosphere is a thin plasma layer, where the spectrum of thermal
electromagnetic neutron star radiation is formed. The spectrum, beaming and
polarization of emerging radiation can be determined theoretically by solving
the radiation transfer problem in atmospheric layers. This radiation contains
valuable information on the parameters of the surface layer (on the effective
surface temperature, surface gravity, chemical composition, strength and geom-
etry of the surface magnetic field) and on the masses and radii of neutron stars.
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Figure 1.2. Schematic structure of a neutron star. Stellar parameters strongly depend on the
EOS in a neutron star core.

Some attempts to extract this information from observations are described in
Chapter 9. The atmosphere thickness varies from some ten centimeters in a
hot neutron star (with the effective surface temperature Ts ∼ 3 × 106 K) to a
few millimeters in a cold one (Ts ∼ 3 × 105 K). Very cold or ultramagnetized
neutron stars may have a solid or liquid surface. Neutron star atmospheres have
been studied theoretically by many authors (see, e.g., Zavlin & Pavlov 2002 and
references therein). Current atmosphere models, especially for neutron stars
with surface temperatures Ts � 106 K and strong magnetic fields B � 1011 G,
are far from being complete. The most serious problems consist in calculating
the EOS, ionization equilibrium, and spectral opacity of the atmospheric plasma
(Chapters 2 and 4).

If the radiation flux is too strong, the radiative force exceeds the gravitational
one and makes the atmosphere unstable with respect to a plasma outflow. In
a hot nonmagnetized atmosphere, where the radiative force is produced by
Thomson scattering, this happens whenever the stellar luminosity L exceeds
the Eddington limit

LEdd = 4πcGMmp/σT ≈ 1.3 × 1038 (M/M�) erg s−1, (1.3)

where σT is the Thomson scattering cross section and mp the proton mass.
The outer crust (the outer envelope) extends from the atmosphere bottom

to the layer of the density ρ = ρND ≈ 4 × 1011 g cm−3. Its thickness is
some hundred meters (Chapter 6). Its matter consists of ions Z and electrons
e (Chapters 2 and 3). A very thin surface layer (up to few meters in a hot star)
contains a non-degenerate electron gas. In deeper layers the electrons constitute
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a strongly degenerate, almost ideal gas, which becomes ultrarelativistic at ρ �
106 g cm−3. The pressure is mainly provided by electrons. For ρ � 104 g cm−3,
atoms are fully ionized by the electron pressure. In the outer atmosphere layers
the ions may constitute a Boltzmann gas, but in deeper layers they form a
strongly coupled Coulomb system (liquid or solid). A larger fraction of the
envelope is usually solidified; hence, the envelope is often called the crust. The
electron Fermi energy grows with increasing ρ. This induces beta captures in
atomic nuclei and enriches the nuclei with neutrons. At the base of the outer
crust the neutrons start to drip out from the nuclei producing a free neutron gas.

The inner crust (the inner envelope) may be about one kilometer thick. The
density ρ in the inner crust varies from ρND at the upper boundary to ∼ 0.5ρ0
at the base. Here, ρ0 is the saturation nuclear matter density introduced in
§1.1. The matter of the inner crust consists of electrons, free neutrons n, and
neutron-rich atomic nuclei (Chapter 3). The fraction of free neutrons increases
with growing ρ. The neutronization at ρ ≈ ρND greatly softens the EOS,
but at the crust bottom the repulsive short-range component of the neutron-
neutron interaction comes into play and introduces a considerable stiffness. In
the bottom layers of the crust, in the density range from ≈ 1

3ρ0 to ≈ 1
2ρ0,

the nuclei may become essentially nonspherical and form a “mantle”, but this
result is model dependent. The nuclei disappear at the crust-core interface.
Free neutrons in the inner crust and nucleons confined in the atomic nuclei can
be in superfluid state.

The outer core occupies the density range 0.5ρ0 � ρ � 2ρ0 and is several
kilometers thick (Chapters 5 and 6). Its matter consists of neutrons with several
per cent admixture of protons p, electrons, and possibly muons µ (the so called
npeµ composition). The state of this matter is determined by the conditions of
electric neutrality and beta equilibrium, supplemented by a microscopic model
of many-body nucleon interaction. The beta equilibrium implies the equilibrium
with respect to the beta (muon) decay of neutrons and inverse processes. All
npeµ-plasma components are strongly degenerate. The electrons and muons
form almost ideal Fermi gases. The neutrons and protons, which interact via
nuclear forces, constitute a strongly interacting Fermi liquid and can be in
superfluid state.

The inner core, where ρ � 2 ρ0, occupies the central regions of massive
neutron stars (and does not occur in low-mass stars whose outer core extends to
the very center). Its radius can reach several kilometers, and its central density
can be as high as (10−15)ρ0 (Chapter 6). Its composition and the EOS are
very model dependent (Chapter 5). Several hypotheses have been put forward,
predicting the appearance of new fermions and/or boson condensates. The main
four hypotheses are (Chapters 5 and 7):

(1) Hyperonization of matter – the appearance of hyperons, first of all Σ−
and Λ hyperons.
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(2) Pion condensation – the appearance of a boson condensate of pion-like
excitations with a strong renormalization and mixing of nucleon states.

(3) Kaon condensation – the Bose-Einstein condensation of kaon-like exci-
tations which, like real kaons, possess strangeness.

(4) A phase transition to the quark matter composed of deconfined light u
and d quarks and strange s quarks, and a small admixture of electrons, or even
no electrons at all.

Nucleon and nucleon/hyperon matter, called respectively nuclear and hy-
pernuclear matter, have been studied experimentally in ordinary nuclei and
hypernuclei. Pion and kaon condensations have not been discovered in labora-
tory so far. Some very tentative signatures of quark deconfinement have been
recently detected in the relativistic heavy-ion collisions. The models (2) – (4)
are often called exotic models of dense matter. A new phase may appear via
a first-order or a second-order phase transition. Its appearance is accompanied
by the softening of the EOS. One cannot exclude the existence of mixed phases
of dense matter.

Let us mention a special hypothetical class of compact stars, which are called
strange stars (Chapter 8). They could exist only if the absolute ground state of
hadronic matter is a self-bound quark matter. Strange stars entirely (or nearly
entirely) consist of strange quark matter. In some models, this matter extends
to the very surface; such stars are called bare strange stars. In other models,
strange stars have a normal crust extending from the surface not deeper than to
the neutron-drip density ρND.

1.3.2 The main mystery: The equation of state in neutron
star cores

The pressure of the matter in neutron star interiors is mainly produced by
highly degenerate fermions and can be calculated assuming T = 0. It is the
bulk property of the matter, provided by entire Fermi seas of fermions. The
EOS in a neutron star crust has been calculated with an accuracy, sufficient to
construct neutron star models, although some theoretical problems are unsolved
(Chapters 2–4). The theory is based on reliable experimental data on atomic
nuclei, nucleon scattering, and on the well elaborated theory of strongly coupled
Coulomb systems.

By contrast, the EOS at ρ � ρ0 cannot be reproduced in laboratory, and
it cannot be calculated exactly because of the lack of the precise relativistic
many-body theory of strongly interacting particles. Instead of the exact theory,
there are many theoretical models (Chapter 5). The reliability of these models
decreases with growing ρ. Thus, by the time of this writing (2006) the EOS in
neutron star cores is largely unknown. The fundamental problem of the EOS of
superdense matter constitutes the main mystery of neutron stars.
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Figure 1.3. EOS of neutron star matter: BPS (triangles), Haensel & Pichon (1994) (HP94,
stars), SLy (dots), OPAL at T = 106, 107, and 108 K (dashed lines), the fit (C.2) (the solid line)
and the fit modified at low ρ (the dotted line). From Haensel & Potekhin (2004).

The model EOSs can be subdivided into the soft, moderate and stiff ones
with respect to the compressibility of the matter. Basing on different EOSs, one
obtains (Chapter 6) different stellar models, particularly, different maximum
masses, from Mmax ∼ 1.4 M� for the softest EOSs to Mmax ∼ 2.5 M� for the
stiffest ones. The EOSs can also be subdivided with respect to the composition
of the matter (as already outlined in §1.3.1). Very stiff EOSs can possibly be
attributed only to nucleon matter.

Figure 1.3 gives an example of the EOS in a neutron star, from the core to the
surface. We show a moderately stiff EOS (SLy, dots, §§3.6 and 5.12) of dense
nucleon matter derived by Douchin & Haensel (2001) based on a Skyrme-type
energy density functional. It is equally valid in the neutron star core and the
crust, and is plotted for ρ > 5 × 1010 g cm−3. At lower densities in the crust,
108 g cm−3 � ρ < 5 × 1010 g cm−3, we plot the EOS of Haensel & Pichon
(1994) (HP94, stars, §3.2), based on experimental nuclear data. At still lower ρ
we replace it by the EOS of Baym et al. (1971b) (BPS, triangles, §3.2) for the
ground state of the matter at zero temperature. However, at ρ � 105 g cm−3

the actual EOS becomes temperature dependent as shown by the dashed lines.
These lines present the EOS of iron matter for T = 106, 107 and 108 K provided
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by the Opacity Library (OPAL; Rogers et al. 1996; see §2.4).4 The solid and
dotted lines in Fig. 1.3 are analytic interpolations explained in Appendix C.

1.3.3 Neutron star models
Once the EOS is given, one can compute stellar models (Chapter 6). This

should be done in the framework of General Relativity. For non-rotating stars,
the computation is performed by solving the Tolman-Oppenheimer-Volkoff
equation of hydrostatic equilibrium (§1.2). In this way one gets a family of
neutron star models parameterized by the central density ρc, so that the grav-
itational mass M = M(ρc) and the circumferential radius R = R(ρc) (with
2πR being a proper length of the neutron star equator; §6.1).

The models stable with respect to small perturbations correspond to such a
part of the M(ρc) curve, where M increases with growing ρc. From M(ρc)
and R(ρc) one gets a mass-radius (M − R) relation, M = M(R) (§ 6.6). The
stability condition leads to the existence of minimum and maximum masses of
neutron stars, Mmin ∼ 0.1 M� and Mmax ∼ (1.4 − 2.5) M� (§ 6.5). Neutron
star models, the M −R relation, and Mmax depend on the EOS of dense matter.
This opens an attractive possibility to study the EOS by comparing theory with
observations (Chapter 9). The models of strange stars (Chapter 8) strongly
differ from the models of neutron stars at M � M�. In contrast to neutron
stars, strange stars can have masses M � M� and radii R � 10 km.

For a given neutron star, the effects of General Relativity can be characterized
by the compactness parameter

xGR = rg/R, rg = 2GM/c2 ≈ 2.95 M/M� km, (1.4)

where rg is the Schwarzschild radius. The surface gravity g and the gravitational
redshift zsurf (§ 6.6.3) for frequency of of photons emitted from the stellar
surface can be expressed as

g = GMR−2/
√

1 − rg/R, ω∞ = ω0/(1+zsurf) = ω0

√
1 − rg/R. (1.5)

Here, ω0 is the frequency of photons emitted from the stellar surface (in a local
reference frame), while ω∞ is the frequency of these photons as detected by a
distant observer.

Instead of R one often introduces the apparent (radiation) radius which the
distant observer would measure if the telescope could resolve the star: R∞ =
R/
√

1 − rg/R.
Let us mention the so called canonical neutron star model used by many

authors. This artificial model does not imply any specific EOS, but just assumes

4The OPAL table for iron has been kindly provided by F. J. Rogers.
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Figure 1.4. Left: Superfluid transition temperatures versus density for protons (models 1p and
2p) and neutrons (models 2nt and 3nt for triplet-state pairing) in a neutron star core. Right:
Density profiles of the neutrino emissivity Q at T = 3 × 108 K in nonsuperfluid matter (noSF)
and in the presence of superfluidity. Vertical dotted line shows the threshold for the direct Urca
process (see the text for details).

the typical values of M and R:

M = 1.4 M�, R = 10 km, R∞ = 13 km, g = 2.43×1014 cm s−2. (1.6)

The models of rotating neutron stars are more complicated (§6.12). The
theory predicts that rotation noticeably affects the stellar structure at spin periods
P � 3 ms. The fastest rotators may have spin periods P ∼ 0.7 ms; their shape
may deviate from axial symmetry, allowing them to emit gravitational radiation.

1.3.4 Superfluidity
Various baryons in neutron star matter can be in superfluid state produced

by Cooper pairing of baryons due to an attractive component of baryon-baryon
interaction (as already mentioned in §1.2). Superfluidity of a particular baryon
species is switched on when the temperature T falls below some critical tem-
perature Tc. Superfluidity is a Fermi-surface phenomenon; it has almost no
effect on the EOS, neutron stars masses and radii.

The theory predicts superfluidity of free neutrons and of nucleons in atomic
nuclei in the inner neutron star crust. Neutrons, protons and other baryons in
the stellar core can also be superfluid. Superfluidity of charged particles (for
instance, protons) means superconductivity.
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As outlined in §1.2, free neutrons in the stellar crust undergo singlet-state
(1S0) pairing which disappears in the core (Wolf 1966). However, neutrons in
the core can be superfluid due to a weaker triplet-state (3P2) pairing. The idea
of such pairing in neutron star cores, first estimates and simplified calculations
of the superfluid gap have been published by a number of authors (particularly,
by Ruderman 1967, Maekawa & Tamagaki 1968, Tamagaki 1969, Hoffberg et
al. 1970), mostly in conference proceedings. Usually these results are solely
attributed to the first journal publication (Hoffberg et al., 1970). The foundation
of the strict relevant theory was laid by Tamagaki (1970). Proton superfluidity
in the core is thought to be mainly produced by singlet-state proton pairing.
One has also invented superfluidity of hyperons (Balberg & Barnea, 1998) and
quarks (Bailin & Love, 1984). Pion and kaon condensates affect superfluidity
of nucleons (Takatsuka & Tamagaki, 1995, 1997a,b).

Critical temperatures Tc of various particle species have been calculated by
many authors as reviewed by Lombardo & Schulze (2001) (more references
can be found in Yakovlev et al. 1999). The results are extremely sensitive
to strong interaction models and many-body theories employed. In all the
cases mentioned above microscopic calculations give density-dependent crit-
ical temperatures Tc � 1010 K and lower. As a rule, superfluidities weaken
and disappear at essentially supranuclear densities, where the attractive part of
strong interaction becomes inefficient. For example, in the left panel of Fig.
1.4 we present Tc(ρ) in a neutron star core composed of npe matter with a
moderately stiff EOS of Prakash et al. (1988) (after Yakovlev et al. 2002). We
plot four purely phenomenological models: models 1p and 2p for single-state
proton pairing and models 2nt and 3nt for triplet-state neutron pairing. The
curves in the right panel are explained in §1.3.5.

In addition, Alford et al. (1998) proposed a new type of quark superfluidity
associated with color superconductivity (§8.8.3). For a typical Fermi energy
of quarks ∼ 500 MeV, one may expect Tc ∼ 50 MeV ∼ 5 × 1011 K.

Superfluidity affects the heat capacity and neutrino emission of neutron stars.
It induces also a number of macroscopic quantum phenomena. For instance,
consider the core of a rotating neutron star composed of neutrons, protons and
electrons. A rotation of neutron superfluid is realized in the form of quantized
(Feynman-Onsager) vortices parallel to the spin axis (Ginzburg & Kirzhnits
1964, Baym et al. 1969). The total amount of vortices in the star is estimated
as ∼ 2 × 1016/P , where P is the stellar spin period in seconds. The vortex
motion of neutron superfluid, averaged over small macroscopic fluid elements,
reproduces a solid-body rotation. The vortices occur also in the inner crust,
where free neutrons are superfluid. A pulsar spindown induces the outward drift
of vortices and their disappearance at the boundary of the superfluid region.

Below the critical temperature, superconductivity of protons (and other
charged baryons) in the neutron-star core is described by the Ginzburg-Landau
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theory. The proton coherence length (2–6 fm) is typically much smaller than
the London screening length (100–300 fm) of electric currents in supercon-
ducting medium. This probably means type II superconductivity. If an initially
normal hot core contained a quasi-uniform magnetic field B, superconductiv-
ity splits the field into fluxoids (Abrikosov vortices), which are thin quantized
magnetic flux tubes parallel to the initial field. The total number of fluxoids is
∼ 1031 (B/1012 G).

Neutron vortices may pin to atomic nuclei or lattice defects in the crust and to
fluxoids in the core. The pinning may be accompanied by vortex creep. These
and related phenomena are invoked, for instance, to explain observations of
pulsar glitches and to study the evolution of internal magnetic fields (§1.4.4).

1.3.5 Neutrino processes
Neutrinos are generated in numerous reactions in neutron star interiors as

reviewed, for instance, by Pethick (1992) and Yakovlev et al. (2001). Only
neutrinos emitted during supernova explosions can be detected by neutrino
observatories. In several minutes after the explosion the neutrino flux is already
too small to be detected. However, neutrinos carry away energy and provide
an efficient cooling of warm neutron stars, with an internal temperature T �
107 K. The most powerful neutrino emission is produced in the stellar core.
Typical neutrino energies are � kBT , much higher than possible neutrino rest
energies. These neutrinos can be treated as massless particles. The emissivity
of a neutrino process in a nonsuperfluid core can be written as

Q(T, ρ) = Q0(ρ) T k
9 erg cm−3 s−1, (1.7)

where Q0(ρ) is a slowly varying function of ρ, k = 6 or 8 (see below), and
T9 = T/(109 K).

The most powerful neutrino emission is produced by the direct Urca pro-
cesses. In the simplest model of the npeµ dense matter, there are two such
processes. Each process is a sequence of neutron decay and inverse reaction
associated with either electron or muon (� = e or µ):

n → p + � + ν̄�, p + � → n + ν�. (1.8)

These processes are forbidden in the outer cores of neutron stars due to insuffi-
ciently high number densities of protons and leptons � (that violates momentum
conservation for reacting particles). However, the direct Urca processes operate
in the inner cores of massive stars with those model EOSs which give rather large
amount of protons and leptons. This circumstance was noted by Boguta (1981)
but his paper has remained unnoticed. The nucleon direct Urca processes have
been taken into account only after the paper of Lattimer et al. (1991), who intro-
duced them into neutron star astrophysics and calculated the associated neutrino
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emissivity. If both, electron and muon, processes are allowed, they have the
same emissivity given by Eq. (1.7) with k = 6 and Q0 ∼ 1026 − 3 × 1027. If
open, the process produces an extremely strong neutrino cooling. In hyperonic
matter, similar and also very intense processes with hyperons can be allowed
(Prakash et al., 1992).

For example, in the right panel of Fig. 1.4 we show the density dependence
of the neutrino emissivity in a neutron star core (composed of npe matter) at
T = 3 × 108 K. The vertical dotted line indicates the direct Urca threshold
for the given EOS. The thick solid line marked ‘noSF’ refers to nonsuperfluid
matter. The huge emissivity after the threshold is determined by the direct Urca
process.

The neutrino emission from exotic phases of matter in the inner cores of
massive neutron stars can be produced by direct-Urca-like processes with k = 6
in Eq. (1.7) (see Pethick 1992 for details). Such processes are also efficient,
but somewhat weaker than the nucleon direct Urca processes. In a pion or kaon
condensed matter, the process is a sequence of two reactions: B̃1 → B̃2�ν̄�

and B̃2� → B̃1ν�, where B̃1 and B̃2 stand for quasibaryons (baryon states
mixed by the condensate fields). The leading process in the quark matter is
d → ueν̄e followed by ue → dνe. The calculations using various models
give the emissivity (1.7) with Q0 ∼ 1023−26 for a pion-condensed matter, and
Q0 ∼ 1023−24 for a kaon-condensed or quark matter (in all cases k = 6).

In addition to these efficient neutrino processes, there are weaker ones. Their
advantage is that they operate everywhere in the stellar core, particularly in its
outer part. They are dominant neutrino processes in low-mass neutron stars,
where the inner core is absent. The most important processes of such a type in
the npeµ matter are the modified Urca processes,

n + N → p + N + � + ν̄�, p + N + � → n + N + ν� (1.9)

(where N stands for a nucleon, neutron or proton), and the nucleon-nucleon
bremsstrahlung processes

N + N → N + N + ν + ν̄. (1.10)

The latter processes produce all neutrino flavors. Modified Urca processes dif-
fer from their direct Urca progenitors by an additional nucleon-spectator N
required for momentum conservation. There are three bremsstrahlung pro-
cesses (nn, np, and pp) in the npeµ matter. The emissivities of the pro-
cesses (1.9) and (1.10) can be written in the form (1.7) with k = 8. One
gets Q0 ∼ 1020 − 3 × 1021 for modified Urca processes and Q0 ∼ 1019−20 for
bremsstrahlung processes. Similar processes involving various particles may
occur in hyperon or quark matter.
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The neutrino emissivity (thick solid line ‘noSF’) in Fig. 1.4 before the direct
Urca threshold is mainly produced by the modified Urca processes in the npe
matter. It is more than 7 orders of magnitude weaker than after the threshold.

The neutrino reactions are drastically affected by baryon superfluidity in
neutron star interiors as reviewed by Yakovlev et al. (1999, 2001). Because
the baryons are strongly degenerate, they can actively participate in a reac-
tion only if their energies lie within the thermal widths of their Fermi levels.
When the temperature T drops much below the critical temperature Tc of given
baryons, the energy gap in the baryon energy spectrum makes these baryons
inactive, greatly (as a rule, exponentially) suppressing all reactions involving
these baryons. For instance, a strong superfluidity of protons in the npe matter
switches off all Urca processes, but does not affect the nn bremsstrahlung. Both
model proton superfluidities in Fig. 1.4, 1p and 2p, are really strong before the
direct Urca threshold. If present, they lower the neutrino emission before the
threshold to the same solid line denoted by ‘1p’. They reduce also the direct
Urca process (after the threshold). Superfluidity 2p extends deeper behind the
threshold and reduces the direct Urca stronger (the short-dashed line).

Suppressing traditional processes, superfluidity initiates a new specific neu-
trino process associated with Cooper pairing of baryons (Flowers et al., 1976).
In a quasiparticle language, it can be described as annihilation of quasibaryons
into a neutrino pair (all neutrino flavors), for instance, ñ + ñ → ν + ν̄, for su-
perfluidity of neutrons (where ñ is a quasineutron). In a cooling star the process
switches on at T = Tc, produces the maximum emissivity at T ∼ 0.8 Tc, and
becomes exponentially suppressed at T � Tc. For realistic density profiles
Tc(ρ), the integral neutrino luminosity of the star due to this process can be one
to two orders of magnitude higher than the luminosity provided by the modified
Urca processes in a nonsuperfluid star. This Cooper pairing neutrino process
operates in neutron star cores and inner crusts.

For the conditions, presented in Fig. 1.4, both proton superfluidities are too
strong to produce a noticeable Cooper-pairing emission. If, in addition to strong
proton superfluidity (1p or 2p), we introduce weaker neutron superfluidity (2nt
or 3nt) we will raise the neutrino emissivity (to the long-dashed ‘p+2nt’ line
or the solid ‘p+3nt’ line) due to Cooper pairing of neutrons. Before the direct
Urca threshold this raise is the same for proton superfluids 1p and 2p.

1.3.6 Thermodynamics and kinetics
Thermodynamics and kinetics of neutron star matter are very rich in physics

due to huge ranges of densities and temperatures available in neutron stars.
The most important thermodynamic property, the EOS, has already been

discussed in §1.3.2. One often needs additional thermodynamic quantities,
such as particle chemical potentials or heat capacity. The heat capacity is
reviewed, for instance, by Yakovlev et al. (1999, 2001). The main heat reservoir
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is provided by strongly degenerate fermions in the stellar core. The thermal
energy of a nonsuperfluid star with the internal temperature T is estimated as
∼ 1048 T 2

9 erg.
The kinetic theory of neutron star crusts has been reviewed by Yakovlev &

Kaminker (1994) and Ventura & Potekhin (2001). The theory deals with trans-
port coefficients, such as the thermal and electrical conductivities (κ and σ) as
well as the shear and bulk viscosities (η and ζ). In the crust, the conductivities κ
and σ and the viscosity η are mostly provided by electrons (although the thermal
conductivity of the outermost nondegenerate surface layers is predominantly
radiative). The major electron scattering mechanism is Coulomb scattering by
ions (or, equivalently, scattering by phonons, which quantify vibrations of ions
in solidified matter). At rather low temperatures (e.g., T � 3×107 K in the inner
crust) the electron-ion scattering is strongly suppressed. In this case the elec-
tron scattering by charged impurities (by a small amount of ions whose charges
are different from charges of most abundant ions) and/or electron-electron scat-
tering can be more important, particularly due to efficient Landau damping of
transverse plasmons in the electron-electron interaction (Shternin & Yakovlev,
2006). For illustration, in the left panel of Fig. 1.5 we plot the thermal conduc-
tivity throughout the neutron star crust and core at T = 107, 108, and 109 K.
The conductivity in the crust is taken from Gnedin et al. (2001) (for the electron-
ion scattering) and from Shternin & Yakovlev (2006) (for the electron-electron
scattering which becomes important for T = 107 K and ρ � 1011 g cm−3).

The foundation of the kinetic theory of neutron star cores was laid by Baym
et al. (1969). An important contribution was made by Flowers & Itoh (1976,
1981). Some results have been briefly reviewed by Yakovlev (1991, 1993). In
a nonsuperfluid npeµ matter (as well as in a hyperonic one), κ, σ, and η are
expected to be not too sensitive to the composition and EOS of neutron star
cores. Their density dependence should not be too strong; the leading transport
carriers and their scattering mechanisms can be different. Very crude estimates
are

σ ∼ 3 × 1029

T 2
8

s−1, κ ∼ 3 × 1023

T8

erg
cm s K

, η ∼ 1019

T 2
8

g
cm s

, (1.11)

where T8 is the temperature in units of 108 K. The density dependence of the
thermal conductivity of neutrons in the stellar core composed of nonsuperfluid
npe matter is shown in the left panel of Fig. 1.5 (from Baiko et al. 2001a; the
same version as the long-dashed curve in their Fig. 3).

Generally, neutron stars are excellent conductors with very high electron and
thermal conductivities. As a result, neutron star interiors are usually almost
isothermal. However, κ and σ become much lower in the very surface layer,
no more than 10 meters under the surface. This layer produces the thermal
insulation of the stellar interior, making the interior warmer than the surface
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Figure 1.5. Left: Density dependence of the thermal conductivity in a neutron star crust and a
nonsuperfluid npe core at T = 107, 108, and 109 K. Right: Partial bulk viscosities associated
with various reactions (indicated near the curves) and the total bulk viscosity (the thick solid line)
versus number density nb at T = 109 K in a nonsuperfluid npeµΛΣ− core which undergoes
subthermal pulsations with frequency ω = 104 s−1 (see the text for details).

(for the surface temperatures Ts � 103 K). The main temperature gradient is
located there. There is a strong (several orders of magnitude) jump of κ, σ, and
η, while passing from the inner crust to the core (left panel of Fig. 1.5). The
jump is produced by the change of transport mechanism (from a very efficient
electron transport due to Coulomb scattering in the crust to a slower neutron
transport due to scattering between strongly degenerate nucleons in the core).
As a result, the thermal relaxation in the inner crust lasts longer than in the core.

The bulk viscosity ζ is drastically different from other transport coefficients.
It is associated with particle transformations (“chemical reactions”) under com-
pressions and rarefactions of the matter. The bulk viscosity of the core can vary
by many orders of magnitude, depending on the composition of dense mat-
ter. The description of different regimes and bibliography can be found, for
instance, in Haensel et al. (2002a,b). In an oscillating star ζ depends on an
oscillation frequency ω and on oscillation amplitudes δµ of chemical potentials
of particles. Suprathermal oscillations with δµ � kBT dramatically enhance
the bulk viscosity in comparison to the case of subthermal oscillations with
δµ � kBT .

In the right panel of Fig. 1.5 we show the density dependence of ζ in the
stellar core at T = 109 K for subthermal pulsations with ω = 104 s−1 (from
Haensel et al. 2002a). The density ρ is parameterized by the baryon number
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density nb (ρ = ρ0 corresponds to nb ≈ 0.16 fm−3). The adopted EOS is
taken from Glendenning (1985); it assumes the presence of neutrons, protons,
and electrons in the outermost stellar core, and the appearance of muons, Σ−
and Λ hyperons at higher densities. Thin lines of various types show partial
bulk viscosities produced by different particle transformations. The thick solid
line is the total ζ.

In the outer stellar core composed of npeµ matter, ζ is determined by the
nonequilibrium modified Urca processes (1.9) involving electrons (nN �
pNe, the lower dotted line) and muons (nN � pNµ, the lower short-dashed
line). In deeper layers, where the direct Urca processes (1.8) are open (n � pe
and n � pµ, the higher dotted and short-dashed lines), they become the domi-
nant ones, enhancing ζ by 5–7 orders of magnitude. In hyperon or quark matter
ζ can be determined by hyperon or quark reactions, which change strangeness
but do not involve leptons. In this case ζ is additionally enhanced by 3–5 orders
of magnitude. In Fig. 1.5 such an enhancement is produced by the nn � pΣ−
process (the dot-dashed line).

The transport coefficients are affected by magnetic fields. A magnetic field
makes transport properties anisotropic. For instance, the electron electric or
thermal transport in a magnetized plasma is characterized by three transport
coefficients, which determine the conductivities along and across the field, and
the Hall conductivity (see, e.g., Yakovlev & Kaminker 1994 and Ventura &
Potekhin 2001). The anisotropy is strong if the magnetization parameter is
large, ωcτ � 1, where ωc is the electron gyrofrequency and τ is the effective
electron relaxation time. For instance, the electron thermal conductivity of the
layer with ρ � 106 g cm−3 is strongly affected by the fields B � 1010 G. These
fields greatly reduce the transverse conductivity (because electrons rapidly ro-
tate about magnetic field lines). In higher fields, the effects associated with the
quantization of transverse electron motion (Landau levels) become important
(see Chapter 4 for details). They induce de Haas-van Alphen oscillations of
the transport coefficients (if electrons populate a few or many Landau levels)
or greatly modify these coefficients (if the ground Landau level is populated
alone). Strong magnetic fields can affect the transport properties of neutron star
cores (as reviewed, e.g., by Yakovlev 1991, 1993).

The kinetic properties are also affected by superfluidity of dense matter,
especially in neutron star cores. We have already described the effects of super-
fluidity on neutrino emission (§1.3.5). Superfluidity reduces particle collision
rates and affects the transport directly, for instance, by modifying the diffu-
sive thermal conductivity and bulk viscosity (see, e.g., Baiko et al. 2001a and
Haensel et al. 2002a). In addition, the transport can be affected by macro-
scopic superfluid quantum phenomena. For instance, a convective counterflow
of normal particles, induced by a flow of superfluid liquid in the presence of
a temperature gradient, carries the heat. This effect was mentioned, e.g., by
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Flowers & Itoh (1976), but has not been studied in the neutron star physics. Su-
perfluidity affects momentum transfer (viscosity) and hydrodynamics of neu-
tron star interiors. Dynamics of mixtures of normal and superfluid liquids is
a complicated problem. In particular, it involves specific mutual friction and
entrainment forces. The evolution of perturbations in internal neutron star
layers can be strongly affected by nonequilibrium beta processes and related
phenomena (Reisenegger, 1995).

1.3.7 Cooling of neutron stars
Neutron stars are born hot in supernova explosions (§1.4.2). In about one

minute after the birth the star becomes transparent to neutrinos. Let us outline
the cooling of an isolated star during the subsequent neutrino-transparent stage.
The subject has been reviewed, for instance, by Yakovlev & Pethick (2004),
and Page et al. (2004, 2005), who give the bibliography of earlier work. The
cooling is realized via two channels – by neutrino emission from the entire stellar
body and by heat diffusion from the internal layers to the surface resulting in
the thermal emission of photons. The stellar interior stays nonisothermal for
the first 10–100 years. The neutrino emission dominates the thermal photon
emission for ∼ 105 years, while the photon emission dominates later.

The cooling of middle-aged neutron stars (of age t ∼ 104 − 105 years)
is mainly regulated by neutrino emission, heat capacity, superfluidity of their
interiors, and by heat-insulating properties of the outermost layer (affected by
the surface magnetic fields and by the presence of light elements on the surface).
The cooling of older stars may also be regulated by some reheating mechanisms,
for instance, by Ohmic dissipation of internal magnetic fields.

For example, in Fig. 1.6 (from Yakovlev et al. 2004) we present theoretical
cooling curves of neutron stars of several masses for three models of neutron
and proton superfluidity in the stellar core (composed of neutrons, protons and
electrons). Any cooling curve gives the effective surface temperature T∞

s , as
detected by a distant observer, versus stellar age t. The superfluid models are
the same as those displayed in Fig. 1.4. The dotted regions are filled by cooling
curves of neutron stars of masses from ∼ M� to the maximum mass (1.977 M�,
for the given model EOS in the stellar core). Theoretical curves are compared
with observations of nine isolated middle-aged neutron stars (see Yakovlev et
al. 2004 for details).

In the left and middle panels we adopt, respectively, models 1p and 2p for
strong proton superfluidity in cooling stars. Low-mass stars cool very slowly via
neutrino bremsstrahlung in neutron-neutron collisions, whereas other neutrino
processes are suppressed by proton superfluidity (§1.3.5). High-mass stars
show fast cooling via the direct Urca process in their inner cores (nonsuppressed
by superfluidity, as shown in Fig. 1.4). Both superfluid models (1p or 2p) can
explain the observations.
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Figure 1.6. Theoretical cooling curves of neutron stars of several masses M (numbers near
curves) for three superfluid models in the stellar cores (left: 1p; middle: 2p; right: 1p+3nt).
Dot-and-dashed line: cooling of a nonsuperfluid 1.35 M� star. Any point in a shaded region can
be explained by a cooling neutron star with a certain mass M and given superfluid model. The
theory is compared with observations of 9 isolated neutron stars. From Yakovlev et al. (2004).

In the right panel we adopt model 1p for proton superfluidity and model 3nt
for mild neutron superfluidity in the stellar core. Strong neutrino emission due
to Cooper pairing of neutrons accelerates cooling of low-mass stars and hampers
the interpretation of neutron stars hottest for their age. This superfluidity model
(1p+3nt) is inconsistent with the observations.

1.3.8 Magnetic fields
Many neutron stars possess very strong surface magnetic fields. As we have

seen in §1.2, the very discovery of neutron stars was possible because neutron
stars operate as pulsars owing to their strong magnetic fields. Comparison of
observations with theoretical models of pulsar radiation shows that the surface
magnetic fields in the majority of pulsars is B ∼ 1011–1013 G (Manchester
et al., 2005), but may reach up to B � 1014 G in radio pulsars and up to
B � 1015 G in magnetars (see §1.4, particularly, §§1.4.4 and 1.4.5). Naturally,
their internal magnetic fields may be higher than the surface ones. Magnetic
fields strongly affect observational manifestations of neutron stars.

In some cases an indirect evidence of strong magnetic fields, based on theoret-
ical models, is confirmed by direct measurements, based on X-ray observations
of the electron cyclotron lines in neutron star spectra. The first cyclotron line



Overview 27

was discovered by Trümper et al. (1978) in the spectrum of the X-ray binary
Hercules X-1. For several neutron stars, two or three cyclotron harmonics have
been registered; Santangelo et al. (1999) observed even four harmonics from
the X-ray transient X0115+63, confirming the magnetic field B > 1012 G.

Most complicated problems of the origin and evolution of these fields have
been studied by many authors (as reviewed, e.g., by Reisenegger 2003 and
Reisenegger et al. 2005). The fields may be inherited from presupernova stars
and amplified during the gravitational collapse owing to magnetic flux conser-
vation. This argument even led to the prediction of the fields B ∼ 1012 G
in neutron stars a few years before the discovery of pulsars (Ginzburg, 1964).5

However, there is no detailed physical picture of such a flux-conserving collapse.
Alternatively, magnetic fields may be generated during supernova explosions
or in young neutron stars.

The evolution of neutron star magnetic fields can be regulated by many
factors, first of all by Ohmic decay. The magnetic evolution is coupled to
the thermal evolution (because the electric conductivity and associated Ohmic
decay rate depend on temperature). The Ohmic decay time of a not too strong
field (B � 1012 G) in a nonsuperconducting stellar core is larger than the
Universe age (Baym et al., 1969) because of a very high electric conductivity in
the core, Eq. (1.11). The decay of stronger field in the core may be accelerated
by the enhancement of the electric resistivity across the field lines (Haensel et
al., 1990b). In a superconducting core, the field splits into magnetic fluxoids
whose evolution is determined by many factors, particularly, by interaction of
the fluxoids with rotational vortices (§§1.3.4 and 1.3.6). The Ohmic decay of
the crustal magnetic field (see, e.g., Cumming et al. 2004 and references therein)
can be much faster than in the core due to lower electric conductivity in the crust
and shorter Ohmic diffusion time-scales. The crustal and core magnetic fields
may be closely related or almost independent. The magnetic field evolution can
be affected by the Hall effect. The magnetic field of an accreting neutron star
can be greatly affected by accretion (e.g., Cumming et al., 2001).

What is the maximum filed strength in a neutron star? The estimates based
on the virial theorem show that a field B � 1018 − 1019 G cannot be sustained
in a considerable fraction of the star because the magnetic energy (∼ R3B2/6)
would exceed the gravitational binding energy (∼ 3 GM2/5R), and the field
would induce a dynamical instability of a hydrostatic configuration (Chan-
drasekhar & Fermi, 1953; Shapiro & Teukolsky, 1983; Lai & Shapiro, 1991).
These estimates agree with detailed numerical simulations (Bocquet et al., 1995;

5It is interesting to note that the same order of magnitude for the neutron-star field strength could have been
expected on the basis of the approximate proportionality of stellar angular momenta and magnetic moments.
Similar arguments led Blackett (1947) to the prediction of magnetic white dwarfs.
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Cardall et al., 2001) which indicate that the internal magnetic field of a neutron
star cannot exceed a few times 1018 G.

Strong magnetic fields induce a large variety of phenomena in neutron star
atmospheres and magnetospheres, reviewed, e.g., by Harding & Lai (2006).

1.3.9 Seismology

Like other stars, neutron stars are good resonators, where oscillation modes
can be excited. These modes can be numerous, including, particularly, funda-
mental (f), pressure (p), gravity (g), Rossby (r) modes (see, e.g., McDermott et
al. 1988a; Stergioulas 2003). The period of fundamental radial oscillation is
∼(0.5–1) ms. Observations of oscillations have potential to explore the internal
structure of neutron stars (see, e.g., Kokkotas et al. 2001 and references therein).
Some modes can be unstable and grow with time till they saturate due to nonlin-
ear effects. In particular, these can be r-modes which are generically unstable in
rotating stars composed of perfect fluid (see, e.g., Andersson & Kokkotas 2001,
Lee & Yoshida 2003 and references therein). They are extensively studied as
possible sources of gravitational radiation from rapidly rotating neutron stars.

1.4. Observations versus theory

Neutron stars are observed in all bands of electromagnetic spectrum in our
Galaxy and in nearby satellite galaxies (such as the Large Magellanic Cloud
and Small Magellanic Cloud). The neutron star astronomy is extending into
the Local group of galaxies and even further. For instance, X-ray bursters
(§1.4.6) have been observed in the galaxy M31 (Pietsch & Haberl, 2005), and
an ecpipcing X-ray binary has been discovered in the galaxy M101 outside the
Local group (Liu et al., 2006). We outline main observational manifestations
of neutron stars and mention also some theoretical work on interpretation of
these manifestations. The same star can manifest itself in different ways. Our
description will inevitably be schematic and bibliography incomplete. We sum-
marize numerous observational manifestations of neutron stars in Table 1.1. We
hope that the table will simplify reading of this section. The table heading is
just the title of the conference which took place from September 30 till October
11, 1996, in Italy on Lipari, one of the Aeolian Islands in the Tyrrhenian Sea
off the north coast of Sicily.

1.4.1 Telescopes

Observational technique is fascinating and rapidly developing. The best way
to learn on details is to use the Internet; every telescope has its own web site.
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Table 1.1. The many faces of neutron stars

Objects Manifestations

Neutron stars (NSs): emitters of radio, infrared, optical, ultraviolet, X-ray, gamma-ray
radiation; high-energy particles; neutrinos; gravitational waves

Neutron stars: associated or not directly associated with supernova remnants
(SNRs)

Neutron stars: isolated stars or binary members
Pulsars (PSRs): radio, classical X-ray, anomalous X-ray (AXPs), gamma-ray,

millisecond, glitching, noising, powering pulsar wind
nebulae (PWNe) and bow shock nebulae (BSNe)

Pulsars: powered by rotation, accretion, magnetic field (magnetars)
Magnetars: AXPs and soft gamma-ray repeaters (SGRs)
Isolated neutron stars: pulsars, compact central objects in SNRs (CCOs), dim objects,

old objects accreting interstellar medium, magnetars
NSs in binaries: with nondegenerate stars, white dwarfs, NSs
NSs in binaries: transient and persistent sources
NSs in binaries: low-mass and high-mass X-ray binaries (LMXBs and HMXBs)
NSs in binaries: soft X-ray transients (SXTs), hard X-ray transients, X-ray bursters,

(classical) X-ray pulsars, sources of quasiperiodic
oscillations (QPOs)

Electromagnetic emission. Neutron stars are multiwavelength emitters. They
are observed in radio, infrared, optical, ultraviolet, X-ray and gamma-ray spec-
tral bands.

Radio observations are conducted with ground based telescopes or their ar-
rays throughout the world. The examples are the Arecibo (Fig. 1.7) and Parkes
telescopes. Near infrared and optical observations can be performed with large
ground based telescopes (such as the Keck telescope, the Very Large Telescope
(VLT), the Subaru telescope) because neutron stars are weak in these bands.
Ultraviolet (and optical) observations are performed with the Hubble Space
Telescope (HST).

Extreme ultraviolet, X-ray and gamma-ray observations of neutron stars are
conducted with space observatories. The best X-ray observatories suited for
such observations by 2006 are the Chandra (Fig. 1.8) and X-ray Multi Mir-
ror (XMM-Newton) observatories, and also the Rossi X-ray Timing Explorer
(RXTE). The examples of gamma-ray observatories operating by 2006 are the
High Energy Transient Explorer (HETE-2) and the International Gamma-Ray
Astrophysics Laboratory (INTEGRAL).
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Figure 1.7. The Arecibo radio telescope; 305 meters in diameter. The platform suspended above
the reflector weighs 500 tons (photo courtesy of the NAIC – Arecibo Observatory, a facility of
the NSF).

Neutrino observatories. The neutrino luminosity of neutron stars in several
minutes after their birth becomes too week to be detected directly. However,
one expects to detect a splash of neutrino emission for a few ten seconds preced-
ing a visual supernova explosion at a neutron star birth (§1.4.2). The examples
of currently operating neutrino observatories are the Sudbury Neutrino Ob-
servatory (SNO) and the Kamioka Liquid-scintillator Anti-Neutrino Detector
(KamLAND).

Gravitational-wave observatories. Rapidly rotating neutron stars may lose
axial symmetry (e.g., due to r-mode instability, see §1.3.9) and emit gravita-
tional waves. Compact binaries containing neutron stars are even much more
efficient sources of gravitational radiation (especially at the final inspiral stage;
see §9.1). Gravitational radiation of double neutron star binaries and neutron
star – white dwarf binaries has already been observed indirectly, by detecting
relativistic decay of pulsar orbits. It is hoped that direct detection of gravitational
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Figure 1.8. Artistic view of the Chandra X-ray satellite in orbit (illustration courtesy of NGST).

waves will be made soon after 2006 with the new generation of gravitational ob-
servatories, such as the ground-based Laser Interferometer Gravitational-Wave
Observatory (LIGO), European Gravitational Observatory (VIRGO detector),
and the Large Interferometer Space Antenna (LISA).

1.4.2 Birth in supernova explosions. Supernova connection
Neutron stars are final products of stellar evolution. It is widely accepted

that they are born in supernova explosions after their presupernova progeni-
tors (giant or supergiant stars) exhaust nuclear fuel in their cores. The cores
undergo gravitational collapse into neutron stars (or black holes), while outer
presupernova layers are blown away by an expanding shock wave, producing
supernova remnants. The whole event is usually referred to as a core-collapse
(type II) supernova explosion (see, e.g., Imshennik & Nadyozhin 1988; Arnett
1996, and references therein). The neutron star – supernova connection was
suggested by Baade and Zwicky in 1933 as described in §1.2.

The explosion, which occurs in the presupernova core, triggers a shock wave
propagating outward (after bouncing off the dense core). It takes several hours
for the shock to travel through extended presupernova outer layers. At this
stage the presupernova, observed from outside, looks just as usual, as if nothing
happened in its interior. After the shock reaches the surface, it produces a splash
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of radiation in all bands of electromagnetic spectrum to be observed as a su-
pernova event. In addition, the core collapse itself should be accompanied by a
powerful outburst of neutrino emission and, possibly, of gravitational radiation.
These events could be detectable by neutrino and gravitational observatories
prior to the electromagnetic outburst.

Supernova explosions are accompanied by an enormous energy release, a
few times 1053 erg in total (of the order of the gravitational energy of a neutron
star, Eq. (1.1)). It is expected that the energy is mostly released in the form of
neutrinos. About 1% of the total energy transforms into the kinetic energy of
the explosion ejecta, and only a minor part (∼ 1049 erg) into electromagnetic
radiation; a smaller part can be emitted in the form of gravitational waves.

Theoretical simulations of gravitational collapse are extremely complicated
because they should generally involve three-dimensional hydrodynamics with
neutrino transport and convection. Many attempts to simulate the collapse
(in inevitably restricted formulations) failed to reproduce a neutron star birth
accompanied by the formation of a powerful outgoing shock wave (see, e.g.,
Janka 2004 and references therein). The collapse and supernova explosion can
be strongly affected by the combined effect of stellar rotation and magnetic field
(see, e.g., Moiseenko et al. 2003, Akiyama et al. 2003, and references therein).

A gravitational collapse of a degenerate stellar core occurs on time scales of
0.1 s. If the shock wave produced by the core bounce is successful in ejecting
the outer layers, it should result in the appearance of a protoneutron star with
the internal temperature T ∼ 1011 K (see, e.g., Pons et al. 2001 and references
therein). This protoneutron star is very special. It is hot, opaque to neutrinos,
and larger than an ordinary neutron star. It lives for about one minute and
transforms then into an ordinary neutron star which is transparent for neutrinos.

Current estimates of supernova explosion rate in the Galaxy are uncertain
and give one event per 60–1000 years (e.g., Arzoumanian et al. 2002). Elec-
tromagnetic radiation from some of these explosions cannot be observed from
the Earth, being hidden by gaseous and dust-grain clouds in the Galactic plane.
The total number of neutron stars in the Galaxy is estimated as 108 −109. Only
a very limited fraction of these stars can be observed.

Supernova explosions in the Galaxy were observed by naked eye centuries
ago (for recent reviews of such historical supernovae see Green & Stephenson
2002, 2003). The most prominent observation is dated back to 1054. It was the
birth of the Crab Nebula and the Crab pulsar at its heart. In modern times, it was
sinologist Édouard Biot (the son of famous physicist J.-B. Biot) who first paid
attention to a “guest star” reported in Chinese chronicles for AD 1054 (Biot,
1846). Other Chinese, Japanese, Arabic, and European historical records were
discovered in the 20th century. The extraordinary bright star appeared probably
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in April,6 remained visible in daylight till August of 1054 and gradually faded
away to 1056. Lundmark (1921) listed this star as a “suspected nova,” Hubble
(1928) noticed that its position was at the center of the Crab Nebula, and Mayall
(1939) identified it as a supernova.

Nowadays astronomers detect several tens of type II supernovae per year
from distant galaxies (too far away to study collapsars).

Any association of a neutron star with a supernova remnant has a great impor-
tance: the age and distance to the star are those of the remnant. Many neutron
stars acquire large proper velocities (kicks, §1.4.7) during their births and leave
quickly their parental supernova remnants. Supernova remnants themselves
dissolve in ∼ 105 years after explosion. Thus, the majority of neutron stars are
not related to observable supernova remnants.

A newly born neutron star remains hidden behind an expanding supernova
envelope for several years. This prevents direct observation of very young
neutron stars.

The most famous supernova detected in the present epoch is the supernova
1987A. It was discovered in the nearby Large Magellanic Cloud on February
23, 1987, really close (∼ 50 kpc) to us (see, e.g., Imshennik & Nadyozhin 1988;
Arnett 1996, and references therein). This is the first (and still the only one)
supernova from which the neutrino outburst was observed. All the attempts to
find a collapsar (a neutron star or a black hole) in this supernova remnant have
failed. Nearby supernova explosions are rare. However, we should be ready to
witness a new event.

Let us remark that neutron stars can also be formed via a collapse of ac-
creting white dwarfs in binary systems, after the white dwarf mass exceeds the
Chandrasekhar limit. This accretion induced collapse occurs only under spe-
cific conditions when electron captures effectively decrease the Chandrasekhar
mass limit (Nomoto 1987; Nomoto & Kondo 1991; for a review see Canal
1994). The number of neutron stars formed in this way is expected to be small
(Fryer et al., 1999), but it may be the only viable scenario of their formation
in some binaries (see, e.g., Nomoto & Kondo 1991; van Paradijs et al. 1997,
and references therein). Let us remind that the majority of accreting white
dwarfs, whose masses become close to the Chandrasekhar limit, are disrupted
by a thermonuclear explosion, producing supernova Ia events (see Nomoto et
al. 1994 for a review).

6There were debates about the date of its appearance and about credibility of different records. The most
detailed Chinese report indicates July 4, but other historical sources point to earlier dates. For the list of
the historical observations, references, and discussion, see Collins et al. (1999) and Polcaro & Martocchia
(2006).
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1.4.3 Evolutionary scenarios: Three driving forces
Many neutron stars are thought to be born as isolated stars from isolated

presupernovae (in neutron star community “isolated” is used for “solitary”).
However, many other neutron stars are born in binary systems (also see §1.4.6).
Their evolution can be drastically different from the evolution of isolated stars
(see, e.g., Lipunov 1992 and references therein). Let us assume that initially
a binary contains two ordinary stars. Depending on their masses and orbital
parameters, both companions undergo their nuclear evolution which can be
strongly affected by mass exchange (accretion from one companion to the other,
especially in compact binaries). Eventually, one of the companions may explode
as a supernova producing a neutron star (or a black hole). The explosion may or
may not destroy the binary. If survived, the binary continues its evolution and
the second component may explode as a supernova (although there are other
possibilities). If a compact double neutron star binary forms and survives,
its evolution is accompanied by intense gravitational radiation (§9.1.2); the
companions fall onto each other and finally merge producing a powerful outburst
of gravitational, neutrino, and electromagnetic radiation.

In addition to accretion, the evolution of neutron stars can be strongly affected
by their rotation and magnetic fields. Thus, the evolution and observational
manifestations of neutron stars are regulated by the three main factors:

Rotation, Accretion, and Magnetic Field.

We will illustrate the effects of these factors in the next sections (also see Table
1.1). The effects are often superimposed. For instance, the magnetic field and
rotation affect the regime of accretion on a neutron star and, hence, its X-ray
emission (§1.4.6). On the other hand, an intense accretion can spin up the
neutron star and affect its magnetic field. All in all, there are vastly different
scenarios of neutron star evolution. Statistical studies of the evolution can be
performed with population synthesis codes (see, e.g., Lipunov et al. 1996).

1.4.4 Pulsars
Pulsars are rotating neutron stars which produce pulsed emission (modulated

by their rotation). It is thought that the emission is generated in a neutron star at-
mosphere and/or magnetosphere. Naturally, the emission should be anisotropic
to be detected as pulsed. The anisotropy is caused by a neutron star magnetic
field.

Pulsars are subdivided into radio pulsars, X-ray pulsars and gamma-ray
pulsars, depending on the spectral range where pulsations are observed. Some
neutron stars, for instance, the Geminga and the Crab pulsars, show pulsations
in all spectral bands.

Pulsars can also be subdivided with respect to mechanisms which power
their activity. One can distinguish rotation powered, accretion powered, and
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magnetically powered pulsars. We outline them in the next subsections. Pulsars
can be single isolated stars or enter binary systems.

Radio pulsars. Radio pulsars (often called pulsars, for short) are spinning
magnetized neutron stars which emit radio waves and operate as light houses
(§1.2). The radio emission is generated in pulsar magnetospheres (§1.3) and
is peaked with respect to magnetic poles. It can be observed only if a pulsar
beam crosses the Earth.

The majority of known neutron stars are observed as radio pulsars. By 2006
∼ 1700 radio pulsars have been observed. The information on radio pulsars
can be found in catalogues, for instance, in the Australia Telescope National
Facility (ATNF) catalogue [http://www.atnf.csiro.au/research/pulsar/psrcat/].

Many radio pulsars demonstrate very stable rotation and serve as superpre-
cise clocks. Radio telescopes allow observers to perform highly accurate pulsar
timing and measure the pulsar spin period P , its time derivatives, Ṗ , and some-

times
..
P (see, e.g, Lyne & Graham-Smith 1998; Lorimer 2001; Livingstone et

al. 2006, and references therein). Isolated radio pulsars show regular spindown
(Ṗ > 0) and spend their rotational energy to emit electromagnetic radiation
and accelerate particles in their magnetospheres; they belong to the class of
rotation-powered pulsars (see below). Profiles, spectra, polarization and other
properties of radio emission give information on dispersion measure, useful for
estimating distances to pulsars, and on physical properties of pulsar magneto-
spheres. Timing of pulsars in binary systems is useful for measuring masses of
binary components and for studying the orbital parameters (§9.1).

Some radio pulsars show very rapid rotation (see §9.4). Pulsars with spin
periods P � 30 ms form a special class of millisecond pulsars. PSR B1937+21
with P = 1.558 ms, the first discovered millisecond pulsar (Backer et al., 1982),
remained the fastest rotator till 2005, where still faster PSR J1748−2446ad with
P = 1.396 ms was discovered (Hessels et al., 2006). Many millisecond pulsars
are thought to be old (t � 109 years) neutron stars with small magnetic fields
(B � 108 − 109 G) recycled by accretion in binary systems.

Some radio pulsars, including the Crab pulsar, rarely show giant pulses of
radio emission. The intensity of giant pulses exceeds the intensity of ordinary
pulses by a factor of a few hundreds or even thousands. Giant pulses can be
very short (as short as 2 ns, once observed from the Crab pulsar, Hankins et
al. 2003). They can have extremely high brightness temperature (for instance,
exceeding 5 × 1039 K for PSR B1937+21, Soglasnov et al. 2004).

Pulsar glitches. Glitches are observed as sudden jumps ∆Ω of pulsar spin
frequencies Ω = 2π/P followed by a slow partial relaxation to a pre-glitch
regular spindown (Ṗ > 0). Relaxation time scales range over the period of days,
months or years. The relative frequency jumps ∆Ω/Ω vary from ∼ 10−10 to
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∼ 5× 10−6. Glitches are mainly observed from relatively young radio pulsars.
The first glitches were detected from the Crab and Vela pulsars (Boynton et
al. 1969, Radhakrishnan & Manchester 1969, Reichley & Downs 1969). By
2006 one has observed ∼ 100 glitches from ∼ 30 pulsars. The strongest glitch
with ∆Ω/Ω ≈ 1.6 × 10−5 was detected by Hobbs et al. (2002) from PSR
J1806–2125. Some glitches have been discovered in X-rays with the Rossi
X-ray Timing Explorer. In particular, such glitches have been observed from a
millisecond pulsar (PSR J0537–6910, Marshall et al. 2004), an accreting pulsar
(KS 1947+300, Galloway et al. 2004), and an anomalous X-ray pulsar (1RXS
J170849.0–400910, Dall’Osso et al. 2003).

The most popular interpretation of glitches associates them with a sudden
unpinning of vortices of neutron superfluid in the neutron star crust. The idea
was proposed by Anderson & Itoh (1975) and Alpar (1977). The interpretation
requires the moment of inertia of crustal neutron superfluid to be ∼ 1% of the
total moment of inertia of the star (see §9.7). The theory of pulsar glitches (see,
e.g., Larson & Link 2002 and references therein) has not been very elaborated
yet; comparison of observation and theory has potential to explore internal
structure of neutron stars.

Timing noise. In addition to glitches, pulsar timing reveals slow irregular or
quasiregular variations of pulses (over time scales of months, years, and longer)
called pulsar timing noise. They look like random walks in pulsar rotation rate
(with relative variations of spin period � 10−10 − 10−8), spindown rate, or
pulse phase. Timing noise was discovered by Boynton et al. (1972) in optical
timing observations of the Crab pulsar. Theoretical hypotheses on the nature
of timing noise are numerous (see, e.g., Cordes & Greenstein 1981).

Free precession. Timing of a few isolated radio pulsars indicates that they
may undergo free precession (see, e.g., Link 2003 and references therein). The
most convincing evidence is provided by the observations of PSR B1642–03
(Cordes 1993, Shabanova et al. 2001) and PSR B1828–11 (Stairs et al., 2000).
In particular, the observations of PSR B1828–11 over 13 years show regular
variations of the pulsar emission with periods of ≈ 500 and ≈ 250 days. These
variations are thought to be produced by a free precession of pulsar spin axis.
The precession period can be ≈500 days (whereas the 250-day periodicity can
be interpreted as the second harmonic). If this interpretation is true, it gives the
direct evidence for the existence of a rigid neutron star crust (without which
free precession would be impossible). Recently, a much longer free-precession
period of ≈ 7 years has been inferred from X-ray observations of the isolated
neutron star RX J0720.4–3125 by Haberl et al. (2006).
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Rotation-powered pulsars. The pulsar rotational energy is Erot = IΩ2/2,
where I is the moment of inertia. This energy can be very high. For the
Crab pulsar (P = 33.08 ms) at a typical value I = 1045 g cm2 one gets
Erot ∼ 2 × 1049 erg. Because Ṗ and hence Ω̇ can be measured, the rotational
energy release can be determined as Ėrot = IΩΩ̇. For the Crab pulsar we have
Ṗ = 4.22 × 10−13 and Ėrot ∼ 5 × 1038 erg s−1.

The values of P and Ṗ inferred from pulsar timing are widely used to estimate
pulsar magnetic fields and ages. The magnetic field is estimated assuming
that Ėrot is equal to the magnetic dipole energy loss rate (as produced by the
emission of electromagnetic waves by a rotating magnetic dipole in vacuum).
In this model,

IΩ̇ = N , N = −2Ω3B2
effR6

3c3 , (1.12)

where N is the torque acting on the pulsar due to the magnetic dipole radiation,
R is the stellar radius, Beff = Beq sin α, Beq is the magnetic field at the
magnetic equator, and α is the angle between the spin and magnetic axes. From
Eq. (1.12) one immediately has

Beff =
(

3Ic3

8π2R6 PṖ

)1/2

≈ 3.2 × 1019 I
1/2
45
R3

6

√
PṖ G, (1.13)

where I45 is I in units of 1045 g cm2, and R6 = R/106 cm. In the last expression
P is meant to be in seconds. One usually assumes I45 = 1, R6 = 1, uses the
measured values of P and Ṗ , and treats the calculated value of Beff as the
characteristic pulsar magnetic field. For instance, one gets Beff ≈ 3.8 × 1012

G for the Crab pulsar.
The basic equation for estimating the pulsar age comes from Eq. (1.12).

More generally, one can write the spindown torque as N = −AΩn, where n
is the braking index. Using this torque and assuming a constant n, from Eq.
(1.12) one immediately gets: Pn−1Ṗ = const. Integrating from the pulsar
birth t = 0 to a current age t, one obtains

t =
P (t)

(n − 1) Ṗ (t)

{
1 −
(

P (0)
P (t)

)n−1
}

. (1.14)

If a newly born pulsar rotated much faster than now (P (0) � P (t)), then
t = P/[(n − 1)Ṗ ]. For the magnetic dipole model (with the braking index
n = 3), the last expression reduces to the very well known formula

t = P/(2Ṗ ). (1.15)

The age estimated in this way is called the characteristic pulsar age. For
instance, the characteristic age of the Crab pulsar is t = 1240 years, in a
qualitative agreement with its true age (see §§1.4.2 and 9.5).



38 NEUTRON STARS

From Eq. (1.12) with N = −AΩn one gets n = Ω
..
Ω/Ω̇2. If P , Ṗ , and

..
P are measured from pulsar timing, this equation allows one to determine n.
The braking indices, measured for several pulsars, are smaller than n = 3
(Livingstone et al., 2006). For instance, Lyne et al. (1988) reported n = 2.5 for
the Crab pulsar. Taking this value and the true age, from Eq. (1.14) we obtain
the initial spin period P (0) ≈ 18.7 ms.

Pulsar magnetospheres. It is clear that characteristic magnetic fields and
characteristic pulsar ages may differ from real fields and ages. The simplicity
of the models used in the preceding paragraph is illusive. In fact, the pulsar
energy losses occur due to complicated processes in pulsar magnetospheres,
which occupy space above atmospheres (see, e.g., Beskin et al. 1993, Beskin
1999, Melrose 2000, and references therein). Magnetized spinning neutron
stars operate as unipolar inductors and generate magnetospheric electric fields.
In those places of the stellar surface, where the electric field has a favorable
direction and sufficient strength, it can pull electrons (or perhaps even ions)
from the surface into the magnetosphere filling it by a rarefied plasma.

The magnetosphere is an important place, where magnetospheric electro-
magnetic emission is formed and plasma particles are accelerated. It is con-
venient to introduce a light cylinder of radius cP/(2π) around the pulsar spin
axis. At this cylinder, the velocity of a hypothetical reference frame corotating
with the star would reach speed of light. The space within this cylinder is called
the corotation zone. In this zone the outer stellar magnetic and electric fields
are nearly stationary in the reference frame corotating with the star. Outside
the light cylinder the electromagnetic fields become essentially dynamic.

The corotation zone is further subdivided into the regions of closed (inside
this zone) and open magnetic field lines. It is believed that the space of closed
field lines is filled by the “Goldreich-Julian” plasma distributed in such a way
that the electric field created by charged particles in the pulsar-corotating ref-
erence frame compensates the projection of the electric field, induced by the
pulsar magnetic field, onto magnetic field lines. The space of closed mag-
netic field lines is inactive for particle acceleration and radiation generation.7

Therefore, the main magnetospheric activity is limited by the region of open
magnetic field lines in the corotation zone. Charged particles are moving along
magnetic lines and accelerated by the electric field component parallel to B.

7For estimates, one usually assumes the charge density � −Ω · B/(2πc), derived by Goldreich & Julian
(1969) for a steady-state, axially symmetric configuration with a dipole magnetic field aligned with the pulsar
spin axis. A more general formula for the charge density around a rotating body with the dipole field (not
necessarily aligned with the spin axis) had been derived by Hones & Bergeson (1965) four years earlier. One
should note, however, that the Goldreich-Julian magnetosphere model suffers from theoretical difficulties,
and the corresponding plasma density distribution is likely unstable. Thus, the real charge density can differ
from the Goldreich-Julian model (for review, see Michel 2004 and references therein).
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The electric field can be strongly affected, among other things, by general
relativistic dragging of inertial frame around the spinning star (Muslimov &
Tsygan, 1990, 1992). The accelerated electrons emit quanta due to curvature of
magnetic field lines. These quanta may produce electron-positron pairs; newly
born electrons undergo further acceleration and curvature radiation, leading to
new pair production and inducing thus pair cascading. It is also important to
take into account inverse Compton scattering. The flow of electrons pulled
away from the star is likely superimposed with the flow of positrons moving
toward the stellar surface. In different places of the magnetosphere the charged
particles emit radiation in different spectral bands, with different beaming and
polarization. As a result, a powerful (nonthermal) magnetospheric emission
is created in the widest spectral range, from radio waves to hard gamma-rays,
accompanied by a flow of highly energetic particles. The latter flow produces
a pulsar wind which feeds up pulsar wind nebulae. Many theoretical aspects
of this schematic model of rotation-powered pulsars are still not elaborated.

Depending on neutron star parameters (particularly, on magnetic field strength
and geometry, relative orientation of magnetic and spin axes) and on a theoret-
ical description of magnetospheric processes, one can obtain different models
of active magnetospheric zones. In some models, which are called polar cap
models, these zones are placed in the vicinity of magnetic poles near the pulsar
surface. In other models, the active magnetospheric zones are located much
higher above the surface, in the outer magnetosphere. They are the so called
outer gap models. In both types of models the inverse positron current can be
sufficiently strong to heat (magnetic) polar cap regions and create hot spots on
the stellar surface.

As a result, the total pulsar spindown loss rate Ėspin is thought to be approxi-
mately the same as produced by the magnetic dipole radiation in vacuum, but the
entire physics is different. In particular, only a small fraction (∼ 10−6) of Ėspin
is radiated away at radio frequencies while the rest is emitted in high-energy
bands and in the form of pulsar wind, which may create a pulsar wind nebula.
For instance, the energy generated by the Crab pulsar is sufficient to feed up the
entire plerion Crab Nebula. Synchrotron radiation detected from the Nebula
gives a strong evidence of particle acceleration in the pulsar magnetosphere.
An X-ray image of the Nebula obtained with the Chandra observatory is shown
in Fig. 1.9.

Some pulsars have very high velocities (§1.4.7). The interaction of their
winds with the interstellar medium can create bow-shock nebulae in which the
pulsar wind is confined by ram pressure. A spectacular example is provided by
the Guitar nebula (see, e.g., Chatterjee & Cordes 2004).

P − Ṗ diagram. The death line. The evolution of pulsars is often studied by
plotting them on the P − Ṗ diagram (see, e.g., Lyne & Graham-Smith 1998 and
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Figure 1.9. Chandra X-ray image of the Crab Nebula with rings of high-energy particles sup-
plied by the pulsar (in the center) at a distance of more than one light year from it. Jet like
structures perpendicular to the rings are also produced by high-energy particles moving away
from the pulsar. Photo credit: NASA/CXC/SAO.

Lorimer 2001, and references therein). These studies do not show any strong
evidence of the magnetic field evolution. The majority of radio pulsars have
Beff ∼ 1012 G, although a few of them have much higher Beff . For instance,
PSR J1847–0130 has Beff ≈ 0.94×1014 G, as high as in magnetars (see below).
Old and slowly rotating isolated neutron stars induce much weaker electric fields
(in their comoving reference frames) and cannot produce powerful outflow of
charged particles from their surfaces. In this way they cannot support their
magnetospheric activity and cease to operate as radio pulsars. These neutron
stars (dead pulsars) have large P and small Ṗ and could have been placed in
the corresponding corner of the P − Ṗ diagram, separated from the main part
of the diagram by the so called pulsar death line.
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1.4.5 Isolated neutron stars
The majority of isolated neutron stars are observed only as radio pulsars.

However, more than 100 of them have been detected by 2006 in other spectral
bands.8 Let us describe them in more detail.

Cooling isolated neutron stars. If an isolated neutron star possesses a strong
magnetic field and rotates rapidly, it behaves as a rotation-powered pulsar
(§1.4.4), emitting a non-thermal multiwavelength magnetospheric radiation
and thermal-like radiation from hot polar caps (spots) on the surface. The
examples of such multiwavelength sources are the Vela and Geminga pulsars.
In addition, young (t � 103 years) or middle-aged (t � 105 − 106 years) neu-
tron stars can be sufficiently hot inside (§1.3.7). The thermal flux emerging
from their interiors is radiated away through their atmospheres. This thermal
radiation is thus powered by the internal thermal energy of the star. The ex-
pected surface temperatures Ts of middle-aged stars range from ∼ 2 × 105 to
∼ 106 K. The thermal radiation of such stars is mainly emitted in soft X-rays
and extreme ultraviolet; its Rayleigh-Jeans tail may be detected in optics and
far ultraviolet.

The attempts to discover thermal X-ray radiation from isolated neutron stars
were made even in the pre-pulsar era but failed (§1.2). The next attack was
undertaken with the launch of the Einstein X-ray orbital observatory (1978–
1981). The important contribution was made by the Röntgen Satellite (ROSAT,
1990–1998). The current observational status is reviewed, for instance, by
Pavlov et al. (2002), Pavlov & Zavlin (2003), and Kaspi et al. (2004); also see
§9.3.1.

The magnetospheric and/or polar-cap radiation of young stars is expected
to be strong enough to outshine their thermal surface radiation. The radiation
from polar caps of old pulsars (t � 105 − 106 years) can also be stronger
than the thermal radiation from their entire surfaces. Nevertheless, the thermal
radiation from the entire surface has been detected or constrained from a dozen
of isolated middle-aged neutron stars. In particular, the X-ray observations of
the Vela pulsar (the characteristic age t = 1.1 × 104 years) can be described
using a hydrogen atmosphere model and Ts ∼ 7 × 105 K (Fig. 1.10).

Apart from cooling neutron stars, which are observed as radio pulsars (like
the Vela pulsar), there are radio quiet cooling isolated neutron stars of different
types.

In particular, there is an interesting class of several radio-quiet neutron stars
dubbed compact central objects (CCOs) in supernova remnants. Their distances
and ages are thought to be those of host supernova remnants. The best investi-

8These sources are listed in the online catalog http://www.ioffe.ru/astro1/psr-catalog/Catalog.php.
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Figure 1.10. Multiwavelength spectrum of the Vela pulsar (from Pavlov et al. 2002 with the kind
permission of the authors). The solid line shows the fit to the Chandra X-ray observations with
the model spectrum of the thermal (neutron-star hydrogen atmosphere model) plus nonthermal
(power-law) radiation components (including the effect of interstellar absorption). The dot-and-
dashed line is the extrapolation of the fit to the ultraviolet and optical bands. The dotted line is
the same extrapolated fit but excluding the effect of interstellar absorption. The various symbols
show the spectrum detected with other observatories in the optical and gamma-ray bands.

gated object is J1210–5226 (=1E 1207.4–5209) in the center of the supernova
remnant G296.5+10.0 (t ≈ (3−20)×103 years). It is the first isolated neutron
star found to exhibit pronounced spectral features (X-ray absorption spectral
lines) in its radiation spectrum (Sanwal et al., 2002) although the interpretation
of these features seems ambiguous. Its radiation contains the thermal compo-
nent which can be interpreted with the aid of a hydrogen atmosphere model
as the thermal radiation from the surface of the neutron star with the effective
temperature ∼ (1.4 − 1.9) × 106 K. Some other objects (e.g., J2323+5848
in Cassiopeia A, t ∼ 320 years) show thermal-like radiation which cannot be
emitted from the entire stellar surface. The radius of the emission region, in-
ferred from observations, is 0.5–1 km, much smaller than the expected neutron
star radius. This radiation may be produced by a spot on the neutron star sur-
face, but in this case the absence of pulsations of the observed radiation requires
explanation.
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There is also a class of dim isolated neutron stars not associated directly
with supernova remnants. Their emission is characterized by black-body X-ray
spectra with the effective temperatures ∼ (0.5−1)×106 K. They are probably
nearby isolated neutron stars. The most famous is RX J1856.5–3754 discovered
by Walter et al. (1996). Parallax measurements give the distance 140 ± 40 pc
which makes this object one of the closest observed neutron star (Kaplan et al.,
2002)9 the age ∼ 5× 105 years is estimated from kinematics of proper motion.
Observations show no spectral lines and no pulsations. The effective surface
temperature is estimated to be Ts ≈ 4.3 × 105 K (Ho et al., 2006). Another
example – RX J0720.4–3125 – is a dim object which shows periodic variations
with a long period P = 8.4 s. Its characteristic age is t ∼ 1.3 × 105 years,
and Ts ∼ 5 × 105 K. This object shows a phase-dependent absorption feature
(Haberl et al., 2004) and precession (Haberl et al., 2006).

Soft gamma repeaters + anomalous X-ray pulsars = magnetars. Soft
gamma repeaters and anomalous X-ray pulsars are two other types of isolated
neutron stars. They seem to form a larger class of magnetars (see, e.g., Thomp-
son 2002, Kaspi 2004, and references therein).

Soft gamma repeaters (SGRs) are sources of repeating soft gamma-ray and
X-ray bursts. Typical bursts last for ∼ 0.1 s and have energies ∼ 1041 erg.
Their bursting activity is highly irregular. Years of quiet states are interlaced
with weeks of hundreds of bursts. By 2006 four soft gamma repeaters and
two candidates have been discovered. The first discovered object, SGR 0525–
66, is in the Large Magellanic Cloud, whereas other ones are in the Galactic
plane. The most remarkable events were three gigantic gamma-ray bursts, much
stronger than typical bursts. The first one was detected from SGR 0525–66 on
March 5, 1979 (Mazets et al., 1979a), the second one was detected from SGR
1900+14 on August 27, 1998 (Hurley et al., 1999) and the third from SGR
1806–20 on December 27, 2004 (e.g., Hurley et al. 2005; Mazets et al. 2005).
The energy of the third burst was especially huge and exceeded 1046 erg.

Periodic pulsations with large periods, from 5 to 8 s, have been detected in
X-rays from the three sources. Two of them show pulsations in quiescent states
which have enabled one to measure Ṗ . In particular, one has got P = 5.2 s
and Ṗ = 6.1 × 10−11 for SGR 1900+14. Then Eq. (1.15) gives the charac-
teristic age t ∼ 1.3 × 103 years. Using Eq. (1.13) (with all the reservations
about its validity!), we immediately obtain an enormous characteristic mag-
netic field Beff ∼ 5.7 × 1014 G. There are other arguments that soft gamma
repeaters are young, slowly rotating and rapidly spinning down neutron stars
with superstrong magnetic fields B ∼ 1014–1015 G.

9By the time of this writing, the most recent parallax measurements give the distance ∼ 160 pc (D.L. Kaplan
et al., in preparation).



44 NEUTRON STARS

Anomalous X-ray pulsars (AXPs) are sources of pulsed X-ray emission. The
pulsation periods range from 6 to 12 s, and the X-ray luminosities range from
∼ 1033 to ∼ 1035 erg s−1. These pulsars differ from the classical X-ray pulsars
in X-ray binaries (§1.4.6) by the absence of any evidence that they enter binary
systems. By 2005 five AXPs were discovered, together with several candidates.
Some of them have been detected in optical. In most of the cases pulsar timing
has been performed and the values of Ṗ have been measured. The estimated
characteristic ages are slightly higher than for soft gamma repeaters, but the
characteristic magnetic fields are of the same order of magnitude. For instance,
for 1E 1048.1–5937 one has P = 6.4 s, Ṗ = 3.3×10−11, t ∼ 3.1×103 years,
and Beff ∼ 4.7 × 1014 G.

Therefore, AXPs have much in common with soft gamma repeaters. A solid
piece of evidence that these sources are related was provided by the discovery of
bursting activity of AXPs (in particular, two bursts, separated by 16 days, from
1E 1048.1–5937, Gavriil et al. 2002; and over 80 bursts detected in June 2002
from 1E 2259+586, Kaspi et al. 2003). It is currently assumed that soft gamma
repeaters and AXPs belong to the same class of neutron stars, which are called
magnetically powered pulsars or magnetars – neutron stars with superstrong
magnetic fields. The magnetar hypothesis was put forward, on theoretical
grounds, by Duncan & Thompson (1992) and Paczyński (1992). Soft gamma
repeaters are thought to be younger and transform into a AXPs in the course of
their evolution. The sources of both types can be powered by huge magnetic
fields located in neutron star interiors. Bursts are thought to be associated
with episodic releases of stresses caused by the evolution of magnetic fields
in neutron star crusts. The superstrong magnetic field is estimated to decay in
∼ 104 years hampering the activity of these sources when they become older.
Further observations are required to confirm these ideas.

1.4.6 Neutron stars in binary systems – X-ray binaries

Neutron stars have been observed in binaries with other neutron stars, white
dwarfs, and nondegenerate stars. These systems are useful for measuring neu-
tron star masses, testing theories of stellar evolution, and solving many other
problems (see, e.g., §9.1). We are still waiting for a discovery of a neutron star
in binary with a black hole. Observed binaries can be divided into wide systems
(without mass exchange) and more compact systems (with mass transfer, which
often results in accretion onto a neutron star). If the mass transfer is absent, a
neutron star behaves usually as an isolated object (§1.4.5). A mass transfer in
a compact binary makes this binary an X-ray source. Such systems are called
X-ray binaries, and they are outlined below. Many of them are observed not
only in X-rays but also in other spectral bands. Some X-ray binaries contain
black holes rather than neutron stars.
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There is a rich phenomenology of X-ray binaries containing neutron stars
(see, e.g., Lipunov 1992 and Lewin et al. 1997; also see Table 1.1). Their
X-ray emission is generated either at (near) neutron star surfaces and/or in
accretion disks. Generally, these binaries are divided into high-mass X-ray
binaries (HMXBs), M2 � (2−3) M�, and low-mass X-ray binaries (LMXBs),
M2 � M�, with respect to companion masses M2. By 2006, about 100 low-
mass X-ray binaries and about 40 high-mass X-ray binaries containing neutron
stars have been discovered. Neutron star companions in high-mass binaries
are usually massive O-B stars, while in low-mass binaries they are dwarf stars
(particularly, red dwarfs). Massive O-B stars produce strong stellar wind; its
accretion on a neutron star may be nearly spherical. Life times of massive main-
sequence stars, and hence life times of high-mass X-ray binaries are sufficiently
short. A strong accretion from dwarf companions in compact low-mass X-ray
binaries occurs if a dwarf star fills its Roche lobe and the plasma outflows
through the first Lagrange point. This accretion regime is favorable for the
formation of an accretion disk. X-ray emission produced by a population of
(unresolved) high-mass X-ray binaries in distant galaxies serves as the indicator
of the star formation rate in these galaxies (see, e.g., Grimm et al. 2003).

X-ray binaries can be sources of regular (periodic) and irregular emission;
they can also be subdivided into persistent and transient sources. The latter
sources are called X-ray transients. X-ray binaries can be observed as X-ray
pulsars, X-ray bursters, sources of quasiperiodic X-ray oscillations (QPOs),
etc. X-ray pulsars are powered by accretion. These accretion-powered pulsars
should not be confused with rotation-powered pulsars or AXPs, §§1.4.4 and
1.4.5. The complicated phenomenology of X-ray binaries reflects the complex
nature of these sources which is far from being clear. The same source can
manifest itself in different ways. For instance, Vela X-1 is a classical (accre-
tion powered) X-ray pulsar, a persistent source of regular X-ray pulsations. A
0538–66 is also an X-ray pulsar whose activity is transient. XTE J2123–058
(§9.1.1 c) is an X-ray transient which demonstrates X-ray bursts and quasiperi-
odic oscillations.

X-ray transients. They are X-ray sources which go from active (or ‘on’) to
quiescent (or ‘off’) states and back on timescales of some hours and longer. As
a rule, quiescent states last longer than active ones. The first transient, Cen X-2,
was discovered by Harries et al. (1967) in April 1967 with rocket-born X-ray
detectors.

X-ray transients do not form a uniform class of objects. For instance, the
X-ray pulsar A 0538–66 with the spin period P = 69 ms demonstrates transient
X-ray activity with the well determined period Pb = 16.66 days, which is the
orbital period in a highly eccentric binary. Strong accretion, which powers the
pulsar, occurs only near periastron passages and turns the system into active
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states for short periods of time. However, the majority of transients show
irregular sequence of active states (weeks–months or even years) interspersed
with longer periods of quiescence (months–years or even decades). Active
states can be switched on by many mechanisms, particularly, by instabilities in
accretion disks, irregular outflow of matter from a donor star, or by the changes
of the accretion regime near a neutron star surface.

Some X-ray transients, for instance 4U 0115+63, have hard spectra in active
states, with spectral fluxes extended to some tens keV. They are called hard X-ray
transients (HXTs), and they are usually identified with high-mass X-ray binaries
(with Be companions). Other transients have softer spectra (extended to � 1−2
keV in active states). Accordingly, they are called soft X-ray transients. They
are compact low-mass X-ray binaries. Some soft X-ray transients in quiescence
(for instance, Aql X-1) show thermal-like radiation component which can be
fitted by neutron-star atmosphere models. As suggested by Brown et al. (1998),
this radiation emerges from the interiors of warm neutron stars (with the surface
temperatures ∼ 106 K) being produced by deep crustal heating in the inner
crust. The heating mechanism proposed by Haensel & Zdunik (1990a) consists
in pycnonuclear burning of accreted matter sinking in the crust under the weight
of newly accreted material. There is a close correspondence (see, e.g., Yakovlev
& Pethick 2004 and references therein) between the theory of thermal states
of transiently accreting neutron stars and the theory of neutron star cooling
(§1.3.7). Some X-ray transients have short active states (hours–days).

X-ray pulsars in X-ray binaries. They are accretion-powered rotating and
strongly magnetized neutron stars in compact binaries. The first source recog-
nized as an X-ray pulsar was Cen X-3 (in observations of Schreier et al. 1972
with the Uhuru X-ray satellite). There are about 35 X-ray pulsars in our Galaxy
known by 2006. They mainly enter high-mass X-ray binaries (HMXBs) with
intense accretion. An example is Vela X-1, a binary with the orbital period
Pb ≈ 9 days. It consists of a neutron star and a companion, GP Vel, a B0.5
Ib supergiant whose mass is (23–28) M� (§9.1.1 b). The pulsar spin period is
P = 283 s. GP Vel nearly fills its Roche lobe and produces a powerful stellar
wind. The star is bulky and creates eclipses of the X-ray source. Many X-ray
pulsars are very slow rotators (P � 100 s) but not all (e.g., P = 69 ms for A
0538–66).

It is thought that the accretion is channeled by the pulsar magnetic field into a
thin accretion column near the neutron star surface. Strong X-ray emission from
these columns corotating with neutron stars creates regular X-ray pulsations.
The accretion energy release rate can be estimated as

Ėacc ≈ GMṀ/R ≈ 8.4 × 1035Ṁ−10 (M/M�)/R6 erg s−1, (1.16)
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where Ṁ−10 is the mass accretion rate Ṁ in units of 10−10M� yr−1. X-ray
luminosities of X-ray pulsars range from ∼ 1035 to ∼ 1039 erg s−1. As a rule,
an intense accretion spins up a neutron star, decreasing the pulsar spin period
P (in contrast to rotation-powered pulsars). However, rotation of some pulsars
(e.g., Vela X-1) is nearly spun up to the equilibrium limit; their spin periods
seem to undergo variations around these steady-state values.

Spectra of some X-ray pulsars show prominent electron cyclotron lines which
serve to directly measure pulsar magnetic field B. The cyclotron lines are
observed at photon energies ∼ �ωc ∼ (30−50) keV (where ωc is the electron
cyclotron frequency) and give B ∼ (3−5)×1012 G. These lines were predicted
by Gnedin & Sunyaev (1974) and discovered by Trümper et al. (1978) in the
spectrum of Her X-1.

X-ray bursters. On September 28, 1975 Grindlay et al. (1976) discovered
two X-ray bursts from the X-ray source 4U 1820–30 in the globular cluster
NGC 6624 with the Astronomical Netherlands Satellite (ANS). Since then X-
ray bursters have been observed many times (see, e.g., Strohmayer & Bildsten
2004). The total number of detected X-ray bursters is about 50. An X-ray burst
lasts usually from a few to a few tens of seconds. Bursts repeat quasiperiodically
with the recurrence time of several hours. X-ray bursts are thought to occur on
the surfaces of neutron stars in compact low-mass X-ray binaries (LMXBs). A
low-mass companion fills its Roche lobe and ejects matter, which is accreted
by a neutron star. In some cases, X-ray eclipses have been detected. X-ray
bursters concentrate within the Galactic bulge; many (but not all) are observed
in globular clusters. The bursts are detected in soft X-rays, their spectra are
much softer than the spectra of X-ray pulsars. Soft X-ray transients in active
states are usually bursting sources.

All X-ray bursts are subdivided into two nonequal parts: type I and type II
bursts. Type I bursts are widespread phenomena. X-ray luminosity LX in burst
maxima often reaches the Eddington limit, LEdd ∼ 1038 erg s−1, Eq. (1.3).
An X-ray energy emitted during one burst constitutes typically ∼ 10−2 of the
energy emitted during a recurrence (quasi)period. Type I bursts are explained by
explosive thermonuclear burning of accreted matter on the surfaces of neutron
stars with low magnetic fields (B � 108 − 109 G). The nuclear energy release
(∼ 5 MeV per one accreted nucleon) is just ∼ 10−2 of the accretion energy
(∼ 200 MeV per nucleon) responsible for the persistent X-ray emission. The
instability of accreted matter with respect to nuclear burning was predicted by
Hansen & Van Horn (1975); it was related to X-ray bursters by Woosley &
Taam (1976). The state of the theory by 2004 is described, for instance, by
Strohmayer & Bildsten (2004) and Woosley et al. (2004).

Among all X-ray bursts, one can clearly distinguish the so called superbursts.
They were discovered in the system 4U 1735–444 by Cornelisse et al. (2000).
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They are rare events, but very strong. They last 2–12 hours and their recurrence
times are of several years. The total energy release in a superburst can be as
high as ∼ 1042 erg, several orders of magnitude higher than in an ordinary
X-ray burst (see Strohmayer & Bildsten 2004 for review). They are usually
explained by unstable carbon burning in deep layers of the outer crust of an
accreting neutron star (although this explanation meets some difficulties; see,
e.g., Page & Cumming 2005). Such a burning has been studied theoretically
(Woosley & Taam, 1976; Taam & Picklum, 1978; Brown & Bildsten, 1998)
before the discovery of superbursts.

Type II X-ray bursts are demonstrated by two sources – neutron stars in tran-
siently accreting LMXBs. These bursts are very frequent (with variable burst
intervals which can be as short as tens of seconds); the burst energy correlates
with burst intervals. It is most likely that these bursts are associated with the
nonstationary accretion onto a neutron star (Lamb & Lamb, 1977), and the
burst energy is supplied by accretion. The first source, MXB 1730–335, is the
famous rapid burster discovered in March 1976 during observations with the
Small Astronomical Satellite (SAS 3) observatory (Lewin et al., 1976). It shows
also type I bursts. The second source, GRO J1744–28, was discovered in De-
cember 1995 with the Burst and Transient Source Experiment (BATSE) aboard
the Compton Gamma Ray Observatory (Fishman et al. 1995, Kouveliotou et
al. 1996). In addition to type II X-ray bursts it demonstrates periodic X-ray
pulsations (revealing neutron star spin period P = 0.467 s). It is called the
bursting pulsar.

It was a long-standing problem to detect periodic X-ray pulsations associ-
ated with neutron star rotation in X-ray bursters of type I, but it was solved.
Wijnands & van der Klis (1998) discovered regular P = 2.5 ms pulsations
from an outburst of the X-ray transient SAX J1808.4–3658 in the observations
with the Rossi X-ray Timing Explorer. That was the first discovered accreting
millisecond pulsar and the first observational evidence that millisecond pulsars
are associated with LMXBs. Now we know other examples (e.g., XTE J1814–
338, Strohmayer et al. 2003). Another example – neutron-star spin pulsations
were observed during a superburst of 4U 1636–53 (Strohmayer & Markwardt,
2002). These observations indicate the presence of nonuniform regions (hot
spots) on the surfaces of X-ray bursters. Comparing theoretical models of these
spots with observations one will be able to obtain useful constraints on neutron
star masses and radii (e.g., Strohmayer 2004, Bhattacharyya et al. 2005).

Very powerful X-ray bursts have super-Eddington luminosities, so that the
radiative pressure in the neutron star atmosphere exceeds the gravity. Such a
burst initiates a huge expansion of the neutron star atmosphere by the radiative
pressure (up to a few hundred kilometers) followed by a contraction to to the
initial state. These bursts serve as nearly standard candles (with LX slightly
higher than LEdd) useful to estimate distances to the bursters.
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Sources of quasiperiodic X-ray oscillations. Some X-ray binaries are the
sources of quasiperiodic X-ray oscillations (QPOs). These oscillations are not
exactly periodic – not pulsar clocks; also see §9.3.2. They were discovered by
van der Klis et al. (1985) in observations of the LMXB GX 5-1 (4U 1758–25)
with the European X-ray Observatory Satellite (EXOSAT), operated from 1983
to 1986. Great progress in observations of quasiperiodic oscillations has been
made with the Ginga (Japanese for galaxy) satellite (1987–1991) and with the
Rossi X-ray Timing Explorer (launched in 1996).

Quasiperiodic X-ray oscillations have been observed from X-ray binaries
containing neutron stars, black holes and white dwarfs. We focus on the binaries
with neutron stars (see, e.g., van der Klis 2000). By 2006 about 20 such objects
were discovered and identified as compact LMXBs; some of them are X-ray
bursters. In 16 systems, the neutron star spin period has been determined. Drifts
of quasiperiodic oscillation frequencies have been analyzed, as well as the tracks
of the sources on the so called color-color diagram (hardness ratio in harder X-
ray channels versus hardness ratio in softer channels). One distinguishes “atoll”
and “Z”sources which have corresponding tracks. It is especially important to
analyze the power spectrum of X-ray flux fluctuations which extends from tens
of Hz to about 1 kHz (to 1.330 kHz for 4U 0614+09) with a cutoff afterwards.
A power spectrum may contain several (up to three) pronounced peaks, which
may drift from one observation to another.

Theoretical interpretation of a zoo of observational properties of quasiperi-
odic oscillations is not simple. It is likely that oscillations occur in the accretion
disks around neutron stars with low magnetic fields (B � 108−109 G). Oscilla-
tion frequencies can be associated with the Keplerian frequency of the innermost
stable orbit of matter elements in a disk, or with some resonant frequency in the
disk itself, or with combination of these frequencies and neutron-star spin fre-
quency. After understanding the real nature of quasiperiodic X-ray oscillations,
their observation will be very useful to put stringent constraints on neutron star
masses and radii.

1.4.7 Neutron stars in the Galaxy
X-ray binaries in the Galaxy concentrate to the galactic bulge and the galactic

plane. By contrast, the distribution of radio pulsars (see, e.g., Arzoumanian et
al. 2002, and references therein) is drastically different from the distribution
of X-ray binaries and normal stars. Some radio pulsars are observed at high
galactic latitudes, and many of them demonstrate strong proper motion, with the
velocities v � 500 km s−1. Thus, neutron stars populate much wider space and
move with much higher velocities than other stars. Observational constraints
on radio pulsar (velocity and spatial) distribution in the Galaxy are still rather
uncertain. Nevertheless, there are strong indications of the two-component
velocity distribution with characteristic velocities of ∼ 100 km s−1 and ∼
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500 km s−1, respectively. Both components contain a comparable number of
sources, and ∼ 10% of radio pulsars have velocities � 1000 km s−1. The escape
velocity from the Galactic potential is estimated to range from 450 km s−1 to
650 km s−1 (Leonard & Tremaine, 1990). Thus, a sizable fraction of all radio
pulsars are sufficiently fast to escape from the Galaxy. This means that the
Galaxy possesses an extended halo of radio pulsars which are evaporated into
the intergalactic space. The fastest is PSR B2224+65 in the Guitar Nebula
whose projected (perpendicular to line of sight) velocity ∼ 1600 km s−1 is
nearly parallel to the Galactic plane (Cordes et al., 1993). Another pulsar,
PSR J1740+1000, may be moving much (about twice) faster but its velocity
measurement (McLaughlin et al., 2002) is still ambiguous.

It is believed that high pulsar velocities are gained at neutron star birth due
to pulsar kicks. The origin of huge kick velocities is a subject of debates (see,
e.g., Lai et al. 2001, Arzoumanian et al. 2002 and references therein).

1.5. Neutron stars as “superstars” in physics and
astrophysics

The Pines theorem. The theorem was formulated by David Pines in a talk
given at the conference on “Neutron Stars: Theory and Observation" (The
NATO Advanced Study Institute, Crete, Greece, September 3–14, 1990). The
formulation is fairly simple:

Neutron Stars are Superstars.

Proof. After reading §§1.1–1.4 the proof is trivial. Indeed, neutron stars are
superdense objects; superfast rotators; superfluid and superconducting inside;
superaccelerators of high-energy particles; sources of superstrong magnetic
fields; superprecise timers; superglitching objects; superrich in the range of
physics involved. Neutron stars are related to many branches of contempo-
rary physics and astrophysics, particularly to nuclear physics; particle physics;
condensed matter physics; plasma physics; general theory of relativity; hydro-
dynamics; quantum electrodynamics in superstrong magnetic fields; quantum
chromodynamics; radio-, optical-, X-ray and gamma-ray astronomy; neutrino
astronomy; gravitational-wave astronomy; physics of stellar structure and evo-
lution, etc.

Let us stress that neutron stars contain the matter of essentially supranuclear
density in their interiors (§1.3.1). This state of matter cannot be reproduced
in laboratory because the nuclear matter is known to be highly incompressible
under laboratory conditions. The compression in neutron stars is produced by
enormous gravitational forces. This enables one to treat neutron stars as unique
natural laboratories of superdense matter under the most extreme conditions.
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One can test theoretical models of dense matter by comparing observations of
neutron stars with theoretical predictions.

Observational manifestations of neutron stars are really numerous (§1.4).
The need to observe these objects has triggered the development of foremost
telescopes and detectors, from the best modern radio telescopes to laser inter-
ferometers for detecting gravitational waves. One cannot imagine the modern
observational astrophysics without the astrophysics of neutron stars.

In other words, neutron stars are fascinating objects to observe and to study
theoretically.

1.6. About the rest of this book
We hope that, after reading this chapter, the reader has become familiar with

the main ideas of neutron star physics and can decide if it is worthwhile to
read further. Naturally, the subject is too wide to be discussed in one book.
Moreover, the field is rapidly developing; many problems have not been solved
yet; many outstanding discoveries could be expected soon after this writing.

In the next chapters we will focus on the internal structure of neutron stars.
We will discuss thermodynamic properties of the matter in all neutron star
layers, from the surface to the center (Chapters 2–5, 7 and 8). Our main concern
will be to consider the structure, composition and equation of state of dense
matter, particularly, the basic problem – the equation of state in inner neutron
star cores (§1.3.2). We will also discuss the models of neutron star structure,
masses and radii of neutron stars (Chapters 6 and 8), and observational tests for
these models (Chapter 9). We will try to be pedagogical and describe not only
the results of sophisticated theories but explain these theories and underlying
ideas. Although the book is written by theoreticians, we will summarize the
necessary data coming from the nuclear physics experiments and from some
neutron star observations.

In the present book we do not discuss in detail kinetic properties of neutron
star matter, neutrino emission mechanisms, thermal evolution of neutron stars,
evolution of their magnetic fields, and associated observational problems. We
hope to address these issues in a separate book. The present book also does
not touch many other problems, for instance, neutron star birth in supernova
explosions, the structure and evolution of protoneutron stars, the evolution of
neutron stars in binary systems, the physics of neutron star magnetospheres.
Some references to these subjects can be found in this and subsequent chapters
of the present book.



Chapter 3

STRUCTURE AND EQUATION OF STATE
OF NEUTRON STAR CRUSTS

After discussing the Coulomb properties of neutron star envelopes in Chap-
ter 2, we will mainly focus on the nuclear part of the problem. Following a
widespread convention we will often call an entire neutron star envelope as a
crust (see a discussion on this point in the introductory part of Chapter 2).

Up to the density ρ ∼ 1011 g cm−3, the atomic nuclei in the outer crust are
expected to be those studied in the laboratory. However, for ρ � 1010 g cm−3

they are beta-unstable in laboratory, with the maximum neutron excess δ =
(N − Z)/A � 0.3, where N , Z, and A are, respectively, the neutron number,
proton number, and the total nucleon (mass) number of an atomic nucleus.
With increasing density the neutron excess increases and for δ > 0.3 the nuclei
in the crust become so neutron rich that their highest neutron energy levels are
unbound (§1.3.1). As a result, the nuclei are immersed in a gas of free neutrons.
Such nuclei cannot exist in laboratory, because they are beyond the neutron drip
line under terrestrial conditions; they would disintegrate via neutron emission
on timescales ∼ 10−20 s. With increasing density and neutron excess, nuclear
properties are more and more modified by the external neutron liquid. Our
knowledge of the properties of matter under the conditions characteristic for
the inner crust, with 1011 g cm−3 � ρ � 1014 g cm−3 and 0.3 � δ � 0.8,
is based on theoretical models. It should be stressed, that the advances in
solving the nuclear many-body problem enabled one to calculate reliably the
properties of many-nucleon systems not available to experiment (pure neutron
matter at ρ < ρ0, where ρ0 = 2.8 × 1014 g cm−3 is the saturation density
of symmetric nuclear matter). This is very helpful for theoretical studies of
the properties of matter near the bottom of the inner crust. Needless to say,
these developments in the nuclear many-body problem have been stimulated
and motivated by observations of neutron stars.
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This chapter is devoted to the composition, equation of state (EOS), and the
structure of the neutron star crust. In §3.1 we briefly describe the formation of
the crust of a newly born neutron star. We will restrict ourselves to the case of
the crust in nuclear equilibrium (catalyzed matter). The properties of the outer
crust in this approximation are described in §3.2. Theoretical models of the
inner crust at ρ � 1014 g cm−3 are presented in §3.3. Section 3.4 is devoted to
theoretical models of the ground state in the bottom layers of the inner crust,
at ρ � 1014 g cm−3, and to the determination of the bottom edge of the crust.
In §3.6 we describe the EOS of the crust. Elastic properties of the crust are
discussed in §3.7. Possible deviations from idealized crust model studied in
the preceding sections are reviewed in §3.8. Appendix A presents the tabulated
equation of state.

3.1. The formation of the crust in a newly born neutron star
A neutron star formed in gravitational collapse of a stellar core (§1.4.2)

is initially very hot, with the internal temperature ∼ 1011 K. At such high
temperatures, the composition and equation of state of the envelope of the
newly-born star (ρ � 1014 g cm−3, nb � 0.1 fm−3) is different from that of
the older star. This envelope will eventually become the neutron star crust.

In what follows, we will restrict ourselves to the case in which matter is trans-
parent to neutrinos; this condition is satisfied for T � 1010 K (kBT � 1 MeV).
The hot envelope is then a mixture of heavy and light atomic nuclei (mostly α-
particles, because of their large binding energy of 28.3 MeV), neutrons, protons,
electrons, positrons, and photons. At high densities and temperatures the den-
sity of nucleons outside nuclei can be large, and a consistent treatment of both
nuclei and nucleons is required. The nuclei and the outside nucleons should be
described using the same nucleon interaction (nucleon Hamiltonian). Modifi-
cations of the nuclear surface properties and pressure exerted by the nucleons
on the nuclei have to be calculated in a consistent way. At high densities, where
the distance between the nuclei becomes comparable to the nuclear size, one
should also modify the nuclear Coulomb energy. Another important complica-
tion is that, at the temperatures under consideration, excited states of the nuclei
become populated and must therefore be taken into account while calculating
thermodynamic quantities.

All these effects have been incorporated in models of dense, hot matter us-
ing three different approaches. First, full Hartree-Fock calculations with an
effective nucleon-nucleon (NN) interaction, for unit cells of matter contain-
ing one nucleus, were performed by Bonche & Vautherin (1981) and Wolff
(1983). Second, finite temperature Thomas-Fermi calculations have been done
by Marcos et al. (1982) and Ogasawara & Sato (1983). Third, calculations in
which the nuclei have been described using the finite temperature compressible
liquid-drop model have been performed by Lattimer et al. (1985).
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Figure 3.1. Mass fractions of different constituents of the outer envelope of a newly born neutron
star versus matter density in beta equilibrium at different temperatures T9 = T/(109 K) (after
Haensel et al. 1996). Calculations are performed for the Lattimer & Swesty (1991) model
of nucleon matter with a specific choice (K0 = 220 MeV) of the incompressibility of cold
symmetric nuclear matter at the saturation density.
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We will summarize the results using a more recent version of the compressible
liquid–drop model, formulated and developed by Lattimer & Swesty (1991),
selecting a specific value of the incompressibility of symmetric nuclear matter
at saturation (equilibrium) density, K0 = 220 MeV (for the definition of K0,
see §5.4). We assume nuclear equilibrium as well as beta equilibrium of the
matter. The assumption of nuclear equilibrium is justified by high temperature.
Beta equilibrium is adopted for simplicity; a very rapid cooling of matter at
highest temperatures can produce deviations from beta equilibrium.

In Fig. 3.1 we show the composition of the hot matter of the neutron star
envelope for T = 5×109 K, 8×109 K, and 1.2×1010 K. We restrict ourselves
to ρ � 1013 g cm−3, because at higher densities the thermal effects on matter
composition are negligible. At T � 5 × 109 K, the shell and pairing effects, so
visible in the T = 0 (ground state) approximation, particularly through jumps
in the density dependence of various quantities (see §3.2), are washed out by
the thermal effects.

At T = 1.2 × 1010K, the nuclei evaporate completely for ρ � 109 g cm−3.
This can be understood within the compressible liquid-drop model; the nuclei
are then considered as droplets of nuclear matter. At ρ � 1011 g cm−3, these
droplets have to coexist with a vapor of neutrons, protons and α-particles.
However, the coexistence of two different nucleon phases (denser – nuclear
liquid, less dense – vapor of nucleons andα–particles) is possible only atT lower
than some critical temperature at given a density, Tcrit(ρ). For ρ � 109 g cm−3,
one has Tcrit(ρ) � 1.2 × 1010 K.

With decreasing temperature, the mass fraction of evaporated nucleons and
α-particles decreases. For T = 8 × 109 K, α-particles are present at ρ �
1010 g cm−3, while free protons appear at even lower ρ. Free neutrons are
present at all densities, but their fraction does not exceed one percent for ρ �
1011 g cm−3.

At T = 5 × 109 K the thermal effects are weak and imply mainly the
appearance of a small fraction of free neutrons (“neutron vapor”) below
zero-temperature neutron drip density ρND; this fraction falls below 10−5 at
ρ = 1010 g cm−3. Further decrease of T leads to the disappearance of neutrons
at ρ < ρND, and to switching-on of shell effects. Another important effect will
be the onset of superfluidity of neutrons (both inside and outside the nuclei) and
protons. The composition freezes and does not change with further decrease
of the temperature. An initially fluid element of the matter solidifies if its tem-
perature falls below the melting temperature Tm that depends on local density
and composition (§2.3.3).

3.2. Ground state of the outer crust
The ground state of the matter at densities and pressures, at which all neutrons

are bound in nuclei (i.e., before the neutron drip) can be described by a model
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formulated in the classical paper of Baym et al. (1971b), hereafter referred to
as BPS. An essential input for this model are the ground-state masses of atomic
nuclei confined in crystalline lattice sites. At lowest densities, the relevant
nuclei are those whose ground-state masses are determined with high precision
by laboratory measurements. However, at higher densities the nuclei in the
ground state of matter become more neutron rich. When the BPS paper was
written, the last experimentally studied nucleus, present in the ground state
of dense matter, was 84Se (with Z/A = 0.405). This nucleus is unstable in
laboratory, and its beta-decay half-life time is 3.1 min. The maximum density,
at which this nucleus is present, was found to be 8.2 × 109 g cm−3.

During three subsequent decades significant progress has been made in the
experimental nuclear physics techniques, and the masses of many new neutron-
rich isotopes have been measured.1 As for this writing (2006), the most neutron-
rich nucleus, produced in laboratory is 78Ni (for its first experimental identifi-
cation, see Engelmann et al. 1995). However, the most neutron rich nucleus
with measured mass and expected to be present in the ground state of the crust
(at ∼ 5×1010 g cm−3) is 80Zn; its beta-decay half-time in laboratory is 0.54 s.

We assume that the matter is in its ground state (complete thermodynamic
equilibrium – cold catalyzed matter) and forms a perfect crystal of a single
nuclear species, (A, Z). Deviations from this rule will be discussed in §3.8.
At a given baryon density nb, the ground state corresponds to the minimum
energy per nucleon E = E/nb. However, nb (or ρ) may be not a good variable
for stellar matter because it suffers jumps (discontinuities) at some values of
the pressure. On the contrary, the pressure is strictly continuous in the stellar
interior and increases monotonically with decreasing distance from the star
center. Therefore, it is convenient to find the ground state of cold (T = 0) matter
at any given pressure P . This corresponds to minimizing the zero-temperature
Gibbs free energy per nucleon, h = (E + P )/nb.

Let us start with P = 0, i.e., h = E = E/nb. In this case the minimum
energy per nucleon is reached for a body-centered-cubic (bcc) lattice of 56Fe,
and is E(56Fe) = 930.4 MeV. It corresponds to ρ = 7.86 g cm−3 and nb =
4.73 × 1024 cm−3 = 4.73 × 10−15 fm−3. It is worth to mention that 56Fe is
not the most tightly bound free atomic nucleus. The maximum binding energy
per nucleon b ≡ [(A − Z)mnc2 + Zmpc

2 − M(A, Z)c2]/A in a nucleus with
the ground-state mass M(A, Z) is reached for 62Ni, b(62Ni) = 8.7945 MeV, to
be compared with b(56Fe) = 8.7902 MeV. Let us notice that b(58Fe) = 8.7921
MeV is also higher than b(56Fe).

The bcc 56Fe crystal remains the ground state of cold matter up to pressures
∼ 1030 dyn cm−2, at which the matter is compressed to ∼ 106 g cm−3 (Salpeter

1The results can be found at http://nucleardata.nuclear.lu.se/database/masses/; a recent re-
view is given by Lunney et al. (2003).
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1961, BPS). At such a high density, the matter is a plasma of nuclei and electrons
which form a nearly uniform Fermi gas. At a given pressure, the values of
the average electron density ne and the number density of the nuclei nN are
determined from the relations

ne = ZnN , P = Pe(ne, Z) + PL(nN , Z) , (3.1)

where Pe is the electron pressure and PL is the “lattice” contribution (also called
the electrostatic correction) resulting from the Coulomb interactions (see §2.3.5
for details).

Let us divide the system into electrically neutral unit (Wigner-Seitz) cells
containing one nucleus. The number density of the nuclei is nN = nb/A,
and the volume of any cell Vc = 1/nN , with the equivalent cell radius rc =
(4πnN/3)−1/3 (in Chapter 2 the radius rc was denoted by ai and called the ion-
sphere radius; see §2.1.3). For a given (A, Z) nuclide, the Gibbs free energy
per one unit cell is

Gcell(A, Z) = WN(A, Z) + WL(Z, nN) + [Ee(ne, Z) + P ]/nN , (3.2)

where WN is the energy of the nucleus (including rest energy of nucleons),
WL is the lattice energy per cell (BPS), and Ee is the mean electron energy
density. Neglecting quantum and thermal corrections and the nonuniformity of
the electron gas (§2.3.3), we have

WL = −CM Z2e2/rc, CM ≈ 0.9. (3.3)

The lattice contribution to the pressure, Eq.(3.1), is thus PL = 1
3WLnN .

The Gibbs free energy per nucleon h = Gcell/A is just the baryon chemical
potential µb(A, Z) for a given nuclide. To determine the ground state at a given
P , one has to minimize µb(A, Z) with respect to A and Z.

For densities below the neutron-drip density (ρ < ρND) the lattice correction
toP andµb is small. One can then easily see the reason for matter neutronization
using the approximation µb(A, Z) � WN(A, Z)/A+Zµe/A, P � Pe. Notice
that for ρ � 106 g cm−3, the electrons are ultra-relativistic and, therefore,
µe ∝ P 1/4. With increasing P , it is energetically advantageous to replace
(A, Z) by (A′, Z ′) with higher WN but smaller Z ′/A′, because the increase in
WN/A is more than compensated by the decrease of the Zµe/A term.

We will follow the determination of the ground state of cold dense matter
by Haensel & Pichon (1994) (hereafter referred to as HP). There are small dif-
ferences between the approximations used by HP and BPS. HP obtained the
values of WN from the atomic masses by subtracting not only the electron rest
energies, but removing also the atomic electron binding energies. On the con-
trary, BPS kept the atomic binding energies in the definition of WN , to simulate
the electron screening effects in dense matter. Also, HP used a better approxi-
mation for the electron screening effects in dense matter. Their expression for
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Ee takes into account a weak nonuniformity of the electron density resulting
from the electron screening effects. HP included also a small exchange term
in Ee, which had been neglected in BPS. For ρ � 106 g cm−3 the HP formula
becomes Ee(ne, Z) = (1.00116−1.78×10−5Z4/3) EFG

e (ne), where EFG
e (ne)

is the energy density of a uniform, free Fermi gas (§2.3.1).
To a very good approximation, a density jump, at which optimal values

(A, Z) change into (A′, Z ′), is given by

∆ρ

ρ
≈ ∆nb

nb
≈ Z

A

A′

Z ′ − 1 . (3.4)

This equation follows from the continuity of the pressure P � Pe.
A sharp discontinuity in ρ and nb is a consequence of the assumed one-

component plasma model. Detailed calculations of the ground state of dense
matter by Jog & Smith (1982) show, that actually the transition between (A, Z)
and (A′, Z ′) shells takes places through a very thin layer of a mixed state of
these two species. However, since the pressure interval, where this mixed phase
exists, is ∼ 10−4P , the approximation of a sharp density jump is quite adequate.

HP took experimental masses of nuclei from the tables of Audi (1992, 1993
– private communication).2 Because of pairing effect, only even-even nuclei
are relevant for the ground-state problem. For the remaining isotopes, up to
the last one stable with respect to the emission of a neutron pair, HP used
theoretical masses obtained from the mass formula of Möller (1992, private
communication); the formalism is described by Möller & Nix (1988)).

The baseline HP calculation was done using the (central) experimental atomic
masses (without considering experimental errors). As discussed by HP, these
errors may become substantial for short-lived nuclei with largest neutron excess.
The equilibrium nuclides present in the cold catalyzed matter are listed in Table
3.1. In the fifth column one finds the maximum density ρmax at which a given
nuclide survives. The sixth column gives the electron chemical potential µe at
ρ = ρmax. The transition to the next nuclide has a character of a first-order phase
transition. The corresponding fractional density jump ∆ρ/ρ is given in the last
column. The last row above the horizontal line, which divides the table into two
parts, corresponds to the maximum density, at which the ground state of dense
matter contains a nucleus with mass measured in laboratory. Notice, that in the
original HP table the “laboratory region” included also 78Ni nucleus with the
mass evaluated through a semi-empirical method. Here, we restrict ourselves
to masses measured in laboratory. Experimental uncertainties in masses of
short-lived nuclei with very large neutron excess, as well as uncertainties given

2Some masses of unstable nuclei in these tables are actually semi-empirical evaluations based on the knowl-
edge of masses of neighboring isotopes. More recent evaluations of nuclear masses are given by Audi et al.
(1997) and Audi et al. (2003).
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Table 3.1. Nuclei in the ground state of cold dense matter (after Haensel & Pichon 1994, with a
modification explained in the text). Upper part is obtained with experimentally measured nuclear
masses. Lower part: from mass formula of Möller. The last line corresponds to the neutron drip
point.

element Z N Z/A ρmax µe ∆ρ/ρ

(g cm−3) (MeV) (%)
56Fe 26 30 0.4643 7.96 × 106 0.95 2.9
62Ni 28 34 0.4516 2.71 × 108 2.61 3.1
64Ni 28 36 0.4375 1.30 × 109 4.31 3.1
66Ni 28 38 0.4242 1.48 × 109 4.45 2.0
86Kr 36 50 0.4186 3.12 × 109 5.66 3.3
84Se 34 50 0.4048 1.10 × 1010 8.49 3.6
82Ge 32 50 0.3902 2.80 × 1010 11.4 3.9
80Zn 30 50 0.3750 5.44 × 1010 14.1 4.3
78Ni 28 50 0.3590 9.64 × 1010 16.8 4.0
126Ru 44 82 0.3492 1.29 × 1011 18.3 3.0
124Mo 42 82 0.3387 1.88 × 1011 20.6 3.2
122Zr 40 82 0.3279 2.67 × 1011 22.9 3.4
120Sr 38 82 0.3167 3.79 × 1011 25.4 3.6
118Kr 36 82 0.3051 (4.32 × 1011) (26.2 )

by the mass formula beyond the experimental limits are discussed in HP. The
last row of Table 3.1 corresponds to the neutron drip point which is determined
theoretically.

A rough estimate of the neutron drip density can be obtained using a sim-
plified version of the nuclear mass formula. Neglecting Coulomb, surface and
all other finite-size terms and keeping only quadratic term in δ = (N − Z)/A,
one can write the energy per nucleon in an atomic nucleus (subtracting the rest
energy and neglecting neutron-proton mass difference) as

EN(A, Z)/A � E0 + S0 δ2 , (3.5)

where E0 is the energy per nucleon in the symmetric nuclear matter and S0 is
the symmetry energy, both calculated at saturation density (see §5.4). In this
approximation, the neutron and proton chemical potentials (without rest energy
contribution) are

µ′
n = E0 + (2δ + δ2) S0 , µ′

p = E0 + (−2δ + δ2) S0 . (3.6)
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The value of δ corresponding to ρND can be calculated from the condition
µ′

n = 0,
δND =

√
1 − (E0/S0) − 1 . (3.7)

Putting the experimental values E0 = −16 MeV and S0 = 32 MeV (§5.4) we
get δND = 0.225. On the other hand, the beta equilibrium condition reads

µe = µn − µp � 4S0 δ (3.8)

(to be compared with the consideration in Appendix D). Using the formula
µe = 0.516 (ρ6Z/A)1/3 MeV, we get a rough estimate

bulk approximation : ρND � 2.2 × 1011 g cm−3, (3.9)

which is quite close to the refined theoretical value.
In order to calculate ρND precisely, one has to consider the matter composed

of nuclei and an outside dilute neutron gas. The density of the neutron gas in the
vicinity of the neutron drip point is so small that its influence on the properties
of the nuclei can be neglected. In order to determine the ground state of matter
in this dripped phase, it is convenient to perform the minimization procedure at
a fixed baryon number density nb. The quantity to be minimized is the mean
energy density,

E(d) = nN [WN(A, Z)+WL(nN , Z)]+(1 − VNnN) En(nn)+Ee(ne) , (3.10)

where En is the the energy density of the neutron gas (including rest energy) and
VN is the volume of the nucleus. To a good approximation, the electron gas is
spatially uniform and fills all the volume of the system. Close to the neutron drip
point, the nuclear volume can be approximated by the volume of the nucleus
in vacuum, VN � 4π

3 R3
N , with the nuclear radius given by RN � 1.2A1/3 (see,

e.g., Preston & Bhaduri 1975). Let us notice, that at ρ ∼ ρND the fraction of
the volume occupied by nuclei is VN/Vc ∼ ρND/ρ0 ∼ 10−4. At a fixed nb,
one can express nn and nN in terms of ne,

nN =
ne

Z
, nn =

nb − nNA

1 − VNnN
, (3.11)

and minimize E(d) as a function of ne. The resulting quantity E(d)(A, Z) can
then be minimized with respect to A and Z. The pressure in the dripped phase
(which is frequently called the Nne or the Ane phase) can be obtained from
the formula

P = Pe + PL + Pn . (3.12)

At a givennb, the dripped phase is the actual ground state of the cold catalyzed
matter if E(d) < E , where E is the energy density of the Ae phase (containing
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only electrons and nuclei). Notice, that because of pairing phenomenon, the
stability of nuclei with respect to neutron drip in vacuum corresponds to the
stability of even-even nuclei with respect to two-neutron emission. This con-
dition, as well as the condition of non-absorption of the outside neutrons by
the nuclei is automatically satisfied, provided the minimization is performed
and the state with a dripped neutron gas is energetically preferred over the state
without free neutrons. Calculation shows, that the values of A, Z do not change
across the neutron drip point, and therefore nn(P → PND) = 0.

Single-particle energy levels in nuclei are discreet, with large energy gaps
between “major shells.” The local maxima in the binding energies of the nuclei
with “magic numbers” Z = 28 and N = 50, 82 are associated with filling up
these major shells (see, e.g., Preston & Bhaduri 1975). The effect of closed
proton and neutron shells on the composition of the ground-state matter is
very strong; except for the 56Fe nucleus, present in the ground state at lowest
densities, all the nuclides are those with a closed proton or neutron shell (Table
3.1). A sequence of three increasingly neutron-rich isotopes of nickel (Z = 28)
is followed by a sequence of N = 50 nuclides with decreasing Z, ending
at the last experimentally identified 78Ni. This last nuclide is doubly magic
(N = 50, Z = 28).

In the density range 1011 g cm−3 � ρ < ρND, HP get a sequence of N = 82
nuclides, with decreasing proton number, from Z = 44 down to Z = 36; they
obtain the neutron drip at ρND = 4.3 × 1011 g cm−3 (Table 3.1). As shown
by HP, the results obtained using the mass formula of Pearson et al. (1992) are
quite similar to those obtained using the mass formula of Möller.

While the persistence of the N = 50 and/or Z = 28 nuclei in the ground state
of the outer crust may be treated as an experimental fact, the strong effect of the
N = 82 shell, dominating at 1011 g cm−3 � ρ < ρND, might be in principle
an artifact of the extrapolation via the semiempirical mass formulae. It should
be mentioned, that according to some many-body calculations of masses of
very neutron rich nuclei the effect of the closed N = 82 shell might be much
weaker, and could even be replaced by the strong effect of the closure of the
Z = 40 subshell (Haensel et al., 1989). Recent theoretical calculations of the
composition in the bottom layers of the outer crust also give model-dependent
results (Rüster et al., 2006). Clearly, there is a need for a better understanding
of the shell effects in nuclei close to the neutron drip.

The ground-state composition at a given pressure corresponds to the absolute
minimum of the baryon chemical potential µb(N, Z) in the N − Z plane.
Typically, there is only one well distinguished minimum. A well pronounced
second minimum appears only close to the transition pressure between two
nucleus species (this is the origin of a thin shell with a mixed phase found by
Jog & Smith 1982 and mentioned above). With increasing pressure it becomes
a new absolute minimum. Absolute minima lie in a valley, which may be called



Structure and EOS of neutron star crusts 125

the “beta stability valley” in dense matter. With increasing pressure, the valley
shifts in the N -direction, with a slight change of the inclination angle (HP).

3.3. Ground state of the inner crust at ρ � 1014 g cm−3

The existence of the inner neutron star crust, where very neutron rich nuclei
are immersed in a gas of dripped neutrons, has been realized long before the
discovery of pulsars (Harrison et al., 1958). The first approach to describe the
inner crust consisted in employing a semiempirical mass formula to calculate
(or rather estimate) the masses of nuclei; this formula was combined with an
expression for the energy of a neutron gas (Harrison et al., 1958, 1965; Tsuruta
& Cameron, 1965; Langer et al., 1969; Bethe et al., 1970). It is worth to
mention that as early as in 1965 Tsuruta and Cameron estimated the neutron
drip density and the density at the crust-core interface as ρND � 3×1011 g cm−3

and ρcc � 8×1013 g cm−3, surprisingly close to the presently accepted values.
Further work concentrated on a consistent description of ambient neutron gas
and the nuclear matter inside neutron rich nuclei, using a unified expression for
the energy density of the nuclear matter as a function of neutron and proton
number densities and density gradients (Baym et al. 1971a, hereafter referred
to as BBP; Buchler & Barkat 1971a,b; Arponen 1972). The most ambitious
early attempt to calculate the ground state of the inner crust was the Hartree-
Fock calculation of Negele & Vautherin (1973). Later calculations focused on
a consistent description of the bottom layers of the crust including an updated
treatment of pure neutron matter and effective NN interaction (Hashimoto et
al., 1984; Oyamatsu et al., 1984; Oyamatsu, 1993; Lorenz et al., 1993; Cheng
et al., 1997; Douchin et al., 2000; Douchin & Haensel, 2000).

It should be stressed that many-body calculations of properties of the inner
crust, employing the realistic interaction, are beyond the reach of the modern
nuclear theory. They would require a precise treatment of a system of up to
thousand nucleons in a unit cell, interacting via complicated bare NN interac-
tion (determined from NN scattering data and deuteron properties). Moreover,
it would be necessary to include three-nucleon forces (§5.5.2), required to
describe correctly the properties of light nuclei (3H, 4He) and the saturation
parameters of nuclear matter.

The best calculations performed for the inner crust cannot go beyond calcula-
tions for heavy laboratory nuclei. They are based on phenomenological effective
NN interactions, describing the interaction of nucleons in nuclear matter. They
can be divided into three groups, according to the many-body technique used.
These groups include the Hartree-Fock approximation employing an effective
NN interaction; the semi-classical Extended Thomas-Fermi (ETF) approxima-
tion; and the compressible liquid drop model (CLDM).
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3.3.1 Hartree-Fock calculations with effective
nucleon-nucleon interaction

Let us divide matter into unit cells. Let a unit cell contain N neutrons and Z
protons. The effective nuclear Hamiltonian for such a system of A = N + Z
nucleons is

Ĥeff
N =

A∑
j=1

t̂j +
∑

k<j≤A

v̂eff
jk , (3.13)

where t̂j is the kinetic energy operator of j-th nucleon, while v̂eff
jk is an operator

of an effective two-body interaction between a jk nucleon pair. Usually, v̂eff

contains a component which is an effective two-body representation of three-
body forces, important in dense nucleon medium (§5.5.2).

The effective nuclear Hamiltonian Ĥeff
N has to reproduce – as accurate as

possible within the Hartree-Fock approximation – relevant properties of the
ground state of a many-nucleon system, particularly, the ground state energy
E0. This last condition can be written as 〈Φ0|Ĥeff

N |Φ0〉 � 〈Ψ0|ĤN|Ψ0〉, where
Φ0 and Ψ0 are, respectively, the Hartree-Fock and exact wave functions, and
ĤN is the exact nuclear Hamiltonian.

The basic assumption which justifies a Skyrme-type effective NN interaction
(Skyrme, 1956) is that its range is small as compared with the internucleon
distances. This means, that in momentum representation the effective NN
interaction ˆ̃veff(k, k′) can be approximated by a momentum independent term
plus terms quadratic in the initial and final relative momenta of an interacting
nucleon pair, k and k′, with the appropriate spin dependence. Its standard
parametrization is

ˆ̃veff
12 (k, k′) = t0 (1 + x0P̂σ) +

1
2

t1 (1 + x1P̂σ)
(
k2 + k′2

)
+t2 (1 + x2P̂σ)(k · k′) + t3 (1 + x3P̂σ) nγ

b , (3.14)

where P̂σ = 1
2(1 − σ1 · σ2) is the spin exchange operator. Numerical values

of the parameters t0, x0, . . . , γ are to be determined from fitting masses of
laboratory nuclei in ground states and low-lying excited states. In coordinate
space, the first and the last terms of Eq. (3.14) generate zero-range (contact)
component of v̂eff

12 (r), proportional to δ(r), where r = r1 −r2. The remaining
terms contain spatial gradient operators. The basic features of the Skyrme
model of v̂eff (zero range plus quadratic gradient terms) represent an enormous
practical advantage.

The complete Hamiltonian of the unit cell is Ĥeff
cell = Ĥeff

N + VCoul + Ĥe,
where VCoul describes Coulomb interaction between protons and electrons, and
Ĥe corresponds to a uniform electron gas. The Hartree-Fock approximation
for the many-body nucleon wave function is
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ΦNZ = CNZ det
[
ϕ(p)

αi
(ξk)
]
det
[
ϕ

(n)
βj

(ζl)
]

, (3.15)

where ϕ
(n)
βj

(ζl) and ϕ
(p)
αi (ξk) are single-particle wave functions (orbitals) for

neutrons (j, l = 1, . . . , N ) and protons (i, k = 1, . . . , Z), respectively, and
CNZ is a normalization constant. The space and spin coordinates of a k-th
proton are represented by ξk; ζl is the same for an l-th neutron; {αi} and {βj}
are sets of quantum numbers of occupied single-particle states for protons and
neutrons, respectively.

Further approximation used by Negele & Vautherin (1973) consisted in im-
posing spherical symmetry; the unit cell was approximated by a sphere of radius
rc. The Hartree-Fock equations for ϕ(p) and ϕ(n) were derived by minimizing
the Hartree-Fock energy functional at a fixed volume Vc of the unit cell,

Ecell

[
ϕ(p)

α , ϕ
(n)
β

]
= 〈ΦNZΦe |Ĥeff

cell| ΦNZΦe〉 = minimum , (3.16)

where Φe is the plane-wave Slater determinant for an ultra-relativistic electron
gas of constant density ne = Z/Vc. The minimization was performed at fixed
average neutron and proton densities, nn = N/Vc, np = Z/Vc = nNZ. For
details the reader is referred to the original paper (Negele & Vautherin, 1973).

The boundary conditions for unbound neutrons at the edge of the unit cell
used by Negele & Vautherin (1973) deserve a separate comment. The authors
argue, that because unbound neutrons are described by a statistical theory, one
is free to choose “any convenient boundary condition which is consistent with a
statistical neutron density distribution at the cell edge”. Their actual boundary
condition was to require that at r = rc all single-particle neutron wave func-
tions of even parity (even �, orbital angular momentum) vanish, and the radial
derivatives of odd-parity single-particle functions vanish as well. The arbitrari-
ness of this boundary condition, together with the simplifying assumption of
spherical symmetry, may be worrying at ∼ 1014 g cm−3, where the nuclear
radius becomes comparable to rc.

Once the Hartree-Fock orbitals ϕ
(n)
β and ϕ

(p)
α are determined, one finds the

minimum (ground state) value of Ecell(N, Z), filling the lowest N neutron and
Z proton states. Then, the absolute ground state configuration is found by
minimizing Ecell(N, Z) at a fixed A = N + Z. Let us notice, that αZ and βN

correspond to “Fermi levels” for protons and neutrons, respectively. In terms of
the single-nucleon orbitals, the neutron drip point corresponds to the threshold
density at which the neutron Fermi level becomes unbound, i.e., ϕ

(n)
βN

extends
over the entire unit cell.

A sample of neutron and proton density profiles is shown in Fig. 3.2. One
notices wiggles in density profiles within the nuclei; they result from specific
radial quantum oscillations of the neutron and proton orbitals. Even at highest
densities considered, no proton drip occurs. With increasing density of the
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Figure 3.2. Density profiles of neutron and protons, at several average densities ρ, along a line
joining the centers of two adjacent unit cells. Based on Fig. 3 of Negele & Vautherin (1973)
with the permission of the authors.

matter, the number density of neutrons outside the nuclei grows up and the
number density of protons within the nuclei goes down. As Negele & Vautherin
(1973) find, at ρ � 8 × 1013 g cm−3 the differences in energy between various
local minima of Ecell(N, Z) become so small, that it is not meaningful to
proceed with their calculational scheme to higher densities.

One of the most interesting results of Negele & Vautherin (1973) was
the prediction of the strong shell effect for protons. It manifests itself by
the persistence of Z = 40 (closed proton subshell) from the neutron drip
point to ρ ∼ 3 × 1012 g cm−3, and Z = 50 (closed major proton shell) for
3 × 1012 g cm−3 � ρ � 3 × 1013 g cm−3, Fig. 3.3.

Negele & Vautherin (1973) derived suitable analytical formulae, which
smoothly reproduced their EOS for the inner crust. However, we should warn
the reader that the authors based their expression for the effective NN interaction
on the microscopic calculations of asymmetric nuclear and pure neutron matter
by Siemens (1970) and Siemens & Pandharipande (1971), in which the Reid
soft-core bare NN interaction (Reid, 1968) was used. Since then, the knowl-
edge of the bare NN interaction and of the EOS for nuclear matter and pure
neutron matter at ρ < ρ0 has become much more precise. Fortunately, the re-
sults of Siemens & Pandharipande (1971) for pure neutron matter at subnuclear
densities were found to be in nice agreement with more advanced microscopic
calculations (Pethick et al., 1995).

Alas, after the monumental work of Negele & Vautherin (1973) no attempts
of a Hartree-Fock calculation of nuclear structures in the ground state of the
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Figure 3.3. Numbers of protons per nucleus in the ground state of the inner crust obtained by
various authors. Solid lines: RBP – Ravenhall et al. (1972); FPS – as quoted in Pethick &
Ravenhall (1995); DH – Douchin & Haensel (2000). Crosses – Negele & Vautherin (1973).

inner crust were carried out in the next thirty years. This might result from
an unsolved problem of correct boundary conditions at the spherical unit cell
edge, supplemented by the difficulties in finding an absolute minimum of the
Hartree-Fock energy functional. These problems did not prevent carrying out
Hartree-Fock unit-cell calculations of nuclear structures in hot dense matter,
relevant for collapsing stellar cores (Bonche & Vautherin, 1981; Wolff, 1983).
For the hot matter at kBT � 1 MeV, the thermal averaging and a much smaller
contribution of the nucleon gas outside the nuclei (in the relevant case of entropy
per nucleon ∼ (1− 2) kB) make the results much less sensitive to the boundary
conditions.

Let us mention also the problem of pairing correlations between nucleons.
Pairing may be treated by extending the Hartree-Fock scheme to the Hartree-
Fock-Bogoliubov framework (see, e.g., Ring & Schuck 1980). Superfluid prop-
erties of the inner neutron star crust (pairing in nuclei and in a free neutron liquid,
§1.3.4) were studied by many authors (see, e.g., Lombardo & Schulze, 2001;
Sandulescu et al., 2004, and references therein) but the results are drastically
different and very model dependent. Luckily, superfluidity has almost no effect
on the EOS of dense matter. However, it might influence the composition of the
inner crust (Baldo et al., 2005). Clearly, this problem requires further studies.
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In principle, the boundary conditions in the spherical Wigner-Seitz cell ap-
proximation are incompatible with periodic symmetry of the crystal. In order
to respect crystal symmetry, one has to use the appropriate Bloch single particle
functions (see Carter et al., 2005, for a discussion of this point).

3.3.2 Extended Thomas-Fermi (ETF) calculations
In the neutron drip regime, the number of nucleons in the unit cell grows

rapidly with increasing density. At ρ ∼ 1013 g cm−3 one has Acell ∼ 1000
(Negele & Vautherin, 1973), and the implementation of the self-consistent
Hartree-Fock scheme would require an enormous amount of work and com-
puter time. Large sizes of the nuclei suggest further simplifications of the
Hartree-Fock model via semiclassical approximation, in which the relevant
quantities are represented “on the average”, with quantum fluctuations (oscil-
lations) being averaged out. The energy of the unit cell is a sum of the nuclear
energy EN (which includes nucleon rest energies), the Coulomb energy ECoul,
and the energy of the electron gas, Ee. In the ETF approximation (e.g., Ring &
Schuck 1980, Chapter 13; Brack et al. 1985), the nuclear energy of a unit cell
is

EN =
∫

cell

{
EN [nn(r), np(r),∇nn(r),∇np(r)] + mnc2nn(r)

+mpc
2np(r)

}
d3r . (3.17)

The nuclear energy density functional EN is nonlocal, as it depends on density
gradients. For the ETF approximation to be valid, characteristic length-scales
for variations of nn(r) and np(r) have to be much larger than the internucleon
distance. Then one can keep only quadratic gradient terms in EN. To a very
good approximation, the electron gas is uniform,3 with ne = Z/Vc, and the
Coulomb energy of the unit cell is given by

ECoul =
1
2

∫
cell

e [np(r) − ne] φ(r) d3r , (3.18)

where φ(r) is the electrostatic potential to be calculated from the Poisson equa-
tion,

∇2φ(r) = 4πe [np(r) − ne] . (3.19)

To determine the ground state at a given nb, one has to find nn(r) and np(r),
which minimize Ecell/Vc under the constraints

Vcnb =
∫

cell
[nn(r) + np(r)] d3r ,

∫
cell

[np(r) − ne] d3r = 0 . (3.20)

3This approximation can be relaxed and one can treat ne(r) within the ETF model as a quantity to be
determined from the condition Ecell/Vc = min. However, the effect of the electron density nonuniformity
is small; the electron screening length is much larger than rc (Chapter 2).
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The problem is simplified assuming spherical symmetry; in this case the unit
cell is approximated by a sphere of the radius rc = (3Vc/4π)1/3. The boundary
conditions are such that far from the nucleus surface the nucleon densities are
uniform. This requires the nuclear radius to be significantly smaller than rc.

The ETF method was first applied for studying the matter in the inner crust
by Buchler & Barkat (1971a); see also Buchler & Barkat (1971b) and Barkat et
al. (1972). According to these authors, the presence of the outer neutron fluid
strongly alters the properties of the nuclei, which casts doubts on the validity
of the previous calculations based on the extrapolation of semi-empirical mass
formulae (Harrison et al., 1965; Langer et al., 1969; Bethe et al., 1970). The
dependence of EN on nn(r) and np(r) was taken form the results of Brueckner
et al. (1968, 1969) for asymmetric nuclear matter and pure neutron matter.
The coefficient of the quadratic gradient-term was determined by fitting masses
of laboratory nuclei. The minimization problem was reduced to solving the
appropriate Euler-Lagrange equations with required boundary conditions. The
neutron drip was found at ρND ≈ 4×1011 g cm−3, and the crust bottom was at
ρcc ∼ 1014 g cm−3. The Buchler-Barkat values of Z stayed roughly constant
Z ∼ 30 for 1011 g cm−3 � ρ � 5 × 1013 g cm−3, and then decreased to
Z ∼ 20 at ρ � 1014 g cm−3.

In the 1980s the main effort was focused on dense and hot matter, relevant
for the gravitational collapse of stellar cores and type II supernova explosions.
An exception from this rule was the paper by Ogasawara & Sato (1983), who
devoted their §3.1 to cold catalyzed matter. Their calculational scheme was
similar to that used by Barkat et al. (1972). However, Ogasawara & Sato
(1983) used different models for the potential energy of asymmetric nuclear
matter. They obtained the neutron drip density ρND ≈ (3 − 4) × 1011 g cm−3

and the values Z = 35 − 45, higher than those of Barkat et al. (1972). The
results of Ogasawara and Sato are in good agreement with the Hartree-Fock
results of Negele & Vautherin (1973).

Significant progress in the 1980s was achieved in calculations of the prop-
erties of asymmetric nuclear matter and pure neutron matter with realistic bare
NN interactions (see Friedman & Pandharipande 1981; Wiringa et al. 1988).
On the other hand, calculations based on the HF method and its semi-classical
simplifications, with new models of effective NN interaction, reached a high
degree of precision in reproducing the properties of atomic nuclei. The ETF
calculation in the 1980s focused on the possible appearance of nonspherical
nuclei in the crust bottom, as will be described in §3.4. Oyamatsu (1993) stud-
ied the ground state of the inner crust within the ETF approximation using four
different energy density functionals EN. These functionals were constructed
in such a way as to reproduce the gross properties of laboratory nuclei and to
match the EOS of pure neutron matter obtained by Friedman & Pandharipande
(1981) for a realistic bare NN interaction. Oyamatsu performed explicit mini-
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Figure 3.4. Neutron and proton density profiles at two average mass densities along a line joining
the centers of adjacent unit cells. Based on Fig. 5 of Cheng et al. (1997), with the permission of
the authors.

mization of the TF energy functional within a family of parameterized nn(r)
and np(r) density profiles [Eq. (B.7) of Appendix B]. At a given average nu-
cleon density nb, the ground state configuration was obtained by minimizing
Ecell/Vc with respect to the parameters of the nucleon density profiles. In the
density interval from the neutron drip to 1014 g cm−3 Oyamatsu gets Z � 40
for all four models, in good agreement with the Hartree-Fock calculations of
Negele & Vautherin (1973).

Simultaneously with the application of the relativistic Brueckner-Hartree-
Fock (RBHF, see §5.9.1, page 240) approach to neutron star matter at supranu-
clear densities, the semi-classical ETF approximation based on the RBHF model
was applied to the inner crust. Starting from the RBHF results for the bulk asym-
metric nuclear matter, Sumiyoshi et al. (1998) employed the ETF scheme of
Oyamatsu (1993), with his parameterization of the nucleon density profiles.
The quadratic gradient term in the energy density functional was determined
by fitting the properties of terrestrial nuclei. The authors found the neutron
drip at ρND ≈ 2.4 × 1011 g cm−3. Their values of Z in the inner crust are
systematically lower than obtained in previous works, with Z � 35 near the
neutron drip, decreasing down to about 20 at ρ � 1014 g cm−3. This may be
attributed to a relatively large Coulomb energy of nuclei in their model owing
to smaller nuclear radii. Notice that their RBHF value 0.185 fm−3 for the sat-
uration density of the symmetric nuclear matter is significantly larger than the
experimental value of 0.16 fm−3 which may explain the compactness of their
nuclei.
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The relativistic Hartree energy functional, calculated in the nonlinear rel-
ativistic mean field model of dense nucleon matter, can be simplified using
the relativistic extended Thomas-Fermi (RETF) approximation proposed by
Centelles et al. (1992, 1993). In the RETF approximation, one gets the EN
functional containing the terms quadratic in ∇nn and ∇np, which are com-
pletely specified within the model. The RETF model was applied by Cheng
et al. (1997) to determine the ground state of the inner crust, using the non-
linear σ–ω–ρ model Lagrangian by Boguta & Bodmer (1977). Three sets of
the Lagrangian parameters were used. Cheng et al. (1997) exactly solved the
Euler-Lagrange equations for nn(r) and np(r) in a spherical unit cell. A sample
of their density profiles at ρ � 1014 g cm−3 is shown in Fig. 3.4. Notice the
absence of any wiggles in the neutron density distributions within the nuclei,
characteristic for the Hartree-Fock results of Negele & Vautherin (1973); cf.
Fig. 3.2. The wiggles are absent because of the semi-classical character of
the ETF approximation. Cheng et al. (1997) did not publish their values of Z
as a function of the matter density. However, an analysis of their figures and
tables indicates that, similarly to Sumiyoshi et al. (1998), they got the nuclei
which are relatively small, with the values of Z significantly lower than those
obtained in nonrelativistic calculations. Shen (2002) used the combination of a
Relativistic Mean Field model for the bulk energy and the parameterization of
the surface energy proposed by Oyamatsu (1993). He obtained the inner crust
extending from ρND ≈ 4 × 1011 g cm−3 to ρcc ≈ 1014 g cm−3.

3.3.3 Compressible liquid drop model (CLDM)
The nature of the Hartree-Fock and ETF calculations does not allow one to

study separate physical contributions and effects, whose interplay leads to a
particular structure of the crustal matter. The compressible liquid drop model
(CLDM) enables one to separate various terms in Ecell and identify their con-
tribution.

There are also other practical advantages of the CLDM. On the one hand, it
can be considered as a suitable and economical parameterization of the results
of microscopic calculations of the Hartree-Fock or ETF type. On the other hand,
the CLDM avoids technical complications related to the choice of the boundary
conditions in the Hartree-Fock approach (§3.3.1). Finally, the CLDM allows
for thermodynamically consistent and systematic treatment of bulk and finite-
size effects and is particularly convenient for studying phase transitions in dense
matter (see §3.4). In particular, the CLDM treats two major effects of the outer
neutron gas on the nuclei: 1) the decrease of the surface tension with growing
density under the action of free neutrons; 2) the compression of the nuclear
matter within the nuclei by the pressure of the ambient neutron gas. However,
all these attractive features of the CLDM are meaningful only when finite-size
contributions are calculated using a microscopic Hartree-Fock or ETF approach
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Figure 3.5. Local proton and neutron number densities within a spherical unit cell in the inner
crust. Solid lines are actual density profiles, dashed lines correspond to the compressible liquid
drop model.

from the same effective nucleon Hamiltonian as used for the calculation of the
bulk (volume) terms. In particular, only then the decrease of the surface tension
due to the presence of the ambient neutron gas is treated in a correct way.

In the CLDM, one divides the nuclear contribution EN (without the Cou-
lomb interactions) into the bulk and surface terms, EN,bulk and EN,surf . Let
ECoul be the Coulomb contribution to the energy of the unit cell. The elec-
trons are assumed to form an uniform Fermi gas and give the rest and kinetic
energy contribution denoted by Ee (§2.3.1). The total energy of the unit cell
is, therefore,

Ecell = EN,bulk + EN,surf + ECoul + Ee . (3.21)

Contrary to EN,bulk, EN,surf and ECoul depend on sizes and shapes of nuclear
structures.

In the CLDM the nucleons are distributed between the three subsystems: the
denser nucleon fluid to be labeled by “i”; the less dense neutron fluid labeled by
“o”; and the nuclear surface (“i-o” phase interface) labeled by “s”. One requires
mechanical and chemical equilibrium between these subsystems. Far from the
nuclear surface, the nucleon densities are constant, being equal to nn,i and np,i in
the “i” phase, and nn,o and np,o = 0 in the “o” gas. The definition of the surface
term is ambiguous. For the spherical nuclei in the inner crust it is convenient
to define it by the reference proton radius rp, such that 4πr3

pnp,i/3 = Z. This
definition is convenient because of the presence of the Coulomb term in Ecell
determined solely by the proton density distribution. Similarly, the neutron
radius rn is defined by 4π

3 [r3
n(nn,i − nn,o) + r3

cnn,o] = Ncell (see Fig. 3.5). In
view of a significant neutron excess, the interface includes the neutron skin of
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the thickness sn = rn − rp formed by the neutrons adsorbed on the nucleus
surface.

The bulk energy of the nucleons in the cell is

EN,bulk = Vc [w EN,i + (1 − w) En,o] , (3.22)

where EN,i is the energy density in the nucleus far from the surface and En,o is
the energy density of the ambient neutron gas. The volume fraction occupied
by the phase “i” (i.e., protons) is w = Vp/Vc = (rp/rc)3.

Fundamentals of the thermodynamics of surfaces can be found in §§ 154, 156,
157 of Landau & Lifshitz (1993). The nuclear surface-energy term, EN,surf ,
gives the contribution of the interface between the neutron gas and nuclear
matter; it includes the contribution from the neutron skin (Lattimer et al., 1985;
Pethick & Ravenhall, 1995; Lorenz, 1991),

EN,surf = A σ + Ns µn,s , (3.23)

where σ is the surface thermodynamic potential per unit area, A is the area of the
nuclear surface (A = 4πr2

p for spherical nuclei), Ns is the number of neutrons
in the neutron skin, and µn,s is the chemical potential of neutrons adsorbed
on the nucleus surface. In the simplest approximation, in which the curvature
corrections inEN,surf , proportional toA/rp, are neglected, σ is approximated by
the surface tension σs, and Ns = νs A � (nn,i − nn,o)snA, where νs = Ns/A
is the surface density of adsorbed neutrons. A more precise expression for
EN,surf can be obtained by including the curvature corrections (Lorenz, 1991;
Douchin, 1999). In view of the possibility of nuclear structures with infinite
volumes (§3.4) it is convenient to introduce the contribution of neutrons from
the neutron skin to the total (average) nucleon density, ns (Lorenz, 1991). For
spherical nuclei, the number of neutrons in the neutron skin per unit volume is
ns = Ns/Vc (Lorenz, 1991).

In order to calculate ECoul, one uses the Wigner-Seitz approximation. Ne-
glecting the diffuseness of the proton distribution one gets

ECoul =
16π2

15
(np,ie)

2 r5
pf3(w) , f3(w) = 1 − 3

2
w1/3 +

1
2

w . (3.24)

At T = 0 the equilibrium can be determined by minimizing the total energy
density, E = Ecell/Vc, at a fixed value of nb. The quantity E is a function
of seven independent variables. A convenient set of variables is: nn,i, np,i,
ns, nn,o, rp, rn, rc; in this way all independent variables will be finite even
for infinite nuclear structures considered in §3.4. Fixing nb and requiring
charge neutrality of the cell, we reduce the number of independent variables
to five. Therefore, there will be five conditions of equilibrium resulting from
the stationarity of E with respect to variations of thermodynamic variables. All
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these conditions has well defined physical meaning. The first condition requires

(∂E/∂nn,i)[np,i][ns][rp][rc] = 0 , (3.25)

where quantities in square brackets are kept constant. Neglecting the curvature
corrections, it implies the equality of the neutron chemical potentials in the
bulk phases of nucleon matter, µbulk

n,i = µbulk
n,o . The second equation results

from minimization with respect to the number of protons,

(∂E/∂np,i)[ns][nn,o][rp][rc] = 0 , (3.26)

and yields the beta equilibrium condition between neutrons, protons, and elec-
trons. Neglecting the curvature corrections, it reads

µbulk
n,i − µbulk

p,i − µe =
8π

5
e2 np,i r

2
p f3(w) . (3.27)

We also need the condition on the number of surface neutrons. It results from
the requirement of stationarity with respect to transfer of a neutron from the
nucleus interior to the surface, all other particle numbers being fixed,

(∂E/∂ns)[np,i][wnn,i+ns][rp][rc] = 0 . (3.28)

Neglecting the curvature corrections, this condition implies that the chemical
potential of the surface neutrons is equal to the bulk chemical potentials in both
phases, µn,s = µbulk

n,i = µbulk
n,o .

To these three conditions, expressing chemical equilibrium within the system,
we have to add two equations of mechanical equilibrium. The condition number
four results from the requirement of stationarity with respect to variations of
rp. It expresses the equality of the pressure inside and outside the nucleus,

(∂E/∂rp)[np][ns][nn][rc] = 0 , (3.29)

where the constancy of nn = Ncell/Vc and np = Z/Vc is equivalent to keeping
constant numbers of protons and neutrons in a fixed Vc. Neglecting the curvature
corrections, this condition reads

P bulk
i − P bulk

o =
2σs

rp
− 4π

15
e2 n2

p,i r
2
p (1 − w) , (3.30)

where P bulk
j = n2

j ∂(Ebulk
j /nj)/∂nj.

Finally, the fifth equation determines the equilibrium size of the cell. It
results from the condition of stationarity with respect to variations of the cell
radius, while w and all the densities including ns are kept constant,

(∂E/∂rc)[nn,i][np,i][ns][w] = 0 . (3.31)
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Because w is constant here, the condition involves only the Coulomb and surface
terms in Ecell. In our approximation it can be written as

EN,surf = 2 ECoul . (3.32)

This is the “virial theorem” of the simplified CLDM with no curvature correc-
tions (BBP); it enables one to express rp in terms of the remaining variables.
Generalization of the “virial theorem” to the case of nonstandard nuclear shapes
will be discussed in §3.4.

Let us write an explicit expression for the nuclear component of the energy
density, neglecting, for simplicity, the curvature corrections in EN,surf . Both
the surface tension σ � σs and the neutron skin thickness sn = rn − rp are
calculated under the condition of thermodynamic and mechanical equilibrium of
the semi-infinite “i” and “o” phases, separated by a plane interface. Therefore, σ
and sn depend only on one thermodynamic variable, e.g., on the proton fraction
in the bulk “i” phase, xi = np,i/ni, where ni = nn,i + np,i. The formula for
the energy density EN reads then

EN = w EN,i + (1 − w) En,o +
3w

rp
[σs + (nn,i − nn,o) snµn] . (3.33)

Let us remind, that according to Eq. (3.28) the chemical potential of neutrons
adsorbed on the nuclear surface is equal to the value of µn common for both
bulk phases.

Historically, the first CLDM calculations for the ground state of the inner
crust were performed in the classical paper by BBP, who laid the foundation of
subsequent CLDM calculations. Unfortunately, BBP used simplified qualita-
tive expressions, based on dimensionality arguments, to describe the reduction
of σ with increasing density. This resulted in a too rapid increase of Z with
increasing density, which was corrected by Ravenhall et al. (1972). Later
CLDM calculations were performed by Lorenz (1991); Douchin et al. (2000),
and Douchin & Haensel (2000). They were based on the effective NN inter-
actions particularly suitable for strongly asymmetric nuclear systems. Lorenz
used the FPS model (Friedman Pandharipande Skyrme, derived by Pandhari-
pande & Ravenhall 1989) consistent with the results of many-body calculations
of dense asymmetric nuclear matter (see Chapter 5 and Friedman & Pandhari-
pande 1981) with a realistic bare NN interaction and a phenomenological three-
nucleon force. Douchin and Haensel used the SLy (Skyrme Lyon, Chabanat
et al. 1997, 1998) effective forces, adjusted to the properties of neutron-rich
nuclei, and adjusted also, at ρ > ρ0, to the results of many-body calculations
of the properties of dense asymmetric nuclear matter by Wiringa et al. (1988)
(based on the bare two-nucleon interaction AV14 and the phenomenological
UVII three-nucleon interaction).
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Figure 3.6. Radius of the spherical unit cell rc, the proton radius of spherical nuclei rp, and the
fraction of volume w filled by protons (in percent) versus matter density ρ. Based on the results
of Douchin & Haensel (2000).

Figure 3.7. Mass number of spherical nuclei A and their proton number Z versus the average
matter density ρ. The dotted line gives number of the nucleons after subtracting the neutrons
belonging to neutron skin. Based on the results of Douchin & Haensel (2000).
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For illustration, let us discuss the CLDM results for spherical nuclei obtained
by Douchin & Haensel (2000). Geometrical parameters of the nuclei in the inner
crust, up to ρ = 1014 g cm−3, are shown in Fig. 3.6. More detailed information
can be found in Fig. 3.7. The number of nucleons in a nucleus, A, grows
monotonically and reaches ∼300 at ρ = 1014 g cm−3, where Acell � 1000.
However, the number of protons changes rather weakly, Z � 40. The values of
Z for spherical nuclei are quite similar to those obtained by Oyamatsu (1993)
and Ravenhall et al. (1972), but they are somewhat higher than those obtained
using relativistic mean-field models (Sumiyoshi et al., 1998; Cheng et al., 1997).
An interesting quantity is the number of neutrons forming the neutron skin, Ns.
As seen from Fig. 3.7, for ρ � 1

3ρ0 the value of Ns decreases with increasing
density; this happens because nn,i and nn,o become more and more alike.

Since for ρ � 1014 g cm−3 the spherical nuclei are very heavy, with A �
300, the problem of their stability with respect to deformation and fission arises.

Originally, the Bohr-Wheeler condition for fission (e.g., Preston & Bhaduri
1975) was derived for isolated nuclei which were treated as drops of incompress-
ible and charged nuclear matter. Let ECoul and Esurf denote the Coulomb and
surface energies of a spherical nucleus. The Bohr-Wheeler condition, which
applies to nuclei in vacuum, states that for E

(0)
Coul ≥ 2Esurf a spherical nucleus

is unstable with respect to small quadrupolar deformations. It is, therefore,
expected to to undergo spontaneous deformation and fission into smaller frag-
ments. Here, E(0)

Coul is the Coulomb energy in vacuum, to be distinguished from
ECoul in the inner crust. In the crust, one has to correct the Bohr-Wheeler condi-
tion for the presence of electron background and other nuclei. Such corrections
were calculated by Brandt (1985; as quoted by Pethick & Ravenhall 1995). The
leading corrections were found to be of the order of (rp/rc)3, in contrast to the
corrections to ECoul, where the leading correction term is linear in rp/rc [see
Eq. (3.24)]. Keeping only the leading correction to the Coulomb energy, one
can rewrite the equilibrium condition (3.32) in the approximate form

Esurf � 2E
(0)
Coul

(
1 − 3

2
rp

rc

)
. (3.34)

The Coulomb energy E
(0)
Coul in vacuum is larger than the total unit cell energy,

equal to one half of Esurf . As the density increases, E
(0)
Coul can become suffi-

ciently large for the Bohr-Wheeler condition to be satisfied. Within the linear
approximation, this would happen for rp/rc > 1/2, i.e., when the nuclei fill
more than (1/2)3 = 1/8 of space. As seen from Fig. 3.6, this does not happen
for spherical nuclei at ρ < 1014 g cm−3 for the Douchin & Haensel (2000)
model of the inner crust. However, at ρ ∼ 1014 g cm−3 the value of (rp/rc)3

is rather close to the critical value of 1/8.
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3.4. Ground state of the bottom layers of the crust
For ρ � 1013.5 g cm−3 the ground state of the inner crust contains spherical

nuclei. We will see that this structure is stable with respect to the transition
into different nuclear shapes or into a uniform npe matter. Of course, we
expect the nuclei to be spherical (or quasispherical) as long as rp � rc. This
is particularly clear within the CLDM, where it is the spherical shape which
minimizes the shape-dependent (finite-size) contribution EN,surf + ECoul for
rp � rc. However, the situation is far from being obvious at ρ � 1013.5 g cm−3,
where rp/rc � 0.5.

In order to get familiar with the state of matter near the bottom of the crust,
in §3.4.1 we discuss the simplest bulk approximation. Then in §3.4.2 we study
possible shapes of nuclear structures. Finally, in §3.5 we present an alternative
(with respect to the CLDM model) method of determining the density ρcc of
the crust-core interface.

3.4.1 The bulk approximation
The bulk approximation consists in neglecting the Coulomb and surface

effects. At a given mean nucleon density nb, nucleons are generally present
in both of the coexisting “i” and “o” fluids, characterized by the constant local
number densities nn,i, np,i, nn,o, and np,o (the latter number density is nonzero
in the proton drip regime, at nb > nPD). The equilibrium between the “i” and
“o” fluids, ensured by the (strong) NN interaction, implies the equality of the
chemical potentials of nucleons and the equality of the nucleon pressures,

µn,i = µn,o, µp,i = µp,o , PN,i = PN,o , (3.35)

where the label N indicates the nucleon contribution to the pressure, and the
condition on the proton chemical potentials applies only at nb > nPD. At a
given nb, Eqs. (3.35) enable one to determine nn,i, np,i, nn,o, and np,o.

As before, let w be the volume fraction occupied by the “i” phase. At a given
mean nucleon number density nb = w ni +(1−w) no, the total energy density
is

E = w EN,i + (1 − w) EN,o + Ee , (3.36)

where Ee is the electron energy density. Beta equilibrium implies the relation
between the chemical potentials of neutrons, protons and electrons,

µn = µp + µe , (3.37)

while the requirement of the overall charge neutrality leads to

ne = w np,i + (1 − w) np,o . (3.38)

The set of Eqs. (3.35)–(3.38) determines completely the equilibrium state at a
given nb.
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Figure 3.8. Ground state of the inner crust in the bulk approximation for the SLy4 effective NN
interaction (Douchin & Haensel, 2000). Two-fluid phase to the left, one-fluid (uniform) phase
to the right of the vertical dotted line (at n2↔1 = 0.091 fm−3); np,o is not shown, because it is
too small. Proton drip occurs at 0.085 fm−3 and the maximum value of np,o (reached at n2↔1)
is only ∼ 5 × 10−4 fm−3. In the lower panel, the thin dash-and-dot vertical line shows the
crust-core transition in the CLDM. At the actual transition nb = ncc = 0.078 fm−3 the bulk
approximation gives w � 0.3, in good agreement with the CLDM.

The two-fluid phase is stable at those nb at which the energy per nucleon
is lower than in the one-fluid phase (which is the uniform npe matter). This
stability condition breaks down at a density n2↔1. As seen from Fig. 3.8,
while nb approaches n2↔1 from the lower density (two-fluid) side, the volume
fraction w → 1 and the (denser) fluid “i” fills the entire volume (cf. Pethick et
al. 1995). Therefore, the 2 ↔ 1 transition is continuous, without any density
jump. These properties are characteristic to the bulk approximation. Because
the surface and Coulomb contributions increase the energy density, the real
transition to a uniform npe matter occurs at a baryon number density ncc lower
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Figure 3.9. Unit cells for a set of nuclear shapes (spheres, rods, plates) in the inner crust. The
size of the unit cell is rc. Hatched regions show nuclear matter, while blank regions show neutron
gas. In “bubbular phases” (tubes, spherical bubbles) one has to exchange the blank and hatched
regions.

than n2↔1. Thus, n2↔1 is a robust upper bound to ncc. For the SLy4 effective
NN interaction one gets the proton drip density nPD = 0.085 fm−3 and n2↔1 =
0.091 fm−3 (Douchin & Haensel, 2000).

3.4.2 Unusual nuclear shapes
As pointed out long ago by BBP, the nuclei will turn “inside-out” when the

fraction of the volume occupied by the nuclear matter exceeds 50%. Then
spherical bubbles of the neutron gas in the nuclear matter will become energet-
ically preferable (BBP). This result was obtained within the CLDM neglecting
the curvature contribution to the surface energy. Generally, while minimizing
the energy, the nuclear shape has to be treated as a thermodynamic variable.
The actual shape of nuclei in the ground state corresponds to the minimum of
E at a given nb.

Historically, the first studies of such a type were connected with the struc-
ture of matter in gravitational collapse of massive stellar cores. Calculations
performed within the CLDM for dense hot matter, with T � 1010 K and the
entropy per nucleon (1−2) kB, indicated that before the transition into the uni-
form plasma the matter undergoes a series of phase transitions accompanied by
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changes of nuclear shapes. It was demonstrated by Ravenhall et al. (1983) who
considered a basic set of spherical, cylindrical, and planar geometries, corre-
sponding to dimensionality d = 3, 2, 1. For each d, they restricted themselves
to the simplest shapes with a single curvature radius (maximal symmetry). For
d = 3, Ravenhall et al. (1983) considered spherical nuclei in a nucleon gas and
spherical bubbles in a denser nuclear matter, referred to as 3N and 3B, respec-
tively. For d = 2, the nuclear structures were cylindrical nuclei (rods, 2N) and
cylindrical holes in the nuclear matter filled with the nucleon gas (tubes, 2B).
Finally, for d = 1 the authors considered parallel plates of the nuclear matter
separated by the nucleon gas; in that case the “bubbular” and “nuclear” phases
coincided and were denoted by 1N.4 With increasing density, Ravenhall et al.
(1983) found a sequence of phase transitions 3N → 2N → 1N → 2B → 3B
which preceded the transition to the uniform matter. These transitions were
accompanied by the increase of the fraction of volume occupied by denser (nu-
clear matter) phase. These results were confirmed in later calculations (see
Watanabe et al. 2001, and references therein).

One of the virtues of the CLDM is its flexibility as far as the shape of nuclei
is concerned. The terms EN,bulk and Ee are shape independent. The surface
and Coulomb terms do depend on the shape, but they can easily be calculated
neglecting the curvature corrections. In what follows we present the formulae
for EN,surf and ECoul in this simple approximation. For the sake of completeness,
we include also the case of spherical nuclei (phase 3N) already considered in
§3.3.3. Using elementary considerations, one can show that the general formula
for the surface energy is

EN,surf =
w d

rp
[(nn,i − nn,o) µnsn + σs] , (3.39)

where d is the dimensionality and w = (rp/rc)d is the filling factor.
The Coulomb contribution is more complicated, but the result can also be

represented by a universal expression (Ravenhall et al., 1983). The calculation
is based on the Wigner-Seitz approximation. The unit cells for the 3N, 2N
and 1N phases are shown in Fig. 3.9.5 In the case of rods, the unit cell is
approximated by a cylinder, coaxial with a rod, of radius rc. The number of
rods per unit area of the plane perpendicular to the rods is 1/(πrc)2. In the case
of plates, the boundary of the unit cell consists of two planes parallel to a slab

4For obvious reasons, culinary terms are also frequently used to denote various phases; 3B, 2N, and 1N are
frequently referred to as Swiss cheese, spaghetti, and lasagna phases, respectively.
5The exact shape of the unit cells is such as to fill the entire space. Therefore, in 3N and 3B phases, which
form bcc lattices, the exact cell is rhombic dodecahedron, while rods and tubes would require unit cells in
the form of regular hexagonal prism. Replacing the exact unit cells by spheres (3N, 3B) and cylinders (2N,
2B) simplifies enormously the calculations and turns out to be precise within better than one percent in the
relevant range of w (e.g., Pethick & Potekhin 1998).
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of nuclear matter, at a distance rc from the slab symmetry plane. For the phases
of spherical nuclei (3N), nuclear matter rods (2N), and plates (1N) one obtains

ECoul =
4π

5
(np,i e rp)

2 fd(w) , (3.40)

where

fd(w) =
5

(d + 2)

[
1

d − 2

(
1 − 1

2
w1−2/d d

)
+

1
2

w

]
. (3.41)

In the case of d = 2 (rods) one has to take the limit of d → 2 which gives

f2(w) =
5
8

(
ln

1
w

− 1 + w

)
. (3.42)

These formulae hold also for neutron gas tubes (2B) and neutron gas bubbles
(3B) but in these cases one has to replace w → 1 − w, and rp stands for the
radius of tubes or bubbles.

The virial theorem, which states that EN,surf = 2ECoul in equilibrium, is valid
for any phase. It is a consequence of scaling of the Coulomb and surface energies
with respect to rp, EN,surf ∝ r−1

p , ECoul ∝ r2
p. The pressure equilibrium

condition for spheres, rods and plates reads

P bulk
i − P bulk

o = (d − 1)
σs

rp
+

4π

5
e2 n2

p,i r
2
p fd(w)

[
2
d

+ w
f ′

d(w)
4fd(w)

− 1
]

.

(3.43)
For bubbular phases (bubbles, tubes), one has to put minus in front of the surface
term, and replace w by 1 − w.

The beautiful simplicity of the formulae is lost when one introduces the
“curvature corrections” to the finite-size terms. In the case of the surface terms,
they result from the dependence of the nuclear surface energy on the surface
curvature κ. In the case of the five nuclear shapes under consideration the
curvature is given by κ = (d − 1)/rp for the 3N and 2N phases, and κ =
−(d − 1)/rp for the 3B and 2B phases. The surface thermodynamic potential,
calculated including the lowest-order curvature correction, is then given by
σ = σs + κσc. It should be stressed, that in contrast to the surface tension σs,
the curvature tension σc does depend on the choice of the “reference surface,”
which in our case is taken at r = rp (e.g., Kolehmainen et al. 1985; Douchin et
al. 2000). The curvature corrections to the Coulomb energy appear when we
include the diffuseness of the proton surface. These corrections were studied
in detail by Lorenz (1991) (also see Douchin 1999).

One should stress important differences in physical conditions prevailing in
a collapsing stellar core (the case considered by Ravenhall et al. 1983) and in
the cold catalyzed matter. First, in contrast to the cold catalyzed matter, the
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Figure 3.10. Energy density of a given phase of the inner crust minus the bulk energy density
versus the average baryon density nb for the FPS and SkM effective NN interactions (from
Lorenz et al. 1993, with the permission of the authors). Label “uniform” refers to the uniform
npe matter.

majority of nucleons in the collapsing matter belong to the denser (nuclear)
phase even at ρ ∼ 1014 g cm−3; moreover, the nucleon gas in the collapsing
matter contains not only neutrons but also some protons. Second, because of
neutrino trapping (see §1.4.2), the average proton fraction in the collapsing
matter is about 30%, to be contrasted with a few percent fraction in the neutron
star matter at ρ ∼ 1014 g cm−3.

The first detailed study of the inner crust at ρ � 1014 g cm−3, performed by
Lorenz et al. (1993) within the CLDM, indicated that the presence of unusual
nuclear shapes before the transition to the uniform npe matter depends on
the model for the effective NN interaction. For the FPS model, they found a
sequence of phase transitions 3N → 2N → 1N → 2B → 3B, which started
at nb ≈ 0.064 fm−3 � 1

3n0 (1.1 × 1014 g cm−3) and ended at the crust-core
interface (ncc = 0.096 fm−3, ρcc = 1.6 × 1014 g cm−3) with the transition
from the 3B phase to the uniform npe matter. It should be stressed that in the
indicated density range the differences between E(nb) for various shapes are
very small, � keV fm−3. This can be compared with typical energy density
differences between the crust and the uniform phases, � (10−20) keV fm−3

in the same density range (see Fig. 3.10).
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Figure 3.11. Energy density of a given phase of inner crust minus the bulk energy density as a
function of the average baryon density nb for the SLy4 effective NN interaction. Label “uniform”
refers to the uniform npe matter. Based on Douchin & Haensel (2000).

As shown by Lorenz et al. (1993), the very presence of unusual shapes
depends on the assumed model of veff

NN. In the case of the SkM force (used
by Bonche & Vautherin 1981, 1982 in their studies of dense and hot mat-
ter) spherical nuclei were energetically preferred to the very bottom of the
crust, which was found at significantly lower density ncc = 0.074 fm−3

(ρcc = 1.2 × 1014 g cm−3). Further calculations confirmed this unfortunate
ambiguity. Using parametrized density profiles in the ETF energy density func-
tional, Oyamatsu (1993) found a complete sequence of phase transitions in the
density range (1.0−1.5) × 1014 g cm−3. A similar sequence was found by
Sumiyoshi et al. (1998), who obtained however a much narrower density range
of unusual nuclear shapes (0.050−0.058) fm−3 before the final transition to
the uniform npe matter. On the contrary, Cheng et al. (1997), using an un-
constrained relativistic ETF approach, found that spherical nuclei persist in the
ground state to the crust edge, which ranged from 0.058 fm−3 to 0.073 fm−3,
depending on the parameters of theirσ–ω–ρ Lagrangian. Similarly, calculations
by Douchin & Haensel (2000) with the SLy4 effective NN force indicated the
absence of unusual nuclear shapes (see Fig. 3.11); the transition to the uniform
matter took place at ncc = 0.078 fm−3 (ρcc = 1.3 × 1014 g cm−3).

The existing calculations enable one to make some generic statements on
unusual nuclear shapes at ρ � ρcc. The very phenomenon of phase transitions
between the various shapes results from the interplay of three quantities: finite-
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size (surface and Coulomb) term in Ecell, the dominating bulk energy term, and
the volume fraction w of the denser nucleon fluid. If the finite-size terms are
small, then ρcc is reached at a relatively low value of w. However, unusual
shapes become energetically advantageous only at sufficiently large values of
w. Therefore, a small surface tension may prohibit the appearance of unusual
shapes before ρcc is reached (as in the case of the SLy4 and SkM forces, Figs.
3.10 and 3.11). It should be stressed, however, that the phase transitions them-
selves result from very small energy differences (see Figures 3.10 and 3.11) of
the energy densities; the finite-size terms are very small compared to Ebulk.

In the case of the CLDM, one should stress the importance of the curvature
term in EN,surf . This term should be included in any calculation of the crust-
core transition. As mentioned above, introducing the curvature corrections
in the finite-size terms complicates the problem. According to Oyamatsu et
al. (1984), in the absence of the curvature correction to EN,surf the 3N→2N
transition occurs at w = 0.2. However, in the presence of this correction the
3N phase can persist at larger w.

According to the CLDM or ETF calculations, a change of the nuclear shape
is accompanied by a very small (less than one percent) density jump leading
to a weak first-order phase transition (Lorenz et al., 1993; Oyamatsu, 1993;
Sumiyoshi et al., 1995). The EOS in the vicinities of such transitions is derived
using the Maxwell construction. Notice, however, that these results have been
obtained in the Wigner-Seitz approximation for ECoul, whose precision at ∼
1014 g cm−3 has to be carefully checked.

3.4.3 Quantum corrections to the CLDM energy
The CLDM model is par excellence classical. Also, the ETF scheme is

a semiclassical approximation to a quantum-mechanical many-body problem.
As the differences of the energy densities between phases with different nuclear
shapes are very small, one may worry about possible importance of neglected
quantum effects, which result from a discrete character of quantum single-
particle states and from the interference of single-particle wave functions. In
terrestrial nuclear physics, there exists a systematic procedure of adding quan-
tum (shell) corrections to the smooth CLDM energies of nuclei (the Strutinsky
method, described , e.g., by Preston & Bhaduri 1975).

As we have seen in §3.3.1, the shell effects for protons in spherical nuclei
are strong, which leads to the persistence of Z = 40 and Z = 50 in the inner
crust. The energy correction for nonspherical nuclei, resulting from the shell
effects of protons, has been calculated by Oyamatsu & Yamada (1994). It has
been found that the inclusion of the proton shell effects shifts the changes of
nuclear shapes to higher densities. In other words, the proton shell effects
make a phase with a given nuclear shape more stable. However, deviations
from the results of the CLDM turn out to be small. The shell effect for neutrons
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bound in nuclei is expected to be smaller than for protons, because neutrons
are much more numerous and occupy mostly unbound (continuum) states. In
their calculations performed for the 1N (slab) geometry, Oyamatsu & Yamada
(1994) found the shell-energy correction for neutrons an order of magnitude
smaller than for protons. Proton shell effects for spherical nuclei in the inner
crust were calculated by Dutta et al. (2004).

The shell-energy correction for dripped neutrons was studied in detail in
a series of papers by Magierski, Bulgac, and Heenen (see Magierski et al.
2001 and references therein). The shell effects for unbound neutrons result
from the possibility of forming resonant quantum states owing to neutron-
nucleus scattering. This scattering leads to an effective interaction between
nuclei immersed in a neutron gas (neglecting phase shifts of neutron wave
functions owing to neutron collisions at T �= 0). Such a phenomenon is similar
to the Casimir effect, familiar in the quantum field theory and in the condensed
matter physics (e.g., Itzykson & Zuber 1980, pp. 138–142). As a result of
the “fermionic Casimir effect” for dripped neutrons in the presence of nuclei,
the energy density acquires a small term En,shell, which fluctuates rapidly as a
function of ρ. At ρ ∼ 1014 g cm−3 the amplitude of oscillations of En,shell turns
out to be of the same order of magnitude as the energy difference ∆E between the
various phases of nuclear shapes, displayed in Figs. 3.10 and 3.11. This could
lead to complicated phase transition patterns at T � En,shell/nbkB ∼ 109 K
(while at higher T the shell effects are washed out by thermal fluctuations). As
Magierski & Heenen (2002) argue, their result suggests, that at T � 109 K and
ρ ∼ 1014 g cm−3 the number of phase transitions could significantly increase.
In particular, the order of transitions predicted by the CLDM could be reversed.
Moreover, several phases could coexist at a given density. Finally, one cannot
neglect the possibility of a mixed, disordered state of the crust.

Another quantum effect neglected in the CLDM or ETF model is pairing
of nucleons. It seems to be unimportant for phase transitions. As shown by
Magierski & Heenen (2002), neutron pairing does not change the values and
density dependence of En,shell. On the other hand, Baldo et al. (2005) find a
rather strong effect of nucleon pairing on the values of Z in the inner crust.
Clearly, the effect of nucleon pairing on the structure of the inner crust requires
a further study.

3.5. Reaching the crust-core interface from the core side
The determination of the bottom edge of the crust based on the CLDM

of nuclei requires a highly precise calculation of the finite-size contribution,
EN,surf + ECoul, in Ecell. One has to construct a CLDM representation of
the ground state of the inner crust and then find the crust-core transition from
the condition of thermodynamic phase equilibrium. One should use the same
nuclear Hamiltonian for the crust and the core phases. One needs also a very
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precise many-body method to describe nuclear structures at the crust bottom,
which is a very difficult task (see Figs. 3.10 and 3.11). Luckily, the crust-core
phase transition is very weakly first-order (see above). Therefore, one can locate
this transition using a completely different method well known in the theory of
phase transitions in condensed matter. This will serve as an independent test
for the precision of the CLDM calculation of ρcc, described above. We will
locate the crust edge by checking the stability of the uniform npe matter. We
start from high densities, where the homogeneous phase is certainly stable with
respect to the formation of spatial inhomogeneities (BBP, Pethick et al. 1995).
By lowering the density, we will eventually find the threshold density, at which
the uniform npe matter becomes unstable. This threshold gives a very good
approximation of the actual ρcc.

For a given nb, the ground state of the uniform npe matter minimizes the
energy density E(nn, np, ne) = E0 at a fixed baryon number density (nn+np =
nb) and under the condition of electric charge neutrality (ne = np). This implies
beta equilibrium between the matter constituents and ensures vanishing of the
first variation of E due to small perturbations δnj(r) (where j = n, p, e) of
the equilibrium solution (at a fixed total nucleon number and a global charge
neutrality of the system). However, this does not guarantee the stability of the
spatially homogeneous state of the npe matter; the stability requires the second
variation of E , quadratic in δnj , be positive.

The energy functional of a slightly nonuniform matter can be calculated using
the semi-classical ETF treatment of the kinetic and the spin-gradient terms in
the nucleon contribution to E (Brack et al., 1985). Assuming small spatial
gradients, we keep only the quadratic gradient terms in the ETF expressions.
This approximation is justified because characteristic wavelengths of periodic
perturbations are indeed much larger than internucleon distances. In this case
the change of the energy (per unit volume) induced by density perturbations
can be expressed (BBP, Pethick et al. 1995) as

E − E0 =
1
2

∫
dq

(2π)3
∑
j,k

Fjk(q) δnj(q) δnk(q)∗ , (3.44)

where we use the Fourier representation

δnj(r) =
∫

dq

(2π)3
δnj(q) eiqr . (3.45)

The Hermitian matrix Fik(q) determines the stability of the uniform npe matter
with respect to spatially periodic perturbations with a wave vector q. Due to the
isotropy of the uniform npe matter, Fik depends only on q = |q|. The matrix
elements Fik can be calculated from the second variation of the microscopic
energy functional E [nj(r),∇nj(r)] (BBP, Pethick et al. 1995).
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The condition for the Fij matrix to be positive-definite is equivalent to the
requirement that the matrix determinant is positive (Pethick et al., 1995). At
any density nb, one has thus to check whether det[Fij(q)] > 0. Let us start
with some nb, at which det[Fij(q)] > 0 for any q. By decreasing nb, we find
eventually a wave-number Q at which the stability condition is violated for the
first time; let it happen at a density nQ. For nb < nQ the homogeneous state
ceases be the ground state of the npe matter.

Calculations performed using several effective nuclear Hamiltonians indicate
that nQ � ncc, within a percent or better (Pethick et al., 1995; Douchin &
Haensel, 2000). For the ETF approximation to be correct, the wavelength
λQ = 2π/Q of critical density perturbations must be significantly larger than
the mean inter-nucleon distance. The critical wave numbers Q are typically
∼ 0.3 fm−1 so that λQ ∼ 20 fm. At nQ ∼ 0.1 fm−3 the fraction of protons is
only about 3–4% but λQ ∼ 20 fm is still 2–3 times larger than an inter-proton
distance. The ratio of λQ to the inter-neutron distance is typically about eight.
Calculations of nQ show that the actual precision of the ETF approximation is
much better than guessed from the ratio of λQ to the inter-nucleon distance.
This feature is well known from the ETF calculations of the energy of terrestrial
atomic nuclei (Ring & Schuck, 1980).

The instability at nQ signals a phase transition with a loss of translational
symmetry of the npe matter, producing nuclear structures. The agreement of nQ

and ncc is a good test for the precision of calculated values of ncc. It indicates
that the approximation of the spherical unit cell for 3N or 3B phases remains
valid at ρ ≈ ρcc. It means also that the linear approximation of the curvature
correction in σ is sufficiently precise. Finally, it is a convincing argument for
the validity of the CLDM at very large neutron excesses.

3.6. The equation of state of the neutron star crust
In the present section we discuss the EOS of the outer and inner crusts, built

of cold catalyzed matter.
The EOS in the outer crust is rather well established. We suggest to use the

HP EOS given in Table A.1 of Appendix A. It is similar to the older BPS EOS.
In some pressure intervals the two EOSs give a few percent difference in ρ,
resulting from the difference in nuclides present at those pressures.

As soon as one leaves the region of experimentally known nuclei, the EOS
of cold catalyzed matter becomes uncertain. The uncertainty increases at
ρ > ρND. The properties of nuclei are affected by the ambient neutron gas which
contributes more and more to the total pressure. Therefore, the problem of cor-
rect modelling of the EOS of pure neutron gas at subnuclear densities becomes
important. The real EOS of cold catalyzed matter stems from the real nucleon
Hamiltonian, which is expected to describe nucleon interactions at ρ � 2ρ0
(while at higher ρ non-nucleon degrees of freedom can be important, Chapter
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5). In practice, in order to make the solution of the many-body problem feasible,
the task was reduced to finding an effective nucleon Hamiltonian, which would
enable one to calculate reliably the EOS for 1011 g cm−3 � ρ � ρ0, including
the crust-core transition.

Usually, an effective nuclear interaction is constructed in such a way as
to reproduce the properties of laboratory nuclei. A minimal condition is to
reproduce experimental saturation parameters of the symmetric nuclear matter
(§5.4). In the crust at ρ � 1013 g cm−3, the pressure is mostly supplied by
free neutrons. Therefore, an effective nuclear force has to give an accurate
description of the EOS of the neutron gas at subnuclear densities. We have
no direct experimental access to the EOS of the neutron matter. However, we
have precise numerical calculations of the ground-state properties of the neutron
matter at nn � n0, based on the modern many-body theories with best bare
nucleon interactions; they be used in lieu of experimental data (Pethick et al.,
1995; Pethick & Ravenhall, 1995).6 In Fig. 3.12 we plot the energy per neutron,
E/nn, in the neutron matter versus nn for several effective nuclear interactions.
One notices good overall agreement of the SLy curve with the microscopic
many-body results of Wiringa et al. (1988) and Akmal et al. (1998); for the
remaining interactions the agreement is worse. Let us stress that the SLy force
was constructed to fit the results of Wiringa et al. (1988) at nb � n0.

Of course, for ρ � 4 × 1011 g cm−3 one can use an EOS based on exper-
imental or semi-empirical nuclear masses, but it is reassuring to check that
this EOS is in nice agreement with a “theoretical EOS”, based on the effec-
tive NN FPS and SLy interactions. As seen from Fig. 3.13, significant dif-
ferences between the SLy and FPS EOSs occur in the density interval from
4×1011 g cm−3 to 4×1012 g cm−3. They result mainly from the difference of
the neutron drip thresholds, ρND(SLy) � 4×1011 g cm−3 (in good agreement
with the “empirical EOS” of HP) versus ρND(FPS) � 6 × 1011 g cm−3. For
4 × 1012 g cm−3 � ρ � 1014 g cm−3 the SLy and FPS EOSs are very similar.
The behavior of the two EOSs near the crust-core transition is shown in Fig.
3.14. The FPS EOS is softer there.

In the SLy EOS the crust-core transition takes place as a very weak first-
order phase transition, with the relative density jump ∼ 1%. Let us remind
that for this model spherical nuclei persist to the very crust bottom. As seen
from Fig. 3.14, the crust-core transition is accompanied by a noticeable jump
of the slope (stiffening) of the EOS. For the FPS EOS, the crust-core transition
is preceded by a sequence of phase transitions with changes of nuclear shapes.
They make the crust-core transition smoother than in the SLy case, with a
gradual increase of the stiffness, which nevertheless undergoes a visible jump

6These statements may be over-optimistic. Monte Carlo calculations by Sarsa et al. (2003) give an EOS of
neutron matter which is noticeably stiffer than the EOSs of Wiringa et al. (1988) and Akmal et al. (1998).
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Figure 3.12. Energy per neutron versus neutron number density for pure neutron matter. We
show the results of Wiringa et al. (1988) (the UV14+UVIII interaction; filled triangles); Akmal
et al. (1998) (the UV18+δv+UIX* interaction; filled squares); Pethick et al. (1995) (the FPS
effective nuclear interaction; the dotted line); the SLy model (the solid line); the SkM∗ model (the
long-dashed line); the Sk1′ model (the long dashed-and-dot line); Sumiyoshi et al. (Sumiyoshi
et al. 1995 and Sumiyoshi 2000, private communication; the Relativistic Mean Field Theory;
the dashed line).

at the bottom of the bubble-layer edge. All in all, while exotic nuclear shapes
may strongly affect the transport phenomena, neutrino emission, and elastic
properties of the matter, their effect on the EOS is small.

The overall SLy EOS of the crust, calculated including adjacent segments
of the core and the outer crust, is shown in Fig. 3.15. In the outer crust,
the SLy EOS cannot be visually distinguished from the HP EOS (based on
experimental nuclear masses). An important stiffness parameter of the EOS is
the local adiabatic index, γ = (nb/P ) dP/ dnb, which can be approximated
by γ � (ρ/P ) dP/ dρ at subnuclear densities. In Fig. 3.16 we plot γ versus
ρ for the SLy EOS at densities ρ > ρND. At ρ < ρND, we show two plots
of γ. The solid line corresponds to the precise calculation of γ from the HP
model, but neglecting density discontinuities associated with density jumps
owing to changes of ground-state nuclides. To a very good approximation,
this adiabatic index is 4/3 (see also BPS). This is because before the neutron
drip the pressure is very well approximated by the sum of the pressure Pe of
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Figure 3.13. Comparison of the SLy and FPS EOSs.

ultra-relativistic electrons and the lattice contribution PL; both are proportional
to ρ4/3 (see §§ 2.3.5 and 3.2). Averaging the pressure over density jumps
performed implicitly in the CLDM softens the EOS and yields lower value of
γ. After a dramatic softening in the density region following the neutron drip
point, the EOS stiffens gradually, with a visible increase of γ near ρcc. Then
follows a jump in γ associated with the disappearance of nuclei, and subsequent
stiffening (due to NN interaction) in the uniform npe liquid.

The tabulated EOSs discussed above are given in Appendix A; their analytical
approximations are presented in Appendix C.

3.7. Elastic properties of neutron star crust
In contrast to the liquid core, the solid crust can sustain an elastic strain. As

neutron stars are relativistic objects, a relativistic theory of elastic media in a
curved space-time should be used. Such a theory of elasticity was developed
by Carter & Quintana (1972) who applied it to rotating neutron stars (Carter &
Quintana, 1975a,b). However, for the sake of simplicity, we will restrict our-
selves to the Newtonian version of the theory of elasticity (Landau & Lifshitz,
1984). This approximation can be used to obtain the elastic moduli of the crust,
which are the same as those appearing in the general relativistic formulation.
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Figure 3.14. Comparison of the SLy and FPS EOSs near the crust-core transition. Thick solid
lines refer to the inner crust with spherical nuclei. The dashed line is for “exotic nuclear shapes”.
Thin solid lines refer to the uniform npe matter.

The state of thermodynamic equilibrium of a matter element corresponds
to equilibrium positions of nuclei, which will be denoted by r. Neutron star
evolution (e.g., spin-down, accretion) or some outer effects may deform the
crust. In what follows, we neglect the thermal contributions to thermodynamic
quantities.

A deformation of a crust element implies a displacement of the nuclei into
their new positions r′ = r + u, where u = u(r) is the displacement vector.
In the continuum-medium limit, relevant for macroscopic phenomena, both r
and u are treated as continuous fields. The displacement u produces an elastic
strain (i.e., a force which tends to return the matter element to the equilibrium
state with the minimum energy E0),7 and determines the deformation energy
Edef = E(u) − E0. A uniform translation does not contribute to Edef . The
deformation is described by the symmetric strain tensor

uik = uki =
1
2

(
∂ui

∂xk
+

∂uk

∂xi

)
, (3.46)

7In this section, by “energy” we mean energy per unit volume (energy density)
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Figure 3.15. The SLy EOS. Dotted vertical lines show the neutron drip and crust-core interface.

where i, j = 1, 2, and 3. This expression is valid as long as the displacement u
is small and terms quadratic in u can be neglected (Landau & Lifshitz, 1984).

Any deformation can be decomposed into the compression and shear com-
ponents,

uik = ucomp
ik + ushear

ik , (3.47)

where ucomp
ik = 1

3 δik ∇ · u and ushear
ik = uik − ucomp

ik . The deformation
changes the volume of a matter element according to dV ′ = (1 + ∇ · u) dV .
A pure compression, which does not affect the shape of the matter element, is
described by uik = a δik. A pure shear deformation keeps the volume of the
matter element constant, so that ∇ · u = 0.

To the lowest order, the deformation energy is quadratic in the deformation
tensor,

Edef =
1
2

λiklm uik ulm , (3.48)

where summation is over repeated indices. Since Edef is a scalar, λiklm are
components of a rank-four tensor. While the total number of these components
is 81, general symmetry relations reduce the maximum number of linearly inde-
pendent components (elastic moduli) to 21. The number of independent elastic
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Figure 3.16. Adiabatic index γ for the ground state of the neutron star matter for the HP model
before neutron drip and the CLDM of Douchin & Haensel (2000, 2001) at higher ρ. Dotted
vertical lines indicate the neutron drip and crust-core interface. The dashed line before the
neutron drip shows γ obtained using the Douchin-Haensel model.

moduli decreases with increasing symmetry of elastic medium and becomes as
small as three for a bcc crystal, and two for an isotropic solid. The elastic stress
tensor σik is derived from the deformation energy via σik = ∂Edef/∂uik.

3.7.1 From bcc lattice to isotropic solid
Although microscopically the ground state of the neutron star crust at

ρ � 1014 g cm−3 corresponds to a bcc lattice, one usually assumes that
its macroscopic properties, relevant for neutron star models, are those of an
isotropic bcc polycrystal. This simplifying assumption is made, because it is
likely that the crustal matter is better approximated by a polycrystal than a
monocrystal. The elastic properties of an isotropic solid are described by two
elastic moduli,

Edef =
1
2

K (∇ · u)2 + µ

(
uik − 1

3
δik ∇ · u

)2

. (3.49)
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Figure 3.17. Melting temperature (left) and electron and ion plasma temperatures (right) of the
ground-state matter in the crust. Solid lines are based on the models of Haensel & Pichon (1994)
and Negele & Vautherin (1973) for the outer and inner crusts, respectively. Jumps are associated
with changes of nuclides. Dot-and-dashed lines are based on the CLDM of Douchin & Haensel
(2000); their smooth behavior is an approximation inherent to the model. Thick vertical dashes
indicate the neutron drip.

Here, µ is the shear modulus and K is the compression modulus. Then the
stress tensor is

σik =
∂Edef

∂uik
= Kδik∇ · u + 2µ

(
uik − 1

3
δik ∇ · u

)
. (3.50)

For a pure uniform compression

K = nb (∂P/∂nb) = γP , (3.51)

where γ is the adiabatic index.
Detailed calculations of the direction-averaged effective shear modulus of a

bcc Coulomb solid, appropriate for the polycrystalline crusts, were performed
by Ogata & Ichimaru (1990). These authors considered a one component bcc
Coulomb crystal, neglecting screening by degenerate electrons, as well as quan-
tum zero-point motion of ions.

For an ideal bcc lattice there are only three independent elastic moduli de-
noted traditionally as c11, c12, and c44 (Chapter 6 of Kittel 1986). A compres-
sional deformation (∇ · u = 0) is determined only by two independent elastic
moduli, because

Edef = b11
(
u2

xx + u2
yy + u2

zz

)
+ 2c44

(
u2

xy + u2
xz + u2

yz

)
, (3.52)

where b11 = 1
2(c11 − c12). For T = 0, Ogata & Ichimaru (1990) find b11 =

0.0245 nN (Ze)2/rc, c44 = 0.1827 nN (Ze)2/rc. These values agree with the
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Figure 3.18. Effective shear modulus µ versus density at T = 0 for bcc lattice. The solid line
is for the models of Haensel & Pichon (1994) and Negele & Vautherin (1973) (in the outer and
inner crust, respectively; §§3.2 and §3.3). The dot-and-dashed line is for the model of Douchin
& Haensel (2000) (§3.3).

classical result of Fuchs (1936). A significant difference between b11 and c44
indicates a strong elastic anisotropy of an ideal bcc monocrystal.

While treating the crust as an isotropic solid is a reasonable approximation
(we most probably deal with a bcc polycrystal), the choice of an “effective”
shear modulus deserves a comment. In numerous papers treating the elastic
aspects of neutron star dynamics, a standard choice was µ = c44 (Baym &
Pines 1971; Pandharipande et al. 1976; McDermott et al. 1988b, and references
therein). It is clear, that replacing µ by a single maximal elastic modulus of a
strongly anisotropic lattice is not accurate. The correct effective value of µ was
calculated by Ogata & Ichimaru (1990) by direct averaging over rotations of
Cartesian axes. For T = 0 their result is

µ =
1
5

(2b11 + 3c44) = 0.1194
nN (Ze)2

rc
, (3.53)

about 1.5 times smaller than µ = c44 used in previous papers.
Now return to the isotropic solid. Equation (3.53) can be rewritten as

µ = 0.0159 (Z/26)2/3 Pe , (3.54)
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where Pe is the pressure of ultra-relativistic degenerate electrons. Therefore,

µ/K = 0.016 (Z/26)2/3 (Pe/γP ) � 1 . (3.55)

The crust is much more susceptible to shear than to compression; its Poisson
coefficient σ � 1/2, while its Young modulus E � 3µ.

Strictly speaking, the above formulae hold for the outer crust, where rN � rc
and P � Pe. In the inner crust they are only approximate.

3.7.2 Exotic nuclei
Some models predict the existence of unusual nuclei (rods, plates, tubes,

bubbles) in the crust bottom, at ρ � 1014 g cm−3 (§3.4). Let us concentrate
on two unusual shapes, rods and plates, which are expected to fill most of the
bottom layer. The elastic moduli for the tube-phase can be obtained from those
for rods by replacing w → 1−w. The properties of matter containing rods and
plates are intermediate between those of solids and liquids. For example, any
displacement of a plate along its surface or a rod along its axis is not opposed
by restoring forces, which is a typical property for a liquid. However, an elastic
strain opposes any bending of planes or rods, a property specific for a solid.
These intermediate kinds of matter are usually referred to as mesomorphic
phases, or liquid crystals (see, e.g., Landau & Lifshitz 1984; de Gennes &
Prost 1993). The elastic properties of rod and plate phases were studied by
Pethick & Potekhin (1998) (also see Pethick & Ravenhall 1995).

As stressed by Pethick & Potekhin (1998), the physical reasons for forming
mesomorphic phases in neutron star matter are very different from those in
laboratory. For a laboratory liquid crystal, it is the interaction between very
nonspherical molecules which drives them to form rods or plates. In the neutron
star interior one deals with spontaneous symmetry breaking resulting from the
competition between the Coulomb energy and nuclear surface energy.

In our discussion of the elastic properties of rod and plate phases in neutron
star matter we closely follow Pethick & Potekhin (1998). The energies of meso-
morphic phases are calculated using the generalized Liquid Drop Model (§3.4).
It is assumed that the average (total) nucleon density remains constant. Also, it
is assumed that the fraction of the total volume occupied by nuclear matter, and
the densities of the nuclear matter and the neutron gas, remain constant. Thus,
only the Coulomb and surface energies are altered by deformations.

The plate phase has rotational symmetry about any axis perpendicular to the
plates. Therefore, it is similar to the smectics A phase in the nomenclature of
liquid crystals physics (de Gennes & Prost, 1993). Let the z-axis coincide with
the symmetry axis of the equilibrium (nondeformed, or relaxed) configuration.
Only a displacement in the z-direction can be opposed by a restoring force, so
that we can set u = (0, 0, u). The deformation energy of a unit volume can
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Figure 3.19. Shear coefficient C (in units of ECoul) and bend coefficient K3 (in units of ECoulr
2
c )

of the rod (columnar) phase of neutron star matter versus the filling factor w = (rp/rc)2. The
dashed line in the left panel is the approximation given by Eq. (3.62). Based on Pethick &
Potekhin (1998).

then be written as (de Gennes & Prost, 1993)

Edef =
1
2
B

[
∂u

∂z
− 1

2
(∇⊥u)2

]2
+

1
2
K1
(
∇2

⊥u
)2

, (3.56)

where ∇⊥ ≡ (∂/∂x, ∂/∂y, 0). By considering appropriate types of deforma-
tions and calculating corresponding Edef within the generalized Liquid Drop
Model, Pethick & Potekhin (1998) found

B = 6 ECoul , K1 =
2
15

r2
c ECoul

(
1 + 2w − 2w2) . (3.57)

Here, ECoul is the Coulomb energy in equilibrium. According to Eq. (3.40),

plates − equilibrium : ECoul =
2π

3
(enp,irc)2(1 − w)2w2 , (3.58)

where rc is the half-distance between the plates (Fig. 3.9) and np,i is the proton
number density in the nuclear matter, while w is the volume fraction occupied
by the nuclear matter. All quantities are calculated for the relaxed system. The
corrections to the above expressions for B and K1, resulting from the curvature
term in the nuclear surface energy and from the changes in the plate thickness,
measured along the z-axis, are small (Pethick & Potekhin, 1998).

Now let us consider the rod phase (which can also be called columnar phase,
see de Gennes & Prost 1993). The basic parameters describing the ground
(relaxed) state are the rod radius rp and the unit cell radius rc (Fig. 3.9). The
number of rods per unit area perpendicular to them is 1/πr2

c . The ground-state
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configuration forms a two-dimensional triangular lattice. The Coulomb energy
in equilibrium (3.42) reads

rods − equilibrium : ECoul =
π

2
(enp,irc)2w2

[
ln
(

1
w

)
− 1 + w

]
. (3.59)

The displacements which affect the elastic energy are of the form u =
(ux, uy, 0). Then

Edef =
1
2

B

(
∂ux

∂x
+

∂uy

∂y

)2

+
1
2

C

[(
∂ux

∂x
− ∂uy

∂y

)2

+
(

∂ux

∂y
+

∂uy

∂x

)2
]

+
1
2

K3

(
∂2u

∂x2

)2

+ B′
(

∂ux

∂x
+

∂uy

∂y

)(
∂u

∂z

)2

+
1
2

B′′
(

∂u

∂z

)4

. (3.60)

The elasticity constant B is associated with a uniform transverse compression
or dilatation, while the elasticity moduli C and K3 are associated with trans-
verse shearing and bending of the rod lattice, respectively. The second line
of Eq. (3.60) contains higher-order terms, which may be important for large
longitudinal deformations. All three terms containing B, B′, and B′′ result
from the change of the the unit cell radius induced by the deformation. The
calculation of Edef within the generalized Liquid Drop Model yields (Pethick
& Potekhin, 1998)

B =
3
2

ECoul , B′ = −3
4

ECoul , B′′ =
3
8

ECoul . (3.61)

The elasticity constant C turns out to be a sensitive function of the filling
factor w, as shown in Fig. 3.19. Within the relevant range of filling factors,
0.2 � w � 0.4, it can be very well fitted by (Pethick & Potekhin, 1998)

C � 102.1(w−0.3)ECoul . (3.62)

The “bend constant” K3 determines the deformation energy associated with
bending of rods. Its dependence on w and rc can be understood from Fig. 3.19.
At 0.2 � w � 0.4 one can use the approximation K3 � 0.06 ECoul r

2
c .

3.8. Deviations from an idealized ground state model
The ground-state crust, described in the preceding sections, is built of an

idealized one-component plasma of atomic nuclei and assumes full thermody-
namic equilibrium. The real crust may deviate from these idealized models.
The knowledge of “imperfections” of the crust is particularly important for its
transport properties (§1.3.6). On the other hand, a crust which is out of nu-
clear equilibrium, constitutes a reservoir of energy which could be released and
influence neutron star evolution.
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3.8.1 Crust formation in a newly-born neutron star
Let us consider a newly born neutron star. Crystallization during its cooling

is first-order phase transition in a Coulomb plasma. Just after the temperature
falls below the local melting temperature Tm(ρ) at a given density ρ (Fig. 3.17),
the matter becomes an overcooled liquid. This state is metastable, and the
crystallization is expected to start at T < Tm(ρ) via the formation of nucleation
seeds and subsequent crystal growth. A possible scenario of crystallization at
ρ = 8 × 1013 g cm−3 was studied by De Blasio (1995).

The initial temperature of a newly born neutron star exceeds 1010 K. The
composition of the hot matter is characterized by a statistical distribution of
(A, Z) nuclei. An initial spread of (A, Z) is wide (Burrows & Lattimer, 1984)
but thermodynamic functions deviate little from a single-nucleus approxima-
tion. With decreasing temperature, the (A, Z) peak becomes narrower and the
single-nucleus approximation is more precise (Burrows & Lattimer, 1984). Af-
ter the solidification of the crust its composition is expected to be almost frozen,
reflecting the situation at the crystallization point rather than in the ground state.
For instance, consider the outer crust with the melting temperature ranging from
Tm ∼ 108 K at ρ = 108 g cm−3 to Tm ∼ 109 K at ρ = 1011 g cm−3 (Fig.
3.17). In contrast to the ground-state composition at T = 0, transitions between
shells (A1, Z1) and (A2, Z2) at T � Tm will be continuous. A one-component
plasma can exist only sufficiently far from transition layers. Two-component
transition layers were studied by De Blasio (1998, 2000).

Higher temperatures are characterized by larger fraction of evaporated nu-
cleons. The most sensitive region is around the neutron drip point in the cold
catalyzed matter, ρND � 4 × 1011 g cm−3. At T � 5 × 109 K, there is a
non-negligible fraction of free neutrons for 1011 g cm−3 � ρ � ρND (see the
lower panel of Fig. 3.1). In general, one notices a significant excess of free
neutrons for the densities 1011 g cm−3 � ρ � 1012 g cm−3 as compared to the
matter at T = 0. With further cooling, there will be a tendency to absorb these
excess neutrons by nuclei, which in turn will increase their A and modify their
Z due to weak-interaction processes. At T � 109 K and ρ ∼ 1011 g cm−3 the
fraction of dripped neutrons is negligibly small (Fig. 3.1). However, the temper-
ature may be too low to reach full nuclear equilibrium, mainly because of high
Coulomb barriers and the lack of free protons and α-particles. Therefore, one
may expect deviations from the ground-state composition in the cooled crust
at 1011 g cm−3 � ρ � 1012 g cm−3 (Bisnovatyi-Kogan & Chechetkin, 1979).
However, theoretical estimates of this effect depend on the nuclear properties at
(N − Z)/A � 0.3 and rely on extrapolations of semiempirical mass formulae.
It would be desirable to reconsider this problem using modern description of
very neutron-rich nuclei.

Now let us outline a general problem of thermal fluctuations of Z and Ncell
at Tm � 109 K (Jones, 2001c). We neglect a small fraction of dripped protons
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(Fig. 3.1) and set Zcell � Z. Because thermal fluctuations are accompanied by
fluctuations of volume of an electrically neutral cell, the calculation has to be
done at fixed P and T . First consider the case of T = 0. At a given pressure,
the enthalpy per nucleon, h, is a function of Z and Ncell. Some examples of the
h(Z, Ncell) maps for the outer crust, where Ncell = N , are presented by Haensel
& Pichon (1994). Unfortunately, in the inner crust, only the maps of the energy
per nucleon e(Z, Ncell) at a given nb are available (Negele & Vautherin, 1973).
At nb = 5.76 × 10−3 fm−3 (ρ = 9.6 × 1012 g cm−3) the difference between
the absolute and secondary minima of e(Z, Ncell) is ∆e ∼ 10 keV. Similar
differences are expected between the values of the free enthalpy per nucleon
h = e + P/nb at a given pressure. Let Zmin and Nmin denote the values of
Z and Ncell which correspond to the absolute minimum. The properties of
matter in the inner crust at T = 0 suggest, that at T = Tm � 109 K thermal
fluctuations of Z and Ncell may be large. The reason is that the formation
enthalpy of impurities with Zimp = Zmin + ∆Z, Ncell,imp = Nmin + ∆Ncell
corresponding to the secondary minimum is expected to be smaller than kBTm
(these two minima are associated with proton shell closure at Z = 40 and
Z = 50). Because the minima of h(Z, Ncell) are rather flat, one may obtain
substantial concentrations of nuclei with Z �= Zmin and Ncell �= Nmin during
the solidification. Jones (1999) calculated the formation enthalpy of impurities,
using the CLDM and adding the shell and pairing effects. His results indicate
a high heterogeneity of Z which becomes frozen after the temperature falls
below Tm, with a substantial population of two closed Z-shells. Let us mention
that high values of Tm (high thermal energies) and large number densities of
neutrons (predominantly unbound) in the inner crust are favorable for impurity
fractions higher than those in the outer crust.

These calculations of impurity fractions should be regarded as preliminary.
Unfortunately, kinetics of phase transitions is notoriously difficult for theoret-
ical modeling, especially if the approximations cannot be tested in laboratory.
The existing models can be improved by a more careful treatment of thermal
contributions at T � 109 K; the use of the T = 0 approximation may be ques-
tionable for some thermodynamic quantities. Also, the importance of the shell
and pairing effects during solidification should be clarified. Fortunately, the
EOS in the crust is rather insensitive to deviations from the one-nucleus model.

Investigations of nuclear structures in the bottom crustal layers, formed dur-
ing one minute in which a proto neutron star with T � 1011 K transforms
to a hot neutron star with T � 1010 K (§1.4.2), are very complicated. One
of the approaches is based on the quantum molecular dynamics simulations
in a box containing from a few thousand to a few tens of thousand nucleons
(see, e.g., Watanabe et al., 2004, and references therein). In addition to “nu-
clear pasta” phases with a well defined geometry (rods, spheres, tubes, etc.)
these authors find also what they call “spongelike” phase with complicated
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geometry, representing a mixture of several different geometries; it appears at
T � 3 × 1010 MeV. Similar intermediate (mixed) phases were obtained, at
subnuclear densities, from the quantum molecular dynamics simulations for
cold dense matter with an effective NN interaction by Watanabe et al. (2003).
Together with the Hartree-Fock calculations for the cold matter at subnuclear
densities (Magierski et al., 2003, and references therein) these results indicate
that the structure of the bottom layers might be heterogeneous. However, even
in this case the impact of the heterogeneity on the EOS would be small.

3.8.2 Accreted crust
While a newly born neutron star is made of hot matter in nuclear equilibrium,

its subsequent evolution can lead to the formation of regions, where the matter
is out of nuclear equilibrium. This may happen in a neutron star crust, where
reshuffling of nucleons necessary for the formation of large nuclei (present in
the cold catalyzed matter) may be prohibited by high Coulomb barriers. This is
the case of an old accreting neutron star. For an accretion rate ∼ 10−10M� yr−1,
the typical temperature in the neutron star interior is ∼ 108K (Fujimoto et al.
1984; Miralda-Escudé et al. 1990).

Let us consider a standard scenario of the evolution of accreted matter. Ex-
plosive burning of the helium layer leads to the formation of matter consisting
mainly of 56Ni, which transforms into 56Fe by electron captures. The growing
layer of the processed accreted matter pushes down the original crust. The origi-
nal catalyzed (ground-state) outer crust is replaced by a new, noncatalyzed one in
∼ 105 years. In view of low temperature (T � 108 K), the only processes which
can take place when the accreted matter sinks inwards are electron captures and
beta decays, neutron emission or absorption and, at sufficiently high densities,
pycnonuclear fusion. A detailed study of these processes was done by Sato
(1979), who considered several scenarios with different initial compositions of
the matter, and by Haensel & Zdunik (1990a) (also see Bisnovatyi-Kogan &
Chechetkin 1979 and references therein).

A noncatalyzed crust represents a reservoir of energy. The energy release
takes place owing to the nonequilibrium processes. Some aspects of this prob-
lem were first considered by Vartanyan & Ovakimova (1976). Later nonequi-
librium processes and resulting crustal heating were studied in detail by Haensel
& Zdunik (1990a). These processes lead to the appearance of very thin layers
where heat is produced at a rate proportional to the accretion rate. As shown
by Haensel & Zdunik (1990a), the associated total heat release – deep crustal
heating – in the crust can be larger than the original inward heat flow resulting
from the steady hydrogen burning between the helium flashes (Fujimoto et al.,
1984). The total heat release per one accreted nucleon, ∼ 1.5 MeV, depends
rather weakly on the initial composition of ashes produced by X-ray bursts
(Haensel & Zdunik, 2003).
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In the scenario of Haensel & Zdunik (1990a), nuclei in the inner crust have
Z � 20, to be compared with Z ≈ 40−50 in the catalyzed matter. The nuclei in
the inner accreted crust appear to be much lighter than in the catalyzed matter.
Very recently Jones (2005) argued that the deviation of the inner accreted crust
from nuclear equilibrium could be much smaller than in the scenarios of Sato
(1979) and Haensel & Zdunik (1990a), which would result in a much weaker
deep crustal heating. Clearly, the problem requires further studies.

Many neutron stars in close X-ray binaries are transient accretors (transients);
§1.4.6. They exhibit X-ray bursts separated by long periods (months or even
years) of quiescence. It is believed that the quiescence corresponds to a low-
level, or even halted, accretion onto the neutron star. During high-state accretion
episodes, the heat is deposited by nonequilibrium processes in the deep layers
(1012 − 1013 g cm−3) of the crust. This deep crustal heating can maintain the
temperature of the neutron star interior at a sufficiently high level to explain a
persistent thermal X-ray radiation in quiescence (Brown et al., 1998).

The problem of the detailed outcome of time-dependent nucleosynthesis
during X-ray bursts is very complicated and is not completely solved (see,
e.g., Rembges et al. 1997; Schatz et al. 1999, 2001). The nature of the unsta-
ble thermonuclear burning at higher accretion rates 10−8 M� yr−1 � Ṁ �
10−9 M� yr−1, is not well understood. The ashes from such a burning might
contain some admixture of nuclei beyond the iron group, with A � 60−100
(Schatz et al., 1999, 2001).

The case of thermally stable burning of hydrogen and helium at sufficiently
high accretion rates should be considered separately. This regime corresponds
to most of the X-ray pulsars – magnetized accreting neutron stars (surface
magnetic field B � 1012 G), where the local accretion rate in the polar cap
region is thought to be large enough for a stable burning. A similar situation is
encountered at very high rates of accretion (Ṁ � 10−8 M� yr−1) on weakly
magnetized (B � 1011 G) neutron stars. At high temperatures, corresponding
to the high accretion rates, the hydrogen burns via the rapid proton capture
producing a mix of elements beyond the iron group. It is expected that the
compression of this heterogeneous matter will produce an impure solid crust.

If the starting composition is a mix with significant fractions of different
nuclides, its further evolution may keep heterogeneity of the matter. The thermal
and electrical conductivities of such a crust could be lower than in a perfect
crystal. The distribution of nuclides would be rather smooth, in contrast to
the extreme case of a one-nucleus model with noticeable density jumps. The
average values of Z and A will still be lower than in the cold catalyzed matter.



Chapter 4

ENVELOPES WITH STRONG MAGNETIC
FIELDS

Magnetic fields B � 1012 G, typical for isolated neutron stars (§1.3.8),
drastically modify many physical properties of the matter. Motion of free
electrons and ions perpendicular to the field lines is quantized into Landau
orbitals with a characteristic transverse scale equal to the magnetic length am =
(�c/eB)1/2. This brings to the scene an atomic field-strength parameter γ =
(a0/am)2, where a0 is the Bohr radius. If this parameter is large, the Lorentz
force acting on valence electrons in atoms exceeds the Coulomb force. The
Landau energy levels of electrons are modified by relativistic effects if the field
strength in the relativistic units,

b = �ωc/(mec
2) = B/Br, (4.1)

becomes b � 1. Here, ωc = eB/(mec) is the electron cyclotron frequency and
Br = m2

ec
3/(e�) = 4.414 × 1013 G is often called the relativistic magnetic

field.
Introducing the notation B12 = B/1012 G, we have

γ = 425.44 B12, b = α2
f γ = B12/44.14. (4.2)

A magnetic field will be called strong if γ � 1 (which is typical for radio
pulsars) and superstrong if b � 1 (which occurs in magnetars; see §1.4, par-
ticularly, §§1.4.4 and 1.4.5).

In §4.1 we review the main magnetic effects in a fully ionized plasma of
charged pointlike particles (electrons and ions). In the domain of partial ioniza-
tion, one should take into account quantum-mechanical effects of the magnetic
field on bound species. These effects are outlined in §4.2. In §4.3 we briefly
discuss thermodynamics of partially ionized layers of magnetic neutron-star
envelopes and consider the best studied hydrogen atmosphere in more detail.
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4.1. Fully ionized plasmas
4.1.1 Free electron in a magnetic field

Let us consider a uniform magnetic field B directed along the z-axis. In this
case, the vector potential in the Landau gauge readsA = (−By, 0, 0). Quantum
states of a free electron in the magnetic field form a complete orthogonal basis.
The basic states can be labeled by (px, pz, n, s), where n = 0, 1, 2, . . . is the
Landau quantum number, s is the spin quantum number, pz is the z-projection of
the electron momentum, while its x-projection px determines the y-coordinate
of the guiding center of electronic motion, yc = px/(meωc). An explicit solu-
tion of the Dirac equation reads (e.g., Akhiezer & Berestetskiı̆ 1965; Sokolov
& Ternov 1974)

Ψpx,pz ,n,s(r) =
exp[i(pxx + pzz)/�]

(LxLz)1/2 ψns(pz, y − yc), (4.3)

where Lx and Lz are normalization lengths. The ground Landau level n = 0
is nondegenerate with respect to spin (spin is antiparallel to B, s = −1; the
statistical weight g0 = 1), whereas the levels n > 0 are double degenerate
(s = ±1, gn = 2). The latter degeneracy allows different choices of the
electron basic bispinors ψns. The simplest choice which is often the most
convenient one is

ψn,1(pz, y) =
1√

2ε̃(ε̃ + 1)am

⎛⎜⎜⎝
(ε̃ + 1)Hn−1(y/am)

0
p̃z Hn−1(y/am)

−
√

2bn Hn(y/am)

⎞⎟⎟⎠ , (4.4a)

ψn,−1(pz, y)=
1√

2ε̃(ε̃ + 1)am

⎛⎜⎜⎝
0

(ε̃ + 1)Hn(y/am)
−

√
2bn Hn−1(y/am)

−p̃z Hn(y/am)

⎞⎟⎟⎠ . (4.4b)

Here, ε̃ = ε/(mec
2) and p̃z = pz/(mec) are, respectively, the electron energy

and longitudinal momentum in the relativistic units,

Hn(ξ) =
exp(−ξ2/2)

π1/4(2nn!)1/2 Hn(ξ) (4.5)

is a harmonic-oscillator function, and Hn(ξ) = (−1)neξ2
dne−ξ2

/dξn is a
Hermite polynomial. The electron energy and the absolute value of pz are
inter-related as

ε = εn(pz) = c
(
m2

ec
2 + 2�ωcmen + p2

z

)1/2
, (4.6)

|pz| = pn(ε) = [(ε/c)2 − (mec)2 − 2me�ωcn]1/2, n ≤ nmax, (4.7)
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where nmax is the maximum Landau number for a given ε. The latter number
is an integral part of the variable Υ

nmax(ε) = Int(Υ), Υ =
1

�ωc

p2
0(ε)

2me
. (4.8)

Instead of Eq. (4.4), one can use any other basis of the type

ψ′
ns = ψ ns cos ϕ − s ψ n,−s sin ϕ . (4.9)

It is sufficient to assume that 0 ≤ ϕ ≤ π/2; ϕ may depend on n but should be
zero for n = 0.

In particular, by choosing ϕ = arcsin
√

(1 − pz/p0)/2 we obtain the basis
of states with fixed electron helicities (i.e., spin projections on the canonical
momentum). In this case, s defines the helicity sign.

The spin magnetic moment of the electron contains a small anomalous part
whose relative magnitude is determined by the difference of the electron gyro-
magnetic factor ge = 1.00116 (the ratio of the actual magnetic moment to the
Bohr magneton) from 1. The anomalous magnetic moment splits the energy
levels n ≥ 1 and, strictly speaking, removes the spin degeneracy. In neutron star
envelopes, however, this splitting is typically negligible, because δε is smaller
than either the thermal width ∼ kBT of the Fermi level or the collisional width
of the Landau levels (see, e.g., Kaminker & Yakovlev 1981).

Non-relativistic limit. In the non-relativistic limit, the basis of bispinors (4.4)
is often most convenient, because it corresponds to fixed spin projections (s�/2)
on the z-axis (two lower components of bispinors ψns are negligible in this case).
Then the coordinate part of the wave function is formally given by Eq. (4.3)
with

ψn,1 = a−1/2
m Hn−1(y/am), ψn,−1 = a−1/2

m Hn(y/am), (4.10)

Let us also mention that in the cylindrical gauge of the vector potential,
A = (−By/2, Bx/2, 0), px is not a good quantum number; the magnetic
quantum number m (i.e., the z-projection of the angular momentum in units
of �) takes its place. At any n, one has m = n, n − 1, n − 2 . . . In the non-
relativistic limit, the coordinate parts of the basic wave functions do not depend
on s (but one should not forget different statistical weights of the Landau levels
with n = 0 and n > 0). These coordinate parts are

Ψ′
pz ,n,m,s(r) =

eipzz/�

L
1/2
z

Φn,−m(r⊥). (4.11)

Here r⊥ = (x, y) = (r⊥ cos φ, r⊥ sin φ),

Φn,−m(r⊥) =
eimφ

√
2π am

In−m,n(r2
⊥/2a2

m) (4.12)
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is a Landau function, Lz is the normalization length, and Inn′(u)
= (−1)n′−nIn′n(u) is a Laguerre function (Sokolov & Ternov, 1974). As-
suming n′ ≥ n, one has

In′n(u) = e−u/2u(n′−n)/2
n∑

k=0

(−1)k

√
n′!n!

k!(n − k)!(n′ − n + k)!
uk. (4.13)

A wave function of the relativistic electron in a magnetic field in the cylin-
drical gauge can be also expressed in terms of Φn,−m(r⊥) (e.g., Sokolov &
Ternov 1974).

4.1.2 Thermodynamic functions of the ideal electron gas
Thermodynamic functions of the electron gas in a magnetic field are easily

derived from the first principles (Landau & Lifshitz, 1993). The number of
quantum states per longitudinal momentum interval ∆pz for an electron with
given spin, magnetic, and Landau quantum numbers (s, m, n) in a volume V
equals V ∆pz/(4π2a2

m�) (Landau & Lifshitz, 1976). This allows one to express
the electron number density ne and the thermodynamic potential Ω = −PV as

ne =
1

(2πam)2�

∞∑
n=0

gn

∫ ∞

−∞
f (0)(ε − µ, T ) dpz, (4.14)

Ω = − V kBT

2π2a2
m�

∞∑
n=0

gn

∫ ∞

0
ln
(

1 + exp
[
µ − ε

kBT

])
dpz, (4.15)

where f (0) is the Fermi-Dirac function (2.46) and ε is given by Eq. (4.6). Inte-
grating Eq. (4.14) by parts, we obtain

ne =
∫ ∞

mec2
NB(ε)

(
−∂f (0)

∂ε

)
dε, (4.16)

where

NB(ε) =
1

2π2a2
m�

nmax∑
n=0

gnpn(ε), (4.17)

and nmax is defined by Eq. (4.8). If nmax � 1, the sum in Eq. (4.17) can be
approximated by an integral, which gives the classical result [cf. Eq. (2.3)]

N0(ε) = p3
0(ε)/(3π2

�
3). (4.18)
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In particular, using Eq. (4.16) we can write the squared Thomas-Fermi wave
number (2.13) as

k2
TF = 4πe2

∫ ∞

mec2

∂NB

∂ε

(
−∂f (0)

∂ε

)
dε

=
2αf

πa2
m

gn

∫ ∞

mec2

nmax(ε)∑
n=0

ε

cpn

(
−∂f (0)

∂ε

)
dε. (4.19)

It is convenient to rewrite Eq. (4.16) as

ne =
τ0

2π2a2
mλ--C

∞∑
n=0

gnF (χn, τ−1
n ), (4.20)

F (x, y) =
∫ ∞

0

et−x

( et−x + 1)2
√

t(t + 2y) dt, (4.21)

χn =
µ − εn(0)

kBT
, τn =

tr√
1 + 2bn

, (4.22)

and use the approximation (Potekhin, 1996a)

F (x, y) ≈ ln (1 + ex)
1 + y + ξ + c(y) a(ξ)

√
ξ + 2y

1 + ξ + c(y) b(ξ)
, (4.23)

where ξ = ln{1 + exp[x − x0(y)]}, x0(y) = 1/(1 + 0.623 y1.603),

c(y) = 0.9422 y1.7262,

a(ξ) =
√

π /2 + (0.103 + 0.043 ξ2)
√

ξ,

b(ξ) = 1 + 0.0802
√

ξ + 0.2944 ξ + 0.043 ξ3.

This approximation reproduces correct asymptotes at small and large x and y,
and remains accurate within 0.6% at any x and y. The chemical potential µ at
a given density ne can be found by the numerical inversion of Eq. (4.14) with
the use of the fit (4.23).

The x-derivative of the right-hand side of Eq. (4.23) reproduces the exact
derivative ∂F (x, y)/∂x with a maximum relative error of 2% . Using this
derivative in Eq. (4.19) and replacing ∂f (0)/∂ε → −δ(ε − µ) we get the
electron screening wave number

k2
TF =

2αf

πa2
m

nmax∑
n=0

gn

(
∂F (x, τ−1

n )
∂x

)
x=χn

. (4.24)

Integrating Eq. (4.15) by parts, we obtain

P =
∫ ∞

mec2
NB(ε) f (0) dε = Pr

bτ
3/2
0√
2π2

∞∑
n=0

gn(1 + 2bn)1/4I1/2(χn, τn),

(4.25)



172 NEUTRON STARS

where Pr = mec
2/λ--C

3 is the relativistic unit of pressure introduced in §2.3.1.
The Fermi-Dirac integral I1/2(χ, τ) is readily evaluated using Eqs. (2.54)–
(2.56).

Let us comment, in passing, that the kinetic pressure of an electron gas, calcu-
lated as the quantum-mechanical average ne〈pαvα〉, is anisotropic in quantizing
magnetic fields. For instance, the kinetic pressure in the transverse direction,
P⊥ = ne〈pxvx〉, is much smaller than P = ne 〈pzvz〉, if the field is strongly
quantizing. However, the kinetic pressure is only one part of the total pres-
sure in the magnetized plasma. As proven by Blandford & Hernquist (1982),
a deficit of the kinetic pressure in the transverse direction is exactly balanced
by the pressure excess caused by magnetization currents. Thus, the total actu-
ally thermodynamic pressure is isotropic at any field strength, and Eq. (4.25) is
always valid.

Strongly quantizing magnetic field. Let pF0 = �kF0, εF0, and TF0 denote,
respectively, the non-magnetic Fermi momentum, energy, and temperature at
a given density (§2.1.2). We reserve the notations pF = �kF, εF, and TF for
the same quantities in a magnetic field. We keep the parameters xr, γr, and
βr expressed through pF0, as in Chapter 2. For instance, xr = pF0/mec is a
convenient measure of the density regardless the magnetic field strength.

At T � TF, one can replace (−∂f (0)/∂ε) in Eq. (4.16) by the delta function
δ(ε − εF):

ne = NB(εF), (4.26)

P =
∫ εF

mec2
NB(ε) dε

=
Pr

4π2 b

nmax(εF)∑
n=0

gn (1 + 2bn) [xn

√
1 + x2

n − ln(xn +
√

1 + x2
n)], (4.27)

where xn = cpn(εF)/εn(0), and Pr is the same as in Eq. (2.66). The Fermi
energy εF at a given ne is found by the inversion of Eq. (4.26).

A magnetic field is called strongly quantizing, if it confines most of the elec-
trons to the ground Landau level. This occurs at sufficiently low temperatures

and densities. In this case, from Eq. (4.26) one obtains εF = mec
2
√

1 + x2
B ,

where

xB ≡ λ--CkF = 2π2a2
mλ--Cne =

2x3
r

3b
≈ 30.2

〈Z〉
A′

ρ6

B12
, (4.28)

while A′ and 〈Z〉 are the mean effective atomic mass and charge numbers,
respectively (see §2.1.1); xr and ρ6 are introduced in §2.1.2. With increasing
density at a fixed B, the electron number density ne reaches some critical value
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nB , at which εF = ε1(0) and degenerate electrons start to populate the first
excited Landau level. From Eq. (4.28) we see that nB = 1/(π2

√
2 a3

m). Hence
the strongly quantizing regime occurs at T � Tcycl and ρ < ρB , where

Tcycl = �ωc/kB ≈ 1.343 × 108 B12 K, (4.29)

ρB =
A′mu

〈Z〉 nB ≈ 7045
A′

〈Z〉 B
3/2
12 g cm−3. (4.30)

Comparing Eqs. (4.28) and (2.3), we see that kF = (4/3)1/3(ρ/ρB)2/3 kF0 in
this regime. Therefore, TF is strongly reduced at ρ � ρB , compared to its
non-magnetic value TF0:

TF =
γB − 1
γr − 1

TF0, xB =
(

4ρ2

3ρ2
B

)1/3

xr, γB =
√

1 + x2
B. (4.31)

The nondegenerate electron gas obeys classical statistics. According to the
Bohr-van Leeuwen theorem (see footnote 1 on page 54), the magnetic field
in this case does not affect the EOS. On the contrary, the EOS is changed
drastically, if the electron gas is strongly degenerate and the magnetic field is
strongly quantizing. In that case only the n = 0 term survives in Eq. (4.27),
and the EOS can be presented in the form

P =
Pr b

(2π)2
[xB γB − ln(xB + γB)] =

Pr b

2π2
xγad

B

γad
∝ ργad

Bγad−1 , (4.32)

where xB and γB are given by Eq. (4.31). In Eq. (4.32) we have introduced a
quasi-adiabatic index γad which, in general, depends on xB , but takes on the
constant values 3 and 2 in the non-relativistic (xB � 1) and ultrarelativistic
(xB � 1) limits, respectively. Compared with the non-magnetic case, Eq.
(2.70), γad is higher (the density dependence of P is steeper), but the numerical
value of P is lower everywhere except in the vicinity of the first Landau thresh-
old. This means that a strongly quantizing magnetic field softens the EOS of
degenerate electrons.

Non-quantizing magnetic field. If the temperature or density is high enough,
the electron distribution is smeared over many Landau levels, and one can
replace NB(ε) by N0(ε). Then the field is non-quantizing. This happens either
at ρ � ρB or at T � TB , where

TB =
{

Tcycl, if ρ < ρB,

Tcycl/
√

γr, if ρ > ρB
(4.33)

(in this chapter we assume that T � Tr). In the relativistic regime at ρ > ρB ,
TB is smaller than Tcycl, because the distance between excited Landau levels
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Figure 4.1. Characteristic parameter domains in the ρ–T plane for iron matter at B = 1012 G.
Solid lines show TF and Tpi; the dot-dashed line presents Tm (Γ = 175). The dotted line display
TF at B = 0 (Fig. 2.2). Long-dashed lines show TB and ρB and separate the regions of strong
(the lower left sector) and weak (the lower right sector) magnetic quantization, and the domain
of the non-quantizing field (T � TB).

for the electrons with ε = εF is ≈ �ωg < �ωc, where ωg(ε) = eBc/ε is the
electron gyrofrequency.

In the non-quantizing magnetic field, many Landau levels contribute to sums
over n in Eqs. (4.16) and (4.25). In this case, the summation can be approxi-
mately replaced by the integration. Then, integrating by parts, we can reduce
Eqs. (4.16) and (4.25) to Eqs. (2.51) and (2.50), respectively.

If ρ > ρB and T � TB , the Landau quantization can remain important for
a phenomenon under study. In this case the field is called weakly quantizing.
Usually it happens if only a few Landau levels are populated. Higher-order
thermodynamic quantities (such as the electron heat capacity, entropy, magne-
tization) are much stronger affected by magnetic fields in this regime than the
bulk quantities (for instance, the electron energy density, chemical potential,
pressure).

A density-temperature diagram. Characteristic ρ–T domains for the outer
neutron-star envelope composed of iron are shown in Fig. 4.1 for B = 0 and
1012 G. Partial ionization is taken into account in the mean-ion approxima-
tion. The electrons are degenerate below TF; the ions are classical above Tpi.
The mean-ion charge number Zeff has been evaluated assuming that the pres-
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sure created by free electrons and by free ions with this Zeff equals the pres-
sure given by the finite-temperature Thomas-Fermi model of Thorolfsson et al.
(1998) (discussed below in §4.3). For comparison, the dotted line reproduces
non-magnetic TF from Fig. 2.2. Finally, the long-dashed lines separate three
regions, where the magnetic field is strongly quantizing (to the left of ρB and
considerably below TB), weakly quantizing (to the right of ρB at T � TB), or
classical (above TB).

Non-relativistic limit. Thermodynamic functions of the ideal electron gas in
a magnetic field simplify in the non-relativistic limit (pF � mec, T � Tr). In
this case the electron pressure and number density are given by

Pe =
kBT

π3/2a2
mλe

∑
ns

I1/2(χn), ne =
1

2π3/2a2
mλe

∑
ns

I−1/2(χn). (4.34)

Here, λe is the electron thermal wavelength given by Eq. (2.27). In the nonde-
generate regime (T � TF), one has Iν(χ) ≈ eχ Γ(ν +1), were Γ(ν +1) is the
gamma-function. Therefore, Eq. (4.34) yields Pe = nekBT and

χ0 = ln(neλ
3
e/2) − ln ζe + ln(tanh ζe), (4.35)

where

ζe ≡ �ωc

2kBT
=

Tcycl

2T
. (4.36)

This provides an explicit analytical form of the Helmholtz free energy F
(e)
id =

(χ0 − 1) NekBT (in this chapter we do not include the rest energy me c2 into
the free energy). In the non-quantizing field (ζe � 1), the last two terms
in Eq. (4.35) cancel out and the classical non-magnetic result is recovered,
F

(e)
id = NekBT [ln(neλ

3
e/2) − 1]. In the strongly quantizing, nondegenerate

regime (ρ < ρB and TF � T � Tcycl), the last term of Eq. (4.35) vanishes,
which yields

F
(e)
id = NekBT

[
ln(2πa2

mλene) − 1
]
. (4.37)

4.1.3 Magnetic oscillations
In the equations of §4.1.2, the summation over discrete Landau numbers

n reflects consecutive population of new Landau levels with growing density,
which leads to magnetic quantum oscillations of thermodynamic and kinetic
functions (see, e.g., Lifshitz & Pitaevskiı̆ 1980). When the field is weakly
quantizing, these quantities oscillate, as a rule, around their values obtained
neglecting the magnetic quantization. For first-order (bulk) thermodynamic
quantities (P , U , µ), the oscillations are relatively weak, whereas for second-
order quantities (CV , CP , kTF) they are more pronounced. For example, the
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oscillations of the density exponent χρ defined by Eq. (2.38), will be shown in
Fig. 4.11 on p. 204. The oscillations are smoothed by the thermal broadening of
the Fermi distribution function and by the quantum broadening of the Landau
levels (particularly, owing to electron collisions; see Yakovlev & Kaminker
1994, for references).

For example, we can mention the well known de Haas-van Alphen effect —
oscillations of magnetic susceptibility (e.g., Landau & Lifshitz 1993). In quan-
tizing magnetic fields, these oscillations can be large, resulting in high mag-
netization. Canuto & Chiu (1971) suggested that this effect could lead to a
spontaneous magnetization of the electron gas in neutron star envelopes, the
so called Landau orbital ferromagnetism – LOFER. They found that the os-
cillations of the kinetic pressure due to the Landau quantization of degenerate
electron gas may result in a state of permanent quasistable macroscopic mag-
netism, which is stronger for higher pressure. Neglecting the broadening of
the Landau levels, the authors obtained a density dependence of the maximum
LOFER field strength, which implied that in the outer neutron star crust (at
ρ � 1011.5 g cm−3) LOFER could produce B up to ∼ 1012 G (and still larger
B in the inner crust). However, the thermal and quantum broadening of oscil-
lations prevents the spontaneous magnetization. For instance, Schmid-Burgk
(1973) showed that LOFER is smeared out by the thermal broadening in the
outer crust of a neutron star at T � 104 K.

The de Haas-van Alphen effect may also violate the condition for thermo-
dynamic equilibrium which states that the field strength should increase with
the growth of the magnetic induction. This instability leads to the formation of
domains with alternating magnetization (Lifshitz & Pitaevskiı̆, 1980). Bland-
ford et al. (1983) showed that in a neutron star envelope with B = 1012 G this
instability may develop at T up to 107 K. However, since the magnetization
is weak (a few percent of the field strength), this effect can hardly have any
observable consequences.

4.1.4 The effects of the magnetic field on plasma ions

The effects of the magnetic field on plasma ions are twofold. First, the
magnetic field acts on the ions directly; second, it affects them through the
electrons. The direct influence becomes appreciable when the ion cyclotron
frequency ωci = Z (me/mi) ωc exceeds the ion plasma frequency ωpi [Eq.
(2.30)] and the ion cyclotron energy �ωci exceeds the thermal energy kBT .
This happens at B12 � 100

√
ρ6 and B12 � T/107 K. In this case, transverse

motion of the ions is quantized in the Landau orbitals with the energy of an
elementary excitation equal to �ωci. In contrast to the case of electrons, the spin
degeneracy of the Landau levels is taken off completely because of relatively
large abnormal magnetic moments of the nuclei.
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The effects of the second type are caused by the electron polarization in
quantizing magnetic fields. For a weakly coupled Coulomb plasma which
composes, for instance, warm neutron star atmospheres, these effects will be
discussed in §4.1.5.

Below we consider the direct effect of a quantizing magnetic field on the
free energy of the ideal ion gas. The opposite case of the ion crystal will be
analyzed in §4.1.6.

Ion gas in a strongly magnetized outer envelope. Under realistic conditions
in outer neutron-star envelopes, the ions are nondegenerate and non-relativistic.
Then the ideal part of the free energy can be written explicitly. In its essence, it
differs from Eq. (4.37) by the inclusion of excited Landau levels, which can be
summed up explicitly using the Boltzmann distribution over these levels. The
result reads

F
(i)
id

NNkBT
= ln(2πa2

mλinN)+ ln
[
1 − exp

(
−�ωci

kBT

)]
− 1+

∆F

NNkBT
, (4.38)

where λi is the ion thermal wavelength, Eq. (2.27). As in Eq. (2.71), the ion
rest energy is excluded. The term ∆F arises from the zero-point energy, 1

2�ωci,
and the spin energy. This contribution is the same for free and bound atomic
nuclei. Therefore, it affects neither ionization equilibrium nor pressure, but it
does affect the internal energy and specific heat. For example, for protons

∆F = NN

{
1
2

�ωcp − kBT ln
[
2 cosh

(
gp�ωcp

4kBT

)]}
, (4.39)

where gp = 5.5857 is the proton spin gyromagnetic factor (the doubled ratio
of the proton magnetic moment to the nuclear magneton, Landau & Lifshitz
1976), and �ωcp the proton cyclotron energy.

Equations (4.38) and (4.39) provide a good approximation to the ionic part
of the free energy in not too cold neutron-star atmospheres, where the ions are
nearly ideal.

Ideal-gas model for the ultra-magnetized inner crust. At densities ρ �
a few × 1011 g cm−3, typical for the inner crust of a neutron star, non-
relativistic magnetic fields B � Br are nonquantizing (see Eq. (4.1)). There-
fore, they cannot directly affect the EOS of the inner crust, which is mainly
determined by degenerate, weakly quantized electrons and free neutrons. A
superstrong field, however, can strongly quantize particle motion and thus af-
fect the EOS. In the inner crust, the strong quantization implies B � 1017 G.
This effect was studied, for instance, by Suh & Mathews (2001) using the sim-
plest model in which the crust matter was approximated by a gas of degenerate
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noninteracting neutrons, protons and electrons. The authors found that super-
strong magnetic fields shift beta-equilibrium and increase the proton fraction. In
addition, for B � 1018 G the softening of the EOS caused by the Landau quan-
tization is overridden by the stiffening associated with the anomalous magnetic
moments of the nucleons. The EOS of matter composed of strongly degenerate
nucleons and electrons in strong magnetic fields was studied in more detail by
Broderick et al. (2000) for the conditions prevailing in neutron star cores; they
considered not only ideal npe gas but also the mean-field model. The latter
study shows that the results of Suh & Mathews (2001) are qualitatively correct.

It is also possible that a superstrong magnetic field B � 1016 G can change
the nuclear shell energies and nuclear magic numbers and, consequently, af-
fect the nuclear composition and the EOS of the inner crust of a neutron star
(Kondratyev, 2002).

Note, however, that the field strengths B � 1018 G are unrealistic from
the point of view of neutron star physics (see §1.3.8). Moreover, there is no
observational indication on the existence of fields B > 1016 G in neutron star
crusts (see §1.4).

4.1.5 Weakly non-ideal Coulomb plasma
Theoretical studies of thermodynamics of interacting charged particles in

strong magnetic fields have a long history, but the results are much less com-
prehensive than in the field-free case. Only some limiting cases have been
considered which we review briefly in this section.

According to the Bohr-van Leeuwen theorem (p. 54) the magnetic field does
not affect thermodynamics of classical charged particles. Thus the excess free
energy Fii(Γ) for a classical OCP of ions is independent of B at any ion coupling
parameter Γ (defined by Eq. (2.22)). The classical regime for an electron-ion
plasma corresponds to rs � 1 and Γ � 1 in the absence of electron degeneracy.
In this case the excess Coulomb free energy is given by the Debye-Hückel
formula FC

ex = −NekBT Z
√

(1 + Z)/3 Γ3/2 (compare to Eq. (2.73)). Indeed,
it is easy to check that for classical plasma particles this law holds independently
of B (Abrahams & Shapiro, 1991a; Cornu, 1998).

The magnetic field, however, affects quantum contributions to FC
ex. These

effects have been studied either in the regime of low T and high ρ (considered
in the following section), or at low densities. In the latter case, a general
power-series expansion for the free energy of a Coulomb plasma in an arbitrary
magnetic field (up to the terms ∝ ρ5/2) was derived by Cornu (1998). The
coefficients of this expansion are not given by analytical expressions but require
numerical evaluation. For the OCP, a Wigner-Kirkwood-type expansion in
powers of � is available (Cornu, 1998). Its lowest-order term (the quantum
diffraction term ∝ �

2) was first obtained by Alastuey & Jancovici (1980).
It generalizes Eq. (2.85) to the case of a quantizing magnetic field. For the
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nondegenerate electrons, this term can be written as

F
(e)
diff = NekBT

Γ2
e

8rs

(
2

ζe tanh ζe
− 2

ζ2
e

+
1
3

)
, (4.40)

with ζe defined by Eq. (4.36). The bracket in Eq. (4.40) goes to 1 at ζe → 0,
recovering the well known zero-field result, and to 1/3 at ζe � 1, indicating
that two of the three degrees of freedom of electron motion are frozen out in
a strongly quantizing field. Equation (4.40) is valid in the low-density regime
(one can show that the validity conditions imply rs � max(Γ, Γ−1)). In this
regime, the correction (4.40) is smaller than the classical OCP corrections to the
Debye-Hückel formula owing to ion correlations. In the electron-ion plasmas,
F

(e)
diff is exactly canceled because of the local neutrality relation (Cornu, 1998).

Thus Eq. (4.40), although elegant by itself, can hardly be useful for neutron star
modeling.

If (Γrs)−1 ≈ 3.167 T6 � 1 and Γ/r2
s ≈ 0.118 ρ 〈Z〉/(A′ T6 g cm−3) � 1,

a high-temperature expansion of the free energy in powers of e2 is applicable.
These conditions are often fulfilled in the atmospheres of neutron stars. The
expansion is in powers of two small parameters, s1 =

√
Γ/rs and s2 =

√
Γrs.

In the field-free case, the expansion terms up to ρ5/2 were obtained by DeWitt et
al. (1995). The lowest-order term ∝ e2 is also known in an arbitrary magnetic
field (Steinberg et al., 1998):

FHF

NekBT
= −3Γ2

8rs
f1(ζe), (4.41)

where the function

f1(ζe) =
cosh(2ζe)
cosh2 ζe

tanh ζe

ζe

arctanh(
√

1 − ζ−1
e tanh ζe)√

1 − ζ−1
e tanh ζe

(4.42)

goes to 1 at small ζe and decreases as ln(4ζe)/ζe at very large ζe.
Steinberg et al. (1998) calculated also the corrections ∝ e4 (the Montroll–

Ward and exchange terms) in the magnetic field. For the electron gas, these
corrections can be written in the form

F4

NekBT
=

3
√

π

16
Γ5/2
√

rs
[fee

2 (ζe) + fee
3 (ζe) ln 2], (4.43)

where fee
2 (ζe) and fee

3 (ζe) go to 1 at ζe → 0, reproducing the field-free result
(DeWitt et al., 1995), and decrease at large ζe.

For the electron-ion plasma, the polarization screening contribution Fie
should be taken into account. At B = 0, it has been calculated in a num-
ber of papers and fitted by analytical expressions (see §2.4.4). However, the
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magnetic field effect on Fie is known in a more restricted range of ρ, T , and B,
than in the OCP of ions considered above.

In the regime of low electron degeneracy and weak Coulomb coupling, the
lowest order contribution of the low-density expansion was obtained by Stein-
berg et al. (1998):

F
(4)
ie

NNkBT
=

π

4

(
1 +

me

mi

)1/2(Ze2

kBT

)2

λenef
ie
2 (ζe, ζi), (4.44)

where ζi = �ωci/2kBT = ζe Z me/mi, and the function f ie
2 is known in an

integral form. At ζe → 0, this function tends to 1, reproducing the well known
zero-field result (e.g., DeWitt et al. 1995). Because mi � me, one can use an
analytical approximation (Potekhin et al., 1999b) accurate to 0.5%:

f ie
2 =

1
2

+ t0.9 arctanh
[
(1 − t)0.6

]
2 (1 − t)0.6 , (4.45)

where t ≡ (0.4ζe)−1 tanh(0.4ζe). Integral representations for coefficients of
the low-density expansion have been obtained by Cornu (1998).

4.1.6 Strongly coupled Coulomb plasma
The effects of strong magnetic fields on a strongly coupled Coulomb plasma

can be important for the physics of magnetars. Let us summarize available
results.

4.1.6 a Ground-state energy

The ground-state exchange energy of the electron gas (per one electron) in a
strongly quantizing field (Danz & Glasser, 1971; Fushiki et al., 1989) behaves
as

−2.25 [ln(γr2
s) − 0.457 + . . .] (γr3

s)
−1 e2/a0,

compared with
−0.75 (9π/4)1/3(πrs)−1 e2/a0

in the non-magnetic case (e.g., Perrot & Dharma-wardana 1984). Thus, the
magnetic field suppresses the exchange energy at T � TF by a factor of
0.2036 γr2

s/[ln(γr2
s) − 0.457]. Note that the condition for the strong mag-

netic quantization, ρ < ρB , requires that γr2
s > 2.23, so that the suppression

factor is greater than 1. This result is applicable at T � TF and ρ < ρB , that
is in the outer envelopes of very cold or ultra-magnetized neutron stars.

Using the linear response theory in the Thomas-Fermi limit, Fushiki et al.
(1989) have analytically evaluated the electron polarization energy Fie for a
dense plasma in a strongly quantizing magnetic field at zero temperature. A
comparison with the analogous zero-field result (2.158) shows that the strongly
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quantizing magnetic field (γr2
s > 2.23) increases Fie at high densities (rs � 1)

by a factor of 0.8846 γ2r4
s .

In order to incorporate these results and the results reviewed in §4.1.5 into the
analytical free-energy model, Potekhin et al. (1999a) suggested an interpolation
which reproduces the known limiting cases of rs � 1 (the classical electron-
ion plasma), γr2

s � 1 (the non-quantizing regime), γr2
s � 1 and T � TF

(the strongly quantizing degenerate regime), and γr2
s � 1 and T � TF (the

strongly quantizing nondegenerate regime). The interpolation reproduces also
Eq. (4.41) in its validity range. Nevertheless, the accuracy of the interpolation
remains uncertain in a large range of ρ, T , and B, where none of these limiting
cases can apply.

4.1.6 b Coulomb crystal in a superstrong magnetic field

The magnetic field affects phonon spectrum of Coulomb crystals and re-
spective ion thermodynamic properties. This happens at sufficiently high B
(to change the phonon spectrum) and low T for the field to become quantizing.
The magnetic field changes also polarizability of the electron gas and affects the
ion thermodynamics in this way. As a rule, magnetic fields of ordinary pulsars
cannot affect noticeably the ion thermodynamics in the degenerate layers of the
envelope, but superstrong magnetic fields B � 1014 G of magnetars can.

In a superstrong magnetic field, thermodynamic functions of a Coulomb
crystal become dependent on the magnetic field strength, crystal orientation
with regard to B, and the crystal type. Kaplan & Glasser (1972) argued that a
superstrong magnetic field could increase the stability of a quantum crystal of
charged fermions against melting at high densities and suggested that the ground
state in this case would be a hexagonal lattice. Nagai & Fukuyama (1982; 1983)
compared the energies of zero-point vibrations for body-centered cubic (bcc),
face-centered cubic (fcp), and hexagonal closed-packed (hcp) Coulomb lattices
at zero temperature and found that the hcp lattice becomes more stable than the
bcc one, if RS � 104, where RS is the ion density parameter defined by Eq.
(2.32).

Usov et al. (1980) derived dispersion equations for a Coulomb crystal in
a quantizing magnetic field, qualitatively studied the phonon spectrum, and
obtained an asymptotic dependence of the heat capacity in the limit of ultra-
high B and low T . Their method was further used by Baiko (2000), who
performed a more detailed study of vibration and thermodynamic properties of
strongly magnetized Coulomb crystals with a rigid electron background.

The results of Baiko (2000) extend those of §2.3.3 to the case of strong
magnetic fields. For simplicity, he focused on bcc crystals with the magnetic
field directed from one ion to a closest neighbor (which minimizes the Coulomb
energy). The dependence of the free energy on the crystal type (bcc or fcc)
has turned out to be weak, as well as the dependence on the magnetic field
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Figure 4.2. Vibration spectrum of a bcc crystal as a function of kai in a magnetic field for a
fixed direction of the wave vector, k/k=(0.720, 0.615, 0.323), at several values of ωci/ωpi. From
Baiko (2000) with the kind permission of the author.

orientation. The magnetic field strongly affects lattice thermodynamics as long
as ωci � ωpi, which translates to ρ � B2/(4πc2). This happens in the outer
layers of neutron star crusts (at ρ � 108 and 1010 g cm−3 for B = 1015 and
1016 G, respectively).

The crystal vibration spectrum in a magnetic field B is calculated in the
same manner as is in the field-free case but taking into account the Lorentz
force acting on vibrating ions. The dispersion equation is rather simple. For
a bcc crystal it gives three vibration branches, ω1(k) ≤ ω2(k) ≤ ω3(k). An
example is shown in Fig. 4.2. The vibration frequencies are seen to be noticeably
affected by the magnetic field at kai � ωci/ωpi. Their behaviour at k → 0 is
of special interest. Let us recall that in the field-free case (§2.3.3) we have two
acoustic vibration modes, ω1,2(k) ∝ k, and one optical mode ω3(k) → ωpi.
The magnetic field violates this simplicity. The vibration mode ω1(k) remains
acoustic (ω1(k) ∝ k) only if k is parallel to B. In other cases one has ω1 ∝ k2

at sufficiently small k (which means the “softening” of this mode). The modes
ω2(k) and ω3(k) appear to be optical (ω2,3(k) → const as k → 0).

Baiko (2000) numerically realized a procedure suggested by Usov et al.
(1980) to quantize ion vibrations (which is much more sophisticated than at
B = 0 because of Larmor motion). This enabled him to calculate (by the
same technique as in the field-free case) the phonon entropy, heat capacity, and
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Figure 4.3. Harmonic lattice heat capacity (per one ion, divided by kB) of bcc crystal as a
function of T/Tpi for different magnetic fields. From Baiko (2000) with the kind permission of
the author.

pressure for a wide range of plasma parameters. For example, Fig. 4.3 shows
the temperature dependence of the harmonic-lattice heat capacity C = Ci per
one ion (normalized by kB) at several values of the magnetic field (compare with
the results of §2.4.6 for B = 0). At high enough T , as expected, the magnetic
field is non-quantizing and its effect disappears. If ωci/ωpi � 1, we can notice
a substantial reduction of Ci at Tpi � T � TBi, where kBTBi = �ωci. At low
T � min(TBi, Tpi), the magnetic field increases the heat capacity by orders
of magnitude and changes its temperature dependence, in agreement with the
prediction of Usov et al. (1980). In this case, one has Ci ∝ T 3/2 (instead of
Ci ∝ T 3 at B = 0). The effect is explained by the appearance of the soft
vibration mode (ω1(k) ∝ k2 at k → 0).

An additional contribution to the specific heat comes from the free energy
correction (4.39) produced by magnetic moments of atomic nuclei. One can
easily show that this contribution has a noticeable maximum ∼ kB per ion at
kBT ∼ gi�ωcp but becomes insignificant at much low and higher T (gi being a
gyromagnetic factor of a nucleus).
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Figure 4.4. Schematic view of the effects of a strong magnetic field on atoms and molecules.
(a–c) The H atom in the ground state becomes compressed and elongated with increasing the
field strength from (a) B � 109 G, to (b) B ∼ 1010 G, and to (c) B ∼ 1012 G. (d) The
field stabilizes molecular chains (H3, for example). (e) An atom moving across the field B
becomes decentered (with the relative guiding center rc perpendicular to B and to the atomic
pseudomomentum K). The grey areas are ellipsoids, where the probability to find an electron
exceeds e−1; the solid dots show protons. The radius of the grey sphere in case (a) is ≈ 1.08 a0.
Coaxial ellipsoids in d correspond to electron orbitals with zero Landau quantum number and the
smallest consecutive magnetic quantum numbers, which form the ground state of the molecular
chain in the strong magnetic field.

4.2. Bound species in strong magnetic fields
In this section, we outline the main properties of bound species at the con-

ditions typical for magnetized neutron star atmospheres. For a more detailed
review see, e.g., Lai (2001).

4.2.1 Atoms
4.2.1 a Hydrogen atom

The effects of a strong magnetic field on bound species are spectacular. Fig-
ure 4.4 schematically shows some of them for the simplest case of hydrogen in
the ground state. The H atom becomes increasingly compressed and elongated
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with the growth of B. In a sufficiently strong field, molecular chains HN can
be formed. An atomic center-of-mass motion across the field shifts the electron
cloud off the nucleus. These effects will be briefly discussed below.

Atoms in strong magnetic fields have been intensively studied by many au-
thors (see, e.g., Ruder et al. 1994, for review). At γ � 1, an electron cloud
bound to a nucleus acquires the shape of a cylinder with the radius ∼ am and
much larger length. The binding energies of the ground and some excited states
of the H atom increase as (ln γ)2 (such atomic states are called tightly bound).
The energies of other (hydrogenlike) states remain restricted within ∼ 1 Ry,
where Ry = mee

4/2�
2 = 13.605 692 eV.

Quantum-mechanical characteristics of strongly magnetized hydrogen at-
oms are obtained by solving numerically the Schrödinger equation (Canuto
& Ventura, 1977; Rösner et al., 1984; Forster et al., 1984; Potekhin et al.,
1997b) or the Dirac equation (Lindgren & Virtamo, 1979; Chen & Goldman,
1992). At γ � 0.1, an atomic state can be characterized by the electron Landau
quantum number n, the projection �m of the relative electron-to-proton angular
momentum on the field direction (m ≤ n), and by the number of nodes ν of a
wave function in the field direction. At γ � 1, only the states with n = 0 remain
bound; other discrete states are quasibound (can decay through autoionization
channels). The atomic binding energy can be written as

Ebind = −Enmν , Enmν = E‖
nmν − m�ωcp + n�(ωc + ωcp), (4.46)

where E
‖
nmν is the “longitudinal” energy (which is negative for discrete spec-

trum states). The proton spin energy in a magnetic field is dropped from Eq.
(4.46), because proton spin-flip processes (forbidden in the electric dipole ap-
proximation) are so inefficient that the subsystems with proton spin “up” and
“down” can be treated as independent in most of the applications where bound
species are involved.

As already mentioned, an electron cloud at γ � 1 is elongated. Its sizes
transverse to the magnetic field are those of the Landau function Φn,−m given
by Eq. (4.12), that is lx = ly ≈

√
2n − m + 1 am ∼ a0/

√
γ. The longitudinal

size is much larger: lz ∼ a0/ ln γ for the tightly bound states (ν = 0) and
lz ∼ a0ν

2 for the hydrogenlike states (ν ≥ 1). At γ � 1, an atomic wave
function is well described by the adiabatic approximation:

ψnmν(r) ≈ Φn,−m(r⊥) gnmν(z). (4.47)

This approximation was widely used in early papers (e.g., Canuto & Ventura
1977 and references therein). Accurate wave functions and binding energies
were obtained by Rösner et al. (1984) using the expansion

ψnmν(r) =
∞∑

n′=0

Φn′,−m(r⊥) gn′,nmν(z), (4.48)
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Table 4.1. Parameters ai and maximum fractional error of Eq. (4.49)

state a1 a2 a3 a4 a5 a6 err. (%)
1s0/(000) 1 0.09016 0.13966 0.02328 0.017538 0.0008506 0.12
2p−1/(010) 5 0.2603 0.11135 0.010359 0.010278 0.0005253 0.23
3d−2/(020) 12 0.5924 0.13558 0.008498 0.008176 0.0006525 0.52
4f−3/(030) 21 1.1523 0.17860 0.007172 0.002976 0.0008771 0.87

where gn′,nmν(z) were found from a system of ordinary differential equations
which arises after substituting Eq. (4.48) into the Schrödinger equation. This
solution was used by Forster et al. (1984) to calculate oscillator strengths of
radiative transitions. Potekhin et al. (1997b) extended this method to continuum
states and calculated the photoionization cross sections. In particular, they
found that the coupling of different (n, m)-channels of electron scattering leads
to the appearance of resonances in the photoionization cross sections (Beutler–
Fano type resonances).

The longitudinal energies of tightly bound states can be approximated by
(Ho et al., 2003)

E
‖
0m0 =−(|m| + 1)−2 + (|m| + 1)x/a1 + a3 x3 + a4 x4 + a6 x6

1 + a2 x2 + a5 x3 + a6 x4 Ry,(4.49)

where x = ln(1 + a1γ) and the parameters a1–a6 are given in Table 4.1 for
three values of m. The last column of the table gives the maximum fractional
error of the fit in the interval 0 < γ < 108. The fit reproduces also the exact
asymptotes

E
‖
0m0 = −

[
1

(|m| + 1)2
+ (|m| + 1) γ + O(γ2)

]
Ry at γ � 1, (4.50)

E
‖
0m0 � −(ln γ)2 Ry at γ → ∞. (4.51)

Another fit for E
‖
0m0 with −7 ≤ m ≤ 0, accurate for 0.1 < γ < 104 (typical

for radio pulsars), is given by Eq. (10) of Potekhin (1998).
The longitudinal energies of hydrogenlike states tend to the Rydberg series,

E‖
nmν = − 1 Ry

(� + δ)2
, where

{
� = (ν + 1)/2, δ ∼ γ−1 (odd ν)
� = ν/2, δ ∼ (ln γ)−1 (even ν).

(4.52)
The quantum defect δ is different for even- and odd-parity states. For odd ν,
one has

δ ≈ (aν + bν
√

γ + 0.077γ)−1, (4.53)
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Table 4.2. Parameters of the analytical approximations (4.52)–(4.54) for the energies of hydro-
genlike states |00ν〉 at 1 ≤ γ ≤ 104.

ν 1 2 3 4 5 6
aν 0.785 0.578 0.901 0.631 0.970 0.660
bν 1.724 0.765 1.847 0.717 1.866 0.693

with aν ≈ 1 and bν ≈ 2. For even ν,

δ ≈
[
aν + 1.28 ln(1 + bνγ

1/3)
]−1

, (4.54)

with aν ≈ bν ≈ 2
3 . Accurate values of aν and bν are given in Table 4.2 (for

n = 0, after Potekhin 1998). At γ ≥ 1, typical errors of Eqs. (4.53) and (4.54)
lie within 10−3.

Finally, note that binding energies of a non-relativistic, non-moving H atom
in an arbitrary magnetic field can be calculated exactly (Kravchenko et al.,
1997).

4.2.1 b Other atoms and ions

Some calculations of the binding energies of multi-electron atoms and ions
in strong magnetic fields were done in the Thomas-Fermi approximation (e.g.,
Rögnvaldsson et al. 1993) and using the DFT – the density functional theory
(Jones, 1985; Relovsky & Ruder, 1996; Medin & Lai, 2006a). Since these
methods are statistical, they are expected to be adequate when the number of
electrons is large.

For several atoms from He to Fe, the Hartree-Fock approximation was used
in combination with the adiabatic approximation [cf. Eq. (4.47)], employing
basis functions which contain free-electron transverse parts (Neuhauser et al.,
1987; Miller & Neuhauser, 1991) [cf. Eq. (4.47)]. If the field is sufficiently
strong, this adiabatic Hartree-Fock approximation is reasonably accurate for
not too large charge Znuc of the atomic nucleus.

With growing Znuc, inner atomic shells become progressively distorted by
the Coulomb attraction, making the adiabatic approximation less accurate. In
the 1990s, a more accurate “two-dimensional” Hartree-Fock approximation
was used, which allowed one to vary radial parts of the basis functions. It was
applied for calculating binding energies of various quantum states of He atom
(Thurner et al., 1993; Ivanov, 1994; Jones et al., 1996), H− ion (Jones et al.,
1996), B atom and B+ ion (Ivanov & Schmelcher, 2001), and also the ground
state of atoms and their singly positive ions up to Ne (Ivanov & Schmelcher,
2000). A comparison with the “adiabatic Hartree-Fock” results shows that the
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latter are accurate within 10% as long as, for instance, B12 > 0.1 and Znuc ≤ 6,
or B12 > 0.5 and Znuc ≤ 10. For B12 ≥ 5 and Znuc ≤ 10, the inaccuracy in
the ground-state energy does not exceed 1.3%.

The dipole oscillator strengths, required for modelling of strongly magne-
tized neutron star atmospheres, were calculated for the He atom in the two-
dimensional Hartree-Fock approximation by Thurner et al. (1993) and Jones
et al. (1998) and for the Fe atom in the adiabatic approximation by Miller &
Neuhauser (1991).

All calculations of multi-electron atoms and ions mentioned in this section
used the approximation of an infinitely massive nucleus (whose position was
fixed). This is an essential simplification. For instance, the characteristics of hy-
drogenlike ions with fixed nuclei obey a scaling with Znuc (Wunner et al., 1981).
In particular, the binding energies scale as E(Znuc, B) = Z2

nucE(1, B/Z2
nuc).

As we shall see in §4.2.3, motion across a strong magnetic field can qualitatively
modify atomic states and violate this scaling.

4.2.2 Molecules and chains
Neutral molecules. The properties and the very existence of various types
of molecules in strong magnetic fields were debated during decades and still
remain a subject of investigation.

For a non-moving diatomic molecule whose axis is directed along the field
the three-dimensional problem reduces to a two-dimensional one because of the
cylindrical symmetry. It is, therefore, natural that this parallel configuration
has been best studied.

For obvious reasons, the H2 molecule is the best explored one (see, e.g.,
Demeur et al. 1994; Lai & Salpeter 1996; Detmer et al. 1998). Fit formulae
for dissociation energies in the parallel configuration at γ � 103 are given by
Lai & Salpeter (1996, 1997). At such fields, the dissociation energy grows as
(ln γ)2, approximately at the same rate as the atomic ground-state energy. For
example, at B = 1012 G, the cohesive energy of the H2 molecule (that is the
difference between the ground-state energies of two atoms and the molecule) is
45.5 eV and the adiabatic dissociation energy is 91 eV (compare with 4.48 eV at
B = 0). The equilibrium internuclear distance decreases as 1/ ln γ, becoming
as small as 1

4a0 at B = 1012 G, again roughly proportional to the longitudinal
size of the H atom.

However, according to Detmer et al. (1998), the ground state of the H2
molecule is unbound at weaker fields, 0.18 < γ < 12.3, most typical for
millisecond pulsars.

There are relatively few results on heavier molecules in strong magnetic
fields. Some of them have been reviewed by Lai (2001). More recently, Medin
& Lai (2006a) applied DFT for calculating binding energies of different hy-
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drogen, helium, carbon, and iron molecules at several field strengths between
1012 G and 2 × 1015 G (see also references therein to earlier works).

Molecular ions. One-electron molecular ions in strong magnetic fields have
been studied thoroughly. Detailed papers by Wille (1986) and Kappes et al.
(1994) were devoted to the H2

+ molecular ion. The authors considered vari-
ous orientations of the molecular axis with respect to the field. In particular,
Wille (1986) showed that low-lying rotational states of the ion transform into
vibrational ones as the field increases. This happens because the lowest energy
in the transverse configuration (i.e., for the molecular axis perpendicular to the
field lines) is higher than the ground-state energy in the parallel configuration.
Thus the angular dependence of the energy creates a potential barrier to rota-
tion. If the field is strong enough, the barrier becomes higher than the lowest
rotational levels. Then the lowest rotational states correspond to oscillations
of the molecular axis about the field direction. Kappes & Schmelcher (1996)
calculated potential surfaces of the H2

+ ion as a function of an internuclear
distance and an angle between the ion axis and the magnetic field direction
for various electron-vibrational-rotational states at B ≤ 1010 G. Wille (1987)
considered also the (H-He)2+ system at B ≤ 108 G.

For B > 1010 G, the parallel configuration of the H2
+ ion has been ana-

lyzed especially thoroughly (e.g., Kravchenko & Liberman 1997 and references
therein). Non-parallel configurations were studied by Turbiner & López Vieyra
(2003, 2004). In particular, the latter authors found that at B � 1011 G large
inclination angles lead to the decay H2

+ → H + p.
The H3

++ ion in a strong magnetic field was studied by López Vieyra &
Turbiner (2002) and Turbiner et al. (2005) using a variational method. They
found that H3

++ with the protons in a line along the field is stable at B > 1010 G.
They also found that a configuration of protons forming an equilateral triangle
perpendicular to the magnetic line is quasi-bound (metastable) at 108 < B <
1011 G and decays into the H atom and two protons.

Molecular chains. Strong magnetic fields stabilize polymer chains aligned
with the fields, as first suggested by Ruderman (1971). In the 1970s, it was
commonly accepted that such chains in the strong fields can be formed of any
atoms. This belief was refuted by Müller (1984), who performed variational
calculations and demonstrated that a molecular chain composed of iron is un-
bound at 1 ≤ B12 ≤ 5. Later density-functional (Jones, 1985) and Hartree-
Fock (Neuhauser et al., 1987; Lai et al., 1992; Demeur et al., 1994) calculations
confirmed this result and showed that, at B ∼ 1012 −1014 G, infinite chains are
stable only for the elements with atomic numbers Znuc � 4 − 6, while heavier
elements do not form a stable molecular bond in the strong fields. On the con-
trary, Thomas-Fermi-like models, such as the Thomas-Fermi-Dirac-Weizsäcker
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model of Abrahams & Shapiro (1991b) still yield a strong binding. Recent DFT
calculations by Medin & Lai (2006b) show that hydrogen, helium, carbon and
iron infinite chains all are bound relative to individual atoms for magnetic fields
B � 1012 G (and may be lower), but iron chains are not significantly bound as
long as B � 1014 G. Since all these studies are approximate and give different
results, it remains unclear, whether the chains of heavy atoms can be really
bound in the strong fields.

4.2.3 Effects of motion
Motion across the magnetic field (non-negligible in warm neutron star at-

mospheres) breaks down the cylindrical symmetry of an atom. The quantum-
mechanical operator that generates velocity boosts is the pseudomomentum K
(a pedagogical and insightful introduction of this quantity is given by Johnson
et al. 1983). Therefore, K is relevant to describe atomic motion in a magnetic
field. The pseudomomentum is collinear with the atomic velocity, but differs
from the canonical center-of-mass momentum. With increasing K⊥ (the trans-
verse component of K), the binding energy decreases, while the atomic size
increases, producing a constant dipole moment perpendicular to B and K. At
γ � 1, the effects of collective motion (Avron et al., 1978; Johnson et al.,
1983; Vincke & Baye, 1988) become especially pronounced. In particular,
the so-called decentered states (with an electron localized mostly in the “mag-
netic well” displaced from the Coulomb center; see Fig. 4.4) are likely to be
populated. For the hydrogen atom, these exotic states were first predicted by
Burkova et al. (1976).

Quantum-mechanical effects of motion of hydrogenlike ions in strong mag-
netic fields were analyzed by Bezchastnov et al. (1998). For multi-electron
atoms, ions, and molecules, such effects remain unexplored.

Now let us consider in more detail the simplest but important example of a
hydrogen atom moving in a strong magnetic field.

4.2.3 a Hydrogen atom moving in a strong magnetic field

The first numerical solutions of the Schrödinger equation for an atom mov-
ing arbitrarily in strong magnetic fields were presented by Vincke et al. (1992).
At superstrong fields, the binding energies were calculated by Lai & Salpeter
(1995) in the non-relativistic approximation. Potekhin (1994) used the expan-
sion of a wave function analogous to Eq. (4.48), but supplemented the sum
over n by the sum over magnetic quantum numbers m (because m is not a
good quantum number for a moving atom). He numerically solved the corre-
sponding system of coupled-channel equations and calculated binding energies,
wave functions, and radiative transition rates. Analogous system of equations
for continuum states was solved by Potekhin & Pavlov (1997). They extended
the results of Potekhin et al. (1997b), mentioned above, to the case of a moving
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atom, and adapted the R-matrix formalism (Wigner & Eisenbud, 1947) to this
case.

According to these studies, an atom moving across the field lines acquires
a constant electric dipole moment in the direction opposite to its guiding cen-
ter rc = c (eB2)−1B × K. When K⊥ is small enough, the dipole moment
is also small, and the energy E‖(K⊥) increases by K2

⊥/(2m⊥
nmν). Here,

m⊥
nmν is the so-called effective transverse mass, which exceeds the atomic

mass mH and grows with the field strength. In this case, the average trans-
verse velocity is v⊥ = K⊥/m⊥

nmν . When K⊥ reaches some critical value
Kc ≈

√
2mHE‖(0) ∼ 102

�/a0, the atom becomes decentered: v⊥ attains
its maximum and starts to decrease, while the electron-proton separation ap-
proaches rc. Note that rc is proportional to K⊥ and inversely proportional to
B; an accurate fit of Kc as a function of B is given by Potekhin (1998). Thus,
for decentered states, the transverse pseudomomentum K⊥ characterizes the
electron-proton separation, rather than the velocity.

In the limiting case where K⊥ � γ(ν + 1
2)2�/a0, all longitudinal energies

approach the asymptote E‖ ∼ −e2/rc. In this case all the states with m �= 0
become unbound. Indeed, since E‖ is small for large K⊥, the binding energy
(4.46) becomes negative at m < 0, However, at m = 0 and arbitrarily large
K⊥, there still remains an infinite series of truly bound states (enumerated by
ν).

Since rc = a2
0K⊥/γ�, the decentered states at γ � 1 have huge sizes. Hence,

they are likely destroyed by collisions with surrounding particles in laboratory
and in atmospheres of magnetic white dwarfs. However, in neutron star atmo-
spheres at γ � 103 the decentered states may be significantly populated, as will
be shown below.

Photoionization of an H atom moving in a strong magnetic field was studied
by Bezchastnov & Potekhin (1994) and Kopidakis et al. (1996), using different
modifications of the adiabatic approximation. A complete numerical treatment
beyond the adiabatic approximation has been developed by Potekhin & Pavlov
(1997). These authors showed that none of the versions of the adiabatic ap-
proximation can provide accurate photoionization cross sections for all values
of K⊥ and for any photon polarization, particularly because the continuum-
channel coupling strongly affects the absorption of circularly polarized photons
at sufficiently large K⊥.

For astrophysical applications, it is useful to have analytical fits to the binding
energies, quantum-mechanical sizes, and main oscillator strengths of moving
H atoms. Such fits have been constructed by Potekhin (1998) for 7 × 1011 G
≤ B � 3×1013 G. Figure 4.5 demonstrates the dependence of binding energies
of the hydrogen atom on K⊥.

For field strengths outside the above range, reliable fitting formulae are ab-
sent. At stronger magnetic fields, tables of binding energies and all relevant
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Figure 4.5. Energy spectrum of the hydrogen atom moving across a strong magnetic field as a
function of the transverse component of pseudomomentum in atomic units (a.u.).

bound-bound oscillator strengths and bound-free cross sections were calculated
by Potekhin & Chabrier (2004). For weaker magnetic fields, the binding ener-
gies and bound-bound transition rates of a moving H atom were first calculated
by Lozovik & Volkov (2004).

Finally, let us mention that the coupling of center-of-mass and relative mo-
tions of an electron and a nucleus in a strong magnetic field affects also the
probabilities of free-free transitions and corresponding opacities, especially if
the radiation frequency is ω � ωci, where ωci is the ion cyclotron frequency
(see, e.g., Potekhin & Chabrier 2003).

4.2.4 Magnetic condensation
Ruderman (1971) pointed out that polymer chains aligned with the strong

magnetic fields should attract one another because of the quadrupole-quadrupole
interactions, and eventually form a solid. The magnitude of such an interaction
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for hydrogen chains was estimated by Lai & Salpeter (1997) who concluded that
hydrogen may form a solid stellar surface at superstrong fields (B � 1013 G).

For iron and other heavy elements, the situation is very uncertain. Hartree-
Fock studies cited above, as well as earlier DFT calculations (Jones, 1986)
indicated that the stellar surface may be diffuse even at zero temperature, con-
trary to Thomas-Fermi-like models with a gradient correction (Abrahams &
Shapiro, 1991a; Fushiki et al., 1989; Rögnvaldsson et al., 1993). However,
finite-temperature corrections, introduced in these models, transform the solid
surface into a diffuse atmosphere (Abrahams & Shapiro, 1991a; Thorolfsson et
al., 1998).

Lai (2001) formulated approximate conditions for the magnetic surface con-
densation. According to his study, the critical condensation temperature in-
creases with the growth of the magnetic field strength, and can be as high as
106 K (for a Fe surface at B ∼ 1013 G or an H surface at B ∼ a few×1014 G).
This means, in particular, that the thermal radiation of a neutron star can di-
rectly emerge from the degenerate metallic condensed surface, without passing
through a gaseous atmosphere. According to Lai (2001), the zero-pressure
density of the condensed matter can be estimated as

ρs � 560 η A Z−3/5 B
6/5
12 g cm−3, (4.55)

where η is an unknown correction factor of the order of unity (η = 1 corresponds
to the uniform electron gas model in the Wigner-Seitz approximation). The
estimate Eq. (4.55) agrees, within a factor of a few, with the typical density
of the plasma phase transition for strongly magnetized hydrogen (Potekhin
et al., 1999b; Potekhin & Chabrier, 2004). Medin & Lai (2006b) performed
DFT calculations of the cohesive energies and work functions for zero-pressure
condensed hydrogen, helium, carbon, and iron at 1012 G ≤ B � 1015 G. For
instance, they found that the cohesive energy per carbon atom ranges from ∼ 50
eV at B = 1012 G to 20 keV at 1015 G. The cohesive energy per iron atom
varies from ∼ 0.8 keV at B = 1013 G to 33 keV at 1015 G.

Calculations of the dielectric tensor and the thermal radiation spectrum of a
strongly magnetized condensed surface were attempted previously by several
research groups (e.g., Brinkmann 1980; Turolla et al. 2004). The most accurate
calculations were done by van Adelsberg et al. (2005) and Pérez-Azorı́n et al.
(2005).

4.3. Models of strongly magnetized outer envelopes of
neutron stars

There are three main effects of a strong magnetic field on outer envelopes of
neutron stars.

First, the bottom density of the photosphere greatly increases due to the
reduction of radiative opacities. Since the same magnetic field that reduces
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the opacities also suppresses the electron degeneracy, the atmosphere remains
typically nondegenerate in spite of this density increase. Consequently, at a
given density, the pressure in the magnetized atmosphere is considerably lower
than in the non-magnetic one.

Second, the increase of atomic binding energies tends to lower the ionization
degree, as first guessed by Cohen et al. (1970). Hence, there can be a significant
amount of bound species in a highly magnetized atmosphere, even if it was
negligibly small at the same temperature in the field-free case.

Third, the quantum-mechanical effects of atomic and ionic thermal motion
across the field (§4.2.3) have a great impact on the EOS. In general, the motion
lowers the binding energies but increases the statistical weight of the atoms. The
net effect on the ionization degree results from a balance of these two factors.

Let us mention that a strong magnetic field affects convection in neutron
star envelopes. The super-adiabatic gradient (2.41) is a necessary but not suf-
ficient condition for the convective instability. Miralles et al. (1997) argue that
magnetic fields B ∼ 1011–1013 G stabilize the atmosphere against convection.
The influence of a low magnetic field on the convection remains questionable.
Rajagopal & Romani (1996) suggest that even the lowest known neutron-star
magnetic field (∼ 108 G) should strongly suppress convection, while according
to Miralles et al. (1997) there may be rapid convective flows in neutron star
envelopes at B � 109 G. Moreover, according to Urpin (2004, 2005), even
a strongly magnetized neutron star ocean can be unstable, if the temperature
varies along the surface.

4.3.1 Strongly magnetized iron envelopes
In the low-density regime, where the electrons are nondegenerate, a model

of a magnetized iron atmosphere was developed by Rajagopal et al. (1997)
who generalized the equation of ionization equilibrium given by Khersonskii
(1987a):

nj

nj+1
=

neλ
3
e

2
sinh ζj

ζj

ζj+1

sinh ζj+1

tanh ζe

ζe

Zint,j

Zint,j+1
exp
(

Ej,ion

kBT

)
. (4.56)

This equation differs from the non-magnetic Saha equation (2.171) by the three
ratios containing sinh and tanh. In these factors, ζj ≡ �ωcj/2kBT , ζe ≡
�ωc/2kBT , and ωcj = jeB/mjc is the ion cyclotron frequency of an jth-
ionized atom. These factors naturally come from partition functions of free ions
and electrons whose transverse motion is quantized in the equidistant Landau
levels. Obviously, for a neutral atom one should set sinh ζ0/ζ0 = 1. The
difference of these factors for the ions and electrons (sinh versus tanh) is caused
by different treatments of their spin energies in the magnetic field. The electron
spin energy ±�ωc/2 provides an additional factor (eζe + e−ζe) to the electron
partition function, while analogous factors due to the nuclear spin energies



Envelopes with strong magnetic fields 195

at ionization stages j and j + 1 are equal and cancel each other in Eq. (4.56).
However, the contribution of the nuclear spin energy must be taken into account,
for instance, in calculating the specific heat (cf. §4.1.4).

Constructing the models of magnetized iron atmospheres, Rajagopal et al.
(1997) took into account the effects of atomic motion in an approximate way,
based on the perturbation theory (Pavlov & Mészáros, 1993). Because of the
high mass of iron atoms, this can be a reasonable approximation in relatively
cold iron atmospheres. Based on the non-magnetic results for the Coulomb non-
ideality, Rajagopal et al. (1997) estimated the influence of this non-ideality on
the EOS and found it to be small (up to ∼ 10%) throughout the atmosphere.

The main uncertainty in the EOS of Rajagopal et al. (1997) comes from
neglecting the effects of plasma non-ideality on bound species (particularly,
on the pressure destruction). In order to achieve a convergence of the internal
partition functions Zj , the authors arbitrarily replaced high-lying levels by a
series of equidistant levels. This may be severely inaccurate if excited levels
are significantly populated.

The EOS of subphotospheric stellar layers composed of heavy elements was
calculated by a number of authors in the Thomas-Fermi approximation with
gradient corrections. Fushiki et al. (1989) performed the first calculations of
this kind and showed that the magnetic field strongly affects the EOS of a
cold plasma. Using the approximation of zero temperature, they obtained a
solid boundary (at ρ ∼ 103 g cm−3 for B ∼ 1012 G). Abrahams & Shapiro
(1991a) showed that the boundary can be smeared away by the thermal effects.
Rögnvaldsson et al. (1993) included into consideration the population of excited
Landau levels. Both effects, of finite temperatures and higher Landau levels,
were incorporated by Thorolfsson et al. (1998). The latter authors showed that
the pressure PTF, calculated in the Thomas-Fermi approximation, is noticeably
suppressed relative to the pressure P

(e)
id of the ideal electron gas as long as the

field is strongly quantizing. However, PTF rapidly approachesP
(e)
id when higher

Landau levels are populated with increasing ρ or T .
A comparison of different versions of Thomas-Fermi-like models presented

by Abrahams & Shapiro (1991a) demonstrates a large uncertainty of the EOS
for outer atmospheric layers, indicating that a more detailed model is required.

Nevertheless, we expect that the existing models give correct order-of-
magnitude estimates of the magnetic-field effects. Solid lines in Fig. 4.6 show
the finite-temperature Thomas-Fermi EOS of Thorolfsson et al. (1998) at two
magnetic field strengths and two temperatures. For comparison, by dot-dashed
lines we also plot the EOS of fully ionized iron in the same magnetic fields
(taking into account the electron degeneracy but neglecting non-ideality), and
by dotted lines we plot the EOS of fully ionized iron at B = 0. All the ef-
fects discussed above are clearly seen. In the strongly quantizing field (i.e.,
at ρ � 104 g cm−3 and ρ � 105.5 g cm−3 for B = 1012 G and 1013 G, re-
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Figure 4.6. EOS of iron matter at B = 1012 G (left) and 1013 G (right). Solid lines refer to the
Thomas-Fermi model (Thorolfsson et al., 1998), dot-dashed lines to fully ionized gas, dotted
lines to non-magnetic fully ionized gas. A lower line of each type corresponds to kBT = 10 eV,
(T = 1.16 × 105 K) and an upper one to 1 keV (1.16 × 107 K)

spectively), the magnetic effects are very pronounced at the lower temperature.
The EOS of fully ionized and magnetized matter is much softer than its non-
magnetic counterpart because of the delayed onset of the electron degeneracy
(see Eq. (4.32) and a discussion therein). Even lower pressure is provided by
the Thomas-Fermi EOS, which takes into account electron-ion attraction and,
in an approximate way, partial ionization. After ρ reaches and exceeds ρB , all
three types of lines converge. In this case the EOS only slightly differs from
the EOS of the ideal non-magnetic electron gas (§2.3.1 e). Some oscillations
of the pressure around this non-magnetic value are still visible. They reflect
consecutive filling of excited Landau states. At such high densities, the field is
weakly quantizing.

The higher-T curves reveal the same features but less pronounced, because
higher temperatures partly remove the electron degeneracy and destroy bound
states. That is why, for example, the upper curves of all three types on the left
panel (B = 1012 G) nearly coincide.

4.3.2 Strongly magnetized hydrogen atmosphere
The effects of strong magnetic fields on the thermodynamics of the atmo-

spheric plasma have been studied most thoroughly for hydrogen atmospheres.
The equation of ionization equilibrium was first derived by Gnedin et al. (1974),
who neglected the quantization of proton motion and and the effects of atomic
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motion on the internal structure of hydrogen atoms (§4.2.3). The next step was
made by Khersonskii (1987a). He took into account the quantization of proton
motion (the terms containing the proton cyclotron frequency ωcp in Eq. (4.46)),
but neglected the effects of motion on atomic states. Khersonskii (1987b) an-
alyzed also dissociation equilibrium of the H2

+ molecular ion (ignoring the
effects of motion on its states) and showed that its abundance in a neutron star
atmosphere is typically very small.

The importance of effects of motion on atomic quantum states for the ioniza-
tion equilibrium was fully recognized by Ventura et al. (1992) who, however,
did not include them in calculations. Lai & Salpeter (1995, 1997) were the
first who quantitatively evaluated these effects. Nevertheless, their treatment
has a limited applicability since it was based on crude approximations for bind-
ing energies of moving atoms and for the pressure ionization (as discussed by
Potekhin et al. 1999b). A more detailed model will be considered in §4.3.2 b.

In §4.3.2 a, following Potekhin et al. (1999b), we describe an EOS of partially
ionized, strongly magnetized hydrogen plasma constructed in the framework
of the chemical picture.

4.3.2 a Free energy model

Consider a plasma consisting of Ne electrons, Np = Ne protons, and NH
hydrogen atoms in a volume V . The free energy model is a straightforward
generalization of the non-magnetic model presented in §2.5.2,

F = F
(e)
id + F

(p)
id + F neu

id + Frad + FC
ex + F neu

ex . (4.57)

The free energies of the ideal electron and proton gases, F (e)
id and F

(p)
id , are given

in §§4.1.1 and 4.1.4, respectively. The Coulomb part FC
ex has been discussed in

§4.1.5. The standard radiation term Frad, Eq. (2.176), can be important only at
low ρ or very high T . Here we focus on the ideal and non-ideal contributions,
F neu

id and F neu
ex , produced by bound species.

The coupling between atomic motion and binding energies precludes the
separation of the translational free energy from the internal one [which is quite
standard in the non-magnetic case, Eq. (2.35)]. Because quantum-mechanical
characteristics of an atom in a strong magnetic field depend on the transverse
pseudomomentum in a non-trivial way, the distribution of atoms over K⊥ cannot
be written in a closed form. It is only the distribution over Kz that remains
Maxwellian. Let us consider bound states at γ � 1. In this case the Landau
number n = 0, and we do not write it explicitly. Let pmν(K⊥) d2K⊥ be the
probability to find an atom with given (m, ν) in an element d2K⊥ near a point
K⊥ of the transverse pseudomomentum plane. For the Maxwell distribution,
we would have pmν(K⊥) = (2π�)−2λ2

H exp[−K⊥2/(2mH)]. Here, λH is the
thermal wavelength of the H atom, given by Eq. (2.27). Generally, the number
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of atoms in an element d3K of pseudomomentum space is

dN(K) = Nmν
λH

2π�
exp
(

− 1
kBT

K2
z

2mH

)
pmν(K⊥) d3K, (4.58)

where Nmν =
∫

dNmν(K) is the total number of atoms with specified discrete
quantum numbers. The distribution Nmνpmν(K⊥) is not given in advance but
should be calculated self-consistently via minimization of the total free energy,
including the non-ideal terms.

It is convenient to introduce the deviations from the Maxwell-Boltzmann
distribution through the occupation probabilities wmν(K⊥):

pmν(K⊥) =
(

λH

2π�

)2 wmν(K⊥)
Zmν

exp
(

Emν(K⊥) − Emν(0)
kBT

)
, (4.59)

Nmν

NH
=

Zmν

Zint
exp
(

Emν(0) − Egr−st

kBT

)
, (4.60)

where

Zmν =
λ2

H
2π�2

∫ ∞

0
wmν(K⊥) exp

(
Emν(K⊥) − Emν(0)

kBT

)
K⊥ dK⊥, (4.61)

Zint =
∑
mν

Zmν exp
(

Emν(0) − Egr−st

kBT

)
, (4.62)

and Egr−st ≡ E00(0).
The number of atoms per a unit phase-space cell equals (e.g., Landau &

Lifshitz 1976) [dN(K)/ d3K] (2π�)3/V . The calculation of F = U − TS
for this distribution gives

FH
id =

∑
mν

Nmν

{
kBT

∫
ln
[
nmνλ

3
H wmν(K⊥)

]
pmν(K⊥) d2K⊥

− kBT (lnZmν + 1) + Egr−st − Emν(0)
}

. (4.63)

To this expression we should add the contribution of molecules. This has
been done by Potekhin et al. (1999b) for ground-state H2 molecules, in order to
estimate the validity range of the model where molecules are neglected. A more
realistic treatment of molecules would require extensive quantum-mechanical
calculations (with allowance for the center-of-mass motion and rotation).

The contribution of atoms to the non-ideal part Fex of the free energy can
be calculated in the hard-sphere approximation using the van der Waals one-
fluid model according to Eq. (2.178). An obvious generalization of the sum in
Eq. (2.179) includes

∫
pmν(K⊥) d2K⊥; the root-mean-square proton-electron

distance lκ = lmν(K⊥) was approximated by analytic formulae by Potekhin
(1998).
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4.3.2 b Equilibrium conditions

Minimization of the free energy yields the ionization equilibrium (general-
ized Saha) equation:

nH

np
= ne

λpλe

λ3
H

(2πa2
m)2
[
1 − exp

(
−�ωcp

kBT

)]
× Zint exp

(
Egr−st + ∆µdeg

kBT

)
, (4.64)

where

∆µdeg = µe +
∂µe

∂ lnne
− ∂Pe

∂ne
− kBT ln(2πa2

mλene)

takes into account the effects of electron degeneracy and population of excited
Landau levels. Here, µe and Pe refer to the ideal electron gas (§4.1.2), and we
have excluded the rest energy mec

2 from µe in this non-relativistic treatment.
The distributions of atoms over discrete quantum numbers and over trans-

verse pseudomomenta are given by Eqs. (4.60) and (4.59), respectively. We do
not present the K-dependent occupation probabilities wmν(K⊥) in the latter
equations (they are given in the original paper by Potekhin et al. 1999b), but
discuss the results.

4.3.2 c Occupation numbers

Figure 4.7 displays the distribution of atoms over two quantum numbers,
m and ν, for B = 1012 G at two relatively low densities, ρ = 0.001 g cm−3

and 0.1 g cm−3. The left panel shows the relative occupation numbers for the
tightly bound states ν = 0 with different quantum numbers m. The distribution
is broader for higher density. This apparently surprising feature is easily ex-
plained by the presence of the third quantum parameter K⊥. At low densities,
the majority of atoms reside in states with large values of K⊥ because of the
large statistical weight of such states, which all have m = 0 (§4.2.1). At higher
densities, these strongly decentered states are removed by the excluded-volume
(pressure-ionization) effects, and the distribution over m grows broader. Con-
versely, on the right panel we observe a narrower ν-distribution at higher density,
because the excluded-volume effects eliminate hydrogenlike states. Ultimately,
at still higher densities, only the ground centered state survives (m = ν = 0,
K⊥ < Kc).

Figure 4.8 shows the ionization curves at B = 1012 G and T = 106 K.
The heavy solid line represents the total fraction of atoms xH = nH/n0 in all
quantum states, calculated from Eq. (4.64); n0 = nH + np. The thin solid line
shows the fraction of atoms in the ground state (m = ν = 0, but any K⊥), and
the dashed line shows the fraction of atoms in the centered states (K⊥ < Kc,
any m and ν). For reference, triangles display the atomic fraction at B = 0.
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Figure 4.7. Distribution of atomic occupation numbers at T = 106 K for B = 1012 G. The
distribution over the quantum number m at ν = 0 and over ν at m = 0 is shown for two
densities, ρ = 0.001 g cm−3 (hatched histograms) and 0.1 g cm−3 (shaded histograms).

Figure 4.8. Ionization isotherms at B = 1012 G and T = 106 K: The total fraction of atoms
xH = nH/n0 (the thick solid line) and the fractions of ground-state (the thin solid line), centered
(short dashes), and optically identifiable (Inglis-Teller; long dashes) atoms. For comparison,
triangles give xH at B = 0.
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We see that a strong magnetic field generally increases the neutral frac-
tion. The excited and decentered atoms contribute significantly at low densi-
ties. Since the effective size of the decentered atoms is proportional to K⊥, the
integration in Eq. (4.61) gives roughly Zmν ∝ n

−2/3
0 , and, therefore, x00 de-

creases asymptotically as n
1/3
0 . Because of the broadening of the ν-distribution

(roughly, max ν ∝ n
−1/6
0 ), the low-density wing of the curve for the total

neutral fraction has a slope xH ∝ n
1/6
0 , which is very moderate compared to

xH ∝ n
1/2
0 in the non-magnetic case (triangles).

The centered atoms, whose pseudomomentum is bounded from above by the
critical value Kc, have nearly density-independent internal partition function
at low ρ. Therefore, their fraction behaves as xcen ∝ n0, and they disappear
much faster at low ρ.

At high densities, on the contrary, the decentered states become depleted due
to the excluded-volume effects, so that the dashed line in the figure merges with
the solid one at ρ � 10 g cm−3. At still higher densities, ρ � 102 g cm−3,
all excited states disappear, and only the state m = ν = 0 survives. Because
of the reduced atomic volume, the pressure ionization occurs at densities ρ ∼
102 − 103 g cm−3, orders of magnitude larger than for the field-free case.

Not all neutral atoms that contribute to the EOS may be identified spectro-
scopically (cf. §2.5.1). The interaction of plasma species produces a significant
fraction of clusters. Such clusters contribute to the EOS similarly to atoms, low-
ering the pressure, but their radiation-absorption properties are clearly different
from those of an isolated atom. Therefore, they should be removed from the
neutral fraction used for the calculation of bound-free and bound-bound opac-
ities. Analogously, at low ρ we should not include those highly excited states
that disobey the Inglis & Teller (1939) criterion for the dissolution of spectral
lines under the Stark effect. The “dissolved” lines form an “optical contin-
uum.” The fraction of atoms that are not strongly perturbed by microfields
and, therefore, do exhibit spectral characteristics of isolated atoms can be esti-
mated by generalizing Hummer-Mihalas’s occupation probabilities (Hummer
& Mihalas, 1988) to the case of strong magnetic fields. At every s, ν, and
K⊥, we calculate the “optical” occupation probability wo

νs(K⊥), replacing the
Inglis-Teller criterion by an approximate criterion based on the average atomic
size [Eq. (14) of Pavlov & Potekhin 1995]. Weakly perturbed atoms, which
contribute to the bound-bound and bound-free opacities, constitute a fraction
wo

νs(K⊥)/wt
νs(K⊥) < 1 of the total number of atoms. Here, wt

νs(K⊥) is the
“thermodynamic” occupation probability derived from the free energy. In Fig.
4.8 this “Inglis-Teller” fraction is shown by the long-dashed line. Its rapid
decrease at high densities indicates that atomic spectral features disappear at
ρ ∼ 10 g cm−3, long before the pressure ionization (cf. §2.5.2).
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Figure 4.9. Dependence of the atomic fraction xH (solid lines) and the fraction of optically
identifiable atoms (dashed lines) on the magnetic field strength for ρ = 0.01 g cm−3 (left),
ρ = 10 g cm−3 (right), T = 105.5 K (upper curves), and 106.5 K (lower ones). Triangles show
xH at B = 0.

The B-dependence of the atomic fraction at two values of T and two values
of ρ is shown in Fig. 4.9. The total xH is drawn by solid lines, and the “optical”
(Inglis-Teller) fraction by dashed lines. Triangles on the left panel show the
total fraction of atoms at B = 0 (this fraction is negligible at ρ = 10 g cm−3

on the right panel).
It was stated in early papers (Gnedin et al., 1974; Khersonskii, 1987a; Miller

& Neuhauser, 1991) that the ionization degree decreases with growing B above
∼ 1012 G only at T � 5 × 105 K but increases at higher T . However, Fig. 4.9
does not reveal such an increase. This is an effect of moving atoms, neglected
in the early papers. First, the growth of B increases the effective mass m⊥ and
thus the statistical weight of the centered atoms. Second, at low densities the
internal partition function grows further under the effect of decentered states.

4.3.2 d Equation of state

Figure 4.10 presents four pressure isotherms derived from the free energy
model which was described in §4.3.2 a. For comparison, we also show the
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Figure 4.10. EOS of partially ionized atomic hydrogen at B = 1012 G (solid lines) compared
to the EOS of fully ionized ideal electron-proton plasma at the same B (dotted lines) and the
EOS of partially ionized hydrogen at B = 0 (dashed lines). The temperature logarithms are
(from top to bottom) log T [K]= 6.5, 6.0, 5.5, and 5.0. The vertical line shows the density ρB ,
above which excited Landau levels become populated.

EOS of magnetized, fully ionized ideal gas (§4.1.2) and the non-magnetic EOS
(§2.5.2). The vertical line bounds the region ρ < ρB . Let us first discuss the
low-density regime, ρ � 10 g cm−3. At T � 106 K, all three EOSs converge to
P = (n0 + ne) kBT = 2n0kBT . At lower temperatures, the pressure deviates
from this law because of partial recombination of atoms. As discussed in
the previous section, the strong magnetic field increases the neutral fraction.
Therefore, the pressure is reduced more strongly compared to the field-free
case.

In the intermediate density range, 10 g cm−3 � ρ � ρB , the differences
among the three considered cases are most important. For B = 0, the plasma
is fully ionized in this region, and the electrons become partially degenerate,
making the EOS stiffer. In the strong magnetic field, the electron degeneracy is
reduced (§4.1). Hence the ideal-gas EOS is softer than at B = 0, except for the
densities approaching ρB , where the degeneracy sets in, and the pressure grows
rapidly. The partial recombination and Coulomb non-ideality further decrease
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Figure 4.11. Density exponent χρ = (∂ ln P/∂ ln ρ)T at T = 106 K without magnetic field
(dashed line) and in strong magnetic fields of various strengths (dot-dashed and solid lines).
After Potekhin et al. (1999b).

P . The pressure ionization discussed above has two opposite effects. One is the
positive contribution of free electrons, produced in the course of the ionization,
and the positive non-ideal pressure of neutral species. The opposite effect
is the negative Coulomb contribution. At low T , these effects may cause the
thermodynamic instability (∂P/∂ρ < 0) leading to a phase transition, which we
observe on the isotherm T = 105 K. The second lowest isotherm in the figure
is slightly over the critical one. This is a complete analogue to the plasma
phase transition, which is a first-order phase transition from the low-ionization
state to a high-ionization state of the matter. In our model, it is caused by a
strong Coulomb attraction between electrons and ions. The attraction produces
a negative contribution to the pressure, that cannot be compensated at low
temperatures until the degeneracy sets in. One should not forget, however, that
the plasma phase transition is model-dependent and its reality has not been
proven.1

At higher densities ρ � ρB , excited Landau levels become populated due
to the increase of the Fermi energy. Eventually, at ρ � ρB , the non-magnetic
EOS is recovered.

Figure 4.11 demonstrates the effects of strong magnetic fields on the den-
sity exponent χρ = (∂ lnP/∂ ln ρ)T . Although the pressure approaches the

1At B = 0, the plasma phase transition was first suggested independently by Wigner & Huntington (1935)
and Landau & Zeldovitch (1943). Later it was predicted by several theoretical models (Norman & Starostin,
1968; Ebeling & Richert, 1985; Saumon et al., 1995), but never confirmed in experiment.
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non-magnetic value at ρ > ρB , the effects of magnetic quantization remain
quite prominent for the derivative χρ, as shown by the curve corresponding
to B = 1012 G. A sudden fall of χρ occurs at ρ = ρB . At higher densi-
ties, the field becomes weakly quantizing; it slightly modifies the pressure but
strongly affects its derivative. Consecutive population of excited Landau levels
causes oscillations of χρ around the non-magnetic value. This is an example
of magnetic oscillations described in §4.1.3.

We have discussed the main effects of strongly quantizing magnetic fields on
a partially ionized hydrogen plasma. Other thermodynamic quantities, obtained
in the framework of the present model, experience similar dramatic modifica-
tions. Certainly, such effects are important for theoretical modeling of neutron
star atmospheres.

These new atmosphere models have been constructed by Ho et al. (2003)
and Potekhin et al. (2004). The modelling confirms that partial ionization may
strongly affect spectra of thermal radiation of magnetized neutron stars. For
hydrogen atmospheres, the effects of atomic motion on atomic structure are
crucial and cannot be neglected.



Chapter 4

ENVELOPES WITH STRONG MAGNETIC
FIELDS

Magnetic fields B � 1012 G, typical for isolated neutron stars (§1.3.8),
drastically modify many physical properties of the matter. Motion of free
electrons and ions perpendicular to the field lines is quantized into Landau
orbitals with a characteristic transverse scale equal to the magnetic length am =
(�c/eB)1/2. This brings to the scene an atomic field-strength parameter γ =
(a0/am)2, where a0 is the Bohr radius. If this parameter is large, the Lorentz
force acting on valence electrons in atoms exceeds the Coulomb force. The
Landau energy levels of electrons are modified by relativistic effects if the field
strength in the relativistic units,

b = �ωc/(mec
2) = B/Br, (4.1)

becomes b � 1. Here, ωc = eB/(mec) is the electron cyclotron frequency and
Br = m2

ec
3/(e�) = 4.414 × 1013 G is often called the relativistic magnetic

field.
Introducing the notation B12 = B/1012 G, we have

γ = 425.44 B12, b = α2
f γ = B12/44.14. (4.2)

A magnetic field will be called strong if γ � 1 (which is typical for radio
pulsars) and superstrong if b � 1 (which occurs in magnetars; see §1.4, par-
ticularly, §§1.4.4 and 1.4.5).

In §4.1 we review the main magnetic effects in a fully ionized plasma of
charged pointlike particles (electrons and ions). In the domain of partial ioniza-
tion, one should take into account quantum-mechanical effects of the magnetic
field on bound species. These effects are outlined in §4.2. In §4.3 we briefly
discuss thermodynamics of partially ionized layers of magnetic neutron-star
envelopes and consider the best studied hydrogen atmosphere in more detail.
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4.1. Fully ionized plasmas
4.1.1 Free electron in a magnetic field

Let us consider a uniform magnetic field B directed along the z-axis. In this
case, the vector potential in the Landau gauge readsA = (−By, 0, 0). Quantum
states of a free electron in the magnetic field form a complete orthogonal basis.
The basic states can be labeled by (px, pz, n, s), where n = 0, 1, 2, . . . is the
Landau quantum number, s is the spin quantum number, pz is the z-projection of
the electron momentum, while its x-projection px determines the y-coordinate
of the guiding center of electronic motion, yc = px/(meωc). An explicit solu-
tion of the Dirac equation reads (e.g., Akhiezer & Berestetskiı̆ 1965; Sokolov
& Ternov 1974)

Ψpx,pz ,n,s(r) =
exp[i(pxx + pzz)/�]

(LxLz)1/2 ψns(pz, y − yc), (4.3)

where Lx and Lz are normalization lengths. The ground Landau level n = 0
is nondegenerate with respect to spin (spin is antiparallel to B, s = −1; the
statistical weight g0 = 1), whereas the levels n > 0 are double degenerate
(s = ±1, gn = 2). The latter degeneracy allows different choices of the
electron basic bispinors ψns. The simplest choice which is often the most
convenient one is

ψn,1(pz, y) =
1√

2ε̃(ε̃ + 1)am

⎛⎜⎜⎝
(ε̃ + 1)Hn−1(y/am)

0
p̃z Hn−1(y/am)

−
√

2bn Hn(y/am)

⎞⎟⎟⎠ , (4.4a)

ψn,−1(pz, y)=
1√

2ε̃(ε̃ + 1)am

⎛⎜⎜⎝
0

(ε̃ + 1)Hn(y/am)
−

√
2bn Hn−1(y/am)

−p̃z Hn(y/am)

⎞⎟⎟⎠ . (4.4b)

Here, ε̃ = ε/(mec
2) and p̃z = pz/(mec) are, respectively, the electron energy

and longitudinal momentum in the relativistic units,

Hn(ξ) =
exp(−ξ2/2)

π1/4(2nn!)1/2 Hn(ξ) (4.5)

is a harmonic-oscillator function, and Hn(ξ) = (−1)neξ2
dne−ξ2

/dξn is a
Hermite polynomial. The electron energy and the absolute value of pz are
inter-related as

ε = εn(pz) = c
(
m2

ec
2 + 2�ωcmen + p2

z

)1/2
, (4.6)

|pz| = pn(ε) = [(ε/c)2 − (mec)2 − 2me�ωcn]1/2, n ≤ nmax, (4.7)
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where nmax is the maximum Landau number for a given ε. The latter number
is an integral part of the variable Υ

nmax(ε) = Int(Υ), Υ =
1

�ωc

p2
0(ε)

2me
. (4.8)

Instead of Eq. (4.4), one can use any other basis of the type

ψ′
ns = ψ ns cos ϕ − s ψ n,−s sin ϕ . (4.9)

It is sufficient to assume that 0 ≤ ϕ ≤ π/2; ϕ may depend on n but should be
zero for n = 0.

In particular, by choosing ϕ = arcsin
√

(1 − pz/p0)/2 we obtain the basis
of states with fixed electron helicities (i.e., spin projections on the canonical
momentum). In this case, s defines the helicity sign.

The spin magnetic moment of the electron contains a small anomalous part
whose relative magnitude is determined by the difference of the electron gyro-
magnetic factor ge = 1.00116 (the ratio of the actual magnetic moment to the
Bohr magneton) from 1. The anomalous magnetic moment splits the energy
levels n ≥ 1 and, strictly speaking, removes the spin degeneracy. In neutron star
envelopes, however, this splitting is typically negligible, because δε is smaller
than either the thermal width ∼ kBT of the Fermi level or the collisional width
of the Landau levels (see, e.g., Kaminker & Yakovlev 1981).

Non-relativistic limit. In the non-relativistic limit, the basis of bispinors (4.4)
is often most convenient, because it corresponds to fixed spin projections (s�/2)
on the z-axis (two lower components of bispinors ψns are negligible in this case).
Then the coordinate part of the wave function is formally given by Eq. (4.3)
with

ψn,1 = a−1/2
m Hn−1(y/am), ψn,−1 = a−1/2

m Hn(y/am), (4.10)

Let us also mention that in the cylindrical gauge of the vector potential,
A = (−By/2, Bx/2, 0), px is not a good quantum number; the magnetic
quantum number m (i.e., the z-projection of the angular momentum in units
of �) takes its place. At any n, one has m = n, n − 1, n − 2 . . . In the non-
relativistic limit, the coordinate parts of the basic wave functions do not depend
on s (but one should not forget different statistical weights of the Landau levels
with n = 0 and n > 0). These coordinate parts are

Ψ′
pz ,n,m,s(r) =

eipzz/�

L
1/2
z

Φn,−m(r⊥). (4.11)

Here r⊥ = (x, y) = (r⊥ cos φ, r⊥ sin φ),

Φn,−m(r⊥) =
eimφ

√
2π am

In−m,n(r2
⊥/2a2

m) (4.12)
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is a Landau function, Lz is the normalization length, and Inn′(u)
= (−1)n′−nIn′n(u) is a Laguerre function (Sokolov & Ternov, 1974). As-
suming n′ ≥ n, one has

In′n(u) = e−u/2u(n′−n)/2
n∑

k=0

(−1)k

√
n′!n!

k!(n − k)!(n′ − n + k)!
uk. (4.13)

A wave function of the relativistic electron in a magnetic field in the cylin-
drical gauge can be also expressed in terms of Φn,−m(r⊥) (e.g., Sokolov &
Ternov 1974).

4.1.2 Thermodynamic functions of the ideal electron gas
Thermodynamic functions of the electron gas in a magnetic field are easily

derived from the first principles (Landau & Lifshitz, 1993). The number of
quantum states per longitudinal momentum interval ∆pz for an electron with
given spin, magnetic, and Landau quantum numbers (s, m, n) in a volume V
equals V ∆pz/(4π2a2

m�) (Landau & Lifshitz, 1976). This allows one to express
the electron number density ne and the thermodynamic potential Ω = −PV as

ne =
1

(2πam)2�

∞∑
n=0

gn

∫ ∞

−∞
f (0)(ε − µ, T ) dpz, (4.14)

Ω = − V kBT

2π2a2
m�

∞∑
n=0

gn

∫ ∞

0
ln
(

1 + exp
[
µ − ε

kBT

])
dpz, (4.15)

where f (0) is the Fermi-Dirac function (2.46) and ε is given by Eq. (4.6). Inte-
grating Eq. (4.14) by parts, we obtain

ne =
∫ ∞

mec2
NB(ε)

(
−∂f (0)

∂ε

)
dε, (4.16)

where

NB(ε) =
1

2π2a2
m�

nmax∑
n=0

gnpn(ε), (4.17)

and nmax is defined by Eq. (4.8). If nmax � 1, the sum in Eq. (4.17) can be
approximated by an integral, which gives the classical result [cf. Eq. (2.3)]

N0(ε) = p3
0(ε)/(3π2

�
3). (4.18)
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In particular, using Eq. (4.16) we can write the squared Thomas-Fermi wave
number (2.13) as

k2
TF = 4πe2

∫ ∞

mec2

∂NB

∂ε

(
−∂f (0)

∂ε

)
dε

=
2αf

πa2
m

gn

∫ ∞

mec2

nmax(ε)∑
n=0

ε

cpn

(
−∂f (0)

∂ε

)
dε. (4.19)

It is convenient to rewrite Eq. (4.16) as

ne =
τ0

2π2a2
mλ--C

∞∑
n=0

gnF (χn, τ−1
n ), (4.20)

F (x, y) =
∫ ∞

0

et−x

( et−x + 1)2
√

t(t + 2y) dt, (4.21)

χn =
µ − εn(0)

kBT
, τn =

tr√
1 + 2bn

, (4.22)

and use the approximation (Potekhin, 1996a)

F (x, y) ≈ ln (1 + ex)
1 + y + ξ + c(y) a(ξ)

√
ξ + 2y

1 + ξ + c(y) b(ξ)
, (4.23)

where ξ = ln{1 + exp[x − x0(y)]}, x0(y) = 1/(1 + 0.623 y1.603),

c(y) = 0.9422 y1.7262,

a(ξ) =
√

π /2 + (0.103 + 0.043 ξ2)
√

ξ,

b(ξ) = 1 + 0.0802
√

ξ + 0.2944 ξ + 0.043 ξ3.

This approximation reproduces correct asymptotes at small and large x and y,
and remains accurate within 0.6% at any x and y. The chemical potential µ at
a given density ne can be found by the numerical inversion of Eq. (4.14) with
the use of the fit (4.23).

The x-derivative of the right-hand side of Eq. (4.23) reproduces the exact
derivative ∂F (x, y)/∂x with a maximum relative error of 2% . Using this
derivative in Eq. (4.19) and replacing ∂f (0)/∂ε → −δ(ε − µ) we get the
electron screening wave number

k2
TF =

2αf

πa2
m

nmax∑
n=0

gn

(
∂F (x, τ−1

n )
∂x

)
x=χn

. (4.24)

Integrating Eq. (4.15) by parts, we obtain

P =
∫ ∞

mec2
NB(ε) f (0) dε = Pr

bτ
3/2
0√
2π2

∞∑
n=0

gn(1 + 2bn)1/4I1/2(χn, τn),

(4.25)
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where Pr = mec
2/λ--C

3 is the relativistic unit of pressure introduced in §2.3.1.
The Fermi-Dirac integral I1/2(χ, τ) is readily evaluated using Eqs. (2.54)–
(2.56).

Let us comment, in passing, that the kinetic pressure of an electron gas, calcu-
lated as the quantum-mechanical average ne〈pαvα〉, is anisotropic in quantizing
magnetic fields. For instance, the kinetic pressure in the transverse direction,
P⊥ = ne〈pxvx〉, is much smaller than P = ne 〈pzvz〉, if the field is strongly
quantizing. However, the kinetic pressure is only one part of the total pres-
sure in the magnetized plasma. As proven by Blandford & Hernquist (1982),
a deficit of the kinetic pressure in the transverse direction is exactly balanced
by the pressure excess caused by magnetization currents. Thus, the total actu-
ally thermodynamic pressure is isotropic at any field strength, and Eq. (4.25) is
always valid.

Strongly quantizing magnetic field. Let pF0 = �kF0, εF0, and TF0 denote,
respectively, the non-magnetic Fermi momentum, energy, and temperature at
a given density (§2.1.2). We reserve the notations pF = �kF, εF, and TF for
the same quantities in a magnetic field. We keep the parameters xr, γr, and
βr expressed through pF0, as in Chapter 2. For instance, xr = pF0/mec is a
convenient measure of the density regardless the magnetic field strength.

At T � TF, one can replace (−∂f (0)/∂ε) in Eq. (4.16) by the delta function
δ(ε − εF):

ne = NB(εF), (4.26)

P =
∫ εF

mec2
NB(ε) dε

=
Pr

4π2 b

nmax(εF)∑
n=0

gn (1 + 2bn) [xn

√
1 + x2

n − ln(xn +
√

1 + x2
n)], (4.27)

where xn = cpn(εF)/εn(0), and Pr is the same as in Eq. (2.66). The Fermi
energy εF at a given ne is found by the inversion of Eq. (4.26).

A magnetic field is called strongly quantizing, if it confines most of the elec-
trons to the ground Landau level. This occurs at sufficiently low temperatures

and densities. In this case, from Eq. (4.26) one obtains εF = mec
2
√

1 + x2
B ,

where

xB ≡ λ--CkF = 2π2a2
mλ--Cne =

2x3
r

3b
≈ 30.2

〈Z〉
A′

ρ6

B12
, (4.28)

while A′ and 〈Z〉 are the mean effective atomic mass and charge numbers,
respectively (see §2.1.1); xr and ρ6 are introduced in §2.1.2. With increasing
density at a fixed B, the electron number density ne reaches some critical value
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nB , at which εF = ε1(0) and degenerate electrons start to populate the first
excited Landau level. From Eq. (4.28) we see that nB = 1/(π2

√
2 a3

m). Hence
the strongly quantizing regime occurs at T � Tcycl and ρ < ρB , where

Tcycl = �ωc/kB ≈ 1.343 × 108 B12 K, (4.29)

ρB =
A′mu

〈Z〉 nB ≈ 7045
A′

〈Z〉 B
3/2
12 g cm−3. (4.30)

Comparing Eqs. (4.28) and (2.3), we see that kF = (4/3)1/3(ρ/ρB)2/3 kF0 in
this regime. Therefore, TF is strongly reduced at ρ � ρB , compared to its
non-magnetic value TF0:

TF =
γB − 1
γr − 1

TF0, xB =
(

4ρ2

3ρ2
B

)1/3

xr, γB =
√

1 + x2
B. (4.31)

The nondegenerate electron gas obeys classical statistics. According to the
Bohr-van Leeuwen theorem (see footnote 1 on page 54), the magnetic field
in this case does not affect the EOS. On the contrary, the EOS is changed
drastically, if the electron gas is strongly degenerate and the magnetic field is
strongly quantizing. In that case only the n = 0 term survives in Eq. (4.27),
and the EOS can be presented in the form

P =
Pr b

(2π)2
[xB γB − ln(xB + γB)] =

Pr b

2π2
xγad

B

γad
∝ ργad

Bγad−1 , (4.32)

where xB and γB are given by Eq. (4.31). In Eq. (4.32) we have introduced a
quasi-adiabatic index γad which, in general, depends on xB , but takes on the
constant values 3 and 2 in the non-relativistic (xB � 1) and ultrarelativistic
(xB � 1) limits, respectively. Compared with the non-magnetic case, Eq.
(2.70), γad is higher (the density dependence of P is steeper), but the numerical
value of P is lower everywhere except in the vicinity of the first Landau thresh-
old. This means that a strongly quantizing magnetic field softens the EOS of
degenerate electrons.

Non-quantizing magnetic field. If the temperature or density is high enough,
the electron distribution is smeared over many Landau levels, and one can
replace NB(ε) by N0(ε). Then the field is non-quantizing. This happens either
at ρ � ρB or at T � TB , where

TB =
{

Tcycl, if ρ < ρB,

Tcycl/
√

γr, if ρ > ρB
(4.33)

(in this chapter we assume that T � Tr). In the relativistic regime at ρ > ρB ,
TB is smaller than Tcycl, because the distance between excited Landau levels
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Figure 4.1. Characteristic parameter domains in the ρ–T plane for iron matter at B = 1012 G.
Solid lines show TF and Tpi; the dot-dashed line presents Tm (Γ = 175). The dotted line display
TF at B = 0 (Fig. 2.2). Long-dashed lines show TB and ρB and separate the regions of strong
(the lower left sector) and weak (the lower right sector) magnetic quantization, and the domain
of the non-quantizing field (T � TB).

for the electrons with ε = εF is ≈ �ωg < �ωc, where ωg(ε) = eBc/ε is the
electron gyrofrequency.

In the non-quantizing magnetic field, many Landau levels contribute to sums
over n in Eqs. (4.16) and (4.25). In this case, the summation can be approxi-
mately replaced by the integration. Then, integrating by parts, we can reduce
Eqs. (4.16) and (4.25) to Eqs. (2.51) and (2.50), respectively.

If ρ > ρB and T � TB , the Landau quantization can remain important for
a phenomenon under study. In this case the field is called weakly quantizing.
Usually it happens if only a few Landau levels are populated. Higher-order
thermodynamic quantities (such as the electron heat capacity, entropy, magne-
tization) are much stronger affected by magnetic fields in this regime than the
bulk quantities (for instance, the electron energy density, chemical potential,
pressure).

A density-temperature diagram. Characteristic ρ–T domains for the outer
neutron-star envelope composed of iron are shown in Fig. 4.1 for B = 0 and
1012 G. Partial ionization is taken into account in the mean-ion approxima-
tion. The electrons are degenerate below TF; the ions are classical above Tpi.
The mean-ion charge number Zeff has been evaluated assuming that the pres-
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sure created by free electrons and by free ions with this Zeff equals the pres-
sure given by the finite-temperature Thomas-Fermi model of Thorolfsson et al.
(1998) (discussed below in §4.3). For comparison, the dotted line reproduces
non-magnetic TF from Fig. 2.2. Finally, the long-dashed lines separate three
regions, where the magnetic field is strongly quantizing (to the left of ρB and
considerably below TB), weakly quantizing (to the right of ρB at T � TB), or
classical (above TB).

Non-relativistic limit. Thermodynamic functions of the ideal electron gas in
a magnetic field simplify in the non-relativistic limit (pF � mec, T � Tr). In
this case the electron pressure and number density are given by

Pe =
kBT

π3/2a2
mλe

∑
ns

I1/2(χn), ne =
1

2π3/2a2
mλe

∑
ns

I−1/2(χn). (4.34)

Here, λe is the electron thermal wavelength given by Eq. (2.27). In the nonde-
generate regime (T � TF), one has Iν(χ) ≈ eχ Γ(ν +1), were Γ(ν +1) is the
gamma-function. Therefore, Eq. (4.34) yields Pe = nekBT and

χ0 = ln(neλ
3
e/2) − ln ζe + ln(tanh ζe), (4.35)

where

ζe ≡ �ωc

2kBT
=

Tcycl

2T
. (4.36)

This provides an explicit analytical form of the Helmholtz free energy F
(e)
id =

(χ0 − 1) NekBT (in this chapter we do not include the rest energy me c2 into
the free energy). In the non-quantizing field (ζe � 1), the last two terms
in Eq. (4.35) cancel out and the classical non-magnetic result is recovered,
F

(e)
id = NekBT [ln(neλ

3
e/2) − 1]. In the strongly quantizing, nondegenerate

regime (ρ < ρB and TF � T � Tcycl), the last term of Eq. (4.35) vanishes,
which yields

F
(e)
id = NekBT

[
ln(2πa2

mλene) − 1
]
. (4.37)

4.1.3 Magnetic oscillations
In the equations of §4.1.2, the summation over discrete Landau numbers

n reflects consecutive population of new Landau levels with growing density,
which leads to magnetic quantum oscillations of thermodynamic and kinetic
functions (see, e.g., Lifshitz & Pitaevskiı̆ 1980). When the field is weakly
quantizing, these quantities oscillate, as a rule, around their values obtained
neglecting the magnetic quantization. For first-order (bulk) thermodynamic
quantities (P , U , µ), the oscillations are relatively weak, whereas for second-
order quantities (CV , CP , kTF) they are more pronounced. For example, the
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oscillations of the density exponent χρ defined by Eq. (2.38), will be shown in
Fig. 4.11 on p. 204. The oscillations are smoothed by the thermal broadening of
the Fermi distribution function and by the quantum broadening of the Landau
levels (particularly, owing to electron collisions; see Yakovlev & Kaminker
1994, for references).

For example, we can mention the well known de Haas-van Alphen effect —
oscillations of magnetic susceptibility (e.g., Landau & Lifshitz 1993). In quan-
tizing magnetic fields, these oscillations can be large, resulting in high mag-
netization. Canuto & Chiu (1971) suggested that this effect could lead to a
spontaneous magnetization of the electron gas in neutron star envelopes, the
so called Landau orbital ferromagnetism – LOFER. They found that the os-
cillations of the kinetic pressure due to the Landau quantization of degenerate
electron gas may result in a state of permanent quasistable macroscopic mag-
netism, which is stronger for higher pressure. Neglecting the broadening of
the Landau levels, the authors obtained a density dependence of the maximum
LOFER field strength, which implied that in the outer neutron star crust (at
ρ � 1011.5 g cm−3) LOFER could produce B up to ∼ 1012 G (and still larger
B in the inner crust). However, the thermal and quantum broadening of oscil-
lations prevents the spontaneous magnetization. For instance, Schmid-Burgk
(1973) showed that LOFER is smeared out by the thermal broadening in the
outer crust of a neutron star at T � 104 K.

The de Haas-van Alphen effect may also violate the condition for thermo-
dynamic equilibrium which states that the field strength should increase with
the growth of the magnetic induction. This instability leads to the formation of
domains with alternating magnetization (Lifshitz & Pitaevskiı̆, 1980). Bland-
ford et al. (1983) showed that in a neutron star envelope with B = 1012 G this
instability may develop at T up to 107 K. However, since the magnetization
is weak (a few percent of the field strength), this effect can hardly have any
observable consequences.

4.1.4 The effects of the magnetic field on plasma ions

The effects of the magnetic field on plasma ions are twofold. First, the
magnetic field acts on the ions directly; second, it affects them through the
electrons. The direct influence becomes appreciable when the ion cyclotron
frequency ωci = Z (me/mi) ωc exceeds the ion plasma frequency ωpi [Eq.
(2.30)] and the ion cyclotron energy �ωci exceeds the thermal energy kBT .
This happens at B12 � 100

√
ρ6 and B12 � T/107 K. In this case, transverse

motion of the ions is quantized in the Landau orbitals with the energy of an
elementary excitation equal to �ωci. In contrast to the case of electrons, the spin
degeneracy of the Landau levels is taken off completely because of relatively
large abnormal magnetic moments of the nuclei.
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The effects of the second type are caused by the electron polarization in
quantizing magnetic fields. For a weakly coupled Coulomb plasma which
composes, for instance, warm neutron star atmospheres, these effects will be
discussed in §4.1.5.

Below we consider the direct effect of a quantizing magnetic field on the
free energy of the ideal ion gas. The opposite case of the ion crystal will be
analyzed in §4.1.6.

Ion gas in a strongly magnetized outer envelope. Under realistic conditions
in outer neutron-star envelopes, the ions are nondegenerate and non-relativistic.
Then the ideal part of the free energy can be written explicitly. In its essence, it
differs from Eq. (4.37) by the inclusion of excited Landau levels, which can be
summed up explicitly using the Boltzmann distribution over these levels. The
result reads

F
(i)
id

NNkBT
= ln(2πa2

mλinN)+ ln
[
1 − exp

(
−�ωci

kBT

)]
− 1+

∆F

NNkBT
, (4.38)

where λi is the ion thermal wavelength, Eq. (2.27). As in Eq. (2.71), the ion
rest energy is excluded. The term ∆F arises from the zero-point energy, 1

2�ωci,
and the spin energy. This contribution is the same for free and bound atomic
nuclei. Therefore, it affects neither ionization equilibrium nor pressure, but it
does affect the internal energy and specific heat. For example, for protons

∆F = NN

{
1
2

�ωcp − kBT ln
[
2 cosh

(
gp�ωcp

4kBT

)]}
, (4.39)

where gp = 5.5857 is the proton spin gyromagnetic factor (the doubled ratio
of the proton magnetic moment to the nuclear magneton, Landau & Lifshitz
1976), and �ωcp the proton cyclotron energy.

Equations (4.38) and (4.39) provide a good approximation to the ionic part
of the free energy in not too cold neutron-star atmospheres, where the ions are
nearly ideal.

Ideal-gas model for the ultra-magnetized inner crust. At densities ρ �
a few × 1011 g cm−3, typical for the inner crust of a neutron star, non-
relativistic magnetic fields B � Br are nonquantizing (see Eq. (4.1)). There-
fore, they cannot directly affect the EOS of the inner crust, which is mainly
determined by degenerate, weakly quantized electrons and free neutrons. A
superstrong field, however, can strongly quantize particle motion and thus af-
fect the EOS. In the inner crust, the strong quantization implies B � 1017 G.
This effect was studied, for instance, by Suh & Mathews (2001) using the sim-
plest model in which the crust matter was approximated by a gas of degenerate
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noninteracting neutrons, protons and electrons. The authors found that super-
strong magnetic fields shift beta-equilibrium and increase the proton fraction. In
addition, for B � 1018 G the softening of the EOS caused by the Landau quan-
tization is overridden by the stiffening associated with the anomalous magnetic
moments of the nucleons. The EOS of matter composed of strongly degenerate
nucleons and electrons in strong magnetic fields was studied in more detail by
Broderick et al. (2000) for the conditions prevailing in neutron star cores; they
considered not only ideal npe gas but also the mean-field model. The latter
study shows that the results of Suh & Mathews (2001) are qualitatively correct.

It is also possible that a superstrong magnetic field B � 1016 G can change
the nuclear shell energies and nuclear magic numbers and, consequently, af-
fect the nuclear composition and the EOS of the inner crust of a neutron star
(Kondratyev, 2002).

Note, however, that the field strengths B � 1018 G are unrealistic from
the point of view of neutron star physics (see §1.3.8). Moreover, there is no
observational indication on the existence of fields B > 1016 G in neutron star
crusts (see §1.4).

4.1.5 Weakly non-ideal Coulomb plasma
Theoretical studies of thermodynamics of interacting charged particles in

strong magnetic fields have a long history, but the results are much less com-
prehensive than in the field-free case. Only some limiting cases have been
considered which we review briefly in this section.

According to the Bohr-van Leeuwen theorem (p. 54) the magnetic field does
not affect thermodynamics of classical charged particles. Thus the excess free
energy Fii(Γ) for a classical OCP of ions is independent of B at any ion coupling
parameter Γ (defined by Eq. (2.22)). The classical regime for an electron-ion
plasma corresponds to rs � 1 and Γ � 1 in the absence of electron degeneracy.
In this case the excess Coulomb free energy is given by the Debye-Hückel
formula FC

ex = −NekBT Z
√

(1 + Z)/3 Γ3/2 (compare to Eq. (2.73)). Indeed,
it is easy to check that for classical plasma particles this law holds independently
of B (Abrahams & Shapiro, 1991a; Cornu, 1998).

The magnetic field, however, affects quantum contributions to FC
ex. These

effects have been studied either in the regime of low T and high ρ (considered
in the following section), or at low densities. In the latter case, a general
power-series expansion for the free energy of a Coulomb plasma in an arbitrary
magnetic field (up to the terms ∝ ρ5/2) was derived by Cornu (1998). The
coefficients of this expansion are not given by analytical expressions but require
numerical evaluation. For the OCP, a Wigner-Kirkwood-type expansion in
powers of � is available (Cornu, 1998). Its lowest-order term (the quantum
diffraction term ∝ �

2) was first obtained by Alastuey & Jancovici (1980).
It generalizes Eq. (2.85) to the case of a quantizing magnetic field. For the
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nondegenerate electrons, this term can be written as

F
(e)
diff = NekBT

Γ2
e

8rs

(
2

ζe tanh ζe
− 2

ζ2
e

+
1
3

)
, (4.40)

with ζe defined by Eq. (4.36). The bracket in Eq. (4.40) goes to 1 at ζe → 0,
recovering the well known zero-field result, and to 1/3 at ζe � 1, indicating
that two of the three degrees of freedom of electron motion are frozen out in
a strongly quantizing field. Equation (4.40) is valid in the low-density regime
(one can show that the validity conditions imply rs � max(Γ, Γ−1)). In this
regime, the correction (4.40) is smaller than the classical OCP corrections to the
Debye-Hückel formula owing to ion correlations. In the electron-ion plasmas,
F

(e)
diff is exactly canceled because of the local neutrality relation (Cornu, 1998).

Thus Eq. (4.40), although elegant by itself, can hardly be useful for neutron star
modeling.

If (Γrs)−1 ≈ 3.167 T6 � 1 and Γ/r2
s ≈ 0.118 ρ 〈Z〉/(A′ T6 g cm−3) � 1,

a high-temperature expansion of the free energy in powers of e2 is applicable.
These conditions are often fulfilled in the atmospheres of neutron stars. The
expansion is in powers of two small parameters, s1 =

√
Γ/rs and s2 =

√
Γrs.

In the field-free case, the expansion terms up to ρ5/2 were obtained by DeWitt et
al. (1995). The lowest-order term ∝ e2 is also known in an arbitrary magnetic
field (Steinberg et al., 1998):

FHF

NekBT
= −3Γ2

8rs
f1(ζe), (4.41)

where the function

f1(ζe) =
cosh(2ζe)
cosh2 ζe

tanh ζe

ζe

arctanh(
√

1 − ζ−1
e tanh ζe)√

1 − ζ−1
e tanh ζe

(4.42)

goes to 1 at small ζe and decreases as ln(4ζe)/ζe at very large ζe.
Steinberg et al. (1998) calculated also the corrections ∝ e4 (the Montroll–

Ward and exchange terms) in the magnetic field. For the electron gas, these
corrections can be written in the form

F4

NekBT
=

3
√

π

16
Γ5/2
√

rs
[fee

2 (ζe) + fee
3 (ζe) ln 2], (4.43)

where fee
2 (ζe) and fee

3 (ζe) go to 1 at ζe → 0, reproducing the field-free result
(DeWitt et al., 1995), and decrease at large ζe.

For the electron-ion plasma, the polarization screening contribution Fie
should be taken into account. At B = 0, it has been calculated in a num-
ber of papers and fitted by analytical expressions (see §2.4.4). However, the
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magnetic field effect on Fie is known in a more restricted range of ρ, T , and B,
than in the OCP of ions considered above.

In the regime of low electron degeneracy and weak Coulomb coupling, the
lowest order contribution of the low-density expansion was obtained by Stein-
berg et al. (1998):

F
(4)
ie

NNkBT
=

π

4

(
1 +

me

mi

)1/2(Ze2

kBT

)2

λenef
ie
2 (ζe, ζi), (4.44)

where ζi = �ωci/2kBT = ζe Z me/mi, and the function f ie
2 is known in an

integral form. At ζe → 0, this function tends to 1, reproducing the well known
zero-field result (e.g., DeWitt et al. 1995). Because mi � me, one can use an
analytical approximation (Potekhin et al., 1999b) accurate to 0.5%:

f ie
2 =

1
2

+ t0.9 arctanh
[
(1 − t)0.6

]
2 (1 − t)0.6 , (4.45)

where t ≡ (0.4ζe)−1 tanh(0.4ζe). Integral representations for coefficients of
the low-density expansion have been obtained by Cornu (1998).

4.1.6 Strongly coupled Coulomb plasma
The effects of strong magnetic fields on a strongly coupled Coulomb plasma

can be important for the physics of magnetars. Let us summarize available
results.

4.1.6 a Ground-state energy

The ground-state exchange energy of the electron gas (per one electron) in a
strongly quantizing field (Danz & Glasser, 1971; Fushiki et al., 1989) behaves
as

−2.25 [ln(γr2
s) − 0.457 + . . .] (γr3

s)
−1 e2/a0,

compared with
−0.75 (9π/4)1/3(πrs)−1 e2/a0

in the non-magnetic case (e.g., Perrot & Dharma-wardana 1984). Thus, the
magnetic field suppresses the exchange energy at T � TF by a factor of
0.2036 γr2

s/[ln(γr2
s) − 0.457]. Note that the condition for the strong mag-

netic quantization, ρ < ρB , requires that γr2
s > 2.23, so that the suppression

factor is greater than 1. This result is applicable at T � TF and ρ < ρB , that
is in the outer envelopes of very cold or ultra-magnetized neutron stars.

Using the linear response theory in the Thomas-Fermi limit, Fushiki et al.
(1989) have analytically evaluated the electron polarization energy Fie for a
dense plasma in a strongly quantizing magnetic field at zero temperature. A
comparison with the analogous zero-field result (2.158) shows that the strongly
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quantizing magnetic field (γr2
s > 2.23) increases Fie at high densities (rs � 1)

by a factor of 0.8846 γ2r4
s .

In order to incorporate these results and the results reviewed in §4.1.5 into the
analytical free-energy model, Potekhin et al. (1999a) suggested an interpolation
which reproduces the known limiting cases of rs � 1 (the classical electron-
ion plasma), γr2

s � 1 (the non-quantizing regime), γr2
s � 1 and T � TF

(the strongly quantizing degenerate regime), and γr2
s � 1 and T � TF (the

strongly quantizing nondegenerate regime). The interpolation reproduces also
Eq. (4.41) in its validity range. Nevertheless, the accuracy of the interpolation
remains uncertain in a large range of ρ, T , and B, where none of these limiting
cases can apply.

4.1.6 b Coulomb crystal in a superstrong magnetic field

The magnetic field affects phonon spectrum of Coulomb crystals and re-
spective ion thermodynamic properties. This happens at sufficiently high B
(to change the phonon spectrum) and low T for the field to become quantizing.
The magnetic field changes also polarizability of the electron gas and affects the
ion thermodynamics in this way. As a rule, magnetic fields of ordinary pulsars
cannot affect noticeably the ion thermodynamics in the degenerate layers of the
envelope, but superstrong magnetic fields B � 1014 G of magnetars can.

In a superstrong magnetic field, thermodynamic functions of a Coulomb
crystal become dependent on the magnetic field strength, crystal orientation
with regard to B, and the crystal type. Kaplan & Glasser (1972) argued that a
superstrong magnetic field could increase the stability of a quantum crystal of
charged fermions against melting at high densities and suggested that the ground
state in this case would be a hexagonal lattice. Nagai & Fukuyama (1982; 1983)
compared the energies of zero-point vibrations for body-centered cubic (bcc),
face-centered cubic (fcp), and hexagonal closed-packed (hcp) Coulomb lattices
at zero temperature and found that the hcp lattice becomes more stable than the
bcc one, if RS � 104, where RS is the ion density parameter defined by Eq.
(2.32).

Usov et al. (1980) derived dispersion equations for a Coulomb crystal in
a quantizing magnetic field, qualitatively studied the phonon spectrum, and
obtained an asymptotic dependence of the heat capacity in the limit of ultra-
high B and low T . Their method was further used by Baiko (2000), who
performed a more detailed study of vibration and thermodynamic properties of
strongly magnetized Coulomb crystals with a rigid electron background.

The results of Baiko (2000) extend those of §2.3.3 to the case of strong
magnetic fields. For simplicity, he focused on bcc crystals with the magnetic
field directed from one ion to a closest neighbor (which minimizes the Coulomb
energy). The dependence of the free energy on the crystal type (bcc or fcc)
has turned out to be weak, as well as the dependence on the magnetic field
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Figure 4.2. Vibration spectrum of a bcc crystal as a function of kai in a magnetic field for a
fixed direction of the wave vector, k/k=(0.720, 0.615, 0.323), at several values of ωci/ωpi. From
Baiko (2000) with the kind permission of the author.

orientation. The magnetic field strongly affects lattice thermodynamics as long
as ωci � ωpi, which translates to ρ � B2/(4πc2). This happens in the outer
layers of neutron star crusts (at ρ � 108 and 1010 g cm−3 for B = 1015 and
1016 G, respectively).

The crystal vibration spectrum in a magnetic field B is calculated in the
same manner as is in the field-free case but taking into account the Lorentz
force acting on vibrating ions. The dispersion equation is rather simple. For
a bcc crystal it gives three vibration branches, ω1(k) ≤ ω2(k) ≤ ω3(k). An
example is shown in Fig. 4.2. The vibration frequencies are seen to be noticeably
affected by the magnetic field at kai � ωci/ωpi. Their behaviour at k → 0 is
of special interest. Let us recall that in the field-free case (§2.3.3) we have two
acoustic vibration modes, ω1,2(k) ∝ k, and one optical mode ω3(k) → ωpi.
The magnetic field violates this simplicity. The vibration mode ω1(k) remains
acoustic (ω1(k) ∝ k) only if k is parallel to B. In other cases one has ω1 ∝ k2

at sufficiently small k (which means the “softening” of this mode). The modes
ω2(k) and ω3(k) appear to be optical (ω2,3(k) → const as k → 0).

Baiko (2000) numerically realized a procedure suggested by Usov et al.
(1980) to quantize ion vibrations (which is much more sophisticated than at
B = 0 because of Larmor motion). This enabled him to calculate (by the
same technique as in the field-free case) the phonon entropy, heat capacity, and
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Figure 4.3. Harmonic lattice heat capacity (per one ion, divided by kB) of bcc crystal as a
function of T/Tpi for different magnetic fields. From Baiko (2000) with the kind permission of
the author.

pressure for a wide range of plasma parameters. For example, Fig. 4.3 shows
the temperature dependence of the harmonic-lattice heat capacity C = Ci per
one ion (normalized by kB) at several values of the magnetic field (compare with
the results of §2.4.6 for B = 0). At high enough T , as expected, the magnetic
field is non-quantizing and its effect disappears. If ωci/ωpi � 1, we can notice
a substantial reduction of Ci at Tpi � T � TBi, where kBTBi = �ωci. At low
T � min(TBi, Tpi), the magnetic field increases the heat capacity by orders
of magnitude and changes its temperature dependence, in agreement with the
prediction of Usov et al. (1980). In this case, one has Ci ∝ T 3/2 (instead of
Ci ∝ T 3 at B = 0). The effect is explained by the appearance of the soft
vibration mode (ω1(k) ∝ k2 at k → 0).

An additional contribution to the specific heat comes from the free energy
correction (4.39) produced by magnetic moments of atomic nuclei. One can
easily show that this contribution has a noticeable maximum ∼ kB per ion at
kBT ∼ gi�ωcp but becomes insignificant at much low and higher T (gi being a
gyromagnetic factor of a nucleus).
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Figure 4.4. Schematic view of the effects of a strong magnetic field on atoms and molecules.
(a–c) The H atom in the ground state becomes compressed and elongated with increasing the
field strength from (a) B � 109 G, to (b) B ∼ 1010 G, and to (c) B ∼ 1012 G. (d) The
field stabilizes molecular chains (H3, for example). (e) An atom moving across the field B
becomes decentered (with the relative guiding center rc perpendicular to B and to the atomic
pseudomomentum K). The grey areas are ellipsoids, where the probability to find an electron
exceeds e−1; the solid dots show protons. The radius of the grey sphere in case (a) is ≈ 1.08 a0.
Coaxial ellipsoids in d correspond to electron orbitals with zero Landau quantum number and the
smallest consecutive magnetic quantum numbers, which form the ground state of the molecular
chain in the strong magnetic field.

4.2. Bound species in strong magnetic fields
In this section, we outline the main properties of bound species at the con-

ditions typical for magnetized neutron star atmospheres. For a more detailed
review see, e.g., Lai (2001).

4.2.1 Atoms
4.2.1 a Hydrogen atom

The effects of a strong magnetic field on bound species are spectacular. Fig-
ure 4.4 schematically shows some of them for the simplest case of hydrogen in
the ground state. The H atom becomes increasingly compressed and elongated
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with the growth of B. In a sufficiently strong field, molecular chains HN can
be formed. An atomic center-of-mass motion across the field shifts the electron
cloud off the nucleus. These effects will be briefly discussed below.

Atoms in strong magnetic fields have been intensively studied by many au-
thors (see, e.g., Ruder et al. 1994, for review). At γ � 1, an electron cloud
bound to a nucleus acquires the shape of a cylinder with the radius ∼ am and
much larger length. The binding energies of the ground and some excited states
of the H atom increase as (ln γ)2 (such atomic states are called tightly bound).
The energies of other (hydrogenlike) states remain restricted within ∼ 1 Ry,
where Ry = mee

4/2�
2 = 13.605 692 eV.

Quantum-mechanical characteristics of strongly magnetized hydrogen at-
oms are obtained by solving numerically the Schrödinger equation (Canuto
& Ventura, 1977; Rösner et al., 1984; Forster et al., 1984; Potekhin et al.,
1997b) or the Dirac equation (Lindgren & Virtamo, 1979; Chen & Goldman,
1992). At γ � 0.1, an atomic state can be characterized by the electron Landau
quantum number n, the projection �m of the relative electron-to-proton angular
momentum on the field direction (m ≤ n), and by the number of nodes ν of a
wave function in the field direction. At γ � 1, only the states with n = 0 remain
bound; other discrete states are quasibound (can decay through autoionization
channels). The atomic binding energy can be written as

Ebind = −Enmν , Enmν = E‖
nmν − m�ωcp + n�(ωc + ωcp), (4.46)

where E
‖
nmν is the “longitudinal” energy (which is negative for discrete spec-

trum states). The proton spin energy in a magnetic field is dropped from Eq.
(4.46), because proton spin-flip processes (forbidden in the electric dipole ap-
proximation) are so inefficient that the subsystems with proton spin “up” and
“down” can be treated as independent in most of the applications where bound
species are involved.

As already mentioned, an electron cloud at γ � 1 is elongated. Its sizes
transverse to the magnetic field are those of the Landau function Φn,−m given
by Eq. (4.12), that is lx = ly ≈

√
2n − m + 1 am ∼ a0/

√
γ. The longitudinal

size is much larger: lz ∼ a0/ ln γ for the tightly bound states (ν = 0) and
lz ∼ a0ν

2 for the hydrogenlike states (ν ≥ 1). At γ � 1, an atomic wave
function is well described by the adiabatic approximation:

ψnmν(r) ≈ Φn,−m(r⊥) gnmν(z). (4.47)

This approximation was widely used in early papers (e.g., Canuto & Ventura
1977 and references therein). Accurate wave functions and binding energies
were obtained by Rösner et al. (1984) using the expansion

ψnmν(r) =
∞∑

n′=0

Φn′,−m(r⊥) gn′,nmν(z), (4.48)
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Table 4.1. Parameters ai and maximum fractional error of Eq. (4.49)

state a1 a2 a3 a4 a5 a6 err. (%)
1s0/(000) 1 0.09016 0.13966 0.02328 0.017538 0.0008506 0.12
2p−1/(010) 5 0.2603 0.11135 0.010359 0.010278 0.0005253 0.23
3d−2/(020) 12 0.5924 0.13558 0.008498 0.008176 0.0006525 0.52
4f−3/(030) 21 1.1523 0.17860 0.007172 0.002976 0.0008771 0.87

where gn′,nmν(z) were found from a system of ordinary differential equations
which arises after substituting Eq. (4.48) into the Schrödinger equation. This
solution was used by Forster et al. (1984) to calculate oscillator strengths of
radiative transitions. Potekhin et al. (1997b) extended this method to continuum
states and calculated the photoionization cross sections. In particular, they
found that the coupling of different (n, m)-channels of electron scattering leads
to the appearance of resonances in the photoionization cross sections (Beutler–
Fano type resonances).

The longitudinal energies of tightly bound states can be approximated by
(Ho et al., 2003)

E
‖
0m0 =−(|m| + 1)−2 + (|m| + 1)x/a1 + a3 x3 + a4 x4 + a6 x6

1 + a2 x2 + a5 x3 + a6 x4 Ry,(4.49)

where x = ln(1 + a1γ) and the parameters a1–a6 are given in Table 4.1 for
three values of m. The last column of the table gives the maximum fractional
error of the fit in the interval 0 < γ < 108. The fit reproduces also the exact
asymptotes

E
‖
0m0 = −

[
1

(|m| + 1)2
+ (|m| + 1) γ + O(γ2)

]
Ry at γ � 1, (4.50)

E
‖
0m0 � −(ln γ)2 Ry at γ → ∞. (4.51)

Another fit for E
‖
0m0 with −7 ≤ m ≤ 0, accurate for 0.1 < γ < 104 (typical

for radio pulsars), is given by Eq. (10) of Potekhin (1998).
The longitudinal energies of hydrogenlike states tend to the Rydberg series,

E‖
nmν = − 1 Ry

(� + δ)2
, where

{
� = (ν + 1)/2, δ ∼ γ−1 (odd ν)
� = ν/2, δ ∼ (ln γ)−1 (even ν).

(4.52)
The quantum defect δ is different for even- and odd-parity states. For odd ν,
one has

δ ≈ (aν + bν
√

γ + 0.077γ)−1, (4.53)
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Table 4.2. Parameters of the analytical approximations (4.52)–(4.54) for the energies of hydro-
genlike states |00ν〉 at 1 ≤ γ ≤ 104.

ν 1 2 3 4 5 6
aν 0.785 0.578 0.901 0.631 0.970 0.660
bν 1.724 0.765 1.847 0.717 1.866 0.693

with aν ≈ 1 and bν ≈ 2. For even ν,

δ ≈
[
aν + 1.28 ln(1 + bνγ

1/3)
]−1

, (4.54)

with aν ≈ bν ≈ 2
3 . Accurate values of aν and bν are given in Table 4.2 (for

n = 0, after Potekhin 1998). At γ ≥ 1, typical errors of Eqs. (4.53) and (4.54)
lie within 10−3.

Finally, note that binding energies of a non-relativistic, non-moving H atom
in an arbitrary magnetic field can be calculated exactly (Kravchenko et al.,
1997).

4.2.1 b Other atoms and ions

Some calculations of the binding energies of multi-electron atoms and ions
in strong magnetic fields were done in the Thomas-Fermi approximation (e.g.,
Rögnvaldsson et al. 1993) and using the DFT – the density functional theory
(Jones, 1985; Relovsky & Ruder, 1996; Medin & Lai, 2006a). Since these
methods are statistical, they are expected to be adequate when the number of
electrons is large.

For several atoms from He to Fe, the Hartree-Fock approximation was used
in combination with the adiabatic approximation [cf. Eq. (4.47)], employing
basis functions which contain free-electron transverse parts (Neuhauser et al.,
1987; Miller & Neuhauser, 1991) [cf. Eq. (4.47)]. If the field is sufficiently
strong, this adiabatic Hartree-Fock approximation is reasonably accurate for
not too large charge Znuc of the atomic nucleus.

With growing Znuc, inner atomic shells become progressively distorted by
the Coulomb attraction, making the adiabatic approximation less accurate. In
the 1990s, a more accurate “two-dimensional” Hartree-Fock approximation
was used, which allowed one to vary radial parts of the basis functions. It was
applied for calculating binding energies of various quantum states of He atom
(Thurner et al., 1993; Ivanov, 1994; Jones et al., 1996), H− ion (Jones et al.,
1996), B atom and B+ ion (Ivanov & Schmelcher, 2001), and also the ground
state of atoms and their singly positive ions up to Ne (Ivanov & Schmelcher,
2000). A comparison with the “adiabatic Hartree-Fock” results shows that the
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latter are accurate within 10% as long as, for instance, B12 > 0.1 and Znuc ≤ 6,
or B12 > 0.5 and Znuc ≤ 10. For B12 ≥ 5 and Znuc ≤ 10, the inaccuracy in
the ground-state energy does not exceed 1.3%.

The dipole oscillator strengths, required for modelling of strongly magne-
tized neutron star atmospheres, were calculated for the He atom in the two-
dimensional Hartree-Fock approximation by Thurner et al. (1993) and Jones
et al. (1998) and for the Fe atom in the adiabatic approximation by Miller &
Neuhauser (1991).

All calculations of multi-electron atoms and ions mentioned in this section
used the approximation of an infinitely massive nucleus (whose position was
fixed). This is an essential simplification. For instance, the characteristics of hy-
drogenlike ions with fixed nuclei obey a scaling with Znuc (Wunner et al., 1981).
In particular, the binding energies scale as E(Znuc, B) = Z2

nucE(1, B/Z2
nuc).

As we shall see in §4.2.3, motion across a strong magnetic field can qualitatively
modify atomic states and violate this scaling.

4.2.2 Molecules and chains
Neutral molecules. The properties and the very existence of various types
of molecules in strong magnetic fields were debated during decades and still
remain a subject of investigation.

For a non-moving diatomic molecule whose axis is directed along the field
the three-dimensional problem reduces to a two-dimensional one because of the
cylindrical symmetry. It is, therefore, natural that this parallel configuration
has been best studied.

For obvious reasons, the H2 molecule is the best explored one (see, e.g.,
Demeur et al. 1994; Lai & Salpeter 1996; Detmer et al. 1998). Fit formulae
for dissociation energies in the parallel configuration at γ � 103 are given by
Lai & Salpeter (1996, 1997). At such fields, the dissociation energy grows as
(ln γ)2, approximately at the same rate as the atomic ground-state energy. For
example, at B = 1012 G, the cohesive energy of the H2 molecule (that is the
difference between the ground-state energies of two atoms and the molecule) is
45.5 eV and the adiabatic dissociation energy is 91 eV (compare with 4.48 eV at
B = 0). The equilibrium internuclear distance decreases as 1/ ln γ, becoming
as small as 1

4a0 at B = 1012 G, again roughly proportional to the longitudinal
size of the H atom.

However, according to Detmer et al. (1998), the ground state of the H2
molecule is unbound at weaker fields, 0.18 < γ < 12.3, most typical for
millisecond pulsars.

There are relatively few results on heavier molecules in strong magnetic
fields. Some of them have been reviewed by Lai (2001). More recently, Medin
& Lai (2006a) applied DFT for calculating binding energies of different hy-
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drogen, helium, carbon, and iron molecules at several field strengths between
1012 G and 2 × 1015 G (see also references therein to earlier works).

Molecular ions. One-electron molecular ions in strong magnetic fields have
been studied thoroughly. Detailed papers by Wille (1986) and Kappes et al.
(1994) were devoted to the H2

+ molecular ion. The authors considered vari-
ous orientations of the molecular axis with respect to the field. In particular,
Wille (1986) showed that low-lying rotational states of the ion transform into
vibrational ones as the field increases. This happens because the lowest energy
in the transverse configuration (i.e., for the molecular axis perpendicular to the
field lines) is higher than the ground-state energy in the parallel configuration.
Thus the angular dependence of the energy creates a potential barrier to rota-
tion. If the field is strong enough, the barrier becomes higher than the lowest
rotational levels. Then the lowest rotational states correspond to oscillations
of the molecular axis about the field direction. Kappes & Schmelcher (1996)
calculated potential surfaces of the H2

+ ion as a function of an internuclear
distance and an angle between the ion axis and the magnetic field direction
for various electron-vibrational-rotational states at B ≤ 1010 G. Wille (1987)
considered also the (H-He)2+ system at B ≤ 108 G.

For B > 1010 G, the parallel configuration of the H2
+ ion has been ana-

lyzed especially thoroughly (e.g., Kravchenko & Liberman 1997 and references
therein). Non-parallel configurations were studied by Turbiner & López Vieyra
(2003, 2004). In particular, the latter authors found that at B � 1011 G large
inclination angles lead to the decay H2

+ → H + p.
The H3

++ ion in a strong magnetic field was studied by López Vieyra &
Turbiner (2002) and Turbiner et al. (2005) using a variational method. They
found that H3

++ with the protons in a line along the field is stable at B > 1010 G.
They also found that a configuration of protons forming an equilateral triangle
perpendicular to the magnetic line is quasi-bound (metastable) at 108 < B <
1011 G and decays into the H atom and two protons.

Molecular chains. Strong magnetic fields stabilize polymer chains aligned
with the fields, as first suggested by Ruderman (1971). In the 1970s, it was
commonly accepted that such chains in the strong fields can be formed of any
atoms. This belief was refuted by Müller (1984), who performed variational
calculations and demonstrated that a molecular chain composed of iron is un-
bound at 1 ≤ B12 ≤ 5. Later density-functional (Jones, 1985) and Hartree-
Fock (Neuhauser et al., 1987; Lai et al., 1992; Demeur et al., 1994) calculations
confirmed this result and showed that, at B ∼ 1012 −1014 G, infinite chains are
stable only for the elements with atomic numbers Znuc � 4 − 6, while heavier
elements do not form a stable molecular bond in the strong fields. On the con-
trary, Thomas-Fermi-like models, such as the Thomas-Fermi-Dirac-Weizsäcker
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model of Abrahams & Shapiro (1991b) still yield a strong binding. Recent DFT
calculations by Medin & Lai (2006b) show that hydrogen, helium, carbon and
iron infinite chains all are bound relative to individual atoms for magnetic fields
B � 1012 G (and may be lower), but iron chains are not significantly bound as
long as B � 1014 G. Since all these studies are approximate and give different
results, it remains unclear, whether the chains of heavy atoms can be really
bound in the strong fields.

4.2.3 Effects of motion
Motion across the magnetic field (non-negligible in warm neutron star at-

mospheres) breaks down the cylindrical symmetry of an atom. The quantum-
mechanical operator that generates velocity boosts is the pseudomomentum K
(a pedagogical and insightful introduction of this quantity is given by Johnson
et al. 1983). Therefore, K is relevant to describe atomic motion in a magnetic
field. The pseudomomentum is collinear with the atomic velocity, but differs
from the canonical center-of-mass momentum. With increasing K⊥ (the trans-
verse component of K), the binding energy decreases, while the atomic size
increases, producing a constant dipole moment perpendicular to B and K. At
γ � 1, the effects of collective motion (Avron et al., 1978; Johnson et al.,
1983; Vincke & Baye, 1988) become especially pronounced. In particular,
the so-called decentered states (with an electron localized mostly in the “mag-
netic well” displaced from the Coulomb center; see Fig. 4.4) are likely to be
populated. For the hydrogen atom, these exotic states were first predicted by
Burkova et al. (1976).

Quantum-mechanical effects of motion of hydrogenlike ions in strong mag-
netic fields were analyzed by Bezchastnov et al. (1998). For multi-electron
atoms, ions, and molecules, such effects remain unexplored.

Now let us consider in more detail the simplest but important example of a
hydrogen atom moving in a strong magnetic field.

4.2.3 a Hydrogen atom moving in a strong magnetic field

The first numerical solutions of the Schrödinger equation for an atom mov-
ing arbitrarily in strong magnetic fields were presented by Vincke et al. (1992).
At superstrong fields, the binding energies were calculated by Lai & Salpeter
(1995) in the non-relativistic approximation. Potekhin (1994) used the expan-
sion of a wave function analogous to Eq. (4.48), but supplemented the sum
over n by the sum over magnetic quantum numbers m (because m is not a
good quantum number for a moving atom). He numerically solved the corre-
sponding system of coupled-channel equations and calculated binding energies,
wave functions, and radiative transition rates. Analogous system of equations
for continuum states was solved by Potekhin & Pavlov (1997). They extended
the results of Potekhin et al. (1997b), mentioned above, to the case of a moving
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atom, and adapted the R-matrix formalism (Wigner & Eisenbud, 1947) to this
case.

According to these studies, an atom moving across the field lines acquires
a constant electric dipole moment in the direction opposite to its guiding cen-
ter rc = c (eB2)−1B × K. When K⊥ is small enough, the dipole moment
is also small, and the energy E‖(K⊥) increases by K2

⊥/(2m⊥
nmν). Here,

m⊥
nmν is the so-called effective transverse mass, which exceeds the atomic

mass mH and grows with the field strength. In this case, the average trans-
verse velocity is v⊥ = K⊥/m⊥

nmν . When K⊥ reaches some critical value
Kc ≈

√
2mHE‖(0) ∼ 102

�/a0, the atom becomes decentered: v⊥ attains
its maximum and starts to decrease, while the electron-proton separation ap-
proaches rc. Note that rc is proportional to K⊥ and inversely proportional to
B; an accurate fit of Kc as a function of B is given by Potekhin (1998). Thus,
for decentered states, the transverse pseudomomentum K⊥ characterizes the
electron-proton separation, rather than the velocity.

In the limiting case where K⊥ � γ(ν + 1
2)2�/a0, all longitudinal energies

approach the asymptote E‖ ∼ −e2/rc. In this case all the states with m �= 0
become unbound. Indeed, since E‖ is small for large K⊥, the binding energy
(4.46) becomes negative at m < 0, However, at m = 0 and arbitrarily large
K⊥, there still remains an infinite series of truly bound states (enumerated by
ν).

Since rc = a2
0K⊥/γ�, the decentered states at γ � 1 have huge sizes. Hence,

they are likely destroyed by collisions with surrounding particles in laboratory
and in atmospheres of magnetic white dwarfs. However, in neutron star atmo-
spheres at γ � 103 the decentered states may be significantly populated, as will
be shown below.

Photoionization of an H atom moving in a strong magnetic field was studied
by Bezchastnov & Potekhin (1994) and Kopidakis et al. (1996), using different
modifications of the adiabatic approximation. A complete numerical treatment
beyond the adiabatic approximation has been developed by Potekhin & Pavlov
(1997). These authors showed that none of the versions of the adiabatic ap-
proximation can provide accurate photoionization cross sections for all values
of K⊥ and for any photon polarization, particularly because the continuum-
channel coupling strongly affects the absorption of circularly polarized photons
at sufficiently large K⊥.

For astrophysical applications, it is useful to have analytical fits to the binding
energies, quantum-mechanical sizes, and main oscillator strengths of moving
H atoms. Such fits have been constructed by Potekhin (1998) for 7 × 1011 G
≤ B � 3×1013 G. Figure 4.5 demonstrates the dependence of binding energies
of the hydrogen atom on K⊥.

For field strengths outside the above range, reliable fitting formulae are ab-
sent. At stronger magnetic fields, tables of binding energies and all relevant
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Figure 4.5. Energy spectrum of the hydrogen atom moving across a strong magnetic field as a
function of the transverse component of pseudomomentum in atomic units (a.u.).

bound-bound oscillator strengths and bound-free cross sections were calculated
by Potekhin & Chabrier (2004). For weaker magnetic fields, the binding ener-
gies and bound-bound transition rates of a moving H atom were first calculated
by Lozovik & Volkov (2004).

Finally, let us mention that the coupling of center-of-mass and relative mo-
tions of an electron and a nucleus in a strong magnetic field affects also the
probabilities of free-free transitions and corresponding opacities, especially if
the radiation frequency is ω � ωci, where ωci is the ion cyclotron frequency
(see, e.g., Potekhin & Chabrier 2003).

4.2.4 Magnetic condensation
Ruderman (1971) pointed out that polymer chains aligned with the strong

magnetic fields should attract one another because of the quadrupole-quadrupole
interactions, and eventually form a solid. The magnitude of such an interaction
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for hydrogen chains was estimated by Lai & Salpeter (1997) who concluded that
hydrogen may form a solid stellar surface at superstrong fields (B � 1013 G).

For iron and other heavy elements, the situation is very uncertain. Hartree-
Fock studies cited above, as well as earlier DFT calculations (Jones, 1986)
indicated that the stellar surface may be diffuse even at zero temperature, con-
trary to Thomas-Fermi-like models with a gradient correction (Abrahams &
Shapiro, 1991a; Fushiki et al., 1989; Rögnvaldsson et al., 1993). However,
finite-temperature corrections, introduced in these models, transform the solid
surface into a diffuse atmosphere (Abrahams & Shapiro, 1991a; Thorolfsson et
al., 1998).

Lai (2001) formulated approximate conditions for the magnetic surface con-
densation. According to his study, the critical condensation temperature in-
creases with the growth of the magnetic field strength, and can be as high as
106 K (for a Fe surface at B ∼ 1013 G or an H surface at B ∼ a few×1014 G).
This means, in particular, that the thermal radiation of a neutron star can di-
rectly emerge from the degenerate metallic condensed surface, without passing
through a gaseous atmosphere. According to Lai (2001), the zero-pressure
density of the condensed matter can be estimated as

ρs � 560 η A Z−3/5 B
6/5
12 g cm−3, (4.55)

where η is an unknown correction factor of the order of unity (η = 1 corresponds
to the uniform electron gas model in the Wigner-Seitz approximation). The
estimate Eq. (4.55) agrees, within a factor of a few, with the typical density
of the plasma phase transition for strongly magnetized hydrogen (Potekhin
et al., 1999b; Potekhin & Chabrier, 2004). Medin & Lai (2006b) performed
DFT calculations of the cohesive energies and work functions for zero-pressure
condensed hydrogen, helium, carbon, and iron at 1012 G ≤ B � 1015 G. For
instance, they found that the cohesive energy per carbon atom ranges from ∼ 50
eV at B = 1012 G to 20 keV at 1015 G. The cohesive energy per iron atom
varies from ∼ 0.8 keV at B = 1013 G to 33 keV at 1015 G.

Calculations of the dielectric tensor and the thermal radiation spectrum of a
strongly magnetized condensed surface were attempted previously by several
research groups (e.g., Brinkmann 1980; Turolla et al. 2004). The most accurate
calculations were done by van Adelsberg et al. (2005) and Pérez-Azorı́n et al.
(2005).

4.3. Models of strongly magnetized outer envelopes of
neutron stars

There are three main effects of a strong magnetic field on outer envelopes of
neutron stars.

First, the bottom density of the photosphere greatly increases due to the
reduction of radiative opacities. Since the same magnetic field that reduces
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the opacities also suppresses the electron degeneracy, the atmosphere remains
typically nondegenerate in spite of this density increase. Consequently, at a
given density, the pressure in the magnetized atmosphere is considerably lower
than in the non-magnetic one.

Second, the increase of atomic binding energies tends to lower the ionization
degree, as first guessed by Cohen et al. (1970). Hence, there can be a significant
amount of bound species in a highly magnetized atmosphere, even if it was
negligibly small at the same temperature in the field-free case.

Third, the quantum-mechanical effects of atomic and ionic thermal motion
across the field (§4.2.3) have a great impact on the EOS. In general, the motion
lowers the binding energies but increases the statistical weight of the atoms. The
net effect on the ionization degree results from a balance of these two factors.

Let us mention that a strong magnetic field affects convection in neutron
star envelopes. The super-adiabatic gradient (2.41) is a necessary but not suf-
ficient condition for the convective instability. Miralles et al. (1997) argue that
magnetic fields B ∼ 1011–1013 G stabilize the atmosphere against convection.
The influence of a low magnetic field on the convection remains questionable.
Rajagopal & Romani (1996) suggest that even the lowest known neutron-star
magnetic field (∼ 108 G) should strongly suppress convection, while according
to Miralles et al. (1997) there may be rapid convective flows in neutron star
envelopes at B � 109 G. Moreover, according to Urpin (2004, 2005), even
a strongly magnetized neutron star ocean can be unstable, if the temperature
varies along the surface.

4.3.1 Strongly magnetized iron envelopes
In the low-density regime, where the electrons are nondegenerate, a model

of a magnetized iron atmosphere was developed by Rajagopal et al. (1997)
who generalized the equation of ionization equilibrium given by Khersonskii
(1987a):

nj

nj+1
=

neλ
3
e

2
sinh ζj

ζj

ζj+1

sinh ζj+1

tanh ζe

ζe

Zint,j

Zint,j+1
exp
(

Ej,ion

kBT

)
. (4.56)

This equation differs from the non-magnetic Saha equation (2.171) by the three
ratios containing sinh and tanh. In these factors, ζj ≡ �ωcj/2kBT , ζe ≡
�ωc/2kBT , and ωcj = jeB/mjc is the ion cyclotron frequency of an jth-
ionized atom. These factors naturally come from partition functions of free ions
and electrons whose transverse motion is quantized in the equidistant Landau
levels. Obviously, for a neutral atom one should set sinh ζ0/ζ0 = 1. The
difference of these factors for the ions and electrons (sinh versus tanh) is caused
by different treatments of their spin energies in the magnetic field. The electron
spin energy ±�ωc/2 provides an additional factor (eζe + e−ζe) to the electron
partition function, while analogous factors due to the nuclear spin energies
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at ionization stages j and j + 1 are equal and cancel each other in Eq. (4.56).
However, the contribution of the nuclear spin energy must be taken into account,
for instance, in calculating the specific heat (cf. §4.1.4).

Constructing the models of magnetized iron atmospheres, Rajagopal et al.
(1997) took into account the effects of atomic motion in an approximate way,
based on the perturbation theory (Pavlov & Mészáros, 1993). Because of the
high mass of iron atoms, this can be a reasonable approximation in relatively
cold iron atmospheres. Based on the non-magnetic results for the Coulomb non-
ideality, Rajagopal et al. (1997) estimated the influence of this non-ideality on
the EOS and found it to be small (up to ∼ 10%) throughout the atmosphere.

The main uncertainty in the EOS of Rajagopal et al. (1997) comes from
neglecting the effects of plasma non-ideality on bound species (particularly,
on the pressure destruction). In order to achieve a convergence of the internal
partition functions Zj , the authors arbitrarily replaced high-lying levels by a
series of equidistant levels. This may be severely inaccurate if excited levels
are significantly populated.

The EOS of subphotospheric stellar layers composed of heavy elements was
calculated by a number of authors in the Thomas-Fermi approximation with
gradient corrections. Fushiki et al. (1989) performed the first calculations of
this kind and showed that the magnetic field strongly affects the EOS of a
cold plasma. Using the approximation of zero temperature, they obtained a
solid boundary (at ρ ∼ 103 g cm−3 for B ∼ 1012 G). Abrahams & Shapiro
(1991a) showed that the boundary can be smeared away by the thermal effects.
Rögnvaldsson et al. (1993) included into consideration the population of excited
Landau levels. Both effects, of finite temperatures and higher Landau levels,
were incorporated by Thorolfsson et al. (1998). The latter authors showed that
the pressure PTF, calculated in the Thomas-Fermi approximation, is noticeably
suppressed relative to the pressure P

(e)
id of the ideal electron gas as long as the

field is strongly quantizing. However, PTF rapidly approachesP
(e)
id when higher

Landau levels are populated with increasing ρ or T .
A comparison of different versions of Thomas-Fermi-like models presented

by Abrahams & Shapiro (1991a) demonstrates a large uncertainty of the EOS
for outer atmospheric layers, indicating that a more detailed model is required.

Nevertheless, we expect that the existing models give correct order-of-
magnitude estimates of the magnetic-field effects. Solid lines in Fig. 4.6 show
the finite-temperature Thomas-Fermi EOS of Thorolfsson et al. (1998) at two
magnetic field strengths and two temperatures. For comparison, by dot-dashed
lines we also plot the EOS of fully ionized iron in the same magnetic fields
(taking into account the electron degeneracy but neglecting non-ideality), and
by dotted lines we plot the EOS of fully ionized iron at B = 0. All the ef-
fects discussed above are clearly seen. In the strongly quantizing field (i.e.,
at ρ � 104 g cm−3 and ρ � 105.5 g cm−3 for B = 1012 G and 1013 G, re-
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Figure 4.6. EOS of iron matter at B = 1012 G (left) and 1013 G (right). Solid lines refer to the
Thomas-Fermi model (Thorolfsson et al., 1998), dot-dashed lines to fully ionized gas, dotted
lines to non-magnetic fully ionized gas. A lower line of each type corresponds to kBT = 10 eV,
(T = 1.16 × 105 K) and an upper one to 1 keV (1.16 × 107 K)

spectively), the magnetic effects are very pronounced at the lower temperature.
The EOS of fully ionized and magnetized matter is much softer than its non-
magnetic counterpart because of the delayed onset of the electron degeneracy
(see Eq. (4.32) and a discussion therein). Even lower pressure is provided by
the Thomas-Fermi EOS, which takes into account electron-ion attraction and,
in an approximate way, partial ionization. After ρ reaches and exceeds ρB , all
three types of lines converge. In this case the EOS only slightly differs from
the EOS of the ideal non-magnetic electron gas (§2.3.1 e). Some oscillations
of the pressure around this non-magnetic value are still visible. They reflect
consecutive filling of excited Landau states. At such high densities, the field is
weakly quantizing.

The higher-T curves reveal the same features but less pronounced, because
higher temperatures partly remove the electron degeneracy and destroy bound
states. That is why, for example, the upper curves of all three types on the left
panel (B = 1012 G) nearly coincide.

4.3.2 Strongly magnetized hydrogen atmosphere
The effects of strong magnetic fields on the thermodynamics of the atmo-

spheric plasma have been studied most thoroughly for hydrogen atmospheres.
The equation of ionization equilibrium was first derived by Gnedin et al. (1974),
who neglected the quantization of proton motion and and the effects of atomic
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motion on the internal structure of hydrogen atoms (§4.2.3). The next step was
made by Khersonskii (1987a). He took into account the quantization of proton
motion (the terms containing the proton cyclotron frequency ωcp in Eq. (4.46)),
but neglected the effects of motion on atomic states. Khersonskii (1987b) an-
alyzed also dissociation equilibrium of the H2

+ molecular ion (ignoring the
effects of motion on its states) and showed that its abundance in a neutron star
atmosphere is typically very small.

The importance of effects of motion on atomic quantum states for the ioniza-
tion equilibrium was fully recognized by Ventura et al. (1992) who, however,
did not include them in calculations. Lai & Salpeter (1995, 1997) were the
first who quantitatively evaluated these effects. Nevertheless, their treatment
has a limited applicability since it was based on crude approximations for bind-
ing energies of moving atoms and for the pressure ionization (as discussed by
Potekhin et al. 1999b). A more detailed model will be considered in §4.3.2 b.

In §4.3.2 a, following Potekhin et al. (1999b), we describe an EOS of partially
ionized, strongly magnetized hydrogen plasma constructed in the framework
of the chemical picture.

4.3.2 a Free energy model

Consider a plasma consisting of Ne electrons, Np = Ne protons, and NH
hydrogen atoms in a volume V . The free energy model is a straightforward
generalization of the non-magnetic model presented in §2.5.2,

F = F
(e)
id + F

(p)
id + F neu

id + Frad + FC
ex + F neu

ex . (4.57)

The free energies of the ideal electron and proton gases, F (e)
id and F

(p)
id , are given

in §§4.1.1 and 4.1.4, respectively. The Coulomb part FC
ex has been discussed in

§4.1.5. The standard radiation term Frad, Eq. (2.176), can be important only at
low ρ or very high T . Here we focus on the ideal and non-ideal contributions,
F neu

id and F neu
ex , produced by bound species.

The coupling between atomic motion and binding energies precludes the
separation of the translational free energy from the internal one [which is quite
standard in the non-magnetic case, Eq. (2.35)]. Because quantum-mechanical
characteristics of an atom in a strong magnetic field depend on the transverse
pseudomomentum in a non-trivial way, the distribution of atoms over K⊥ cannot
be written in a closed form. It is only the distribution over Kz that remains
Maxwellian. Let us consider bound states at γ � 1. In this case the Landau
number n = 0, and we do not write it explicitly. Let pmν(K⊥) d2K⊥ be the
probability to find an atom with given (m, ν) in an element d2K⊥ near a point
K⊥ of the transverse pseudomomentum plane. For the Maxwell distribution,
we would have pmν(K⊥) = (2π�)−2λ2

H exp[−K⊥2/(2mH)]. Here, λH is the
thermal wavelength of the H atom, given by Eq. (2.27). Generally, the number
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of atoms in an element d3K of pseudomomentum space is

dN(K) = Nmν
λH

2π�
exp
(

− 1
kBT

K2
z

2mH

)
pmν(K⊥) d3K, (4.58)

where Nmν =
∫

dNmν(K) is the total number of atoms with specified discrete
quantum numbers. The distribution Nmνpmν(K⊥) is not given in advance but
should be calculated self-consistently via minimization of the total free energy,
including the non-ideal terms.

It is convenient to introduce the deviations from the Maxwell-Boltzmann
distribution through the occupation probabilities wmν(K⊥):

pmν(K⊥) =
(

λH

2π�

)2 wmν(K⊥)
Zmν

exp
(

Emν(K⊥) − Emν(0)
kBT

)
, (4.59)

Nmν

NH
=

Zmν

Zint
exp
(

Emν(0) − Egr−st

kBT

)
, (4.60)

where

Zmν =
λ2

H
2π�2

∫ ∞

0
wmν(K⊥) exp

(
Emν(K⊥) − Emν(0)

kBT

)
K⊥ dK⊥, (4.61)

Zint =
∑
mν

Zmν exp
(

Emν(0) − Egr−st

kBT

)
, (4.62)

and Egr−st ≡ E00(0).
The number of atoms per a unit phase-space cell equals (e.g., Landau &

Lifshitz 1976) [dN(K)/ d3K] (2π�)3/V . The calculation of F = U − TS
for this distribution gives

FH
id =

∑
mν

Nmν

{
kBT

∫
ln
[
nmνλ

3
H wmν(K⊥)

]
pmν(K⊥) d2K⊥

− kBT (lnZmν + 1) + Egr−st − Emν(0)
}

. (4.63)

To this expression we should add the contribution of molecules. This has
been done by Potekhin et al. (1999b) for ground-state H2 molecules, in order to
estimate the validity range of the model where molecules are neglected. A more
realistic treatment of molecules would require extensive quantum-mechanical
calculations (with allowance for the center-of-mass motion and rotation).

The contribution of atoms to the non-ideal part Fex of the free energy can
be calculated in the hard-sphere approximation using the van der Waals one-
fluid model according to Eq. (2.178). An obvious generalization of the sum in
Eq. (2.179) includes

∫
pmν(K⊥) d2K⊥; the root-mean-square proton-electron

distance lκ = lmν(K⊥) was approximated by analytic formulae by Potekhin
(1998).
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4.3.2 b Equilibrium conditions

Minimization of the free energy yields the ionization equilibrium (general-
ized Saha) equation:

nH

np
= ne

λpλe

λ3
H

(2πa2
m)2
[
1 − exp

(
−�ωcp

kBT

)]
× Zint exp

(
Egr−st + ∆µdeg

kBT

)
, (4.64)

where

∆µdeg = µe +
∂µe

∂ lnne
− ∂Pe

∂ne
− kBT ln(2πa2

mλene)

takes into account the effects of electron degeneracy and population of excited
Landau levels. Here, µe and Pe refer to the ideal electron gas (§4.1.2), and we
have excluded the rest energy mec

2 from µe in this non-relativistic treatment.
The distributions of atoms over discrete quantum numbers and over trans-

verse pseudomomenta are given by Eqs. (4.60) and (4.59), respectively. We do
not present the K-dependent occupation probabilities wmν(K⊥) in the latter
equations (they are given in the original paper by Potekhin et al. 1999b), but
discuss the results.

4.3.2 c Occupation numbers

Figure 4.7 displays the distribution of atoms over two quantum numbers,
m and ν, for B = 1012 G at two relatively low densities, ρ = 0.001 g cm−3

and 0.1 g cm−3. The left panel shows the relative occupation numbers for the
tightly bound states ν = 0 with different quantum numbers m. The distribution
is broader for higher density. This apparently surprising feature is easily ex-
plained by the presence of the third quantum parameter K⊥. At low densities,
the majority of atoms reside in states with large values of K⊥ because of the
large statistical weight of such states, which all have m = 0 (§4.2.1). At higher
densities, these strongly decentered states are removed by the excluded-volume
(pressure-ionization) effects, and the distribution over m grows broader. Con-
versely, on the right panel we observe a narrower ν-distribution at higher density,
because the excluded-volume effects eliminate hydrogenlike states. Ultimately,
at still higher densities, only the ground centered state survives (m = ν = 0,
K⊥ < Kc).

Figure 4.8 shows the ionization curves at B = 1012 G and T = 106 K.
The heavy solid line represents the total fraction of atoms xH = nH/n0 in all
quantum states, calculated from Eq. (4.64); n0 = nH + np. The thin solid line
shows the fraction of atoms in the ground state (m = ν = 0, but any K⊥), and
the dashed line shows the fraction of atoms in the centered states (K⊥ < Kc,
any m and ν). For reference, triangles display the atomic fraction at B = 0.
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Figure 4.7. Distribution of atomic occupation numbers at T = 106 K for B = 1012 G. The
distribution over the quantum number m at ν = 0 and over ν at m = 0 is shown for two
densities, ρ = 0.001 g cm−3 (hatched histograms) and 0.1 g cm−3 (shaded histograms).

Figure 4.8. Ionization isotherms at B = 1012 G and T = 106 K: The total fraction of atoms
xH = nH/n0 (the thick solid line) and the fractions of ground-state (the thin solid line), centered
(short dashes), and optically identifiable (Inglis-Teller; long dashes) atoms. For comparison,
triangles give xH at B = 0.



Envelopes with strong magnetic fields 201

We see that a strong magnetic field generally increases the neutral frac-
tion. The excited and decentered atoms contribute significantly at low densi-
ties. Since the effective size of the decentered atoms is proportional to K⊥, the
integration in Eq. (4.61) gives roughly Zmν ∝ n

−2/3
0 , and, therefore, x00 de-

creases asymptotically as n
1/3
0 . Because of the broadening of the ν-distribution

(roughly, max ν ∝ n
−1/6
0 ), the low-density wing of the curve for the total

neutral fraction has a slope xH ∝ n
1/6
0 , which is very moderate compared to

xH ∝ n
1/2
0 in the non-magnetic case (triangles).

The centered atoms, whose pseudomomentum is bounded from above by the
critical value Kc, have nearly density-independent internal partition function
at low ρ. Therefore, their fraction behaves as xcen ∝ n0, and they disappear
much faster at low ρ.

At high densities, on the contrary, the decentered states become depleted due
to the excluded-volume effects, so that the dashed line in the figure merges with
the solid one at ρ � 10 g cm−3. At still higher densities, ρ � 102 g cm−3,
all excited states disappear, and only the state m = ν = 0 survives. Because
of the reduced atomic volume, the pressure ionization occurs at densities ρ ∼
102 − 103 g cm−3, orders of magnitude larger than for the field-free case.

Not all neutral atoms that contribute to the EOS may be identified spectro-
scopically (cf. §2.5.1). The interaction of plasma species produces a significant
fraction of clusters. Such clusters contribute to the EOS similarly to atoms, low-
ering the pressure, but their radiation-absorption properties are clearly different
from those of an isolated atom. Therefore, they should be removed from the
neutral fraction used for the calculation of bound-free and bound-bound opac-
ities. Analogously, at low ρ we should not include those highly excited states
that disobey the Inglis & Teller (1939) criterion for the dissolution of spectral
lines under the Stark effect. The “dissolved” lines form an “optical contin-
uum.” The fraction of atoms that are not strongly perturbed by microfields
and, therefore, do exhibit spectral characteristics of isolated atoms can be esti-
mated by generalizing Hummer-Mihalas’s occupation probabilities (Hummer
& Mihalas, 1988) to the case of strong magnetic fields. At every s, ν, and
K⊥, we calculate the “optical” occupation probability wo

νs(K⊥), replacing the
Inglis-Teller criterion by an approximate criterion based on the average atomic
size [Eq. (14) of Pavlov & Potekhin 1995]. Weakly perturbed atoms, which
contribute to the bound-bound and bound-free opacities, constitute a fraction
wo

νs(K⊥)/wt
νs(K⊥) < 1 of the total number of atoms. Here, wt

νs(K⊥) is the
“thermodynamic” occupation probability derived from the free energy. In Fig.
4.8 this “Inglis-Teller” fraction is shown by the long-dashed line. Its rapid
decrease at high densities indicates that atomic spectral features disappear at
ρ ∼ 10 g cm−3, long before the pressure ionization (cf. §2.5.2).
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Figure 4.9. Dependence of the atomic fraction xH (solid lines) and the fraction of optically
identifiable atoms (dashed lines) on the magnetic field strength for ρ = 0.01 g cm−3 (left),
ρ = 10 g cm−3 (right), T = 105.5 K (upper curves), and 106.5 K (lower ones). Triangles show
xH at B = 0.

The B-dependence of the atomic fraction at two values of T and two values
of ρ is shown in Fig. 4.9. The total xH is drawn by solid lines, and the “optical”
(Inglis-Teller) fraction by dashed lines. Triangles on the left panel show the
total fraction of atoms at B = 0 (this fraction is negligible at ρ = 10 g cm−3

on the right panel).
It was stated in early papers (Gnedin et al., 1974; Khersonskii, 1987a; Miller

& Neuhauser, 1991) that the ionization degree decreases with growing B above
∼ 1012 G only at T � 5 × 105 K but increases at higher T . However, Fig. 4.9
does not reveal such an increase. This is an effect of moving atoms, neglected
in the early papers. First, the growth of B increases the effective mass m⊥ and
thus the statistical weight of the centered atoms. Second, at low densities the
internal partition function grows further under the effect of decentered states.

4.3.2 d Equation of state

Figure 4.10 presents four pressure isotherms derived from the free energy
model which was described in §4.3.2 a. For comparison, we also show the
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Figure 4.10. EOS of partially ionized atomic hydrogen at B = 1012 G (solid lines) compared
to the EOS of fully ionized ideal electron-proton plasma at the same B (dotted lines) and the
EOS of partially ionized hydrogen at B = 0 (dashed lines). The temperature logarithms are
(from top to bottom) log T [K]= 6.5, 6.0, 5.5, and 5.0. The vertical line shows the density ρB ,
above which excited Landau levels become populated.

EOS of magnetized, fully ionized ideal gas (§4.1.2) and the non-magnetic EOS
(§2.5.2). The vertical line bounds the region ρ < ρB . Let us first discuss the
low-density regime, ρ � 10 g cm−3. At T � 106 K, all three EOSs converge to
P = (n0 + ne) kBT = 2n0kBT . At lower temperatures, the pressure deviates
from this law because of partial recombination of atoms. As discussed in
the previous section, the strong magnetic field increases the neutral fraction.
Therefore, the pressure is reduced more strongly compared to the field-free
case.

In the intermediate density range, 10 g cm−3 � ρ � ρB , the differences
among the three considered cases are most important. For B = 0, the plasma
is fully ionized in this region, and the electrons become partially degenerate,
making the EOS stiffer. In the strong magnetic field, the electron degeneracy is
reduced (§4.1). Hence the ideal-gas EOS is softer than at B = 0, except for the
densities approaching ρB , where the degeneracy sets in, and the pressure grows
rapidly. The partial recombination and Coulomb non-ideality further decrease
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Figure 4.11. Density exponent χρ = (∂ ln P/∂ ln ρ)T at T = 106 K without magnetic field
(dashed line) and in strong magnetic fields of various strengths (dot-dashed and solid lines).
After Potekhin et al. (1999b).

P . The pressure ionization discussed above has two opposite effects. One is the
positive contribution of free electrons, produced in the course of the ionization,
and the positive non-ideal pressure of neutral species. The opposite effect
is the negative Coulomb contribution. At low T , these effects may cause the
thermodynamic instability (∂P/∂ρ < 0) leading to a phase transition, which we
observe on the isotherm T = 105 K. The second lowest isotherm in the figure
is slightly over the critical one. This is a complete analogue to the plasma
phase transition, which is a first-order phase transition from the low-ionization
state to a high-ionization state of the matter. In our model, it is caused by a
strong Coulomb attraction between electrons and ions. The attraction produces
a negative contribution to the pressure, that cannot be compensated at low
temperatures until the degeneracy sets in. One should not forget, however, that
the plasma phase transition is model-dependent and its reality has not been
proven.1

At higher densities ρ � ρB , excited Landau levels become populated due
to the increase of the Fermi energy. Eventually, at ρ � ρB , the non-magnetic
EOS is recovered.

Figure 4.11 demonstrates the effects of strong magnetic fields on the den-
sity exponent χρ = (∂ lnP/∂ ln ρ)T . Although the pressure approaches the

1At B = 0, the plasma phase transition was first suggested independently by Wigner & Huntington (1935)
and Landau & Zeldovitch (1943). Later it was predicted by several theoretical models (Norman & Starostin,
1968; Ebeling & Richert, 1985; Saumon et al., 1995), but never confirmed in experiment.
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non-magnetic value at ρ > ρB , the effects of magnetic quantization remain
quite prominent for the derivative χρ, as shown by the curve corresponding
to B = 1012 G. A sudden fall of χρ occurs at ρ = ρB . At higher densi-
ties, the field becomes weakly quantizing; it slightly modifies the pressure but
strongly affects its derivative. Consecutive population of excited Landau levels
causes oscillations of χρ around the non-magnetic value. This is an example
of magnetic oscillations described in §4.1.3.

We have discussed the main effects of strongly quantizing magnetic fields on
a partially ionized hydrogen plasma. Other thermodynamic quantities, obtained
in the framework of the present model, experience similar dramatic modifica-
tions. Certainly, such effects are important for theoretical modeling of neutron
star atmospheres.

These new atmosphere models have been constructed by Ho et al. (2003)
and Potekhin et al. (2004). The modelling confirms that partial ionization may
strongly affect spectra of thermal radiation of magnetized neutron stars. For
hydrogen atmospheres, the effects of atomic motion on atomic structure are
crucial and cannot be neglected.



Chapter 5

NEUTRON STAR CORES: NUCLEONS
AND HYPERONS

5.1. Introduction

As we have seen in §3.5, nuclei cannot exist at densities exceeding ∼
(1.5 − 2.0) × 1014 g cm−3. At these densities the matter becomes a uniform
plasma of neutrons, protons, and electrons. Up to ρ ∼ 2ρ0 its properties
can be calculated in a rather reliable way using the methods of the nuclear
many-body theory, which have been applied with some success for the micro-
scopic description of ordinary nuclear structure. At such densities the only
baryons present in the ground state of the matter are nucleons which are in beta
equilibrium with electrons (and muons if the electron Fermi energy exceeds
mµc2 = 105.7 MeV). The shell of the neutron-star core with densities ρ � 2ρ0
is called the outer core. Its matter will be called the npeµ matter. At higher
densities our assumption of the npeµ composition of dense matter can be in-
valid because the matter may contain hyperons. The derivation of the equation
of state (EOS) of the matter composed of nucleons, hyperons, electrons, and
muons will be the topic of the present chapter.

As soon as the density significantly exceeds the normal nuclear density,
the structure and composition of a neutron-star core becomes more uncertain.
Several exotic phases of the matter have been suggested on theoretical grounds.
For instance, the matter can be inhomogeneous, containing a condensate of
pions or kaons, and acquiring a periodic structure. One can also contemplate
a transition to a deconfined quark plasma. For all these phase transitions, the
ground state of the matter can be either in a single (pure) phase at a given
pressure or in a mixed-phase state, in which the thermodynamic equilibrium is
realized by two coexisting phases, their proportion depending on the pressure.
There is a plethora of theoretical possibilities concerning the structure of the
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inner part of neutron star with ρ � 2ρ0; this part is called the inner core.
The hypothetical exotic phases of dense matter and their effect on the EOS of
neutron-star core will be studied in Chapter 7.

The EOS of the core at ρ � (1014−1015) g cm−3 is necessary to construct
the models of neutron stars and calculate their maximum mass Mmax. In its
greatest generality, the problem can be formulated as follows: we are seeking
for the ground state of matter composed of hadrons and leptons. Two charges
are conserved and can be fixed while minimizing the energy: the total electric
charge, set to zero, and the baryonic charge, Ab. After fixing the Hamiltonian
and the volume of the system, we have to calculate a state with minimum
energy per baryon. This state depends only on the average baryon density
nb = Ab/volume.

Calculation of the EOS at ρ � (1014 −1015 ) g cm−3 is an intellectual
challenge. As soon as the density exceeds the normal nuclear density, a theorist
enters an area where the theoretical calculations can be tested exclusively by
neutron star observations. The difficulties are legion: one needs a precise
solution of a many body-problem for a very dense system with strong and
complicated interactions, which are often poorly known. The progress in the
calculation of the EOS is intimately related to the development of the many-
body theory of nuclear matter. In the next two sections we briefly describe the
development of ideas and theories which led to the present models of the EOS
of neutron star cores built of nucleons, hyperons, and leptons.

5.2. Before the discovery of pulsars: 1932–1967
In his classical paper, written before the discovery of the neutron, Landau

(1932) gave an independent derivation of the maximum (Chandrasekhar) mass
limit of white dwarfs and considered the final fate of more massive stars. Lan-
dau argued that such stars cannot have a stable equilibrium configuration of a
white dwarf type and consequently collapse to much higher densities, reach-
ing the densities beyond those of atomic nuclei (see §1.2). Slightly later, a
theoretical study of the composition and EOS of dense stellar matter was pre-
sented by Sterne (1933). He studied thermodynamic equilibrium of the matter
composed of neutrons, protons, electrons, and atomic nuclei.1 Using the today
terminology, we can say that Sterne tried to determine the EOS of catalyzed
matter. He concluded, that in the case of low temperatures, the low-density
catalyzed matter is composed of 56Fe, while at ρ � 2 × 1010 g cm−3 the mat-
ter consists of neutrons only.2 In this way, it has been realized, on theoretical

1Sterne included only a few nuclei, 4He, 12C, 14N, 16O, 56Fe, 214Pb (this last nuclide was called then
214Ra B).
2The most neutron-rich nucleus known was 214Pb, with Z/A = 0.383, so that at ρ > 2.3 × 1010 g cm−3

it was energetically advantageous to replace nuclei by free neutrons.
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grounds, that the compression of the matter during stellar evolution will in-
duce neutronization. As concluded by Sterne (1933) “. . . matter at these high
densities would be literally squeezed together into a form of neutrons.” Be-
cause Sterne assumed thermodynamic equilibrium between matter constituents,
he could avoid a discussion of the mechanism of nuclear transformations (the
Fermi theory of weak interactions, required for studying beta-transformations,
was formulated one year later, in 1934).

While Chandrasekhar’s studies were restricted to white dwarfs, in one of
his papers on this subject he mentions (Chandrasekhar 1935) an unpublished
result of J. von Neumann, who “. . . has shown that the very ultimate EOS for
matter should always be P = 1

3E . . . ”. Now we know that the limiting EOS
of nucleonic matter is P = E (see §5.15 below), but von Neumann’s result is
perfectly valid as a strict limit at ρ −→ ∞, just due to the asymptotic freedom
of the QCD (§7.5). The status of the theory of dense matter by the mid 1930s
was reviewed by Hund (1936). In his review, written after Baade & Zwicky
(1934a) introduced neutron stars in the realm of astronomy, Hund considered
the densities, at which the EOS could be affected by nuclear forces between
nucleons. At that time, the range of nuclear forces was estimated as ∼ 1−10 fm.
Therefore, Hund argued, the nuclear forces become important at such ρ, where
the distance between nucleons is comparable to the range of nuclear forces.
This implies (mn/ρ)1/3 ∼ (10−13−10−12) cm. Thus, the nuclear forces were
expected to become important at ρ ∼ 1012−1015 g cm−3, a very reasonable
estimate from the today perspective.

Oppenheimer & Volkoff (1939) calculated first neutron star models using
the exact form of the equations of hydrostatic equilibrium in General Relativity
which they derived simultaneously with Tolman (1939; see §§1.2 and 6.1) from
the Einstein equations. They assumed the EOS of free Fermi gas of neutrons at
T = 0, getting the maximum mass of neutron stars 0.71M�. This limiting mass
was only one half of the Chandrasekhar mass limit for white dwarfs. Therefore,
they remarked: “Since neutron star core will not tend to form by collapse of
ordinary matter for masses under 1.5 M� (Landau limit),3 it seems unlikely
that static neutron star core can play any great part in stellar evolution . . . ”
They realized, however, that the actual value of Mmax might be much higher
than 0.7 M�, the reason being that “. . . the EOS we have used so far fails to
describe behavior of highly condensed matter.” The authors tried to estimate
the maximum effect of possible repulsive nuclear forces at ρ > 1015 g cm−3

respecting the inequality P < 1
3E , which at that time was thought to be valid

for all physically sound EOSs. The extreme case was P = 1
3E but this did

not significantly increase Mmax. Oppenheimer and Volkoff understood that if

3That is how they called the Chandrasekhar limit.
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P were noticeably larger than 1
3E then Mmax could be noticeably larger than

0.7 M�. However, the lack of knowledge of nuclear forces in 1939 prevented
them from evaluating the effect of nuclear interaction on the EOS.

Any further progress necessitated better knowledge of nuclear structure and
nuclear interactions. A breakthrough in this domain occurred in two decades
following the Oppenheimer-Volkoff paper, but it had no impact on the neutron
star theory, just because the topic was widely considered as “academic”.4 The
studies of the matter at high density were revived by J.A. Wheeler and his
collaborators in the mid-1950s. They considered the end-point of the evolution
of massive stars, the stability of neutron stars, and the gravitational collapse
of massive stellar cores into black holes. Their results were summarized by
Harrison et al. (1958) who introduced the concept of cold catalyzed matter –
a state which realizes the minimum energy per baryon at a given nb. Their
results relevant for neutron-star crusts were mentioned in §3.3. For the EOS
in a neutron-star core, they used the approximation of a non-interacting npe
gas. Therefore, the only progress in two decades after the classical work of
Oppenheimer & Volkoff (1939) was the inclusion of beta equilibrium. It slightly
softened the EOS at ρ = (1014 −1016) g cm−3, yielding Mmax = 0.70 M�
instead of 0.71 M� obtained by Oppenheimer and Volkoff for the model of
pure neutron gas. Harrison et al. (1958) considered also the density range
ρ = (1018−1022 ) g cm−3, where the nucleons should become ultra-relativistic
and np/nn −→ 1/8. Today this result is only of historic interest because we
know that nucleons dissolve into a quark-gluon plasma well before such huge
densities are reached (§7.5).

It was A.G.W. Cameron, a young nuclear theorist at that time, who pointed
out the crucial importance of nuclear forces and evaluated their effect on the
EOS (Cameron, 1959). Cameron used an effective nucleon-nucleon (NN) inter-
action constructed by Skyrme (1959).5 A neutron star matter was approximated
by a gas of neutrons interacting via an effective Skyrme-type potential. This
interaction was of paramount importance as it increased Mmax from 0.7 M� to
2.0 M�. This last value seems quite reasonable today, more than four decades
later! Cameron (1959) discussed also the qualitative effects of the appearance

4An exception was F. Zwicky. A.G.W. Cameron recalling his postdoc academic year 1959-1960 at the
California Institute of Technology (Caltech) reminds (Cameron, 1999) that “For years Fritz (Zwicky) had
been pushing his ideas about neutron stars to anyone who would listen and had been universally ignored. I
believe that part of the problem was his personality, which implied strongly that people were idiots if they
did not believe in neutron stars.” Cameron was one of a few persons who listened.
5The idea of Skyrme was to approximate the effective nuclear interaction in nuclear matter by zero-range
(contact) two-body and three-body forces, with additional momentum-dependent terms representing the
finite range of the interaction. The numerical parameters were to be determined from the properties of
atomic nuclei. These “Skyrme forces” played central role in the development of the many-body theory of
nuclear structure after powerful computers became available in early 1970s. Application of this approach to
a neutron-star crust is discussed in §3.3.1.
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of muons and hyperons. One can only agree with his conclusion that “. . . it
has been very gratifying to find that the upper limit on the mass of neutron
stars is sufficiently large that no difficulty should arise in their formation by
sudden condensation in supernova explosions.” The difficulty pointed out by
Oppenheimer & Volkoff (1939) was therefore removed.

As soon as nuclear forces, tested experimentally in nuclear physics, are
introduced into the EOS, the question whether the model keeps its validity at
ρ � 1015 g cm−3 should be raised. Is this EOS consistent with basic physical
conditions? By 1960, a widely accepted opinion was that an EOS has to satisfy
the condition 3P ≥ E stemming, as it was thought, from the non-negative
character of the trace of the stress-energy tensor T i

i = E − 3P ≥ 0.6 It
was thought that P reaches its upper limit of 1

3E at ρ −→ ∞. The limit
corresponds to any ultra-relativistic free gas. In this limit the speed of sound
is vs = c/

√
3. It is easy to see that the interaction contribution to the EOS of

Cameron (1959) increases so rapidly with growing density that at sufficiently
high ρ the inequality P ≤ E/3 is violated. However, this could be attributed to
a non-relativistic character of the Skyrme forces.

The situation was clarified by Zeldovich (1961) who presented an interaction
model which was compatible with special relativity but led to an EOS that
violated the inequality P < E/3. In his model, one has P � E at sufficiently
high nb (see §5.15 below). Simultaneously, vs � c.7

Cameron (1959) was the first who pointed out that hyperons could be present
in neutron star cores. Salpeter (1960) presented the arguments why Σ− should
appear at lower density than the less massive hyperon Λ0, a feature confirmed
later by detailed calculations (see §5.14). Ambartsumyan & Saakyan (1960)
performed the first detailed calculation of the composition and the EOS of a mix-
ture of free degenerate Fermi gases of baryons, mesons, electrons, and muons in
full thermodynamic equilibrium. They included all baryons and mesons known
at that time. They showed that with the increase of density new hyperons appear
successively, increasing the hyperon fraction in dense matter. Hyperons are un-
stable under terrestrial conditions, but they are stable in a sufficiently dense
matter because of the Pauli exclusion principle, which prohibits their decay
into nucleons. The lowest threshold density, 0.64 fm−3 (1.1 × 1015 g cm−3),
was obtained for the Σ− hyperon. According to Ambartsumyan & Saakyan
(1960), the core of a massive neutron star consists of an inner hyperon core and
an outer nucleon shell. Some effects of strong baryon-baryon interactions on

6See, e.g., §35 of Landau & Lifshitz (1999) and §27 of Landau & Lifshitz (1993). Notice, however, wise
footnotes to these sections stating that “. . . there is as yet no general proof of this inequality valid for all types
of interaction (not only electromagnetic) which exist between particles in Nature.”
7The Zeldovich model of 1961 ignored the quark structure of hadrons. Contemporary theory of dense
hadronic matter predicts the deconfinement of quarks and the asymptotic free-quark gas behavior (vs �
c/

√
3) at ρ −→ ∞, see §7.5.
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the EOS of dense matter were considered by Sahakian & Vartanyan (1963). In
their model, baryons of species j moved in density-dependent potential wells
Uj . After deducing the values of Uj from nuclear matter calculations, and
making rough estimates of Uj for hyperons, they found a strong effect of Uj

on the threshold densities of hyperon creation. For example, Σ− appeared at
nb = 0.21 fm−3 in their model, to be compared with 0.64 fm−3 in the case of
the free Fermi gas.

Tsuruta & Cameron (1965) studied the effect of nuclear interactions on the
EOS of dense matter using two phenomenological interaction models, based
on the Levinger & Simmons (1961) nucleon-nucleon (NN) potential. The first
hyperon (Σ−) appeared at 1015 g cm−3. The dependence of the EOS on the
assumed baryon-baryon (BB) interaction model was very strong. For a more
repulsive potential Vα they got a rather stiff EOS yielding Mmax = 2 M�, while
for a softer Vβ potential they obtained Mmax = 1 M�. They stated that this
difference measured “. . . the basic uncertainty in the properties of the neutron-
star models due to our lack of knowledge of nuclear forces.” It is interesting
to note an obvious scepticism of Harrison et al. (1965) with respect to models
of nuclear interactions and introduction of hyperons. At ρ > 1014 g cm−3, the
Harrison-Wheeler EOS (Chapter 10 of Harrison et al. 1965) assumed a mixture
of free Fermi gases of neutrons, protons, and electrons. In this way, their EOS
predicted Mmax = 0.7 M�. They wrote: “. . . to estimate the pressure-density
relation in detail is out of the question at this time when it is difficult even to
give a theoretical account good to 50 percent of the absolute binding energy
of nuclear matter at normal density!” This illustrates their real opinion on the
potential of nuclear theory at that time.

It is fair to say that before the discovery of pulsars neutron stars were mostly
considered as exotic (very questionable) stellar objects connected with funda-
mental unsolved problems of nuclear and particle physics and posed by the need
to formulate the theory of matter at ρ = (1014−1016) g cm−3.8 It is therefore
not surprising that during the long period from 1932 to late 1950s the number
of researchers who worked on neutron stars was small; the number of papers
was not much larger than the number of years elapsed since the discovery of
the neutron. The interest in neutron stars began to raise in the mid 1960s with
the advent of the X-ray astronomy.

8An example is a fundamental problem of relevance of the quark structure of baryons to the structure of
neutron star cores. It was first raised by Ivanenko & Kurdgelaidze (1965, 1969) who considered quark
cores of neutron stars. Using thermodynamic (energy) arguments they studied a transition from the matter
composed of the ultra-relativistic baryons to the matter built of massive non-relativistic quarks.
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5.3. After the discovery of pulsars: 1968–2005
The discovery of pulsars and their identification as neutron stars (see §1.2)

changed the problem of the EOS at ρ = (1014−1016) g cm−3 from academic
to urgent. The dense matter and neutron stars immediately became timely
and attractive albeit difficult areas of research. The number of papers increased
enormously. Therefore, the review given below is but a very brief account of the
progress made in the period from 1968 to 2005. The studies can be subdivided
in various ways, but the two basic subdivisions are: according to the physical
model and according to the method of solving the many-body problem.

The methods of calculating the ground state of matter at ρ > 1014 g cm−3

are described in §5.9. The main methods are based on: perturbation expansion
within the Brueckner-Bethe-Goldstone theory (BBG, §5.9.1), perturbation ex-
pansion within the Green’s-function theory (GFT, §5.9.2), variational method
(§5.9.3), relativistic mean-field model (RMF, §5.9.4), and effective energy-
density functionals (§5.9.5).

In the present section, as in the whole chapter, we restrict ourselves to two
physical models of neutron star matter. We will start with the simplest (“min-
imal”) model where the basic hadronic constituents are well known from ter-
restrial physics: neutrons and protons. They form nuclear matter of atomic
nuclei. Then, we will review models allowing for the presence of hyperons.
These baryons are also studied in laboratory. The lightest hyperons form, to-
gether with nucleons, hypernuclear matter of hypernuclei.

5.3.1 Nucleons
At ρ ∼ ρ0 the proton and electron fractions are much smaller than 10%

(§5.12). In the first approximation one can replace neutron-star matter by a
purely neutron matter. This EOS has been calculated by many authors. The
BBG theory was used by Siemens & Pandharipande (1971) starting from the
Reid soft-core NN potential (Reid, 1968) and by Buchler & Ingber (1971)
with the Ingber NN potential (Ingber, 1968). A lowest-order (with additional
constrains) variational calculation of Pandharipande (1971a), as well as an im-
proved variational scheme of Pandharipande & Bethe (1973), gave systemat-
ically higher energy per nucleon than the BBG theory. By the end of 1970s,
it became clear that the difference between the BBG and variational results
was due to unjustified approximations used in both theories; the results con-
verged after adding most important higher-order terms in the energy per nucleon.
The remaining uncertainties resulted mainly from the poorly known three-body
(NNN) forces in the nuclear Hamiltonian (see Friedman & Pandharipande 1981;
Wiringa et al. 1988). The impressive paper of Wiringa et al. (1988) and their
results on the EOS of neutron matter has remained a standard for other calcula-
tions of neutron matter for many years. An unpleasant feature of their EOS was
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that at ρ = 3ρ0 more than half of the calculated energy per nucleon resulted
from poorly known and phenomenologically treated NNN forces (see §5.5.2).

The next step – the calculation of the EOS of the npeµ matter in beta equi-
librium – could be done easily, using the results obtained for the ground-state
energy of asymmetric nuclear matter (uniform neutron-rich mixture of nucle-
ons). A strong dependence on a nucleon-nucleon interaction potential, clearly
seen in the beginning of 1970s, significantly diminished as soon as more re-
alistic NN potentials have become available reproducing with high precision
more accurate NN scattering data. In the late 1980s the most sophisticated and
apparently most reliable calculations of the ground state of the npeµ matter,
based on realistic NN and NNN interactions, implied a rather stiff EOS, with
Mmax � (1.9 − 2.1) M�. The 1990s witnessed the progress in two important
aspects. First, new NN interactions, which satisfactorily reproduce new very
precise and complete NN scattering data, have become available (Stoks et al.,
1994; Wiringa et al., 1995; Machleidt et al., 1996). Second, a huge increase of
the computational power has enabled one to produce much more precise BBG
and variational calculations. The BBG calculations included the effect of the
NNN forces, and also allowed one to evaluate the higher-order contributions
(three-hole-line diagrams etc., — see, e.g., Baldo & Burgio 2001, and references
therein). Moreover, the BBG calculations were frequently performed within a
relativistic formulation, with a direct use of the field-theoretic meson-exchange
NN interactions. The variational calculations included the leading relativistic
effects (boost corrections to the NN interaction) which reduced the effect of the
NNN forces on the EOS. The progress consisted also in a more precise treat-
ment of correlations and higher-order terms in the ground-state energy. The
advance made in the decade after Wiringa et al. (1988) was summarized in the
monumental paper of Akmal et al. (1998).

Since the 1970s, only a few calculations of the EOS have used the Green’s
function formalism of the many-body theory (§5.9.2). This theory is of great
beauty, and has an advantage of a natural relativistic formulation. Therefore, it
can also be used with field-theoretic meson-exchange models of strong inter-
actions. However, actual calculations of the EOS using this method have been
based on very rough approximations (ladder approximation, §5.9.2), and have
not reached the precision and completeness of the most sophisticated BBG
and variational calculations, especially as far as the evaluation of important
higher-order corrections is concerned.

A different kind of many-body theory, the RMF model, was formulated in the
classical paper of Walecka (1974), and further developed and extended by other
authors (e.g., Serot 1977; Boguta & Bodmer 1977; Glendenning et al. 1983a,b;
see §5.9.4). Since the 1970s the various versions of the RMF model have been
applied to calculations of the EOS. The basic object of the RMF model is an
effective Lagrangian describing the nucleon interactions via coupling to meson
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fields. The most complete RMF calculations, based on models consistent with
experimentally measured properties of nuclear matter (§5.9.4), lead to stiff
EOSs, giving typical Mmax above 2 M�.

As for the time of this writing (2006), the most precise many-body calcu-
lations of the npeµ matter in beta equilibrium, starting from realistic NN and
NNN interactions, give a rather stiff EOS. It is very comforting that the EOSs
obtained within the BBG theory and variational theories (basically different
many-body theories, employing different up-to-date NN interactions) do not
differ much. The largest differences occur at highest ρ � 1015 g cm−3, and
result in a scatter of Mmax = (1.9 − 2.2) M�.

5.3.2 Nucleons and hyperons
The inclusion of hyperons has been a great challenge since the very be-

ginning. The first difficulty resulted from the complicated multi-component
character of the strongly interacting baryon matter. In principle, it could be
overcome using sufficiently powerful computers. The second difficulty was
much harder: a poor knowledge of the nucleon-hyperon (NH) interaction and a
lack of knowledge of the hyperon-hyperon (HH) interaction. Some researchers
have been trying to overcome this problem by exploiting approximate symme-
tries of strong interactions. Langer & Rosen (1970) used an effective baryon
Hamiltonian. They approximated the NH and HH interactions by the NN ones
(the same as in Tsuruta & Cameron 1966b) in the same spin and isospin chan-
nels. The ground state was calculated in the Hartree-Fock approximation. The
calculations included nucleons, Σ, Λ, Ξ hyperons, and ∆ resonances; all of
them were found present in neutron-star matter at ρ � 1.2× 1015 g cm−3. The
∆ resonances were treated as individual particles.9 Σ− hyperons appeared at
an unrealistically low density ρ ∼ ρ0.

The first application of the variational method to the multi-component bary-
onic matter was done by Pandharipande (1971b), who obtained a very soft
EOS yielding Mmax = 1.4 M�. Generally, the results were very sensitive
to the (very poorly known) hyperonic (NH and HH) interactions and to the
calculational scheme (in particular, to the type of correlations included in vari-
ational trial wave functions). For example, Pandharipande & Garde (1972)
included tensor correlations in trial wave functions and found no hyperons even
at nb � 1 fm−3!

9The inclusion of ∆ resonances as real constituents of dense matter is not evident. In vacuum, ∆ decays
via strong interactions and is a resonant state with spin 3/2 and isospin 3/2, produced in the nucleon-pion
scattering (its energy half-width is 120 MeV, about 10% of the mass-energy). In contrast, ∆ resonances
may naturally appear as virtual particles in intermediate states, contributing to NN and NNN interactions
(§§5.6 and 5.5.2; particularly, Figs. 5.3 and 5.2). Sawyer (1972a) found a large positive energy shift of the
∆ isobars in dense matter, due to the presence of filled virtual isobar states. According to his calculations,
this shift prohibits the appearance of ∆ isobars at ρ � 1016 g cm−3.
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To a large extent, the differences between the various EOSs of hyperonic
matter were due to different NN, NH and HH interactions employed. Using the
variational method Bethe & Johnson (1974) studied this interaction-dependence
within a set of their five phenomenological baryon-baryon (BB) potentials.
They used meson-exchange type models to construct various components of
their BB potentials and required that hyperonic potentials should be consistent
with experimental data on the properties of hypernuclei. The first hyperon (Σ−)
appeared at ρ ∼ 3ρ0. As demonstrated by Malone et al. (1975), the scatter
of the stiffness of the Bethe-Johnson EOSs results in the scatter of Mmax =
(1.65−1.85) M�.

Because of the computational complexity, full self-consistent BBG calcu-
lations of the hyperonic matter were not feasible in the 1970s. Moszkowski
(1974) used density-dependent G-matrices of the BBG theory of asymmetric
nuclear matter. Employing the quark model of baryons, he expressed GHN and
GHH in terms of GNN .10 Independently of the specific form of his model, Σ−
hyperons appeared at a lowest density. However, the composition of the matter
at ρ ∼ 1015 g cm−3 was very model dependent. Balberg & Gal (1997) used a
phenomenological approach and constructed an energy-density functional for
the baryon matter of nucleons, Σ, Λ, and Ξ hyperons. The parameters of their
model were adjusted to experimental nuclear matter parameters and experi-
mental data on hyperons and their interactions (in hypernuclei). Using their
energy-density functionals, Balberg and Gal calculated several EOSs of dense
matter. Some of their models included a strongly repulsive component of the
ΣN interaction, suggested by experiments in the 1990s. In these models, Σ−
hyperons did not appear in neutron star cores.

Extensive calculations in the framework of the RMF model (§5.9.4) were
done by Glendenning (1985). The parameters of the nucleon component of the
effective Lagrangian were fixed by fitting the experimental parameters of nu-
clear matter at the saturation point. However, the parameters of the hyperonic
component were not strongly constrained by experiments. Therefore, the choice
of several sets of phenomenological constants describing the coupling of hype-
rons to mesons was, to a large extent, based on arguments of strong-interaction
symmetry. First hyperons appeared at ρ ∼ 2ρ0; at ρ ∼ 5ρ0 the hyperons consti-
tuted a sizable fraction of baryons and the matter became a “baryon soup”. An
inclusion of hyperons softened the EOS compared to that containing nucleons
alone. Further calculations using various versions of the relativistic mean field
model were performed by many authors (see, e.g., Glendenning et al. 1992,
Knorren et al. 1995, Schaffner & Mishustin 1996; §5.9.4).

10Our convention is that Roman symbols N and H are abbreviations for “nucleon” and “hyperon”, while
italic symbols N and H label baryon species: N = n, p and H = Λ, Σ−, Ξ0,. . .
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In the simplest version of the Green’s function theory (the ladder approx-
imation, see §5.9.2) the calculations of the ground-state energy of the multi-
component baryonic matter are a straightforward generalization of the nucleon
matter case. Calculations of such an EOS were done, e.g., by Weber & Weigel
(1989a,b).

In the 1990s, computational power became sufficient to perform self-
consistent BBG calculations of the EOS for baryon matter containing nucleons
and hyperons. Preliminary calculations with two different baryon-baryon po-
tentials were carried out by Schulze et al. (1998); they were mostly focused
on conditions relevant for terrestrial hypernuclear physics. Calculations of
the EOS of baryonic matter in beta equilibrium at densities appropriate for a
neutron-star core were done by Baldo et al. (2001), Vidaña et al. (2000a,b), and
Nishizaki et al. (2002). Uncertainties of such EOSs resulted mainly from poor
knowledge of NH and HH interactions (these interactions were constrained by a
limited experimental information on HN scattering and on the physics of hyper-
nuclei). The lack of data on three-body forces involving hyperons contributed
additionally to the uncertainty in the EOS.

The best calculations performed by the time of this writing (2006) indicate
that the presence of hyperons leads to a significant softening of the EOS of a
neutron-star core (with respect to the npeµ case). This softening implies the
lowering of the maximum neutron-star mass Mmax by about (0.3 − 0.5) M�,
compared to neutron-star models with purely nucleonic cores. Therefore, we
expect, on theoretical grounds, that neutron stars with hyperonic cores have
Mmax � (1.8−1.9) M�.

5.4. The properties of nuclear matter
Any many-body theory of neutron-star matter has to reproduce empirical

data on bulk nuclear matter. Roughly speaking, the nuclear matter is what the
heavy atomic nuclei are built of. Strictly speaking, it is an idealized infinite
uniform system of nucleons, where the Coulomb interaction is switched off.
The notion of the nuclear matter appears naturally within the Liquid Drop
Model of nuclei, if we put ECoul = 0 and pass to the limit of A −→ ∞.
In this limit, the energy per nucleon, E, depends only on the neutron and
proton densities. It is convenient to express this dependence in terms of the
nucleon density nb and the asymmetry parameter δ = (nn − np)/nb, so that
nn = (1 + δ)nb/2, np = (1 − δ)nb/2. Charge symmetry of nuclear forces
(see, e.g., Preston & Bhaduri 1975) implies that E(nb, δ) = E(nb,−δ), i.e., E
does not change if protons are replaced by neutrons and vice versa. The case of
δ = 0 corresponds to symmetric nuclear matter, while for δ = 1 we are dealing
with neutron matter. The case of the symmetric nuclear matter is especially
simple: in view of charge symmetry of nuclear forces this matter can be treated
as a many-body system composed of one kind of particles – nucleons. Small
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effects of charge-symmetry breaking, like neutron-proton mass difference or
charge-symmetry breaking terms in the NN interaction can be neglected (see
Haensel 1977, for a detailed discussion of these effects). The symmetric nuclear
matter is the simplest approximation of the bulk nuclear matter in heavy atomic
nuclei. The effects of small δ > 0 (quadratic in δ because of charge symmetry
of nuclear forces) can be considered as corrections to the leading δ = 0 term.
Typically, one has δ2 � 0.04, for terrestrial nuclei, and the symmetric nuclear
matter is then a reasonable approximation. On the other hand, a pure neutron
matter, which is a one-component system, is the simplest approximation of the
matter in a neutron star core. However, in general case one should deal with a
two-component system.

Since the end of the 1950s, nuclear matter calculations represent the testing
ground of nuclear many-body theories (the present status of these theories is
described in Baldo & Burgio 2001). Calculations yield the energy per nucleon,
E, versus the nucleon number density nb. In this section, we will not include
the nucleon rest energy into E. Some examples of E(nb) are shown in Fig. 5.1.
They are calculated for a specific model of nuclear matter, but their qualitative
features are generic.

The minimum of the E(nb) curve for symmetric nuclear matter (δ = 0)
corresponds to a bound equilibrium state at zero pressure. The values of E and
nb at this minimum will be denoted by E0 and n0. Since P = n2

b dE/ dnb, the
dotted segment corresponds to negative pressure and is therefore not interest-
ing. The solid segment gives E(nb) for symmetric nuclear matter compressed
to a density nb > n0. As clear from Fig. 5.1, B0 = −E0 is the maximum
binding energy per nucleon in nuclear matter. The binding energy per nucleon
B(A, δ) in a self-bound (i.e., bound under zero pressure) system of A nucle-
ons with a nonzero neutron excess parameter δ will be smaller than B0. The
value of B(A, δ) will tend to B0 from below, if A −→ ∞, δ −→ 0, and the
Coulomb forces are switched off. Simultaneously, the mean number density of
the system will tend to n0. This property, resulting from the interplay of the
short-distance repulsion and the long-distance attraction in the NN interaction,
is called saturation; B0 = −E0 is called the binding energy at saturation, and
n0 is the saturation density.

First let us consider the case of small δ and small (nb−n0)/n0, characteristic
of terrestrial nuclei. Keeping only the quadratic terms,11 we get

E(nb, δ) � E0 + S0 δ2 +
K0

9

(
nb − n0

n0

)2

, (5.1)

11The linear term Eaδ resulting from charge-symmetry breaking in NN interaction can be neglected because
of the smallness of Ea (Haensel 1977)
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Figure 5.1. Energy per nucleon versus baryon number density for symmetric nuclear matter
(δ = 0), asymmetric nuclear matter with δ = 0.4 (such an asymmetry corresponds to the
neutron-drip point in a neutron star crust and to a central core of a newly born protoneutron
star), and pure neutron matter (δ = 1). Minima of the E(nb) curves are indicated by filled
dots. Dotted segments correspond to negative pressure. Calculations are performed for the SLy4
model of effective nuclear Hamiltonian, which was used to calculate the SLy EOS by Douchin
& Haensel (2001). It yields n0 = 0.16 fm−3 and E0 = −16.0 MeV.

where S0 and K0 are, respectively, the nuclear symmetry energy and incom-
pressibility at the saturation point,12

S0 =
1
2

(
∂2E

∂δ2

)
nb=n0, δ=0

, K0 = 9
(

n2
b

∂2E

∂n2
b

)
nb=n0, δ=0

. (5.2)

The symmetry energy S0 determines the increase in the energy per nucleon due
to a small asymmetry δ; the incompressibility K0 gives the curvature of the

12A traditional factor of nine in the definition of K0 is introduced for historical reasons. In the original
definition of K0 the energy per nucleon in the symmetric nuclear matter was treated as a function of a
common Fermi momentum (in units of �) for neutrons and protons, kF, related to nb via nb = 2k3

F/(3π2).
This resulted in K0 ≡ (k2

FdE/ dk2
F)kF=kF0 and produced a factor of nine while replacing the derivative

with respect to kF by the derivative with respect to nb.
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E(nb) curve at nb = n0 and the associated increase of the energy per nucleon
of the symmetric nuclear matter due to a small compression or rarefaction.

The values of B0, n0, S0, and K0 can be extracted from experimentally
measured nuclear masses. The uncertainties in the empirical values of these
parameters result from the ambiguities of semi-empirical mass formulae, used
to reproduce thousands of nuclear masses (e.g, Myers 1976; Groote et al.
1976; Seeger & Havard 1976; Bauer 1976; Jänecke 1976). One obtains
n0 = 0.16 ± 0.01 fm−3 and B0 = 16.0 ± 1.0 MeV. It is more difficult to
extract S0, because of the ambiguity in separating the bulk and surface sym-
metry terms in binding energies. Thus, the uncertainty of the empirical value
is rather large, S0 = 32 ± 6 MeV. The extraction of K0 from experimental
data is even more complicated. Analyses of isoscalar giant monopole modes in
heavy nuclei, summarized by Blaizot (1980), suggested K0 = 210 ± 30 MeV.
A more recent analysis, based on precise measurements of the properties of
giant monopole resonances in 90Zr, 116Sn, 144Sm, and 208Pb (excited by in-
elastic scattering of α particles), yields K0 = 231 ± 5 MeV (Cavedon et al.,
1987; Youngblood et al., 1999). This result is consistent with another recent
determination, K0 ≈ 234 MeV, by Myers (1998) using a phenomenological
Thomas-Fermi model fitted to measured nuclear masses and diffusenesses of
the nuclear surface.

The last parameter discussed in this section is the nucleon effective mass,
m∗, calculated at the Fermi surface in saturated symmetric nuclear matter. It
can be evaluated theoretically from the momentum dependence of the nucleon
quasiparticle energy εk via

( dεk/ dk)k=kF
= �

2kF/m∗ . (5.3)

The notion of a nucleon quasiparticle is naturally introduced while considering
low-lying excitations of nuclear matter. Such excitations can be treated in terms
of quasiparticles (with number density � nb) of energy εk, where �k is the
quasiparticle momentum. The value of m∗ enters the density of quasiparticle
states (per unit energy and volume) at the Fermi surface (taking into account
spin and isospin degeneracies),

( dNε/dε)ε=εF
= 2m∗kF/(π2

�
2) (5.4)

(where Nε is the number of states with the energies below ε).
A determination of m∗ from nuclear physics experiments is a complicated

task, because of the coupling of quasiparticle states with nuclear surface vi-
bration modes. The nuclear matter value of m∗ at saturation is evaluated as
m∗ � 0.8m (see, e.g., Onsi & Pearson 2002 and references therein).
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5.5. The Hamiltonian
The Hamiltonian should contain contributions of separate constituents of

dense matter and their interactions. In principle, it should be given by the quan-
tum chromodynamics (QCD). The electromagnetic interaction is negligible for
the EOS, and the weak interaction enters the problem only indirectly by open-
ing some channels for reaching the ground state of the matter. Assuming zero
temperature, we should determine the ground state of a system; this is a basic
quantum-mechanical problem. In a language of statistical physics we should
find the equilibrium (most stable) state at a given nb and T = 0.

Unfortunately, this project cannot be realized explicitly. We have to use an
effective theory, where quark degrees of freedom are not treated explicitly but
are replaced by hadrons – baryons and mesons – in which quarks are confined.
As the hadronic Hamiltonian cannot be presently derived from the QCD, we
have to use phenomenological models of strong (hadronic) interaction, based
partly on mesonic theories, where strong interaction between hadrons is mod-
eled by the exchange of mesons. Most refined and complete phenomenological
models have been constructed for the NN interactions. They have been tested
using thousands of experimental data on NN scattering cross sections supple-
mented with experimental deuteron (2H) properties. Experimental information
on the NH and HH interactions is restricted to the lowest-mass hyperons Λ and
Σ. It is mainly obtained from studies of hypernuclei. As for other hadrons, their
interaction models are incomplete and plagued by uncertainties due to scarcity
(or non-existence) of experimental data.

As we know now, two-body hadronic interactions yield only a part of the
hadronic Hamiltonian of dense matter. At ρ ∼ 1015 g cm−3, interactions in-
volving three and more hadrons are important. Our experimental knowledge
of three-body interaction is restricted to nucleons. The three-nucleon (NNN)
force is necessary to reproduce properties of 3H and 4He and to obtain correct
parameters of symmetric nuclear matter at saturation.

In view of such a high degree of our ignorance, it seems reasonable to start
with a model which is the simplest, and not obviously wrong. Such a “min-
imalistic” approach consists in extending the npeµ model to ρ � 2ρ0. The
calculated EOS has to be confronted with observations, to see whether it is
sufficient to explain observational data. After fulfilling this minimal program,
we can try richer models, including hyperons and exotic phases of hadronic
matter. Whatever model of dense matter we assume, we should calculate its
ground state as a function of density.

5.5.1 Phenomenological nucleon-nucleon interaction
Since the dawn of nuclear physics the determination of forces which bind

atomic nuclei has been a central problem for experimentalists and theoreticians.
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In its most basic formulation, the problem consists in determining the nucleon-
nucleon potential which would explain the nucleon-nucleon scattering data and
the properties of 2H. It has turned out to be a very difficult task. Bethe (1953)
estimated that during the preceding 25 years more hours of human work had
been devoted to this problem than to any other scientific problem.

Present phenomenological NN potentials fit very precisely a few thousand of
NN scattering data in the energy range up to 350 MeV (in laboratory reference
frame). At higher energies, non-elastic processes of pion production switch on
and the potential model represented by a Hermitian operator becomes mean-
ingless.

The complexity of the NN interaction was realized very early. In 1939
Rabi and collaborators discovered that 2H has a non-zero electric quadrupole
moment. It indicated the presence of tensor forces which couple nucleon spins
and relative spatial coordinates (Kellogg et al., 1939). Now we know that the
NN potential depends on many quantities characterizing a two-nucleon system.
These quantities enter via operator invariants consistent with the symmetries
of strong interactions. For an ij pair of interacting nucleons these quantities
are represented by the following operators: the relative position vector rij =
ri −rj ; spins σi and σj (in the units of �/2); isospins τi and τj (in the units of
1/2); the relative momentum p̂ij = p̂i−p̂j ; the total orbital angular momentum
L̂ = rij × p̂ij and its square L̂2 in the center-of-mass system. Let us introduce
also the operators of the total spin Ŝ = 1

2(σi + σj) (in units of �) and the total
isospin T̂ = 1

2(τi +τj), which act in spin and isospin spaces, respectively. The
tensor coupling enters via the tensor operator

Ŝij = 3(σi · nij)(σj · nij) − σi · σj , (5.5)

where nij = rij/rij , and the spin-orbit coupling enters via L̂ · Ŝ. Both
couplings are necessary for explaining experimental data.

The NN potential acting between a nucleon pair ij is a Hermitian operator
v̂ij in coordinate, spin, and isospin spaces. The operator v̂ij commutes with
Ĵ = L̂ + Ŝ, T̂ 2, and Ŝ2, which leads to vanishing matrix elements of v̂ij

between states with different (JST ). However, because of the tensor force,
the S = 1 (spin triplet) states with different L = J ± 1 can mix. The Pauli
exclusion principle allows only for two-nucleon states with an odd value of the
sum L + S + T .

The form of v̂ij , which is sufficiently general to reproduce the wealth of NN
scattering data, is

v̂ij =
18∑

u=1

vu(rij)Ôu
ij , (5.6)
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where the first fourteen operators are charge-independent, i.e., invariant with
respect to rotation in the isospin space:

Ôu=1,...,14
ij = 1, τi · τj , σi · σj , (σi · σj)(τi · τj) , Ŝij , Ŝij(τi · τj) ,

L̂ · Ŝ , L̂ · Ŝ(τi · τj) , L̂2 , L̂2(τi · τj) , L̂2(σi · σj) ,

L̂2(σi · σj)(τi · τj) , (L̂ · Ŝ)2 , (L̂ · Ŝ)2(τi · τj) . (5.7)

The form of v̂ij , Eq. (5.6), is still quite restrictive, because apart from the
angular-momentum dependent terms, the interaction is local, i.e., depends only
on rij . Non-local NN interactions derived within meson-exchange models will
be discussed in §5.6.

The terms with Ôu=15,...,18
ij are small and break charge independence; they

are not invariant with respect to a rotation in the isospin space. The charge inde-
pendence corresponds to vnp(T = 1) = vnn = vpp, while the charge symmetry
implies only that vnn = vpp. Modern fits to very precise nucleon scattering data
indicate the existence of charge-independence breaking. However, the effect
of forces, which break charge-independence, on the energy of nucleon matter
is much smaller than uncertainties of many-body calculations, and such forces
can be neglected while constructing the EOS.13

It is well known that the long-range part of v̂ij results from one-pion exchange
and has a range of �/mπ � 1.4 fm. Therefore, one can write

v̂ij = v̂π
ij + v̂IS

ij , (5.8)

where v̂π
ij is a one-pion exchange part and v̂IS

ij is a phenomenological intermedi-
ate- and short-range (IS) component. For a given pair of nucleons (ij = nn, pp,
or np), v̂π

ij involves only operators σi ·σj and Ŝij (see, e.g., Preston & Bhaduri
1975, §5–11 ).

5.5.2 Three-body interaction
Calculations show that the two-body interactions which satisfactorily repro-

duce NN scattering and 2H properties, give the binding energies of 3H and 4He
systematically lower than experimental ones. This indicates the necessity of
introducing three-body interaction into the nuclear Hamiltonian. The under-
binding of light nuclei can be corrected by introducing three-body forces. As
we will see later, four and more-body interactions are not needed.

13Some charge dependence of nuclear force is already seen on the one-pion exchange level, resulting from
the difference between charged- and neutral-pion masses, mπ±c2 = 139.57 MeV, mπ0c2 = 134.97
MeV. Other theoretical predictions of charge asymmetry are related to intermediate- and short-range parts
of nuclear interaction and are based, e.g., on the mixing of heavy mesons, like the ρ − ω-mixing (see, e.g.,
Langacker & Sparrow 1982; Coon & Barrett 1994; Coon & Scadron 1994).
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Figure 5.2. Some meson-exchange Feynman diagrams describing processes contributing to
NNN and four-nucleon interactions. Time goes upwards. Thin vertical solid lines: nucleon
states. Thick vertical segments: ∆ resonance in intermediate states. Dashed horizontal lines:
exchanged mesons.

On the other hand, it is known that realistic two-body forces saturate the
nuclear matter at a too high density. In other words, they produce the minimum
in the energy per nucleon versus nucleon density at a density significantly higher
than 0.16 fm−3. The three-body interaction can correct this, provided it supplies
a repulsion which increases rapidly with the growth of nucleon density.

The three body interaction V̂ijk depends on spatial, spin, and isospin coordi-
nates of three nucleons and cannot be reduced to a sum of two-body interactions
involving these coordinates. In the meson theory of nuclear forces, a three body
interaction appears naturally at the level of two-pion exchange (§5.6.1). This
suggests a decomposition used in constructing the so called Urbana models
UVII and UIX of the NNN interaction (Schiavilla et al., 1986; Pudliner et al.,
1995). In those models, in analogy with the two-body interaction, whose long-
range part is given by the one-pion exchange, the NNN interaction between
three nucleons ijk is written as

V̂ijk = V̂ 2π
ijk + V̂ IS

ijk . (5.9)

The two-pion exchange part corresponds to the diagram (a) in Fig. 5.2, while
the IS (Intermediate and Short range) part is phenomenological. The two-pion
exchange part dominates at low densities and provides an additional binding
for the 3H and 4He nuclei. The IS part is repulsive and supplies a repulsion
at higher densities needed to saturate the symmetric nuclear matter at lower
density; this part is insignificant in low-density systems such as light nuclei.
Phenomenological constants are chosen to give the best overall fit to the bind-
ing energies of 3H and 4He, and to saturation properties of nuclear matter.
Older model of the NNN force of Lagaris & Pandharipande (1981b), called
TNI (Three Nucleon Interaction), did not separate the two-pion exchange part.
It was fully phenomenological and explicitly depended on nucleon density and
neutron excess. Its parameters were calculated by fitting experimental satura-
tion properties of nuclear matter. The phenomenological character of the IS
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component of the NNN interaction has practical advantage: in fact, this term
mimics additionally the contribution of four-nucleon and higher-order forces in
the nuclear Hamiltonian, which turn out to be important at high densities. More
sophisticated models of the NNN interaction based on the boson-exchange the-
ory of nuclear forces were constructed by Coon et al. (1984); Coelho et al.
(1983); Coon & Peña (1993). They were used in microscopic calculations of
3H and 4He. However, because of their purely three-body character and the
lack of phenomenological parameters they are not very useful for modelling
the high-density nucleon matter.

Some examples of Feynman diagrams (diagrams (c) and (d)), which represent
meson-exchange contributions to the four-nucleon interaction, are shown in Fig.
5.2. By analogy with the NNN force, the magnitude of the four-nucleon force
can be evaluated by studying A = 4 nuclei. Let us consider the interaction
part of the nuclear Hamiltonian consisting of the two-body part V̂ (2) and the
three-body part V̂ (3) and assume that it reproduces NN data (NN scattering and
deuteron properties) as well as the properties of A = 3 nuclei. A natural strategy
is to check how well does V̂ (2)+V̂ (3) reproduce the binding energy of 4He. The
difference between the calculated and experimental binding energies of 4He,
Bcalc and Bexp, should then be attributed to the four-nucleon force, absent in the
adopted Hamiltonian. Such a program was carried out using precise solutions
of the four-nucleon problem. The difference Bcalc − Bexp turned out to be
negligibly small. For example, for the Argonne AV18 two-nucleon and Urbana
UIX three-nucleon forces one gets |Bcalc − Bexp|/Bexp < 1% (Nogga et al.,
2000), which means that there is no need to introduce the four-nucleon force
on the phenomenological level. This can be contrasted with the NNN force
which is clearly needed to correct parameters of A = 3 nuclei calculated using
the NN force alone. Four-body forces in dense matter are indirectly included
through a density dependence of the IS component of the NNN force.

5.5.3 Relativistic corrections and three-body interaction

The NN potential is non-relativistic. It was fitted to NN scattering data,
reduced to the center-of-mass reference frame, and it was constructed in that
particular frame with vanishing total momentum of an ij pair, P = 0. The
interaction in any other frame, where P �= 0, will differ from that in the center-
of-mass frame by the so-called boost interaction δv̂ij(P ). The relativistic
corrections are obtained via expansion in powers of v/c, where v is a nucleon
velocity. The boost interaction is well known for the Coulomb potential. By
including terms ∼ (v/c)2, it yields the Breit-Coulomb formula for the elec-
tromagnetic interaction of two charged particles (see, e.g., §83 of Berestetskiı̆
et al. 1982). A general formula for δv̂, quadratic in v/c, was derived by Friar
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(1975):

δv̂ = − P̂ 2

8m2c2 v̂ +
1

8m2c2

[
(P̂ · r) (P̂ · ∇), v̂

]
+

1
8m2c2

[(
(σi − σj) × P̂

)
· ∇, v̂

]
, (5.10)

where ∇ ≡ ∇i+∇j , P̂ = −i�∇ is the total (nucleon pair) momentum operator,
and [â, b̂] ≡ âb̂ − b̂â. Putting the boost term into the nucleon Hamiltonian ĤN,
one gets a new Hamiltonian Ĥ∗

N which includes all the terms quadratic in the
nucleon velocities. However, parameters of the NNN interaction should be
refitted to experimental binding energies of 3H and 4He, and to nuclear matter
data. Actually, only the IS part of the NNN interaction is modified by the
presence of the boost interaction. The “boost-corrected” V̂ IS∗

ijk turns out to be

significantly weaker than V̂ IS
ijk. For example, the strength of the IS component

of the UIX∗ is by ∼40% smaller than the strength of the UIX NNN interaction
(Akmal et al., 1998). Consequently, the introduction of the boost interaction
reduces the contribution of repulsive many-body forces in the EOS at high
densities.

5.6. Meson-exchange nucleon-nucleon interaction
On the hadronic level, strong NN interaction results from the exchange of

mesons between the nucleons. The origin of this description goes back to 1935,
when Yukawa (1935) proposed that nucleons interact via exchange of virtual
massive particles of the Compton wavelength ∼ 10−13 cm. In the language
of the field theory, strong interactions result from the coupling of the nucleon
fields to the meson fields.

Of course, the fundamental theory of strong interactions between hadrons is
the QCD, where the fundamental fields are those of quarks and gluons. From the
today’s perspective, the Meson Exchange Model (MEM) of strong interactions
is an effective theory, where quarks and gluons do not appear explicitly, and the
building blocks are mesons, nucleons, and their resonances (like ∆ isobars).
The MEM is successful in describing NN scattering data (at laboratory energies
�350 MeV), the 2H properties, and properties of “dilute” nucleon systems.
The MEM operates with the nucleon and meson fields, ψ and ϕ. It is sufficient
to include only mesons of rest mass below 1 GeV/c2. Therefore, the MEM
does not describe very short-range NN interactions at distances � 0.2 fm.
Meson-nucleon couplings are described by corresponding Lagrangian densities,
depending on the symmetry behavior of a meson field under rotations and
reflections. As far as the symmetry is concerned, the selected mesons are:
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pseudoscalar (field ϕ(ps), mass mps), scalar (field ϕ(s), mass ms), and vector

(field ϕ
(v)
µ , µ = 0, . . . , 3, mass mv).14

In a short-hand notation, in which the isospin structure is not indicated, we
have the following meson-nucleon coupling Lagrangian densities:

pseudoscalar (ps) mesons π, η (JP = 0−) :

Lps =
fps

mps
ψγ5ψϕ(ps) ; (5.11)

scalar (s) mesons σ, δ (JP = 0+) : Ls = gs ψψϕ(s) ; (5.12)

vector (v) mesons ρ, ω (JP = 1+) :

Lv = gv ψγµψϕ(v)
µ +

fv

4m
ψσµνψ

(
∂µϕ(v)

ν − ∂νϕ
(v)
µ

)
; (5.13)

where ∂µF ≡ ∂F/∂xµ, σµν = [γµ, γν ]/2, m is the nucleon mass, while JP
denotes the meson spin J and parity P .15 The experimentally measured meson
masses are: mπc2 = 138 MeV, mηc

2 = 548 MeV, mρc
2 = 769 MeV,

mωc2 = 783 MeV, and mδc
2 = 983 MeV. The scalar σ meson plays a special

role: it represents a scalar state of an exchanged pion pair, and its mass is found
from fitting the MEM to NN scattering data (in this way, one gets mσc2 = 550
MeV, see below). For the sake of simplicity, we neglect charge splitting of
meson masses. Apart from experimental meson masses, the MEM contains
coupling constants f and g determined by fitting experimental data. Finally,
in order to account for finite sizes of interacting hadrons, one has to introduce
form-factors at every meson-nucleon vertex. These form-factors, parameterized
in terms of momentum transfer in a meson exchange, are determined by fitting
experimental NN data. The form-factors describe the effect of shortest-range
strong interactions, which depend on the quark structure of baryons and are not
calculable within the MEM.

One-meson exchange processes can be visualized as lowest order (second
order in the meson-nucleon coupling constant) Feynman diagrams, e.g., dia-
gram (a) in Fig. 5.3. One-π and one-ω exchange contributions explain two basic
features of the NN interaction. The longest range (�/mπc ≈ 1.4 fm) one-π
exchange yields a long-range tensor force, while one-ω exchange produces a

14Our notations follow Berestetskiı̆ et al. (1982). We use Greek indices µ = 0, 1, 2, 3 to label time-
space components, and Latin indices k = 1, 2, 3 to label spatial components. The 2 × 2 Pauli matrices
are denoted by σk , and the 2 × 2 unit matrix is denoted by I . The spacetime metric tensor is gµν =

diag(+1, −1, −1, −1) and the 4 × 4 Dirac matrices are: γ0 =
(

I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
,

γ5 = γ5 = −iγ0γ1γ2γ3 =
(

0 I

I 0

)
. The Dirac conjugate of ψ is ψ ≡ ψ†γ0.

15Detailed description of the history and the modern version of the MEM is given by Machleidt (1989).
However, he uses different from ours definitions of γ5 and σµν .
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Figure 5.3. Some Feynman diagrams describing the most important meson-exchange processes
which contribute to the NN interaction. Time goes upwards. Thin vertical lines: nucleons. Thick
vertical segments: ∆ resonance in an intermediate state.

short-range (�/mωc ≈ 0.25 fm) repulsion and a sizable spin-orbit term. The
contribution of one-δ exchange (�/mδc ≈ 0.2 fm) is relatively small, but is
included in the model. The contribution of one-η exchange is usually neglected
because of its weak coupling to nucleons.

An important intermediate-range attractive component of the NN interaction
is produced by two-pion exchange processes (�/2mπc ≈ 0.7 fm). Some Feyn-
man diagrams contributing to this component in the MEM are shown in Fig. 5.3
(diagrams (b)). Intermediate-state nucleons can be in an excited ∆-resonance
state with m∆c2 = 1232 MeV. This is the lowest excited nucleon state (spin
3/2, isospin 3/2). The first three diagrams represent the so called uncorrelated
two-pion exchange processes in which pions do not interact strongly between
themselves. In addition, one has to include diagrams where exchanged pions
interact strongly with themselves, forming, e.g., hadronic resonances. An ex-
ample is given by a right-most diagram (b) in Fig. 5.3, where exchanged pair
of interacting (correlated) pions forms a vector (JP = 1+) ρ-meson.

Because the meson-nucleon coupling is strong, one should check the con-
tribution of many higher-order processes for their importance in the NN inter-
action. It turns out that the most important are those involving simultaneous
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exchange of a pion and a ρ-meson. Two Feynman diagrams (diagrams (c))
describing these processes are shown in Fig. 5.3.

The summation of Feynman diagrams yields the scattering matrix which
has to reproduce NN scattering data as well as the 2H properties. Using a
fitting procedure, one determines with a high precision both the meson-nucleon
coupling constants and the form-factors.

However, for the convenience of many-body calculation one is interested in
representing the NN interaction in the form of a “potential” which would be
equivalent to the NN field-theoretic MEM. This is usually done in the frame of
the one-boson-exchange (OBE) model, where many-pion exchange contribu-
tions are modeled by the exchange of a scalar σ-meson (mσc2 ≈ 550 MeV) with
an appropriate σN coupling constant. This fictitious σ meson of the OBE model
reproduces a very important intermediate-range (�/mσc ≈ 0.4 fm) component
of the NN interaction.

In the OBE approximation one can represent the NN interaction potential as
a sum of one-boson exchange contributions,

v̂OBE
ij =

∑
α=π,ρ,η,ω,δ,σ

v̂OBE
ij,α . (5.14)

This potential can be written explicitly in a relativistically covariant way in
momentum space,(

q′|v̂OBE
ij |q

)
, q = pi − pj , q′ = p′

i − p′
j . (5.15)

The OBE potential is nonlocal in coordinate space. Acting on a NN wave
function Ψ, it gives

(
r|v̂OBE

ij |Ψ
)

=
∫

dr′ (r|v̂OBE
ij |r′)Ψ(r′) , (5.16)

where r = ri − rj and r′ = r′
i − r′

j . The interaction term depends not only
on the relative distance between nucleons, but involves its neighborhood and a
two-body wave function in this neighborhood.16

We may still represent it in an equivalent form of a formally local but
momentum-dependent operator V̂OBE

ij (r, q̂), where q̂ = −i�∇r. Using the
well known property of the space-translation operator (see, e.g., §26 of Schiff
1968)

ei(r′−r)·q̂/�Ψ(r) = Ψ(r′) , (5.17)

16To be contrasted with the standard case of a local interaction v̂loc
ij , where (r|v̂loc

ij |r′) = vloc(r)δ(r′−r) ,

so that (r|v̂loc
ij |Ψ) = vloc

ij (r)Ψ(r) .
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we can rewrite the v̂OBE
ij Ψ term in the coordinate representation as

(r|v̂OBE
ij |Ψ) = V̂OBE

ij (r, q̂)Ψ(r) ,

V̂OBE
ij (r, q̂) =

∫
dr′v̂OBE

ij (r′)ei(r′−r)·q̂/� . (5.18)

We see, that the non-local v̂OBE
ij is equivalent to a formally local momentum-

dependent V̂OBE
ij (r, q̂). In the non-relativistic approximation, only the terms

quadratic in momenta are retained. In this case, the spin and momentum struc-
ture takes a very familiar form, expressed via the operator invariants considered
already in §5.5.1 while constructing a phenomenological NN interaction. The
pseudoscalar-meson component V̂π,η is a static (momentum-independent) op-
erator involving the σi ·σj , Ŝij operators alone. The scalar-meson contribution
V̂OBE

σ,δ contains q̂2 and spin-orbit L̂ · Ŝ operators. The richest spin and momen-

tum structure results from the exchange of ρ and ω vector mesons. This V̂OBE
ρ,ω

contains all previously listed operators. However, one should keep in mind that
the OBE potential is par excellence a relativistic model. Therefore, its exact
momentum dependence, that reflects the non-locality in coordinate space, is
actually much more complicated.

An OBE model can very well reproduce existing NN data. Recent OBE
models fit ∼ 4300 pp and np scattering cross sections at collision energies below
350 MeV (in laboratory frame). The very high quality of fitting is similar to
that reached for NN-interaction potentials constructed by the Nijmegen group
(Stoks et al. 1994, χ2/datum = 1.03) and the Argonne group (Wiringa et al.
1995, χ2/datum = 1.09).

5.6.1 Three- and more-nucleon interactions
Many-body interactions arise naturally in the meson-exchange models: they

are represented by Feynman diagrams which cannot be reduced to a sequence
of NN interactions.

For instance, in diagram (a) of Fig. 5.2 the first meson exchange transforms a
nucleon into a ∆ resonance. This diagram does not describe an NN interaction
which should have a nucleon pair in the final state. The second pion-exchange
process starts with an N∆ pair,17 so that it is clearly not an NN −→ NN
process. The presence of the third nucleon is necessary for the whole process to
occur, and therefore the diagram describes a genuine NNN interaction. Another
example of a Feynman diagram contributing to the NNN interaction is shown
in Fig. 5.2 (diagram (b)).

17We remind that N = n or p, while N is an abbreviation for the word “nucleon”.
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Diagrams representing the three-body interaction contain an exchange of
at least two mesons. The NNN interaction resulting from two-pion exchange
becomes important in systems where three nucleons can be localized simul-
taneously within a range �/mπc ≈ 1.4 fm. Therefore, NNN forces can be
significant in nuclear matter at normal nuclear density. Their effect is also visi-
ble in the ground-state energy of much less dense few-nucleon systems like 3H
and 4He.

Diagram (a) in Fig. 5.2 leads to a long-range component V 2π
ijk of the NNN

potential of §5.5.2. One can also consider the four-body interaction, generated,
e.g., by meson-exchange processes described by Feynman diagrams (c) and (d)
of Fig. 5.2. The longest-range component corresponds to the exchange of three
pions (diagram (c)).

In practice, one theoretically calculates the long-range two-pion exchange
component of the NNN force, but adjusts its strength to reproduce properties
of A = 3 and A = 4 nuclei. In this way one gets the final form of V̂ 2π

ijk .
The intermediate and short-range component of the NNN force is treated phe-
nomenologically, as described in §5.5.2.

Some examples of Feynman diagrams which represent meson-exchange pro-
cesses and contribute to the four-nucleon interaction are shown in Fig. 5.2 (dia-
grams (c) and (d)). As we have discussed in §5.5.2, there in no need to introduce
the four-body force on the phenomenological level to describe the A = 4 nuclei.
In contrast, the NNN force is clearly needed to correct for the underbinding of
the A = 3 nuclei by the NN force alone and to make theoretical saturation
parameters of nuclear matter consistent with experimental ones.

5.7. The hyperon interactions
Experimental data on nucleon-hyperon (NH) and hyperon-hyperon (HH) in-

teractions are scarce and rather imprecise, in sharp contrast with highly precise
and complete NN data. Only a few points of NH scattering cross sections are
available, while HH scattering data are absent. Many bound-state energies of
hypernuclei containing a single Λ hyperon have been measured. These data are
important for studying the ΛN interaction. Particularly useful are the data on
the A = 3 and the A = 4 hypernuclei, because they allow one to check precise
solutions of the three- and four-body problem. The data on 3

ΛH, 4
ΛH, and 4

ΛHe
hypernuclei can be used to test the NΛ interaction in vacuum. Models of in
medium (effective) ΛΛ interaction can be tested in double-Λ hypernuclei, such
as 6

ΛΛHe, 10
ΛΛBe, and 13

ΛΛB. As we will see, the ΛN interaction in hypernuclei
is responsible for an important effect of the so called Λ–Σ conversion. Con-
sequently, data on hypernuclei yield also an indirect information on the NΣ
and ΛΣ interactions. Studies of 4

ΣHe give a valuable information on the NΣ
interaction. All in all, one can experimentally test models of BB interaction for
the baryon-pair strangeness S = 0,−1,−2.
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Figure 5.4. Two Feynman diagrams describing strong-interaction one-meson-exchange pro-
cesses accompanied by Λ–Σ conversion. Notice that K meson in the right-hand-side diagram
transfers strangeness.

Unfortunately, there are no data on Ξ N, ΞΛ, ΞΣ, and ΞΞ scattering. Even
worse, there are no data on double-hypernuclei containing ΞΛ or ΞΞ pairs,
which could supply information on interactions of baryon pairs with S = −3
and S = −4. Under such unfavorable experimental situation, one has no
choice but to extend BB interaction models from the experimentally available
S = 0,−1,−2 sectors to the S = −3,−4 sectors using the SU(3) symmetry
within the JP = 1

2
+

baryon octet. This symmetry is experimentally known
to be inexact. In order to construct realistic models one has to introduce its
breaking. The program along these lines was initiated in the late 1970s (Nagels
et al., 1977, 1979). The BB interaction is based on the OBE model (see §5.6).
It was necessary to enlarge the set of exchanged mesons by including kaons
(Maessen et al., 1989; Rijken et al., 1999; Reuber et al., 1997). At the quark
level, the SU(3) breaking makes the s-quark mass much larger than the masses
of u and d quarks. At the hadronic level, the SU(3)-breaking effect in BB
interaction is significant (∼ 20% of the interaction strength).

Above an energy threshold, BB interaction opens the possibility of baryon
conversion, for instance,

Λ + p −→ Σ+ + n, Λ + p −→ Σ0 + p. (5.19)

Some examples of one-boson-exchange Feynman diagrams corresponding to
conversion channels are shown in Fig. 5.4. The BB interaction becomes mul-
tichannel; it can be represented by a matrix (B1B2|v̂ij |B3B4). The impor-
tance of the Λ–Σ conversion results from a relatively small mass difference
(mΣ − mΛ)c2 ≈ 74 MeV which is much smaller than (m∆ − mN )c2 ≈
293 MeV.

Calculations of the energy difference between the 0+ ground state and 1+

excited state in 4
ΛH and 4

ΛHe with modern BB potentials lead to a systematic
underbinding (Akaishi et al., 2000; Nogga et al., 2002). This could be attributed
to an attractive ΛNN force (Akaishi et al., 2000).
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Figure 5.5. Feynman diagrams which describe second-order three-body correlations involv-
ing two-body interactions in dense matter; they do not contribute to genuine three-body ΛNN
interaction.

Let us remind, that lowest-order Feynman diagrams, which generate an NNN
force, involve ∆ resonance in an intermediate state (Fig. 5.2). At the first glance,
the lowest order ΛNN force should be represented by a diagram obtained from
Fig. 5.2a by replacing ∆ resonance by Σ hyperon. This would lead to diagrams
represented in Fig. 5.5. However, these diagrams describe two consecutive acts
of two-body interaction with Λ–Σ conversion. Therefore, Fig. 5.5 displays
second-order three-body correlations in dense matter resulting from two-body
interactions.

5.8. Solving the many-body problem – an overview
The basic formula for the ground-state energy per baryon of a system of Ab

baryons is

EB =

(
Ψ0|ĤB|Ψ0

)
Ab (Ψ0|Ψ0)

, (5.20)

where ĤB is a baryon (B) Hamiltonian operator and Ψ0 is a ground-state wave
function of the system. In our case EB should be calculated in the thermody-
namic limit (Ab −→ ∞, volume of the system −→ ∞). In the simplest case
of nucleon matter (B=N), the calculation yields EN as a function of nn and np.
The knowledge of EN(nn, np) is sufficient for calculating the EOS of matter
consisting of nucleons and leptons (the so called npeµ matter). In a more gen-
eral case of hyperonic matter, one needs EB as a function of all baryon densities
nB (B = n, p,Σ−, Λ, . . .). In §5.9 we will review the methods of calculating
EB. These methods can be divided into several groups.

(1) The methods of the first group are the most ambitious: they attempt to
determine EB from nuclear interactions in vacuum. Some of these methods are
based on summations of infinite classes of diagrams which describe a pertur-
bation expansion of EB, Eq. (5.20). Because the interaction is strong, standard
expansions in powers of interaction strength are useless. On the contrary, some
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selected diagrams can be summed up to infinite order. The oldest and the most
widely used method is the Brueckner-Bethe-Goldstone theory, devised initially
for the nuclear matter (§5.9.1). The approach based on the Green’s functions
technique (§5.9.2) is less popular. Another approach employs the variational
method which is is well known in quantum mechanics (see, e.g., §32 of Schiff
1968) and gives

E
(var)
B =

(
Ψvar|ĤB|Ψvar

)
Ab (Ψvar|Ψvar)

≥ E
(exact)
B , (5.21)

where Ψvar is a trial wave function. This method consists in minimizing the
energy functional E

(var)
B within a set of trial wave functions, which should be

sufficiently rich in their structure, reflecting the structure of ĤB (§5.9.3).18

(2) The methods of the second group employ approximate solutions of many-
body problem based on effective interactions. The starting point is a phe-
nomenological interaction in a dense baryon medium, which strongly differs
from that in vacuum. In particular, many-body correlations are assumed to
be absorbed in the effective Hamiltonian Ĥeff

B . This Hamiltonian may well
reproduce the true value of EB within the Hartree-Fock approximation for an
Ab-body wave function,

E
(HF)
B =

(
ΨHF|Ĥeff

B |ΨHF

)
Ab (ΨHF|ΨHF)

� E
(exact)
B . (5.22)

This method is of the mean-field character. It is well suited for studying a
multi-component baryonic matter. It is particularly popular in its relativistic
formulation, being called by proud names of Relativistic Mean Field Theory or
Relativistic Hadrodynamics. It is based on a relativistic effective Lagrangian
which describes hadronic interactions in baryon matter. The Lagrangian Leff

B
reminds the bare (in vacuum) Lagrangian of strong interactions in its struc-
ture but involves different phenomenological coupling constants and additional
terms, which are adjusted to fit the experimental properties of the nuclear matter
at saturation. The effective Hamiltonian Ĥeff

B is then derived from Leff
B using

standard methods of the field theory. The ground-state energy is obtained by
solving the mean-field (Hartree) equations for the ground state (see, e.g., Glen-
denning 2000). The virtues of this approach are: formal elegance, relativistic

18Recently Sarsa et al. (2003) carried out Monte Carlo calculations of the ground state of neutron matter with
realistic models of NN and NNN interactions. Such calculations would be exact (for an adopted interaction
model) in the limit of very many particles included into Monte Carlo runs. However, the computational
effort grows exponentially with the number of neutrons put into a periodic box (see Sarsa et al. 2003 and
references therein)
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invariance, and numerical simplicity even in the case of a multi-component
hyperonic matter (§5.9.4).

The mean-field method exists also in the non-relativistic form, where Ĥeff
B

includes two-body and three-body in-medium interactions. Such Ĥeff
B has been

used very successfully, starting from the early 1970s, in the Hartree-Fock cal-
culations of nuclear structure. A very early example of Ĥeff

B was proposed by
Cameron (1959) who calculated the EOS of a neutron-star core employing an
effective interaction constructed by Skyrme (1959). Starting from the early
1970s, the Skyrme-type effective interactions have been used very successfully
in the Hartree-Fock calculations of the structure of atomic nuclei. The param-
eters of Ĥeff

N can be fixed by the requirement to reproduce the properties of
atomic nuclei and the EOS of pure neutron matter obtained in a more funda-
mental approach. Both relativistic and non-relativistic mean-field approaches
can be used to calculate unified EOSs of neutron star interiors (crust and core)
from one effective Hamiltonian.

5.9. Energy of nucleon matter
Consider a system of Ab nucleons (N neutrons and Z protons) in a large box

of volume V in the limit V −→ ∞, A −→ ∞, Z/Ab =const. This (thermody-
namic) limit corresponds to a homogeneous nucleon matter with nn = N/V ,
np = Z/V , and nb = Ab/V = nn + np. We need to calculate the energy
per nucleon E(nn, np) in the ground state of the system. We neglect Coulomb
interaction and the difference between neutron and proton masses; the nucleon
mass in vacuum will be denoted by m. Let us review several methods developed
to carry out this task.

5.9.1 Brueckner-Bethe-Goldstone (BBG) theory
This theory, formulated in 1954–1965, is an example of a successful appli-

cation of field-theoretic methods to strongly interacting many-body systems.
Brueckner proposed a general theory of nuclear matter valid for strong and
even singular NN interactions (Brueckner et al., 1954; Brueckner, 1954, 1955;
Brueckner & Levinson, 1955). He re-formulated the perturbation expansion in
terms of diagrams involving the reaction matrix G. The G-matrix itself (actually
Brueckner called it the K-matrix) summed two-body NN correlations up to the
infinite order in the NN interaction and self-consistently included dispersive
effects of a dense medium. Goldstone (1957) proved the crucial “linked cluster
theorem” which enabled one to select those infinite classes of diagrams which
contributed to the ground state energy of nuclear matter. Bethe & Goldstone
(1957) derived the equation for a wave function (the Bethe-Goldstone equat-
ion) of a pair of interacting nucleons moving in nuclear medium. It clarified
the importance of the Pauli exclusion principle for two-body correlations in
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nuclear matter.19 Finally, Bethe (1965) made an important step beyond the
lowest-order theory in the G-matrix (i.e., beyond the two-body correlations).
He summed infinite series of important diagrams of the second and higher order
in G (three-body clusters), which turned out to be crucial for the convergence
of the BBG theory. A comprehensive review of the BBG theory is given by
Baldo (1999). Modern BBG calculations of nuclear matter and neutron-star
matter are reviewed by Baldo et al. (2001).

Let us start from the non-relativistic formulation of the BBG theory. The
Hamiltonian is

Ĥ = Ĥkin + Ĥint , (5.23)

where

Ĥkin = −
A∑

i=1

�
2∇2

i

2m
. (5.24)

and Ĥint is the nuclear interaction part. Let us initially restrict ourselves to
two-body nuclear forces, so that

Ĥint = V̂ (2) =
1
2

A∑
i,j=1

′
v̂ij , (5.25)

where the prime over the sum indicates that terms with i = j are excluded.
It is crucial to split Ĥ into an unperturbed single-particle part and a pertur-

bation:
Ĥ = Ĥ0 + Ĥ1 , (5.26)

where

Ĥ0 = Ĥkin + Û , Ĥ1 = Ĥint − Û , Û =
A∑

j=1

Ûj , (5.27)

Ûj being a single-particle potential acting on a nucleon j. The definition of
Ûj is important for the convergence of the BBG expansion series, where Ĥ1 is
treated as a perturbation. As the system is spatially uniform, Ûj is constant in
space, and unperturbed nucleon states are plane waves |p). For simplicity, we
omit spin indices and express nucleon momenta p in units of �. In momentum
representation, the unperturbed single-particle energy is

eN (p) =
�

2p2

2m
+ UN (p) , (5.28)

19The linked cluster theorem, formulated in terms of diagrams, which were latter named “Goldstone dia-
grams”, and the equation governing the wave function of a nucleon pair in nuclear matter (Bethe-Goldstone
equation) were all derived during the graduate studies of Goldstone at Trinity College of the Cambridge
University (Cambridge, England).
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where N = n or p. Because of the isotropy of the nuclear matter, which
is assumed to be spin-unpolarized, single-particle energies are independent of
momentum direction and nucleon spin. However, owing to a neutron excess,
the single-particle potentials for neutrons and protons are different and the G-
matrix is no longer charge symmetric (Gnn �= Gpp). As we will see below,
UN can be expressed in terms of the G-matrix, the central quantity of the BBG
theory. Its calculation is equivalent to the summation of the “ladder diagrams”
of the BBG expansion series. It is performed by solving the integral equation,
which can be written in the operator form:

ĜNN ′ = v̂NN ′ + v̂NN ′
Q̂NN ′

z − ĥNN ′
ĜNN ′ . (5.29)

Here, Q̂NN ′ is the two-particle exclusion-principle operator, which projects
particle states outside the Fermi surface, and ĥNN ′ is the Hamiltonian operator
acting on uncorrelated two-particle states,

Q̂NN ′ |p1p2) = Θ(p1 − pFN )Θ(p2 − pFN ′)|p1p2) , (5.30)

ĥNN ′ |p1p2) = [eN (p1) + eN ′(p2)] |p1p2) , (5.31)

while z is the starting energy parameter. In the low-density limit we get

ĥNN ′ |p1p2) −→ �
2

2m
(p2

1 + p2
2)|p1p2) , Q̂NN ′ −→ 1 . (5.32)

In this case the G-matrix equation transforms into the well known equation
for the scattering T-matrix, which describes the NN scattering in vacuum (see,
e.g., Messiah 1961, vol. II, Chapter XIX, §14). Passing to the momentum
representation, we get

(p′
1p

′
2|GNN ′(z)|p1p2) = (p′

1p
′
2|vNN ′ |p1p2)

+
∫

dk1

(2π)3
dk2

(2π)3
(p′

1p
′
2|vNN ′ |k1k2)

× QNN ′(k1, k2)
z − eN (k1) − eN ′(k2)

(k1k2|GNN ′(z)|p1p2) . (5.33)

In G-matrix elements relevant for calculating the ground-state energy, the
starting energy is the sum of single-particle energies of the initial |p1p2) state:

z = eN (p1) + eN ′(p2) , (5.34)
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with single-particle potentials given in terms of the G-matrix via a Hartree-Fock
expression

Un(p1) = 2
∫

p
dp3(p1p3|Gnp(en(p1) + ep(p3))|p1p3)

+2
∫

n
dp3(p1p3|Gnn(en(p1) + en(p3))|p1p3)a , (5.35a)

Up(p1) = 2
∫

n
dp3(p1p3|Gpn(ep(p1) + en(p3))|p1p3)

+2
∫

p
dp3(p1p3|Gpp(ep(p1) + ep(p3))|p1p3)a . (5.35b)

Here, for the sake of compactness, we use the notations

|p1p2)a ≡ |p1p2) − |p2p1) ,

∫
N

dp ≡
∫

dp

(2π)3
Θ(kFN − p) . (5.36)

As we are dealing with the spin-unpolarized system, we can use the spin-
averaged G-matrix. The spin degeneracy gives a factor of two in front of the
integrals.

The auxiliary single-particle potential term U(p), Eq. (5.27), crucial for the
convergence of the linked-cluster expansion, deserves an additional comment.
The choice of U(p) for states above the Fermi surface (p > pF) has been a sub-
ject of a long debate since the formulation of the BBG theory. Eventually, the
so called continuous prescription for U has been regarded as the most advanta-
geous. According to this prescription, no energy gap is introduced between the
energies of occupied (p < pF) and empty (p > pF) momentum states.20 Such a
choice turns out to be particularly suitable in view of the rapid convergence of
the BBG expansion (see, e.g., Baldo et al. 2000, 2001). The lowest-order BBG
approximation for the energy density E (without nucleon rest energy contribu-
tion) is given by the Hartree-Fock expression, where the G-matrix acts as an
effective interaction. This justifies the name “Brueckner-Hartree-Fock” (BHF)
approximation, used by many authors. The BHF expression for E reads

E = EFFG(nn, np) +
1
2

∫
p

dp1

∫
p

dp2(p1p2|Gpp(ep(p1) + ep(p2))|p1p2)a

+
1
2

∫
n

dp1

∫
n

dp2(p1p2|Gnn(en(p1) + en(p2))|p1p2)a

+
∫

n
dp1

∫
p

dp2(p1p2|Gnp(en(p1) + ep(p2))|p1p2) , (5.37)

20This introduces singularity in the kernel of the G-matrix equation at p1 = p2 = k1 = k2 = kF; (Cauchy)
principal values of the integrals are to be taken.
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where EFFG(nn, np) is the energy density of a free Fermi gas.
In order to check the convergence of the BBG theory one has to go beyond

the BHF approximation. The next step is to include contributions E(3) from
irreducible three-body correlations, which cannot be reduced to a sequence of
two-body correlations.

The calculation of E(3) requires a generalization of the two-body in-medium
scattering formalism to the three-body one. It took a long time to formulate
correctly the three-body (in vacuum) scattering problem in quantum mechanics.
It was done by Faddeev (Faddeev 1960; also see Faddeev 1965 and Chapter 2
of Sitenko & Tartakovskii 1997). Bethe (1965) used the Faddeev formalism to
evaluate E(3) in symmetric nuclear matter. The central quantity in the Bethe
theory is a three-body scattering matrix T , to be obtained from the Bethe-
Faddeev equation. The three-body scattering matrix in medium is decomposed
into a sum T (1) + T (2) + T (3), where T (1), T (2), and T (3) satisfy a system of
coupled scattering equations containing the G-matrix. These equations involve
the three-particle exclusion operator,

Q̂(3)|p1p2p3) = Θ(p1 − pF)Θ(p2 − pF)Θ(p3 − pF)|p1p2p3) , (5.38)

and the three-particle mean-field Hamiltonian operator ĥ(3) which appears in
the denominator of the three-particle propagator,

ĥ(3)|p1p2p3) = [e(p1) + e(p2) + e(p3)] |p1p2p3) . (5.39)

The T (j) matrices sum all contributions of those three-body correlation dia-
grams, where an j-th nucleon is a spectator (i.e., does not change its momentum
state) in the last scattering event.

Calculations based on a realistic two-body NN interaction fail to reproduce
experimental parameters of symmetric nuclear matter at saturation. Realistic
NN forces are also known to underbind 3H and 4He (§5.5.2). These deficien-
cies can be corrected by adding a three-body (NNN) interaction to the nuclear
Hamiltonian,

V̂ (3) =
1
6

A∑
i,j,k

′′
V̂ijk , (5.40)

where the double prime indicates that terms with two or three equal indices i,
j, k are omitted. In calculations, the NNN force can be replaced by an effective
NN force. This can be done by averaging over positions of the third nucleon
taking into account pair correlations of this nucleon with two remaining ones
(Lejeune et al., 1986). Such a procedure gives a density dependent effective
NN force to be added to V̂ (2) (Baldo et al., 1997).

The BBG theory presented above is non-relativistic. Relativistic effects
grow with increasing density. For a model of free neutron Fermi gas, the Fermi
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velocity in the units of c is

vF

c
=

�pF

m
= 0.353

(
nb

n0

)1/3

, (5.41)

and becomes significant in the center of a massive neutron star, where nb/n0 �
4−6. A relativistic extension of the BBG theory was worked out in the 1980s
(see ter Haar & Malfiet 1987; Fuchs 2004, and references therein). The essential
point is to use the Dirac equation for single-particle states in nuclear matter. The
majority of calculations adopted OBE interactions. The relativistic extension
of the BHF approximation is called the relativistic Brueckner-Hartree-Fock
(RBHF) or Dirac-Brueckner-Hartree-Fock theory.

5.9.2 Green’s Function Theory
The ground-state energy per baryon, Eq. (5.20), can also be calculated using

other perturbative expansions. A very elegant method is based on the Martin-
Schwinger hierarchy of Green’s functions (Martin & Schwinger 1958; also see
Chapters 5–12 of Weber 1999 for applications to the EOS of dense matter).
The basic quantities in the Martin-Schwinger Green’s function theory (GFT)
are n-particle (2n-point) Green’s functions gn (n = 1, 2, 3, . . . ):

g1(1; 1′) = i (Ψ0|T̂ {ψ̂(1)ψ̂(1′)}|Ψ0) , (5.42a)

g2(1, 2; 1′, 2′) = −(Ψ0|T̂ {ψ̂(1)ψ̂(2)ψ̂(2′)ψ̂(1′)}|Ψ0) , (5.42b)

g3(1, 2, 3; 1′, 2′, 3′) =

−i (Ψ0|T̂ {ψ̂(1)ψ̂(2)ψ̂(3)ψ̂(3′)ψ̂(2′)ψ̂(1′)}|Ψ0) . . . , (5.42c)

whereΨ0 is the ground state of nuclear matter, ψ̂ is the nucleon-field annihilation

operator, ψ̂ ≡ ψ̂†γ0, and T̂ is the time-ordering operator (e.g., Berestetskiı̆
et al., 1982). For the sake of compactness, numbers 1, 1′ and etc. denote
a set of space-time and spin-isospin coordinates of a nucleon. The Martin-
Schwinger hierarchy of Green’s functions is a chain of the integro-differential
equations which couple gn with gn+1. An equation for g1 involves g2, an
equation for g2 involves g1 and g3, and so on. The chain of these equations
can be terminated provided some approximation of many-body correlations is
made. For example, if two-body correlations are neglected, then we get the
mean-field (Hartree-Fock) approximation, where all gn are expressed in terms
of one-particle propagators g1 in an external self-consistent Hartree-Fock field.
A more realistic case of strongly interacting many-body system includes two-
body correlations (but to an infinite order in two-body interaction). In this
case g3 can be approximated by a properly symmetrized sum of products of
g2 and g1. This enables one to sum, to infinite order, two-body correlations in
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the nucleon matter. This approximation is frequently called the “independent
pair approximation” (because it exactly treats the two-body problem including
medium effects on the mean-field level), or “ladder approximation” (because
diagrams, which are summed up, are ladder-like).

An important quantity of the GFT is the nucleon mass operator (or the so
called self-energy), denoted by ΣN . It takes different values for neutrons and
protons because of the neutron excess. In a uniform and spin-unpolarized
nucleon matter ΣN depends on two parameters of a single-particle state: mo-
mentum p = |p| and energy ω. Many ground-state properties of nucleon
matter, particularly the ground-state energy, are derived from the real part of
ΣN (p, ω), denoted by VN (p, ω). We will review main formulae below using
a standard quasiparticle approximation. The single-particle energy eN (p) is
obtained from VN (p, ω) via the dispersion equation

eN (p) =
�

2p2

2m
+ VN (p, eN (p)) . (5.43)

As we see, single-particle energies of neutrons and protons are determined by
the real part of the self-energy calculated on the energy shell, where ω = eN (p).
In contrast to the BBG theory, the actual momentum distribution of nucleons,
fN (p), is used instead of the free Fermi gas one, f

(0)
N (p) = Θ(kFN − p). The

Fermi momentum kFN satisfies the condition that the Fermi energy is equal to
the chemical potential:

µN =
∂E

∂nN
=

�
2k2

FN

2m
+ VN (kFN , µN ) . (5.44)

The momentum distribution of nucleons, fN (p), is calculated in a self-consistent
way from VN (p, ω),

fN (p) =
[
1 − ∂

∂ω
VN (p, ω)

]−1

ω=eN (p)
. (5.45)

At p = kFN , which coincides with the Fermi momentum of a free Fermi gas of
the same number density nN , the momentum distribution suffers a discontinuity
(a drop). It is a general property of normal Fermi liquids (see, e.g., §10 of
Lifshitz & Pitaevskiı̆ 1980). We have

nN =
p3

FN

3π2 =
2

(2π)3

∫
dp fN (p) . (5.46)

The ground-state energy density is expressed in terms of eN (p) and fN (p)
by

E =
∑

N=n,p

∫
N

dp fN (p)
[

eN (p) +
�

2p2

2m

]
, (5.47)
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where we use the short-handed notation, given by Eq. (5.36), for the integration
over momentum states below the Fermi surface.

The central quantity of the independent pair approximation is the in-medium
T-matrix, which describes two-nucleon scattering in a nucleon medium. In the
momentum representation, the T-matrix for an NN ′ nucleon pair satisfies the
integral equation

(p′
1p

′
2|TNN ′(Ω + iη)|p1p2) = (p′

1p
′
2|vNN ′ |p1p2)

+
∫

dk1

(2π)3
dk2

(2π)3
(p′

1p
′
2|vNN ′ |k1k2)

× ΛNN ′(k1, k2, Ω + iη) (k1k2|TNN ′(Ω + iη)|p1p2) , (5.48)

where ΛNN ′ is a two-body Green’s function in the momentum representation.
The parameter Ω is real; it is analogous to the starting energy of the BBG theory;
η is infinitesimally small and positive, η −→ +0.

In the independent-pair approximation, VN (p, ω) can be expressed in terms
of the in-medium T-matrix, which is analogous to the G-matrix in the BBG
theory. For example, the real part of the self-energy for neutrons and protons
is given by

Vn(p, ω) = 2
∫

n
dp′ fn(p′) Re(pp′|Tnn

(
ω + iη + en(p′)

)
|pp′)a

+2
∫

p
dp′ fp(p′) Re(pp′|Tnp

(
ω + iη + ep(p′)

)
|pp′) , (5.49a)

Vp(p, ω) = 2
∫

p
dp′ fp(p′) Re(pp′|Tpp

(
ω + iη + ep(p′)

)
|pp′)a

+2
∫

n
dp′ fn(p′) Re(pp′|Tpn

(
ω + iη + en(p′)

)
|pp′) . (5.49b)

The T-matrix can be calculated from Eq. (5.48) using several approximations
called Λ00, Λ10, and Λ11 and described below. In what follows, for the sake
of simplicity, we omit spin and isospin variables. At the first step we discuss
various approximations of the Green’s functions in the space-time representa-
tion. The simplest approximation consists in replacing a two-particle Green’s
function by a product of two free one-particle ones:

g2(1, 2; 3, 4) ≈ i g0
1(1, 3) g0

1(2, 4) . (5.50)

This is the so called Λ00 approximation, which is a popular GFT-scheme (see,
e.g., Weber 1999 and references therein). Alas, the only justification of this ap-
proximation is the simplicity of the model. As no medium effects are included,
one calculates just the T-matrix in vacuum – a rather standard problem in the
two-body scattering theory.
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More ambitious, but more complicated, are the so called Λ01 and Λ11 ap-
proximations, which are very naturally defined by

Λ(1, 2; 3, 4) � Λ10(1, 2; 3, 4) ≡ i
2
[
g1(1, 3) g0

1(2, 4) + g0
1(1, 3) g1(3, 4)

]
,

Λ(1, 2; 3, 4) � Λ11(1, 2; 3, 4) ≡ i g1(1, 3) g1(2, 4) . (5.51)

Now let us consider the two-particle propagator in momentum space; it
enters the equation for the T-matrix. In the Λ00 approximation both particles in
intermediate states are free, i.e., the dispersion and exclusion-principle effects
are neglected. This leads to

Λ00(k1, k2, Ω + iη) = [Ω − εk1 − εk2 + iη]−1 . (5.52)

The Λ10 approximation partly incorporates both the exclusion principle and
dispersion effects for intermediate states. Finally, the Λ11 approximation in-
corporates both effects for states above the Fermi surface (the expressions in
the momentum representation are given, e.g., by Weber & Weigel 1985).

One of the technical difficulties of the GFT is a complicated character of its
basic quantities. The theory can easily be formulated in a relativistic way (see,
e.g., Wilets 1979). Notice that the main trick used to terminate and close the
chain of the GFT equations is based on non-perturbative arguments.

5.9.3 Variational method
The method is based on the minimization of the expectation value of the

Hamiltonian in the space of trial many-body wave functions {Ψvar}. Let us
describe a general method developed by Pandharipande and his collaborators
(Akmal et al. 1998 and references therein).

A trial wave function is constructed as

Ψvar = F̂Φ , (5.53)

where the operator F̂ describes correlations and Φ is a ground-state wave-
function of Ab non-interacting nucleons in a large volume V . We will use the
isospin formalism, where single-nucleon states are labeled by αi = {pi, si, ti}
and nucleon variables in coordinate-spin-isospin spaces are ξj = {rj , σj , τj}.
A non-interacting state is given by the Slater determinant

Φ = (Ab!)−1/2 det {φαi(ξj)} , (5.54)

where a single-nucleon state φαi is a plane wave multiplied by spin and isospin
spinors. It is sufficient to consider the thermodynamic limit Ab −→ ∞ and
V −→ ∞ with Ab/V = nb. As both Φ and Ψvar are antisymmetric with respect
to any transposition of variables of two nucleons, the correlation operator F̂
should be symmetric with respect to these transpositions.
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Correlations are induced by the NN interaction, represented by an NN po-
tential, Eq. (5.25). They are also induced by many-nucleon interactions, rep-
resented by an NNN potential, Eq. (5.9). However, even in the most advanced
calculations F̂ includes only two-body correlations,

F̂ = Ŝ
Ab∏
i<j

f̂ij , (5.55)

where f̂ij is a two-body correlation operator and Ŝ is the symmetrization oper-
ator. The operator f̂ij is given by the expression analogous to Eq. (5.6) for the
NN potential:

f̂ij =
∑

u

fu(rij)Ôu
ij . (5.56)

Our system is spin-unpolarized but isospin-polarized: it contains an excess
of neutrons. The procedure to determine the functions fu was developed by
Lagaris & Pandharipande (1980, 1981a,b); it is briefly described below.

The functional to be minimized is the expectation value

Evar [f ] =
(Φ|F̂ †ĤF̂ |Φ)
Ab(Φ|F̂ †F̂ |Φ)

. (5.57)

The minimization of Evar is performed in two steps. At the first step, fu

functions, called f
(2)
u , are calculated by minimizing the functional E(2)

var obtained
from Eq. (5.57) by removing three-body interaction from the Hamiltonian,
Ĥ −→ Ĥ(2). The partial-differential equations for f

(2)
u are the Euler-Lagrange

equations derived from the minimization of the functional E
(2)
var on the set of

the functions {f
(2)
u }.

In order to make the task feasible, the variation within the set {f
(2)
u } is

constrained. Let us start with the central correlations, where the direction
of rij is not coupled to the spin and/or relative momentum of a nucleon pair
(1 ≤ u ≤ 4). The physical condition, which leads then to a constraint on
f

(2)
u (1 ≤ u ≤ 4), is the requirement, that sufficiently distant nucleons are not

correlated. This condition can be expressed via

central u = 1, . . . , 4 : f (2)
u (rij ≥ du) = 1. (5.58)

It is called the healing constraint on the central correlation functions, and du

(which is a variational parameter) is called the healing distance. For rij > du

the central component of two-nucleon wave function is no longer perturbed
(“wounded”) by the short-range interaction, being the same as for a non-
interacting pair.
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The situation with noncentral correlations, expressed in terms of the f
(2)
u Ôu

ij
components with u = 5, . . . , 14 , is different. The noncentral components in
a free-pair wave function do not exist. Therefore, the correlations f

(2)
u with

u = 5, . . . , 14 should vanish at large rij :

noncentral u = 5, . . . , 14 : f (2)
u (rij ≥ du) = 0 , (5.59)

where du is again a variational parameter.
For the sake of simplicity let us consider a purely neutron matter. As our

system is spin-unpolarized, the functions f (2) for the spin-singlet and spin-
triplet states can be considered separately. The tensor and spin-orbit terms
vanish in the spin-singlet channel. Neglecting the term involving (L̂)2ij , we

find that f̂
(2)
ij reduces to a single function of r ≡ rij . For the spin-singlet states

the Euler-Lagrange equation then reads

−�
2

m

[
ϕ∇2f (2) + 2∇ϕ · ∇f (2)

]
+ (vij − λ) ϕf (2) = 0 , (5.60)

where ϕ = 2 [l(kFr)]1/2, vij is the central component of the nn interaction in
the spin-singlet state, and l(x) = 3 (sinx − x cos x)/x3 .

Equation (5.60) should be solved under the constraint given by Eq. (5.58),
supplemented by an additional condition on the radial derivative of f (2),[

d
dr

f (2)(r)
]

r=d

= 0 . (5.61)

Trial values of the healing distance d must be chosen in such a way that, on
average, there is only one particle within a distance d from a given particle. A
precise value of d is determined at the final step of the minimization of the Evar
functional (see below). At a given d, a solution of Eq. (5.60) exists only for a
specific value of λ, which can be found via an iterative procedure.

In the spin-triplet channel, the operator f̂
(2)
ij is

f̂
(2)
ij = f1 + f2 (Ŝ12)ij + f3 (L̂ · Ŝ)ij + f4 (L̂)2ij + f5 (L̂ · Ŝ)2ij . (5.62)

The Euler-Lagrange equations constitute a system of five coupled partial dif-
ferential equations for the functions f

(2)
u , with the healing constraints given by

Eqs. (5.58) and (5.59). These constraints specify the constants λu. Combining
the spin-singlet and spin-triplet functions f

(2)
u , one gets an operator f̂ (2) which

depends on healing distances {d}.
At the next step one must calculate the expectation value of the Hamilto-

nian, Eq. (5.57), in the limit of Ab −→ ∞. Of course, the explicit integration
over 3Ab coordinates is impossible. However, because the correlations are
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short-ranged, one may use a diagrammatic technique, developed in the theory
of strongly interacting quantum liquids, where the contributions from various
classes of correlations are summed to the infinite order via variational chain
summation (see Akmal et al. 1998 and references therein). In its original form
this technique was developed for dense Fermi-liquids with central correlations.
In the case of nucleon matter, noncentral correlations are important, and new
techniques for summing contributions from noncentral interaction and corre-
lation components were developed. The calculations are particularly compli-
cated because of the non-commuting character of the tensor and momentum-
dependent operators in the Hamiltonian and correlations.

The operator F̂ = F̂ (2) which minimizes E
(2)
var does not minimize the com-

plete Evar that contains the NNN interaction. In order to come as close as
possible to the minimum of Evar, one recalculates Evar replacing f̂

(2)
ij by

f̂ij =
∑

u

βufu Ôu
ij . (5.63)

In this way one gets Evar which depends on a set of variational parameters {d}
and {β}. At the next step one must minimize Evar with respect to {d} and {β}.

An actual variational calculation of E0 � (Evar)min contains many addi-
tional simplifications and approximations, but still, viewing the complexity of
the problem, it represents a monumental computational achievement (Wiringa
et al., 1988; Akmal et al., 1998). Further improved variational calculations for
pure neutron matter were done by Morales et al. (2002)

5.9.4 Relativistic mean-field model
5.9.4 a Historical overview

It is well known that the main properties of atomic nuclei can be explained
in terms of two basic and seemingly contradictory models, the shell model and
the liquid-drop model. In the shell model, the A-body problem reduces to a
one-body problem of a nucleon moving in a mean-field created by its interaction
with remaining nucleons. In the liquid-drop model, nucleons are so strongly
coupled between themselves that their motion is fully collective. In this case a
nucleus is treated as a drop of strongly coupled nucleons.

In the 1950s, nuclear theoreticians started to explain these different facets
of nuclei in the language of the field theory, where the strong interaction be-
tween nucleons originates from their coupling to various meson fields. From
the very beginning the main strategy was in proposing simple solvable models.
This approach was initiated by Johnson & Teller (1955) in the paper “Classical
Field Theory of Nuclear Forces”. The authors proposed to describe a motion
of nucleons in heavy nuclei and the gross (liquid-drop) nuclear properties using
a solvable model in which nucleons are coupled to a scalar and a vector me-
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son fields. The scalar meson mediated long- and intermediate-range attraction
needed to explain the binding of nucleons in nuclei, as well as the depth of the
shell-model potential well. The vector meson mediated a short-range repulsion
between nucleons to achieve the saturation of nuclear matter. The parameters
of the model were adjusted by fitting basic experimental nuclear data.

Johnson & Teller (1955) proposed actually a “minimal nuclear mean-field
model”, which involved two electrically neutral meson fields; we will call them
σ and ω. The energy of nuclei was calculated using the mean-field approxima-
tion (in the lowest-order in coupling constants). The authors stressed, that their
scalar meson “. . . need not be an elementary particle in any sense of this word.
It may be a virtual state composed of other mesons.” They got mσc2 ∼ 600
MeV, remarkably close to the σ-meson mass of the contemporary models of NN
interaction (§5.6). The ω field was vector and, therefore, led to a momentum-
dependent single-particle potential and generated a density-dependent nucleon
effective mass m∗ < m. The ω-meson contribution to the single-particle poten-
tial was repulsive and increased with growing density. Accordingly, the density
dependence of the energy per nucleon for the symmetric nuclear matter exhib-
ited a minimum, which coincided with saturation parameters of nuclear matter
after the adjustment of meson masses and couplings. Two main deficiencies
of the model were: its non-relativistic character and the presence of a peculiar
bound state of nuclear matter at very high density. Moreover, the meson fields
were classical (non-quantized).

The Johnson-Teller model was improved by Duerr (1956), who developed a
relativistically invariant version of the σ–ω model. The Johnson-Teller model
can be reproduced as the non-relativistic limit of the Duerr model. Duerr dis-
cussed also the validity of the mean-field approximation. In his model, nucleons
are point sources of meson fields, represented by pointlike density distributions,

nb(r) =
A∑

i=1

δ(r − ri) . (5.64)

The mean-field approximation consists in replacing these distributions by a
mean constant density. It is a good approximation if the distance scale of the
exchanged meson φ is much larger than the internucleon distance,

�

mφc
� n

−1/3
b =⇒ nb

n0
� 102

(
mφc2

500 MeV

)3

. (5.65)

It is clear that this condition cannot be satisfied, because nucleons should trans-
form into quarks at a density an order of magnitude lower. Moreover, the main
approximation of replacing all fields by their expectation values resulted from
the Hartree approximation for a many-body wave function of nucleon matter.
This implies the absence of the exchange (Fock) term in the Hartree-Fock ap-
proximation for E . However, it is well known, that for a fermion system with
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two-body interaction of range a the Fock terms in E become negligible in the
limit of kFa −→ ∞. This limit is similar to Eq. (5.65), and it is never reached
in a neutron-star core. All in all, the model is phenomenological; it cannot be
justified from first principles.

Disregarding this basic difficulty, we can just employ the mean field approx-
imation as the basis of a phenomenological model. This procedure was carried
out by Duerr. Below we briefly describe the solution of the relativistic mean-
field model of Duerr, which is the simplest version of the σ–ω model in the
nuclear theory. We will use the formulation of the σ–ω theory, developed in
detail in a seminal paper of Walecka (1974).

5.9.4 b Solution of an RMF model

In the rest of this section we will use, in order to simplify the formulae, a
system of units, where � = c = 1. The mean-field approximation for a spa-
tially uniform ground state of nucleon matter corresponds to nucleons filling
momentum states within the Fermi spheres of radii kFn and kFp; nucleon eigen-
functions are plane-wave solutions of the Dirac equations. The nucleon energy
spectrum is then given by eigenvalues of the Dirac equations for nucleons mov-
ing in constant σ and ω fields (with ω0 �= 0 and ω1 = ω2 = ω3 = 0). These
energy eigenvalues are charge and spin degenerate,

en(k) = ep(k) =
√

k2 + (m − gσσ)2 + gωω0 , (5.66)

where constant meson field values are determined from the field equations
reduced to

gσσ =
(

gσ

mσ

)2 1
π2

∑
N=n,p

∫ kFN

0
dk

k2(mN − gσσ)√
k2 + (mN − gσσ)2

, (5.67)

gωω0 =
(

gω

mω

)2

nb . (5.68)

The energy density and the pressure are then calculated as the ground-state
expectation values of the components of the energy-momentum tensor Tµν ,21

21Detailed derivations of the formulae, based on the standard methods of the field theory, can be found in
the monograph of Glendenning (2000).
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E(nn, np) = 〈Ψ0|T 00|Ψ0〉 =
1
π2

∑
N=n,p

∫ kFN

0
dk

k2 (mN − gσσ)√
k2 + (mN − gσσ)2

+
1
2

(
mσ

gσ

)2

(gσσ)2 +
1
2

(
mσ

gσ

)2

(gωω0)2 , (5.69)

P (nn, np) = −〈Ψ0|T 11|Ψ0〉 =
1

3π2

∑
N=n,p

∫ kFN

0
dk

k4√
k2 + (mN − gσσ)2

−1
2

(
mσ

gσ

)2

(gσσ)2 +
1
2

(
mω

gω

)2

(gωω0)2 . (5.70)

One can easily see, that the model contains only two free parameters, gσ/mσ

and gω/mω. They can be adjusted to reproduce two selected experimental
parameters of the saturated nuclear matter,22 for instance, the binding energy
per nucleon and the saturated nucleon density, B0 and n0. No wonder that in this
case the values of remaining parameters of the saturated nuclear matter, such as
the incompressibility K0 and the symmetry energy S0, strongly deviate from
the experimental values (§5.4): K0 � 2 Kexp

0 and S0 � 0.5 Sexp
0 . Moreover,

the EOS of pure neutron matter predicts a non-existent bound state at nb � n0.
The problem of incorrect incompressibility and fictitious bound state was

eliminated by Boguta & Bodmer (1977) who extended the σ–ω model by in-
cluding self-interactions of the σ-field. These interactions were introduced via
the term

U(σ) =
1
3

b mN (gσσ)3 +
1
4

c (gσσ)4 , (5.71)

where b and c are constants; U(σ) is added to the Hamiltonian density (and
subtracted from the Lagrangian density). The argument for including U(σ)
is that it makes the quantum version of the model renormalizable (Boguta &
Bodmer, 1977). Two additional free parameters b and c can be adjusted to
reproduce correct values of K0 and m∗ (§5.4). Still there remains the problem
of the correct value of S0. It is solved by introducing the charge-triplet of
the vector ρ-meson fields, which couple to the neutron-proton number density
difference and, therefore, contribute to the symmetry energy. In this way one
gets a modern version of the RMF model, used in neutron-star calculations
since the mid-1980s and described in detail by Glendenning (2000).

The RMF model involves the nucleon bispinor fields ψn and ψp, and five
meson fields. The meson fields are: the neutral scalar σ, the neutral vector ωµ,

22Interestingly, Duerr (1956) demonstrated the existence of a strong spin-orbit coupling of nucleons moving
in a nuclear potential well. This important feature is typical of relativistic mean field models, where the
strong spin-orbit term is not postulated separately (in contrast to the non-relativistic mean-field theories)
but is rigorously derived. However, the spin-orbit contribution to the energy averages out to zero in the
mean-field approximation for a spatially uniform nuclear matter.
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and the charge-triplet vector ρq
µ (q = −1, 0, +1). Each meson field φ of mass

mφ is coupled to an appropriate nucleon current (with a coupling constant gφ)
and yields a scalar interaction term in the Lagrangian LNφ. Within the ρ triplet,
gρ does not depend on the meson charge, which reflects the charge independence
of the strong interactions. The crucial assumption which makes the RMF model
so easy in use (and therefore so attractive) is that nucleon currents are treated as
uniform (constant) in space and that the Fock terms in the energy expectation
value are neglected. These assumptions do not come from first principles; they
are strictly valid only in the limit of nb −→ ∞, as we have already mentioned
in the context of the Duerr (1956) paper [see Eq. (5.65)], so that the model is
essentially phenomenological.

Within the RMF model, all three spatial components of nucleon currents and
meson fields, as well as of charged ρ-fields, vanish in the ground state Ψ0. Non-
vanishing time-like components of vector fields describe the meson potentials
in which nucleons move. These time-like components are constant in space, as
a result of the assumed constancy of field sources. The ground-state momentum
distribution for nucleons is that of a free Fermi gas.

The constant values of the meson fields are determined from the Euler-
Lagrange equations derived for the RMF model Lagrangian. The solutions for
the ω and ρ fields are particularly simple, because the Lagrangian is linear in
these fields,

gωω0 =
(

gω

mω

)2

(nn + np) , gρρ
0
0 =

1
2

(
gρ

mρ

)2

(np − nn) . (5.72)

The equation for the sigma field is much more complicated and reads

gσσ =
(

gσ

mσ

)2 1
π2

∑
N=n,p

∫ kFN

0
dk

k2(m − gσσ)√
k2 + (m − gσσ)2

−
(

gσ

mσ

)2 [
b m(gσσ)2 + c(gσσ)3

]
. (5.73)

The nucleon energy spectrum is obtained from the Dirac equations for nu-
cleon bispinors ψn and ψp:

en(k) =
√

k2 + (mN − gσσ)2 + gωω0 − gρρ
0
0 , (5.74a)

ep(k) =
√

k2 + (mN − gσσ)2 + gωω0 + gρρ
0
0 . (5.74b)

While the charge independence of e(k) is broken, the spin degeneracy still
remains, because the matter is spin-unpolarized. We can now express the energy
density in the ground state, E = 〈Ψ0|T 00|Ψ0〉, by summing energies of nucleon
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states up to the Fermi level and adding energies of meson fields:

EN(nn, np) =
1
π2

∑
N=n,p

∫ kFN

0
dk k2

√
k2 + (mN − gσσ)2

+
1
2

(
mω

gω

)2

(gωω0)2 +
1
2

(
mρ

gρ

)2

(gρρ
0
0)

2 +
1
2

(
mσ

gσ

)2

(gσσ)2

+
1
3
b m(gσσ)3 +

1
4
c (gσσ)4 . (5.75)

The pressure is calculated as P = −〈Ψ0|T 11|Ψ0〉:

PN(nn, np) =
1

3π2

∑
N=n,p

∫ kFN

0
dk

k4√
k2 + (m − gσσ)2

+
1
2

(
mω

gω

)2

(gωω0)2 +
1
2

(
mρ

gρ

)2

(gρρ
0
0)

2 − 1
2

(
mσ

gσ

)2

(gσσ)2

−1
3
b m(gσσ)3 − 1

4
c (gσσ)4 . (5.76)

The time-like components of meson fields should be expressed through nn and
np by solving Eqs. (5.72) and (5.73).

The RMF model described above contains five free parameters: gσ/mσ,
gω/mω, gρ/mρ, b, and c. These parameters can be adjusted to reproduce the
five experimental parameters of nuclear matter at the saturation point: n0, B0,
S0, K0, and the nucleon effective mass m∗ at the Fermi surface (§5.4).

The effective mass m∗ in the RMF model deserves an additional com-
ment. The effective mass can be defined in various ways. Two important
definitions are: (1) the Dirac effective mass relevant for the nucleon Dirac
equation in the RMF model, m∗

D ≡ m − gσσ; it comes from the nucleon
kinetic energy ekin(k) =

√
(m∗

D)2 + k2; and (2) the Landau effective mass
m∗

L ≡ (1/kF)(∂e(k)/∂k)−1
k=kF

. It is easy to show that these effective masses
are related by (m∗

L)2 = (m∗
D)2 + k2

F. An effective mass in nuclear matter,
measured experimentally (see §5.4), should be identified with m∗

L.
As we have mentioned before, theρ-field is crucial for fitting the experimental

nuclear symmetry energy at the saturation, Sexp
0 � 30 MeV. To show this, let us

consider a weakly asymmetric nuclear matter. This can be done by introducing
the familiar variables nb = nn + np and δ = (nn − np)/nb in the limit of
δ � 1. At a fixed nb, we have

[E(nb, δ) − E(nb, 0)] /nb � S(nb)δ2 , (5.77a)

S(nb) =
1
6

(
gρ

mρ

)2

nb +
k2

F

6
√

k2
F + (mN − gσσ)2

, (5.77b)
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Table 5.1. Examples of parameter sets of the RMF model adjusted to different sets of parameters
of nuclear matter at the saturation point (Glendenning & Moszkowski, 1991; Glendenning, 2000).

n0 B0 m∗
D S0 K0 g2

σ/m2
σ g2

ω/m2
ω g2

ρ/m2
ρ 103b 103c

(fm−3) (MeV) (mN ) (MeV) (MeV) (fm2) (fm2) (fm2)

0.153 16.3 0.7 32.5 300 11.79 7.149 4.411 2.947 −1.070
0.153 16.3 0.78 32.5 240 9.927 4.820 4.791 8.659 −2.421
0.153 16.3 0.75 32.5 200 11.299 5.696 4.656 8.784 −1.0098

where kF = (3π2nb/2)1/3 is the nucleon Fermi momentum in the symmet-
ric nuclear matter. The coupling of ρ mesons to nucleons gives, therefore, a
contribution to the symmetry energy which grows linearly with baryon density.
As will be discussed in §5.13, this property has an important impact on the
high-density behavior of the proton fraction in the npeµ matter. At nb = n0,
the ρ-field term contributes about half of the symmetry energy!

Specific values of the five parameters of the RMF model depend on values
of experimental saturation parameters of nuclear matter. Some examples of
parameter sets are given in Table 5.1. Notice that the coefficient of the quartic
term in U(σ), Eq. (5.71), is negative. Taken at its face value, this means that
the energy-density functional is not bounded from below! However this feature
does not seem to be dangerous, because the values of gσσ are bounded by
the bare nucleon mass. Consider Eq. (5.73) for the σ-field. One can show
that gσσ grows monotonically with increasing nb tending to m from below as
nb −→ ∞. This property remains valid in the presence of the self-interaction
potential U(σ).

5.9.4 c Concluding remarks

The RMF model has many attractive features which make it a popular tool
in the neutron-star physics. It is computationally simple even for a multicom-
ponent dense baryonic matter consisting of nucleons and hyperons (§5.10.2).
Its Lorentz invariance guarantees that the sound speed in dense matter does not
exceed the speed of light at any density. However, one should not forget the
underlying approximations and assumptions.

Let us start with the basic assumption of the spatial constancy of the meson-
field sources. It is valid if the mean distance between nucleons rNN is much
smaller than the spatial range of virtual mesons rφ = �/mφc. As seen from Eq.
(5.65), this condition holds at nb � 100 n0! Clearly, the assumption rNN � rφ

is not satisfied in neutron-star cores. Moreover, at nb = n0, where the RMF
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model is adjusted to experimental data, the opposite is true: rNN � rφ! As
we have already mentioned, the Fock terms in the ground-state energy are
neglected, which is strictly valid in the limit of nb −→ ∞.

Except for the self-coupling term U(σ), the interaction part LRMF
int of the

RMF Lagrangian density is identical to the analogous component of the one-
boson-exchange Lagrangian, LOBE

int , used to describe NN data in vacuum (§5.6).
However, applying a mean-field approximation to LOBE gives a symmetric
nuclear matter which is strongly unbound at nb = n0 (Akmal et al., 1998).
Clearly, LRMF is not directly related to LOBE.

5.9.5 Effective energy density functionals
According to the Kohn-Sham density functional theory (Kohn & Sham,

1965), developed starting from the ideas of Hohenberg & Kohn (1964), the
energy of a many-Fermion system is a unique functional of one-particle densi-
ties. The ground state energy is determined by the minimization of the energy-
density functional with respect to one-particle densities (number density, spin
density, and kinetic energy density). The density functional theory (DFT) has
been widely applied in condensed matter physics (see, e.g., the monograph
of Dreizler & Gross 1990) and in nuclear physics (see, e.g., the monograph
of Petkov & Stoitsov 1991). Its application for describing the matter in a
neutron-star crust is outlined in §3.3.1. While the existence of a unique density
functional representing the energy of a fermionic system is predicted by the
DFT, its specific functional form is still to be determined either by confronting
DFT predictions with experiments or by calculating the functional using a more
fundamental many-body theory.

The energy-density functional becomes particularly simple for a uniform,
spin-unpolarized nucleon matter, where it reduces to a function of nn and np,
EN(nn, np). The dependence of EN on nucleon number densities is usually
presented in a parameterized form. Numerical coefficients are obtained by ad-
justing the model to empirical properties of nuclear matter at saturation and also
to best ab initio many-body calculations of pure neutron matter (to the most
advanced results based on realistic nucleon-nucleon interaction). Remaining
parameters of the energy-density functional are obtained by fitting the prop-
erties of laboratory nuclei calculated in the Hartree-Fock approximation with
account for nucleon pairing effects. In this way some Skyrme-type energy-
density functionals were constructed (see, e.g., Chabanat et al. 1997, 1998). A
detailed study of a very large set of Skyrme energy-density functionals and of
their application to neutron star EOS and neutron star models was presented
by Rikovska-Stone et al. (2003). Other energy-density functionals were based
exclusively on many-body calculations with realistic nucleon-nucleon interac-
tions (e.g., the FPS energy-density functional). Several selected EN(nn, np) are
presented in the Appendix D.
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5.10. Energy of hyperon-nucleon matter
With increasing baryon density, hyperons may appear in neutron-star cores

replacing highly energetic neutrons. Instead of the nucleon energy density
EN(nn, np), one needs a more general baryon-energy functional EB({nB}),
where {nB} is a set of number densities of baryon species {B},∑

B

nB = nb . (5.78)

At baryon densities nb � 10 n0, relevant for neutron-star cores, it is sufficient
to consider the octet of lightest baryons. The octet includes the nucleon charge-
doublet N , the charge-singlet Λ, the charge-triplet Σ, and the charge-doublet
Ξ. The parameters of these baryons are given in Table 5.2. Baryon fields ψB

have well defined properties in the isospin space: nucleons and Ξ-hyperons are
represented by an iso-spinor field (isospin I = 1/2), Λ by an iso-scalar field
(I = 0), and Σ-hyperons by an iso-vector field (I = 1). Each baryon field is
an eigenstate of the third isospin component I3, related to its electric charge Q
and strangeness S by (see, e.g., Perkins 2000)

I3 = Q − (S + 1)/2 . (5.79)

The electric charge density and the strangeness per baryon are given by

qb =
∑
B

nBQB , sb =
∑
B

nBSB/nb . (5.80)

5.10.1 Brueckner-Bethe-Goldstone theory
At the lowest-order (BHF) level the generalization to the multicomponent

baryon matter should take into account the multichannel nature of the BB in-
teraction resulting from the Λ–Σ conversion. Consider the set of N , Λ and Σ.
One can introduce G-matrices GNΛ,NΛ, GNΛ,NΣ, GNΣ,NΛ, GNΣ,NΣ, which
are coupled by (NΣ|v̂ij |NΛ) matrix elements of the interaction operator v̂ij in
the generalized G-matrix equations.23 Moreover, each G-matrix is coupled to
remaining ones via the self-consistent single-particle potentials

UB(p1) = 2
∑

B′ �=B

∫
B′

dp3 (p1p3|GBB′,BB′(eB(p1) + eB′(p3))|p1p3)

+ 2
∫

B
dp3 (p1p3|GBB,BB(eB(p1) + eB(p3))|p1p3)a . (5.81)

23For example, (pΣ−|v̂ij |nΛ) means strong interaction with nΛ in an initial state and with pΣ− in a final
state; similar notation is used for G-matrix elements.
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Table 5.2. Masses, electric charges, strangeness, and e-folding (mean) lifetimes of the baryon
octet, measured in laboratory. The baryon number, spin, and parity of all these baryons are 1,
1/2, and +1, respectively.

baryon name mc2 (MeV) Q (e) S τ (s)

p 938.27 1 0 > 1032

n 939.56 0 0 886

Λ0 1115.7 0 −1 2.6 × 10−10

Σ+ 1189.4 1 −1 0.80 × 10−10

Σ0 1192.6 0 −1 7.4 × 10−20

Σ− 1197.4 −1 −1 1.5 × 10−10

Ξ0 1314.8 0 −2 2.9 × 10−10

Ξ− 1321.3 −1 −2 1.6 × 10−10

Here, we have returned to physical units and short-hand notations, Eq. (5.36),
used in §§5.9.1 and 5.9.2. The BHF approximation for the energy density reads

E({nB}) = EFFG({nB})

+
1
2

∑
B′

∫
B′

dp1

∫
B′

dp2 (p1p2|GB′B′,B′B′(eB′(p1) + eB′(p2))|p1p2)a

+
1
2

∑
B′′ �=B′

∫
B′′

dp1

∫
B′

dp2 (p1p2|GB′′B′,B′′B′(eB′′(p1) + eB′(p2))|p1p2) .

(5.82)

A self-consistent solution of the BBG equations is a formidable numerical
task, because of non-linear coupling of integral equations for G-matrices. No
wonder that such calculations became feasible only in the late 1990s (Schulze
et al. 1998; Vidaña et al. 2000a,b; Nishizaki et al. 2002; also see the review
paper by Baldo & Burgio 2001 and references therein). Because of a tremen-
dous complexity, an evaluation of the three-body correlation contribution à la
Bethe-Faddeev has not been carried out up to now (till 2006). However, in view
of uncertainties of the NH and HH interactions in dense matter, even the cal-
culation of the EOS at the BHF level is so model-dependent, that the unsolved
problem of higher-order correlations seems of second priority. Additional large
uncertainties result from our ignorance of three-body interaction involving hy-
perons. As visualized by the BBG calculations of Nishizaki et al. (2002), three
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body interactions can play a decisive role in the EOS of hyperonic matter (see
§6.5.5). The EOS based on the two-body interactions only is usually too soft to
support 1.44 M� of the Hulse-Taylor pulsar. Inclusion of realistic three-body
interactions involving hyperons is therefore a major task for the many-body
calculations of the EOS.

5.10.2 Relativistic mean-field model
The mean-field method is particularly suitable for calculating the EOS of

a uniform multi-component dense matter. Strong interactions of hadrons are
invariant with respect to rotation in the isospin space, and therefore L is an
iso-scalar. In particular, the coupling constants gφB do not depend on I3B .
The generalization of the RMF model equations to the full baryon octet is then
straightforward: the total source of a meson field is a sum of contributions from
all baryon fields. For the sake of generality, we will write all the equations in
the form which enables one to include baryons beyond the lowest-mass baryon
octet. In this section we will use units in which � = c = 1.

The equations for the non-vanishing components of the ω and ρ fields are:

ω0 =
∑
B

gωB

m2
ω

nB , ρ0
0 =

∑
B

gρB

m2
ρ

I3BnB . (5.83)

In the equation for the σ field, the nucleon term has to replaced by a sum over
all baryon terms, taking due account of the spin degeneracy,

m2
σσ =

∑
B

2JB + 1
2π2 gσB

∫ kFB

0
dk

k2(mB − gσBσ)√
k2 + (mB − gσBσ)2

−gσN

[
bmN (gσσ)2 + c (gσσ)3

]
, (5.84)

where JB is the baryon spin. The Fermi momenta of baryons B are related to
their number density nB by

nB =
2JB + 1

6π2 k3
FB . (5.85)

In order to calculate the EOS of the ground-state matter, one needs the energy
spectrum of baryons. It is obtained from the Dirac equations for bispinors ψB:

eB(k) =
√

k2 + (mB − gσBσ)2 + gωBω0 + gρBI3Bρ0
0 . (5.86)
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The only modification in the expressions for the energy density and pressure
consists in replacing nucleon contributions by sums over all baryons,

EB({nB}) =
∑
B

2JB + 1
2π2

∫ kFB

0
dk k2

√
k2 + (mB − gσBσ)2 +

1
2

m2
σσ2

+
1
2

m2
ρ(ρ

0
0)

2 +
1
2

mωω2
0 +

1
3

bmN (gσNσ)3 +
1
4

c (gσNσ)4 , (5.87)

PB({nB}) =
1
3

∑
B

2JB + 1
2π2

∫ kFB

0
dk

k4√
k2 + (mB − gσBσ)2

− 1
2
m2

σσ2

+
1
2

m2
ρ(ρ

0
0)

2 +
1
2

mωω2
0 − 1

3
bmN (gσNσ)3 − 1

4
c (gσNσ)4 , (5.88)

where the values of time-like components of meson fields are expressed via
{nB} by solving Eqs. (5.83) and (5.84).

The free parameters of the model are gσB/mσ, gωB/mω, gρB/mρ, b, and c.
Experimental values of mB are used.

Due to the mean-field character of the model and the charge independence
of strong interactions, the case of the full baryon octet is not much more com-
plicated than the minimal case of the nucleon matter. Also, going beyond the
baryon octet by including ∆ resonances is not a very difficult task within the
RMF model.

5.11. The equation of state of the outer core
The theoretical description of the matter at ρ � 2ρ0 is within the reach of

the modern nuclear theory. The nuclear Hamiltonian, albeit very complicated,
is known reasonably well. The calculation of the ground state of nucleon
matter requires big computing resources but can be carried out with a reasonable
accuracy.

5.11.1 Calculating the equation of state
Consider the matter composed of nucleons, electrons, and possibly muons.

Nucleons form a strongly interacting Fermi liquid, while electrons and muons
constitute nearly ideal Fermi gases. The energy per unit volume is

E(nn, np, ne, nµ) = EN(nn, np) + Ee(ne) + Eµ(nµ) , (5.89)

where EN is the nucleon contribution. In what follows, we will assume full
thermodynamic equilibrium. The pressure and energy-density depend on a sin-
gle parameter; its best choice is usually the baryon density nb. The equilibrium
at given nb corresponds to the minimum of E under the condition of electrical
neutrality.

We will derive the equilibrium equations using a general method which can
also be used in a multi-component matter containing, e.g., hyperons. Let us
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employ the method of Lagrange multipliers, particularly suitable for calculating
the minimum of a function of many variables under additional constraints. In
our case, the variables are the number densities nj , j = n, p, e, µ, and the
constraints are

fixed baryon density: nn + np − nb = 0 , (5.90a)

electrical neutrality: ne + nµ − np = 0 . (5.90b)

Let us introduce the auxiliary function Ẽ , defined by

Ẽ = E + λ1(ne + nµ − np) + λ2(nn + np − nb) . (5.91)

In this case λi are Lagrange multipliers to be determined from the unconstrained
minimization of Ẽ by requiring ∂Ẽ/∂nj = 0 for all j:

∂Ẽ/∂nn = µn + λ2 = 0 , (5.92a)

∂Ẽ/∂np = µp − λ1 + λ2 = 0 , (5.92b)

∂Ẽ/∂ne = µe + λ1 = 0 , (5.92c)

∂Ẽ/∂nµ = µµ + λ1 = 0 , (5.92d)

with ∂E/∂nj = µj . Eliminating the Lagrange multipliers from Eqs. (5.92) one
gets the relation between the chemical potentials

µn = µp + µe , µµ = µe , (5.93)

which expresses the equilibrium with respect to the weak-interaction processes

n −→ p + e + νe , p + e −→ n + νe , (5.94a)

n −→ p + µ + νµ , p + µ −→ n + νµ . (5.94b)

We consider a neutron-star core transparent for neutrinos (which occurs, typ-
ically, as soon as T � 109−1010 K). In this case neutrinos do not affect the
matter thermodynamics, and we can put µνe = µνe = µνµ = µνµ = 0.

Equations (5.93) supplemented by the constraints (5.90) form a closed system
of equations which determine the equilibrium composition of the npeµ matter.

Electrons are ultra-relativistic, so that (in physical units, in which the electron
Fermi momentum is �pFe)

µe = �cpFe ≈ 122.1 (ne/0.05n0)1/3 MeV , (5.95)

while muons are mildly relativistic

µµ = mµc2
√

1 + (�pFµ/mµc)2 . (5.96)
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Muons are present only if µe > mµc2 = 105.65 MeV; in the opposite case we
are dealing with the npe matter.

Once the equilibrium is determined, the pressure is calculated from the first
law of thermodynamics (at T = 0):

P = n2
b

d(E/nb)
dnb

. (5.97)

The derivative is taken at the equilibrium composition.
One may worry about density-dependent particle composition. Generally,

the density dependence of particle fractions xj ≡ nj/nb gives a non-vanishing
contribution to the density derivative of the energy per nucleon. Let us treat E
as a function of nb, xp, xe, and xµ. Then

P = n2
b

(
∂(E/nb)

∂nb

)
eq

+
1
nb

∑
j=p,e,µ

(
∂E
∂xj

)
eq

(
dxj

dnb

)
eq

, (5.98)

where derivatives are taken at equilibrium. However, using Eqs. (5.90) and
(5.93) one can see that the second term on the right-hand-side of Eq. (5.98)
vanishes, i.e., both formulae for P give the same result.

5.11.2 The nuclear symmetry energy and the proton
fraction

Many-body calculations of the energy per nucleon in an asymmetric nuclear
matter with realistic nucleon-nucleon interactions show that, to a very good
approximation, the dependence on the neutron excess δ = 1 − 2xp is quadratic
(see, e.g., Lagaris & Pandharipande 1981c; Wiringa et al. 1988; Akmal et al.
1998):

EN(nb, δ) � E0(nb) + S(nb) δ2 . (5.99)

Here, E0(nb) refers to the symmetric nuclear matter and S(nb) is the symmetry
energy. A very high precision of this formula, even for δ � 1, indicates that
the higher-order terms of the expansion in δ are small.

In this context it is instructive to consider the free-Fermi gas (FFG) model
of the nuclear matter, where the energy per baryon is

EFFG(nb, δ) =
3
10

εF(nb)
[
(1 + δ)5/3 + (1 − δ)5/3

]
. (5.100)

Here, m ≡ (mn + mp)c2/2 = 938.93 MeV is the mean nucleon mass and εF
is the Fermi energy in the symmetric nuclear matter at a given nb,

εF =
�

2

2m

(
3
2

π2nb

)2/3

≈ 36.8
(

nb

n0

)2/3

MeV . (5.101)
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The small-δ expansion of EFFG reads then

EFFG(nb, δ) =
3
5

εF(nb) +
1
3

εF(nb) δ2 , (5.102)

which gives the symmetry energy for the free Fermi gas model in the form

SFFG ≈ 12.3
(

nb

n0

)2/3

MeV . (5.103)

It is easy to check that the quadratic approximation, Eq. (5.99), is very precise
even at δ = 1. From Eq. (5.100) applied to a pure neutron matter we obtain
EFFG(nb, 1) = (3/5) 22/3 εF(nb) ≈ 0.9524 εF(nb), while Eq. (5.102) gives
14εF(nb)/15 ≈ 0.9333 εF(nb) which is only 2% smaller!

The simple form of the dependence of EN on xp enables us to clarify the
relation between the symmetry energy and the composition of the npe matter
at beta-equilibrium. Using Eq. (5.99) we can easily calculate the difference
between the chemical potentials of neutrons and protons,

µn − µp = 4(1 − 2xp)S(nb) . (5.104)

The beta-equilibrium in the npe matter (where xe = xp) implies, therefore,

x
1/3
p

1 − 2xp
=

4S(nb)
�c (3π2nb)1/3 . (5.105)

Accordingly, the proton fraction at a given nb is determined by the symmetry
energy. Under typical conditions, the proton fraction is small, xp � 1, and

xp(n0) ≈ 64 [S(nb)]3

3π2(�c)3 nb
≈ 4.75 × 10−2

(
n0

nb

)(
S(nb)

30 MeV

)3

, (5.106)

i.e., the dependence of xp on the symmetry energy is very strong.
The proton fraction at the normal nuclear density nb = n0 is directly de-

termined by the symmetry energy Sb(n0) = S0 at the saturation point (§5.4).
As the experimental value of S0 is Sexp � 30 MeV, the proton fraction in the
neutron-star matter at the normal nuclear density should be xp(n0) � 5%, inde-
pendently of any specific EOS of dense matter. On the other hand, Eq. (5.106)
tells us that the actual value of xp(n0) for a given model of dense matter is
very sensitive to the value of S0 of that model. In particular, the free Fermi-gas
model yields a very small S0, Eq. (5.103), and gives an unrealistically low value
xFFG

p (n0) ≈ 0.0033.

5.12. Equation of state and composition
In the rectangular insert in Fig. 5.6 we show EOSs of the outer core calculated

using five models of nucleon matter. They are briefly described in Table 5.3.
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Figure 5.6. Pressure versus baryon number density for several EOSs of the npeµ matter in beta
equilibrium. Labels are the same as in Table 5.3. The tables of the APR and APRb* EOSs have
been kindly provided by J.M. Lattimer.

Two of them, BBB1 and BBB2, are obtained in the framework of the BBG
theory assuming different realistic NN potentials and a model of the NNN
interaction. Although the NN potentials are essentially different (the local U14
Urbana potential and the non-local momentum-dependent Paris potentials) they
fit equally well NN data and give very similar EOSs of the outer neutron-star
core.

The APR and APRb* EOSs are calculated using the variational method. The
center-of-mass NN potential is the same (Argonne A18). However, the APRb*
EOS includes a repulsive boost NN-interaction and uses the Urbana NNN force
UIX* readjusted to experimental data (see §5.5.3). The repulsive component
of the UIX* NNN force is much weaker than that of the UIX NNN force in
the APR EOS. However, these differences in the Hamiltonian slightly affect
the EOS of the outer neutron-star core. Finally, the SLy EOS is based on a
Skyrme-type energy density functional; it is very similar to the APR one.
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Figure 5.7. Pressure versus mass density for several EOSs of the npeµ matter. Labels are the
same as in Table 5.3.

As we have shown in §5.11.2, the proton fraction depends strongly on the
symmetry energy S(nb). While the expression for the pressure contains S(nb)
and S′(nb), the proton fraction is roughly proportional to the cube of S(nb). In
this way, xp(nb) “amplifies” the differences in S(nb) given by various nuclear-
matter theories. This feature is clearly seen in the rectangular insert in Fig.
5.8.

The APR and APRb* xp(nb) curves exhibit a kink at nb ∼ 0.2 fm−3 while
other curves are monotonous and smooth. According to Akmal et al. (1998),
the kink is associated with a phase transition. Within the variational approach,
the phase transition is reflected by a sudden change of the correlation func-
tions, and specifically by a sudden and strong change of some healing dis-
tances du (§5.9.3). Akmal et al. (1998) identify this phase transition with
a π0 condensation (see §7.3). It should be stressed, however, that variational
wave-functions incorporate only short-range correlations and cannot accurately
describe a phase transition connected with long-range correlations (Akmal &
Pandharipande, 1997; Akmal et al., 1998). The actual phase transition is ac-
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Table 5.3. Selected EOSs of neutron star cores

EOS model reference

BPAL12 npeµ energy density functional Bombaci (1995)
BGN1H1 npΛΞeµ energy density functional Balberg & Gal (1997)
FPS npeµ energy density functional Pandharipande & Ravenhall

(1989)
BGN2H1 npΛΞeµ energy density functional Balberg & Gal (1997)
BGN1 npeµ energy density functional Balberg & Gal (1997)
BBB2 npeµ Brueckner theory, Paris NN plus

Urbana UVII NNN potentials
Baldo et al. (1997)

BBB1 npeµ Brueckner theory, Argonne A14
NN plus Urbana UVII NNN potentials

Baldo et al. (1997)

SLy npeµ energy density functional Douchin & Haensel (2001)
APR npeµ variational theory, Argonne A18

NN plus Urbana UIX NNN potentials
Akmal et al. (1998)

APRb* npeµ variational theory, Argonne A18
NN with boost correction plus adjusted
Urbana UIX* NNN potentials

Akmal et al. (1998)

BGN2 npeµ effective nucleon energy func-
tional

Balberg & Gal (1997)

companied by a density jump at the phase interface. It is incorporated in the
EOS through the mixed-phase construction in the region n1 < nb < n2, where
the fraction of the denser phase increases monotonically from zero at nb = n1
to one at nb = n2 (we refer the reader to §7.2.3 for a general discussion of
mixed phases). However, the effects of phase transitions on the EOS are rather
weak. They are invisible in the APR and APRb* curves in Figs. 5.6 and 5.7,
where interpolation between tabulated EOS points is made.

It is interesting to compare the values of xp given by different theories at
nb = n0. These values range from 0.035 for the U14+UVII model to 0.06 for
the APRb* one. A difference by a factor ∼ 2 stems from using S0 = 28 MeV
and S0 = 35 MeV, respectively; see Eq. (5.106). These values of the symmetry
energy are still within extreme experimental values of S0.

5.13. Inner core: minimal model – nucleons and leptons
5.13.1 Equation of state of the npeµ matter

The assumption that the matter at ρ � 2ρ0 has the same composition as the
outer core leads to the “minimal model” of the inner neutron-star core. In Figs.
5.6 and 5.7 we present several selected EOSs calculated under this assump-
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Figure 5.8. Proton fraction in npeµ matter at beta equilibrium for different EOSs (labeled as in
Table 5.3). Characteristic negative-slope segments for the APR and APRb* models correspond
to a narrow mixed-phase region. The dotted line gives the threshold value of xp above which
the direct Urca process is allowed.

tion. They employ different nuclear Hamiltonians and many-body theories as
described in §5.12. The comparison of the APR and APRb* curves shows that
a consistent inclusion of lowest-order relativistic effects in the interaction part
of the two-body Hamiltonian combined with a simultaneous readjustment of
the three-body force weakly affects the EOS even at nb = 1.2 fm−3. To some
extent, the difference between the more modern APR and APRb* EOSs (based
on the up-to-date NN and NNN Hamiltonians) and the BBB1 and BBB2 EOSs
(based on older interactions constructed in the 1980s) results from the differ-
ences in the Hamiltonians themselves. The APR and APRb* EOSs are stiffer
than those which employ older versions of NN and NNN interactions. The SLy
EOS uses a phenomenological energy-density functional; its stiffness is inter-
mediate between the EOSs obtained from the BBG theory and the variational
method.
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The overall divergence of P (ρ) curves at higher densities is smaller than
the divergence of P (nb) curves. This is natural because a higher stiffness
implies also a steeper increase of the interaction contribution to E ≡ ρc2.
The hydrostatic equilibrium of a star is determined by the P (ρ) curve. At
ρ = 1015 g cm−3 pressures given by the different EOSs in Fig. 5.7 range within
(1.2−1.8) × 1035 dyn cm−2.24 As we will see in §6.5.5, these EOSs lead to
the maximum masses of neutron stars Mmax = (1.9 − 2.2) M�.

5.13.2 Proton fraction and direct Urca threshold
The behaviour of the proton fraction xp(nb) is crucial for the cooling of

neutron stars. A neutron star is formed as a hot compact object with an internal
temperature T ∼ 1011 K in a gravitational collapse of a degenerate stellar core
(see §1.4.2). During the initial 105−106 years of its life a star cools via neutrino
emission from its core. The most efficient cooling channel is due to the so called
direct Urca processes, mentioned in §1.3.7,

n −→ p + e + νe , p + e −→ n + νe , (5.107a)

n −→ p + µ + νµ , p + µ −→ n + νµ . (5.107b)

Let us first consider the electron Urca processes in the upper line. These re-
actions are allowed only at rather high nb at which xp(nb) exceeds a threshold
value xD(nb) ≈ 0.11 − 0.14 (Lattimer et al., 1991). The threshold condition
can be obtained as follows. Because neutrons, protons, and electrons form de-
generate Fermi liquids, only the states close to the Fermi surfaces (within a shell
of the thickness ∼ kBT around the Fermi energy) are involved in the processes
(5.107). Therefore, the momenta of neutrons, protons, and electrons can be
approximated by their Fermi momenta pFj (j = n, p, e, µ), while the neutrino
momentum pν ∼ kBT/c � pFj . Neglecting small corrections kBT/c � pFj

one sees that momentum conservation imposes the triangle rule:

pFn < pFp + pFe , (5.108)

which is satisfied for xp > xD. In the absence of muons, xD = 1/9; their
presence slightly increases xD above 1/9, and xD may become as large as
0.14 (see Fig. 5.8). Replacing electrons by muons in Eqs. (5.108) one can
get the threshold proton fraction which opens the muon direct Urca process.
This process becomes allowed at a slightly higher density than the electron one
(Lattimer et al., 1991).

The threshold density depends on an EOS model. For some EOSs, xp never
reaches xD and direct Urca processes remain forbidden in neutron-star cores.

24Generalization of this statement, which refers to a restricted set of selected EOSs, should be taken with a
grain of salt (see Sarsa et al. 2003; Morales et al. 2002)
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An example of such a dense-matter model is U14+UVII of Wiringa et al. (1988),
Fig. 5.8.25 The neutrino emission proceeds then via the so called modified Urca
processes with an additional nucleon in initial and final states of Eq. (5.107).
This additional nucleon does not participate in beta processes but only opens
it via a momentum transfer mediated by strong interactions. This strongly
suppresses the neutrino emission rate. If direct Urca processes operate, then a
non-superfluid neutron-star core cools to 109 K in a minute, and to 108 K in
a year. If they are not allowed, the timescales will be one year and 105 years,
respectively.

5.13.3 Adiabatic index
An important parameter which characterizes the stiffness of the EOS with

respect to density perturbations is the adiabatic index, defined by

γ =
nb

P

dP

dnb
=

P + E
P

dP

dE . (5.109)

It is calculated assuming full equilibrium of matter constituents and is generally
a function of density. The function γ(nb) is plotted in Fig. 5.9 for some EOSs of
the npeµ matter. For most of EOSs, γ(nb) varies from 2 to 4. However, for the
BGN1, SLy and BG2 EOSs the adiabatic index is a weak function of density.
These EOSs are special, because they are based on the Skyrme-type energy-
density functionals,with a very specific smooth dependence of the pressure on
neutron and proton number densities. The remaining EOSs are constructed in
the framework of many-body theories based on realistic nuclear Hamiltonians.
They have a complicated density dependence, which reflects different contri-
butions from various components of nuclear interaction, particularly from the
NNN component.

The composition of the npeµ matter is density dependent. Therefore, a
change in density disturbs beta equilibrium. This in turn initiates weak inter-
action processes which move the matter toward the equilibrium on a character-
istic relaxation timescale. Neutron star pulsations have characteristic periods
∼ 10−3 s, which are much shorter than the timescales of relaxation towards
beta equilibrium. Thus, sound waves inside a neutron star core propagate at a
constant composition, and the corresponding adiabatic index should be calcu-
lated at fixed (frozen) xj . Such an adiabatic index will be denoted by γfr; it is
larger than the index γ calculated from Eq. (5.109) assuming full equilibrium.

25The model U14+UVII of Wiringa et al. (1988) belongs to a class of models, which were developed in the
1980s and showed a non-monotonous S(nb). For these models, S(nb) starts to decrease with increasing
nb above some density, and can even vanish at a very large nb > 1 fm−3. Other models of Wiringa et al.
(1988), for instance A14+UVII, also show a non-monotonous behavior of S(nb) but their symmetry energy
never vanishes in a neutron-star core. For more recent EOSs, developed in the 1990s, both xp and S(nb)
increase monotonously with increasing nb in the stellar core.



Neutron star cores: nucleons and hyperons 267

Figure 5.9. Adiabatic index of the npeµ matter in an inner neutron-star core versus baryon
density for selected EOSs. All but three EOSs are from Table 5.3, the remaining ones are the
EOSs of Wiringa et al. (1988). The index is calculated using analytic fits of P (nb) to tabulated
EOSs.

It is γfr (not γ), which enters the expression for the local velocity of sound vs:

vs

c
=
(

dP

dE

)1/2

fr
=
(

γfrP

E + P

)1/2

. (5.110)

5.14. Hyperons in the inner core
A presupernova core at the brink of a collapse contains atomic nuclei (of the

Fe-Ni group), alpha particles, free nucleons, electrons and positrons, but not
hyperons. However, a huge gravitational compression can initiate the trans-
formation of nucleons into hyperons, as soon as such transformation lowers
the energy density at a given nb. This process is mediated by the strangeness-
changing weak interaction and may become possible at ρ � 2ρ0.
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Figure 5.10. Threshold chemical potentials of neutral hyperons and neutron (left) and of nega-
tively charged hyperons and the sum µe+µn (right) versus baryon number density for model C of
Glendenning (1985). Vertical dotted lines mark the thresholds for the creation of new hyperons;
dashed lines show minimum enthalpies µ0

H of unstable hyperons before the thresholds.

5.14.1 Hyperonic composition
Let us consider an electrically neutral matter composed of baryons B (nucle-

ons and hyperons) and leptons � (electron and muons) at a given baryon number
density nb. The baryon density is∑

B

nB = nb , (5.111)

while the electric charge neutrality implies∑
B

nBQB −
∑

�=e,µ

n� = 0 , (5.112)

where QB is the electric charge of a baryon B in units of e. The energy density
depends on the number densities of baryons {nB} and leptons (ne, nµ), E =
E({nB}, ne, nµ). The equilibrium state has to be determined by minimizing E
under the constraints given by Eqs. (5.111) and (5.112). To this aim, we will
use the method of Lagrange multipliers described in §5.11.1. In analogy with
Eq. (5.91) we define the auxiliary energy density Ẽ

Ẽ = E + λb

(∑
B

nB − nb

)
+ λq

⎛⎝∑
B

QBnB −
∑

�=e,µ

n�

⎞⎠ . (5.113)
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Figure 5.11. Fractions of particles xj = nj/nb versus baryon number density nb (in units of
n0 = 0.16 fm−3) calculated by Hanauske et al. (2000) for two relativistic models of baryonic
interactions (with the kind permission of the author). Left: Effective chiral model of Hanauske
et al. (2000). Right: Relativistic mean field model TM1 of Sugahara & Toki (1971).

Let NB be the number of the baryon species. Minimizing Ẽ , we get a set of
NB + 2 equations

∂Ẽ/∂nB = µB + λb + λq QB = 0 (B = 1, . . . , NB), (5.114a)

∂Ẽ/∂n� = µ� − λq = 0 (� = e, µ), (5.114b)

where λb and λq are Lagrange multipliers and µj = ∂E/∂nj .
Eliminating Lagrange multipliers, we get a system of NB relations for NB +

2 chemical potentials. We have two additional relations, Eqs. (5.111) and
(5.112), so that the total number of equations is equal to NB + 2. The relations
involving the chemical potentials of nucleons and leptons are equivalent to Eqs.
(5.93) obtained for the npeµ matter: µe = µµ, µn = µp + µe. However,
we have now additional equations which describe equilibrium with respect to
weak interactions. The equilibrium equations depend on QB . In our case
QB = −1, 0, 1:

QB = −1 : µB− = µn + µe , (5.115a)

QB = 0 : µB0 = µn , (5.115b)

QB = +1 : µB+ = µn − µe . (5.115c)
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Figure 5.12. Particle fractions xj = nj/nb versus nb as calculated by Vidaña et al. (2000b) in
the BHF approximation for two models of baryonic interactions (with the kind permission of the
authors). Upper panel: Nijmegen model E of Rijken et al. (1999): only Σ− hyperon is present
in neutron-star cores. Lower panel: APR model for the nucleon sector (Table 5.3, Akmal et al.
1998) and Nijmegen model E of Rijken et al. (1999) for NH and HH interactions. In contrast
to the upper panel, Λ is present in dense matter. Solid lines in both panels: all baryon-baryon
(NN, NH, HH) interactions are included. Dashed lines in the lower panel: HH interaction is
(artificially) switched off.

The lightest baryons form an octet, containing nucleons and Λ, Σ, Ξ hyperons
(§5.10.2, Table 5.2).
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Figure 5.13. Effect of the three-body forces between nucleons on particle fractions xj = nj/nb

in dense matter; from Baldo & Burgio (2001) with the kind permission of the authors (see text
for details).

One can calculate the threshold densities ρH of hyperons (H) by checking the
threshold condition at various ρ. One can start at ρ = 0.5 ρ0, where hyperons are
certainly absent. Nevertheless, one can always calculate the minimum increase
of the energy of the matter produced by adding a single hyperon H at a fixed
pressure P . This can be done by considering the energy of the matter with an
admixture of given hyperons and by calculating numerically the limit of the
derivative

lim
nH−→0

(∂E/∂nH)eq ≡ µ0
H . (5.116)

To be specific, consider the lightest Λ hyperon. As long as µ0
Λ > µn, this hy-

peron cannot survive because the system will lower its energy via an exothermic
reaction Λ + N −→ n + N . However, µn increases with growing nb and the
functions µ0

Λ(nb) and µn(nb) intersect at some nb = nΛ
c (the left panel in Fig.

5.10). For nb > nΛ
c , the Λ hyperons become stable in dense matter: their decay

is blocked by the Pauli principle.
As we have already mentioned, usually Λ is not the first one to appear in a

neutron-star core, because Σ− appears at lower density (§5.2). This is visual-
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ized in Figs. 5.11, 5.12, and 5.13. The threshold condition for the Σ− hyperon
creation is

µ0
Σ− = µn + µe . (5.117)

The electron Fermi energy µe adds to µn and the threshold condition is usually
satisfied at lower density (and at lower µn) than for Λ. However, this is not a
strict rule, as one can see by comparing the left and right panels of Fig. 5.10.
The figure shows also examples of the appearance of other hyperons (for Q = 0
and Q = −1).

Large values of µe may prohibit the appearance of Q = +1 hyperons in
neutron-star cores. For example, consider Σ+, the lightest positively charged
hyperon. As follows from the bottom line of Eqs. (5.115), the condition of its
appearance is

µ0
Σ+ = µn − µe . (5.118)

The subtraction of µe can easily lead to µ0
Σ+ > µn − µe in dense matter,

making Σ+ unstable (because the process Σ+ + e → n + νe is exothermic).
Accordingly, Σ+ hyperons do not appear in neutron-star cores in some models
(see, e.g., Weber & Weigel 1989a; Vidaña et al. 2000b). However, there is no
strict rule to forbid their presence. First, a rapid increase of the Σ− fraction
at ρ > ρΣ−

c leads to a strong decrease of the electron and muon fractions
with increasing density: it is energetically advantageous to replace negatively
charged and highly energetic electrons by slow and massive Σ− hyperons with
the same charge (see Figs. 5.11–5.13). The removal of electrons lowers µe and
allows Σ+ to appear at nb � 5 n0 in many models (see the right panel of Fig.
5.11; also see, e.g., Glendenning 1985; Hanauske et al. 2000; Balberg & Gal
1997).

The lack of the precise knowledge of NH interaction and a fortiori of HH
interaction strongly affects the predicted hyperonic composition of neutron-star
cores. Another uncertainty is introduced by many-body theories as illustrated
in Fig. 5.11. Both baryon-baryon interaction models fit equally well empirical
parameters of nuclear matter at saturation. However, their hyperonic sectors
and, consequently, dense-matter parameters are different. The left panel of
Fig. 5.11 refers to baryonic matter composed mostly of neutrons, with ∼20%
of protons and only a few percent of hyperons even at n = 6n0 � 1 fm−3. The
right panel shows a drastically different situation. At nb � 1 fm−3, neutrons
constitute less than one third of baryons: we are dealing with a “baryon soup,”
where six hyperon species are present. At nb = 8n0, we have nΛ � nn! While
Σ0, Ξ0, and Σ+ hyperons are absent in the left panel of Fig. 5.11, they are all
present at nb � 6 n0 in the right panel.

The dependence of the matter composition on the baryon-baryon interaction
is further illustrated in Fig. 5.12. The curves are calculated using the BHF
theory (Vidaña et al., 2000b). The solid curves in both panels are obtained
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assuming the same NH and HH interactions (model E of Rijken et al. 1999)
but different versions of NN interaction. Specifically, in the upper panel one
employs model E of NN interaction of Rijken et al. (1999), while in the lower
panel one uses the A18 model of NN interaction supplemented with the UIX
model of the NNN force of Akmal et al. (1998). The EOS model of Akmal et
al. (1998) with its three nucleon force is much stiffer than that of Rijken et al.
(1999). Clearly, the softening of nucleon EOS shifts the hyperon appearance
to higher densities; for instance, we have nΛ

c > 1.2 fm−3 in the upper panel!
On the other hand, the comparison of the solid and dotted curves in the lower
panel of Fig. 5.12 shows that HH interaction removes leptons from high-density
matter; switching off the HH forces strongly increases the lepton fraction via
substantial lowering of the Σ− fraction.

Figure 5.13 illustrates the effect of the NNN interaction on the composition
of the matter (from Baldo & Burgio 2001). The upper panel corresponds to
purely two-body interactions, while the lower panel is obtained including NNN
forces. The latter forces stiffen the nucleon component of the EOS, lower the
thresholds of the hyperon appearance and increase hyperon fractions at high
densities. One has nΣ− � np at nb = 0.8 fm−3 and nΛ � nn at nb = 1.2
fm−3. A sizable abundance of Σ− (the lower panel) dramatically decreases the
electron fraction at high ρ.

In spite of a strong model dependence, one can notice generic features of
hyperonic and leptonic compositions. The Σ− hyperons appear usually at
lowest densities which depend mostly on the stiffness of the EOS of the npeµ
matter: the stiffer the EOS, the lower the threshold.26 Hyperonization implies
a deleptonization: negatively charged e and µ are replaced by Σ− and other
negatively charged hyperons. Finally, Σ+ is usually the only Q = +1 hyperon
present in neutron-star cores, but its presence is model-dependent.

All Figs. 5.11–5.13 demonstrate a generic shape of xe(nb) and xµ(nb)
curves. Muons appear at nb ∼ n0. Both lepton fractions increase while
the density grows up to nΣ−

c and then decrease since leptons are replaced by
Σ− hyperons. Models with high hyperon fractions show an evanescence of
leptons at nb ∼ 1 fm−3 producing a “baryon soup” at nb ∼ 1 fm−3 with high
strangeness per baryon (close to −1 in “hyperon stars” with M � Mmax).

5.14.2 Hyperon softening of equation of state
The formation of hyperons softens the EOS because high-energy neutrons

are replaced by more massive low-energy hyperons (producing lower pressure).

26If Σ− interaction with nucleon matter has a strong repulsive component, then Σ− might be absent in
dense matter. This is so in the BGN1H1 and BGN2H1 models of Balberg & Gal (1997), who introduced a
repulsive component of interaction of Σ− with nuclear matter, as suggested by some analyses of Σ− atoms
(Batty et al., 1994; Mareš et al., 1995).
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GN BGN1

Figure 5.14. Softening of EOSs by the presence of hyperons. Each panel shows an EOS with
(thick line) and without (thin line) hyperons. Left: model EOSs of Glendenning (1985). Right:
the BGN1 and BGN1H1 EOSs of Balberg & Gal (1997) (labeled as in Table 5.3)

The softening is a generic effect independent of models of NH and HH inter-
actions, as illustrated in Fig. 5.14, but its magnitude is model-dependent.

The softening is reflected in the density dependence of the adiabatic index
γ, Eq. (5.109), as demonstrated in Fig. 5.15. The index drops at each hyperon
threshold ρH . At densities slightly higher than ρH , the number density of hy-
peron species H is small, i.e., these hyperons mainly interact with nucleons.
Thus, the softening and associated drop of γ strongly depend on the NH inter-
action. For example, these effects are much stronger for the BGN1H1 EOS of
Balberg & Gal (1997) than for the GNH EOS of Glendenning (1985).

Let us stress that the adiabatic index considered here is calculated for dense
matter in full equilibrium and can be used for static neutron stars. The adia-
batic index relevant for neutron-star pulsations has to be calculated without any
assumption of equilibrium with respect to weak interactions and may be quite
different from the equilibrium one (Haensel et al., 2002b).

The EOSs at nb � 5 n0 become especially model-dependent. In particu-
lar, a possible contribution of three-body forces involving hyperons is almost
unknown. A very preliminary study of the contribution of three-baryon in-
teraction, carried out within the BBG theory, was presented by Nishizaki et
al. (2002). Assuming universal three-body repulsion acting between baryons,
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Figure 5.15. The adiabatic index γ versus nb in a neutron-star core. Calculations are performed
for the model EOS of Glendenning (1985). The solid line (γhyp) is for the hyperonic matter
(vertical dotted lines indicate thresholds for the appearance of muons and hyperons); the dot-
and-dashed line (γnuc) corresponds to the case in which the appearance of hyperons is artificially
forbidden.

Nishizaki et al. (2002) found a strong stiffening of the high-density EOS, re-
sulting in a significant increase of Mmax (see §6.5.5).

5.15. Superluminal and ultrabaric equations of state
Since the EOS at nb � n0 is very uncertain, it important to impose model-

independent bounds. The basic requirement is that any EOS should respect
Lorentz invariance and causality. These requirements can be formulated in
different (and not equivalent) ways. For instance, it has been claimed that a
physically correct EOS can be neither superluminal nor ultrabaric, where

ultrabaric EOS: P > E ; (5.119)

superluminal EOS: dP/ dE > 1 . (5.120)

Some of EOSs in Fig. 5.16 are superluminal beyond a point indicated by an
asterisk (BGN2, SLy). For the SLy EOS, the superluminality occurs at densities
which are not realized in stable neutron stars. However, for the BGN2 EOS
the most massive neutron stars have a superluminal central core with vs > c.
Both EOSs are derived within a non-relativistic many-body theory. Therefore
one may attribute their superluminality to the lack of Lorentz invariance in
non-relativistic theories.
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Figure 5.16. Selected model EOSs of neutron-star cores (denoted as in Table 5.3). Filled
circles show maximum densities in stable neutron stars, while asterisks indicate the densities
above which EOSs are superluminal (vs > c).

Still, there is a need to clarify the relation between the widely used condition
of vs < c, Lorentz invariance, and causality. For this purpose we formulate two
“questions of principle”: (a) can a Lorentz-invariant theory give a superluminal
or ultrabaric EOS? (b) does a superluminal EOS with dP/ dE > 1 necessarily
contradict causality? These problems have been analyzed by many authors
(Bludman & Ruderman, 1968, 1970; Ruderman, 1968; Caporaso & Brecher,
1979; Olson , 2000). Let us start with the simplest solvable model of dense
matter, an ideal gas of (noninteracting) particles:

E = mn
1
A

〈
A∑

i=1

c2/
√

1 − v2
i /c2

〉
, (5.121a)

P =
1
3

mn
1
A

〈
A∑

i=1

v2
i /
√

1 − v2
i /c2

〉
, (5.121b)

where A is the number of particles, n and m is their number density and mass,
vi is a particle velocity, and 〈. . .〉 means averaging over a particle distribution.
Since v2

i ≤ c2 one gets P ≤ 1
3E for an ideal gas model, and the equality

P = 1
3E is achieved in the ultra-relativistic limit.

The upper bound P ≤ 1
3E , valid for an ideal gas, can be broken in the

presence of strong short-range repulsive interactions. Long ago, Zeldovich
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(1961) presented a classical Lorentz-invariant model, where a strong repulsive
interaction between nucleons was produced by the exchange of a neutral vector
(spin J = 1) meson of mass mv.27 The interaction potential was taken in the
Yukawa form

Vij = g2
v

e−µvrij

rij
, (5.122)

where gv is the coupling constant and µv = mvc/�. The energy density is

E = EFFG + Eint , (5.123)

where EFFG is the free Fermi-gas (FFG) contribution. The interaction term is

Eint =
1
2

g2
vnb

A∑
i�=j

e−µvrij

rij
. (5.124)

Let us define a characteristic internucleon distance a by a−3 = 4πnb/3. In the
limit of a � 1/µv, one can replace summation by integration28

1
A

A∑
i�=j

f(rij) −→ nb

∫
dr f(r) , (5.125)

which gives Eint = β n2
b, with β = 2πg2

v/µ2
v, and coincides with the familiar

expression obtained in the quantum theory using the Hartree approximation for
the ground-state of nucleon matter. The complete EOS reads

E = EFFG + βn2
b , P = PFFG + βn2

b . (5.126)

For sufficiently large nb the interaction term will imply P > E/3 and for
nb −→ ∞ one gets P −→ E . The Zeldovich example shows that a Lorentz-
invariant dense-matter model can lead to the asymptotic behavior P/E −→ 1
and dP/ dE −→ 1 (from below) for nb −→ ∞, but the EOS never becomes
superluminal or ultrabaric.

Is a superluminal EOS incompatible with Lorentz invariance? Bludman &
Ruderman (1968) gave a negative answer to this question. They presented two
models which are Lorentz-invariant and still lead to vs > c and P > E for
sufficiently large nb. Let us consider a one-parameter EOS E = E(nb) and
P = P (nb). It is easy to show the sound speed can be expressed as

vs/c =
(
nbE ′′/E ′)1/2

, (5.127)

27It corresponds to ω meson of the relativistic mean-field model of §5.9.4.
28This limit is reached at densities nb � 3µ3

v/4π. For mvc2 = 500 MeV we have 1/µv ≈ 0.4 fm which
corresponds to nb � 24 n0.
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where E ′ = dE/ dnb and E ′′ = d2E/ d2nb. In this case

nbE ′′ > E ′ =⇒ vs > c . (5.128)

Assuming E ∝ n2+η
b in the limit of nb −→ ∞, we have

vs/c =
√

1 + η > 1 if η > 0 . (5.129)

The Zeldovich model employed the Hartree approximation, which neglects both
quantum effects and correlations between nucleons due to the strong short-range
repulsion. The energy can be lowered by including (classical) correlations if
a distance between neighboring nucleons becomes comparable or smaller than
the range of the repulsive interaction, rij � 1/µv. At a fixed nb, the correlations
decrease E and increase P , compared to the values obtained in the Zeldovich
(1961) model. Therefore, the correlations stiffen the EOS, which corresponds
to η > 0 and vs > c for nb −→ ∞. Moreover, an EOS which includes the
correlations can even become ultrabaric provided the interaction energy in a
particle-cell volume 1/nb exceeds mc2. All in all, the examples presented
by Bludman & Ruderman (1968) show that the Lorentz invariance does not
necessarily imply vs < c and P < E at nb −→ ∞.

Is a superluminal EOS inconsistent with causality? The inequality vs > c
can reflect the lack of causality, as a signal (a density perturbation) propa-
gates faster than light. However, vs > c can also result from an interference
of various spectral components of a sound wave, with amplification at high-
frequency components and damping (destructive interference) of low-frequency
ones. This may happen if the medium is not in its true ground state.

Up to this point, Eint was calculated in the Hartree approximation, i.e., ne-
glecting quantum correlations which result from the exclusion principle. This
approach can be improved by using the Hartree-Fock approximation. Addi-
tional (exchange) terms in Eint can also lead to η > 0, and they can make
the nucleon matter with a neutral vector-meson repulsion superluminal and
ultrabaric at nb −→ ∞ (Bludman & Ruderman, 1970). However, the most
important quantum effect are connected with a possible formation of nucleon-
antinucleon (NN) pairs. A strong NN repulsion corresponds to a strong NN
attraction. If the NN repulsion makes the matter superluminal and ultrabaric,
then the matter becomes unstable with respect to the NN formation: the matter
described by such an EOS is in a highly excited state (Bludman & Ruderman,
1970)!

Let us summarize the attempts to answer the questions of principle. As we
have seen, Lorentz invariance and causality do not exclude the possibility of
vs > c. However, “counter examples”, where the inequality vs < c is violated,
seem to be irrelevant to neutron-star physics. Moreover, the densities at which
EOSs based on these “counter-example models” become superluminal are much



Neutron star cores: nucleons and hyperons 279

higher than the density of quark deconfinement. And the Asymptotic Freedom
property of the QCD implies that vs −→ c/

√
3 for nb −→ ∞ in quark matter.

5.16. Effect of baryon superfluidity on equation of state
Baryons are most probably superfluid in neutron star cores. Since typical

critical temperatures are Tc ∼ 109−1010 K, superfluidity occurs soon after the
neutron star birth. Let us consider the simplest model of a superfluid neutron
gas and use the BCS model with an isotropic 1S0 neutron pairing (see, e.g., §51
of Fetter & Walecka 1971). For temperatures T � Tc, the superfluid gap can
be approximated by its zero-temperature value, ∆(T ) � ∆(0) ≡ ∆0, where
∆0 ≈ 1.76 kB Tc. Moreover, let us approximate the normal phase by a free
Fermi gas. At a given baryon density nb, the difference of the energy densities
between the normal (n) and the superfluid (s) phases can be shown to be given
by

En − Es =
mkF

4π2�2 ∆2
0 , (5.130)

where the energy gap is assumed to be much smaller than the neutron Fermi
energy, so that the lowest power of ∆0 is retained. The relative change in E
resulting from superfluidity is therefore

En − Es

En
=

5
8

(
∆0

εF

)2

≈ 1.83 × 10−4
(

∆0

MeV

)2(n0

nb

)2/3

, (5.131)

where εF is the neutron Fermi energy. One can also show, within our simple
model, that the effect of superfluid transition on the pressure is Pn − Ps =
−En +Es. These estimates can be extended to a more complicated case of non-
isotropic pairing and a multicomponent baryon matter. All in all, they show
that as long as superfluid gaps ∆ � 1 MeV, the relative effect of superfluidity
on the EOS at supranuclear density is less than 10−4−10−2.

5.17. Effect of strong magnetic field on equation of state
As already mentioned in §4.1.5, the magnetic field strongly affects the EOS

if the quantization of particle motion across the field (Landau orbitals) and
the interaction of particle magnetic moments with the field become important.
These quantum effects are perceptible if particles occupy only a few magneti-
cally induced quantum levels. Otherwise, the effects of the magnetic field on
the EOS are minor.

These statements can be illustrated for the case of electrons considered in
§4.1.2. We have shown that Eq. (4.25) for the pressure in an arbitrary magnetic
field reduces to the non-magnetic expression (2.50), if the field is nonquantizing
(i.e., many Landau levels are occupied). Thus, the magnetic field significantly
affects the pressure only if TB � T and ρB � ρ, where TB and ρB are given
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by Eqs. (4.29), (4.33), and (4.30). The latter (density) restriction translates into

B � (3.8 × 1019 G) (xenb/fm−3)2/3, (5.132)

where xe is the number of electrons per baryon. We have nb ∼ 0.1 fm−3 near
the crust-core interface, and xe is typically a few percent throughout the core.
Therefore, the electron pressure in the core is appreciably affected by the fields
B � 1017 G.

One can easily generalize Eq. (5.132) for other fermions (µ-mesons, nucle-
ons) in the ideal-gas model. In this case, xe should be replaced by the number
of given particles per baryon, and the right-hand side should be multiplied by
mµ/me = 206.77 for muons and ∼ 103 (of the order of nucleon-to-electron
mass and electron-to-nucleon magnetic moment ratios) for protons and neu-
trons. Accordingly, the partial proton and neutron pressures of the npeµ gas at
neutron-star densities cannot be affected by a magnetic field unless B � 1020 G.
However, the values of B � 1018 G are unrealistic (see §1.3.8).

Suh & Mathews (2001) considered the effects of superstrong magnetic fields
on muon production and pion condensation in the ideal npeµ−π− gas at
neutron-star densities. They showed that the EOS and the threshold densities of
the µ− and π− appearance can be affected by the magnetic field B � 1017 G.

More elaborated models of neutron-star matter in superstrong magnetic fields
have been studied by Broderick et al. (2000), who considered not only the ideal
npeµ gas, but also interacting matter in the framework of the RMF model. The
magnetic field affects their EOS in a neutron-star core at B � 1018 G, which
agrees with the simpler estimates cited above. Since this field is close to the
upper limit on the magnetic field for dynamically stable stellar configurations,
it is unlikely that a magnetic modification of the EOS could be important in the
cores of neutron stars.



Chapter 6

NEUTRON STAR STRUCTURE

6.1. Equations of hydrostatic equilibrium
Neutron stars are relativistic objects. Their structure and evolution should be

studied using the General Theory of Relativity. The importance of relativistic
effects for a star of mass M and radius R is characterized by the compactness
parameter rg/R given by Eq. (1.4), where rg is the Schwarzschild radius.
Typically, one has rg/R ∼ 0.2 – 0.4 for a neutron star, whereas rg/R � 1 for
all other stars. For instance, rg/R ∼ 10−4 for white dwarfs and rg/R ∼ 10−6

for main-sequence stars of M � M�.
Let us outline the derivation of relativistic equations of stellar structure for

static spherically symmetric stellar objects. The starting point is the expression
for the metric of a stationary, spherically symmetric space-time,

ds2 = c2 dt2 e2Φ − e2λ dr2 − r2 (dθ2 + sin2 θ dφ2), (6.1)

where t is a time-like coordinate, r is a radial coordinate, θ and φ are the polar
and azimuthal angles, respectively, whereas Φ = Φ(r) and λ = λ(r) are some
functions of r. The angular geometry (with respect to θ and φ) is the same as in
the flat space-time because of spherical symmetry, but space-time is generally
curved along “directions” of r and t. In our case, space-time curvature is
produced by a massive stellar body. For the flat space-time, we would have
Φ(r) = λ(r) = 0.

Let us introduce four coordinates x0 = ct, x1 = r, x2 = θ, and x3 = φ, and
write ds2 = gik dxi dxk (i, k = 0, 1, 2, 3, implying sum over repeated indices).
The metric tensor gik of the space-time in question is diagonal with the diagonal
components

g00 = e2Φ, g11 = −e2λ, g22 = −r2, g33 = −r2 sin2 θ. (6.2)
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One can easily analyse this metric and understand the meaning of all vari-
ables. Let us remind that r and t are Schwarzschild coordinates, suitable for
an observer at infinity. First, let us fix t, r, θ = π/2 and vary φ from 0 to 2π,
producing circumference around the stellar center. We immediately obtain that
the proper length of the circle (i.e., the length measured in a the local inertial ref-
erence frame) is l = 2πr. Thus r can be called the circumferential radius. The
proper area of the spherical surface at a given r is 4πr2. Second, let us fix t, θ,
φ and vary r from r = 0 to some value r1. A proper length element in the radial
direction (the radial distance as measured by a local observer) is dl = eλ dr.
Thus, the proper radial length l1 =

∫ r1
0 eλ dr is generally non-equal to r1

because space-time is curved. Therefore, λ(r) determines the space-time cur-
vature in the radial direction. Instead of λ(r) it is more convenient to introduce
a new function m(r) related to λ(r) through

e−λ =
√

1 − 2Gm/(rc2). (6.3)

One can show (e.g., Landau & Lifshitz 1999) that m(r) represents the gravita-
tional mass confined inside a sphere with radial coordinate r. The gravitational
mass of a neutron star is generally smaller than the baryon mass (“rest mass”)
due to gravitational mass defect (see §6.2). Using Eq. (6.3) we can write a
proper radial length element dl and proper volume dV between close spherical
shells with radial coordinates r and r + dr as

dl =
dr√

1 − 2Gm/(c2r)
, dV =

4πr2 dr√
1 − 2Gm/(c2r)

. (6.4)

Finally, let us fix r, θ, φ and vary t. According to Eq. (6.1), a proper time
interval (i.e., the interval measured in a local inertial reference frame) is

dτ = eΦ(r) dt. (6.5)

Let us imagine a source that produces periodic signals of frequency ν(r) =
dN/dτ = e−Φ(r)dN/dt in a point with a radial coordinate r, where dN
is the number of signals over a time interval dτ . A distant observer will
detect signals of frequency ν∞ = dN/dt (because Φ(r) → 0 and space-
time becomes asymptotically flat as r → ∞). Therefore, ν∞ = ν(r) eΦ(r)

which means that Φ(r) determines the gravitational redshift of periodic sig-
nals, z(r) ≡ ν(r)/ν∞ − 1 = e−Φ(r) − 1.

The relationship between geometry of space-time and material properties of
massive bodies is given by the Einstein equations

Rik − 1
2

gik R =
8πG

c4 Tik, (6.6)

where Rik is the Ricci curvature tensor and R = Ri
i is the scalar curvature,

whereas Tik is the stress-energy tensor. The tensors Rik and R are calculated
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from the metric tensor gik, Eq. (6.2), using standard equations of the Riemann
geometry (e.g., Landau & Lifshitz 1999). Let us treat neutron star matter as
a perfect fluid (non-viscous medium of total energy density E , in which all
stresses are zero except for an isotropic pressure P ). This approximation is
justified because shear stresses produced, for instance, by elastic strain in the
solid crust (§6.11) or by strong magnetic field (§6.9.1) are generally negligible
compared to the pressure.

In the perfect-fluid approximation we have Tik = (P + E)uiuk − Pgik ,
where ui is 4-velocity of matter (Landau & Lifshitz, 1999). Here, P and E are
defined in a local inertial reference frame comoving with matter. The energy
density includes all forms of the internal energy, like the rest energy and kinetic
energy of matter constituents, and the energy of their interactions. However, it
does not include contributions of gravitational forces. In the spirit of General
Relativity, the effects of gravitational interactions are incorporated via space-
time geometry. Local thermodynamic properties of the matter are not affected
by general relativistic effects, because the space-time curvature is thought to be
negligible on microscopic scales.

For a static neutron star, one has to determine four functions of r, which are
the metric functions Φ(r) and λ(r), as well as the pressure and mass-density
profiles, P (r) and ρ(r) = E(r)/c2. The problem is simplified by a strong
degeneracy of neutron star interior where thermal contributions to P and ρ can
be neglected. Then, the EOS involves only P and ρ, but not the temperature
(important exceptions are: neutron star atmospheres, newly born neutron stars,
envelopes of exploding X-ray bursters).

Calculating Rik for the metric (6.1) and using the Einstein equations (6.6),
one comes to the three relativistic equations of hydrostatic equilibrium for a
static spherically symmetric neutron star,

dP

dr
= −Gρm

r2

(
1 +

P

ρc2

)(
1 +

4πPr3

mc2

)(
1 − 2Gm

c2r

)−1

, (6.7)

dm

dr
= 4πr2ρ, (6.8)

dΦ
dr

= − 1
ρc2

dP

dr

(
1 +

P

ρc2

)−1

. (6.9)

Equation (6.7) is called the Tolman-Oppenheimer-Volkoff equation of hy-
drostatic equilibrium (Tolman 1939; Oppenheimer & Volkoff 1939; also see
§1.2). Equation (6.8) describes mass balance; its apparently Newtonian form
is illusive because the proper volume of a spherical shell, given by Eq. (6.4), is
not simply 4πr2 dr. Finally, Eq. (6.9) is a relativistic equation for the metric
function Φ(r). These equations should be supplemented by an EOS, P = P (ρ).
The above equations constitute a closed system of equations to be solved for
obtaining P (r), ρ(r), m(r), and Φ(r). Actually, Eqs. (6.7) and (6.8) do not
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contain Φ(r) and can be solved separately to determine P (r), ρ(r) and m(r).
The function Φ(r) can be found then from Eq. (6.9).

In the stellar layers where P � ρc2 and Pr3 � mc2, the Tolman-
Oppenheimer-Volkoff equation can be rewritten in the quasi-Newtonian form:

dP

dl
= −gρ, g(r) =

Gm

r2
√

1 − 2Gm/(c2r)
, (6.10)

where g can be called the local gravitational acceleration and dl is given by
Eq. (6.4). This form will be used in §6.9 for studying the structure of the outer
neutron star envelope.

In the stellar interior, P > 0 and dP/dr < 0. The stellar radius is determined
from the condition P (R) = 0. Outside the star (for r > R), we have P = 0
and ρ = 0. Then Eq. (6.8) gives m(r > R) = M = const. The latter quantity
is called the total gravitational mass of the star; the total energy content of the
star is E = Mc2. Combining Eqs. (6.7) and (6.9) in the limit of P −→ 0,
we obtain that e2Φ = 1 − rg/r outside the star. Therefore, for r > R, Eqs.
(6.7)–(6.9) yield the well-known Schwarzschild metric,

ds2 = c2 dt2
(
1 − rg

r

)
−
(
1 − rg

r

)−1
dr2 − r2 (dθ2 + sin2 θ dφ2), (6.11)

which describes a curved space-time around any massive, spherically symmetric
body (not necessarily static). Thus, the gravitational redshift of signals emitted
from the neutron star surface (r = R) is

ν∞ = (1 − rg/R)1/2 ν(R), zsurf = (1 − rg/R)−1/2 − 1 . (6.12)

At large distances from the star (r � rg) the Schwarzschild space-time (6.11)
becomes asymptotically flat. Therefore, Schwarzschild time t is a proper time
for a distant observer.

Finally, a non-relativistic star with P � ρc2, Pr3 � mc2, and rg � R
creates a weak space-time curvature. In this case Eqs. (6.7)–(6.9) reduce to the
familiar Newtonian equations of stellar equilibrium,

dP

dr
= −Gmρ

r2 ,
dm

dr
= 4πr2ρ,

dΦ
dr

=
Gm

c2r2 . (6.13)

We see that in the non-relativistic limit Φ(r) c2 becomes the Newtonian gravi-
tational potential.

6.2. Baryon number, mass and chemical potential. Binding
energy of neutron stars

Let us consider an element of matter of a proper volume dV . The baryon
number in this volume is nb dV , where nb is the baryon number density mea-
sured in a local reference frame. An isolated star has a fixed baryon number,
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which will be denoted by Ab. Although some theories of fundamental inter-
actions predict the breaking of baryon number conservation, the timescales
involved are much longer than the Universe age ∼ 1010 years.1

In a static, spherically symmetric star the number of baryons confined within
a sphere of radius r is

ab(r) = 4π
∫ r

0
nb(r′) eλ(r′) r′2 dr′ . (6.14)

One can rewrite this equation in differential form to be solved simultaneously
with Eqs. (6.7) and (6.8),

dab/dr = 4πr2 nb/
√

1 − 2Gm/(rc2), (6.15)

with the natural boundary condition ab(0) = 0. In view of baryon-number con-
servation, ab can be treated as a Lagrangian coordinate in the star; it specifies
the position of a matter element during spherically-symmetric evolution of the
star (radial accretion, pulsations, collapse, etc.). The total baryon number of
the star is

Ab = ab(R) = 4π
∫ R

0
nb(r) eλ(r) r2 dr . (6.16)

The baryon number of the canonical neutron star (M = 1.4 M�, see §1.3.3)
can be estimated as Ab � 1.4 M�/mn = 1.7 × 1057. It is convenient to
introduce an equivalent mass of non-interacting baryons called the baryon mass
(or the rest mass) of the star, Mb ≡ Abmb (mb ≈ mn is the mass of one baryon).
One of the possible choices of mb is mb = mn. Such a choice implies

Mb = Abmn � 0.842 Ab57 M� , (6.17)

where Ab57 ≡ Ab/1057. Other choices of mb are also possible (see below).
The values of Ab and Mb remain constant along an evolutionary path of an
isolated star.

Actually, the value of Ab or Mb can be calculated directly for a static neutron
star built of cold catalyzed matter. In this case it is instructive to introduce the
baryon chemical potential

µb = dE/dnb = (ρc2 + P )/nb. (6.18)

Using Eq. (6.9) combined with the zero-temperature thermodynamic identity
dP = nb dµb, one comes to the important conclusion (Harrison et al. 1965)
that

µb(r) eΦ(r) = constant (6.19)

1The fate of neutron stars on timescales ∼ 1035 years or longer was studied by Adams & Laughlin (1997)
and Adams et al. (1998).
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throughout the entire star.
To be specific, let mb = m0 = 1.6586 × 10−24 g, the mass per baryon in

56Fe.2 Then Eq. (6.19) implies

nb(r) = (1 + zsurf)
(
ρ(r)c2 + P (r)

)
eΦ(r)/m0. (6.20)

Therefore,

ab(r) = 4π
1 + zsurf

m0c2

∫ r

0
eΦ+λ

(
ρc2 + P

)
r′2d r′ , (6.21)

and the total baryon number is Ab = ab(R). To the best of our knowledge,
these formulae were first derived by Goldman (1989). They enable one to
calculate ab(r) and Ab from the solution of Eqs. (6.7)–(6.9).

In contrast to an atomic nucleus, a neutron star is bound by gravity. We define
the binding energy of the star similarly to the binding energy of the nucleus, as
the mass defect with respect to the dispersed configuration of its constituents,
multiplied by c2. However, in the case of the neutron star several definitions of
“dispersed configuration” may be considered. First of all, consider a neutron
star was formed in gravitational collapse of a degenerate iron core of a massive
star at the endpoint of thermonuclear evolution. The mass of the iron core
containing Ab nucleons is, to a good approximation, MFe = Abm0. Strictly
speaking, MFe is the mass of a dispersed cloud of 56Fe dust. The binding energy
of the neutron star with respect to presupernova (PSN) core is thus

E
(PSN)
bind � E

(Fe)
bind = [Abm0 − M(Ab)] c2 , (6.22)

where M(Ab) is the gravitational mass of the neutron star of baryon number
Ab (notice that when a neutron star forms some nucleons could transform into
hyperons, but the baryon number Ab stays constant). This definition of the
binding energy is particularly useful in the context of energy balance in type II
supernova explosions (§1.4.2). In this case E

(PSN)
bind constitutes an upper bound

on the energy released in a type II supernova. As more than 99% of the energy
is carried away by neutrinos, the total energy of the neutrino burst is expected
to be nearly equal to E

(Fe)
bind.

Basically, the very initial dispersed, primordial configuration of dense matter
is a hydrogen cloud. The binding energy of a neutron star with respect to this
dispersed state is

E
(H)
bind = [AbmH − M(Ab)] c2 , (6.23)

2Let us remind that m0c2 = 930.4 MeV is the energy per baryon in the ground state of matter at zero
pressure, see §3.2.
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where mH � mp + me = 1.6735 × 10−24 g is the mass of hydrogen atom.
The difference between these two definitions of Ebind is

E
(H)
bind − E

(Fe)
bind � Ab (mH − m0) c2 = 1.33 Ab57 × 1052 erg . (6.24)

For a 1.4 M� neutron star, E
(H)
bind is typically ∼10% higher than E

(Fe)
bind (see

§6.7).

6.3. Proper mass and gravitational energy
In the Newtonian theory, it is useful to split the total energy of a star into

the internal energy Eint, gravitational energy Egrav, rotational energy, etc. As
a rule, such a decomposition has no meaning in General Relativity, but it is
meaningful for spherical static stars considered in the present chapter (Misner
et al., 1973). The proper internal energy density is defined as the excess of the
proper energy density over the proper rest energy density nbm0c

2. Accordingly,
the total internal energy of the star is defined as

Eint = 4π

∫ R

0
(E − nbm0c

2) eλ r2 dr = (MP − Mb0) c2 , (6.25)

where MP is the so called proper mass of the star and Mb0 is its baryon (rest)
mass calculated for mb = m0. The proper mass is the total proper stellar energy
divided by c2. The gravitational energy of the star should then be defined as

Egrav = (M − MP) c2 . (6.26)

In the Newtonian approximation ENewt
grav = −4πG

∫ R
0 mρr dr.

The quantities Eint and Egrav are analogous to the corresponding quantities
in the Newtonian theory. In particular, Eint > 0 and Egrav < 0, and Egrav +
Eint < 0 for a self-bound star. Let us recall that in the Newtonian approximation
the gravitational energy is related via the virial theorem to the pressure integrated
over the equilibrium configuration: ENewt

grav = −12π
∫ R
0 P r2 dr. The virial

theorem in General Relativity is much more complicated (see Gourgoulhon &
Bonazzola 1993 and references therein).

6.4. Constructing neutron star models
6.4.1 Introductory remarks

In order to construct a neutron star model one has to solve the set of Eqs.
(6.7)–(6.9) supplemented by an EOS of dense matter. General physical con-
ditions in the stellar interior require the pressure to be positive, continuous,
and monotonically decreasing from the stellar center to the surface. The mass
density and baryon density are not constrained to be continuous; discontinuities
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appear at those values of P which correspond to first-order phase transitions
(see Chapters 3 and 5). The functions of r to be determined from Eqs. (6.7)–
(6.9) and (6.15) are: P = P (r), m = m(r), Φ = Φ(r) and ab = ab(r);
they are all continuous. The density profile is then determined from the EOS,
ρ = ρ(P ).

Equations (6.7) – (6.8) and (6.15) are usually integrated from the stellar center
with the boundary conditions: P (0) = Pc, m(0) = 0, and ab(0) = 0. Notice
that the pressure and density profiles in the star can be found by integrating
Eqs. (6.7) and (6.8) alone. The stellar surface, r = R, is determined from the
condition P (R) = 0 (which neglects the presence of a very thin atmosphere).
It is very well justified in calculating global parameters of neutron stars.

The metric function Φ(r) can be found from Eq. (6.9) by matching the so-
lution at r = R with the outside Schwarzschild solution, eΦ(R) =

√
1 − rg/R

(§6.1). Once P (r) and ρ(r) are determined from Eqs. (6.7) and (6.8) at the
preceding step, the right-hand side of Eq. (6.9) becomes a known function of
r, which makes numerical calculation of Φ(r) straightforward. Calculation of
Ab from Eq. (6.15) is equally straightforward.

In many cases, building neutron star models does not require special efforts.
In particular, it is sufficient to use logarithmic interpolation between values of
P and ρ tabulated on a restricted number of mesh points.

However, sometimes one needs to construct very precise neutron star models.
Then a good test of the precision is supplied by Eq. (6.19). Strictly speaking,
if Eq. (6.19) does not hold, the configuration is not in hydrostatic equilibrium
(Harrison et al., 1965). While deviations of µb(r) eΦ(r) from constancy are
usually small (e.g., a fraction of percent) they signal that either the neutron star
model is unstable or at least one of the two quantities, M or Ab, is in error.
This may occur independently of numerical precision of solving differential
equations (6.7) – (6.9) and (6.15) by a mere use of the logarithmic interpolation
of the EOS (see, e.g., Harrison et al. 1965, Baym et al. 1971b, Arnett & Bowers
1977). Resulting inconsistencies, which may seem minor as far as the values of
global stellar parameters are concerned, may lead to serious problems if very
high precision of simultaneous determination of M and Ab is required.

For instance, let us follow the neutron star evolution at a constant Ab with
a phase transition occurring in the stellar core (§7.9). Let the total energy re-
lease in the phase transition correspond to the decrease of the total mass by
∆M = 10−6M . It is obvious, that calculating ∆M with two significant fig-
ures requires better than 10−8 relative precision in determining Ab for stellar
models before and after the phase transition. To get this precision one has to
use such an interpolation procedure between the tabulated EOS points, in which
Eq. (5.97), resulting from the first law of thermodynamics, is strictly fulfilled.
Then, the constancy of µb(r)eΦ(r) and the accuracy of the calculation of stellar
parameters will be limited only by the numerical precision of the computer
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code for solving the differential equations of stellar structure (see, e.g., Haensel
& Prószyński 1982). A particularly useful thermodynamically consistent in-
terpolation of an EOS was developed by Swesty (1996). His method, based
on the interpolation in terms of Hermite polynomials of third degree, fulfills,
by construction, thermodynamic identities at any r (except at phase transition
points).

6.4.2 Equation of state
In order to construct neutron star models one needs the EOS of dense matter.

Both the history and present status of the EOS problem have been described in
Chapters 1, 3 and 5.

In this chapter we analyze the effect of EOS on neutron star structure using
some illustrative examples. In the outer neutron star crust we will employ the
EOS of Haensel & Pichon (1994) based on experimental masses of neutron-rich
nuclei. The EOS of the outermost iron envelope of the crust will be taken from
BPS. In the inner crust we use the SLy EOS, and in a few cases the FPS EOS
(Lorenz, 1991). The SLy and FPS EOSs describe the core and the inner crust in
a unified manner. These EOSs are discussed in Chapter 3. Usually, the crustal
EOS has little importance for global parameters of neutron star models, which
are mostly determined by the EOS of a stellar core.

In the present chapter we restrict ourselves to models of neutron star cores
composed of nucleons and hyperons. Stellar models containing exotic hadronic
phases, such as pion condensate, kaon condensate, and deconfined quark matter,
will be considered in Chapter 7. Hypothetical strange (quark) stars will be
studied in Chapter 8.

The EOS of a neutron star core is mainly determined by strong interactions
between baryons (Chapter 5). The reliability of these EOSs decreases rapidly
with increasing ρ. Our discussion of the impact of the EOS at ρ � ρ0 on the
neutron star structure will be based on the limited, but hopefully representative
set of model EOSs. The selected models are discussed in Chapter 5 and are
listed in Table 5.3 (also see Table 6.1).

As we stressed in Chapter 5, the most important qualitative feature of an
EOS at ρ � ρ0 – as far as neutron star structure is concerned – is its stiffness.
However, the stiffness may vary with density (e.g., owing to hyperonization of
matter). Therefore, it is useful to introduce the effective stiffness of the EOS
based on the value of the maximum mass of neutron stars, Mmax (§6.5.1), which
is a functional of the EOS. The topmost EOS in Table 6.1 is the softest one,
and the effective stiffness of the EOSs increases to the bottom of the table. Let
us remind, that the stiffest/softest EOSs are extreme models, characterized by
the compression modulus of symmetric nuclear matter, which is significantly
higher/lower than the standard value of K0 = 220 MeV (§5.4). We include
these extreme EOSs to represent the stiffest/softest neutron star models.
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Table 6.1. Maximum mass configurations for the EOSs of the neutron star core listed in Table
5.3. In all cases, except FPS, we use the SLy EOS of the crust. We present radius R, compactness
rg/R, central baryon density nc, central mass density ρc, and binding energy E

(Fe)
bind (see §6.2).

EOS Mmax R rg/R nc ρc E
(Fe)
bind

[M�] [km] [fm−3] [1015 g cm−3] [1053 erg]

BPAL12 1.46 9.04 0.478 1.76 3.94 3.19
BGN1H1 1.64 9.42 0.516 1.59 3.71 3.82
BBB1 1.79 9.67 0.547 1.37 3.09 5.26
FPS 1.80 9.27 0.572 1.46 3.40 5.37
BGN2H1 1.82 9.54 0.564 1.46 3.51 4.83
BBB2 1.92 9.50 0.596 1.35 3.20 6.17
SLy 2.05 9.99 0.605 1.21 2.86 6.79
BGN1 2.18 10.9 0.591 1.05 2.46 7.28
APR 2.21 10.0 0.651 1.15 2.73 9.13
BGN2 2.48 11.7 0.626 0.86 2.02 9.40

Two of the EOSs listed in Table 6.1 – SLy and FPS – are the unified ones
and describe, within a single physical model, both the crust and the core of a
star (§3.6). In other cases, an overall EOS is constructed by matching smoothly
the EOSs of the crust and the core. If the crust and core are described by
different nuclear models, the matching is thermodynamically inconsistent and
numerically ambiguous. However, as the matching is restricted to a thin shell
near the crust-core interface, this is usually of little importance.

Unified EOSs can be fitted by analytical and continuous functions (Haensel
& Potekhin 2004, Appendix C). This enables one to avoid ambiguities and
thermodynamic inconsistency plaguing tabulated EOSs.

6.5. Masses and stability of neutron stars
6.5.1 Stellar oscillations and stability

After calculating an equilibrium stellar model one should check its stability.
Only models in stable equilibrium are of astrophysical interest. Below we
briefly discuss the stability with respect to small perturbations. For simplicity,
we restrict ourselves to non-rotating spherically symmetric equilibrium models.

The stability problem can be formulated in several ways (e.g., Shapiro &
Teukolsky 1983). One of them is based on the analysis of stellar oscillations.
One can introduce the field of small Lagrangian displacements ξi(r, θ, φ, t)
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(i = 1, 2, 3) of fluid elements in a perturbed star, which induces small changes
hij(r, θ, φ, t) in the metric. We consider linear approximation in ξi. The veloc-
ity field of a pulsating star is then e−Φ∂ξi/∂t. A standard procedure consists in
factoring out the dependence of ξi on θ, φ via spherical harmonics Y�m(θ, φ).

The study of small radial pulsations, with � = m = 0, ξθ = ξφ = 0, ξr =
ξ(r, t), is not much more complicated in General Relativity than in Newtonian
theory (Chandrasekhar 1964; Harrison et al. 1965; Meltzer & Thorne 1966;
Bardeen et al. 1966; Misner et al. 1973). In particular, gravitational field in
vacuum outside the star is not affected by radial pulsations (hij = 0 outside the
star). On the contrary, nonradial pulsations with � > 0 are more complicated
for relativistic stars (Thorne & Campolattaro 1967).

First let us describe radial pulsations. After linearizing Einstein equations,
one can get an equation governing the dynamics of radial pulsations,

∂2ξ

∂t2
= −Ĥξ , (6.27)

where Ĥ is a self-adjoint (Hermitian) linear second-order differential operator,
independent of t, θ, φ, and determined by the equilibrium stellar model. Its
solution can be sought in the form ξ(r, t) = e−iωt ζ(r). Then Eq. (6.27) reduces
to

λ ζ = Ĥζ, λ ≡ ω2. (6.28)

This equation, supplemented by appropriate boundary conditions at r = 0 and
r = R, constitutes a Sturm-Liouville problem for eigenfrequencies ω and eigen-
vectors ζ(r) of radial oscillations (analogous to a stationary quantum mechan-
ical problem of discrete eigenstates in a quantum system with a Hamiltonian
operator Ĥ). Generally, there is an infinite number of various stellar oscillation
modes (studied by astroseismology; see, e.g., §1.3.9). Radial oscillations can
be labeled by the index n = 0, 1, 2, . . . which enumerates nodes of the radial
function ζ(r) within the star. As in Quantum Mechanics, the lowest eigenvalue
λ0 = ω2

0 belongs to the fundamental mode of radial pulsations without any
nodes (n = 0); higher modes correspond to larger λ (λ0 ≤ λ1 ≤ λ2 . . .). As
a rule, the fundamental mode is very simple (ζ(r) is nearly linear in r and
describes homologous contractions and rarefactions of the star). An order-of-
magnitude estimate is ω0 ∼

√
Gρ̄, where ρ̄ is the mean density of the star.

This estimate is universal (valid for all types of stars); the pulsation period for
the fundamental mode, 2π/ω0, can serve as an estimate of a hydrodynamical
time-scale for a given star. We have ω0 ∼ 104 s−1 for neutron stars.

Now it is clear that the stability of the star with respect to small radial pertur-
bations is determined by the eigenvalue λ0 = ω2

0 for the fundamental mode. If
λ0 > 0 then λn > 0 for all other n and all eigenfrequencies ωn are real, mean-
ing that the equilibrium stellar model is stable (undergoes small-amplitude
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harmonic oscillations). If λ0 < 0 then at least the fundamental mode is unsta-
ble (ω0 becomes purely imaginary and small displacements in the fundamental
mode exponentially grow with time). In this case the highest instability incre-
ment (the most rapid exponential growth) is provided by the fundamental mode.
Finally, at λ0 = 0 we have ω0 = 0 and the star has neutral stability (is neither
stable nor unstable).

The stability criterion described above requires the calculation of the eigen-
frequency of the fundamental mode. It can be reformulated to avoid such
calculation and simplify the stability analysis. The simplest “practical” crite-
rion can be obtained assuming that the adiabatic index in a pulsating star is the
same as in a slowly deformed matter. One can show that in this case the stellar
model is stable if its mass M increases with growing central density,

dM/dρc > 0. (6.29)

This so called static stability criterion (Harrison et al., 1965; Zeldovich &
Novikov, 1971) is widely used in the literature. This condition is necessary
but not sufficient (as we discuss below). The opposite inequality dM/dρc < 0
always implies instability of stellar models.

The equations governing nonradial pulsations of neutron stars in General
Relativity were derived by Thorne & Campolattaro (1967). The stability of
these modes was studied by Detweiler & Ipser (1973). Non-radial pulsations
can be labeled by indices n, � and m (see above) and correspond to � > 0.
They are accompanied by metric perturbations outside the star. Pulsations with
� > 1 and m �= 0 are accompanied by the emission of gravitational waves
which introduces dissipation into pulsations of stars built of perfect (inviscid)
fluid. In this case the appropriate operator Ĥ for an equivalent eigenproblem
(an analog of Eq. (6.28)) becomes non-Hermitian, its eigenvalues λ and pul-
sation eigenfrequencies ω are complex numbers. Particularly well studied are
� = 2 (quadrupole) modes, which are damped by gravitational radiation in
0.1 – 0.3 s (e.g., Lindblom 1983). This damping is usually weak on oscillation
time-scales. As stressed by several authors (e.g., Detweiler & Ipser 1973, and
references therein), it is sufficient to neglect the damping in the first approxima-
tion for calculating pulsation frequencies and eigenmodes of realistic neutron
star models. In this first approximation the operator Ĥ becomes Hermitian
and represents an extension of the operator for radial pulsations to nonradial
case. The approximate real eigenvalues of λ for nonradial pulsations can be in-
serted into the row of λ-values for radial pulsations (as in Quantum Mechanical
problem for a spherically symmetric potential). In particular, λ for nonradial
pulsations should exceed λ0. This means that the stability of a non-rotating star
with respect to small radial pulsations (λ0 > 0) implies actually the stability
with respect to any small pulsations of the star.
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Perturbations of neutron stars may be accompanied by reactions (nuclear
transformations) in dense matter. A finite timescale of reactions affects the EOS
(particularly, the adiabatic index) and complicates the dynamical analysis of the
stability (Meltzer & Thorne 1966; Chanmugam & Gabriel 1971; Gourgoulhon
et al. 1995; also see Chapter 5).

6.5.2 Stability criteria based on the mass-radius diagram
Let us consider a family of equilibrium stellar models parameterized by the

central density. We have thus M = M(ρc) and R = R(ρc) and can construct
the mass-radius diagram which depends on the EOS of stellar matter. The
stability of stellar models with respect to radial oscillations is intimately related
to the shape of the M(R) curve.

In Fig. 6.1 we show two examples of the M(R) curves calculated for two
different EOSs (the EOS on the right panel being overall stiffer). Each curve has
three extrema, which will be called critical points (C1, C2 and C3). These points
divide the curves into four segments. Configurations lying on the segments
with dM/dρc < 0 are unstable with respect to small deformation (§6.5.1).
However, as we already stressed, the condition dM/dρc > 0 is necessary but
not sufficient. A method which enables one to determine precise number of
unstable normal radial modes using the M(R) curve was described by Harrison
et al. (1965) (see also Bardeen et al. 1966; Meltzer & Thorne 1966 and Thorne
1967). Let us formulate the stability criteria and illustrate them in Fig. 6.1.

A. Changing stability. At each critical point of theM(R) curve one and only one
normal radial mode changes its stability (stable → unstable, or unstable → sta-
ble). There are no changes of stability associated with radial pulsations at other
points of the M(R) curves.

B. Number of nodes for a mode which changes stability. A mode with even
number n of radial nodes changes its stability if and only if dR/dρc > 0
at the critical point. A mode with odd n changes its stability if and only if
dR/dρc < 0.

C. Bend at a critical point and the character of stability change. One mode
becomes unstable (stable) if and only if theM(R) curve bends counterclockwise
(clockwise) at the critical point.

Let us apply these rules to the M(R) curves in Fig. 6.1. Let the lowest
density segment be stable for all radial modes. At C1 the fundamental mode
becomes unstable on both curves. It regains its stability at C2 in the right panel,
because dR/dρc < 0 there. However, on the left panel (dR/dρc)C2 > 0;
therefore, the fundamental mode remains unstable and the additional n = 1
mode becomes unstable. At C3 the n = 0 mode becomes unstable in the right
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Figure 6.1. Two examples (left and right) of fragments of M(R) curves for stellar models with
different EOSs. Critical points are denoted by C1, C2 and C3. Arrows near curves indicate
the direction of increasing ρc. Three lowest modes of radial pulsations on a given segment are
represented by a column of three circles, with unstable modes filled in black.

panel. In the left panel, the n = 2 mode becomes unstable, so that beyond C3
all three lowest radial modes are unstable.

6.5.3 Neutron stars and white dwarfs
Having an EOS of cold dense matter one can easily calculate (§6.4) a

family of stellar models parameterized by the central density ρc and construct
thus an M − ρc diagram. A qualitative sketch of such a diagram is shown
in Fig. 6.2. One can obtain a sufficiently smooth curve in a huge density
interval (ρc � 1016 g cm−3). In the given case, two segments of the curve
(plotted by the solid lines) correspond to dM/dρc > 0 and refer to stable
stellar configurations. They are two types of compact stars which are white
dwarf stars (ρc � 109 g cm−3) and neutron stars (1.7 × 1014 g cm−3 � ρc �
3×1015 g cm−3). The filled dots denote (from left to right) the maximum-mass
white dwarf, the minimum-mass neutron star and the maximum-mass neutron
star, respectively. The dotted segments of the curve between the first and second
filled dots and after the third filled dot correspond to unstable stellar models
(dM/dρc < 0). The instability of stellar configurations between the first and
second filled dots occurs owing to the softening of the EOS due to electron
captures and then the neutron drip (Chapter 3); the appropriate dotted segment
of the curve is model-dependent.

White dwarfs are supported against gravitational contraction by the pres-
sure of degenerate electron gas (Chapters 2 and 3); see, e.g., Shapiro & Teukol-
sky (1983). Massive white dwarfs loose their stability because of the softening
of the electron pressure by relativistic effects and beta captures. The EOS of
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Figure 6.2. Schematic dependence of masses of equilibrium stellar models (built of cold dense
matter) versus central density. Solid fragments show stable stars (either white dwarfs or neutron
stars) while dotted fragments show unstable stars. Filled dots indicate maximum-mass and
minimum-mass stars.

white dwarf matter is well known. The parameters of white dwarfs are reliably
calculated and depend slightly on the composition of white dwarf cores.

Neutron stars are supported by the baryonic pressure associated with Fermi
motion of baryons and their strong interactions (Chapter 5). The composition
and EOS of the matter in neutron star cores is still uncertain which leads to
large uncertainties in masses and radii of neutron stars as discussed below in
this chapter.

One may continue the white-dwarf branch of the M − ρc curve in Fig.
6.2 to lower ρc. White dwarfs occupy formally the part of this curve down to
M ∼ 0.1 M�. Lower-mass stars on this curve are called brown dwarfs (e.g.,
Chabrier & Baraffe 2000). The transition between white dwarfs and brown
dwarfs is smooth, without any change of stability. A very low-mass extension
of the same curve should reproduce planets. Hence, neutron stars, white dwarfs,
brown dwarfs and planets are relatives (cold stellar objects). However, neutron
stars and white dwarfs are final products of stellar evolution while brown dwarfs
are different. They are thought to be created together with main sequence stars
but undergo almost no nuclear evolution (their internal temperatures are too low
to ignite efficient nuclear burning).
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Figure 6.3. Gravitational mass M versus central density ρc of neutron star models for several
EOSs. Filled circles show maxima on M −ρc curves. Configurations to the right of the maxima
(dotted segments) are unstable with respect to small radial perturbations. The shaded band is
the range of precisely measured masses of binary radio pulsars (Chapter 9).

6.5.4 A variety of neutron star models
Now we focus on neutron star models. Once these models are computed for

a given EOS, one can present them in the form of different diagrams discussed
throughout this chapter.

In Fig. 6.3 we show the M(ρc) diagram (at ρc > 2.5 × 1014 g cm−3) for
some EOSs from Table 6.1. On the higher-density side, M(ρc) curves exhibit
maxima M = Mmax shown by filled dots.

On the lower-density side M(ρc) curves exhibit minima Mmin � 0.1 M�
(not shown in Fig. 6.3; a similar minimum is presented in Fig. 6.2). Properties
of low-mass models with M ∼ Mmin will be discussed in §6.5.8.

All points on M(ρc) curves correspond to equilibrium stellar configura-
tions. The configurations plotted by solid lines (between the minimum and
maximum of M ) correspond to dM/dρc > 0 and appear to be stable. Con-
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figurations to the right of Mmax (dotted segments in Fig. 6.3) and to the left of
Mmin are unstable. Non-rotating neutron stars with M > Mmax will collapse
into black holes. Numerical simulations of such events have been performed
by several authors, particularly, by Gourgoulhon & Haensel (1993) and Baum-
garte et al. (1996a,b). Neutron stars with M < Mmin will explode (§6.5.8).
Extreme configurations with M = Mmin and M = Mmax correspond to neu-
tral equilibrium. In the presence of phase transitions in stellar interiors for
more complicated EOSs, there may be two (generally, several) disconnected
segments of stable neutron stars on an M(ρc) curve. We will discuss such
cases in Chapter 7. All in all, the theory provides a variety of different neutron
star models.

6.5.5 Maximum masses of neutron stars
As seen from Table 6.1 and Fig. 6.3, the maximum mass Mmax ranges from

1.46 M� to 2.48 M�, for the selected EOSs. The central density in maximum-
mass stars is even more uncertain. It ranges from 2 × 1015 g cm−3 ∼ 7ρ0 for
the stiffest EOS to 4 × 1015 g cm−3 ∼ 15ρ0 for the softest one. Even 7ρ0 is
far beyond the limits in which our EOSs can be considered as reliable.

Let us emphasize once more the dominant role of strong interactions for the
structure of massive neutron stars (also see §§1.2 and 5.2). Replacing neutron-
star matter by a free (non-interacting) Fermi gas of neutrons lowers the value
of Mmax to 0.72 M� (Oppenheimer & Volkoff, 1939). If one further allows
for beta equilibrium between otherwise non-interacting nucleons, electrons,
and muons, the EOS becomes even softer, with Mmax = 0.70 M�. Clearly,
the values of Mmax obtained neglecting nuclear interactions directly contradict
precisely measured masses of neutron stars in compact binaries (§9.1.2). Turn-
ing the argument around, we may say that the very precisely measured mass
1.44 M� of the Hulse-Taylor pulsar implies that the nucleon-nucleon interac-
tion is sufficiently repulsive at supranuclear densities to lift Mmax by more than
hundred percent over the Oppenheimer-Volkoff value.

In view of uncertainties in nucleon-hyperon (NH) and hyperon-hyperons
(HH) interactions in dense matter, let us first consider a subset of EOSs with the
Neµ composition (nucleons and leptons). Let us remove from this subset the
extreme models BPAL12 and BGN2. Then the subset contains models of the
Neµ matter which reproduce empirical saturation properties of nuclear matter
(§5.4), with the narrow the range of theoretical maximum masses of neutron
stars,

Mmax(Neµ) � (1.8 − 2.2) M� . (6.30)

The appearance of hyperons softens an EOS and lowers Mmax. For the selected
EOSs, the hyperonization at ρ � 2ρ0 lowers Mmax even to a narrower range,

Mmax(NHeµ) � (1.5 − 1.8) M� . (6.31)
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Let us stress that this conclusion is obtained assuming that hyperons appear
at ρ ∼ 2ρ0. However, the hyperonization threshold depends sensitively on
the NH interaction in dense matter, which is poorly known for a neutron rich
matter at ρ � ρ0. Therefore, the values of Mmax in Eq. (6.31) have to be
taken with caution. Actually, Eq. (6.31) reflects a typical effect of hyperons
on Mmax, assuming that without hyperons Mmax is given by Eq. (6.30). Alas,
the lack of knowledge of the HH interaction implies a large uncertainty in the
effect of hyperons on Mmax. For example, the EOS calculated by Vidaña et
al. (2000b) shows especially strong softening by hyperonic interactions, with
Mmax(Neµ) = 1.89 M� and Mmax(NHeµ) = 1.34 M�. The latter value
contradicts the measured mass of the Hulse-Taylor pulsar. When Vidaña et
al. (2000b) remove (artificially) the HH interaction they get Mmax(NHeµ) =
1.47 M�, which is marginally acceptable for explaining measured masses in
double neutron star binaries (but not acceptable to explain masses of pulsars in
binaries with white dwarfs, §9.1.3).

The problem of “too strong softening” of the EOS by hyperons might
result from neglecting contribution from three-body interactions involving hy-
perons. As in the case of three-nucleon interaction, this contribution is strongly
density-dependent and could stiffen the EOS at high densities. Its crucial role
for increasing Mmax was illustrated by Nishizaki et al. (2002). They con-
sidered two models of baryon-baryon interaction and obtained extremely low
Mmax = 1.08 M� and 1.10 M�, respectively, when three-body interaction
acted only between nucleons. Assuming that three-body force is universal and
acts between all baryons, Nishizaki et al. (2002) obtained Mmax = 1.52 M�
and 1.82 M�, respectively. The inclusion of realistic three-body interaction
involving hyperons should be a priority task in forthcoming many-body calcu-
lations of the EOS.

6.5.6 The nature of the maximum mass of neutron stars

The existence of Mmax can be explained using two kinds of physical ar-
guments, related to the behavior of cold matter at ultrahigh densities and to
General Relativity.

The arguments based on the behavior of the EOS at high densities were
presented for Newtonian stars by Landau (1932) in a brief paper described in
§1.2. These arguments are given in the first part of the paper, devoted to white
dwarfs, but they can easily be rephrased for neutron stars (Harrison et al., 1965).
Consider a self-gravitating sphere of radius R and total mass M containing Ab
neutrons. The Fermi gas of neutrons is squeezed with the increase of M and
becomes ultra-relativistic at sufficiently high densities (ρ � 1015 g cm−3).
Let us assume that the interaction energy between neutrons can be neglected,
compared to the kinetic energy. The internal (compression) energy of the star
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can then be estimated from the Fermi energy of ultra-relativistic neutrons,

εF � �c
(
Ab/R3)1/3

, Eint(Ab, R) � AbεF � (�c/R) A
4/3
b . (6.32)

Let us suggest further that the gravitational energy is produced only by the rest
mass of the matter, M = Abmn. This gives

Egrav(Ab, R) � −GM2/R = −GA2
bm

2
n/R . (6.33)

For a fixed Ab, a stable equilibrium is reached at the minimum of the total energy
E = Eint + Egrav = α(Ab)/R. The minimum can exist only if α > 0. In this
case E will lower with increasing R, which will decrease εF. However non-
relativistic effects will eventually stiffen the EOS and add the term ∝ R to Eint.
The latter term will increase E after passing through a minimum corresponding
to hydrostatic equilibrium. The condition α(Ab) > 0 is satisfied for

Ab < Amax �
(
�c/Gm2

n

)3/2 ≈ 2.2 × 1057 , (6.34)

M < MLandau
max = Amaxmn ≈ 1.8 M� . (6.35)

Beautiful by its simplicity and astonishing by the realistic value of Mmax, the
Landau-type derivation is based on two bold assumptions. First, one assumes
that the matter becomes a free Fermi gas with increasing density (i.e., inter-
actions between matter constituents become negligible). Second, one uses the
Newtonian gravity and the baryon mass of the star. The crucial effect of space-
time curvature will be discussed in the end of the present section, while now
we focus on the behavior of the EOS at high densities.

A counterexample to the free gas behavior at very high densities was given
by Zeldovich (1961). He showed (§5.15) that for a model of the neutron-
neutron interaction mediated by the exchange of vector mesons, the interaction
contribution dominates over the kinetic energy at high densities, so that

E � Epot ∝ n2
b ∝ A2

b/R6 . (6.36)

This would result in a compression (internal) energy of a cold star,

Zeldovich model : Eint � bA2
b/R3 ∝ n2

b ∝ A2
b/R6 . (6.37)

Then the minimum of E = Eint +Egrav exists for any Ab and there is no upper
bound on M or Ab for Newtonian stars. In that case cold compact stars have a
fixed radius, which does not depend on the stellar mass,3

∂E/∂R = 0 =⇒ R =
√

3b/Gm2
0 . (6.38)

3This feature is the well known exact result for Newtonian stars with a polytropic EOS, P ∝ ρ2 (the
polytropic index n = 1).
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In four decades following the Zeldovich paper our knowledge of dense
matter has become much deeper. Now we know that at sufficiently high densities
quarks become deconfined (albeit we are not sure whether such densities are
reached in neutron star cores, see §7.5). We know also that at still higher
densities, owing to the asymptotic freedom property, quarks behave as nearly
free fermions (§7.5). The internal energy of a cold star composed of free quarks
is Eint ∝ A

4/3
b /R. In this sense the Landau argument, based on the asymptotic

high-density behavior of the EOS, remains valid.
Moreover, irrespectively of the EOS, the upper bound on M is a con-

sequence of General Relativity. Consider the right-hand-side of the Tolman-
Oppenheimer-Volkoff equation of hydrostatic equilibrium, Eq. (6.7). It de-
scribes gravitational pull acting on a matter element of unit volume:

Gravitatio-
nal pull = −Gmρ

r2

(
1 +

4πP

mr3

)(
1 +

P

ρc2

)(
1 − 2Gm

rc2

)−1

. (6.39)

This pull is given by a Newtonian-like term −Gmρ/r2 multiplied by three
relativistic factors. With increasing M , all these factors amplify the pull com-
pared to the Newtonian case, demanding higher pressure P to keep hydrostatic
equilibrium. Mathematically, the derivative dM/dPc decreases with growing
M and makes stellar configurations less stable.

Let us illustrate this property with an unphysical case of incompress-
ible fluid of constant density ρinc. The total gravitational mass is then
M = (4π/3) ρincR

3, and the pressure P (r) in the star is determined ana-
lytically (the solution was obtained by Karl Schwarzschild in 1916; see, e.g.,
Box 23.2 of Misner et al. 1973). The central pressure Pc can be determined as
a function of rg/R. As the mass increases, the pressure Pc and rg/R grow up.
In other words, both rg/R and M increase with increasing Pc. For Pc → ∞,
the radius tends to a finite value Rmax = 9

8rg, and the mass tends to

M inc
max =

4π

9
Rmaxc

2

G
=

4c3

35/2π1/2G3/2ρ
1/2
inc

≈ 5.09 M�
(

5 × 1014 g cm−3

ρinc

) 1
2

. (6.40)

This limit is the effect of General Relativity; there is no limit on the mass
of incompressible-fluid stars in Newtonian gravitation. If Mmax exists for an
incompressible fluid, then it should a fortiori exist for any EOS of dense matter
with finite compressibility.

Calculations show that the numerical value of Mmax is mainly determined
by the EOS at ρ � 2ρ0. This EOS is largely unknown leading to uncertainties
in theoretical predictions of Mmax.
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6.5.7 The upper bound on the maximum mass
Because Mmax is uncertain, it is important to have a possibly firm upper

bound on Mmax, based on general physical requirements. Let us assume that
the EOS is known up to a certain density ρu. This reliably known segment
of the EOS (0 < P ≤ Pu ≡ P<(ρu)) will be denoted by P<(ρ). Fixing
P<(ρ), we can treat Mmax as a functional of the EOS at P > Pu; this unknown
segment of the EOS will be denoted as P>(ρ). The inverse function ρ>(P ) at
P > Pu does not need to be continuous. General conditions imposed on P>(ρ)
were discussed in §5.15. As was shown there, apart from some very artificial
situations (e.g., of highly excited medium), causality is in practice equivalent
to the condition of subluminality of the EOS, dP/dρ ≤ c2. Additionally, the
matter has to be stable, dP/dρ > 0. The conditions imposed on P>(ρ) can be
summarized as

0 < dP>/dρ ≤ c2 . (6.41)

Our task is to find the maximum of Mmax on a set of EOSs {P>(ρ)} which
satisfy these conditions. It turns out that the maximum Mmax = MCL

max is
realized by the so called causality limit (CL) EOS,

PCL
> (ρ) = Pu + (ρ − ρu)c2 . (6.42)

This is natural because the causal-limit EOS is the stiffest possible at ρ > ρu.
Calculations show that for ρu � 2ρ0 the effect of the outer layers with ρ < ρu
on the value of MCL

max is weak.
In addition, one can introduce the pure causal-limit EOS of the form P (ρ ≥

ρs) = (ρ − ρs) c2 and P (ρ < ρs) = 0, where ρs is the stellar “surface”
density. As shown in Appendix E, in this case one exactly gets Mmax =
3.0 (5 × 1014 g cm−3/ρs)1/2 M�. Putting formally ρs ∼ 2ρ0, we would get
Mmax only slightly (by less than one percent) different than that obtained for
initial causal-limit EOSs with ρu = ρs.

All in all, for ρu � 2ρ0 one gets (Rhoades & Ruffini 1974; Hartle 1978;
Kalogera & Baym 1996; Glendenning 2000)

General Relati-
vity and vs ≤ c

=⇒ Mmax ≤ MCL
max = 3.0

√
5 × 1014 g cm−3

ρu
M�.(6.43)

The maximum mass for any EOS at ρ > ρu with a subluminal sound velocity
is lower than this upper bound. The inequality (6.43) is widely accepted. Thus,
it seems safe to state that the actual Mmax of neutron stars built of baryonic
matter is below 3 M�.4 The value of MCL

max can be increased by rapid rotation,
as discussed in §§6.12.7 and 6.12.5.

4For some very exotic hypothetical models of compact stars built, for instance, of a self-bound Q-matter,
this upper bound may not apply as explained in §8.20.
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6.5.8 Low-mass neutron stars and the minimum mass

Calculations of the minimum mass Mmin of neutron stars have a long
history. The first correct estimate of Mmin was obtained by Oppenheimer &
Serber (1938). They showed, that the earlier estimate by Landau (1937) was
much too small and based on incorrect arguments. Oppenheimer & Serber
(1938) got Mmin � 0.17 M� neglecting nuclear interactions. They argued that
the contribution of nucleon-nucleon interactions decreases Mmin to (0.03 −
0.10) M�, depending on the assumptions on these interactions (very poorly
known at that time). Their stability criterion was based on energy arguments:
a neutron star had to be stable with respect to dispersion into a gas of atomic
nuclei (taken to be Ca as an example).

The next important step was made by Harrison et al. (1965) basing on
the Harrison-Wheeler EOS, which described both the crust and the core of
neutron stars. From the today perspective, their EOS in the neutron drip
regime is unrealistic. They obtained Mmin = 0.18 M� for the central den-
sity ρc ∼ 3 × 1013 g cm−3. Using two versions of the Levinger & Sim-
mons (1961) baryon-baryon potential, Tsuruta & Cameron (1966b) obtained
Mmin = (0.11−0.13) M�. Cohen & Cameron (1971) got Mmin = 0.065 M�,
employing an EOS based on the updated version of the Levinger-Simmons
nucleon-nucleon potential (Langer et al., 1969). Finally, Baym et al. (1971b)
in their classical paper (BPS) got Mmin = 0.0925 M�. They used their own
(BPS) EOS of the outer crust, and the EOS of Baym et al. (1971a) (BBP) for
the inner crust and outer layers of the core.

Neutron star models withM ∼ Mmin are sensitive to the EOS at subnuclear
densities, especially at the crust-core interface. The EOS should be physically
correct there; a brutal ad hoc matching of the crust and core EOSs are not
sound for this purpose. A microscopic model, underlying the EOS, should be
the same on both sides of the crust-core interface, basing on the same effective
nuclear Hamiltonian. Of all EOSs in Table 6.1, only the SLy and FPS EOSs
satisfy this condition. Let us summarize the results obtained by Haensel et al.
(2002b) using these EOSs. The M(ρc) curves near M ≈ Mmin are shown in
Fig. 6.4. The minimum of an M(ρc) curve is very sharp and the lower-density
side of the curve is extremely steep. The value of Mmin seems to be rather well
established, Mmin � 0.1 M�.

It is evident that the minimum mass of neutron stars can be strongly in-
creased by rotation and thermal effects. As we will see in §6.12.3, rotation
will also change the nature of the minimum-mass configuration. For newly
born protoneutron stars, both thermal and neutrino-trapping effects are signif-
icant. They can increase the minimum mass to (0.9 − 1.1) M� (Goussard et
al., 1998; Strobel et al., 1999). However, Mmin obtained for cold neutron stars
still remains the absolute lower bound on neutron star mass.
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Figure 6.4. Gravitational mass M versus central density ρc of low-mass neutron star models
near M ≈ Mmin for the FPS and SLy EOSs. The minima of M(ρc) curves are indicated by
filled circles. Configurations to the left of the minima (dotted lines) are unstable with respect to
small radial perturbations.

Some astrophysical scenarios, in which a cold neutron star looses its matter
and reaches the critical Mmin value, were proposed by Blinnikov et al. (1984);
Colpi et al. (1989, 1991); Sumiyoshi et al. (1998). These authors considered
a neutron star in a compact binary with a more massive companion (another
neutron star or a black hole). The companion may accrete matter from the neu-
tron star. Accretion may be self-accelerating, because the decrease of neutron
star mass increases its radius, making the star more susceptible to the mass
loss. Once M decreases below Mmin, no equilibrium configuration can be
reached. Numerical simulations indicate that an unstable low-mass neutron
star will explode.

6.6. Radii and surface redshifts
A small radius of neutron stars is one of their most specific features. While

the expected masses of neutron stars∼ (1−2)M� are typical for main-sequence
stars of solar-type, their radii are extremely small by ordinary stellar standards.
A stellar object of M ∼M� and R < 100 km cannot be anything but a neutron
star.5 Moreover, neutron stars of M � M� are expected to have sizable surface

5Exotic compact stellar objects, e.g., strange quark stars, can also fulfill this condition (Chapter 8), but by the
“Occam’s razor” principle we will consider them as hypothetical as long as non-ambiguous observational
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Figure 6.5. Circumferential neutron star radius R versus gravitational mass M for the selected
EOSs of dense matter. The doubly hatched area (R < rg) is prohibited by General Relativity.
The entire hatched triangle is prohibited by General Relativity combined with the condition
vs ≤ c. The shaded vertical band corresponds to the measured range of masses of double
neutron star binaries (§9.1.2 c). The dot-and-dashed line R = 3 rg shows the radius of the
innermost stable orbit of a test particle rotating around a compact object with a given mass.

redshifts ∼ 0.2−0.6 (another specific feature). Speaking of neutron star radius,
one has to distinguish the “circumferential radius,” that determines proper length
of the stellar equator (§6.6.1), and the “apparent radius” (sometimes called the
“radiation radius”), as measured by an observer at infinity (§6.6.6).

6.6.1 Circumferential radii
The radius of a neutron star of a given mass depends on the EOS of stellar

matter. The lack of knowledge of the EOS implies the uncertainty in the R(M)

evidence for their existence is absent. The Occam’s principle states that entities must not be multiplied
beyond necessary limits. Its traditional interpretation is that phenomena should be explained in terms of the
simplest possible causes. The principle was devised by William of Occam, a medieval English philosopher.
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relation. Several R(M) curves for the selected EOSs are displayed in Fig.
6.5. For all these EOSs, neutron stars with M > 0.3 M� have R < 14 km.
For a given M , the radius increases with the growth of the EOS stiffness. As
seen from Fig. 6.5, General Relativity and subluminality of sound in dense
matter (vs ≤ c) restrict the region of the R − M plane, which neutron stars
can access. Still, the uncertainty in theoretical predictions is large. For the
canonical neutron star mass M = 1.4 M�, the radius ranges from 10 km to 14
km. The minimum radius is reached at M = Mmax and ranges from 9 km to
12 km.

Let us notice a substantial difference between models of neutron stars
containing nucleons alone and nucleons with hyperons. If we restrict ourselves
to models consistent with empirical saturation parameters of nuclear matter,
then purely nucleonic EOSs show very weak dependence of radius on mass for
M � M�. Doubling M decreases the radius by less than 20 percent.

The dependence of R on M has been thoroughly studied by Lattimer &
Prakash (2001). Here we follow their arguments. Let us first approximate
the EOS by the polytrope, P = Knγ

b, with the adiabatic index γ = 2.6 Then
Newtonian stellar models have a constant radius, independent of M and ρc. This
radius is uniquely determined by the constant K according to RNewt ∝ K1/2.
Therefore, an accurate measurement of R would allow one to determine K and
identify (constrain) the EOS. In General Relativity, the stellar radius weakly
decreases with increasing mass provided M is not too close to Mmax, and the
dependence R ∝ K1/2 is approximate. Lattimer & Prakash (2001) looked for
a more general correlation between the EOS and values of R. For a broad set
of EOSs, they found an approximate relation

R(M) � C(ns) [P (ns)]
1/4 , (6.44)

where C is independent of the EOS and is remarkably independent of M in
the mass range (1 − 1.4) M�, while ns is a selected baryon density in the
range (1 − 2) n0. For ns/n0=1, 1.5, and 2, they obtained C(ns) � 9, 7, and
6, respectively. Neglecting the weak dependence of R on M , the “empirical
relation” (6.44) enables one to determine the EOS in the density range (1−2)n0
from a measured value of R, provided M ranges from M� to 1.4M� and is
not too close to Mmax.

However, this “empirical relation” cannot be used for EOSs with too strong
softening, for instance, owing to the appearance of hyperons. Neutron stars
with hyperon cores exhibit different behavior. Their EOS beyond the hyperon
threshold is so soft, that the stellar radius decreases rapidly with increasing

6This is only an approximation. As shown in Chapter 5, even for realistic EOSs of the Neµ matter we have
density dependent γ = 2−3 (§5.13.3), while for the NHeµ models γ = 1−3 is a rapidly varying function
of density after hyperons appear in dense matter (§5.14.2).
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Figure 6.6. Gravitational mass versus radius at M ∼ Mmin for neutron stars with the SLy EOS.
The solid line – stable configurations, the dotted line – configurations unstable with respect to
small radial perturbations. The minimum-mass configuration is indicated with the filled circle.

mass. In a narrow range of masses close to Mmax these stars may have very
different radii.

6.6.2 Radii of low-mass neutron stars
The mass-radius relation for neutron stars with M ∼ Mmin deserves a

separate discussion. For the SLy EOS it is shown in Fig. 6.6. In contrast to the
M(ρc) curve with a sharp minimum, the minimum in the M(R) curve is flat.

Let ρc,min be the central density of the minimum-mass configuration. Con-
figurations with ρc � ρc,min are very loosely bound by gravitational forces (see
below). Their radii reach hundreds of kilometers, and a small difference in their
mass is accompanied by a large difference in radius. For example, a decrease
in mass by 0.001 M� (by ∼one per cent) on the stable segment of the M(R)
curve in Fig. 6.6, implies an increase in radius by ∼ hundred kilometers (by
more than twice!).

This behavior is related to properties of the matter at subnuclear densities.
Neutron stars with M ∼ Mmin are weakly bound, huge spheres of the solid
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Figure 6.7. Surface gravitational redshift zsurf versus gravitational mass M for several EOSs
of dense matter. Full and dotted lines show stable and unstable configurations, respectively. The
hatched area above the horizontal line is prohibited for subluminal EOSs (vs ≤ c). The shaded
vertical band is the range of precisely measured masses of double neutron star binaries (Chapter
9).

crust of hundreds kilometers thick, containing a tiny core. At M = Mmin the
core constitutes 2% of the stellar mass for the SLy EOS, and 3% for the FPS
EOS; the core radius is 3.8 and 4.2 km for the SLy and FPS EOSs, respectively.
As the SLy EOS is stiffer than the FPS EOS for 1013 g cm−3 � ρ � ρ0 (see
§3.6), the SLy neutron stars with M � Mmin are less compact, and contain a
smaller and less massive core. For ρc < ρc,min , both the mass and radius of the
core decrease very slowly with decreasing ρc, while the total mass and radius
of the star increase extremely steeply.
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6.6.3 Gravitational redshifts
Gravitational redshift zsurf of frequencies of photons, emitted from a

neutron-star surface, is given by Eq. (6.12). It is an important measure of
the compactness parameter xGR = rg/R (see §1.3.3, Eq. (1.4)). A measured
value of zsurf would give xGR and, hence, the M/R-ratio. If, in addition, the
mass M were known, one could immediately determine the radius R. The plots
of zsurf versus gravitational mass are given in Fig. 6.7. For the canonical mass
of 1.4 M�, the redshift decreases from 0.3 to 0.2 with increasing the stiffness
of the EOS.

6.6.4 The upper bound on gravitational redshift and the
lower bound on neutron star radius

For a given EOS, the maximum value zmax
surf of stable neutron stars is reached

at M = Mmax. On average, zmax
surf increases with the growth of Mmax. However,

this is not a strict rule because zmax
surf depends on both Mmax and RMmax . Taking

a softer EOS lowers the value of zmax
surf . In particular, zmax

surf < 0.4 for the softest
BPAL12 EOS. While the most massive star for this EOS is the most compact
and dense stable stellar model, it is the “least relativistic” of all maximum-mass
configurations owing to the low value of Mmax. In general, the EOS which
maximizes zmax

surf has to be relatively soft in the outer neutron-star layers (to
reduce R) but stiff in the stellar core (to increase Mmax). Modern EOSs of the
npeµ matter are of this type (Chapter 5) and give zmax

surf � 0.6. The presence of
hyperonic cores lowers the value of zmax

surf .
The maximum surface redshift of stable neutron stars is a functional of

the EOS of dense matter. If one neglects the condition of subluminality, the
absolute upper bound on zsurf is equal 2 (for the derivation of this result, see
§6 of Chapter 11 of Weinberg 1972). If we restrict ourselves to subluminal
EOSs with 0 < dP/dρ ≤ c2, then the value of zmax

surf is maximized (Lindblom,
1984) for the pure causal-limit (CL) EOS with no normal neutron-star envelope:
P (ρ ≥ ρs) = (ρ − ρs)c2 and P (ρ < ρs) = 0 (see §6.5.7). The structure of
the Tolman-Oppenheimer-Volkoff equation implies, that the value of zmax

surf for
this EOS does not depend on the “surface density” ρs (see Appendix E). This
limiting redshift will be denoted as zCL

surf .
The presence of a crust of normal matter around a causal-limit core de-

creases the value of zmax
surf . Let Pb and ρb be the pressure and density at the

bottom of the normal crust. The case of Pb = 0 corresponds to the pure casual-
limit EOS without any crust. For ρb � ρ0 the effect of the normal crust on
the maximum-mass configuration is small and can be treated using a pertur-
bative approach. The relevant small parameter is Pb/ρbc

2. For ρb ∼ ρ0 we
have typically Pb/ρbc

2 ∼ 10−2 (see Chapter 3). Numerical calculations show
that adding a crust around the causal-limit core increases RMmax linearly in
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Pb/ρbc
2. An associated increase in Mmax is quadratic in Pb/ρbc

2 and, there-
fore, negligible. Thus, the presence of the normal crust lowers the value of
zmax
surf as compared to the pure causal-limit EOS.

The precise upper bound on the surface redshift for subluminal EOSs is
(Haensel et al., 1999)7

General Relativity
and vs ≤ c

=⇒ zsurf ≤ zCL
surf = 0.8509

and rg/R ≤ 0.7081 .
(6.45)

Introducing some density discontinuities into the causal-limit EOS does not
increase the value of zmax

surf (Gondek & Zdunik, 1995). Modern EOSs give
maximum surface redshifts of neutron stars typically 40% lower than zCL

surf .
An upper bound on the surface redshift implies a lower bound on the radius

of a neutron star of gravitational mass M

vs ≤ c =⇒ R ≥ 1.412 rg = 4.17 (M/M�) km . (6.46)

Accordingly, the circumferential radius of a neutron star of the canonical mass
1.4 M� has to be larger than 5.83 km.

6.6.5 The upper bound on surface gravity
Gravitational acceleration on the stellar surface, usually called the surface

gravity and denoted by gs, is an important parameter of the theory of neutron star
atmospheres (§1.3.1) and the theory relating internal and surface temperatures
of neutron stars (e.g., Gudmundsson et al. 1983; see also Potekhin et al. 2003 and
references therein). The expression for gs, resulting from Eq. (6.10), includes
the effect of space-time curvature and reads (also see §1.3.3)

gs =
GM

R2
√

1 − xGR
= 15.25 × 1014 x2

GR√
1 − xGR

M�
M

cm s−2. (6.47)

where, as usual, xGR = rg/R and the effects of rotation are neglected. For
a neutron star with M = 1.4 M� and R = 10 km we have gs = 2.43 ×
1014 cm s−2. Thus it is convenient to measure gs in units of 1014 cm s−2 and
introduce gs,14 ≡ gs/(1014 cm s−2).

The surface gravity of neutron stars is many orders of magnitude larger
than for other stars. It is ∼ 105 times larger than for white dwarfs and ∼ 1010

times larger than at the solar surface. As shown by Bejger & Haensel (2004),

7Our value of zCL
surf is ≈5% lower than the value obtained via the extrapolation of redshifts from Table 1 of

Lindblom (1984) to Pb/ρb = 0. Lindblom calculated the upper limit to zsurf for stars with crusts. Notice
that a precise determination of Mmax is rather easy, but the determination of RMmax and associated zmax

surf
with the same relative precision as Mmax is more difficult because of the flatness of M(R) curves.
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the value of gs depends very strongly on the largely unknown EOS in neutron
star interiors. Let us discuss upper bounds on gs following these authors.

For subluminal EOSs of dense matter, a strict upper bound on xGR is
xmax

GR = 0.7081 (see Eq. (6.45)). Using this value, from Eq. (6.47) we get an
upper bound on the surface gravity of a non-rotating neutron star of mass M :

vs ≤ c =⇒ gs,14 ≤ gCL
max,14 = 14.1 (M�/M) . (6.48)

For a given EOS, the maximum of gs is reached at M = Mmax. The latter
values should be higher than the highest measured neutron star mass, Mmax

obs .
Neutron star mass measurements are reviewed in §9.1. Spin frequencies of
observed neutron stars are insufficiently high to affect their structure, so that
the effect of rotation can be neglected in this analysis (see §6.12.2). Then we
come to the upper bound

gs,14 < 14.1 (M�/Mmax
obs ) . (6.49)

The higher Mmax
obs , the stronger we constrain the maximum gs. A precisely

measured mass of the Hulse-Taylor pulsar, 1.441 M� (§9.1), gives the upper
bound of 9.79×1014 cm s−2. According to Clark et al. (2002), the neutron star
in the high-mass X-ray binary 4U 1700–37 has the mass Mobs > 1.9 M� at
the 2σ confidence level. This would imply gs < 7.4 × 1014 cm s−2. However,
this result has to used with caution because the compact object in 4U 1700-37
can be not a neutron star but a black hole (see §9.1).

Bejger & Haensel (2004) calculated gs for neutron star models using more
than thirty baryonic EOSs of dense matter, particularly those in Table 6.1, and
constructed plots of gs(M) and gs(xGR). The gs(M) curves show a significant
scatter. On the contrary, the gs(xGR) curves presented in Fig. 6.8 are much less
sensitive to the EOS. They can be reproduced (with error �25%) by

gs,14 � 5 x
5/4
GR/

√
1 − xGR . (6.50)

Actually, the accuracy of this fit formula is higher if we exclude superluminal
EOSs and unrealistically stiff ones (with too high incompressibility of nuclear
matter at saturation, resulting in Mmax � 2.5 M�). Putting then the upper
bound xmax

GR = 0.708 into Eq. (6.50) we get an approximate “realistic upper
bound” gs < 6×1014 cm s−2. Subluminal EOSs involving only nucleons give
gmax
s � (3 − 5) × 1014 cm s−2. The stiffer the EOS, the closer gmax

s to the
subluminal upper bound gCL

s (Mmax). Subluminal hyperonic EOSs give gmax
s

typically lower than 4 × 1014 cm s−2. For these EOSs, gmax
s can be as small

as one-fifth of the upper bound gCL
s (Mmax).

We close this section with brief comments on gs for EOSs involving meson
condensates and quark matter, studied in Chapters 7 and 8. As shown by Bejger
& Haensel (2004), subluminal EOSs with an exotic high-density phase have
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Figure 6.8. Plots of gs,14 versus compactness parameter rg/R. The thick solid line is the
approximate formula, Eq. (6.50). The thick dashed line is obtained using the causal-limit EOS
(§6.5.7) with nu = 0.3 fm−3. From Bejger & Haensel (2004).

relatively low gmax
s . A phase transition softens the EOS, lowering the stellar

radius. On the other hand, the softening decreases Mmax. The latter effect
dominates over the former. The very special case of gs for self-bound strange
quark stars will be studied in Chapter 8.

6.6.6 Apparent radii
For M � M� circumferential radii R of neutron stars can be as small as

R ∼ 2 rg. Here we discuss “apparent radii”, R∞, which a distant observer
would see if a telescope were able to resolve the star.

The apparent radius is related to the circumferential radius by (e.g., Thorne
1977)

R∞ = R/
√

1 − rg/R . (6.51)

The dependences R∞(M) and R(M) are rather different. The difference re-
flects space-time curvature near the star and increases with the growth of M .
Figure 6.9 shows R∞(M) for some EOSs of dense matter. For stiff and mod-
erately stiff EOSs (Mmax � 1.8 M�) without any strong softening at highest
densities, the apparent radius R∞ increases with growing M at M � 0.5 M�
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Figure 6.9. Apparent radius of neutron stars versus gravitational mass for selected EOSs of
dense matter (labeled as in Table 6.1). The dashed curve is for hybrid neutron stars with a mixed
baryon-quark phase (EOS from Table 9.1 of Glendenning 2000). The dashed-and-dot curve is
for an EOS with first-order phase transition to a pure kaon-condensed phase (Kubis, 2001). The
dash-and-dot straight line is the minimum value Rmin

∞ = 7.66 (M/M�) km.

(except for a tiny region close to Mmax). In contrast, R decreases in the same
mass interval.

A strict lower bound on R∞(M) results from the definition of R∞ (Lat-
timer & Prakash, 2001; Haensel, 2001). Specifically, Eq. (6.51) can be rewritten
as R∞/rg = x−1

GR(1−xGR)−1/2, which means that R∞/rg is a function of one
parameter, xGR = rg/R. This function diverges at xGR = 0 and xGR = 1,
and has a single minimum at xGR = 2/3. Therefore, the minimum value of
R∞(M) is Rmin∞ (M) = 7.66 (M/M�) km. This value is only 0.6% smaller
than the apparent radius 7.71 (M/M�) km for the “true” maximum compact-
ness xGR = 0.7081 consistent with vs < c (§6.6.4).

While the subluminal upper bound on xGR at a given M is slightly larger
than 2/3, actual maximum values xGR(Mmax) for various EOSs are lower than
2/3. However, if we restrict ourselves to medium stiff and stiff EOSs with
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Mmax � 1.8 M�, then xGR(Mmax) � 0.6, which is only by 0.07 lower than
2/3. In such cases R∞(Mmax) is close to Rmin∞ (Mmax) (Fig. 6.9).

According to Lattimer & Prakash (2001) and Haensel (2001) one can
expect R∞ > 12 km for any baryonic EOS, independently of neutron star
mass. Our Fig. 6.9 confirms this “practical lower bound” on R∞.

6.7. Binding energy
A configuration with M = Mmax has maximum baryon number Ab (and

baryon mass Mb), whereas a configuration with M = Mmin has minimum
baryon number (and baryon mass) (Zeldovich, 1962). To prove this statement
let us consider two infinitesimally close configurations built of cold catalyzed
matter. Let the first one consist of Ab baryons, and the second consist of
Ab + dAb baryons. The first configuration can be transformed into the second
by adding dAb baryons on the stellar surface (and keeping the system in full
equilibrium). The change of the total gravitational mass accompanying this
transformation is given by the small-increment theorem which relates small
increments dM and dAb (Zeldovich, 1962; Zeldovich & Novikov, 1971)

dM = m0
√

1 − xGR dAb . (6.52)

Therefore, the extremum condition dM/dρc = 0 implies dAb/dρc = 0 (and
dMb/dρc = 0), and vice versa. This means that the extremum of M is reached
simultaneously with the extremum of Ab (and Mb).

An example of the Mb(ρc) dependence is displayed in Fig. 6.10. The
configuration with M = Mmax corresponds also to the maximum mass defect,
which is about 15%. As it turns out, the maximum relative mass defect depends
rather weakly on the EOS of baryon matter. Instead of the mass defect, it is
convenient to use its energy equivalent, the binding energy Ebind, defined in
§6.2. Figure 6.11 shows Ebind as a function of M for several EOSs. For
M = 1.4 M�, the binding energy relative to the dispersion of the star into the
gas of 56Fe ions is about 2× 1053 erg. The maximum binding energy increases
with the growth of Mmax, and ranges from ≈ 3 × 1053 erg for the softest to
≈ 1054 erg for the stiffest EOS of Table 6.1.

The behavior of Ebind at M ≈ Mmax deserves a comment. The spike at
M = Mmax (Fig. 6.11) becomes nonsingular, if considered as a function of ρc
(rather than M ). To show this, let us use the equation

dEbind/dAb = µ0
{
1 −

√
1 − xGR

}
> 0 , (6.53)

where µ0 = m0 c2. It is valid for configurations built of cold catalyzed
matter, as a consequence of the relation (6.52). Therefore, dEbind/dρc =
(dEbind/dAb) (dAb/dρc) is continuous at ρc ≈ ρc,max and vanishes at
ρc = ρc,max. We have dEbind/dρc > 0 for ρc < ρc,max and dEbind/dρc < 0
for ρc > ρc,max.
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Figure 6.10. Baryon mass Mb = Am0 and gravitational mass M of neutron star models versus
central density for the BBB2 EOS. The configuration with M = Mmax (filled circle) realizes
the maximum of Mb. Configurations with higher ρc (dotted segments) are unstable.

According to Fig. 6.11, of two configurations with M ≈ Mmax, containing
the same number of baryons, the unstable one (ρc > ρc,max) is less bound than
the stable one. This property is general and can be proved starting from basic Eq.
(6.52). Using this equation, we get the following expression for the difference
∆Ebind(Ab) = Ebind(Ab) − E′

bind(Ab) in binding energies of stable and
unstable configurations with M ≈ Mmax:

∆Ebind(Ab) = µ0

∫ Amax

Ab

{√
1 − xGR(Ãb) −

√
1 − x′

GR(Ãb)
}

dÃb,

(6.54)
where xGR(Ab) = 2GM(Ab)/R(Ab)c2, x′

GR = 2GM ′(Ab)/R′(Ab)c2, and
primed quantities refer to unstable equilibrium configurations. At the same Ab,
an unstable configuration is more compact than a stable one, R′(Ab) < R(Ab).
Moreover, variations in M at M ≈ Mmax are of the second order of smallness
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Figure 6.11. Binding energy (relative to the dispersion of a star into 56Fe gas) versus gravi-
tational mass for several EOSs from Table 6.1. Maximum-mass configurations (filled circles)
have maximum binding energy. Dotted segments show unstable configurations which are less
bound than the stable ones. The inset shows a zoomed segment of the Ebind(M) curve for the
FPS EOS at M ≈ Mmax.

in ρc − ρc,max, and, therefore, are much smaller than variations in R. Thus,
R′(Ab) < R(Ab) implies E′

bind(Ab) < Ebind(Ab).

6.7.1 Approximate formulae
Figure 6.11 shows that the binding energy of a stable neutron star correlates

with its gravitational mass. A simple approximate “empirical formula” which
describes the dependence Ebind(M) at M > 0.5 M� for realistic EOSs reads
(Lattimer & Yahil, 1989)

Ebind � 1.5 × 1053 (M/M�)2 erg . (6.55)
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Figure 6.12. Binding energy (relative to the dispersion of a star into a gas of 56Fe and hydrogen)
versus gravitational mass at M ≈ Mmin for the FPS and SLy EOSs. Solid lines – stable
configurations; dotted lines – unstable configurations, filled dots – M = Mmin.

A more refined formula, containing the compactness parameter xGR =
rg/R, was proposed by Lattimer & Prakash (2001):

Ebind � 1.6 × 1053
(

M

M�

)(xGR

0.3

) 1
1 − 0.25 xGR

erg. (6.56)

It is quite precise for EOSs without any strong softening at high densities. It
can be less accurate for massive neutron stars with hyperon cores.

Because Ebind reaches maximum at M = Mmax, Eq. (6.55) gives an
approximate expression for the maximum binding energy Emax

bind,

Emax
bind(EOS) � 1.5 × 1053 (Mmax(EOS)/M�)2 erg . (6.57)
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Figure 6.13. Density versus radial coordinate for neutron-star models with M = 1.51 M� (the
solid line) and M = Mmax = 1.92 M� (the dashed line) employing the BBB2 EOS in stellar
cores and the FPS EOS in the crusts. Thin vertical lines show the crust-core interface and the
neutron-drip point.

This formula reproduces exact values of Emax
bind typically better than within ten

percent for our set of EOSs in Table 6.1.

6.7.2 Neutron star models with M ≈ Mmin

The binding energy of neutron stars with M ≈ Mmin is shown Fig. 6.12.
Let us focus on stable configurations (solid segments). At M ≈ Mmin the sign
of Ebind depends on the choice of the dispersed reference system. Neutron
stars with lowest masses are bound (Ebind > 0) with respect to the hydrogen
gas, but are unbound (Ebind < 0) with respect to the dispersed 56Fe gas.

The case of Ebind < 0 deserves a comment. Negative binding energies
of neutron stars with M < 0.17 M� indicate that these stars are actually
metastable with respect to the transformation into a cloud of 56Fe dust. Their
decompression (while keeping the matter in the ground state) would eventually
lower the total energy, after overcoming an initial energy barrier (that results
from the gravitational binding of the outer layers). Being metastable with
respect to large amplitude decompression, these configurations are, however,
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Figure 6.14. Density versus radial coordinate for neutron star models with M = 1.4 M�.
Stellar cores are described either by BPAL12, or by BBB2, or by BGN2 EOSs (the dashed, solid
or dotted lines, respectively). In all cases, the FPS EOS of the crust is used. Thin vertical lines
indicate crust-core interface and neutron-drip point for the BPAL12 and BGN2 models.

stable with respect to small amplitude perturbations. This can be contrasted
with the instability of configurations at ρc < ρc,min. The latter equilibrium
configurations will explosively expand to huge white-dwarf like configurations
with radii exceeding 104 km under the effect of any small perturbation.

6.8. Basic internal structure of neutron stars
The distribution of matter within a neutron star depends on its mass and

results from an interplay between the pressure and gravity. In Fig. 6.13 we
show the mass density within a neutron star as a function of radial coordinate,
calculated for the BBB2 EOS in the stellar core for two masses. The higher mass
is equal to the maximum mass for this EOS. Calculations show that the density
within the core is rather uniform for M = 1.2 − 1.5 M�. The pronounced
density drop occurs near the crust-core interface. The density drop becomes
steeper near the neutron drip point, as a result of the EOS softening due to
the neutron drip. The growth of the stellar mass increases the gravitational
pull within the crust, which makes the crustal density profile steeper and the
crust thinner. The effect is most pronounced for stars with M = Mmax. For
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the medium-stiff BBB2 EOS in the core, the crust contains 1.4% and 0.8% of
the total gravitational mass of the stars with M = 1.24 M� and 1.51 M�,
respectively. The crust thickness of these stars is 1.01 km and 0.72 km. For
M = Mmax, the crust contains only 0.2% of the stellar mass, and the crust
thickness becomes as small as 0.29 km. The crust mass and thickness are
smaller for softer EOSs.

While the crustal EOS is rather well established (see Chapter 3), the crust
structure results from the interplay of its EOS and the gravitational pull exerted
by the core; the latter depends on the core compactness. Therefore, the uncer-
tainty of the EOS in the stellar core introduces some uncertainty in the crust
structure. This is visualized in Fig. 6.14, where we show the density profiles
inside a 1.4 M� star calculated for the BPAL12, BBB2, and BGN2 EOSs in the
core. The crust thickness ranges from 0.7 km for the softest EOS up to 1.3 km
for the stiffest one. The dependence of the fraction of stellar mass contained in
the crust on the core EOS is even more dramatic: this fraction ranges from 0.7%
for the softest BPAL12 EOS to 2.2% (three times larger!) for the stiffest BGN2
EOS. The BBB2 model is typical for medium-stiff EOSs; the crust thickness is
about 0.8 km and the crustal mass fraction is 1%.

6.9. Universal structure of the outer envelope
A solution to the equations of stellar structure is greatly simplified (Urpin

& Yakovlev, 1979) in the outer neutron star envelope which is much thinner
than R and contains a small fraction of mass. In these layers, the density and
pressure vary much more rapidly with r than m(r) ≈ M . Accordingly, the
metric (6.1) reduces to the Schwarzschild metric (6.11), where r can be safely
replaced by R in the brackets and in the last term,

ds2 = c2 dt2
(
1 − rg

R

)
−
(
1 − rg

R

)−1
dr2 − R2 (dθ2 + sin2 θ dφ2). (6.58)

Introducing the local proper time τ and the local proper depth z measured from
the stellar surface:

τ = (1 − rg/R)1/2 t, z = (R − r) (1 − rg/R)−1/2, (6.59)

we reduce the metric to the locally flat one, ds2 = c2 dτ2 − dz2 − R2 (dθ2 +
sin2 θ dφ2).

For a low-density matter in the outer neutron star envelope, we have P �
ρc2 and Pr3 � Mc2. With these simplifications, Eq. (6.7) can be rewritten as
the familiar Newtonian equation for a plane-parallel atmosphere (also see Eq.
(6.10)),

dP/dz = gs ρ, (6.60)

where gs is the surface gravity given by Eq. (6.47) and discussed in §6.6.5.
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Figure 6.15. Density (left vertical scale) and surface mass ∆M (right scale) in a neutron star
crust versus depth z for B = 0, 1012 and 1013 G. Arrows indicate kinks of the density profiles
of magnetic envelopes at which the first Landau level becomes populated with increasing z.

Because the main contribution to the pressure of the outer degenerate (T �
TF) stellar layers comes from a free electron gas, we may set P ≈ Pe and use
the zero-temperature thermodynamic relationship dPe = ne dµe, where µe is
the electron chemical potential (including the rest-mass term). On the other
hand, the main contribution into the mass density comes from ions, and we
have ρ ≈ nimi ≈ muneAi/Zi, where mu is the atomic mass unit, while Ai
and Zi are the mass and charge numbers of the ions (nuclei). Inserting these
relationships into Eq. (6.60), we get

dµe/dz = gsmuAi/Zi . (6.61)

Integrating this equation, we can obtain a solution in a closed form. It can be
further simplified by assuming that Ai/Zi = constant over the outer neutron
star envelope. In this case by integrating Eq. (6.61) from the surface (where
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µe = mec
2) we obtain

µe − mec
2 = gsmuzAi/Zi. (6.62)

Because µe = mec
2
√

1 + x2
r , this solution can be rewritten as

x3
r =

[
z

z0

(
2 +

z

z0

)]3/2

, z0 =
mec

2Zi

mugsAi
=

49.3 Zi

Ai gs14
m, (6.63)

where gs14 is gs in units of 1014 cm s−2, xr is the electron relativity parameter
defined by Eq. (2.2) and z0 is a depth-scale at which degenerate electrons
become relativistic. Typically, we have gs14 ∼ 2 – 3, so that z0 ∼ 10 m. Because
x3

r ≈ ρ6Zi/Ai, Eq. (6.63) describes the density growth within the degenerate
layers of the outer neutron star envelope. For a non-magnetic neutron star
with M ∼ (1 − 2)M� the solution is valid at densities ρ � 1011 g cm−3 and
geometrical depths z about some hundred meters. Nevertheless, the solution
(6.63) is invalid in a very thin surface layer, where the electron gas is non-
degenerate or where the assumption that P = Pe is violated (see §2.5). Its
thickness ranges from ∼1 meter in a hot neutron star to several millimeters
in a cold one. On the contrary, Eq. (6.60) remains valid everywhere near the
surface, and that outermost meter of the envelope can be studied separately by
combining Eq. (6.60) and the equations of thermal structure.

According to Eq. (6.63), we have ρ ∝ z3/2 in the very outer layer of non-
relativistic degenerate electron gas (ρ � 106 g cm−3, z � z0), and ρ ∝ z3

in the deeper layers, where electrons are ultrarelativistic (ρ � 106 g cm−3,
z � z0). These density profiles correspond to polytropic equations of state
with the polytropic indices n = 1.5 and n = 3 (polytropic exponents γ = 5/3
and γ = 4/3), respectively (compare §2.3.1 d).

Finally, integrating Eqs. (6.60) and (6.8) we can easily find the gravitational
mass ∆M(z) = m(R) − m(r) contained in a layer from the surface to a given
depth z:

∆M(z) = 4πR2 P (z) g−1
s

√
1 − rg/R. (6.64)

This mass is solely determined by the pressure P (z) at the bottom of the given
layer. We see that the structure of the outer neutron star crust is universal
(selfsimilar).

For instance, consider the neutron star with M = 1.4 M�, R = 10 km,
and the outer envelope composed of 56Fe. The ρ(z) and ∆M(z) profiles are
depicted in Fig. 6.15. The density ρ = 1010 g cm−3 is reached at the depth
z � 150 m, and the mass of the envelope at this depth is ∆M � 2× 10−7 M�.
At the base of the outer crust, ρ = 4.3 × 1011 g cm−3, we obtain z � 550 m
and ∆M � 3× 10−5 M�. However, our solution can become inaccurate there
because our initial assumptions that z � R and Ai/Zi = constant can already
be violated.
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6.9.1 The structure of magnetic envelopes

The above consideration does not take into account the effects of strong
magnetic fields. As explained in Chapter 4, these effects can be dramatic
near the neutron star surface, but weaken with growing density. They are most
important in the layers where the field is strongly quantizing – that is, at ρ < ρB

and T � TB , where ρB and TB are given by Eqs. (4.30) and (4.33), respectively.
In these layers, the assumption of temperature-independent EOS (T � TF)
becomes less accurate than in the nonmagnetic case. Indeed, according to Eq.
(4.31), the Fermi temperature TF in a strongly quantizing field B is reduced
by a factor xB/xr = (4/3)1/3(ρ/ρB)2/3 [xB being given by Eq. (4.28)] for
ultrarelativistic electrons and by the square of this factor for non-relativistic
electrons.

If T � TF , the electrons are nearly free (§4.1.2), and the magnetic field
can be regarded as constant (and, hence, force-free) in a local part of the thin
outer envelope, Eq. (6.62) is valid for any field strength B. Thus, the structure of
the envelope is again described by a selfsimilar solution. However, the character
of the solution at ρ < ρB is different. In particular, in Eq. (6.63) one should
replace the nonmagnetic electron relativity parameter xr by the parameter xB

that is appropriate for a strongly quantizing magnetic field. In this case, a given
geometrical depth z corresponds to a higher density ρ. This is illustrated by Fig.
6.15, where we plot the ρ(z) and ∆M(z) profiles in the neutron star envelope
for B = 1012 G and 1013 G. For instance, the magnetic field B = 1013 G
strongly affects the density distribution in the layer ρ < ρB ∼ 106 g cm−3,
located at z � 3 m. According to Eq. (4.30), the density at the bottom of
this layer scales as B3/2. Equation (4.32) shows that the EOS in this layer is
polytropic, but the polytropic index differs from that at B = 0; now it is equal
to n = 1

2 (γ = 3) or n = 1 (γ = 2) for the non-relativistic or ultrarelativistic
electron gases, respectively.

When ρ exceeds ρB , higher Landau levels become populated, and the non-
magnetic solution is approximately recovered. The exact solution, however,
oscillates around the nonmagnetic one, as seen from Fig. 6.15. The kinks,
especially pronounced in the density profiles, are associated with occupation
of new Landau levels with increasing electron density (or geometrical depth).
Arrows show the kinks produced by the occupation of the first excited Landau
level. These kinks should be smeared out by thermal effects (by thermal broad-
ening of the Landau levels). Moreover, the magnetic field in surface layers may
be not force-free, and the magnetic force may further distort the structure of
these layers.



Neutron star structure 323

6.10. Moment of inertia for slow rigid rotation
Many neutron stars show rapid rotation (§§1.4.4, 9.4). However, even the

most rapidly spinning pulsar PSR J1748–2446ad, with the spin period of 1.396
ms, is distorted by rotation only slightly (provided its mass M � M�, see, e.g.,
Cook et al. 1994; Datta et al. 1998). Therefore, the effects of rotation on the
structure of observed pulsars can be treated using the lowest-order perturbative
approximation (Hartle, 1967), which is usually referred to as the approxima-
tion of slow rotation. A precise treatment of more rapid rotation requires two
dimensional calculations, as will be discussed in §6.12.

In this section, we restrict ourselves to a slow, uniform (rigid) rotation with
an angular frequency Ω. Strictly speaking, Ω is the spin frequency measured by
a distant observer. The slow rotation implies, that centrifugal forces are small
compared to the gravity, R3Ω2/(GM) � 1. This condition is satisfied even for
PSR J1748–2446ad, the fastest observed rotator (Ω = 4501 s−1). Assuming
M = 1.4 M� and R = 10 km, we get R3Ω2/(GM) � 0.11 for this pulsar.

A rotation induces polar flattening of the star. A slowly rotating neutron
star is axially symmetric. Because of time-reversal invariance, lowest-order
rotational perturbations of the stellar structure are quadratic in Ω. On the other
hand, the leading contribution to the total angular momentum J is proportional
to Ω. Therefore, to the lowest order in Ω, the moment of inertia I = J/Ω is
determined by the mass distribution and space-time curvature of a non-rotating
star (Hartle, 1967) as discussed below. In this approximation, I is given by Eq.
(6.70).

6.10.1 Dragging of local inertial reference frames and
moment of inertia

The centrifugal force acting on a fluid element in a star depends on the local
spin frequency ω, as measured in a local inertial reference frame. Therefore,
ω is given by the difference between Ω and the spin frequency ω of the local
inertial reference frame in the vicinity of the given fluid element, ω = Ω − ω.
To the lowest order in Ω, ω depends only on r. The quantity ω(r) describes
dragging of local inertial frames in a rotating star; it vanishes in the Newtonian
limit, where ω = Ω. In order to calculate J , one has to know ω everywhere in
the star. Dragging of local inertial frames implies that ω < Ω. The function
ω obeys the homogeneous, second-order linear differential equation (Hartle,
1967)

1
r4

d
dr

(
r4 e−Φ−λ dω

dr

)
+

4
r

(
d
dr

e−Φ−λ

)
ω = 0 , (6.65)

where Φ and λ are the metric functions of the non-rotating star (see Eq. (6.1)).
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A solution of Eq. (6.65) is subject to two boundary conditions: regularity
(finiteness) at r = 0 and vanishing of the dragging frequency at infinity (ω → Ω
for r → ∞). In addition, ω has to be continuous at the stellar surface.

For r ≥ R, we have e−Φ−λ = 1 (§6.1) which gives

ω(r ≥ R) = Ω − 2GJ/(c2r3) . (6.66)

Equation (6.65) can be replaced by two coupled first-order differential
equations (Haensel & Prószyński, 1982),

dj

dr
=

8π

3
r4
(

ρ +
P

c2

)
e−Φ−λ ω , (6.67)

dω

dr
=

GeΦ+λ

c2r4 j . (6.68)

Here, j(r) is the contribution to J from a sphere of radius r. The total stellar
angular momentum is J = j(R). Equations (6.67) and (6.68) can be integrated
simultaneously with Eqs. (6.7) – (6.9) of stellar structure from r = 0 to r = R,
with the boundary conditions j(0) = 0 and ω(0) = ω0. The value of ω0 is
arbitrary but sufficiently small (to be in the regime of slow rotation). The value
of Ω, corresponding to the selected value of ω0, is obtained by matching the
interior and exterior solutions, ω(r ≤ R) and ω(r ≥ R), at r = R:

Ω = ω(R) + 2GJ/(c2R3) . (6.69)

The total moment of inertia of the star is then calculated as I = J/Ω. Using
Eq. (6.67), one gets

I =
8π

3

∫ R

0
dr r4

(
ρ +

P

c2

)
ω

Ω
e−λ−Φ , (6.70)

where the ratio ω/Ω is a function of r independent of Ω (or ω0). General rela-
tivistic effects are incorporated in (ω/Ω) e−λ−Φ and in P/c2. Equation (6.70)
explicitly takes into account space-time curvature (∼ rg/R) in the spherically
symmetric approximation. Also, it takes into account dragging of inertial ref-
erence frames in the lowest order in Ω; this gives a correction, linear in rg/R,
contained in ω/Ω. Nevertheless, Eq. (6.70) neglects the centrifugal corrections
∼ R3Ω2/GM . In this approximation I can be calculated from a non-rotating
stellar model.

In the Newtonian limit, ω = Ω, λ = Φ = 0, P � ρ c2, and we get the
familiar expression INewton = 8

3 π
∫ R
0 dr r4ρ.

6.10.2 Moment of inertia versus M

In Fig. 6.16 we show the dependence of I on the neutron star mass M
for several EOSs of dense matter. A suitable unit for I is 1045 g cm2 (because
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Figure 6.16. Moment of inertia I of a slowly and rigidly spinning neutron star versus stellar
mass M for several EOSs of dense matter. Stellar configurations with maximum I are indicated
by filled triangles, and those with maximum M by filled circles. The inset shows a zoomed
segment of the I(M) curve for the BGN2 EOS near the maximum of I . The shaded band shows
the range of precisely measured masses of binary pulsars.

M�×(10 km)2 � 2.0×1045 g cm2); the value of I in such units will be denoted
by I45. The I(M) curve exhibits a maximum, Imax, reached for a mass which
is typically a few percent lower than Mmax.8 However, because of the flatness
of the peak of the M(ρc) curve, the central density of the configuration with
I = Imax is noticeably lower than ρc,max (by ∼ 30% for very stiff EOSs and
by a factor of ∼ 2 for very soft ones).

8This property holds for the EOSs without any strong high-density softening due to hyperonization or phase
transition to an exotic state. For an EOS with a strong high-density softening, Imax may be reached at M
significantly lower than Mmax. For examples and discussion see Bejger et al. (2005b)
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According to Fig. 6.16, the value of I45 at M = 1.4 M� ranges from
I45 ∼ 1 for a very soft EOS to ∼ 2 for a very stiff EOS. Even a more dramatic
dependence on EOS is seen for the maximum moment of inertia Imax

45 , which
ranges from ∼ 1 for the softest EOS to nearly 4 for the stiffest one. Naturally,
the I(M) dependence is much more sensitive to the stiffness of the EOS, than
the R(M) dependence.

6.10.3 Crustal moment of inertia
The EOS of the neutron star crust is known much better than that of the core.

Moreover, the crust is thin and contains a small fraction of stellar mass (§6.8).
This allows us to derive an approximate formula for the crustal contribution to
I , denoted by Icrust. Using Eq. (6.70), we have

Icrust =
8π

3

∫ R

Rcrust

dr r4
(

ρ +
P

c2

)
ω

Ω
e−λ−Φ , (6.71)

where Rcrust is the radial coordinate of the crust bottom. In the crust we have
P/c2 � ρ. To the lowest order in (R − Rcrust)/R, we get

Icrust � 2
3

McrustR
2 ω(R)/Ω . (6.72)

Using Eq. (6.66), we come to the required expression,

Icrust � 2
3

McrustR
2
(

1 − rg

R

I

MR2

)
(6.73)

The factor 2
3McrustR

2 is Icrust in the Newtonian approximation. The relativistic
correction results from dragging of local inertial frames (the factor in brackets).

6.10.4 Moment of inertia versus M and R

Now we present approximate formulae relating I to stellar mass and radius
(Ravenhall & Pethick, 1994; Lattimer & Prakash, 2001; Bejger & Haensel,
2002).

Ravenhall & Pethick (1994) considered neutron star models calculated
for the FPS EOS. They showed that the ratio I/MR2 depends mostly on the
compactness parameter xGR = rg/R. Their formula can be rewritten as

I � 0.21 MR2
∞ . (6.74)

For a restricted range of (moderate) compactness, xGR = 0.15 − 0.45, it re-
produces exact values of I within ∼ 10% for most of the EOSs considered by
the authors.

Lattimer & Prakash (2001) analyzed in detail the behavior of I/MR2 as
a function of xGR for a broad set of EOSs. They derived useful approximate
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Figure 6.17. Dimensionless ratio I/MR2 versus rg/R for thirty EOSs of dense baryon matter.
The thick solid line corresponds to Eq. (6.75). Based on Bejger & Haensel (2002).

expressions for several analytic models of neutron-star structure, and studied
the limit of low-mass neutron stars, rg/R → 0. In this limit Eq. (6.74) is
invalid.

Bejger & Haensel (2002) studied a set of thirty EOSs, most of them con-
structed in the 1990s. They found that I/MR2 is nearly universal function of
xGR. Their result is displayed in Fig. 6.17, and their universal function reads

I

MR2 =
{

xGR/(0.295 + 2xGR) for xGR ≤ 0.3 ,
2
9 (1 + 1.69 xGR) for xGR > 0.3 .

(6.75)

As seen in Fig. 6.17, the precision of this approximation is typically better
than 10%. The formula breaks down only for masses M � 0.2 M�, which
correspond to xGR < 0.04.
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6.10.5 Approximate formula for Imax

As we stressed before, the value of Imax is more sensitive to the stiffness
of the EOS, than Mmax or RMmax . For a given EOS, one can write Imax =
CIMmaxR

2
Mmax

. It has been shown that, for a set of physically sound EOSs
developed in the 1970s and 1980s, CI is only weakly dependent on the EOS
(Haensel, 1990). As demonstrated by Bejger & Haensel (2002), CI is correlated
with the compactness parameter xmax

GR for maximum-mass stellar models. For
the same set of EOSs that has been used to derive Eq. (6.75), the correlation
can be described by the “empirical formula”

Imax
45 � (2.414 xmax

GR − 0.368)(Mmax/M�)(RMmax/10 km)2 . (6.76)

It reproduces exact values of Imax typically within ∼ 10% and can be used to
estimate Imax from known values of Mmax and RMmax . Notice that Eq. (6.76)
underestimates Imax for superluminal EOSs but overestimates Imax for EOSs
with softening owing to the appearance of hyperons. Finally, its error is � 5%
for “minimal composition EOSs” (nucleons and leptons).

One might argue that the validity of the simplest “empirical formula,”

Imax
45 � (M/M�) (RMmax/10 km)2 (6.77)

(Haensel, 1990; Bejger & Haensel, 2002), is a consequence of the fact that
realistic EOSs are well approximated by polytropes. For a polytropic EOS
P = Knγ

b with a fixed γ, the relation

Imax
45 = C(γ) (M/M�) (RMmax/10 km)2 (6.78)

is exact, with C(γ) being independent of K. We get C(2) = 0.83 and C(3) =
1.04, so that the “ best fit” value of C for realistic EOSs lies roughly in the middle
between C(2) and C(3). However, realistic EOSs at super-nuclear densities
are not polytropes. One can introduce only a local, density dependent adiabatic
index γ(nb) (see §§5.13.3 and 5.14.2). For example, for matter with hyperons
the EOS softens considerably (and in a discontinuous way) at the thresholds of
hyperon appearance, with γ dropping below one (see §5.14.2 and Balberg &
Gal 1997). Clearly, the validity of the empirical formula for Imax is not due to
the polytropic character of the EOS of dense matter.

6.11. Elastic shear strain, non-axial deformations, and
gravitational radiation

A non-zero shear strain, which can build up in a neutron star crust, con-
tributes to the stress tensor of crustal matter. Let us restrict ourselves, for the
sake of simplicity, to the Newtonian approximation. The stress tensor is given
by

σij = −Pδij + σshear
ij . (6.79)



Neutron star structure 329

The shear strain can support nonsphericity of a non-rotating star and non-axiality
of a spinning star. Let us follow a simplified Newtonian “one-parameter model”
of Baym & Pines (1971) updated with new physics input. It can be reformulated
in the framework of General Relativity (Carter & Quintana, 1975a).

Consider a slowly rotating and weakly deformed neutron star. The simplest
deviation of the stellar shape from sphericity is caused by quadrupolar deforma-
tion. Let us assume that a stellar configuration is axially symmetric with respect
to the z-axis. The amplitude of the quadrupolar deformation can be described
by a single oblateness parameter ε, related to the principal components of the
moment of inertia tensor, Ixx = Iyy �= Izz , by

ε = (Izz − I)/I , (6.80)

where I = (Ixx + Iyy + Izz)/3. Small deviations from spherical symmetry
imply ε � 1.

For a completely liquid star σshear
ij = 0. The total energy of a non-spinning

star (at a fixed total baryon number) is then minimized by a spherical shape, so
that deviations from spherical symmetry can only increase the energy,

Eliq = E0 + A ε2 . (6.81)

However, the presence of σshear
ij results in an additional term in E, induced by a

nonvanishing elastic shear strain. We will denote this term by Eshear. In order
to determine the dependence of Eshear on stellar deformation, we assume the
existence of a reference (not necessarily static) relaxed configuration C̆ with zero
elastic shear strain and the same number of baryons as the actual configuration.
By construction, the reference configuration C̆ has such an oblateness parameter
ε̆ that Eshear(C̆) = 0. The actual deformed configuration with shear strain
will be denoted by C. Assume further, that C can be formed from C̆ by a
continuous elastic deformation. Keeping only the terms quadratic in ε̆ and ε,
we approximate Eshear = B(ε − ε̆)2. Then the total energy of configuration C
is

E = E0 + Aε2 + B (ε − ε̆)2 . (6.82)

For a purely liquid neutron star we have B = 0 and, hence, ε = 0. However, for
B > 0 and ε̆ �= 0, configuration C is no longer spherical, but has the oblateness
parameter

ε = ε̆ β, β = B/(A + B) ≈ B/A , (6.83)

where we take into account that B � A (see below).
Early estimates of A for a neutron star with M = 1.4 M� gave A ∼

1053 erg (Pandharipande et al., 1976). Its dependence on M was studied by
Carlini & Treves (1989) who found that A decreases rapidly with decreasing M
(from A � 1053 erg at M = Mmax to A ∼ 1050 erg at M � Mmin � 0.1 M�).
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For a solid crust, B is determined by the crustal rigidity. The value of B
can be calculated provided one knows the shear modulus of crustal matter and
the distribution of elastic strain there. Early estimates for a neutron star with
M = 1.4 M� gave B ∼ 1048 erg, which resulted in β ∼ 10−5 (Pandharipande
et al., 1976; Carlini & Treves, 1989). The dependence of B on M was studied
by Carlini & Treves (1989).

It should be stressed that the above estimates of B were based on old crustal
models, with the crust-core interface at the baryon number density ncc � n0 =
0.16 fm−3. Recent calculations give lower values ncc = (0.06−0.10) fm−3

(§§3.4.2 and 3.5). Another weakness of older estimates was a simplistic model
of the distribution of elastic strain within a spinning-down neutron star. Using
modern values of ncc and a more realistic elastic strain field, Cutler et al. (2003)
obtained much lower values β � (1.5−2.5) × 10−7 unfavorable for detecting
continuous gravitational waves from radio pulsars (§6.11.2).

6.11.1 Elastic strain and neutron stars with M ≈ Mmin

Equilibrium configurations of low-mass neutron stars, studied in §§6.5.8
and 6.6.2, were calculated from Eqs. (6.7) and (6.8) which assume that dense
matter is liquid. However, a neutron star with M ∼ 0.1 M� is nearly all
solid, except for a small liquid core containing only 2−3% of the stellar mass.
In contrast to liquid, solidified matter can sustain shear strain, which changes
the equations of hydrostatic equilibrium. For an isotropic Coulomb crystal of
crustal matter, the elastic shear strain term in the stress tensor is determined by
the shear modulusµ (§3.7). The effect of elastic strain on the stellar structure can
roughly be estimated using the model of Baym & Pines (1971) discussed above.
The shear strain makes a neutron star configuration nonspherical. Assuming,
for simplicity, that the deviation from sphericity is quadrupolar, let us estimate a
possible nonsphericity δR/R, where δR is the absolute value of the difference
between the polar and the equatorial radii. For a Coulomb crystal in the stellar
crust, the maximum (breaking) strain does not exceed ∼ 10−2 (Ruderman,
1992). Then the Baym & Pines (1971) model predicts that δR/R � 0.01β,
where β ∼

∫
Vcrust

µdV/|Egrav| and Egrav is the gravitational energy of the star.
For a neutron star with M = 1.4 M� one has β ∼ 10−6, but for M � 0.1 M�
one obtains β ∼ 10−3, due to a strong decrease of the factor A (see above).
Therefore, we expect that the effect of elastic shear strain on the stellar radius
at M ∼ 0.1 M� is δR/R < 10−4.

6.11.2 Non-axial deformation of solitary pulsars and
gravitational waves

Let us consider the evolution of a hot, young, rotating neutron star just
after solidification of the crust. Such a star is very close to its liquid progenitor.
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Therefore, its shear strain is negligibly small. This is a good model of C̆. Let
us assume that it rotates rigidly with an angular frequency Ω̆ around the z-
axis (coinciding with the body symmetry axis) which induces the rotational
oblateness characterized by the parameter ε̆. The total energy of this star reads

E(C̆) = E0 + A ε̆2 + J2/(2Izz) , (6.84)

where J is the stellar angular momentum. The value of ε̆ corresponds to the
minimum of E at a fixed J and a fixed baryon number Ab. Assuming ε̆ � 1
one obtains

ε̆ � Ω̆2I0/(4A) � 1.0 × 10−3 (10 ms/P̆ )2(I45/A53) , (6.85)

where I0 is the moment of inertia of a spherical, non-rotating configuration C0,
I45 = I0/(1045 g cm2), A53 = A/(1053 erg), and P̆ is the spin period of
configuration C̆.

An elastic shear strain can be released during pulsar spindown by crust
cracking or by plastic flow of crustal matter. Therefore, Eqs. (6.83) and (6.85)
give an upper bound on the bulk oblateness of a spinning neutron star, supported
by the elastic strain. We get εshear

max ∼ 10−9−10−8 for P̆ = 10−3 ms. Because
both effects (rotation and elastic strain) on the neutron star structure are small,
they are additive in the lowest order. Therefore, εshear

max ∼ 10−9 − 10−8 is also
the upper bound on the bulk non-axial asymmetry supported by the elastic shear
strain,

εasym = (Ixx − Iyy)/I , (6.86)

for a neutron star rotating about the z-axis.
Our definition of the bulk non-axial asymmetry εasym deserves a comment.

In the literature, one frequently encounters a different measure of deviation from
the axial symmetry, called ellipticity. This ellipticity is defined for a triaxial
ellipsoid with semiaxes a > b > c and a − b � a. The spin axis is assumed
to coincide with c. The ellipticity is then introduced as (see, e.g., Shapiro &
Teukolsky 1983)

ellipticity =
a − b

(a + b)/2
. (6.87)

For a triaxial incompressible ellipsoid Ixx − Iyy = 1
5 M (a2 − b2) and Izz =

1
5 M (a2 + b2). For a − b � a, one has a2 + b2 � (a + b)2/2, which means
that the ellipticity given by Eq. (6.87) coincides with our εasym.

A non-zero value of εasym induces a non-zero amplitude (∼ εasymI) of
the quadrupole moment tensor of stellar mass distribution. A rotating neutron
star (for instance, a pulsar) becomes then the source of persistent gravitational
radiation at the frequency ΩGW = 2Ω, the doubled spin frequency Ω (see,
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e.g., Shapiro & Teukolsky 1983). The power of gravitational wave emission,
averaged over the spin period P = 2π/Ω, is

ĖGW =
32
5

G

c5 I2ε2
asymΩ6 . (6.88)

This formula can be used to constrain εasym from pulsar timing. The emis-
sion of gravitational waves leads to the loss of the kinetic spin energy of
the star, ĖGW

kin = −ĖGW, and to the associated pulsar spindown ṖGW. Of
course, this spin-down is much slower than observed spin-down of pulsars
(Ėkin = IΩΩ̇, see §1.4.4), associated with electromagnetic processes in pulsar
magnetospheres. This means that ṖGW � Ṗobs and leads to an observational
upper bound on the value of εasym for a radio pulsar,

εasym � 4.3 × 10−9 (P/1 ms)3/2
√

Ṗ /(10−19 s s−1) , (6.89)

where we have set I = 1045 g cm2. The strongest bounds are obtained for
millisecond pulsars, which have especially low P and Ṗ . For example, we
obtain εasym � 4 × 10−8 for the nearby pulsar J0437–4715 (P = 5.76 ms,
Ṗ = 5.7 × 10−20, the distance d= 140 pc), and εasym � 4 × 10−9 for PSR
B1957+20 (P = 1.61 ms, Ṗ = 1.7 × 10−20, d = 1.5 kpc), which is the
third among the fastest rotators (§9.4). These observational bounds are very
stringent. For young pulsars, like the Crab pulsar, the observational bounds
based on Eq. (6.89) are not useful, mostly because of relatively large Ṗ .

Let us remind that gravitational waves are wave-like perturbations of space-
time. Let the unperturbed (background) space be flat, with the metric g

(0)
ij =

diag(1,−1,−1,−1). Then the metric of space with weak gravitational waves
is

gij = g
(0)
ij + hij , |hij | ∼ h � 1 , (6.90)

where h measures the amplitude of a gravitational wave. Gravitational waves
are transverse, i.e., they produce an acceleration of free particles transverse to
the wave propagation direction.

Consider a pair of test particles which are at rest in the absence of gravita-
tional waves. Letξ determine relative position of these particles. A gravitational
wave induces their relative acceleration ξ̈ which is a measurable quantity. A
variation δξ of ξ under the action of the gravitational wave is similar to that
produced by a tidal force,

δξj = hTT
jk ξk/2 , (6.91)

where hTT
jk is the relevant (traceless and transverse) part of hjk. This equation

leads to an estimate
δξ/ξ � h . (6.92)
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It is natural to call h the relative gravitational wave strain. This is the major
quantity which characterizes the detectability of gravitational waves. Typical
values of h at a distance d from a pulsar with given εasym are (e.g., Shapiro &
Teukolsky 1983)

h =
4GΩ2

c4d
Iεasym � 4.2 × 10−28

(εasym

10−8

)(10 ms
P

)2(1 kpc
d

)
. (6.93)

Nearby millisecond pulsars are the best potential sources of continuous pe-
riodic gravitational waves with a very stable frequency. These waves would be
very different from bursting gravitational waves emitted from such astrophys-
ical sources as coalescing stars or nonspherical collapses associated with type
II supernova events. Periodic gravitational radiation from nearby millisecond
pulsars could be searched using gravitational wave antennae (see, e.g., Pizzella
et al. 2001) tuned to the doubled pulsar frequency. Observations of radio pulsars
have advantage over observations of unpredictable, short bursting gravitational
waves (New et al., 1995). The most promising is the nearby millisecond pulsar
B1957+20 mentioned above. Its expected gravitational wave strain is

PSR B1957 + 20 : h � 10−27 (εasym/10−9) . (6.94)

This amplitude is five orders of magnitude smaller than the recent obser-
vational limit of h ∼ 10−22 for the second fastest spinning pulsar B1937+21
(P = 1.56 ms), obtained in the first “science run” of the LIGO and GEO grav-
itational wave detectors (Allen & Woan, 2004). A dramatic improvement of
detectability limits of the gravitational wave emission from 26 selected iso-
lated radio pulsars was reached in the LIGO’s second “science run” (Abbott
et al. 2005). For some pulsars the limit become as low as h ∼ 10−24 and
corresponded to εmax ∼ 10−5.

The shear modulus for a hypothetical solid π0-condensed matter in the
neutron star core is estimated to be six orders of magnitude larger than in the
inner crust (§7.7.2). A solid π0-condensed core could support εasym as high
as 10−4. This value is excluded for some pulsars observed by Abbott et al.
(2005). On the other hand, if PSR B1957+20 (not observed by Abbott et
al. 2005) contains a π0-condensed solid core of radius of a few kilometers,
then the core elastic strain could be sufficient to produce asymmetry resulting
in h ∼ 10−22, detectable in the LIGO observations. A recent discussion of
asymmetries supported by elastic strain in exotic neutron star cores is presented
in (Owen, 2005).

6.12. Rotating neutron stars
In this section we consider the effect rotation on neutron star structure

beyond the slow-rotation regime of §6.10. We limit ourselves to a stationary
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rigid (uniform) rotation, except for §6.12.5. This rotation is likely to be a
good approximation for neutron stars older than one year. Differential rotation
can be important for newly-born neutron stars formed in gravitational collapse
or in coalescence of two neutron stars (see §6.12.5). For older neutron stars,
deviations from rigid rotation connected, for instance, with crustal glitches, are
expected to be small.9

For a stationary rigid rotation with the angular frequency Ω, measured by
a distant observer, is constant. We consider a star which is axially symmetric
with respect to the spin axis. A stationary rotation of stellar bodies in General
Relativity has been studied by many authors; see Stergioulas (2003) for a review.

6.12.1 Space-time metric and the equations of stationary
motion

We use the familiar coordinates t, r, θ, and φ and the axially-symmetric
metric

ds2 = c2e2Φ dt2 − e2λ r2 sin2θ (dφ − ω dt)2 − e2α
(
dr2 + r2 dθ2) , (6.95)

where the metric functions Φ, λ, ω, and α depend solely on r and θ.
One has to distinguish between the inertial reference frame of a local

observer O0 (at a point (r, θ, φ) within the star) and an inertial reference frame
of an observer at infinity O1. An important quantity is the fluid velocity in the
φ direction, as measured in O0,

U = r sinθ (Ω − ω) eλ−Φ . (6.96)

The fact that U = 0 but Ω = ω �= 0 for the fluid at rest with respect to O0
reflects the well known phenomenon of dragging of local inertial frames.

The Lorentz factor connecting measurements in O0 and O1 is

Γ =
(
1 − U2/c2)− 1

2 . (6.97)

In the perfect fluid approximation, equations of stationary axially symmetric
motion reduce to

1
E + P

∂P

∂xi
+

∂Φ
∂xi

+
∂lnΓ
∂xi

= 0 , xi = r, θ . (6.98)

9Using the two-component model of glitches (§ 9.7), one can show that for pulsars exhibiting macroglitches
the macroscopic spin frequency Ωn of neutron superfluid in the inner crust can be larger than the measured
spin frequency Ω of the crust and the rest of the pulsar coupled to it by no more than one part in 10,000. In the
strongest macroglitches, ∆Ω/Ω ∼ 10−6. It is thought that ∆Ω results from a transfer of an excess angular
momentum of superfluid neutrons, In∆Ωn, to the crust-coupled component with the moment of inertia Ic
(that is nearly equal to the total moment of inertia I). However, In ∼ 10−2 Ic � 10−2 I . Therefore,
angular momentum conservation implies ∆Ωn/Ω ∼ In∆Ω/IΩ ∼ 10−4.
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It is suitable to define a dimensionless pseudo-enthalpy

H(P ) =
∫ P

0

dP ′

E(P ′) + P ′ . (6.99)

It vanishes at the stellar surface and increases monotonically towards the stellar
center. It is a very useful variable in numerical calculations of rotating stars,
because after defining H one can easily obtain the first integral of motion

H(r, θ) + Φ(r, θ) − ln Γ(r, θ) = H(0, 0) + Φ(0, 0) = constant . (6.100)

This is the General Relativistic version of the Bernoulli theorem for a stationary
ideal fluid flow. Consequently, the most useful parameterization of EOSs for
rotating stars is E = E(H), P = P (H). It is easy to see that nb(H) =
[E(H) + P (H)] e−H/m0c

2, where we assume that the mass per baryon at the
stellar surface equals m0.

The quantity H can be expressed in terms of the enthalpy per baryon

h(P ) = (E + P )/nb . (6.101)

Using dP = nb dh we get

H(P ) =
∫ h(P )

h(0)

dh

h
= ln

(
h(P )
m0c2

)
. (6.102)

The calculation of the metric functions Φ, λ, ω, and α is reduced to solving
a set of coupled second-order elliptic-type partial differential equations (see,
e.g., Bonazzola et al. 1993) and will not be described here.

In order to reach high precision in the two-dimensional calculations of
rotating configurations, it is preferable to use analytic representation of the
EOS. Such representations, in the form of the functions ρ = E/c2 = ρ(H),
P = P (H) for unified EOSs were obtained by Haensel & Potekhin (2004);
they are presented in Appendix C.

6.12.2 Stationary configurations of rotating neutron stars
Rotating configurations form a two-parameter family and can be labeled,

for instance, by the values of ρc and Ω. Spinning neutron stars are flattened;
their equatorial radius req is larger than the polar radius, rpol. Here, req and rpol
are the values of the radial coordinate r in the metric (6.95) at the equator and
pole, respectively. We will also use the circumferential radius, Req, which is
the proper length of the equator divided by 2π. For non-rotating configurations
req = Req, but for rotating ones Req > req. Configurations C(ρc, Ω) cover a
region in the M −Req plane, which is shown in Fig. 6.18. A curve M(Req; Ω)
for a fixed Ω is limited on the high-density and the low-density sides. On the
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Figure 6.18. Families of stable stationary rotating neutron star configurations in the M − Req

plane (for the SLy EOS). The central density increases upwards along each solid line. The curve
“1.56 ms” corresponds to the spin period 1.56 ms. Other notations are explained in the text.

high-density side, it is limited by the stability with respect to small axially
symmetric perturbations (the line segment S2K3 in Fig. 6.18).10

In order to check whether a configuration C(ρc1, Ω1) with an angular mo-
mentum J1 is stable, one has to consider a family of configurations C(ρc, J1)
(in the neighborhood of C(ρc1, Ω1), passing through C(ρc1, Ω1)) with the same
angular momentum J = J1. The configuration C(ρc1, Ω1) is stable if

(∂M/∂ρc)ρc=ρc1
> 0 , (6.103)

where the derivative is calculated along the chosen {C(ρc, J1)} family. A line
determined by (∂M/∂ρc)J = 0 (e.g., the line segment S2K3 in Fig. 6.18) sepa-
rates configurations stable and unstable with respect to small axially symmetric

10General stability criteria for rigidly rotating relativistic stars are given by Friedman et al. (1988)
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perturbations. In the static limit, J1 = 0, this condition coincides with the
condition of stability for non-rotating stars, dM/dρc > 0 (see §6.5.1). Both
conditions are necessary but may be not sufficient.

The low-density boundary is determined by the stability with respect to
the mass-shedding from the equator. A necessary condition for the existence
of a stationary rotating configuration requires the equatorial velocity of stellar
matter U(r = req, θ = π/2) be smaller than the Keplerian velocity UK(req) of a
test particle moving on a circular orbit of radius req in the equatorial plane. The
Keplerian velocity corresponds to the Keplerian angular frequency ΩK, called
also the mass-shedding angular frequency. A line on which U(r = req, θ =
π/2) = UK(req) determines the mass-shedding boundary (the curve K in Fig.
6.18). There are no stationary rotating configurations to the right of this line in
the M − Req plane.

At a given baryon mass, rotation increases Req. For illustration, we display
an M − Req curve for the shortest observed pulsar period P obs

min = 1.56 ms.
The effect of such a rotation on the maximum-mass configuration is very
small. For M � Mmax the period of 1.56 ms corresponds to the slow ro-
tation regime. Therefore, M1.56ms

max − M stat
max is quadratic in the small parameter

Ω = Ω/
√

GM/R3 (see §6.10). For example, in the case of the SLy EOS (Fig.

6.18), we obtain Ω2 = (Ωobs
max)

2 � 0.06. The maximum mass increase con-

nected with rotation at P = 1.56 ms is 0.2 (Ωobs
max)

2 � 2%, which agrees very
well with the exact numerical result (Douchin & Haensel, 2001). The effect
will be smaller for a softer EOS (e.g., the FPS or BGN1H1 EOS) and larger
for a stiffer EOS (e.g., the APR EOS). In contrast, the highest possible rotation
frequency increases Mmax by ∼20% (§6.12.4).

At a given baryon mass Mb < M stat
b,max, rotation is limited by the mass-

shedding limit (the line K in Fig. 6.18). The point K2 corresponds to a Keplerian
configuration with Mb = M stat

b,max. It can be reached by spinning-up the ini-
tial static maximum-mass configuration (S2) to the Keplerian frequency. The
inverse transition K2 → S2 can be realized via angular momentum loss. The
same is true for any pair of configurations K and S with the same baryon mass
Mb < M stat

b,max. Solitary pulsars move along a part of such a track, as they
spin-down during their lifetime. The track of the star with M stat = 1.4 M� is
denoted by S1.4K1.4.

On the contrary, rotating stationary configurations with Mb > Mb,max
cannot transform into the static ones via angular momentum loss. Such rotat-
ing configurations are called supermassive. They are doomed to collapse into
black holes, just because the static configurations with Mb > M stat

b,max do not
exist. Consider a supermassive configuration C(Mb, J), spinning down via an-
gular momentum loss, so that J̇ < 0. There exists some value of J = Jmin(Mb)
that defines the last stable configuration, C(Mb, Jmin) (while for lower J con-
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figurations collapse into black holes). In the limit of Jmin → 0, the spin-down
track reduces to one point, which is the static maximum-mass configuration S2.
Rotating supermassive configurations fill the region S2K2K3 in the M − Req
plane. The line segment S2K3 corresponds to the supermassive configura-
tions with the smallest allowed J at a given Mb. This line separates rotating
configurations stable with respect to the axisymmetric perturbations from the
unstable ones (which cannot exist in a stationary state). The configuration K3
has the maximum mass M rot

max (among all stable spinning configurations). At
K3, the line of Keplerian configurations, corresponding to the mass-shedding
limit, joins the instability line. This configuration has also the maximum baryon
mass, M rot

b,max.
It should be mentioned, that K3 slightly differs from the configuration with

the maximum possible angular frequency Ωmax, which we call the maximally
rotating configuration (Cook et al., 1994). However, the mass of the maximally
rotating configuration is only ∼ 0.1% lower than M rot

max, while the value of Ω at
K4 is by ∼ 1% smaller than Ωmax (Cook et al., 1994). Therefore, the difference
between these configurations is really small; it is actually of the same order
of magnitude as an error (uncertainty) stemming from the ambiguity of the
interpolation of the EOS between mesh points.

At a given Mb the centrifugal forces increase req and decrease rpol. The
effect is more pronounced for stiffer EOS and decreases with growing Mb. The
flattening of a spinning star can be described by the ratio rpol/req. In what
follows, we will denote the circumferential radius of a non-rotating star by R0.
In the slow-rotation regime we get req − R0 ∝ Ω2

and R0 − rpol ∝ Ω2
. The

behavior of rpol/req, req, and rpol as a function of the (cyclic) spin frequency
f = Ω/2π for several baryon masses is displayed in Fig. 6.19. One can see a
rapid increase of the flattening as f approaches the Keplerian limit fK.11 The
centrifugal force produces the strongest deformation in the equatorial layer of
the outer crust. This is clearly seen in Fig. 6.20.

Another effect of the centrifugal force is that, at a given Mb, the central
density decreases with increasing f . This effect is illustrated in Fig. 6.21. For
a slow rotation, the effect is small and quadratic in f . It becomes stronger for
stiffer EOS and weaker with increasing Mb. Notice, that the increase of the
central density due to the decrease of f , say, from f1 to f2 can be calculated
from

ρc(f2) = ρc(f1) +
∫ f1

f2

|dρc/df | df . (6.104)

11Notice that for a neutron star with Mstat = 1.4 M�, the BGN1H1 EOS is stiffer than the SLy one, see
Figs. 6.3 and 6.5.
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Figure 6.19. Effect of rotation on the neutron star shape; R0 is the circumferential radius of a
non-rotating star. Top: rpol/req versus spin frequency for two baryon masses, equal to those
for the static models with M = 1.4 and 1.8 M�. Calculations are performed for the SLy and
BGN1H1 EOSs. For the latter EOS, only lower-mass family is shown, because M stat

max < 1.8M�
for this EOS. Bottom: Increase of req and decrease of rpol due to stellar rotation.

An important parameter of the theory of rotating Newtonian stars is the ratio
of the rotational (kinetic) energy to the gravitational energy, β ≡ Erot/|Egrav|.
A similar quantity can be defined for rotating relativistic stars, albeit not without
ambiguity.

The kinetic spin energy is defined, by analogy with the Newtonian case,
as

Ekin =
1
2

JΩ . (6.105)
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Figure 6.20. Cross section in the plane passing through the rotational axis of a neutron star with
the SLy EOS spinning at f=1200 Hz. The baryon mass is Mb = 2.035 M�, the gravitational
mass M = 1.82 M�, the central baryon density nc = 0.565 fm−3. The coordinates x and z
are defined as x = r sin θ cos φ and z = r cos θ, where r, θ, and φ as the same as in Eq. (6.95).
The contours are the lines of constant density. The inner contour is the crust-core interface; the
outer one is the stellar surface, and the intermediate contour corresponds to the neutron drip.

The definition of Egrav for non-rotating stars was given in §6.3. We generalize
it here for rotating stars,

Egrav = Mc2 − MPc2 − Ekin , (6.106)

where MP is the proper mass, defined as in the static case (§6.3) as an integral
of the proper internal energy density over the stellar volume.

Critical values of β, above which a rotating star becomes unstable with
respect to triaxial deformations, will be discussed in §6.12.10. For a fixed
baryon mass, β increases with increasing f . This dependence is shown in Fig.
6.21 for two values of Mb. At a given f , the value of β strongly depends on
the baryon mass and on the stiffness of the EOS. However, the maximum value
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Figure 6.21. Top: Fractional decrease of the central density by rotation for neutron stars of two
baryon masses with the SLy and BGN1H1 EOSs (the same as in Fig. 6.19). Bottom: Ratio of
rotational to gravitational energy at fixed baryon masses versus spin frequency.

β = βmax � 0.11 − 0.12 for a given Mb, reached at f = fK, depends rather
weakly on the EOS and increases weakly with growing Mb.

6.12.3 Spinning low-mass neutron stars
The shortest observed pulsar spin period P obs

min = 1.396 ms corresponds
to the spin frequency fobs

max = 716 Hz. For neutron stars with M � 1.3 M�
the rotation at such frequency has a small effect on neutron star structure and
can be described using the slow rotation approximation (§6.10). The leading
effects of rotation on the neutron star structure are then quadratic in f ; they are
small as long as the gravitational pull ∼ GM/R2, acting on a unit mass element
at the equator, is much larger than the centrifugal force ∼ 4π2Rf2. However,
these effects get larger with increasing equatorial radius and decreasing mass;
they become decisive for f2 ∼ GM/(4π2R3).

Spinning low-mass neutron stars were studied by Haensel et al. (2002b),
who performed exact two-dimensional calculations of stellar models for the
(unified) SLy and FPS EOSs. The rotational effects are stronger for the stiffer
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Figure 6.22. Gravitational mass M versus equatorial radius for low-mass non-rotating (solid
lines) and rotating (dashed lines) neutron stars with the SLy EOS. The upper dashed line is for
the second shortest observed pulsar spin period 1.56 ms, while the lower dashed line is for the
spin period 10 ms. The curves for rotating stars terminate at the Keplerian (mass shedding)
configurations denoted by open circles. Based on Haensel et al. (2002b).

SLy EOS, which is most natural. Till January 2006, the shortest measured pulsar
period was 1.56 ms. Therefore, Haensel et al. (2002b) used fobs

max = 641 Hz.
At f =641 Hz and M � 0.8 M�, the effects of rotation would become huge.
The lowest-mass configuration corresponds to the mass-shedding limit. One
gets MSLy

min (641 Hz) = 0.61 M�. For the softer FPS EOS, the effect is weaker
(MFPS

min (641 Hz) = 0.54 M�), because such low-mass neutron stars are more
compact. Even rotation at f = 100 Hz affects noticeably low-mass stars. The
minimum mass MSLy

min (100 Hz) = 0.13 M� reached at the mass-shedding limit
is by nearly 40% larger than that for non-rotating neutron stars.

For the SLy minimum-mass configuration rotating at f = 641 Hz, the
equatorial and polar radial coordinates of the stellar core are req=11 km and
rpol=9 km, respectively. However, the crust is much stronger deformed than
the core. The equatorial crust thickness is ∼ 6 km, four times larger than the
polar one, leading to a significant flattening, rpole/req ≈ 0.6. The mass is still
concentrated in the core which it contains 93% of the total mass.

The minimum-mass configuration, calculated for the SLy EOS at f =
100 Hz, has a nearly spherical core containing half of the total mass. The
equatorial radius of the core is only ≈ 6 km, to be compared with the 28 km
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equatorial thickness of the crust. The flattening of the minimum-mass config-
uration is large, rpole/req � 0.7.

Let us point out the basic difference between low-mass rotating and non-
rotating configurations. Let ρc,Mmin denote the central density of the minimum-
mass configuration. In the non-rotating case, the equilibrium configurations
with ρc < ρc,Mmin are secularly unstable with respect to small perturbations,
whereas stationary rotating configurations with ρc < ρc,Mmin just do not exist.

6.12.4 Maximum mass and minimum rotation period
Rotation increases Mmax because the centrifugal forces oppose the gravity.

For Ω � ΩK, this increase is small and quadratic in Ω/ΩK. More generally,
Mmax(Ω) − M stat

max is an even function of Ω, because it does not depend on the
orientation of the spin axis (neglecting the effects of strong magnetic fields).

Let us mention two important extreme configurations, with the maximum
mass M rot

max and with the minimum period Pmin, which do not coincide but are
very close to each other (see above). Depending on the EOS, the maximally
rotating configuration with the rotation period Pmin can have the central density
higher or lower than the maximum-mass configuration, but the difference is a
few per cent at most (Cook et al., 1994). As a rule, the mass of the maximally
rotating configuration is lower than M rot

max by much less than one per cent (Cook
et al., 1994).

It is useful to note that for realistic baryonic and subluminal EOSs M rot
max

is (to a very good approximation, typically within 3%) proportional to the
maximum mass of non-rotating configurations (Lasota et al., 1996),

M rot
max � 1.18M stat

max . (6.107)

However, the above formula is invalid for the EOSs of a self-bound matter, of the
generic form P = a(ρ−ρs) (in particular, for strange quark stars which will be
considered in §8.21). Let us remind that, in contrast to “ordinary neutron stars”,
such exotic stars are bound not only by gravity but also by strong interactions.

6.12.5 Rapid differential rotation and maximum mass
Up to now we have restricted ourselves to stationary rigidly rotating neutron

stars. Rigid rotation was limited by the mass-shedding limit at the equator. As
soon as we allow for a differential rotation, in which Ω within the star depends
on � ≡

√
x2 + y2 = r sin θ, we may contemplate a rotating configuration

with such Ω(�), that Ωax = Ω(0) (i.e., on the spin axis) is significantly larger
than ΩK and simultaneously Ω(req) < ΩK. This dynamically stable hydrostatic
equilibrium will be always secularly unstable, because viscous forces will tend
to redistribute the angular momentum leading eventually to the uniform Ω.
During the redistribution the star may be driven into a critical configuration
beyond which the pressure, centrifugal, and gravitational forces can no longer
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be balanced. For instance, the star may start to eject some matter or collapse
into a black hole.

As we have seen in §6.12.4, rigid rotation can increase Mmax from M stat
max

to M
rot(R)
max (“R” for “rigid”), by about 20%. Clearly, a differential rotation with

Ωax significantly larger than Ωeq can lead to a much larger increase of Mmax.
Calculations performed for realistic modern EOSs of dense matter show that the
maximum baryon mass of dynamically stable configurations, M rot(D)

b,max (“D” for
“differential”), can be ∼ 50% larger than M stat

b,max (see Morrison et al., 2004a,
and references therein).

Introducing three critical masses, we obtain several types of dynami-
cally stable neutron stars. Non-rotating hydrostatic configurations exist for
baryon masses up to M stat

b,max. Rigid rotation pushes the maximum baryon

mass up to M
rot(R)
b,max . Rigidly rotating neutron stars with baryon masses be-

low M stat
b,max are called normal; by loosing angular momentum they can finally

reach a non-rotating state. Rigidly rotating configurations with baryon masses
M stat

b,max < Mb < M
rot(R)
b,max are called supermassive; they exist only as rotating

stars and will collapse into black holes during angular momentum loss. Finally,
configurations with M

rot(R)
b,max < Mb < M

rot(D)
b,max can exist only in a state of rapid

differential rotation; they are called hypermassive. The viscous redistribution
of angular momentum will erase the difference between Ωax and Ωeq and lead
eventually to the dynamical instability and collapse into a black hole.

Let us stress that the value M
rot(D)
b,max is sensitive to the dependence of Ω on

�. The values M
rot(D)
b,max � 1.5 M stat

b,max, reported for some realistic EOSs by
Morrison et al. (2004a), were actually obtained within some class of functions
Ω(�) and for some moderate values of Ωax/Ωeq. They cannot be regarded as
absolute upper bounds for differentially rotating neutron stars.

A gravitational collapse of a massive stellar core during a type II super-
nova explosion or a coalescence of two neutron stars in a binary system can
produce a differentially rotating neutron star with the baryon mass exceeding
M

rot(R)
b,max . However, the lifetime of such a hypermassive configuration is short,

determined by the angular momentum transport timescale. This timescale can
be less than a second (Duez et al., 2006). A hypermassive neutron star ends
its short life by collapsing into a black hole. Supermassive neutron stars, with
M stat

b,max < Mb < M
rot(R)
b,max , formed in type II supernova events, or in coales-

cence of two neutron stars, or by accretion spin-up in close binaries, can live for
a very long time (billions of years in the case of accretion spin-up). However,
they will also collapse into black holes after spinning down to some critical
rotation frequency. Precise values of three critical masses M stat

b,max, M
rot(R)
b,max ,

and M
rot(D)
b,max depend on the poorly known EOS of stellar matter at densities
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exceeding 1015 g cm−3. However, we have rather robust theoretical prediction
that M

rot(R)
b,max � 1.2M stat

b,max and M
rot(D)
b,max � 1.5 M stat

b,max.

6.12.6 Approximate formulae for Pmin

A precise two-dimensional calculation of the structure of rotating stars is
much more difficult than for non-rotating stars. Therefore, it is very fortunate
that the value of Pmin can be expressed, with a surprisingly good precision,
in terms of the mass and radius of the non-rotating configuration with the
maximum mass (Haensel & Zdunik 1989; correlations between these three
quantities were also pointed out by Friedman et al. 1989 and Shapiro et al.
1989). The updated formula, based on numerical results obtained for a broad
set of the subluminal (vsound < c) EOSs, reads (Haensel et al., 1995)

Pmin � 0.82
(

M�
M stat

max

) 1
2

(
Rstat

Mmax

10 km

) 3
2

ms. (6.108)

The precision of this formula (for subluminal EOSs) is within 5%. It is valid
not only for baryonic EOSs, but also for strange quark stars and other exotic
stars (§8.21). It is, therefore, more universal than Eq. (6.107).

One can propose a more precise formula which takes into account an
additional linear correlation between the ratio (M stat

max)
1/2/Pmin(Rstat

Mmax
)3/2 and

the compactness parameter of the static maximum-mass configuration, xmax
GR ≡

2GM stat
max/Rstat

Mmax
c2 (Lasota et al., 1996),

Pmin � 0.187
(xmax

GR )3/2
(
1 + 0.808 xmax

GR

) M stat
max

M�
ms . (6.109)

This formula will be useful for deriving an absolute lower bound on the shortest
period Pmin of rigid rotation from the upper bound on the surface redshift of
non-rotating neutron stars (§6.12.9).

6.12.7 The causal upper bound on the mass of spinning
neutron stars

In §6.5.7 we derived the absolute upper bound on the static neutron star
mass based on the knowledge of the EOS at ρ < ρu ∼ 2ρ0 under the constraint
of vsound ≤ c. Let MCL,stat

max be the upper bound for non-rotating neutron stars.
Rotation will increase it, MCL

max(Ω) > MCL,stat
max . The upper bound MCL,rot

max
for rotating stars has been obtained for the same causal-limit EOS as for the
non-rotating models; it is reached at Ω very close to Ωmax. Its precise value is
(Koranda et al., 1997)

vsound ≤ c : MCL,rot
max = 3.89 M�

(
5 × 1014 g cm−3/ρu

) 1
2 . (6.110)
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For a given ρu it is ∼30% larger than MCL,stat
max .

6.12.8 The lower bound on rotation period
The minimum rotation period is realized for an EOS which leads to most

compact and dense stars, especially stable with respect to the mass shedding
from the equator. We know from §6.6.4 that the most compact non-rotating
stars are obtained for the pure causality limit EOS P = c2(ρ−ρs). The same is
true for rigidly rotating configurations (Koranda et al. 1997). For such an EOS,
both the minimum rotation period and the maximum mass configurations exhibit
exact scaling with respect to variation of ρs: PCL

min ∝ ρ
−1/2
s , MCL,stat

max ∝ ρ
−1/2
s

(see Appendix E). In other words, for this EOS one has PCL
min ∝ MCL,stat

max .
Precise numerical calculations of Koranda et al. (1997) yield

PCL
min = 0.196 (MCL,stat

max /M�) ms. (6.111)

Pulsars with precisely measured masses rotate at Ω � ΩK (see § 9.1). There-
fore, the effects of rotation on their structure can be neglected and their EOS
has to fulfill the inequality Mobs

max < M stat
max(EOS). Equation (6.111) implies

then

vs ≤ c =⇒ P > PCL
min = 0.196 (Mobs

max/M�) ms . (6.112)

At the time of this writing, the most massive neutron star with the accurately
measured mass is the Hulse-Taylor pulsar, Mobs

max = 1.442 M�, leading to
P > 0.283 ms. A future precise measurements of masses of heavier pulsars
with Ω � ΩK will increase this absolute lower limit on P . For example, if the
mass of PSR J0751+1807 in binary with a white dwarf were confirmed to be
� 2 M� (see § 9.1.3) then we would have P > 0.39 ms!

One can slightly increase the value of the lower limit on P assuming (as
in the maximum mass problem), that we know the EOS at ρ < ρu, and that at
ρ > ρu (nb > nu) the EOS has vsound = c. For example, using the FPS EOS
at nb < 0.1 fm−3, Koranda et al. (1997) obtain

P > 0.2045 (Mobs
max/M�) ms , (6.113)

which gives P > 0.295 ms for Mobs
max = 1.442 M�.

6.12.9 From the upper bound on zsurf to the lower bound on
the rigid-rotation period

Following Haensel et al. (1999), let us remark that the improved empirical
formula (6.109) for Pmin gives

Pmin � f(xmax
GR ) M stat

max/M� , f(x) = 0.187 x−3/2 (1 + 0.808x)−1 .
(6.114)
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The function f(xmax
GR ) decreases monotonically with increasing xmax

GR and
reaches its minimum value at the upper bound of xmax

GR . General Relativity
and the condition vsound ≤ c yield the upper bound zsurf < zCL

surf = 0.8504
(§6.6.4), which results in the upper bound xmax < xCL

max = 0.7081. There-
fore, we obtain fmin = f(xCL

max) = 0.200. On the other hand, we have an
observational constraint M stat

max > Mobs
max. This gives

zsurf < zCL
surf = 0.8504 =⇒ PCL

min � 0.200 (Mobs
max/M�) ms, (6.115)

and P > 0.288 ms for Mobs
max = 1.442 M�. This approximate lower bound on

P is only 2% higher than the result of extensive and precise two-dimensional
calculations of Koranda et al. (1997), mentioned in the preceding section.

6.12.10 Rapid rotation and gravitational-radiation
instabilities

A rotating neutron star is susceptible to various secular non-axially sym-
metric instabilities, which are growing on timescales much longer than the
dynamical timescale τdyn ∼ 1 ms. These instabilities break the axial sym-
metry of the star and induce angular momentum loss owing to the emission
of gravitational radiation. Therefore, if the critical angular frequency above
which an instability sets in is Ωcrit < ΩK, then stable rotation is limited by
Ωcrit (rather than by ΩK).

Within the Newtonian gravitation, at sufficiently high ratio of the kinetic-
to-gravitational energy β ≡ Erot/|Egrav| > β

(dyn)
crit a rotating star becomes

dynamically unstable with respect to the triaxial deformation (“bar instability”).
For an incompressible fluid, β(dyn)

crit = 0.27 (see, e.g., Shapiro & Teukolsky 1983
and references therein). The same is expected to occur in General Relativity,
although the definitions of Erot and Egrav become ambiguous. In what follows

we use the widely accepted definition given in §6.12.2. The value of β
(dyn)
crit for

relativistic stars turns out to be higher than in the Newtonian case (see Gondek-
Rosińska & Gourgoulhon 2002 and references therein). A rotating star which
is dynamically unstable with respect to the bar instability would lose angular
momentum via gravitational radiation, so that a stable rotation with β > β

(dyn)
crit

would be impossible. However, as we have seen in the preceding section, for
realistic EOSs one gets β � 0.1 even at Ω = ΩK. Therefore, rigidly rotating
neutron stars are expected to be always stable with respect to the dynamical
bar-instability.

The earliest known secular non-axially symmetric instability is that driven
by viscosity (Roberts & Stewartson 1963 and references therein). It is con-
nected with the transition to a lower-energy triaxial state owing to the viscous
angular momentum redistribution. This viscosity driven instability proceeds on
a viscous timescale and is absent in a rotating perfect-fluid star. The crucial pa-
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rameter is again β ≡ Erot/|Egrav|. For incompressible-fluid Newtonian stars

β
(vis)
crit = 0.14 (Shapiro & Teukolsky 1983 and references therein). For realistic

Newtonian stars β
(vis)
crit is slightly lower (Bonazzola et al., 1996). Relativistic

effects significantly increase β
(vis)
crit (Bonazzola et al., 1998a; Gondek-Rosińska

& Gourgoulhon, 2002).
A very different type of instabilities was discovered by Chandrasekhar

(1970) for spinning stars built of the perfect incompressible fluid stars. It is
driven by the back-reaction of the gravitational radiation. These modes grow
on a timescale τGRR resulting from the coupling of the gravitational radiation to
the stellar matter (gravitational radiation reaction). If a non-axially symmetric
perturbation propagates in the direction opposite to the stellar rotation in the star
reference frame and is observed at infinity as corotating with the star (which
happens at a sufficiently rapid rotation), then such a perturbation will grow
owing to the gravitational radiation. A simple argument, valid for a small
perturbation (linear regime), is that the star looses its angular momentum by
increasing the counter-rotating flow; the perturbation amplitude will then grow
with time. As shown by Friedman & Schutz (1978), such an instability is
generic and present in all rotating perfect-fluid stars. For a perturbation with
a given angular frequency ω and azimuthal dependence eimφ (m > 0), the
instability appears when Ω > Ωcrit = ω/m. However, in real neutron stars the
Chandrasekhar-Friedman-Schutz (CFS) instability is damped by the viscosity
provided τGRR > τvis, where τvis is determined by all viscous dissipative
mechanisms,

1
τvis

=
1
τη

+
1
τζ

+ . . . ; (6.116)

all timescales have to be calculated using eigenfunctions of a given CFS-mode.
Here, we have included explicitly the damping resulting from the shear (τη) and
bulk (τζ) viscosities of stellar matter. Notice that the value of τη is quadratic in
the velocity gradients and decreases rapidly with growing m. On the contrary,
the perfect-fluid threshold Ωcrit ∝ 1/m decreases for larger m, simplifying the
instability development in a star built of a perfect fluid. Numerical calculations
show a compromise between these two tendencies in a viscous star; the most
unstable CFS modes are those with m = 4−5. In general, the viscous damping
of the CFS instabilities studied before 1998 was found to be very strong. This
damping led to a small (a few per cent) decrease of the maximum spin frequency
below the Keplerian value.

In 1998, N. Andersson showed that a special class of the CFS instabilities
(connected with the so called Rossby (r) modes) leads to an exceptionally strong
effect on rotating neutron stars. The r-mode instability was predicted to grow
on timescales τr orders of magnitude shorter than other CFS instabilities (as
reviewed by Andersson & Kokkotas 2001). In perfect-fluid stars, r-modes are
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unstable at any Ω > 0, in contrast to the previously discussed CFS modes,
which are unstable at Ω > Ωcrit = ω/m. Therefore, the growth rate 1/τr can
be large even at Ω significantly smaller than ΩK. In the presence of the viscosity,
the condition τr < τvis shifts the threshold value of Ω from zero to some finite
value Ωcrit. An r-mode is completely damped by viscosity if Ωcrit > ΩK.
If an unstable r-mode could grow to a large amplitude, then rotating neutron
stars would be promising sources of gravitational radiation. However, although
r-modes do not produce large density variations, they would be damped by the
bulk viscosity if hyperons are present in the neutron star cores (Jones, 2001a,b;
Haensel et al., 2002b; Lindblom & Owen, 2002). A possible existence and a
size of the window in the ρc − T plane in which a necessary condition for the
r-mode instability could be satisfied is a subject of vigorous debates.



Chapter 7

NEUTRON STARS WITH EXOTIC CORES

7.1. Introduction

It has been recognized since the 1960s that with increasing density ρ above
the standard nuclear-matter density ρ0 the matter can undergo phase transitions
to states qualitatively different from the state at ρ ∼ ρ0. These high-density
phases are exotic by the standards of terrestrial nuclear physics. Their possible
existence above some threshold densities results from assumed specific features
of strong (hadronic) interactions (pion condensation, kaon condensation) and
the quark structure of baryons (quark deconfinement).

This chapter starts with an overview of exotic phases of dense matter, §7.2.
Pion condensation and kaon condensation, and their impact on the EOS, are
studied in §§7.3 and 7.4. The quark matter EOS is described in §7.5. Properties
of possible mixed-phase states are studied in § 7.6. Models of solid neutron
star cores are reviewed in §7.7. The formation of exotic phases in neutron star
cores is studied in §7.8. Finally, in §7.9 we describe the consequences of phase
transitions in neutron star cores for stellar structure and dynamics.

7.2. Exotic phases – an overview

We will briefly describe the development of the theories of pion conden-
sation, kaon condensation, and quark deconfinement in dense matter. At the
first step we will consider one-phase (pure) states of dense matter, but we will
also outline possible mixed phases advanced in the beginning of the 1990s.
In addition, we will discuss a possible crystalline phase of dense matter. The
most exotic self-bound states will be mentioned only briefly; their more detailed
description will be given in Chapter 8.
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7.2.1 Meson condensates
Pions are the lightest mesons. Therefore, negative pions which could re-

place electrons are natural candidates for a condensation. Bahcall & Wolf
(1965a) treated the pions as free particles and showed that π− could be present
at ρ � ρ0. However, pions strongly interact with baryons, and the inclusion
of the s-wave πN repulsion prevents the condensation of free pions. The idea
of pion condensation as the condensation of pion-like medium excitations ow-
ing to the strong πN attraction in the p-wave was advanced by Migdal (1971,
1972), Sawyer (1972b), and Scalapino (1972). These authors demonstrated that
such excitations condense in a finite-momentum state, and the phase transition
is accompanied by the loss of translational invariance. Further investigations
have shown the possibility of various phases of pion condensate and the impor-
tance of nucleon correlations for the existence of the condensation itself. Pion
condensation softens the equation of state (EOS); short-range correlations in
dense matter make pion condensation in neutron star cores less likely than it
was thought in the 1970s (§7.3).

Kaons are the lightest strange mesons. Because of their large mass, their
possible condensation was not obvious and was pointed out rather late (Kaplan
& Nelson, 1986). Using a simplified dense-matter model, Kaplan and Nel-
son showed that negative kaons (again, kaon-like excitations rather than real
particles) could condense into a zero-momentum state at ρ � 3ρ0. K− conden-
sation is energetically preferable provided the s-wave kaon-nucleon attraction
in dense medium is sufficiently strong. Kaon condensation strongly softens the
EOS. Calculations based on various many-body theories indicate the possibil-
ity of different condensates (K−, K

0
, in a state of zero or finite momentum).

However, these results do not seem very conclusive (see §7.4).

7.2.2 Deconfinement of quarks
Quarks are the basic constituents of hadrons. Therefore, a fundamental

description of dense matter should involve quark degrees of freedom. This
picture implies that at sufficiently high densities baryons dissolve into quark
matter. Ivanenko & Kurdgelaidze (1965, 1969) were the first who suggested
that neutron stars could contain quark cores. Itoh (1970) constructed models
of superdense low-mass stars built of a free degenerate gas of massive quarks.
Perturbative calculations of the EOS of quark matter started in the 1970s after
the formulation of quantum chromodynamics (QCD), but their region of valid-
ity was restricted to very high densities (Collins & Perry, 1975). The MIT Bag
Model (Chodos et al., 1974) represented non-perturbative effects of confine-
ment via the bag constant. In the 1970–1980s the Bag Model was widely used
for calculating the EOS of quark matter. Neutron-star densities are, unfortu-
nately, too low for the validity of perturbative QCD calculations. Therefore, the
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question whether the quark matter exists in neutron stars cannot be answered
on purely theoretical grounds (§7.5).

7.2.3 Mixed-phase state

Phase transitions can be of first or second order (with or without density
jump). Before 1991 phase transitions of first order were considered in a sim-
ple way; only pure, homogeneous, electrically neutral states of phases were
allowed. As the stellar equilibrium requires a non-vanishing pressure gradient,
the two phases (lower-pressure and higher-pressure ones) were thought to oc-
cupy separate regions of the core, with a density jump at the phase interface.
However, as was demonstrated by Glendenning (1991, 1992), this picture was a
consequence of a tacit assumption that the matter is locally electrically neutral.
Imposing the condition of zero average electric charge may open the possibility
of the coexistence of two phases (of opposite electric charge) in some pressure
interval. The structure of the mixed phase results from the interplay of the sur-
face tension at the phase interface, the bulk nuclear energy, the kinetic energy
of matter constituents, and the Coulomb energy (§7.6).

7.2.4 Crystallization

The s-wave (strong) NN interaction is the sum of the short-range repulsion
and long-range attraction. It is therefore similar to the atom-atom interaction in
noble gases which solidify at sufficiently high densities. Early studies indicated
crystallization of high-density neutron matter (e.g., Cazzola et al., 1966; Canuto
& Chitre, 1974). However, more precise calculations demonstrated that the
solidification due to the short-range neutron-neutron repulsion does not occur
(see, e.g., Takemori & Guyer, 1975).

According to several authors, neutron matter at high densities could be-
come a layered liquid crystal. This one-dimensional solidification could be
favored by the in-medium enhancement of the tensor interaction via excitation
of ∆-resonances in intermediate nucleon states (Pandharipande & Smith, 1975).
A one-dimensional localization combined with the spin-isospin ordering was
also obtained in pion-condensate models (see Takatsuka & Tamagaki 1988a,b,
and references therein). Some authors pointed out a possible localization of
baryons in self-consistent potential wells created by other baryons. Localized
baryons (protons or charged hyperons) could then form crystalline structures
(Kutschera & Wójcik, 1995; Perez Garcia et al., 2002). Finally, let us remind
that each of two phases in a mixed-phase state is electrically charged (§7.6).
The Coulomb interaction can then produce crystalline structures in the mixed-
phase layer (Glendenning & Pei, 1995). Any crystalline structure in a neutron
star core may induce shear strain (§7.7).
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7.2.5 Exotic self-bound states of superdense matter
Large uncertainties in EOS calculations allowed Witten (1984) to propose

an extreme hypothesis that the bulk quark matter in beta equilibrium might be
the true ground state of the matter at zero pressure (§8.3). Earlier suggestions on
the existence of superdense strange nuclei were advanced by Bodmer (1971). If
this strange matter hypothesis is true, then strange stars could exists which are
built exclusively of quark matter. The EOS of strange matter and the structure
of strange stars are studied in detail in Chapter 8 together with other, “even
stranger” hypothetical self-bound states of dense matter such as an abnormal
state (Lee & Wick, 1974) and a more recent Q-matter (Bahcall et al., 1990).

7.3. Pion condensation
Pions are ubiquitous in dense nucleon matter. An exchange of virtual

pions generates the long-range component of the NN interaction (§5.6). The
energy ωπ and momentum k of virtual pions do not satisfy the standard formula
ω2

π = m2
πc4 + k2c2. The virtual nature of such pions is also reflected in their

lifetime ∼ �/mπc2 ≈ 5 × 10−24 s; they can travel over characteristic length-
scales ∼ �/mπc ≈ 1.4 fm. Virtual pions generate the NN interaction but
do not appear as constituents of standard nuclear structures (in particular, of
nuclear matter).

Because of the strong pion-nucleon attraction in the p-wave, the ground
state of dense nuclear matter could contain a Bose-Einstein “condensate of
pions”. This possibility was pointed out independently and using different
arguments by Migdal (1971, 1972), Sawyer (1972b), and Scalapino (1972). The
authors considered symmetric nuclear matter where the interaction of pions with
nuclear medium is charge-independent (neglecting small effects associated with
the difference of masses mπ± and mπ0). However, in a strongly asymmetric
nuclear matter of neutron star cores the pion interaction with nucleon medium
essentially depends on the pion charge. Let us focus on a pion condensation
in the npeµ matter; the effects of hyperons will be outlined in the end of this
section.

There are two approaches to study the onset of pion condensation. The
first one, developed by Migdal and his collaborators, is based on the Landau-
Migdal theory of Fermi liquids. This theory and its applications for nuclear
matter and neutron-star matter were reviewed by Migdal et al. (1990). The sec-
ond approach is based on models of effective Lagrangians representing strong
interactions. It was introduced by Sawyer (1972b) and Scalapino (1972). It
has been significantly elaborated later, as reviewed by Brown & Weise (1976),
Baym (1979), and Takatsuka et al. (1993). In what follows, we discuss the
possibility of pion condensation in the framework of the Fermi-liquid theory
(Migdal et al., 1990).
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Figure 7.1. Schematic spectrum of lowest energy charged-pion excitations in the npeµ matter
at densities lower than the π− condensation threshold. Elementary excitation energy ω is plotted
versus k2, square of excitation wavenumber. Left: Density is lower than the π+

s condensation
threshold. Right: Density is higher than the π+

s condensation threshold, and at k ∼ k0 matter
becomes unstable with respect to the formation of zero-sound-like π+

s excitations (see text for
details). After Migdal et al. (1990).

Let us first reconsider the stability of a spatially uniform state of the npeµ
matter in beta equilibrium. As shown in §3.5, such a state is unstable with
respect to the formation of periodic “nuclear structures” (density waves) at
ρ � 0.5ρ0. This instability signals a phase transition to a spatially-ordered
non-uniform state which is the neutron star crust. Now consider the stability of
the uniform npeµ matter at ρ � ρ0. This can be done by studying excitations of
the npeµ matter associated with perturbations of the ground state of the system.
In the context of pion condensation, there are two types of relevant excitations.
Both are boson-type excitations which differ in their low-momentum disper-
sion relations. Excitation quanta have well defined spin and charge quantum
numbers S and q. Pion condensation is related to excitations with the pion
quantum numbers S = 0 and q = ±1 or q = 0.

Excitations of the first type correspond to collective modes (analogous
to the well known zero-sound in liquid 3He). They have an acoustic large-
wavelength dispersion relation ωs � csk at k → 0, where cs is the zero-sound
speed. These three zero-sound-like excitations will be denoted as π±,0

s .
Excitations of the second type correspond to “real pions” and have a char-

acteristic “resonance” (“optical”) long-wavelength behavior. In the limit of a
“dilute medium” (ρ −→ 0) their energy spectrum ωπ �

√
m2

πc4 + k2c2 is
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similar to the energy spectrum of real pions in vacuum. These three excitations
will be denoted as π±,0.

Using the Fermi-liquid theory one can calculate the dispersion relations
ωπ(k) for all six excitation modes in the npeµ matter, provided the gas of
excitations is diluted, so that the their number density nπ � nb. A schematic
representation of these dispersion relations is given in Figs. 7.1 and 7.2.

Let us start with excitations of zero-sound type. The npeµ matter turns
out to be most susceptible (“the softest”) to π+

s excitations. As seen from the
right panel of Fig. 7.1, for this mode the function ωπ+

s
(k) acquires a minimum,

ωmin
π+
s

< 0, at some k = k0(ρ). As soon as

ωmin
π+
s

+ µn < µp , (7.1)

the π+
s mode is spontaneously excited with some (or even all) protons converted

into neutrons. This instability with respect to

p −→ π+
s + n , (7.2)

if it occurs at all, starts at a well defined critical density ρπ+
s

c . In the particle-hole
language, the system becomes unstable with respect to the formation of pairs
of protons and neutron-holes (which are just π+

s excitations). Simultaneously,
the npeµ matter looses translational invariance.

Let us turn to π± excitations of which π− is relevant for us. For sufficiently
high densities the function ω = ωπ−(k) has a minimum at a finite k = kπ−
(Fig. 7.2). If ωmin

π− < |ωmin
π+
s

|, then there exists such a value of k at which pairs

of excitations π+
s π− with opposite momenta of |k| = k can be spontaneously

created,
ωπ+

s
(k) + ωπ−(−k) = 0 . (7.3)

In this way the π+
s instability initiates π− condensation.

As in a symmetric nuclear matter, the spontaneous creation of π0 quasi-
particles becomes possible when

ωmin
π0 ≤ 0 . (7.4)

This instability, if it happens at all, starts at a well defined density ρπ0

c .
In thermodynamic equilibrium, elementary excitations (boson quasipar-

ticles) π+
s , π−, and π0 form Bose-Einstein condensates, and their chemical

potentials are equal to the energy of the occupied momentum state with mini-
mum quasiparticle energy (ωπ+

s
, ωπ− , and ωπ0 = 0, respectively).

The mechanism of spontaneous transition to a pion-condensed state de-
serves a comment. As pointed out by Migdal many times, pion condensation
in a pure neutron matter does not imply an instability of the form

n −→ p + π− . (7.5)
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Figure 7.2. Schematic spectrum of lowest energy charged-pion excitations in the npeµ matter
above the π− condensation threshold (left) and above the threshold for the formation of π0

s

excitations (right); see text for details. After Migdal et al. (1990).

Actually, according to numerous calculations, one has ωmin
π− > µn at any

density and the reaction is prohibited in pure neutron matter (see, e.g., Migdal
et al. 1990). Instead, the condensation consists (just as we have described) in
the excitation of the zero-sound type π+

s mode followed by the formation of
π+

s π− pairs.
The Landau Fermi-liquid theory is valid only for a small-amplitude pion

condensate with nπ � nb (π = π+
s , π−, and π0), particularly, in the vicinity of

the threshold density nπ
c (from now on we omit the index of an unstable pion-

like mode). On the normal-phase (nb < nπ
c ) and pion-condensed (nb > nπ

c
and nb − nπ

c � nπ
c ) sides one has

normal phase : E = E(n) , (7.6)

pion-condensed : E = E(n) + (nb − nπ
c )2A , (7.7)

where A ≤ 0 and the label (n) indicates the normal (non-condensed) phase of
the npeµ matter. The quantities E(n) and A are functions of nb continuous at
nb = nπ

c . Therefore, the pressure is continuous at nb = nπ
c but the sound speed

vs = ( dP/ dρ)1/2 drops with increasing nb. These features are characteristic
of second-order phase transition (see below).

As soon as nπ/nb ceases to be small, one needs to go beyond the standard
Fermi-liquid picture. In particular, one has to deal explicitly with condensate
fields ϕπ(r, t). In order to make the problem tractable, one introduces an
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effective Lagrangian for nucleons plus the condensate system, where ϕπ(r, t)
are replaced by their expectation values 〈ϕπ(r, t)〉. In this approach, the low-
amplitude limit corresponds to E − E(n) � a|〈ϕπ〉|2, where a < 0. The
next term in the small pion-amplitude expansion is b|〈ϕπ〉|4, where b > 0;
it is needed to stabilize the condensed state at a finite (but still small) pion-
condensate amplitude. The above picture is consistent with the Landau theory of
phase transitions (Landau & Lifshitz, 1993), indicating that pion condensation
is second-order phase transition.1 The effective Lagrangian of the nucleon
system containing pion condensate is a functional of nucleon number densities
and 〈ϕπ〉. Various models of Leff(nn, np, 〈ϕπ〉) have been considered in the
literature. They involve different approximations of hadronic interactions and
different treatments of spatial inhomogeneities of condensed states (see, e.g.,
Migdal et al., 1990; Brown & Weise, 1976; Baym, 1979). Especially important
ingredients are the s-state pion-nucleon interaction, the nucleon excited state
in the form of ∆ resonances, and the pion-pion interaction needed to stabilize
the system at a finite pion-condensate amplitude. The pion-condensed ground
state is usually determined in the variational approximation, using a plausible
ansatz for a periodic spatial structure of the pion-condensate field.

The structure of a pion-condensed state is most important for calculating
the neutrino emissivity (§1.3.5; Maxwell et al. 1977; for review see Migdal
et al. 1990; Pethick 1992; Yakovlev et al. 2001). The pion-condensate field
couples to nucleons and mixes neutron and proton states. Therefore, neutrino
emission processes involve quasinucleons ñ and p̃ which fill their Fermi seas
and have comparable Fermi momenta pFñ ∼ pFp̃, in contrast to pFn � pFp

characteristic of normal nucleon matter. In view of this, the direct Urca process
in pion-condensed matter,

ñ −→ p̃ + e + νe , p̃ + e −→ ñ + νe , (7.8)

can be open even if it is blocked in normal phase of the npeµ matter by momen-
tum conservation (see §5.12). As the direct Urca process with quasinucleons,
Eq. (7.8), involves only three degenerate fermions, the neutrino emissivity de-
pends on the temperature as Q

(π)
ν ∝ T 6, to be contrasted with Qν ∝ T 8 charac-

teristic of non-condensed matter (with the forbidden direct Urca process); see
§1.3.5. Calculations carried out in the 1980s give values of Q

(π)
ν which are a

factor of (103−104) T−2
9 larger (with T9 ≡ T/109 K) than Qν in normal matter

with forbidden direct Urca processes (see, e.g., Tatsumi, 1983, 1987; Muto &
Tatsumi, 1988). Consequently, the presence of a pion-condensed matter leads

1The pion condensation model considered in the present section is obtained in the mean-field approximation.
In particular, the pion field is treated neglecting quantum fluctuations around mean-field values. The inclusion
of quantum fluctuations changes the character of the phase transition and makes it weakly first-order (Dyugaev
1975, also see Migdal et al. 1990 and references therein).
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Figure 7.3. Three qualitatively different EOSs of pion-condensed matter. Thick solid lines show
pion-condensed phase whereas thin solid lines refer to normal phase: (a) Second-order phase
transition with moderate softening; (b) Strong softening implying first-order phase transition at
P = P0; (c) Very strong softening leading to a stable “abnormal” superdense self-bound state
at P = 0 and ρ = ρS. For further explanations see the text.

to a fast cooling of neutron stars, to be contrasted with a slow cooling scenario
without pion condensation (§1.3.7).

In the present section we focus on the effects of pion condensation on
the EOS. After calculating the ground-state energy density of the hadronic
component of the pion-condensed matter, we get a function of two independent
variables which are the average baryon density nb and the average net electric
charge density n

(h)
q (in the units of e). In order to impose the beta-equilibrium

condition between hadrons and leptons, we should minimize the total energy
density

E(nb, n
(h)
q , ne, nµ) = E(nb, n

(h)
q ) + Ee(ne) + Eµ(nµ) , (7.9)

at a fixed average baryon density nb and under electric charge neutrality,

nn + np = nb , np + nπ+
s

= nπ− + ne + nµ . (7.10)

The procedure is identical to that used in §5.11 for obtaining the EOS of the
normal npeµ matter. In this way we get the EOS, E = E(nb) and P = P (nb),
of the fully equilibrated pion-condensed npeµ matter. As already mentioned
above, the sound speed drops at nb = nπ

c with increasing nb. The magnitude
of this drop and the EOS at higher densities are very model-dependent. Three
possibilities (with different consequences for the neutron-star structure) are
shown schematically in Fig. 7.3.

Figure 7.3a refers to moderate softening with second-order phase transition
at ρ = ρπ

c . Further stiffening at higher ρ in the pion condensed phase is due to
the ππ repulsion.
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Figure 7.3b illustrates strong softening. Second-order phase transition to a
pion-condensed state destabilizes the ground state of the matter, so that v2

s < 0
on the CB segment of the thick solid line. The EOS exhibits first-order phase
transition at P = P0, where the normal matter of the density ρ = ρ1 can coexist
with the condensed matter of the density ρ = ρ2 > ρ1. The densities ρ1 and
ρ2 are determined from the equality of the baryon chemical potentials in the
normal and pion-condensed phases:

µb = (P + E)/nb , P (ρ1) = P (ρ2) = P0 , µb(ρ1) = µb(ρ2) . (7.11)

Notice a gradual stiffening of the EOS at highest densities resulting from the ππ
repulsion. The Maxwell construction of a first order phase transition, depicted in
Fig. 7.3b, assumes that both phases are separately electrically neutral. Relaxing
this condition opens the possibility of mixed-phase structures, which will be
studied in §7.6.

Figure 7.3c shows the most dramatic and speculative case suggested by
Migdal (1972, 1974) (also see Migdal et al., 1990, for a review). We mention
this case for the sake of completeness. Strong softening of the EOS at ρ > ρπ

c
leads to the instability of the ground state on the CB segment. Moreover,
the pressure can become negative (we have already encountered the negative
pressure problem in §5.4 in the context of the equilibrium of nuclear matter).
Therefore, apart from the standard 56Fe ground state of “cold catalyzed matter”
at P = 0 with the energy E0 = 930.4 MeV per baryon (§3.2), two other zero-
pressure equilibria appear at the points S′ and S. The point S′ describes an
unstable self-bound equilibrium because ( dP/ dρ)S′ < 0. On the contrary, the
point S corresponds to a stable equilibrium, with the energy per baryon ES . If
ES > E0, it is a metastable superdense state of matter, whose lifetime could be
calculated if the energy barrier between this state and the standard (56Fe) state
were known. However, if ES < E0, the superdense state S represents a true
ground state of the matter! This would mean the existence of abnormal nuclei,
much denser than the normal ones (Migdal, 1971, 1974). In the astrophysical
context, one could then speculate on a possible existence of abnormal stars
with a superdense surface of density ρS and arbitrarily small radius R ∝ M1/3

at M � M�. These are “golf-ball stars” considered by Hartle (1975). Other
aspects of this shocking suggestion as well as other versions of “abnormal state”
of dense matter and “abnormal stars” will be studied in §§8.9 and 8.20.

Up to now we have limited ourselves to the simplest model of pion con-
densation. Numerous studies of pion condensation have proved the complexity
of the problem and large uncertainties in numerical results. However, they have
clearly indicated specific physical effects which favor or disfavor the conden-
sation. The inclusion of ∆ resonances in intermediate nucleon states, which
lowers the pion self-energy in nucleon matter, acts in favor of pion condensation.
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On the contrary, many effects tend to prohibit it, particularly, the short-range
repulsion between nucleons and the s-wave repulsion in the π−n interaction.

So far we have considered pion condensation at T = 0. At a finite T one
should calculate the free energy density F = E − TS, where S is the entropy
density. The mechanism of π− condensation is the same as at T = 0: a strong
p-wave πn attraction which counterbalances the kinetic energy increase due to
the ordered structure of a condensed state. Notice that because S(π) < S(n)

(the normal state is less ordered than the condensed one) increasing T makes
the condensation less favorable and shifts it (if any) to higher densities ρπ

c (T ) >
ρπ

c (0) (see Kunihiro et al., 1993, and references therein). On the other hand,
at kBT � 30 MeV a gas of thermal pions also contributes to thermodynamic
quantities (Kolehmainen & Baym, 1982).

Plotting the phase diagram in the ρ − T plane one can get the phase-
coexistence curve and find the value of the critical temperature, T π

crit, above
which the phase transition does not occur at any density. The critical tem-
perature seems to be very high by neutron star standards, kBT π

crit � 60 MeV
(Kolehmainen & Baym, 1982; Kunihiro et al., 1993).

7.4. Kaon condensation
Till 1986 nobody expected kaon condensation in neutron star cores. The

main reason was that kaons are too massive (mK±c2 ≡ mKc2 = 493.6 MeV,
mK0c2 = 497.7 MeV in vacuum). As kaons are bosons, they can occupy
one single quantum state to minimize the energy. If present, they could form,
similarly to pions, a boson condensate. Consider first noninteracting K−. The
stability in dense matter implies

µK− = mKc2 = µe , (7.12)

assuming that kaons occupy their ground zero-momentum state. This condition
can be satisfied only at densities much larger than those relevant for neutron
stars,

nb >
1

3π2

(mKc

�

)3
≈ 33 n0 · xe

0.1
, (7.13)

where xe = ne/nb.
However, kaons interact strongly with baryons. As shown by Kaplan &

Nelson (1986), the in-medium effects may greatly reduce the effective mass of
K−. As a result, K− could appear at a few times normal nuclear density and
form a kaon condensate. The condensation has been studied by many authors
(see Ramos et al., 2001, for a review).

Let us consider the npeµ-matter. Negative kaons can be formed via the
strangeness-changing processes

e + N −→ K− + N + νe , n + N −→ p + K− + N , (7.14)
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where “spectator” nucleons N are required to satisfy momentum conservation
(respecting, of course, energy conservation as well). In view of the strong
degeneracy of constituents of the npeµ matter, the energy ωK of a created kaon
should satisfy

ωK < µe . (7.15)

In analogy to pion condensation, we actually deal with K− excitations (which
have K− quantum numbers) in the npeµ matter. This method of studying kaon
condensation provides a correct description of strongly interacting many-body
systems; it was developed by Kolomeitsev & Voskresensky (2003).

Terrestrial experiments indicate strong in-medium effects of kaons moving
in the nuclear matter. Scattering of K− off atomic nuclei, observed in experi-
ments, is described by an optical potential. The real part of this potential, UK− ,
turns out to be strongly attractive. It is a single-particle potential for a kaon in the
nuclear matter at nb � n0 and xp � 1/2. The value of UK− , which is needed
to reproduce the scattering experiments, ranges from ≈ −80 MeV to ≈ −120
MeV. Calculations show that this attraction occurs in the s-wave kaon-nucleon
state and the potential well deepens significantly at nb ≈ (2 − 3) n0.

The processes described by Eq. (7.14) become allowed above some thresh-
old density nK−

c . It is the minimum density, at which the minimum value of
ωK (reached at zero kaon momentum for the s-wave kaon-nucleon attraction)
satisfies

ωmin
K = µe . (7.16)

Notice, that in this case
ωmin

K = µ0
K− , (7.17)

where µ0
K− is the limiting chemical potential of kaons defined by Eq. (5.116).

As zero-momentum (non-moving) kaons replace ultrarelativistic electrons, the
pressure becomes lower: the kaon condensate does not contribute to the pres-
sure. However, kaon condensation is accompanied by the gain of binding
energy. Because of the negative kaon charge, a growing kaon density increases
the proton fraction. This, in turn, lowers the nucleon contribution to the energy
density under the action of the symmetry term in the nucleon component EN.

Kaon condensate strongly affects the nucleon component of dense matter.
In particular, neutrino emission processes of the direct Urca type involve two
types of quasiparticle states, which are superpositions of a nucleon state and
a hyperon-like state. Such quasiparticles fill their own Fermi seas with Fermi
momenta comparable to pFn in normal matter. The dominating neutrino process
is analogous to Eq. (7.8) and leads to the neutrino emissivity Q

(K)
ν ∝ T 6.

Detailed calculations show that Q
(K)
ν is ∼ (102 − 104)T−2

9 times larger than
the standard neutrino emissivity of normal npeµ matter (see Brown et al., 1988;
Muto & Tatsumi, 1990; Thorsson et al., 1995). Therefore, the presence of kaon-
condensation initiates fast cooling of neutron stars (§1.3.7).
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The effect of kaon condensation on the EOS of dense matter is often dis-
cussed using the effective mean-field model. In this model, the energy density
is

E = EK− + EN + Ee + Eµ , (7.18)

where the condensate contribution is

EK− = nK−ωmin
K . (7.19)

A spatially uniform kaon condensate affects the condition of the electric-charge
neutrality of dense matter, which implies

nK− = np − ne − nµ . (7.20)

The same mean-field model which describes kaons in dense matter can be
used to calculate the real part of the kaon optical potential UK− and properties
of nuclear matter. By fitting the kaon-nucleus scattering data, one can fix
the parameters of mean-field model. Other parameters, which describe the
interaction of kaons with the nuclear matter, can be evaluated using the quark
model of hadrons, and the remaining parameters are adjusted to the saturation
properties of nuclear matter (see Ramos et al., 2001, and references therein).

The attraction between kaons and nucleons in the p-wave may also lead
to kaon condensation (Kolomeitsev et al., 1996; Kolomeitsev & Voskresen-
sky, 2003). In such a case, due to momentum dependence of the attraction,
kaons condense in a state with a non-vanishing momentum. In analogy to pion
condensation (§7.3), a kaon-condensed state loses then translational invariance.

Depending on the strength of the kaon-nucleon attraction, kaon condensa-
tion leads either to second-order or first-order phase transition. To be specific,
consider a simple mean-field model of kaon condensation, where kaons con-
dense owing to the s-wave attraction. If the real part of the kaon optical potential
in nuclear matter is UK− � −80 MeV then the transition to kaon-condensed
phase is of second-order, without any density jump. However, for UK− � −90
MeV the kaon condensation implies first-order phase transition associated with
a density jump which grows with increasing the depth of UK− (Glendenning
& Schaffner-Bielich, 1998).

Kaon condensation is sensitive to the presence of hyperons. In the presence
of Σ− hyperons the electron fraction xe decreases with increasing density,
because Σ− hyperons replace electrons (see §5.14). In addition, xe decreases
because new hyperon species appear with growing density. It is equivalent to
the increase of the number of fermionic degrees of freedom which generally
lowers the Fermi energies and momenta, as compared to the npeµ matter.
Therefore, the hyperonization tends to hinder kaon condensation. Conversely,
kaons replace negatively charged hyperons and decrease their abundance in
dense matter.
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Another effect which weakens or even prevents kaon condensation at neu-
tron star densities is connected with kaon-nucleon and baryon-baryon corre-
lations. Such correlations are neglected in the mean-field models of dense
matter. The effect of kaon-nucleon and nucleon-nucleon correlations was stud-
ied by Pandharipande et al. (1995). In their model the correlations reduce the
kaon-nucleon attraction and shift the condensation threshold to the densities
which are much higher than those obtained in the mean-field approach, proba-
bly beyond the maximum densities in neutron star centers. Later the problem
was reconsidered by Kolomeitsev & Voskresensky (2003) who included short-
range baryon-baryon correlations using the Fermi-liquid theory. They obtained
second-order phase transition at nb � 4 n0 due to kaon condensation resulting
from the s-wave attraction. They obtained also second-order phase transition to
a kaon-condensed state due to the p-wave kaon-nucleon attraction. The transi-
tion occurs at nb ∼ (3−5) n0 depending on parameters of their model. In some
models of Kolomeitsev and Voskresensky the preferable kaon-condensed state
contains nearly symmetric nuclear matter without any hyperons; its appearance
is accompanied by a strong first-order phase transition with a very large den-
sity jump (by a factor of two or larger). This dramatic softening of the EOS
would lead to the existence of a separate family of superdense kaon-condensed
stars (see §7.9.5). As a large-amplitude kaon condensate implies large proton
fraction to counterbalance negative charge of kaons, it has been suggested to
call kaon-condensed stars “nuclear stars” in contrast to standard neutron stars
(Lee et al., 1994; Brown et al., 1994). Some authors considered a simultaneous
condensation of K− and K̄0, and obtained a very strong softening of the EOS
(see, e.g., Banik & Bandyopadhyay 2001; Pal et al. 2000).

If kaon condensation is a first-order phase transition, then a mixed-phase
state involving a mixture of the kaon-condensed and non-condensed matter
could exist under favorable conditions (§7.6). Kaon condensation in a non-
strange or a weakly-strange dense matter is necessarily connected with the
production of strangeness. Therefore, it has to involve weak interactions, which
can complicate the formation of kaon-condensed stellar cores (§7.8.2).

We restricted ourselves to the zero-temperature approximation. The ef-
fect of finite temperatures on the s-wave kaon condensation was studied for
protoneutron stars (Pons et al., 2000, 2001). For kBT � 60 MeV this effect
is rather weak. It consists in some increase of of the condensation threshold
ρK

c (T ) > ρK
c (0) and some effective “smearing” of the phase transition by

thermally excited kaons. We are not aware of any calculation of the critical
temperature for kaon condensation; in any case, it is expected to be very high.

7.5. Quark matter
The EOS of a degenerate hadronic matter at asymptotically high densities,

where the hadronic energies � 1 GeV, is very simple. Under such conditions,
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quarks are no longer confined to hadrons. On the contrary, they constitute
a weakly-interacting Fermi gas (Collins & Perry, 1975). Therefore, one can
apply the QCD in the weak-coupling limit and calculate the reliable EOS in the
one-gluon exchange approximation.

First let us consider this reliable asymptotic limit. Then we will discuss
how to extrapolate this EOS to neutron star densities. This is the “top-down”
approach (see, e.g., Rho, 2001), where one starts from the top, i.e., from a
solid QCD result, and proceeds downwards in density, via an extrapolation
combined with some phenomenology, to a phenomenological description of
the deconfinement transition in neutron star cores.

Parameters needed for calculating the EOS in the weak-coupling limit are
quark masses and the quark-gluon coupling constant. The quark masses cannot
be measured directly but can be inferred indirectly from hadron properties.
Therefore, they depend on a model used for inferring. We will restrict ourselves
to three lightest quarks, because heavier quarks cannot appear in stable neutron
star cores (§8.12). The masses of u, d, and s quarks given by the Particle
Data Group are the estimates of the so called current quark masses (see Yao
et al., 2006, and references therein) which will be marked by the upperscript
“(c)”. They are m

(c)
u c2 = (1.5 − 3.0) MeV, m

(c)
d c2 = (3 − 7) MeV, and

m
(c)
s c2 = (70 − 120) MeV. As the chemical potentials of u and d quarks in

the quark matter are much larger than m
(c)
u c2 and m

(c)
d c2, these quarks can be

treated as ultra-relativistic and massless. However, one should account for the
s quark mass, reflecting in this way the SU(3) (flavor) symmetry breaking.

The flavor symmetry breaking implies the presence of electrons in an elec-
trically neutral quark matter T = 0.2 We are looking for a thermodynamic
equilibrium of a four-component plasma, with four thermodynamic variables
ni, where i = u, d, s, and e. We assume the equilibrium with respect to the
weak-interaction processes

d −→ u + e + νe , u + e −→ d + νe , (7.21a)

u + d −→ s + u , s + u −→ u + d . (7.21b)

Because the matter is thought to be transparent to neutrinos (µνe = µνe = 0),
we come to the following relations between the chemical potentials:

µd = µu + µe , µd = µs . (7.22)

It is advantageous to use the thermodynamic potential per unit volume

Ω(µu, µd, µs, µe) = E − µunu − µdnd − µsns − µene . (7.23)

2This statement is valid in the weak-coupling regime. Color-flavor locked quark superconductivity with a
large gap (∆ � 100 MeV at msc2 � 200 MeV) will expel electrons (Rajagopal & Wilczek, 2000).
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The electron gas can be treated as free and ultrarelativistic, so that

Ωe = −µ4
e/[12π(�c)3] . (7.24)

For massless noninteracting quarks u and d we have an additional factor of
three due to the color degree of freedom,

Ω(0)
i = −µ4

i /[4π(�c)3] for i = u, d. (7.25)

In the weak-coupling limit, the quark contribution to Ω, denoted as Ωq, can
be calculated using a perturbation expansion in the QCD (strong-interaction)
coupling constant αs = g2

c/4π, where gc is the quark-gluon coupling con-
stant.3 The expansion has to be performed using a renormalization scheme.
In particular, we should renormalize αs and the strange-quark mass ms. The
renormalized quantities depend on the selected value of the renormalization
point, denoted by ρR, which has the dimension of energy.4 The renormalized
constant αs decreases with the growth of the mean quark energy. Let us restrict
ourselves to the first-order approximation valid for a sufficiently small αs. In
this case, the contributions of all three flavors to Ωq are additive,

Ωq = Ωu(µu) + Ωd(µd) + Ωs(us). (7.26)

The lowest-order formula for a plasma of ultrarelativistic u and d quarks
is

Ωi/Ω(0)
i = 1 − 2αs/π for i = u, d . (7.27)

The contribution of the massive s quark is more complicated (see, e.g., Farhi
& Jaffe, 1984),

Ωs

Ω(0)
s

=
√

1 − y2
s

(
1 − 5

2
y2

s

)
+

3
2

y4
sL

− 2αs

π

[
3
(√

1 − y2
s − y2

sL
)2

− 2(1 − y2
s)

2 + 3y4
s (ln ys)2

]
− αs

π
ln
(

ρR

µs

)[√
1 − y2

s − y4
s L
]

, (7.28)

where ys ≡ msc
2/µs and L = ln {(1 +

√
1 − y2

s )/ys} . As we have already
stressed, we use the renormalized values αs(ρR) and ms(ρR). To the lowest

3Two definitions of the QCD coupling constant are encountered in the literature. The first one, αs ≡ g2
c/4π

(see, e.g., Baluni, 1978a,b) is adopted here. However, some authors define αs ≡ g2
c/16π (see, e.g.,

Freedman & McLerran, 1977).
4In principle, measurable quantities have to be independent of ρR. In practice, especially if one works in
the lowest-order approximation neglecting higher-order terms, the specific choice of ρR does matter. In
applications to degenerate quark matter one usually puts ρR = µ, where µ is the quark chemical potential.
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order, Ωq is independent of ρR, provided αs(ρR) and ms(ρR) satisfy the lowest-
order renormalization group equations

∂ms

∂ρR
= −2αs

π

msc
2

ρR
+ O(α2

s ) ,
∂αs

∂ρR
= O(α2

s ) . (7.29)

Using Eqs. (7.29), (7.28) and (7.27), one can check that

dΩq

dρR
=

∂Ωq

∂ρR
+

∂ms

∂ρR

∂Ωq

∂ms
+

∂αs

∂ρR

∂Ωq

∂αs
= O(α2

s ) . (7.30)

Notice that putting ρR = µs in Eq. (7.28) cancels the last term on the right-
hand-side and removes explicit dependence of Ωs on ρR.

The renormalization of the strange-quark mass ms deserves a comment.
Using the approximation linear in αs we deduce from Eq. (7.29) that ms > m

(c)
s .

As αs is constant, the equation for ms(ρR) is easily integrated. The upper
integration limit for the renormalization point, denoted by Λ, should satisfy
Λ � 1 GeV; it belongs to quark asymptotic energies at which non-perturbative
effects can be neglected. The lower integration limit should be set equal to the
actual renormalization point ρR < Λ. We get

ms = m(c)
s (Λ/ρR)2αs/π > m(c)

s . (7.31)

The number densities of all constituents can be calculated from the standard
formula:

ni = −∂Ω/∂µi for i = u, d, s, e . (7.32)

This enables us to add two relations needed to close the system of equations for
all four µi in an electrically neutral quark matter at a given value of nb:

1
3

(nu + nd + ns) = nb , ne +
1
3

(nd + ns − 2nu) = 0 . (7.33)

After solving this system [Eqs. (7.22) and (7.33)], one calculates the EOS of
quark matter from the thermodynamic relations,

P (nb) = −Ω = −Ωe − Ωq , (7.34a)

E(nb) = Ω +
∑

i

niµi = Ωe + Ωq +
∑

i

niµi , (7.34b)

where the sum is over i = u, d, s, and e.
The electron fraction in the quark matter, ne/nb,vanishes for ms = 0 but

increases rapidly with increasing ms. An approximate analytical formula for
the electron fraction can be derived by expanding the difference µs − µu in
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powers of ms. Keeping the lowest power of ms for αs � 0.2 Haensel et al.
(1986a) obtained

ne

nb
� 0.002

1 − 2 ε

{
1 − 4

3
ε − 4 ε ln

(
2µu

ρR

)}3(n0

nb

)2( msc
2

200 MeV

)6

, (7.35)

where ε = αs/π. In particular, this estimate is valid for noninteracting quarks
(αs → 0). At nb � n0 and msc

2 ∼ 200 MeV the electron fraction is too
small (ne/nb � 10−3) to affect the EOS.

Calculation of the EOS up to the second order inαs (the fourth order in gc) is
more complicated. It involves the renormalization-group method for evaluating
non-perturbative effects, responsible for the asymptotic freedom. Moreover, the
plasmon and three-gluon coupling contributions should be added (Freedman &
McLerran, 1977; Baluni, 1978b).5 With the new terms included, the renormal-
ized αs(ρR) becomes density dependent. It exhibits the asymptotic freedom
property αs → 0 at nb → ∞ and grows with decreasing nb. For simplicity, let
us consider massless uds quarks. In this case, Baluni (1978b) and Freedman &
McLerran (1977) calculated the thermodynamic potential Ωq as a function of a
unique quark chemical potential µ up to terms quadratic in αs. The second-order
expression Ω(2)

q depends on µ and ρR, Ωq � Ω(2) (µ, αs(ρR), ρR) , where the
renormalized QCD coupling constant satisfies the renormalization-group equa-
tion, and the upperscript “(2)” reminds that terms ∼ α3

s (ρR) are neglected.
Putting ρR = µ one has

Ω(2)
q (µ) = −P (µ) = − 3µ4

4π2(�c)3
(
1 − 2ε − 3ε2 ln ε − 7.46 ε2) , (7.36)

where ε = αs(µ)/π. A one-parameter EOS is obtained using

ns = nu = nd = nb(µ) = −∂Ωq(µ)
∂µ

, E(µ) = µ nb(µ) + Ωq(µ) . (7.37)

Eliminating µ from Eqs. (7.36) and (7.37) one gets the standard form of the
EOS, P = P (E).

Extrapolating the expression for Ωq to the densities in a neutron star core,
where µ � GeV, one obtains the EOS of quark matter to be used for studying a
phase transition between the baryon and quark phases. Let us parameterize the
EOS of the baryon matter as P = PB(µb), where µb is the baryon chemical
potential. Let us define the baryon chemical potential in the quark matter

5One should keep in mind the definition of αs to avoid confusion concerning the importance of the higher-
order terms. The statement of Freedman & McLerran (1977) that “. . . the quantum-chromodynamic structure
constant, αs = g2

c/16π, is small, αs < 1/4 . . . ”, does not sound convincing if one switches to the definition
αs ≡ g2

c/4π used by Baluni (1978b).
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(index Q) as µQ
b (P ) = [EQ(P ) + P ]/nQ

b (P ). This is the energy associated
with the change of the baryon number by one, at a constant volume and T = 0,
assuming additionally electrical neutrality and weak-interaction equilibrium.
The dependence of µQ

b on P can be inverted to give the pressure in the quark
matter as a function of µb. The equilibrium phase transition takes place at such
P = PBQ, where the curves PB(µb) and PQ(µb) cross. The baryon-quark
(B-Q) phase transition is of first order. It is accompanied by a density jump
from nB at the baryon matter side to nQ at the quark matter side.

Early calculations indicated that the parameters of the B-Q phase transition
are sensitive to the EOS of baryon matter. Actually, PBQ is uncomfortably
model dependent, because the P (µb) curves intersect at a small angle. Typical
transition values are µb ∼ (1 − 2) GeV and ρ ∼ 1015 g cm−3 (Baluni, 1978b;
Morley & Kislinger, 1979). Freedman & McLerran (1977) obtained even lower
transition densities using a simple “physical picture” where the confinement
consists in a condensation of a gas of quarks into small baryon “droplets” of
three quarks. As a rule, the B-Q phase transition is strongly first-order, with a
large density jump so that stellar configurations with small quark cores could
be unstable (see §7.9.5).

These results should be treated with caution. Typical quark energies in
the B-Q transition region are significantly less than 1 GeV. Therefore, they are
outside the weak-coupling regime, where the perturbative approach is valid.
There is even a more fundamental doubt: It is well known that phase transitions
in many-body systems cannot be described using perturbative approaches.

Confinement (or deconfinement) is a non-perturbative phenomenon. A
simple phenomenological model of the confinement in the context of the hadr-
onic structure was proposed as early as in 1974, when the QCD was still in its
infancy. It was the famous MIT Bag Model suggested by Chodos et al. (1974).
In this model non-perturbative effects responsible for the quark confinement are
represented by the bag constant B, the excess of the energy density of the QCD
vacuum (where quarks can move freely) over the energy density of the ordinary
vacuum outside hadrons. Quarks are assumed to be confined to a region of
space called the “bag”. They cannot escape from the bag because they become
infinitely massive outside it. Using the MIT Bag Model and adjusting its pa-
rameters (the bag constant, quark masses, and αs) one can determine masses of
mesons and baryons, as well as their magnetic moments.

In the MIT Bag Model a quark core in a neutron star is “a giant MIT Bag”
(Baym & Chin, 1976). The energy density of the quark matter is therefore the
sum of the bag constant, kinetic energy of quarks and their interaction energy,

Eq = B + E(kin)
q + E(int)

q , (7.38)
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where E(int)
q should be calculated using the perturbative scheme of the QCD.

The pressure is

Pq = −B + P (kin)
q + P (int)

q . (7.39)

This expression contains the QCD coupling constant αs and the strange-quark
mass ms, both renormalized (while u and d quarks are treated as massless). The
bag constant in Eqs. (7.38) and (7.39) can be treated as an effective constant
pressure exerted by the normal vacuum on the QCD vacuum. The B-Q phase
transition turns out to be strongly first-order, with a baryon density and mass
density jump by a factor of ∼two (!) (see Table 1 of Baym & Chin, 1976).

At the same αs and ms the bag constant B shifts µQ(P ) upwards, as
compared to the B = 0 case, shifting the B-Q transition to higher densities. As
the µQ(P ) and µB(P ) curves intersect at a small angle, the increased phase-
transition pressure PBQ can easily exceed the maximum central pressure of
stable neutron stars, Pmax. This circumstance was pointed out by Baym & Chin
(1976). They assumed B = 56 MeV fm−3 and αs = 0.55 (the “experimental
values” of B and αs in the late 1970s) and concluded that it is unlikely to find
the quark matter in stable neutron stars because typically PBQ > Pmax. The
same conclusion has been obtained by other authors (see, e.g., Chapline &
Nauenberg, 1976). Simultaneously, it has been realized that if B and especially
αs were significantly smaller than the “experimental values” the B-Q phase
transition would occur at a lower density (nuclear or even subnuclear). This
would lead to the existence of “quark stars” consisting predominantly, or even
exclusively, of quark matter (obese “neutron” stars of Brecher & Caporaso
1976, also see §8.10). The bag-model calculations of the EOS of quark matter
have been continued in the 1980s and 1990s. The condition PBQ < Pmax and
associated quark cores in neutron stars have been obtained only for sufficiently
small B and αs. Calculations have definitely excluded quark cores for the values
of B � 200 MeV fm−3 extracted from some QCD lattice calculations (see, e.g.,
Cleymans et al., 1986; Karsch, 2002a,b).

The MIT Bag Model was constructed to describe the quark structure of
hadrons. Therefore it has a built-in quark confinement. As B is assumed
constant, the model does not exhibit the asymptotic freedom property of the
QCD. In this model, quarks are, strictly speaking, confined within the bag even
at nb → ∞ and the pressure of the normal vacuum on the bag stays constant.

There have been numerous attempts to include the medium-dependence of
the bag constant on a phenomenological level. One has to introduce the QCD
vacuum dependent on nb in order to determine a medium-dependent B. One
of the approaches utilizes the Quark-Meson Coupling Model, which describes
nuclear matter as a system of non-overlapping MIT Bags bound by the exchange
of scalar and vector mesons (see, e.g., Jin & Jennings, 1996; Müller & Jennings,
1997). Another approach is based on the Nambu–Jona-Lasinio model of the
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quark structure of hadrons (see Aguirre, 2003, and references therein).6 In both
cases one gets the bag constant which decreases with increasing density. Such
approaches are certainly model-dependent.

Another group of models focused on the density dependence of quark
masses (see, e.g., Chakrabarty et al., 1989; Chakrabarty, 1991, and references
therein).7 In these models one mimics the strong non-perturbative interaction
between quarks through the dependence of their constituent masses on the
baryon density. In the limit nb → ∞ constituent masses tend to current quark
masses.

Phenomenological models with density-dependent quark masses and the
quark-quark interaction screened in dense medium can be constructed in such
a way as to reproduce correct low-density and high-density limits (Dey et al.,
1998). The density dependence of quark masses can be introduced via a phe-
nomenological scalar density-dependent potential, such that quark masses tend
to current quark masses at nb → ∞. The quark-quark interaction is represented
by a vector-interaction term which vanishes at nb → ∞ due to the screening
in dense medium, reproducing the asymptotic freedom. Finally, there are other
models of the quark matter based on different assumptions and techniques (e.g.,
Schmidt et al., 1994; Blaschke et al., 1998).

A brief and incomplete review of theories of the quark matter at ρ ∼
(1015 − 1016) g cm−3, given above, demonstrates an overabundance of phe-
nomenological models. This is a clear sign of fundamental difficulty in un-
derstanding the density regime which is far from the weak-coupling one. The
quark energies at ρ ∼ (1015−1016) g cm−3 are not high by the QCD standards,
and we are far from the true asymptotic freedom regime (sometimes called the
Asymptopia) which requires µf � 1 GeV. In contrast to the Early Universe
younger than a few microseconds, the interiors of compact stars do not belong
to the Asymptopia.

A common feature of all models reviewed in the present section is the
assumption of a gas-like quark matter. This is the natural state in the Asymptopia
(except for the phenomena in the neighborhood of the Fermi surface, like color
superconductivity, which have minor effect on the EOS, see below) but the
situation at ρ ∼ 1015 g cm−3 may be quite different. Another common feature
is the presence of phenomenological ingredients which are not derived on a
more fundamental ground. Additionally, as we stressed earlier, the value of
PBQ is very sensitive to employed models of the confined (B) and deconfined

6Let us remind that the original Nambu–Jona-Lasinio model (Nambu & Jona-Lasinio, 1961a,b) was formu-
lated for describing hadrons before the introduction of quarks into the particle physics.
7Let us recall that even in perturbative QCD calculations performed in the weak-coupling regime αs and
ms get some (weak) density dependence due to the renormalization. However, in standard calculations
described earlier in this section one treats the renormalization point ρR and the bag constant B as fixed
parameters; this strongly simplifies the derivation of the EOS.
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(Q) phases of matter. All in all, the degree of our ignorance on the existence of
the B-Q phase transition at ρ ∼ (1015 − 1016) g cm−3 is very high.

Notice that one should be careful in calculating the EOS of the quark matter
using models with density-dependent B, αs, ms (see, e.g., Peng et al., 1999,
2000). The density dependence introduces additional terms in the pressure:

Pq = −Ωq + nb
∂Ωq

∂B

(
∂B
∂nb

)
[µj ]

+ nb

∑
f=u,d,s

∂Ωq

∂mf

(
∂mf

∂nb

)
[µj ]

+nb
∂Ωq

∂αs

(
∂αs

∂nb

)
[µj ]

, (7.40)

where derivatives are calculated at fixed quark chemical potentials. The terms
containing these derivatives have to be included in the EOS to make it consistent
with the first law of thermodynamics.

Up to this point we have ignored possible superconductivity of quark mat-
ter. It can be shown that in the weak-coupling regime the quark matter is
superconducting below some critical temperature (Barrois 1977; Alford et al.
1998; for review see Rajagopal & Wilczek 2000). This superconductivity arises
because a weak attraction between two quarks (unavoidable for a quark pair)
favors a rearrangement of quark states in the vicinity of the Fermi surface. A
state composed of boson-like quark (Cooper) pairs is then energetically prefer-
able over the Fermi-gas state. Quark pairs form a boson condensate. However,
they cannot be color singlets, because one needs at least three quarks or a quark-
antiquark pair to get a colorless hadron. Therefore, a condensate of quark pairs
carries color, which leads to the names of color conductivity and color currents.
The ground state of color superconductor is separated from the excited states
by an energy gap, which can be as large as ∆ ∼ 100 MeV (Alford et al., 1998).
However, the gap affects only quark states near the Fermi surface whereas bulk
thermodynamic quantities such as the energy density or pressure result from
the whole Fermi seas. Thus the effect of color superconductivity on the EOS
is rather weak. For massless quarks in the weak-coupling regime one gets the
following formula for the condensation energy density, released in a transition
from a normal (n) state to a superconducting (s) state:

Ωs − Ωn = −β (∆/µ)2 |Ωn| , (7.41)

where µ is the quark chemical potential, β ∼ 1 is a numerical factor, and only
the leading term in ∆/µ is kept. The above estimate assumes µ � 1 GeV.
Hence even at ∆ � 100 MeV the relative modification of the EOS due to color
superconductivity does not exceed a few percent (see, e.g., Alford et al. 1998;
for a review see Rajagopal & Wilczek 2000; also see §5.16). An extrapolation
of Eq. (7.41) to ρ ∼ 1014 − 1015 g cm−3, where µ ∼ 300 – 600 MeV and the
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implied effect could reach ∼ 6%, is risky because the weak-coupling description
becomes invalid.

The models of the B-Q phase transition reviewed in this section suffer from
many deficiencies. First, as a rule, the Q and B phases are described by different
physical models. Therefore, they cannot give a consistent description of the
phase transition. Some calculations based on a single physical model are not
realistic in the low-density (nuclear) segment. Additionally, the phase of the
quark matter is usually treated as a Fermi gas, whereas one should expect strong
quark-quark correlations near the phase transition point. Ab initio QCD lattice
calculations of the B-Q phase transition similar to those already performed for
hot hadronic matter (see, e.g., Karsch 2002 and references therein) are still not
available.

If the B-Q phase transition is first-order and the surface tension at the B-Q
interface is not too high, both phases could coexist in a mixed-phase state in
some range of pressures and densities (see §7.6). The physical mechanism and
astrophysical scenarios for the formation of the quark matter via the nucleation
of the deconfined quark phase in a neutron star core are studied in §7.8.3.

7.6. Mixed-phase state
In the previous sections we considered the thermodynamic equilibrium of

matter assuming local electric neutrality. Let A and B be two phases of the mat-
ter. Fixing the baryon number density nb we can calculate the minimum energy
densities EA and EB of electrically neutral phases. Passing to the enthalpy per
baryon µb = (E + P )/nb, we can demonstrate that the thermodynamic equi-
librium at any value of the pressure can be realized by a single (pure) phase
of matter. Then the two phases can coexist only at one value of the pressure,
where µA

b (P ) = µB
b (P ).

Let x be the fraction of baryons contained in the higher-density phase.
For simplicity, the surface effects will be neglected. Therefore, the pressure P
is constant throughout the system. Moreover, we will assume the additivity of
thermodynamic potentials of two phases. At a given pressure, the total enthalpy
per baryon for a mixture of two phases is then

µb = xµB
b + (1 − x)µA

b . (7.42)

Both phases are assumed to be electrically neutral, reaching their own minimum
values µA

b (P ) and µB
b (P ). However, we have µB

b > µA
b for P < P0 and

µB
b < µA

b for P > P0. Therefore, µb reaches minimum at x = 0 for P < P0
and at x = 1 for P > P0: thermodynamic equilibrium at P �= P0 corresponds
to a single phase, and both phases coexist only at P = P0. As the pressure
is a monotonous function of the radial coordinate within the star, electrically
neutral phases cannot mix in the stellar interior at thermodynamic equilibrium.
The inclusion of the surface tension can only strengthen this conclusion.
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Being obvious on macroscopic scales, electrical neutrality may be violated
on microscopic scales. It can be too restrictive for a thermodynamic equilibrium
of such a multi-component system like dense matter. Let us recall the case of
the inner neutron star crust, particularly the Liquid Drop Model described in
§3.3.3. The nucleon component exists there in two phases. The denser phase
consists of a nuclear matter and is positively charged. The less dense phase
consists of a neutron gas. Neutrons in both phases are in equilibrium; their
chemical potentials coincide (with an appropriate treatment of the interface
between the two phases, §3.3.3). The electron gas has nearly constant number
density, so that the matter is electrically neutral only on average. In spite of a
disadvantage resulting from the presence of Coulomb energy, a mixture of two
nucleon phases is energetically preferable over a uniform electrically neutral
phase, because of the nuclear energy gain connected with the nuclear matter
binding.

Now consider a general first-order phase transition between the A and B
phases of dense matter. As shown by Glendenning (1991, 1992), relaxing the
microscopic charge neutrality condition makes a mixed-phase state energeti-
cally preferable provided the surface tension and Coulomb contributions are
sufficiently small.

Let us focus on thermodynamic equilibrium of a multi-component and
multi-phase dense matter, neglecting the Coulomb and surface contributions.
The elementary constituents of the matter are hadrons (h) and leptons (electrons
and muons). Hadrons are baryons, quarks, and strongly interacting meson
condensates of §7.3 and §7.4. The energy densities in both phases (which
are not necessarily in equilibrium) depend on number densities of the matter
constituents in these phases,

EA = EA({nA
h }, nA

e , nA
µ ) , EB = EB({nB

h }, nB
e , nB

µ ) . (7.43)

As translational invariance may be broken within a phase, the number densities
are actually the volume-averaged ones. We assume that the size of the region
occupied by a non-uniform phase is larger than the characteristic length-scale
of the non-uniformity. Then the volume averages within each phase are well
defined.

The corresponding electric charge densities (in units of the elementary
charge) and baryon number densities (in units of nucleon baryon charge) are

ρA
e =

∑
h

nA
h qh − nA

e − nA
µ , nA

b =
∑

h

nA
h qh , (7.44a)

ρB
e =

∑
h

nB
h qh − nB

e − nB
µ , nB

b =
∑

h

nB
h bh , (7.44b)

where qh and bh are, respectively, the electric and baryonic charges of a hadron
h.
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Let χ denote the fraction of volume occupied by phase B. The thermody-
namic equilibrium of a mixture of phases A and B at a fixed average baryon
density nb can be calculated by minimizing the average energy density

E = (1 − χ) EA + χ EB , (7.45)

under the condition
nb = (1 − χ)nA

b + χ nB
b , (7.46)

and under the constraint of average (macroscopic) electrical neutrality

ρe = (1 − χ) ρA
e + χ ρB

e = 0. (7.47)

For example, let us consider a first-order phase transition associated with
kaon condensation (§7.4). Let us assume that the characteristic length-scale of
the hadron electric-charge inhomogeneities is much smaller than the electron
and muon screening lengths (which is not always true – see, e.g., Norsen &
Reddy 2001). Then the electron and muon number densities can be treated as
uniform,

nA
e = nB

e ≡ ne , nA
µ = nB

µ ≡ nµ . (7.48)

We have to determine the values of eight variables (four nucleon number den-
sities, two lepton number densities, the kaon number density, and the volume
fraction χ) by minimizing E , Eq. (7.45), under the conditions (7.46) and (7.47).
This leads to a set of nonlinear equations relating thermodynamic variables;
each of these equations has a clear physical meaning. Mechanical equilibrium
between the two phases requires

PA = PB . (7.49)

The strong interactions imply the equality of chemical potentials of nucleons
in the two phases,

µA
N = µB

N = µN (N = n, p) . (7.50)

Finally, the weak interactions involving hadrons and leptons lead to

µn = µp + µe , µe = µK− , µµ = µe . (7.51)

Together with Eqs. (7.46) and (7.47) we get eight equations for eight thermo-
dynamic variables. The solution corresponds to thermodynamic equilibrium at
a fixed nb and under the constraint of macroscopic electrical neutrality. Let
us stress that the equilibrium is calculated neglecting the Coulomb and surface
(phase interface) effects and assuming a uniform lepton background. By anal-
ogy with the simplest model of the inner crust, described in §3.4.1, we will use
the terms the “bulk approximation” and “bulk equilibrium”.

We will discuss the properties of a mixed phase in the bulk approximation
using schematic (but generic) plots in Figs. 7.4 and 7.5. Let us first analyze the
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Figure 7.4. Baryon chemical potential µb versus pressure P in the presence of an equilibrium
first-order phase transition between phases A and B at P = P0. Phase A, if stable with respect
to the phase transition into phase B, is represented by the solid line; its dotted continuation
corresponds to an overcompressed state, metastable with respect to the transformation into phase
B. Analogous notation is used for phase B, where the dotted segment corresponds to a metastable
undercompressed state. The mixed phase AB (P (m)

A < P < P
(m)
B ) is shown by the dot-and-dash

line.

character of the bulk equilibrium as a function of the pressure (Fig. 7.4). For
P < P

(m)
A , the equilibrium is realized by the pure phase A. For P

(m)
A < P <

P
(m)
B , the equilibrium corresponds to a mixed state AB. The volume fraction

occupied by phase B increases monotonously with P , from zero at P = P
(m)
A

to one at P = P
(m)
B . For P > P

(m)
B we have the pure phase B.

A mixed-phase state, where kaon-condensed matter coexists with baryon
matter, was studied by Glendenning & Schaffner-Bielich (1998, 1999); and
Norsen & Reddy (2001). Models for a mixed phase of deconfined quark matter
coexisting with baryon matter were constructed by Heiselberg et al. (1993) and
Glendenning & Pei (1995). The importance of the phase interface (the surface
tension and curvature energy) for creating a mixed phase was emphasized by
Heiselberg et al. (1993); Christiansen & Glendenning (1997); Christiansen et
al. (2000); and Norsen & Reddy (2001). The effect of electric charge screening
and surface tension on the mixed phase with kaon condensate was studied by
Maruyama et al. (2006).

A mixed-phase state affects the EOS as visualized in Fig. 7.5. For the
sake of comparison, we also show a standard equilibrium first-order transition
between pure phases A and B. For this transition, the densities nA < nb < nB
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Figure 7.5. Same as in Fig. 7.4 but for P versus nb. The mixed phase AB (P (m)
A < P < P

(m)
B )

is represented by the dot-and-dash line. Equilibrium first-order phase transition between pure
phases A and B takes place at P = P0. It is accompanied by the density jump nA → nB. For
further explanations see the text.

could not exist in the stellar interior because P should be monotonous there.
On the contrary, the mixed-phase layer of density n

(m)
A < nb < n

(m)
B can exist

in the star, with the pressure increasing from P
(m)
A at the top of the layer to P

(m)
B

at the bottom. Mixing of the phases A and B softens the EOS as compared to
the EOS of the pure phase A, but the softening is weaker than in the limiting
case of the transition between pure phases A and B.

The surface and Coulomb effects increase E(nb) and µb(P ). They affect
the size and shape of structures forming the mixed-phase layer. For a periodic
structure, the virial theorem of §§3.3.3 and 3.4.2 tells us that the surface con-
tribution is twice the Coulomb one. Both contributions push up the value of
µ

(m)
b (P ). They are especially important at the edges of the mixed-phase region,

where the droplets of one phase are small within the dominating phase. It is
clear that these effects increase P

(m)
A and decrease P

(m)
B , narrowing the mixed-

phase layer in the stellar interior. If the surface and Coulomb contributions are
sufficiently large they can entirely remove the mixed phase (because the dif-
ference in µb(P ) of the pure and mixed phases is usually small). In particular,
this happens provided the surface tension σ exceeds some critical value σcrit

so that µ
(m)
b (P ) > µA

b (P ) for P < P0 and µ
(m)
b (P ) > µB

b (P ) for P > P0.
Heiselberg et al. (1993) obtained σcrit � 70 MeV fm−2 for a transition from
nucleon to quark matter. The actual value of the surface tension for quark matter
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droplets in baryonic medium is very poorly known, σ = (10–100) MeV fm−2.
In the case of kaon condensate, an inclusion of electric charge screening and of
surface tension makes the EOS allowing for a mixed phase very similar to that
with a first order phase transition between two pure phases (Maruyama et al.,
2006).

7.7. Solid cores of neutron stars

7.7.1 Physical origins and models
The history of theories of hypothetical crystalline neutron star cores,

sketched in §7.2.4, started with the idea of crystallization of neutron matter
owing to the strong short-range repulsion of the neutron-neutron interaction.
This repulsion was often represented by a hard-core one, so that vij = ∞
for rij ≤ rcore. The hard-core repulsion solidifies the neutron matter at
nb ∼ (4πr3

core/3)−1; in this case neutrons become localized by the infinite
potential walls. Other arguments in favor of crystallization were taken from
the physics of noble gases. The short-range repulsion between two rare-gas
atoms is well represented by the repulsive term of the Lennard-Jones potential
vij ∝ (rij)−12. It is well known that noble gases solidify at sufficiently high
pressures. In the beginning of the 1970s some authors applied the so-called
law of corresponding states, first suggested by Anderson & Palmer (1971), to
deduce the solidification density of neutron matter by scaling the experimental
results for 3He.

However, the short-range neutron-neutron repulsion occurs due to the
exchange of vector mesons (see §5.6). Therefore, it is of the Yukawa form
vij ∝ exp(−µrij)/ (µrij), often called a “soft-core repulsion”. In this case
the hard-core and noble-gas arguments are invalid. Moreover, many-body cal-
culation of the liquid-solid transition in dense neutron matter is a tremendous
computational challenge. One has to calculate E(liq) and E(sol) with very high
precision in order to find the density above which E(liq) > E(sol). By 1974,
the precision was still insufficient. Some calculations gave no solidification
at all, while several authors obtained solidification at (5 − 30) × 1014 g cm−3

(the review of the early, alas, unreliable calculations is given by Canuto 1975).
The consensus was reached in the second-half of the 1970s, when the precision
of many-body calculations became sufficiently high: for realistic vij neutron
matter does not solidify at densities expected in neutron star cores.

Another possibility of getting a solid structure is to increase the energy
from the medium-range attractive tensor component (§5.5.1). This mecha-
nism, related to the π0-condensation in neutron matter (§7.3), was analyzed by
Pandharipande & Smith (1975). The amplification of an already strong tensor
interaction component was induced by the coupling of nucleons and pions to
∆-isobars excited in intermediate nucleon states. Strong coupling at the n∆π
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vertex amplified the tensor component of the many-body Hamiltonian, V̂T. Its
attractive contribution became sufficient to arrange neutrons in a cubic lattice
and correlate their spins with crystal planes. The spin-quantization axis was
chosen to be parallel to the cube side. All neutrons in a given plane perpendic-
ular to the quantization axis had the same spin projection. Neutrons in adjacent
planes had antiparallel spins. Such a spin and space structure gave a large
attractive contribution to E from the tensor interaction component

V̂T =
∑
i<j

vT(rij) (3σj · nijσi · nij − σi · σj) , (7.52)

where nij = rij/rij (see §5.5.1). The value of E(sol) was then obtained
variationally by minimizing the expectation value of the Hamiltonian within
a family of neutron wave functions, localized around the crystal lattice sites.
Those wave functions, with alternating spin polarization in adjacent crystal
planes, took full advantage of the tensor attraction (in contrast to the disordered
liquid state, in which the first-order tensor contributions average to zero). In
this way Pandharipande and Smith obtained E(sol) < E(liq) for ρ � 3ρ0. The
first-order liquid-solid phase transition was associated with a density jump, by
∼20%, which considerably softened the EOS. Because of its periodic spatial
and spin structure, the ground state wave function led to a nonzero expectation
value of the π0-condensate. The neutral pion condensate had a standing-wave
structure with a characteristic wave number kπ0 (see §7.3).

The first-order contribution V̂ OPE
T of the one-pion exchange potential

(OPEP, see §5.6) vanishes in an isotropic fluid. However, as shown by Takat-
suka & Tamagaki (1976, 1977), it can dominate in a state of the so called
alternating-spin layers (ALS, see below; also see Takatsuka et al., 1978; Mat-
sui et al., 1979). In the ALS state, neutrons and protons are localized in parallel
planes (one dimensional, 1D, localization). Let the planes be perpendicular to
the spin quantization z-axis. Neutrons localized in one plane have spins aligned
with the z-axis and protons in this plane have opposite spins, so that the isospin-
spin states are (n ↑) and (p ↓). In adjacent planes one has (n ↓) and (p ↑).
As we are dealing with the 1D localization (nucleons can freely move in the
xy plane), matter behaves as a smectics A phase in the nomenclature of liquid
crystals (see §3.7.2). If the binding gain due the tensor attraction overcomes the
binding loss due to the kinetic energy increase (resulting from 1D localization),
the dense matter undergoes the phase transition to the ALS-phase.8 Calcula-
tions of the ALS structure of dense matter were further developed by the Kyoto

8The idea that a strong tensor component of the OPEP can lead to a solid-like structure of nucleon matter
with a periodic spin-isospin ordering was first proposed by Calogero et al. (1973); also see Calogero et al.
(1975).
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group, with the emphasis on possible signatures of this phase in neutron stars
(see Takatsuka et al. 1993 for review).

Moreover, Kutschera & Wójcik (1989, 1990) suggested that, for a suffi-
ciently low proton fraction xp � 0.05, nuclear matter could be unstable with
respect to proton localization accompanied by a modulation of neutron den-
sity. At such low xp, protons behave as impurities in neutron matter interacting
mainly with the neutron background. While localization increases the proton
kinetic energy, it increases also the proton binding in neutron matter by lock-
ing protons in potential wells corresponding to minima of the neutron density.
Further work pointed out an analogy with polarons, well known in the physics
of condensed matter.9 Protons seem to behave as nuclear polarons and form
a lattice at high densities (Kutschera & Wójcik, 1993, 1995). Of course, the
proton localization occurs only for those model EOSs which predict the de-
crease of the proton fraction xp with growing ρ at high densities. Moreover,
calculations of E(sol) involve many approximations. Proton localization takes
place if the difference E(sol) −E(liq) becomes negative for ρ > ρloc. Calculated
difference turns out to be so small that numerical results should be taken with
a grain of salt. Recent calculations, performed for several models of the npeµ
matter [with decreasing xp at high ρ and vanishing protons at still higher ρ!]
give ρloc = (3 − 6) ρ0 (Kutschera et al., 2002). The idea of localization of
impurities was extended to the hyperonic matter by Perez Garcia et al. (2002).

In the mixed-phase state of dense matter (P (m)
A < P < P

(m)
B , see §7.6)

each of the phases is electrically charged. To minimize the sum of the Coulomb
and surface energies, the less dense and more dense phases (A and B) can
be distributed into a periodic structure (see Glendenning 2001 and references
therein). For a low volume fraction χ � 1 of phase B, spherical droplets
of this phase can form a cubic [most probably, body-centered cubic (bcc)]
lattice immersed in the background of phase A. With increasing χ, the three
dimensional (3D) cubic lattice is thought to be replaced by the two dimensional
columnar phase of B-rods immersed in phase A, analogous to the 2N phase in
the bottom of the neutron star crust (§3.4.2). The difference from the crust is
that the hadron component of phase A is electrically charged. For χ ∼ 1/2, 1D
alternating A and B slabs appear; at higher χ they are replaced by the columnar
phase of A-rods immersed in the liquid of phase B. At χ → 1, droplets of phase
A form a bcc crystal in such a liquid.

9The formation of polarons in terrestrial crystals results from the electron-phonon interaction, which can
lead to a strong increase of the electron effective mass. The strongest effect occurs in ionic crystals because
of the strong Coulomb attraction between ions and electrons. Electrons can become self-trapped in local
deformations of the ion lattice (see, e.g., Chapter 10 of Kittel 1986). The instability of crystals against
density perturbations in terrestrial solids corresponds to the instability of the neutron component in the npeµ
matter.
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7.7.2 Elastic shear moduli
Consider shear moduli of a π0-condensed 3D neutron crystal, proposed

by Pandharipande & Smith (1975). A crude estimate of the c44 shear modulus
(see §3.7.1), quoted by Pandharipande et al. (1976), is c44 ∼ 1035 erg cm−3

at ρ ∼ 1015 g cm−3. It is more than six orders of magnitude larger (!) than
the shear modulus of the crust at ρ ∼ 1013 g cm−3 (§3.7.1). Takatsuka &
Tamagaki (1988b) evaluated the average shear modulus of the 1D ALS liquid
crystal in the π0-condensed matter at ρ ∼ 1.3 × 1015 g cm−3 and obtained
∼ 5 × 1035 erg cm−3. Let us stress that nucleon localization, crystal structure,
and shear strain in such crystals are produced by strong interactions, in contrast
to the neutron star crust, §§3.7.1 and 3.7.2, where they are due to Coulomb
interaction.

In a mixed-phase state of dense matter (P (m)
A < P < P

(m)
B , see §7.6)

each phase is electrically charged. Therefore, the analogy with crustal matter
(§3.7.2) is not complete. Nevertheless, we expect that the elastic shear moduli
are of the same order of magnitude as the Coulomb contribution ECoul to the
energy density in the crustal matter. Let us remind that in an equilibrium state
ECoul = 1

2 Esurf (see §§3.3.3 and 3.4.2). If the denser phase occupies a sizable
fraction of the volume, then the surface contribution to the energy density can
be estimated as the surface tension σ divided by the surface thickness ∼ 1 fm.
This prescription gives Esurf � 30 σ30 MeV fm−3 and ECoul � 2 × 1034 σ30
erg cm−3, where σ30 ≡ σ/30 MeV fm−2. Therefore, we expect the elastic
moduli ∼ 1034 erg cm−3 for a mixed phase of quarks and nucleons and ∼
1033 erg cm−3 for a mixed phase of kaon condensate and nucleons. This is,
respectively, one order and two orders of magnitude smaller than for the π0-
condensed solid.

The shear modulus of a solid formed by localized protons can be estimated
from elementary consideration. The Coulomb energy per proton is roughly
e2/rpp, where rpp is a mean interproton distance. Then the Coulomb energy
density is ECoul ∼ npe

2/rpp ∼ 1031 (nb/4n0)4/3(xp/0.01)4/3 erg cm−3. The
elastic shear moduli for the matter with localized protons are, therefore, several
orders of magnitude smaller than for the π0-solid or the mixed-phase core.

A recent brief review of shear moduli of exotic neutron star cores and their
impact on the elastic-strain support of deformations of pulsars can be found in
Owen (2005).

7.8. Nucleation of exotic high-density phase
A new exotic phase may form during the neutron star formation and evolu-

tion. For example, an accretion of matter or pulsar spindown induce a gradual
increase of the central density which may trigger the appearance of the exotic
phase.
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In §§7.3, 7.4, and 7.5 we have considered equilibrium phase transitions
which take place in thermodynamic equilibrium. The equilibrium is realized
only if the timescale tevol of the local pressure variation is much longer than
the timescale treact of reactions which form and equilibrate the new phase. If
the evolution timescale in the compressed matter (Ṗ > 0) can be estimated as
tevol ∼ P/Ṗ .

If the equilibrium phase transition is of second order and takes place at P =
P0, phase B appears, under equilibrium conditions, after the central pressure
exceeds P0. The actual scenario can be different. While the formation of
phase B is driven by strong interactions, the slowness of weak interactions
(tweak > tevol) may result in deviation from thermodynamic equilibrium. Then
second-order phase transition can occur at some P = P ′

0, slightly different
from P0. The formation of phase B is quasistatic, on a timescale tevol.

If the phase transition is of first order, the scenario is essentially differ-
ent. The formation of phase B does not need to be quasistatic and can trigger
a neutron star corequake. The kinetics of the first-order phase transition is
complicated. Additional uncertainties arise from uncertainties in the physics
of dense matter. In what follows we will discuss the models of the nucleation
of the phase B in the metastable phase A. The nucleation is concerned with
fluctuations of parameters (such as the local density, or the number of particles
in a metastable drop of phase B which trigger the phase transition). Two sim-
plest versions of nucleation theory refer to two extreme cases. In the classical
regime, the temperature is assumed to be sufficiently high to trigger the phase
transition by a thermal fluctuation. Thermodynamic aspects of such a model
are described, for instance, in §162 of Landau & Lifshitz (1993), whereas its
kinetic aspects are presented in §§99,100 of Lifshitz & Pitaevskiı̆ (1981); also
see Langer (1969). In the quantum regime, below a characteristic temperature
TQ, thermal fluctuations are negligible compared to quantum ones. Quantum
fluctuations initiate a phase transition via the quantum tunneling effect (Lifshitz
& Kagan, 1972).

Let us consider fluctuations of density and composition at fixed P and
T . The relevant thermodynamic potential is the Gibbs free energy G. In the
static approximation for P > P0 the bulk phase B is preferable over phase A.
On fluctuation timescales (∼ 10−23 s, which is the characteristic timescale of
strong interactions), weak interaction processes are frozen. This can shift the
threshold condition, compared to the static one, leading to P ′

0 �= P0. Moreover,
this slowness can modify the properties of phases A and B, involved in the
fluctuations. For the sake of simplicity, we will neglect these effects and put
P ′

0 = P0. For a central stellar pressure higher than P0, phase A is metastable
within the neutron star core with P > P0, whereas phase B is stable. However,
the phase transition is hindered by the effects of the surface and Coulomb
energies. Only at P = Pcrit phase A becomes unstable against conversion into
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Figure 7.6. Left: First-order phase transition. The solid line denotes stable phases A and B.
Equilibrium phase transition AB occurs at P = P0, with the density jump from ρA to ρB.
The dotted line denotes a metastable phase A. At P = Pcrit this phase becomes unstable with
respect to A → B transition. Right: Second-order phase transition at ρAB. No density jump,
no metastability.

phase B (see Fig. 7.6). Of course, the formation of a droplet of phase B in the
medium of phase A is possible either via thermal or via quantum fluctuations
even at P < P0. However, the Gibbs free energy associated with the droplet
is G∗(Adrop) > 0, and such droplets always convert back to phase A. For
P > P0 the bulk phase B is stable. The probability of a local formation of
a droplet of phase B via a fluctuation decreases very strongly with increasing
the number of baryons Adrop in the droplet. For small Adrop, however, the
positive contribution of the surface energy to G∗ prevails over the gain in the
bulk binding, G∗(Adrop) > 0. This makes the droplet unstable with respect
to the reconversion to phase A. However, at some value Adrop = Acrit, the
energy excess due to the drop appearance vanishes, G∗(Acrit) = 0. These
“supercritical droplets” with Adrop > Acrit grow spontaneously, destabilizing
the metastable phase A and inducing the phase transition. The transition from
a configuration of the metastable pure phase A to a configuration of the stable
phase B in the stellar core goes via a combination of hydrodynamic and kinetic
processes.

The basic parameters of the transition can be related to thermodynamic
properties of both phases and their interface. For simplicity, we neglect Cou-
lomb forces and treat the densities in each phase as constant. We restrict our-
selves to fluctuations of Adrop ≡ A and put P ′

0 = P0. Let a droplet of phase B
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be spherical and have the baryon density nB
b . Then A = 4

3πR3nB
b implies

R = r0A
1
3 f

− 1
3

B , fB =
nB

b
n0

, r0 =
(

4π

3n0

) 1
3

= 1.14 fm . (7.53)

At P > P0 the bulk part of G∗ (proportional to Adrop) is negative,

G∗
bulk = −A∆µ , ∆µ ≡ µA(P ) − µB

b (P ) > 0 , (7.54)

whereas the surface contribution is positive,

G∗
surf = 4πr2

0A
2
3 f

− 2
3

B σ , (7.55)

where σ is the surface tension. Therefore, Acrit

Acrit =
1
f2
B

(
4πr2

0σ

∆µ

)3

. (7.56)

Another quantity of interest is the maximum value of G∗(A). It is the height
of the barrier to be crossed. This value is reached at A = AM:

AM =
8
27

Acrit , G∗
max = G∗(AM) = 4πr2

0 σ
28
81

A
2
3
crit f

− 2
3

B . (7.57)

The probability distribution P of fluctuations with a Gibbs free energy excess
G∗ is

P(G∗) =
1

kBT
exp
(

− G∗

kBT

)
,

∫ ∞

0
P(G∗) dG∗ = 1 . (7.58)

The nucleation rate can be calculated in the quasiclassical approximation (Lan-
dau & Lifshitz, 1976). For fluctuations of Adrop, the droplet radius R can be
treated as a generalized coordinate. The classical Lagrangian of the droplet is
then

L(R, Ṙ) =
1
2
Meff(R)Ṙ2 − G(R) , (7.59)

where the potential energy is the Gibbs free energy excess expressed as a func-
tion of R, and Meff is the effective droplet mass. The effective mass can be
calculated explicitly from the kinetic theory; the flow of matter is induced by the
motion of the droplet surface owing to a fluctuation of Adrop (see, e.g., Lifshitz
& Kagan 1972; for application to pion condensation see Haensel & Schaeffer
1982).

Let us assume that fluctuations are driven by strong interactions with char-
acteristic timescale τs ∼ 10−23 s ∼ 1 fm/c. Then the lifetime of a metastable
state, equal to the time of the formation of a single supercritical drop, is

τ = eW τs , (7.60)
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where eW is the retardation factor owing to the Gibbs free energy barrier. This
factor can be calculated in the quasiclassical approximation,

eW =
∫ ∞

0
dG∗ P(G∗) exp

[
−2

�

∫ R2

R1

√
2Meff(R) [G(R) − G∗] dR

]
,

(7.61)
where R1 and R2 are the classical turning points at which G(R) = G∗. The
integral over G∗ can be evaluated using the saddle point approximation.

The expressions for W are simplified in the thermal and quantum regimes.
These regimes are separated by a characteristic temperature TQ, which depends
on P . At T � TQ the quantum tunneling is negligible and W = Gmax/kBT .
On the contrary, at T � TQ the quantum tunneling dominates and W can be
approximated by its T = 0 value which corresponds to G∗ = 0:

W � −2
�

∫ R2

R1

√
2Meff(R)G(R) dR . (7.62)

These ideas have been applied for describing the nucleation of exotic
phases (pion condensate, kaon condensate, quark matter) in a supercompressed
neutron star core. However, the neutron star matter is more complicated than
liquid helium for which the original Lifshitz-Kagan theory was developed. Ad-
ditional complications are introduced by the multicomponent structure of the
matter, by the slowness of weak interaction processes, and by Coulomb inter-
actions between charged particles.

7.8.1 Pion condensation
A model for the nucleation of pion condensate in a supercompressed neu-

tron star core was proposed by Haensel & Schaeffer (1982), who discussed also
possible astrophysical consequences of this phenomenon. A normal neutron
star matter was approximated by a pure neutron matter. Different nucleation
paths were considered; the optimal path was found to depend on the temper-
ature of the metastable core. One possibility is to form a critical droplet of
the pion-condensed phase via a density fluctuation. Another way is to grow a
small pion-condensed drop to the critical size by a particle number fluctuation
(as suggested in the original Lifshitz-Kagan model). The system evolves along
the most probable path, which turns out to be a fluctuation of Adrop.

Let us describe the main results in a way independent of the model for the
pion-condensed phase. The value of Acrit strongly decreases with the growth
of the overcompression ∆Pover ≡ P − P0. Thus, the lifetime of an overcom-
pressed state decreases rapidly with increasing ∆Pover. The nucleation occurs
when tnucl(Pc) ∼ tevol(Pc). Because the tnucl(P ) dependence is steep, the crit-
ical value of P = Pnucl for triggering the phase transition can be determined
with a rather good precision. Haensel & Schaeffer (1982) and Muto & Tatsumi
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(1990) applied this approach to the nucleation of pion-condensate in the super-
compressed neutron star core made of a purely neutron matter. The authors
used the expression for the surface tension σ derived by Baym et al. (1971a). It
gives σ as a function of densities and energies of the drop and ambient matter.
The original expression was derived to describe the surface tension of atomic
nuclei in a neutron gas of the inner neutron star crust (see §§3.3.3). For the
pion condensation problem, a nucleus is replaced by a pion-condensed droplet.
This is reasonable because the π− condensation increases the proton fraction
compared to the ordinary neutron star matter (§7.3). On the other hand, the
neutron gas is replaced by the ordinary neutron star matter, which is also a good
approximation as long as neutrons are most abundant particles. Crucial for the
astrophysical applications is the overpressure ∆Pover needed for the nucleation
in the quantum regime. As mentioned before, the pressure Pnucl (or the cor-
responding density ρnucl) is determined rather well. Then one can obtain the
condition for the nucleation of pion condensate in the neutron star core during
the Universe age, tHubble � 1.5 × 1010 years. Muto & Tatsumi (1990) obtain
the required overcompression ∆Pover/P0 = 0.02 or 0.05, depending on em-
ployed model. Notice that putting tnucl = τ , where τ is given Eq. (7.60), we
consider the nucleation via the formation of a single drop.

Under typical conditions in the neutron star core (T � 109 K) the nucle-
ation proceeds via the quantum tunneling through the energy barrier. At much
higher T the thermal effects increase the nucleation rate through thermally ex-
cited droplet states. On the other hand, the growth of T increases Pcrit. For
a newly born neutron star with T � 1010 K the nucleation proceeds in the
thermal (classical) regime (Haensel & Schaeffer, 1982).

Let us make one comment on the importance of weak interactions. Phase
transitions are usually analyzed assuming the equilibrium with respect to weak
interactions (§7.3). However, weak interaction processes are slow and lepton
numbers can be frozen during the nucleation. The freezing, as well as the
inclusion of the Coulomb energy in the droplet formation will decrease the
nucleation rate compared to the rate obtained in beta-equilibrium. This will
increase the overpressure ∆Pover required for the nucleation.

7.8.2 Kaon condensation

The formation of a droplet of kaon condensate is connected with the pro-
duction of strangeness. In this case the nucleation should involve weak interac-
tion processes. For kaon condensation in the npeµ matter, whose equilibrium
properties were described in §7.4, the strange kaon-phase has to nucleate in the
non-strange medium. In this respect kaon condensation is different from pion
condensation or (B-Q) phase transition from baryon matter to quark matter,
where the first step is a strong-interaction process. For example, the first step in
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the B-Q phase transition is the formation of a droplet of two flavor, non-strange
(ud) quark matter in the non-strange baryon matter.

The surface tension at the interface between the normal and condensed
phases was calculated by Christiansen et al. (2000) using the non-uniform rela-
tivistic mean-field model. In the approximation in which only linear terms in the
curvature of the droplet surface are kept, the surface contribution to the thermo-
dynamic potential of a spherical droplet is σ = σs +2σc/R (see §3.4.2), where
σs is the surface tension, σc is the curvature coefficient, and R is the droplet
radius. Christiansen et al. (2000) obtain σs = 30 MeV for a small admixture
of kaon-condensed droplets in a nucleon matter. Unfortunately, their curvature
coefficient is negative, probably because of several oversimplified assumptions
made by the authors. Let us remind that the calculation of σc is ambiguous even
for a basic problem of nuclear surface; σc depends on the assumed position of
the phase interface (see, e.g., Douchin et al., 2000, and references therein).

The nucleation of kaon condensate in a non-strange npe matter was stud-
ied by Norsen (2002). He considered only the thermal regime and used the
nucleation theory of Langer (1969). He analyzed local density fluctuations at a
fixed volume and a fixed nucleon number of a matter element. In addition, he
assumed that the matter element is electrically neutral and contains one density
and charge fluctuation (in the Wigner-Seitz cell approximation). The central
quantities of this study are the free energy excess F ∗ implied by the fluctua-
tion, and the number of nucleons Acrit in the critical droplet. It was supposed
that the critical drop has enough time to acquire strangeness corresponding to
the kaon-condensed state. Following Christiansen et al. (2000), Norsen (2002)
used σs = (20–30) MeV fm−2 and neglected the curvature term in the surface
contribution to F ∗.

It turns out that weak interaction processes producing strangeness via e +
N → νe + K− + N (where an additional nucleon is needed for momentum
conservation) and n → p + K− are too slow to create a critical droplet of kaon
condensate from a density fluctuation during the fluctuation lifetime. Norsen
(2002) suggested that strangeness can be produced at a reasonable rate from
thermal kaon-antikaon (K−K+) pairs, but this mechanism can operate only
at extremely high temperatures typical for protoneutron stars (§1.4.2). For
kBT � 10 MeV it could operate only at a very high overcompression, where
Acrit and therefore F ∗ are sufficiently small. However, as Norsen (2002) argues,
a protoneutron star cools so rapidly that kaon condensate has actually no time
to nucleate.

The conclusion of the above discussion is unfavorable for kaon conden-
sation in neutron stars. Thus, a neutron star, whose central pressure at birth is
too low for the nucleation, but exceeds P0 later owing to accretion in a binary
system, may remain in a metastable non-kaon condensed state forever. How-
ever, as soon as µe > ω0

K− (where ω0
K− is the minimum energy of a single
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zero momentum kaon in dense matter), a spontaneous formation of kaons is
possible. This occurs at ρc = ρcrit, Fig. 7.6, and triggers the kaon condensa-
tion. Kinetics of kaon condensation at P > Pcrit was studied in detail by Muto
et al. (1997), Muto et al. (2000a), and Muto et al. (2000b). The timescale for
relaxation of dense matter to the equilibrium kaon-condensed state at ρ ∼ 4ρ0
and T = 1011 K is only 10−4 s, but grows to ∼ 10 s at 1010 K (Muto et al.,
2000b).

The “minimal model” of the npeµ matter may be an oversimplification.
The matter at densities relevant for kaon condensation can contain some frac-
tion of hyperons. As hyperons are strongly interacting carriers of strangeness,
their presence seems favorable for kaon condensation. A hyperon density fluc-
tuation with sufficiently large strangeness could be a seed to nucleate a droplet
of kaon-condensed matter without any strangeness production via weak inter-
actions, for instance, via n + Λ → p + n + K−. Such a strong interaction
process is allowed provided the in-medium energy of K− satisfies ωK− ≤ µe.
However, the presence of hyperons in thermodynamic equilibrium reduces the
electron number density and chemical potential. Consequently, it pushes up the
equilibrium threshold pressure for kaon condensation or even blocks kaon con-
densation at any density. Thus, the presence of hyperons alleviates the problem
of strangeness condensation but actually hinders kaon condensation in neutron
star cores (see Ramos et al., 2001, for a more detailed discussion).

7.8.3 Quark deconfinement
Quark deconfinement is a strong interaction process and therefore can be

described by standard methods. After the ud phase nucleates, weak interaction
converts about half of d quarks into s quarks via u + d → s + u , producing
a stable quark matter. Quark deconfinement is expected to occur at very high
densities, so that the nucleation should proceed in the quantum tunneling regime.

Iida & Sato (1997) used the model of Lifshitz & Kagan (1972), extended
to include the Coulomb contribution. The latter is available because the baryon
component, which undergoes deconfinement, is charged. Moreover, Ida and
Sato took into account the electron screening effect in the Thomas-Fermi ap-
proximation. The effect turned out to be important for the phase transition
dynamics. The time τ needed to form a single droplet of A = Acrit was calcu-
lated as a function of the overpressure. The authors varied the surface tension
σ at the interface of the ud quark matter and the nucleon matter in the range
σ = (5−20) MeV fm−2 because σ is very poorly known. The electron screen-
ing allows an ud droplet to grow unrestrictedly. On a timescale ∼ 10−9 s the
droplet converts, via weak-interaction processes, into the stable uds matter,
forming a central quark core of the neutron star. The surface tension σ de-
termines the overpressure needed to create a single supercritical droplet in a
given point. In Fig. 7.7 we show the time of the droplet creation (Iida & Sato,
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Figure 7.7. Time for the formation of a single droplet of the quark matter in the neutron star
center versus the central pressure P for four values of the surface tension σ. Equilibrium first
order phase transition between the nucleon matter and the deconfined ud phase takes place at
P = P0. From Iida & Sato (1997), with the kind permission of the authors.

1997) versus the pressure P > P0 for several selected values of σ. Notice a
paramount importance of σ. At a fixed value of ∆Poverv = 5 MeV fm−3, the
time of the droplet formation changes from τ < 10−20 s for σ = 5 MeV fm−2 to
τ > 10100 s for σ = 10 MeV fm−2! The formation of a single droplet over the
Universe age tHubble ∼ 1.5 × 1010 years requires an overpressure ∆Poverv/P0
from ∼ 0.01 for σ = 5 MeV fm−2 to ∼ 0.05 for σ = 20 MeV fm−2. Dissi-
pative effects in the quantum tunneling decrease the nucleation probability at a
given ∆Pover. These effects result from excitations of nucleons (unimportant
for superfluid nucleons) and from collisions of electrons with an expanding
quark droplet, which increase ∆Pover compared to the non-dissipative value
(Iida, 1997).

Because the nucleation of ud droplets (if any) is expected at high densities
ρ ∼ (5 − 10)ρ0, the baryon matter is likely to contain not only nucleons but
also hyperons. As shown by Iida & Sato (1998), the presence of a substantial
fraction of hyperons significantly lowers the density jump at the interface be-
tween the baryon matter and quark matter. This reduces an effective droplet
mass, Meff , making the nucleation easier than in the absence of hyperons. The
presence of hyperons also greatly reduces the lepton fraction as compared to a
purely nucleonic case. Therefore, in the hyperonic matter the effect of electron
screening, important for reducing the Coulomb term (that would otherwise limit
the growth of an ud droplet in the nucleon matter), is negligible. However, the
charge densities of baryon components are also so small, that the Coulomb term
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is unimportant in the nucleation. All in all, ∆Pover needed to get tnucl ∼ tevol
in the hyperonic matter, turns out to be a few times smaller than in the absence
of hyperons (Iida & Sato, 1998).

An important question is the outcome of the phase transition initiated by
the nucleation of a supercritical droplet of ud matter. The dynamics of the
growth of such a droplet was studied by Iida & Sato (1998). They find it likely
(due to a large speed of droplet expansion, combined with a relatively rapid
conversion of d quarks into s quarks) that the inner stellar core composed of the
quark matter originates from one supercritical quark droplet nucleated at the
stellar center. Putting it differently, the formation of the mixed phase of quark
matter and baryon matter in the neutron star core is unlikely.

It is clear from Fig. 7.7 that the surface tension in a quark droplet is crucial
for calculating the nucleation rate. Alas, this quantity is poorly known. It
is taken from theoretical studies of strangelets (droplets of self-bound strange
quark matter) in vacuum, assuming additionally αs = 0 (Madsen 1993a, 1994;
for a review see §3.2 of Madsen 1999 and references therein). Additional
complications and uncertainties stem from the curvature term in the surface
energy (§3.3.3 of Madsen 1999), which seems to be very important for the
stability of quark droplets with A � 100 (Madsen, 1993b) but is neglected in
calculations of the nucleation rate.

7.8.4 The nucleation of a mixed normal-exotic phase
Let us assume that the phase transition at P = P0 from a pure phase A to a

pure phase B is first order. Let us further suppose, following Fig. 7.4, that in the
pressure interval P

(m)
A < P < P

(m)
B thermodynamic equilibrium is realized in

the form of the mixed AB phase.
Consider a neutron star where the central pressure Pc increases at a rate

tevol ∼ Pc/Ṗc, owing to accretion in a binary system or owing to pulsar spin-
down. Let the stellar core initially consist of the pure phase A. If the internal
stellar temperature is � 109 K (see, e.g., Miralda-Escudé et al., 1990), ther-
mal fluctuations are negligible and phase B can nucleate only via quantum
fluctuations. However, as long as Pc < P0, the nucleation in the quantum
regime takes too much time (τ → ∞). The actual nucleation will start at some
Pc = Pnucl > P0 by the formation of a single droplet. If the expansion rate of
the first droplet is larger than the formation rate of other droplets in the core,
then the pure phase B will fill the central stellar core with P ≤ P0. This core
will then coexist with the outer layer of phase A, with the baryon density drop
nB − nA at the interface. Such a scenario seems likely in the nucleation of the
quark matter (§7.8.3). Its consequences will be analyzed in §§7.9.4 and 7.10.

The central temperature of a protoneutron star stays high, Tc � 1011 K, for
some tens of seconds. This time may be sufficient to complete the nucleation
of phase B at P < P0 and mix phases A and B, achieving thermodynamic
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equilibrium. However the stellar core may have no possibility to remain in
thermodynamic equilibrium because of too rapid cooling to T � 1010 K. Thus,
the final mixed state may be different from the strict ground state of the core at
T = 0. This mixed phase may remain “frozen” in some metastable state.

Finally, let us mention two difficulties in forming a mixed phase of kaon-
condensed matter. As discussed in §7.8.2, it is difficult to nucleate kaon con-
densate because of slow weak interaction processes. One needs very high
T � 1011 K and low kaon effective masses for the condensation via thermal
fluctuations. This may happen only in massive newly born neutron stars with
exclusively high central temperatures and densities, where a mixed-phase core
could be formed. Medium-mass neutron stars have insufficiently high cen-
tral densities to nucleate kaon condensate at their birth. On the other hand,
high-mass neutron stars, which gain their mass by accretion, can remain in
a metastable state forever, because their internal temperature is too low for
nucleating kaon condensate in their cores.

7.9. Phase transitions and neutron star structure
In previous sections we analyzed the effects of first-order and second-order

phase transitions on the EOS of dense matter. Now let us discuss possible impact
of these effects on neutron star structure. Unfortunately, the existence of exotic
phases cannot be strictly proven by the present theory. Therefore, the question
Is a specific exotic phase present in a neutron star core? can be answered
only by unambiguous identification of signatures of this phase in neutron star
observations.

We will pay special attention to the behavior of global stellar parameters
just after the formation of a new phase in the stellar core. The general relativistic
theory was developed by Haensel et al. (1986a) and Zdunik et al. (1987); its
simpler Newtonian version had been presented earlier by Schaeffer et al. (1983).

7.9.1 Linear response to a phase transition in the neutron
star center

A stellar configuration with a small core of the higher-density phase B can
be constructed by considering a perturbation of the “reference” configuration C0
with the central pressure Pc = P0 (at the phase transition point) and the central
density ρA (of the lower-density phase A at this point). Global parameters of
C0 will be marked by the subscript 0. Configurations built exclusively of phase
A will be denoted by C, whereas those containing the higher-density phase
phase B will be denoted by C∗. Let rB be the radius of the B-phase core (Fig.
7.8). Stellar parameters of configurations C∗ will be marked by asterisk. The
small parameter of the perturbative expansion is rB ≡ rB/R0. In view of its
smallness, the only parameters characterizing the phase transition at P = P0
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Figure 7.8. Metastable one-phase stellar configuration C with Pc > P0 and stable configuration
C∗ with the same baryon number. Configuration C has an overcompressed stellar core of radius
rA , such that ρ(rc) = ρA . Configuration C∗ has a core of the phase B of radius rB with
P ∗(rB) = P0. For further explanations see the text.

are the densities (ρA , ρB)10 and adiabatic indices (γA , γB) at both sides of the
phase transition. To the lowest order in rB , the central density of configuration
C∗ with a small core of the new phase B is

ρ∗
c � ρB

(
1 +

1
6

κB r2
B

)
, (7.63)

where xB = P0/(ρBc2) and the parameter κB is defined by

κ2
B

= (1 + xB)(1 + 3xB)
4πGρB R2

0
v2

B

, v2
B

=
(

dP

dρ

)
B

, (7.64)

where vB is the sound speed in phase B at P = P0.11 In the lowest-order
approximation, the global parameters characterizing configuration C∗ with a
small core of phase B are:12

M∗ = M0 + (3 − 2λ + 3xA) cM rB
2 , (7.65a)

A∗ = A0 + (3 − 2λ + 3xA) cA rB
2 , (7.65b)

R∗ = R0 + (3 − 2λ + 3xA) cR rB
2 , (7.65c)

I∗ = I0 + (3 − 2λ + 3xA) cI rB
2 , (7.65d)

where xA = P0/(ρAc2), and λ = ρB/ρA specifies the density jump. Coeffi-
cients cM , cA, cR, and cI can be calculated numerically after constructing the
reference configuration C0 (Haensel et al., 1986b; Zdunik et al., 1987).

10The density jump (ρB > ρA ) corresponds to first-order phase transition. There is no density jump
(ρA = ρB ) for second-order phase transition or for transition to a mixed phase.
11Derivatives of any physical quantity Q with respect to density (or any other variable) for configuration C∗,
taken at sides A and B of the phase interface, will be denoted by ( dQ/ dρ)A and ( dQ/ dρ)B , respectively.
12To avoid confusion, in the rest of the present chapter the total baryon number of a stellar configuration will
be denoted by A.
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Figure 7.9. Stellar mass versus central density for EOSs with a phase transition at P = P0

without any density jump (thick lines). C0 is the last stellar configuration composed exclusively
of phase A; its central pressure and density are Pc = P0 and ρc = ρA . Thin lines represent
configurations calculated for the EOS without any phase transition. Dotted segments show
unstable configurations. Panel (a): Moderate softening of the EOS. Panel (b): Strong softening
producing the unstable branch between C∗

m and C∗
min (the thick dotted line) and the separate

branch of superdense stars between C∗
min and C∗

max.

In the same way one can obtain the expressions for the global parameters
of configuration C of the pure phase A, with a small overcompressed core of
radius rA and central density ρc � ρA(1+ 1

6 κ2
A

r2
A
). It is sufficient to put λ = 1

and replace all indices B by A.
In what follows, we will distinguish the case of moderate and strong soft-

ening of the EOS by a phase transition. We will refer to the phase transition
as moderate, if it does not produce an unstable segment in the M − R and
M − ρc curves. In the opposite case of strong softening, the phase transition
will produce this unstable segment, which separates a family of lower-density
stars from a distinct family of superdense compact objects.

7.9.2 Moderate softening without any density jump
In this case ρ(P ) is continuous, λ = 1, but the adiabatic index γ = (nb/P )

dP/ dnb drops when the new phase forms at ρ = ρA . The appropriate M − ρc
curve is displayed in Fig. 7.9a. This situation is typical for hyperonization and
also for transitions to a mixed phase (baryons and pion or kaon condensate,
baryons and quark matter). In the latter case, the mixed phase exists up to
some limiting density, where phase A disappears and γ undergoes the second
discontinuous change (actually, an increase).

Derivatives of the global parameters (M , I , R, and A) with respect to ρc are
easily calculated using Eqs. (7.65) in the vicinity of C0. They are discontinuous
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at ρc = ρA . Let ( dM/ dρc)A and ( dM/ dρc)B denote dM/ dρc taken at the
lower-density and higher-density sides of ρc = ρA , respectively.

It is straightforward to calculate ( dM/ dρc)B
using the formulae of §7.9.1.

First we express both dM∗ and dρ∗
c in terms of rB ,

dρ∗
c =

1
3

ρB κB rB drB , dM∗ = 2 (1 + 3xB) cM rB drB , (7.66)

which results in (
dM∗

dρ∗
c

)
B

= 6 (1 + 3xB)
cM

ρB κB

. (7.67)

Similarly, we can calculate the derivative from side A taking into account that
it is continuous along the one-phase (C) family,(

dM

dρc

)
A

= 6 (1 + 3xA)
cM

ρA κA

. (7.68)

Because ρB = ρA and xB = xA in a second-order phase transition, we finally
get (omitting asterisks): (

dM

dρc

)
B

=
γB

γA

(
dM

dρc

)
A

. (7.69)

Similar relations hold for dI/dρc and dR/ dρc. Therefore, the derivatives
dM/ dR, dI/dM , and dI/dM are continuous when the new phase forms.
Using Eq. (7.69) one can also show that dM/ dPc is also continuous at Pc = P0.

7.9.3 Strong softening without any density jump: The third
family of compact stars

This is the case of extremely strong decrease of γ after the phase transition,
followed by hardening of the EOS at still higher densities. In this case the
M −ρc curve has two stable branches of static equilibrium configurations (Fig.
7.9b) corresponding to two distinct families of neutron stars. The first (lower-
density or normal) family is continuously connected with low-mass neutron
stars. The second family contains “compact neutron stars”. It will be called
the “higher-density family” or “superdense family”. The stable configurations
belonging to the superdense family have central densities ρ∗

min < ρ∗
c < ρ∗

max
and masses M∗

min < M∗ < M∗
max. They are more compact and tightly bound

than configurations containing the same number of baryons and belonging to
the normal branch.

The family of superdense stars deserves a general remark. These stars
form actually the third family of compact stars built of degenerate matter, after
the well known white dwarfs and “lower-density” neutron stars.
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Two examples of phase transitions with strong softening of the EOS
without any density jumps are given by Glendenning & Kettner (2000) and
Schaffner-Bielich et al. (2002). In the model of Glendenning & Kettner (2000),
the softening results from the appearance of a phase of quarks and baryons
and takes place for a substantial quark fraction. Their EOS stiffens at higher
densities when the mixed phase is replaced by the pure quark phase. In the
model of Schaffner-Bielich et al. (2002) the softening is due to the copious
appearance of hyperons. It is followed by a substantial stiffening of the EOS
at higher densities. Similarly to the first example, it leads to the appearance
of the “higher-density branch” of the M − ρc curve; the models belonging to
this branch are mostly composed of hyperons. In both examples, the maxi-
mum mass of the “higher-density branch” is lower than for the “lower-density”
family, M∗

max < Mmax.
At the same baryon number, the energy M∗c2 of a high-density configura-

tion is smaller than the energy of a lower-density one. Let A∗
min and A∗

max de-
note the limiting baryon numbers of stable configurations of the higher-density
branch. For A∗

min < A < A∗
max, true stable configurations are those belonging

to the higher-density branch, whereas configurations consisting of the same
number of baryons and belonging to the lower-density branch are metastable.
Possible manifestations of these properties will be discussed in §§7.9.7 and
7.9.8.

7.9.4 Moderate softening with density jump
Now consider the softening of the EOS due to a phase transition accompa-

nied by a density jump. The phase transition occurs at P = P0, where the pure
phase A of density ρA coexists with the pure phase B of higher density ρB . Then
the relative density jump is λ = ρB/ρA > 1. Because of the discontinuity of ρ
at P = P0, equilibrium configurations have to be parameterized by the central
pressure Pc. Let us remind that for any global parameter Q of an equilibrium
configuration

dQ

dρc
=

c2Pcγc

Ec + Pc

dQ

dPc
. (7.70)

Consider configurations in the vicinity of C0. As can be deduced from
Eqs. (7.65), the appearance of a core of the new phase implies a discontinuous
change of the derivatives dM/ dPc and dR/ dPc. Using the same method as
in §7.9.2, we get(

dM

dPc

)
B

=
2(λ − λcrit)

1 + 3xB

(
dM

dPc

)
A

, λcrit ≡ 3
2

(
1 +

P0

ρAc2

)
. (7.71)

The equations for the derivatives of I and R are similar. Although these deriva-
tives suffer jumps, the derivatives dM/ dR, dI/dR, dI/dM are continuous
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Figure 7.10. Mass versus central pressure for EOSs containing phase transition with a den-
sity jump (thick lines). C0 is the last configuration (Pc = P0) composed exclusively of the
lower-density phase. Thin lines show configurations calculated using EOSs without any phase
transition. Dotted segments correspond to unstable configurations. Panel (a): Moderate soften-
ing of the EOS. Panel (b): Strong softening producing the unstable branch between C0 and C∗

min

(the thick dotted line) and the separate branch of superdense stars between C∗
min and C∗

max. For
further explanation see the text.

at the phase transition.13 Of course, Eq. (7.71) transforms into Eq. (7.69) in the
limit of λ → 1.

Let us stress the importance of the factor λ − λcrit = (3 − 2λ + 3xA)/2.
In principle, it could be negative. Then the first-order phase transition could
destabilize a stellar configuration (see the next subsection). However, for mod-
erate softening with λ � 1.5, considered in the present subsection, this factor
is positive.

7.9.5 Strong softening with density jump: The third family
of compact stars

Such a phase transition corresponds to λ = ρB/ρA > λcrit. In this case the
appearance of a small core of phase B destabilizes the neutron star. Using Eqs.
(7.65) one can see that in the presence of such a core dM/ dρc < 0. These
configurations are therefore unstable and collapse into stable configurations
with large cores of phase B. The instability condition λ > 3

2(1 + P0/ρAc2)
had been first derived by Seidov (1971) using the static energy method. Ten

13This property stems from the the linear response theory formulated in 1986–1987 (Haensel et al., 1986a;
Zdunik et al., 1987). Later it was rederived by Lindblom (1998) who used detailed and strict mathematical
analysis of equilibrium configurations for an EOS exhibiting first-order phase transition.
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Figure 7.11. Vicinity of the “reference configuration” C0 with Pc = P0 in the M −R plane for
phase transitions with λ < λcrit (left) and λ > λcrit (right). The dotted segment corresponds
to unstable two-phase configurations. Arrows connect configurations with the same baryon
numbers.

years later this condition was rediscovered by Kaempfer (1981) who studied the
necessary condition for the onset of neutron star collapse initiated by a phase
transition in its center. It is worth to mention that the Newtonian version of this
criterion (λ > 3

2 ) had been first obtained by Lighthill (1950) (see also Ramsey,
1950) in the context of stability of planets. Relativistic effects stabilize neutron
stars with small cores of phase B by increasing λcrit. The increase can be as
high as ∼ 0.2. The dynamics of the collapse of configurations with a small
core of phase B will be studied in §7.9.8.

Stable equilibrium configurations of neutron stars split into two families
visualized in Fig. 7.10b. The superdense branch C∗

minC∗
max forms the third

family of compact stars, apart from white dwarfs and lower-density neutron
stars. Contrary to the instability triggered by second-order phase transition
(associated with the hyperonization or the appearance of a mixed phase of
quarks and baryons, §7.9.3), for the instability at λ > λcrit one typically has
Mmax < M∗

max and Amax < A∗
max (see, e.g., Brown & Weise, 1976; Haensel

& Prószyński, 1982; Migdal et al., 1990). Possible observational consequences
of this behavior are described in §7.9.8.

7.9.6 The proof of the inequality M∗(A) < M(A)
Let us consider the right panel of Fig. 7.11 and introduce the dimensionless

quantity F =
√

1 − 2GM/Rc2. We will treat F as a function of the baryon
number of a neutron star configuration and distinguish three branches of the
M − R diagram. The branch of normal configurations has A(C) < Amax; the



398 NEUTRON STARS

dependence of F on A along this branch will be denoted as F (A). The second
branch between C0 and C∗

min refers to unstable configurations with A∗
min <

A < A0, where A0 ≡ A(C0); the corresponding function will be denoted by
Funst∗(A). Finally, the third branch describes stable compact configurations
with A∗

min < A < A∗
max; the associated function will be denoted as F∗(A).

Consider configuration C1 with the same baryon number as C∗
1 (Fig. 7.11).

Using the small-increment theorem, Eq. (6.52), we can express the masses of
both configurations as

M(C1) = M(C0) +
∫ A1

A0

F (A) dA , (7.72)

M(C∗
1) = M(C∗

0) +
∫ A1

A0

F∗(A) dA . (7.73)

On the other hand, the small-increment theorem enables us to relate M(C∗
0) and

M(C0),

M(C∗
0) = M(C0) +

∫ A0

A∗
min

[F∗(A) − Funst.∗(A)] dA . (7.74)

At a given A, the differences in the values of M(A) of the three branches are
much smaller than the differences in R. Therefore, one has F (A) > F∗(A)
and Funst∗(A) > F∗(A) under the integrals, and thus M∗(A) < M(A). The
proof is even simpler for a C1 → C∗

1 transition shown in the left panel of Fig.
7.11.

The inequality M∗(A) < M(A) is quite general. It means that the change
in the EOS associated with the phase transition always lowers the total energy
of the star. However, the reader should be warned that the energy excess ∆E =
(M − M∗)c2 is usually very small. Therefore, while calculating ∆E one has
to be sure that the EOS satisfies the condition of thermodynamic consistency
discussed in §6.4.1. Otherwise, there is a danger of violating the strict inequality
M∗(A) < M(A), leading to an apparent paradox: a phase transition in a
neutron star core is blocked by global energy conservation!

7.9.7 Nonequilibrium first-order phase transition and its
consequences

Nucleation initiated by first-order phase transition was analyzed in §7.8.
Here we discuss the nucleation of a new phase in the stellar center associated
with the compression of matter owing to accretion or pulsar spindown. The
compression timescale in the stellar center is tcomp ∼ Pc/Ṗc. As stressed in
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§7.8, the problem of phase transitions is kinetical.14 LetP0 be the pressure of the
equilibrium phase transition. In the quantum tunneling regime the nucleation
time at Pc = P0 is infinite. Therefore, in reality the phase transition will take
place off equilibrium, in a metastable core at some Pc > P0 at which tnucl ∼
tcomp. The nonequilibrium appearance of the new phase in a supercompressed
stellar core will destroy hydrostatic equilibrium. It is expected to trigger a
neutron star “corequake” (or “minicollapse”) due to the rapid formation of a
core of a denser phase. It produces a discontinuous drop of the moment of
inertia I and a jump of rotation frequency, i.e., a pulsar glitch (§1.4.4).

Even more serious complications arise in a transition to a mixed phase.
An example is a mixed quark-baryon phase considered by Glendenning et al.
(1997). In full equilibrium, this phase exists at P > P (m)

A
, lower than the

pressure required for the equilibrium first-order phase transition from a pure
baryon phase to a pure quark phase. Thus, the nucleation of the denser phase at
P = P (m)

A
is virtually impossible at temperatures of a few times 108 K typical

for interiors of middle-aged radio pulsars. Therefore, the phase transition will
proceed in a nonequilibrium way at much higher pressure. It is expected to lead
to the formation of the pure quark core (see §7.8.4) and it will be accompanied
by a strong stellar corequake. The drop in I and the jump in spin frequency,
occurring on a dynamical timescale, will be significant. Therefore, we expect
that characteristic signatures of quark-deconfinement phase transition are dif-
ferent from those resulting from an equilibrium formation of the mixed-phase
core considered for instance, by Glendenning et al. (1997) and Chubarian et
al. (2000). Only a very high temperature in a newly born neutron star could
allow for the formation of a mixed phase in quasi-equilibrium, because strong
thermal fluctuations would produce then a very rapid nucleation of the quark
phase.

7.9.8 Large-amplitude corequake and collapse
This phenomenon may occur if the softening of the EOS in a phase tran-

sition results in two families of stable configurations; see Fig. 7.10b. Consider
configuration Ci on the lower-density branch in Fig. 7.11b. Strictly speaking,
Ci is metastable, because configuration C∗

i with the same baryon number has
lower energy. However, the transition Ci → C∗

i would require overcoming a
huge energy barrier. Therefore, it can occur only at the neutron star birth, when
the required energy could be provided by large-amplitude motions. Otherwise,
configuration Ci can be treated as stable. If the neutron star accretes matter, its
equilibrium configuration changes quasistatically, moving upward along the C-

14Even for the simplest transition with the appearance of a new hyperon species one has to check if the system
is in full equilibrium. Typically, it is not because at T � 108 K, characteristic of middle-aged pulsars, the
timescale of establishing beta equilibrium in the npeµ matter is longer than the compression timescale.
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branch. The central pressure will increase reaching at some moment the value
Pc = P0 corresponding to the equilibrium first-order phase transition. How-
ever, as the compression of the matter in the stellar center is quasistatic and
takes place at relatively low temperature, the star will continue moving along
the thin line C having a small growing core of metastable, supercompressed
phase A. When the over-compression reaches the critical value ∆Pnucl in the
center of configuration C1, phase B will start to nucleate, initiating a transition
to configuration C∗

1 with a large core of phase B. The kinetics of the nucleation
of pion condensate, kaon condensate, and quark matter has been analyzed in
§7.8.

During the collapse C1 → C∗
1 , the stellar radius shrinks and a large amount

of energy is liberated. The moment of inertia decreases, accelerating stellar
rotation. The dynamics of a large-amplitude collapse triggered by a first-order
phase transition was studied by Migdal et al. (1979); Kaempfer (1982); Berezin
et al. (1982, 1983); Berezin & Dmitrieva (1984); Haensel et al. (1990a). Neu-
tron star corequakes (or mini-collapses) produced by first-order phase transi-
tions in the neutron star cores were useful in modeling some gamma-ray bursts
(Ramaty et al., 1980, 1981; Ellison & Kazanas, 1983; Haensel & Prószyński,
1982; Muto & Tatsumi, 1990). However, detailed hydrodynamic simulations
of such a mini-collapse show that while the collapse and subsequent bounce
can easily impart the energy � 1050 erg in the ejected envelope, the rest mass
of the ejecta is too high to consider this phenomenon as a viable gamma-ray
burst mechanism (Fryer & Woosley, 1998). To get the mean Lorentz factor
[1 − (v/c)2]−1/2 � 100 required for producing a fireball and subsequent ob-
served gamma-ray burst at a cosmological distance, an energy ∼ 1051 erg must
be imparted in less than 10−5 M� of the ejected baryon mass; the calculated
rest mass of the ejecta turns out to be orders of magnitude larger.

The case shown in Fig. 7.9b is different. Consider configuration C1 on the
lower-density branch and assume the hyperonization of dense matter. Accre-
tion will quasistatically change the configuration, increasing its mass, baryon
number, and central density. The appearance of hyperons will soften the EOS
and bend the M − ρc line. After reaching Cmax, the star is doomed to a col-
lapse: further accretion triggers the dynamical instability. If Amax > A∗

max
the star collapses into a black hole. The families of neutron star configurations
with Amax > A∗

max were constructed by Glendenning & Kettner (2000) and
Schaffner-Bielich et al. (2002). It is clear, that the high-density branch between
C∗

min and C∗
max cannot by reached in the course of the quasistatic evolution of

configurations belonging to the normal, lower-density branch. Consider con-
figuration C1 of such a total baryon number A1 that A∗

min < A1 < A∗
max. It

has lower binding energy than configuration C∗
1 of the same total baryon num-

ber. While C1 is strictly speaking metastable, the transition C1 → C∗
1 requires

overcoming a huge energy barrier. Therefore C1 is actually stable with respect
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to small-amplitude perturbations and a transition to the high-density branch
requires large-amplitude motions with the kinetic energy exceeding the height
of the relevant energy barrier. This situation may occur at the neutron star birth
in a gravitational collapse of a massive stellar core with A < A∗

max.

7.10. Changes in stellar parameters due to a corequake
Consider an EOS with a first-order phase transition at P = P0, as shown in

Fig. 7.6a. Let the pressure in the neutron star center be Pc < P0. Assume that
Pc increases due to accretion or pulsar spindown. The compression timescale
is tcomp ∼ Pc/Ṗc. As long as Pc ≤ P0, the stellar core is built of the pure,
stable phase A; such a configuration will be denoted by C. After Pc crosses P0
two possibilities can occur. If the nucleation timescale tnucl of phase B is much
shorter than tcomp then the core of phase B starts to grow just after Pc exceeds
P0. However, because the star is relatively cold and the energy barrier is rather
high, we typically have tnucl � tcomp and the compression to Pc > P0 will lead
to the formation of a metastable core of supercompressed phase B. The radius
of this core rA is determined by the equation P (rA) = P0. With the increase
of Pc the value of tnucl rapidly decreases. At some Pc = Pnucl (corresponding
to the central density ρnucl) we have tnucl ∼ tcomp and phase B will nucleate.
This will lead to a local pressure deficit, violation of hydrostatic equilibrium,
and a corequake resulting in the formation of a stable configuration C∗ with a
core of phase B. The core radius rB is determined by P (rB) = P0.

Let us assume that there is no mass ejection during the C → C∗ transition,
A(C)∗ = A(C). We will determine changes in stellar parameters, such as R,
I , and M , for the case in which rA and rB are much smaller than the stellar
radius and deviations from spherical symmetry are negligible. In this case we
can apply the linear response method developed by Haensel et al. (1986b) and
Zdunik et al. (1987). The main results are described below.

Let C0 be the last stable configuration of phase A (Pc = P0). It will be used
as a reference configuration; its parameters will be labelled by “0”. As already
mentioned in this chapter, small dimensionless parameters of the problem are
rA ≡ rA/R0 and rB ≡ rB/R0. The condition A(C) = A(C∗) leads to the
relation between rA and rB . It can be obtained neglecting fourth and higher
powers of rA and rB :

(1 + 3x0) r2
A

= (3 − 2λ + 3xA) r2
B

− (λ − 1) a r3
B

. (7.75)

Here, λ = ρB/ρA > 1 and xA = P0/ρAc2; the dimensionless factor a can be
calculated after constructing the reference configuration C0.

For ρc(C0) � 2ρ0 the factor a increases with the growth of mass M0 =
M(C0) (Haensel et al., 1986b). In the linear-response approximation (which is
valid at M0 � 0.9 Mmax) for a broad class of EOSs of phase A this dependence
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can be fitted by a simple formula (P. Haensel 2002, unpublished)

a(M0) � 15 (M0/Mmax)
2 . (7.76)

In order to avoid the introduction of non-linear terms, we assume that
configurations C∗ with any arbitrarily small core of phase B are stable. This is
valid for 3−2λ+3xA > 0 (see §7.9.4), when rA → 0 implies rB → 0. Then the
linear response method enables us to derive simple lowest-order expressions for
the changes in R and I due to the transition C → C∗ associated with a corequake
(see Fig. 7.8):

∆R = R(C∗) − R(C) = −(λ − 1) αR r3
B

R0 + O(r5
B
) , (7.77)

∆I = I(C∗) − I(C) = −(λ − 1) αI r3
B

I0 + O(r5
B
) , (7.78)

where αR and αI are dimensionless parameters defined by the basic configura-
tion C0. In the mass range M� � M0 � 0.9 Mmax they depend weakly on P0.
For a medium-stiff EOS of phase A Haensel et al. (1986b) obtained αR � 3
and αI � 7.

The appearance of the core of phase B is accompanied by the energy release

∆E = [M(C) − M(C∗)] c2 , (7.79)

which results from the gain in the gravitational energy partly compensated by
the increase of the proper (internal) energy (see §6.3) due to the compression of
the stellar matter. As shown by Zdunik et al. (1987), this compensation removes
the terms proportional to r3

B
and r4

B
, leaving ∆E ∝ r5

B
. The expression for

∆E is derived by combining the linear response approximation with the small-
increment theorem, Eq. (6.52):

∆E = (λ − 1)αE r5
B

[
3 − 2λ + 3xA − 5

4
(λ − 1)arB

]
E0 + O(r7

B
) , (7.80)

where E0 = M0c
2 = 1.788×1054 M0/M� erg. For moderately stiff EOSs of

phase A and M� � M0 < 0.9 Mmax, one gets a remarkably constant αE � 0.2
(Haensel et al., 1986b).

7.10.1 Estimates of ∆R, ∆I, and ∆E in corequakes
The lowest-order approximation for ∆R can be rewritten as

∆R � −3(λ − 1)
( rB

100 m

)3
(

10 km
R0

)2

m . (7.81)

The actual shrinking of the stellar radius may be very small. Assuming R0 =
10 km, one gets the shrinking by ∆R � 2 m for a 100 m core and λ − 1 =
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0.2. However, recall that the shrinking occurs in a huge gravitational field.
Moreover, ∆R ∝ r3

B
. For rB = 500 m and the same λ we obtain ∆R � 200

m, an impressive neutron star quake which would be terrifying by our terrestrial
standards.

The lowest-order approximation for ∆I is

∆I

I
� −7 × 10−6 (λ − 1)

( rB

100 m

)3
(

10 km
R0

)3

. (7.82)

Assuming again R0 = 10 km , rB = 100 m, and λ − 1 = 0.2 the change in I
will induce a pulsar spin-up typical for pulsar glitches (§1.4.4). For rB = 500
m, one gets a spin-up with ∆Ω/Ω = |∆I|/I � 10−4 which becomes a distinct
manifestation of a phase transition in the stellar core.

The upper bound to the energy release ∆E due to a neutron star corequake
in the lowest-order linear response approximation reads:

∆E � 5 × 1043 (λ − 1) [3 − 2λ + 3xA + (λ − 1) a rB ]

×
( rB

100 m

)5
(

R0

10 km

)5 M0

M�
erg . (7.83)

For M0 = 1.4 M�, a = 10 and λ − 1 = 0.3, the formation of the core with
radius rB = 100 m is accompanied by the energy release ∼ 1044 erg. The
energy release grows rapidly with increasing rB . For rB = 1 km, we get
∆E ∼ 1049 erg.

7.11. Mixed-phase core and neutron star corequakes
Consider a phase transition to a mixed phase AB (labeled by ‘m’). Let the

central pressure of a stellar configuration C be slightly lower than the threshold
pressure P (m)

A
for the appearance of the mixed phase (Fig. 7.11a). Let the

central density and pressure increase owing to accretion or stellar spindown.
After Pc crosses P (m)

A
, a metastable core of phase A with radius rA starts to

grow. The nucleation of phase B in the metastable phase A will trigger the
transition C → C∗, where the stable configuration C∗ is assumed to have a
mixed-phase core of radius rm. In contrast to the case described in §7.10, we
have no density jump at P = P (m)

A
, so that λ = 1 and it is only the adiabatic

index γ which suffers a drop at P = P (m)
A

. We have γA > γm, where γA and
γm are the adiabatic indices of phases A and m at P = P (m)

A
. The leading-

order expressions for the changes of R, I , and E (the energy release) in a
corequake initiated by the C → C∗ transition can be obtained in the linear
response approximation (as in §7.10). The only parameter of the mixed-phase
EOS, which enters leading-order expressions, is the adiabatic index calculated
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in the limit of vanishing fraction of phase B,

γm =
(

nb

P

dP

dnb

)
P=P

(m)
A +0

. (7.84)

The drop of γ at P = P (m)
A

is as significant as the jump of nb at P = P0 for
a transition between pure phases. Therefore, it is convenient to factor-out the
dependence of leading quantities on γA and γm in such a way that the linear
response coefficients vanish automatically at γA = γm. Following Bejger et al.
(2005a), we can rewrite the leading-order formulae in the form:

∆R = R(C∗) − R(C) = −(γA/γm − 1) βR r5
m R0 ,

∆I = I(C∗) − I(C) = −(γA/γm − 1) βI r5
m I0 ,

∆E = [M(C) − M(C∗)]c2 = (γA/γm − 1) βE r7
m M0c

2 . (7.85)

Lower-order terms available at λ > 1 in Eqs. (7.77), (7.78), and (7.80) are now
absent because they contain the factor (λ − 1) vanishing at λ = 1.

For a given EOS of non-exotic phase A, the coefficients βQ are well defined
functions of M0. Bejger et al. (2005a) calculated them versus M0 for the SLy
EOS. In the mass range 0.8 M� � M0 � 1.5 M� they stay almost constant,
βR � 0.8, βI � 2.0, and βE � 0.5. Notice that these constant values of βQ

are close to one-third of the parameters αQ (which determine linear response
to a first-order phase transition considered in §7.10 for a medium-stiff EOS).

For 1.5 M� � M0 � 0.9 Mmax, the values of βQ smoothly increase with
growing M0. At M0 ∼ 0.9 Mmax they are larger than the constant values. All
in all, βQ vary by less than a factor of two within a broad range of masses
0.5 M� � M0 � 0.9 Mmax. Similar results were obtained also for the FPS
EOS (Bejger et al., 2005a).

Parameters βQ rapidly increase for M0 → Mmax as well as in the limit
of low M0. A strong increase of βQ indicates a strong softening of the star
with respect to radial perturbations when a core of the mixed phase appears,
and implies the breakdown of the linear response approximation. In both cases
of high and low M0, one approaches an instability with respect to small radial
perturbations. At M0 → Mmax this is the relativistic maximum-mass instability
leading to a collapse into a black hole (§6.5.1). For M0 → Mmin � 0.1 M�,
neutron stars become less bound, ready to be unstable with respect to explosion
(see §§6.5.1 and 6.7.2).

The problem of the nucleation of phase B in the mixed-phase state has been
discussed in §7.8.4. For an accreting or spinning-down pulsar, thermal effects
are expected to be small and phase B will nucleate at Pc = Pnucl � P0 > P (m)

A
.

Then phase B will likely equilibrate with phase A by forming a mixed-phase
state, which extends to pressures P (m)

A
< P0. Therefore, at a fixed stellar baryon
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number A, both rA and the radius rm of the mixed-phase core are expected to
be larger than the radius rB for the core of pure phase B.



Chapter 8

STRANGE MATTER AND STRANGE STARS

8.1. Introduction

This chapter is different from others. It deals with objects which, at the
time of this writing, are hypothetical. We do not know whether strange matter
and strange stars exist or not. We start with the discussion of the strange matter
hypothesis (§8.3). Its history is described in §8.4. Models of strange matter are
presented in §§8.5–8.8. Finally, §8.9 is devoted to other speculative self-bound
phases of super-dense matter.

Assuming the strange matter hypothesis, we develop models of strange
stars. The history of strange-star physics is presented in §8.10. Models of
non-rotating bare strange stars are studied in §8.11. In §8.12 we present the
proof that strange stars do not contain heavy quarks (c, b, t). The surface of
bare strange stars is studied in §§8.14 and 8.15. §8.16 is devoted to strange
stars with the crust of normal matter. Apparent radii of strange stars, important
for their observational identifications, are studied in §8.17. A conversion of
neutron stars into strange stars is outlined in §8.19. Basic properties of “even
stranger” stars built of abnormal matter and Q-matter are reviewed in §8.20.
Rotating strange stars are studied in §8.21.

8.2. Units

A comment on units may be useful. In the literature, two different conven-
tions concerning the bag constant B of the MIT Bag Model are used. Particle
physics theorists prefer to set � = c = 1 and measure B in MeV4. We will
denote this value by B. However, one often prefers to measure the bag constant
in the “nuclear physics units,” MeV fm−3, and we follow this convention. Our
value of the bag constant, denoted by B, is related to the particle-physics one
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via B = B/(�c)3. For example, B1/4 = 145 MeV corresponds to B = 57.5
MeV fm−3.

8.3. The strange matter hypothesis
We are used to the fact that stable forms of matter do not contain strange

quarks. In particular, under laboratory conditions hyperons and hypernuclei are
unstable and decay into nucleons and ordinary nuclei, respectively. However,
the situation changes if we consider the matter under extremely high pressure,
at densities at which baryons loose their identity and transform into quasi-free
u and d quarks (for simplicity, we neglect an admixture of s quarks provided
by hyperons which may appear at high densities). At such high densities, and
for temperatures relevant for stellar objects, the matter is strongly degenerate
and thermal effects are small. At a given pressure P , a stable state of the matter
is realized at the smallest baryon chemical potential µb = (E + P )/nb.

The situation presented schematically in the left panel of Fig. 8.1 corre-
sponds to the deconfinement of quarks in a nucleon matter at P = PD. If
P > PD, the baryon matter is unstable with respect to the transformation into
the ud plasma. However, the value of µb in the deconfined phase can be further
reduced by the conversion of about half of d quarks into s quarks. The con-
version proceeds via weak-interaction process, in contrast to the conversion of
baryons into quarks, which is a strong-interaction process. Actually, as shown
in the left panel of Fig. 8.1, the uds matter in weak-interaction equilibrium,
with strangeness per unit baryon number ≈ −1, becomes the ground state of
the matter for P > PDS, where PDS is smaller than PD. Let us assume that the
models of ud and uds quark matter can be extrapolated to the zero pressure.
Such an extrapolation is possible within the MIT Bag Model, described in §8.5.
The standard situation, presented schematically in the left panel of Fig. 8.1, is
such that at small pressures, particularly at P → 0, the stable matter consists
of nucleons and does not contain strange quarks. The true ground state of the
cold “ordinary” matter is the 56Fe crystal with E0 ≡ µb(P = 0) = 930.4 MeV
(§3.2).

The strange matter hypothesis is shown schematically in the right panel
of Fig. 8.1. The uds matter remains absolutely stable even at P = 0. This
means that sufficiently heavy droplets of the uds matter with baryon number
A > Amin � 10 (to reduce the surface effects) have lower energy per baryon at
zero pressure than 56Fe. Then ordinary heavy nuclei are metastable with respect
to the transition into the strange-matter. This does not contradict experimental
data because the lifetime of the metastable nuclei could be extremely long.
The transition to the true ground state requires, roughly speaking, an Ath order
weak-interaction process needed to simultaneously convert A ∼ 102 of d quarks
into s quarks. It is a simple exercise to show that the lifetime is longer than
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Figure 8.1. Baryon chemical potential versus pressure for baryonic matter (N), electrically
neutral ud matter, and uds matter in weak-interaction equilibrium. PD is the threshold pressure
for the deconfinement of the ud matter, and PDS is the threshold pressure above which the uds
matter becomes more stable than the baryonic one. Left: The standard situation in which 56Fe
is the ground state at zero pressure. Right: The strange-matter hypothesis; the true ground state
at zero pressure is realized by a self-bound uds matter.

10100 yr. On the other hand, Fig. 8.1 shows, in agreement with experiments,
that at low pressures the ud matter is unstable with respect to the conversion into
nucleons; this conversion takes place through strong interactions, on timescales
∼ 10−22 s.

While the strange-matter hypothesis may seem shocking at a first glance,
its validity does not have any immediate dramatic consequence for the world
around us. The strange matter will not be produced from the ordinary matter
under terrestrial conditions, or under conditions prevailing in normal stars. The
possibility of its production under extreme astrophysical conditions – in the
cores of neutrons stars, supernovae, or in the early Universe – will be outlined in
§8.4. Now we would like to comfort the reader; even if nuggets of strange matter
exist somewhere around us, they have positive electric charge (see §§8.14 and
8.15). Therefore, they will not represent a danger characteristic of horrifying
ice-nine which absorbs all matter after touching it (Vonnegut, 1963). However,
if the strange-matter hypothesis is true then some (or even all) neutron stars
could actually be strange stars, built exclusively or predominantly of strange
matter. Astrophysical arguments for and against the existence of strange matter
and strange stars in the Universe are presented in §9.8.

8.4. Strange matter – history
An intriguing possibility that atomic nuclei could be only an isomeric meta-

stable state of a more general system of baryon number A was first discussed
by Bodmer (1971). He assumed that for a sufficiently large A there exists a
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“collapsed nucleus” CA of much smaller radius and much higher density than
the “normal nucleus” NA. At a given A, the radius of CA was supposed to
be ∼ 1/3 of the normal nucleus, so that the density of the collapsed nuclei
was about thirty times higher than of the normal ones. The hypothetical CA

nucleus was much tighter bounded than NA and would correspond to the true
ground state of the matter. Bodmer considered three models of CA. Two of
them were related to an abnormal state of nuclear and hyperonic matter with an
enormous binding energy; such states are similar to the “abnormal matter” of
Lee & Wick (1974), discussed in §8.9. In the third model, CA was built of the
uds matter and had small positive electric charge. Using qualitative arguments,
Bodmer showed that the existence of CA is not in conflict with experimental
data, if metastable NA are sufficiently long-lived isomers. For example, in one
specific case he obtained the lifetime of NA significantly longer than 1024 yr.
The paper by Bodmer was of qualitative character; the MIT Bag Model of
hadrons was formulated three years later.

Quantitative studies started only after the formulation of the MIT Bag
Model (Chodos et al., 1974; DeGrand et al., 1975). Eight years after the Bod-
mer paper, the possibility of the existence of long-lived (as compared to the
strong-interaction timescale ∼ 10−22 s) “quark nuclei” was studied within the
Bag Model by Chin & Kerman (1979). They stressed the necessity of s quarks
for the stability of their “multiquark droplets”. These uds droplets of A > 10
were shown to be stable with respect to strong interactions and decayed via
weak leptonic processes. With the lifetime longer than 10−4 s, the multiquark
droplets of Chin & Kerman were actually metastable and converted eventually
into nuclei, in contrast to the strict strange matter hypothesis which would made
them absolutely stable. Similar ideas on the existence of droplets composed of
u, d, and s quarks were put forward independently and nearly simultaneously
by Terazawa, who proposed to call them “super-hypernuclei” (Terazawa 1979,
as quoted by Terazawa 1989a,b). However, his paper, published in sympo-
sium proceedings, was unnoticed at that time and had no impact on the later
development of the idea of strange matter in the mid 1980s.

The strange-matter investigations got a real start after the classical paper by
Witten (1984) who proposed a cosmological scenario, in which “quark nuggets”
with equal numbers of u, d and s quarks could be formed. He suggested
that these nuggets could appear during the hadronization epoch in the early
Universe, ∼ 10−5 s after the Big Bang. During a first-order phase transition,
associated with the hadronization, some fraction of matter could condense as
quark nuggets which, if stable, could form a component of the dark matter in the
today Universe. Using the simplest version of the MIT Bag Model with massless
non-interacting quarks (§8.5), Witten showed that for reasonable values of the
bag constant the uds matter could be absolutely stable (the true ground state at
zero pressure).
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Shortly after the Witten’s paper, Farhi & Jaffe (1984) published the paper
entitled “Strange matter”. They explored in detail properties of the uds matter,
including the effects of finite s quark mass and lowest-order QCD interactions
(see §8.6). Using their version of the MIT Bag Model they demonstrated the
existence of a wide region in the Bag-Model parameter space, in which uds
quarks could form the ground state of the matter.

Since then, the strange matter hypothesis has been addressed in numerous
papers, from theoretical and experimental points of view. In particular, strange
matter has been searched for in cosmic rays and in relativistic heavy-ion colli-
sions. The physics of strange matter is reviewed by Glendenning (2000), Weber
(1999), Madsen (1999), and Weber (2005). A detailed review of earlier work,
done before 1991, is given by Madsen & Haensel (1991).

8.5. The simplest “toy” MIT Bag Model
The EOS of quark matter was described in §7.5. Here, we consider the

simplest MIT Bag Model which assumes massless and non-interacting quarks
confined to a “bag” of a QCD vacuum. The confinement is described by the
bag constant B, which determines the difference between the energy densities
of the standard and QCD vacua (§7.5). Let us consider the matter of u, d and
s quarks. The equilibrium with respect to the weak interaction processes, Eq.
(7.21), combined with the electric neutrality condition, Eq. (7.33b), implies

ne = 0 , nu = nd = ns , (8.1)

so that the baryon number density is nb = nu.
The energy density given by the MIT Bag Model is (§7.5)

E = Ekin + B , (8.2)

where Ekin is the contribution from the kinetic energy of quarks. The total
number of internal quark degrees of freedom is 3color × 3flavour × 2spin =
18. Using the formula for the energy density of an ultra-relativistic Fermi gas
combined with the perfect flavor-color symmetry of our system we get

Ekin = b n
4/3
b , b = (9/4) π2/3

�c = 952.37 MeV fm . (8.3)

The pressure is readily obtained from

P = n2
b

d
dnb

(
E
nb

)
=

1
3

b n
4/3
b − B . (8.4)

It is the sum of the positive contribution from the quark kinetic energy and
the negative contribution from the vacuum, which squeezes the quark plasma.
Equation (8.4) implies the existence of a self-bound state at zero pressure with
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the baryon number density

nb,s = (3B/b)3/4 = 0.28665 (B60)
3/4 fm−3 , (8.5)

where B60 = B/60 MeV fm−3, and the lower label “s” in nb,s reminds us that
it is the surface baryon density of an object built of the uds matter. The energy
per unit baryon number at P = 0 is

E0 = 4 (b/3)3/4 B1/4 = 837.26 (B60)
1/4 MeV , (8.6)

and the mass density

ρs = 4B/c2 = 4.2785 × 1014 B60 g cm−3 . (8.7)

The strangeness per unit baryon number for this uds matter is S/A = ns/nb =
−1. Its analog in the baryonic world is the matter composed of Λ0 hyperons.

One can also contemplate a deconfined equivalent of a neutron matter,
which is an electrically neutral ud plasma. We will use the prime to distinguish
the quantities referring to the ud quark matter from those of the uds matter. At
a given baryon number density n′

b we have

n′
e = n′

s = 0 , n′
d = 2n′

u = 2n′
b . (8.8)

It is easy to show, that thermodynamic formulae for the ud matter remain the
same as for the uds matter, but with a different coefficient b′, related to b by

b′/b = (1 + 24/3)/3 = 1.1733 . (8.9)

It is also easy to see, that at any pressure (or baryon density) the uds phase is
energetically preferable over the ud one. At a given P , a suitable thermody-
namic potential is the enthalpy per unit baryon number, which is equal to the
baryon chemical potential µb(P ),

µb(P ) =
E + P

nb
=

3P + 4B
ns

(
P

B + 1
)−3/4

. (8.10)

Therefore, at any P

µ′
b(P )/µb(P ) = nb/n′

b =
(
b′/b
)3/4 = 1.1273 . (8.11)

In particular, at P = 0,

E′
0/E0 = 1.1273 , n′

b,s/nb,s = 0.88705 , ρ′
s = ρs . (8.12)

Thus, the ud phase is unstable with respect to weak interactions and trans-
forms into theuds phase via the strangeness-changing reactionu+d → s+u. In
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other words, for the deconfined quark matter the “strange” state with S/A = −1
is preferable over the “non-strange” state with S/A = 0. This is in contrast with
the observed “baryonic world”, where stable forms of matter at zero pressure
do not contain strange quarks and have S/A = 0; hyperons and/or hypernuclei
decay into nucleons. The same is true for dense stellar matter at subnuclear
densities.

The simplest Bag Model described above will be referred to as SQM0,
with SQM being the acronym for “Strange Quark Matter” (or “Self-bound
Quark Matter”). Of course, we have to specify the only parameter of the
model, B. For the hypothesis of strange matter to be valid, we should have
E0 < 930.4 MeV. Using Eq. (8.6), we get

E0 < 930.4 MeV =⇒ B60 < 1.53 . (8.13)

On the other hand, our SQM0 model should be consistent with reality. For
instance, nuclei should be stable with respect to the formation of droplets of the
ud matter. The necessary condition is

E′
0 > 930.4 MeV =⇒ B60 > 0.944 . (8.14)

A very reasonable stronger condition is that neutrons should not coagulate into
droplets of the ud matter. It implies

E′
0 > 939.6 MeV =⇒ B60 > 0.982 . (8.15)

In what follows we will use this last condition to fix the lower bound on B in
the SQM0 model.

Thus we have obtained the simplest SQM0 “toy model”. Its EOS is given
by Eqs. (8.2)–(8.4) with the bag constant in the range 0.982 < B60 < 1.53.

8.6. The Bag Model with massive strange quarks and QCD
interactions

The model was described in §7.5. The quark (Ωq) and vacuum energy (B)
contribution to the thermodynamic potential per unit volume is

ΩQ = Ωq + B . (8.16)

At sufficiently high densities, Ωq can be calculated using a perturbation expan-
sion in the QCD coupling constant αs. The expansion has to be treated within
the renormalization scheme, §7.5. In particular, we have to use the renormal-
ized values of the QCD coupling constant and strange-quark mass, which will
depend on the selected value of the renormalization point denoted by ρR. We
will follow the prescription of Farhi & Jaffe (1984) who put the renormaliza-
tion point at the energy ρR = mnc2/3 = 313 MeV typical for quark chemical
potentials.
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The renormalized coupling constant αs decreases with increasing mean
quark energies. We restrict ourselves to the first-order approximation valid for
a sufficiently small αs. In this approximation, the contributions of all three
flavors to Ωq are additive, Eq. (7.26). The u and d quarks can be treated as
massless. The calculation of the renormalized values of αs and the strange
quark mass ms is somewhat ambiguous. As we have seen in §7.5, αs does not
need to be renormalized in the lowest-order approximation.

As for the renormalized s-quark mass, let us use Eq. (7.31). The numerical
values of parameters are quite uncertain (§7.5). To be specific, let us put the
current-quark mass m

(c)
s c2 = 100 MeV (Yao et al., 2006), Λ = 100 GeV,

αs = 0.2, and ρR = mnc2/3 (Farhi & Jaffe, 1984). In this way we get

ms = 2.1m
(c)
s � 200 MeV/c2, which will be our “standard renormalized

mass” of the s quark in this chapter.
The hypothetical self-bound state at P = 0 is determined from the condi-

tion

Ωq + Ωe + B = 0 . (8.17)

It specifies the associated baryon number density nb,s and the energy per baryon
E0.

In what follows, we will assume that αc � 0.2, so that the lowest-order
approximation will be satisfactory. However, under the conditions relevant for
compact stars typical quark energies ε ∼ µf are insufficiently large to reach the
true Asymptotic Freedom regime (Asymptopia) which requires µf � 1 GeV.
Thus, the Bag Model is phenomenological, and its results should be taken with
a grain of salt. Luckily, as we will see in §§8.7 and 8.9 and as can be verified for
other even more exotic models of dense matter, the very hypothesis on a self-
bound high-density ground state of the matter at zero pressure implies a generic
shape of the EOS, similar to that given by the Bag Model. Therefore, qualitative
results obtained within the Bag Model may have much broader meaning than
the Bag Model itself.

In Fig. 8.2 we show lines of constant E0 in the B − ms plane. The region
of the stable strange matter is bounded by the dash-dot line and the thin vertical
line. The region to the right of the curve of E0 = 939 MeV corresponds
to the uds matter which is unstable with respect to nucleon emission. At a
fixed ms, the strange matter exists for Bmin < B < Bmax. The allowed range
of B becomes narrower with the growth of ms. The thin vertical line gives
the value Bmin below which the (non-strange) ud matter is preferable over an
ordinary nucleon matter. This region is excluded, because it corresponds to
a spontaneous coagulation of nucleons into droplets of the ud matter, which
would further convert into the SQM, destroying the nucleon matter around us.
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Figure 8.2. Lines (in the ms − B plane) of constant energy per unit baryon number (in MeV,
labeled near curves) for strange quark matter at zero pressure. The dot-and-dashed lines refer
to 56Fe crystal (930.4 MeV). Left: Non-interacting quarks. Right: Lowest order calculation for
αs = 0.2. For further explanations see the text.

The simultaneous effect of αs, ms and B on E0 is illustrated in the right
panel of Fig. 8.2. The main effect of αc is to narrow the range of allowed values
of B, lowering both Bmin and Bmax.

Thus, the Bag Model predicts a rather large window of reasonable values
of B and ms, where a self-bound SQM is the true ground state of cold dense
matter at P = 0.

8.7. Other models of strange quark matter
There are many (possibly, less popular) models of self-bound stable quark

matter different from the MIT Bag Model.
The Nambu–Jona-Lasinio model has already been mentioned in §7.5. In

contrast to the above models, it deals with massive “constituent quarks” and
respects the chiral symmetry. In recent years, it has been frequently used for
describing the phase transition to the quark matter at high densities. For some
choice of parameters, the Nambu–Jona-Lasinio model predicts a stable self-
bound state at P = 0, corresponding to strange matter (see, e.g., Hanauske et
al., 2000). A model with self-consistent density-dependent quark masses can
also predict a stable strange matter in some region of the parameter space (Wang,
2000). Dey et al. (1998) proposed a model for quark matter using density-
dependent quark masses and a color-dependent vector interquark potential. It
predicts a strongly bound state of the stable quark matter at P = 0, with
ρs > 1015 g cm−3. In the Cloudy Bag Model, a pion cloud is coupled to
the quark-confining bag. The model parameters are determined by fitting the
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baryon masses. This model can also predict a stable state of the quark matter
at P = 0 (Ng et al., 2003).

This list is not complete. However, as we show in §8.8, the variety of
model EOSs of the strange quark matter in compact stars has a generic linear
form described actually by only two parameters.

8.8. The equation of state of strange matter
8.8.1 The linear approximation of the EOS

An important feature of the EOS of the self-bound SQM is the vanishing
pressure at ρ < ρs. For densities only slightly higher than ρs, the EOS has
a linear form P ∝ (ρ − ρs). It is very fortunate that this simple form turns
out to be a reasonable approximation at higher densities, up to the maximum
density in stable strange stars. Linear approximation is excellent for the MIT
Bag Model (Zdunik, 2000) and is quite reasonable for other models of strange
matter(Gondek-Rosińska et al., 2000).

Let us focus on the Bag Model. A linear approximation reads

P ≈ ac2(ρ − ρs) , (8.18)

where constants a and ρs are determined by fitting the exact EOS (Zdunik,
2000).The value of the fit parameter ρs is usually slightly different from the
“surface density” ρ(P = 0) for an exact EOS. Notice that the linear form is
exact for massless quarks (either free or interacting); in which case a = 1/3.
As shown by Zdunik (2000), for msc

2 ≤ 300 MeV and αc ≤ 0.6, at densities
relevant for stable strange stars the linear fit reproduces the exact EOS within
a few percent. The linear approximation leads to strange star models which at
M � 0.3 M� coincide (in radius, mass, and other parameters) within better
than 1% with models calculated using the exact EOS. Moreover, Zdunik (2000)
obtained fitting formulae which express a, ρs, and nb,s in terms of B, ms, and
αc of the Bag Model.

Some examples of a and ρs obtained for the different models of SQM
are given in Table 8.1. One notices significant difference between the Bag
Model EOSs and those based on the model of Dey et al. (1998). For the Bag
Model, a is slightly lower that 1/3. The effects of strange-quark mass and QCD
interactions lower a by less than ten percent. The effect of ms is dominant;
we have msc

2 = 200 MeV and 100 MeV for the SQM1 and SQM2 EOSs,
respectively. On the contrary, for the model of Dey et al., the interactions are
important and increase a by fifty percent compared to a = 1/3. The values of
ρs are two-three times larger than for the Bag Model. Therefore, the SS1 and
SS2 EOSs give very compact and dense strange stars. Precise arguments based
on the scaling properties of stellar configurations can be formulated using the
results of Appendix E.
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Table 8.1. Parameters a and ρs in the linear approximation (8.18) for four EOSs of SQM. The
SQM1 and SQM2 EOSs are calculated by Zdunik et al. (2000) using the MIT Bag Model with
msc

2 = 200 MeV, αs = 0.2, B = 56 MeV fm−3 (SQM1); and msc
2 = 100 MeV, αs = 0.6,

B = 40 MeV fm−3 (SQM2). The SS1 and SS2 EOSs are obtained by Dey et al. (1998) within
a vector-interaction model.

Model EOS a ρs

(1014 g cm−3)
SQM1 0.301 4.50
SQM2 0.324 3.06

SS1 0.463 11.54
SS2 0.455 13.32

Two parameters, ρs and a, completely determine the linear dependence
of P on ρ. The dependence of the baryon number density on the pressure is
specified by an additional parameter, nb,s. Analytical expressions are given in
Appendix E.

8.8.2 The adiabatic index of strange matter
An important parameter, which characterizes the stiffness of the EOS,

is the adiabatic index γ = (nb/P ) dP/ dnb. It determines the stability of
stars with respect to small perturbations. In Fig. 8.3 we show an example
of γ calculated for the SQM0 EOS. The adiabatic index for strange stars is
qualitatively different from that for ordinary neutron stars. The values of γ in
the outer layer of a strange star are very large. In contrast, we have γ � 4/3
(see §3.6) in the outer crust of a neutron star. For typical densities in stable
strange stars, the value of γ is significantly higher than the value 4/3, predicted
by the Asymptotic Freedom of the QCD at ρ → ∞.

8.8.3 The effect of quark superconductivity on the EOS
It is widely accepted that in an idealized case of massless quarks the

ground state of high-density quark matter in the asymptotic region of weak
QCD interactions corresponds to the color-flavor-locked (CFL) superconduct-
ing phase. Of course, one gets ne = 0 for massless quarks in normal and
superconducting phases of electrically neutral quark matter in beta equilib-
rium. However, as shown by Rajagopal & Wilczek (2001), the same is true
in the CFL phase of quark matter with massive s quarks, provided ms is
not too large (ms � 200 MeV/c2) but the superfluid gap is sufficiently large
(∆ � 100 MeV). Under such conditions, the binding energy gain due to CFL
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Figure 8.3. Adiabatic index γ versus density for the SQM0 EOS. The left vertical dashed line
shows the surface density of the bare strange star. The right dashed vertical line is the maximum
central density of non-rotating strange stars. The horizontal line is γ = 4/3 characteristic of a
free ultrarelativistic Fermi gas.

pairing of quarks prevails over the kinetic energy increase, and the ground state
is realized for the flavor-symmetric quark matter with nu = nd = ns = nb/3,
which implies an enforced absence of electrons.

The enforced condition ne = 0 in the CFL superconducting state is easily
derived in the case in which pairing is the only quark-quark interaction (Ra-
jagopal & Wilczek, 2001). Then the normal state is a Fermi gas of u, d, and s
quarks. The CFL superconducting state is calculated using the Bardeen-Cooper-
Schrieffer (BCS) theory assuming the weak-coupling regime, ∆/µ � 1. Here,
µ = (µd + µu + µs)/3 is the mean quark chemical potential (one third of the
baryon chemical potential of the quark matter). In order to study CFL states,
one uses the thermodynamic potential Ω per unit volume. To be specific, let us
consider the CFL condensate of green-color d quarks and red-color s quarks.
Let kFd, kFs, µd, and µs be the appropriate Fermi momenta and chemical po-
tentials. The attractive pairing contribution to Ω is maximized for kFs = kFd.
However, this introduces a nonzero δµ = (µs−µd)/2, which acts in the inverse
direction and increases Ω. For ms = 0 we have flavor symmetry and δµ ≡ 0.
With increasing ms, the minimum of Ω is still realized by the kFs = kFd

state, but the increase of δµ shifts the minimum up. As shown by Rajagopal &
Wilczek (2001), the paired CFL state remains preferable if ms is not too large
as compared to ∆,

|m2
sc

4/(4µ) − δµ| < ∆ . (8.19)
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The above discussion can be generalized to the full uds system. The main
conclusion is that if ms obeys the inequality (8.19), the system is in the CFL
superconducting state with ne = 0. The CFL pairing enforces electrical neutr-
ality of the quark component of dense matter.

Let us assume that all quarks are paired with the same gap ∆. Let the
gap be sufficiently large so that electrons are absent and nu = nd = ns.
The thermodynamic functions can be calculated including the terms linear and
quadratic in ∆ (Alford et al., 2001). One can choose the mean quark chemical
potential µ as an independent thermodynamic variable. At a fixed µ, the change
in the thermodynamic potential Ω(µ) provided by CFL pairing is

Ω′(µ) ≡ Ωs(µ) − Ωn(µ) = Ω′
1(µ) + Ω′

2(µ) , (8.20)

where Ω′
1 results from the enforced equality of all three Fermi momenta and

the Ω′
2 is due to a finite gap in the quark energy spectrum. The indices “n” and

“s” refer to normal and superconducting states, respectively. The calculation
of Ω′

1(µ) is straightforward and will be omitted here. This term is usually
insignificant, and we can set Ω′(µ) = Ω′

2(µ). Then

Ω′(µ) � − 3
π2

(
∆
µ

)2 µ4

(�c)3
. (8.21)

The corresponding changes in pressure, energy density, and baryon density are

P ′(µ) = E ′(nb) � 3
π2

(
∆
µ

)2 µ4

(�c)3
, n′

b(µ) � 2
π2

(
∆
µ

)2 µ3

(�c)3
. (8.22)

Using these expressions, one can calculate the decrease of the energy per
baryon in the strange quark matter at P = 0; it will be denoted by E′

0. Standard
thermodynamical relations yield

E′
0 � − 3

π2

(
∆
E0

)2 E4
0

(�c)3ns
, (8.23)

where E0 is the energy per baryon in the normal quark matter at P = 0 and ns

is the corresponding baryon number density; terms of higher order with respect
to ∆/E0 are neglected. Thus, the additional binding of the quark matter at
zero pressure grows quadratically with increasing ∆ and widens the stability
window in the ms −B plane (as shown in Fig. 8.4). Although the effect of CFL
pairing on the EOS of quark matter at high pressures is not large (∝ (∆/µ)2)
it can be crucial for the very existence of a stable state at zero pressure.

8.9. Even stranger matter
Several other types of hypothetical self-bound state of dense matter, which

could constitute the true ground state of the matter at P = 0, have been sug-
gested in the past. In the 1970s, it was proposed that pion condensation could
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Figure 8.4. The increase of the stability region (between the vertical line and a curved line in
the ms − B plane) of strange quark matter at P = 0 due to CFL pairing with a gap ∆ (in
MeV). Non-strange quarks are massless and CFL pairing is the only quark-quark interaction.
The left vertical boundary results from the condition that the baryonic world around us should
be relatively stable (§§8.5, 8.6). From Lugones & Horvath (2003) with the kind permission of
the authors.

lead to the appearance of a self-bound, superdense state of pion-condensed
nucleon matter (Migdal, 1971, 1974; Hartle, 1975). This phase could exist in
the form of “abnormal nuclei” with large atomic number A and the density
significantly higher than ρ0 (Migdal, 1971, 1974).1

The idea of “abnormal state” of nuclear matter, advanced by Lee & Wick
(1974; for a review see Lee 1975), was based on a schematic field-theoretical
σ-model of strongly interacting nucleon matter. In the abnormal state, which
appears at sufficiently high densities, nucleons could become nearly massless.
This is because the σ-field term couples to nucleons as a negative addition
to the nucleon rest (bare) mass, implying a nearly vanishing nucleon effec-
tive mass. This density-dependent effect could lead to the appearance of the
second minimum in the dependence of the energy per baryon on nb. The mini-
mum occurred at some nb significantly higher than n0, with the binding energy

1Let us mention the statement of Hartle (1975) on hypothetical “abnormal nuclei” :“. . . the problem of their
nonobservance until now is apparently no worse than for the “ordinary” superheavy nuclei predicted from
the shell model”. This statement is no longer true. In the late 1990s, an experimental evidence was found
for the formation of relatively stable nuclei with Z = 112, 114, 116, and A � 280−290 (for a review,
see Hoffmann & Münzenberg 2000, who stress that these results are preliminary). On the contrary, no
experimental evidence on the existence of the “abnormal nuclei” has been found up to the time of this
writing.
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much larger than in the “normal state” at nb = n0. However, this original
σ-model was schematic and could not pretend to describe quantitatively the
normal nuclear matter at nb ≈ n0. Were the σ-model more complicated to give
a correct quantitative description of the nuclear matter at nb ≈ n0, the abnormal
state at supranuclear density would disappear (Pandharipande & Smith, 1975;
Moszkowski & Källman, 1977).

Supersymmetric extensions of the Standard Model of elementary particles
and their interactions predicts the existence of baryonic Q-balls. They are
macroscopic self-bound superdense lumps of a scalar-field condensate with a
well defined electric and baryonic charge. They were proposed as a hypothetical
component of cosmological dark matter. It was also suggested that Q-balls of
a macroscopic size could have energy per unit baryon number lower than 56Fe.
Were the Q-matter the real ground state of matter at zero pressure, an absorption
of a Q-ball could trigger the conversion of an ordinary neutron star into a Q-star
on timescales ranging from 107 yr to 1011 yr (Kusenko et al. 1998, also see
Madsen 1998a). For longer conversion timescales, Q-stars would not exist in
the today Universe, even if Q-balls existed as a relic from the supersymmetric
epoch of the Big Bang.

EOSs of Q-matter were constructed by Bahcall et al. (1990). A common
feature of these models, shared with the Lee-Wick model of abnormal matter,
is that nucleons become nearly massless inside the condensed Q-phase. Two
basic parameters of the model are the energy density U0 of the scalar field
in the Q-matter and the coupling strength αv of the vector field to nucleons.
As we will see in §8.20, it is convenient to replace αv by the dimensionless
parameter ζ = αvU

1/2
0 π/

√
3. Let us consider the simplest case of ζ = 0.

Then the EOS for the Q-matter coincides with the EOS for the strange matter
of massless, non-interacting quarks and B = U0. However, the standard value
used by Bahcall et al. (1990) is U0 = 13.0 MeV fm−3, which corresponds
to ρ(P = 0) ≡ ρs = 1014 g cm−3. In this model the density of Q-balls
is subnuclear. With increasing ζ, the EOS of the Q-matter becomes stiffer
and the value of ρs lower. In the limiting case of ζ = 16 considered by
Bahcall et al. (1990) (for the same value of U0 = 13.0 MeV fm−3) they get
ρs = 5.5 × 1013 g cm−3. The predicted density of a self-bound Q-matter at
zero pressure is two to five times lower (!) than the normal nuclear density.

8.10. Strange stars – history
By strange stars we mean compact objects built entirely or predominantly

of self-bound quark matter. These hypothetical objects will be our main topic in
this chapter. In §8.20, we will also outline models of stars built of a self-bound
abnormal matter and Q-matter.

To our knowledge, compact stars built entirely of quark matter were first
considered in a brief note by Itoh (1970). He used the EOS of free, degenerate
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Fermi gas of u, d, and s quarks of equal mass mq. In the present terminology,
his model (with para-Fermi statistics of order 3) corresponds to three colors of
quarks. Assuming a huge quark mass mq = 10 GeV/c2, Itoh got the maximum
mass of his quark stars Mmax ∼ 10−3 M�. This result can be easily understood,
using a general property of the EOS of free, degenerate Fermi gas, first discussed
in the classical paper by Oppenheimer & Volkoff (1939). Writing the Tolman-
Oppenheimer-Volkoff equation of hydrostatic equilibrium in a dimensionless
form, one sees that Mmax scales with rest mass of fermions, mF, as Mmax ∝
m−2

F . For neutrons, Oppenheimer & Volkoff (1939) got Mmax = 0.7 M�.
Using the scaling and taking into account the increase of the number of internal
degrees of freedom from two for neutrons to six for quarks, we recover the
factor of ∼ 10−3. It should be stressed that the quark matter considered by Itoh
(1970) is not self-bound at zero pressure, and his quark stars have ρ(R) = 0.
They are, therefore, qualitatively different from contemporary strange stars.

First models of stars built exclusively of quark matter and possessing the
surface density ∼ 1014 g cm−3 were considered by Brecher & Caporaso (1976).
Using the simplest SQM0 EOS of massless non-interacting quarks (§8.5) and
assuming a rather low value of ρs = 2.28×1014 g cm−3, they obtained Mmax =
2.8 M�, much higher than for the EOSs of baryon matter available at that time;
that is why their paper was entitled “Obese ‘neutron’ stars”. Their bag constant
was about half of the today standard value, which easily explains why they
obtained such a large Mmax for their quark stars (see the scaling property of
strange star configurations with respect to ρs, derived in Appendix E).

Eight years later the topic of quark stars was reconsidered in the seminal
paper by Witten (1984), who also used the simplest model of the three-flavor
quark matter with the EOS of the form P = 1

3(ρc2 − B). He showed that for
the bag constant B ≈ 60 MeV fm−3 (close to the value needed to reproduce
experimental masses of baryons within the MIT Bag Model), the parameters
of the maximum-mass configuration for strange stars are similar to those for
realistic neutron stars built of baryonic matter (Mmax ∼ 2 M�, RMmax ∼
10 km).

The first detailed models of strange stars, based on a more realistic EOS
of strange quark matter, taking into account strange quark mass and the lowest-
order QCD interactions, were constructed by Haensel et al. (1986a), who con-
sidered also specific features of accretion on strange stars. Similar results were
presented somewhat later by Alcock et al. (1986), who additionally proposed
scenarios of the formation of strange stars and analyzed strange stars with the
normal crust. These two papers summarized the basic properties of strange
stars and their astrophysical manifestations.

Further development of the strange star physics was focused on the refine-
ment of the EOS of strange matter (particularly, beyond the MIT Bag Model)
and on various properties of strange stars, such as neutrino emission, rotation,
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Figure 8.5. Left: Mass-radius relation for bare strange stars and for strange stars with the
normal crust calculated for the MIT Bag Model EOS with msc

2 = 200 MeV, αs = 0.2,
B = 60 MeV fm−3. Right: the vicinity of the minimum-mass configuration with the crust.
Extremal (maximum and minimum mass) configurations are indicated by filled circles. Strange
stars with the crust have the maximum crustal density of 4.3×1011 g cm−3. The dotted segment
represents low-mass configurations unstable with respect to small perturbations. The hatched
area is prohibited by General Relativity and by the condition vs ≤ c. The dash-and-dot line
gives the radius of the (last) marginally stable circular orbit around a strange star.

superfluidity, pulsations, electromagnetic radiation, and cooling. The theory
of strange stars is reviewed by Glendenning (2000), Weber (1999), Madsen
(1999), Bombaci (2001), and Weber (2005). A detailed review of earlier work
(before 1991) is given by Madsen & Haensel (1991).

8.11. Bare strange stars
Bare strange stars are built exclusively of self-bound strange quark matter

(SQM) studied in §§8.5 and 8.6. Their surface density is equal to ρs, the SQM
density at zero pressure. It is, therefore, fourteen orders of magnitude larger
than the surface density of normal neutron stars.

In what follows, we will illustrate generic properties of strange stars using
several MIT Bag Model EOSs.

The M − R diagram for bare strange stars is shown in Fig. 8.5. For
stars with M � M�, the radius changes very little with M , R � 9 − 11 km,
similar to neutron stars with a moderately stiff EOS. However, for lower M the
radius of bare strange stars behaves in a completely different way. It decreases
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Figure 8.6. Mass density ρ versus radial coordinate r for three bare strange stars of different
masses, calculated for the SQM1 EOS. The highest M = 1.80 M� is the maximum mass for
this EOS.

monotonically with decreasing M , with R ∝ M
1
3 for M � 0.3 M�. This is

easily explained using the Bag Model. Gravitational pull decreases rapidly with
decreasing M and can be neglected at M � 0.3 M� compared to the pressure
of the normal vacuum on the volume filled by the QCD vacuum. This pressure
confines the SQM into a sphere of radiusR. Due to a very high incompressibility
of the strange matter, the density in a low-mass strange star is nearly constant
≈ ρs (Fig. 8.6). On the other hand, low-mass strange stars can be described by
the Newtonian theory, which gives M � 4π

3 ρsR
3 and R ∝ M

1
3 . The decrease

of R with decreasing M is the unique feature of strange stars and Q-stars or
stars built of abnormal matter (outlined in §8.20).

Apart from the dramatic difference in radii between strange stars and neu-
tron stars of M � M�, one notices a systematic difference in the surface
redshift zsurf as a function of M . Strange stars are more compact; for 1.4 M�
their surface redshift is ∼20% higher than for neutron stars (Fig. 8.7). This
difference grows with decreasing M ; it is ∼30% for M = M� and reaches
∼100% for M = 0.5 M�.

The internal structure of bare strange stars is very different from the
structure of neutron stars. First of all, their surface density is huge, ρs ∼
1015 g cm−3. The density profile in the interior of a bare strange star is very
flat (Fig. 8.6). Even at the maximum mass (under the strongest gravitational
compression), the central density is only five times higher than the surface one
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Figure 8.7. Surface redshift for bare strange stars (SS; the MIT Bag Model with msc
2 =

150 MeV, αs = 0.17, B = 60 MeV fm−3) and for neutron stars (NS; the BBB2 EOS, Table
5.3) versus stellar mass.

(in contrast to fourteen orders of magnitude difference for neutron stars!). The
density difference decreases rapidly with decreasing M . For a 1.4 M� bare
strange star, the central density is only 40% higher than at the surface. In
low-mass bare strange stars, M � 0.3 M�, the density is nearly constant.

As in the case of neutron stars, the ratio of the moment of inertia I and
MR2 for slowly and rigidly spinning strange stars can be approximated by a
simple function of the compactness parameter rg/R, Eq. (1.4). However, this
function is qualitatively different from that for neutron stars (Fig. 8.8). A good
fit for strange stars is (Bejger & Haensel, 2002)

I

MR2 =
2
5

(
1 + 0.34

rg

R

)
. (8.24)

For low-mass strange stars, I/MR2 → 2/5, which is the value for constant-
density Newtonian stars. Notice that except for M ∼ Mmax, the ratio I/MR2

for strange stars is larger than for neutron stars (at the same rg/R), because of
the flatness of the density profile of strange stars.

The interior of a strange star is composed of the SQM, studied in §§8.5, 8.6,
and 8.8.3. In what follows we consider normal quarks, with a tiny admixture
of electrons to outbalance the net positive charge of quarks (the case of CFL
superconducting SQM with the enforced absence of electrons was discussed in
§8.8.3). A typical electron fraction is ne/nb � 10−3. It decreases from the
surface to the stellar center, as strange quarks become more relativistic, and it
depends very strongly on ms (see §7.5, in particular, Eq. (7.35)). The radial
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Figure 8.8. Dimensionless ratio I/MR2 versus M/R for several EOSs of SQM. The best-fit
curve, Eq. (8.24), for strange stars (SS) is plotted by the upper thick line. For comparison, we
show also the best-fit curve (NS) for neutron stars. From Bejger & Haensel (2002).

dependence of the fractions of all matter constituents in the interior of a 1.4 M�
bare strange star is displayed in Fig. 8.9.

8.12. The nonexistence of quark stars with heavy quarks
Apart from the light u, d quarks and the moderately massive s quark,

the complete set of known quarks includes also heavy c, b, and t quarks. Their
running masses are estimated as mcc

2 � 1.2 GeV, mbc
2 = 4 GeV, and mtc

2 �
170 GeV (Yao et al., 2006).

A c-quark could be produced in the uds matter via the weak interaction
process

d + u −→ c + d , (8.25)

Physical constraints on the initial and final quark energies (ε and ε′) result from
the degeneracy of the SQM matter. The initial states of d and u quarks should
be occupied, εd ≤ µd and εu ≤ µu, while the final d quark state should be
empty, ε′

d ≥ µd. The energy needed to create a single c quark is ε′
c ≥ mcc

2.
The necessary condition resulting from the above constraints is

µu ≥ mcc
2 � 1.2 GeV . (8.26)
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Figure 8.9. Number densities of u, d, s quarks and electrons versus radial coordinate r for a
model of a bare strange star of M = 1.4 M�, calculated using the MIT Bag Model EOS with
msc

2 = 150 MeV, αs = 0.17, B = 60 MeV fm−3.

It yields the lower limit on the number density of u quarks,

nu ≥ 1
π2

(
mcc

2

�c

)3

= 22.8 fm−3 . (8.27)

At such a high density even s quarks are ultrarelativistic, so that

ρ ≥ ρcrit,c =
9mc

4π2

(
mcc

2

�c

)3

= 1.1 × 1016 g cm−3 . (8.28)

This critical density is much higher than the maximum central density of strange
stars, ρc,max (§8.11). A detailed analysis of quark star models with central
densities ρc higher than ρc,max was performed by Kettner et al. (1995). Let
us consider the M(ρc) curve in Fig. 8.10. For ρc > ρc,max, the stellar mass
decreases and reaches a minimum at ρc � 1017 g cm−3. In the ρc > ρc,crit
part of the S1C1 segment of the curve c quarks are present in stars, but stellar
configurations are unstable with respect to the fundamental mode of radial
pulsations because dM/ dρc < 0. As we know from §6.5.2 at the minimum
at C1 the stability of one of the radial modes has to change. The character of
this change is determined by the static stability criterion in the M − R plane
(§6.5.1). The condition dM/ dρc > 0 is only necessary for stability. As we
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Figure 8.10. Left: Gravitational mass versus central density for stars built of SQM. The solid
branch of the line ending at S1 corresponds to equilibrium configurations of non-rotating strange
stars, containing only u, d, and s quarks. The dotted segment S1C1 refers to equilibrium
configurations unstable with respect to the fundamental mode of radial pulsations. The solid
segment C1C2 exhibits equilibrium configurations of charmed stars containing u, d, s, and c
quarks. They are unstable against first two modes of radial pulsations. The dotted segment to
the right of C2 describes equilibrium configurations of charmed stars which suffer additional
instability against the next mode of radial pulsations. Right: The same configurations in the
M − R plane.

see in the right panel of Fig. 8.10, the radius increases with increasing ρc on the
C1C2 segment in the vicinity of C1. Therefore, according to the static stability
criterion, passing through C1 leads to the instability of the first overtone of radial
pulsations. Charmed stars are unstable with respect to the two lowest modes
of radial pulsations and cannot exist in the Universe. This can be confirmed by
the calculation of the spectrum of radial pulsations which shows that ω2

0 < 0
and ω2

1 < 0 in the C1C2-branch (Kettner et al., 1995). In the dotted segment
to the right of C2 in the left panel of Fig. 8.10 the second overtone of radial
pulsations becomes unstable. Superdense branches of quark stars containing b
and t quarks are susceptible to more unstable radial modes.

8.13. Scaling properties
As we have shown in §8.8, the approximate and reasonably precise linear

representation of the EOS of the SQM is determined by two parameters, a
and ρs. Using this representation, one can rewrite the equations of hydrostatic
equilibrium of strange stars in a dimensionless form, derived in Appendix E.

Consider first two EOSs with the same a but with different values of the
second parameter, ρs and ρ′

s. The equilibrium configurations for these two
EOSs form two different families, parameterized by the central density. There-
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fore, we can construct curves M(R), I(M), . . . , parameterized by ρc. As
we show in Appendix E, points of a curve obtained for a given ρs transform
into points of a curve obtained for ρ′

s by a scaling transformation. For ex-
ample, the transformation of M(R) curves reads R → R′ = (ρs/ρ′

s)
1/2R,

M → M ′ = (ρs/ρ′
s)

1/2M . An extremum of the unprimed curve transforms
into an extremum of the primed curve. Particularly interesting is the scaling of
parameters of the maximum-mass configuration,

M ′
max/Mmax = R′

M ′
max

/RMmax = (ρs/ρ′
s)

1/2 , (8.29a)

ρ′
c,max/ρc,max = ρ′

s/ρs , I ′(M ′
max)/I(Mmax) = (ρs/ρ′

s)
3/2 . (8.29b)

According to the scaling of Mmax and RMmax , the maximum surface redshift
(reached at M = Mmax) does not depend on ρs. The maximum value of the
moment of inertia, Imax, is reached at a mass slightly lower than Mmax, but of
course it scales via the same factor (ρs/ρ′

s)
3/2 as I(Mmax). At a fixed a, the

ratio Imax/(MmaxR
2
Mmax

) does not depend on ρs and is just a number. This
number depends weakly on a (Appendix E) and is slightly lower than 1 for
realistic EOSs of the SQM (Bejger & Haensel 2002 got the value 0.97).

There exists a maximum circumferential radius Rmax of bare strange stars
(Fig. 8.5). Its value scales according to the same relation as for RMmax .

Scaling properties are particularly simple (and actually exact) for the MIT
Bag Model EOS with non-interacting massless quarks (a = 1/3, ρs = 4B/c2,
model SQM0 of §8.5). The scaling formulae for Mmax, RMmax and ρc,max
were derived by Witten (1984), while those for Mb,max and Imax were obtained
by Haensel et al. (1986a),

Mmax =
1.96√
B60

M� , ρc,max =
2.06 × 1015

B60
g cm−3 , (8.30a)

Mb,max =
2.63

(B60)3/2 M� , (8.30b)

RMmax =
10.71√

B60
km , Imax =

2.12 × 1045

(B60)3/2 g cm2 . (8.30c)

Calculations performed for more realistic EOSs of the MIT Bag Model
with massive s quarks and QCD interactions show that the scaling with respect
to B → B′ is still very precise (Haensel et al., 1986a). This results from a very
weak nonlinearity of the dependence of ρs on B. Actually, at a fixed interaction
constant αs the value of ρs is strictly proportional to B provided we replace
B → B′ together with ms → m′

s = ms(B′/B)1/4 (Zdunik & Haensel, 1990;
Zdunik, 2000).

The scaling formulae enable us to understand why the parameters of
massive strange stars (M ∼ 1 − 2 M�) are so similar to those for normal
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neutron stars. Consider first the simplest SQM0 model with massless, non-
interacting quarks. For the hypothesis of strange matter to be correct, we
should assume that 0.982 < B60 < 1.52 (§8.5). These constraints lead to
1.6 M� < Mmax < 2.0 M�, 8.7 km < RMmax < 10.8 km, which reminds us
a typical M − R range for massive neutron stars models built of baryon mat-
ter with soft or medium-stiff EOS. Taking a non-zero value of αs reduces the
minimum value of the bag constant, Bmin (Fig. 8.2). This increases the upper
bounds on Mmax and RMmax , which to a good approximation are proportional
to (Bmin)

−1/2.

8.14. The surface of a bare strange star with electrons

Let us consider a bare strange star built of normal quark matter with the
admixture of electrons. It can be viewed as a huge MIT Bag of radius R. The
characteristic energy scale in the quark matter is of the order of the quark chem-
ical potential, µu � µd = µs � 300−400 MeV. The thickness (diffuseness)
of the quark surface is hq � �c/µ ∼ 1 fm, which is a typical scale of strong
interactions. The quarks are bound to the quark surface by strong interactions.
However, the SQM contains also a tiny fraction of electrons, ne/nb ∼ 10−4.
They do not participate in strong interactions, being attached to the quark mat-
ter only by Coulomb forces. These forces are provided by the net positive
charge of quarks (as a consequence of mass differences, ms � mu, md; §8.6).
The maximum kinetic energy of degenerate electrons near the quark surface is
εe,kin = µe−mec

2 � 30−40 MeV. In order to be bound to quarks, the electrons
should move in a positive electrostatic potential V � εe,kin/|e|.

Locally, the quark surface can be treated as plane. Let it be the xy-plane,
with z < 0 in the stellar interior. The electrostatic potential V (z) can be
calculated using the Thomas-Fermi approximation (Alcock et al., 1986), with
the boundary conditions V (z → −∞) = Vq and V (z → +∞) = 0. The
calculation gives V (0) = 3

4Vq. The characteristic thickness of the electron
surface (called the electrosphere) turns out to be he ∼ 100 fm. The surface
electric field is directed outward being of the order of Vq/he ∼ 3× 1017 V/cm.
This is the average electric field in the electrosphere; the local field can be higher.
Notice, that the electron distribution extends above the quark surface and the
surface electric field extends slightly above the electron distribution. In this
sense, the surface of a strange star is not really “bare” (although it is perfectly
sharp on macroscopic scales). Because of the positive electrostatic barrier,
atomic nuclei (including protons) are repelled from the surface. The theory of
the electrosphere should take into account effects of strange-quark mass and
temperature (Usov et al., 2005). The mass difference ms � mu, md implies
an additional positive charge excess of quarks near the surface. It increases the
positive electrostatic potential at the surface.
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The sharpness of the surface and a huge surface density of quarks strongly
influence the spectrum and flux of emitted photons. Alcock et al. (1986) pointed
out the importance of a very high plasma frequency in the SQM and predicted
that the photon emissivity of the SQM surface should be extremely low. The
plasma frequency near the surface is ωpl � 20 (nb/n0)1/3 MeV/�. No photons
(transverse plasmons) can propagate in the SQM at energies �ωpl � 20 MeV.
The temperature near the surface of a cooling strange star is orders of magnitude
lower than �ωpl/kB � 2× 1011 K. Therefore, the flux Fpl of photons emergent
from the surface should be low, with a very hard spectrum at typical photon
energies Epl

γ ∼ 20 MeV (Chmaj et al., 1991). However, the total photon
emissivity should include also a contribution Fqq from photon bremsstrahlung
accompanying quark-quark collisions in a very thin photon-transparent surface
layer. It turns out that the bremsstrahlung contribution has the temperature
dependence Fbb ∝ T 4 similar to the black-body one, but is much more diluted,
Fqq/Fbb � 10−4. It has a soft spectrum with a typical photon energy Eqq

γ ∼
kBT (Chmaj et al., 1991). It should be stressed, that both Fpl and Fqq were
calculated neglecting the effects of the outer rarefied electron layer, which
should be included in a more refined theory.

At sufficiently high temperatures, an additional important contribution to
the photon flux comes from a thin outer layer (∼ 100 fm) with huge electric
field confining the electrons (Usov, 1998). As mentioned before, this electric
field can be as high as ∼ 1017 V cm−1. Let us recall, that vacuum is unstable
and e+e− pairs are created spontaneously in a constant electric field higher
than the Schwinger limit, Ecrit = m2

ec
3/e� � 1.3 × 1016 V cm−1. Because

of the degeneracy of electrons in the electrosphere, the e+e− pair creation rate
is strongly reduced as compared to the vacuum value (the energy threshold
for a pair creation is now µe + mec

2, much higher than the vacuum threshold
2mec

2). However, the process can still go via quantum tunneling through
the energy barrier. For a typical temperature T � 109 K, the contribution
to the photon flux from e+e− pair annihilation (e+e− → 2γ) owing to the
barrier penetration is (Usov, 1998) Fbar ∝ Fbb exp(−α/T9)/T9, where α =
2mec

2/(kB × 109 K) = 11.86 and T9 = T/109 K. Combining Fbar with Fqq
and Fpl, we find that the photon emissivity of cooling bare strange stars with
T < 1010 K is still many orders of magnitude lower than for neutron stars,
and the photon spectrum at T � 109 K can be very hard (Usov, 1998, 2001).
Detailed studies of e+e−-pair and photon radiation from hot, bare strange stars
were done by Aksenov et al. (2003, 2004).

The photon flux from stellar atmospheres is limited by the condition of
hydrostatic equilibrium. The radiation pressure directed outward should be
balanced by the gravitational pull acting on the plasma. For a spherically
symmetric star, the radiation pressure is proportional to the photon luminosity
Lγ . The condition of hydrostatic equilibrium can be satisfied only for Lγ <
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LEdd, where LEdd is the Eddington limit. For neutron stars, according to Eq.
(1.3), LNS

Edd ∼ 1038 erg s−1.
However, the strange quark matter at the surface of the bare strange star

is bound not by gravity but by strong interactions. The sharp quark surface
separates the QCD vacuum, where quarks can move, from the outer ordinary
vacuum, where quarks are confined to hadrons. Baryons can fall inside the
SQM, but cannot escape from it.2 Nevertheless, the surface cannot prevent
the radiation of photons and e+e−-pairs. The confinement of quarks within
the SQM makes the Eddington limit irrelevant for bare strange stars. The
photon luminosity of bare strange stars can be as high as 1051 erg s−1 if the
surface temperature is Ts ∼ 1011 K (Chmaj et al. 1991, Aksenov et al. 2004
and references therein). This makes them attractive for some models of inner
engines to generate still mysterious gamma ray bursts at cosmological distances.

8.15. The surface of a bare strange star without electrons
This is the case of the CFL phase of quark matter with the enforced con-

dition ne = 0. The reason for the electric neutrality of the quark component is
that the pairing is the most efficient (produces maximum binding) if all Fermi
momenta of u, d, and s quarks are equal. This in turn implies nu = nd = ns.

In order to calculate the charge density near the strange star surface one
should take into account, apart from the bulk contribution Ωbulk, also the surface
term Ωsurf > 0 in the thermodynamic potential of the system. To determine the
equilibrium near the surface, one has to minimize the sum Ωbulk + Ωsurf . For
normal strange matter, the surface increases the positive charge of the quark
component of the matter, because the additional reduction of the number of
massive s-quarks near the surface is energetically preferable (Madsen, 2000b).
For the CFL-strange matter, the reduction of the number of s-quarks near the
surface makes the surface layer positively charged, creating a Coulomb barrier
which prevents the absorption by the surface of atomic nuclei (Madsen, 2001).3

This barrier allows CFL superconducting strange stars to have normal crusts.
More detailed studies of the electric field at the surface of the CFL-strange

matter were performed by Usov (2004). The deficit of s-quark states near the
surface implies the net positive charge of quarks in the surface layer (whose
thickness is a few fm). This strongly localized positive charge produces a posi-
tive Coulomb potential ∼ 107 V extending over ∼ 10−11 cm. It corresponds to

2In principle, colorless triplets of quarks could evaporate from SQM as baryons, but viewing a large binding
energy of SQM, ∼ 50 MeV, this evaporation is very inefficient at T � 1011 K.
3The demonstration by Madsen (2001) that the reduction of the number of s-quarks near the surface of a
strangelet (as near the surface of a star) implies a net positive charge of strangelets was crucial for ruling
out a potential “disaster scenario” in which strangelets produced in heavy ion colliders could grow infinitely
by absorbing nuclei, and swallow eventually the Earth. This demonstration was met with a relief and made
some people state that “Madsen saved the world.”
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a huge electric field ∼ 1018 V cm−1 directed outward. Thus, the electrosphere
of a bare CFL superconducting strange star is similar to that of a normal strange
star. As in the normal case, the superconducting star can radiate photon fluxes
exceeding the Eddington limit by many orders of magnitude. The maximum
mass and thickness of the normal crust around a superconducting core do not
differ from those for normal strange stars (§8.14).

8.16. Strange stars with the crust
A strange star with the Coulomb barrier at its surface can have an envelope

of normal matter, which could be formed via accretion (in a close binary or
from the interstellar matter). The normal envelope could also be a leftover
of a neutron star whose interior transformed into a strange star (§8.19). The
envelope can coexist with the core of strange matter, provided it does not contain
free neutrons (which would be absorbed by the SQM and dissolved into quarks).
Therefore, an absolute upper bound on the bottom density of the crust, ρb, is
the neutron-drip density, ρND ≈ 4 × 1011 g cm−3. A superstrong electric field
should separate normal nuclei from the quark matter, which is necessary for the
envelope stability. However, even if the envelope contains only nuclei immersed
in an electron gas, the force that supports the crust should be large enough to
create a large gap between the nuclei and the SQM and prevent the absorption
of the nuclei by the SQM via quantum Coulomb barrier penetration.

The calculation of the electrostatic potential V (z) in the vicinity of the
quark surface (at z = 0) differs from the calculation of V (z) for a bare strange
star by the boundary condition at z → +∞. Now the condition is V (z →
+∞) = Vcr, where Vcr is the potential at the bottom of the normal crust.
The problem can be solved in the Thomas-Fermi approximation and has to
involve the balance of forces (pressure, gravity, electrostatic) acting on the
crust base. A simplified solution, in which both Vq and Vcr were treated as input
parameters (Vq > Vcr), was presented by Alcock et al. (1986). They estimated
the gap width zG between the normal and SQM phases and calculated, within
the quasiclassical WKB approximation, the probability for a crustal nucleus to
tunnel through the gap. Their main conclusion was that for ∆V = Vq − Vcr �
10 MeV/|e| (zG ∼ 102 fm), the normal crust with the ground-state composition
and the bottom density ρb ∼ ρND is stable against the absorption of nuclei by
the SQM. Therefore, the maximum crust density can be really set ρb = ρND.
For a strange star of M � M�, the maximum mass of the crust is ∼ 10−5 M�.
However, the electron fraction in the SQM can be so small, that the crust stability
conditions are violated at ρ much lower than ρND. This would correspond to
ρb � ρND, with thinner and less massive crust (Huang & Lu, 1997).

For M � M�, the radius R of a strange star with the crust is at most a
few percent larger than for a bare strange star of the same mass (Fig. 8.5). For
M = 1.4 M� the maximum crust thickness is ∼ 300 m (to be compared with
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R ∼ 10 km) and the crust mass is only 1.7 × 10−5 M�. Both the mass and
the thickness of the crust decrease with increasing M and become very small
at M � Mmax. The presence of the crust implies a tiny increase of Mmax
(because the absence of the crust is equivalent to an infinitely soft EOS for
ρ < ρb, with P (ρ < ρb) = 0). One can show that the increase of RMmax is
roughly linear in Pb/ρbc

2 ∼ 10−3, whereas the increase of Mmax is quadratic
in this small parameter.

The presence of the crust leads to a specific R(M) dependence for low-
mass strange stars shown in Fig. 8.5. The structure of the crust is determined
by two factors: by the parameters of normal matter (particularly, by the bottom
density ρb or, equivalently, by the bottom pressure Pb) and by the gravitational
pull of the SQM core specified by its mass, Mcore. Consider the right R(M)
curve in the left panel of Fig. 8.5. The central stellar density and pressure, as
well as Mcore, decrease with decreasing M . On the contrary, the pressure at
the crust bottom, Pb, stays constant. For low-mass strange stars, Newtonian
gravitation can be used. For all configurations in Fig. 8.5, Mcrust � M . The
SQM core is self-bound by the confining QCD forces. On the contrary, the
crust is not self-bound, but is bound to the SQM core by the gravitational pull.
The hydrostatic equilibrium results from the balance of the gravitational pull
and the pressure. This balance implies that Mcrust has to increase sufficiently
rapidly with growing R. Low-mass strange stars with the crust are large spheres
of normal matter with ρ ≤ ρb, held together by the gravitational attraction of
a small central SQM core. There is a minimum mass which can stabilize the
crust. It corresponds to Mmin (the filled dot) in the right panel of Fig. 8.5.
For ρb = ρND we get Mmin � 0.02 M�, about one fifth of the minimum
mass of neutron stars. The value of Mmin for ρb < ρND would be even
smaller. Configurations to the right of the minimum in the M − R diagram are
unstable with respect to small perturbations (as follows from the static stability
condition dM/ dρc > 0, §6.5, and confirmed by the linear dynamical analysis
of Glendenning et al. 1995).

If the surface tension of droplets of SQM (strangelets) is sufficiently small,
one could contemplate a possibility of a very exotic crusts on strange quark stars,
built of a crystal lattice of positively charged strangelets immersed in an electron
gas (Haensel et al. 1986b; Jaikumar et al. 2006). Such a crust would be rather
thin (of the thickness ∼ 50 m). We will not consider this model further.

8.16.1 The minimum radius of strange stars with the crust

Strange stars with the crust cannot have too small radii. They have the
minimum radius Rmin which depends on the pressure at the crust bottom and
on the EOS of the SQM core. The problem of Rmin was studied in detail by
Zdunik (2002).
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Strange stars with R ∼ Rmin can be analyzed in the Newtonian gravity.
The equation of hydrostatic equilibrium in the crust is dP/ρ = −GM dr/r2,
where M is the total stellar mass (M � Mcore � Mcrust). Integrating from
the surface (r = R, P = 0) to the crust bottom (r = Rb, P = Pb) we obtain

χ ≡
∫ Pb

0

dP

ρc2 =
GM

c2

(
1

Rb
− 1

R

)
. (8.31)

For the BPS EOS of the crust and ρb = ρND = 4.3×1011 g cm−3 one gets χ =
9.2 × 10−3 (Zdunik 2002; notice that our dimensionless χ is χ = χZdunik/c2).

Using the relation M = 4π
3 ρsR

3
b valid for low-mass strange stars, we get

1
R

=
1

Rb
− 3χc2

4πGρsR3
b
. (8.32)

Hence the minimum of R (the maximum of 1/R) is

Rmin =
3
2

Rb =
9
4

√
χc2

Gπρs
. (8.33)

A typical error of this expression is (1 − 3) %. For an MIT Bag Model EOS
(msc

2 = 200 MeV, αs = 0.2, B = 60 MeV fm−3) of the quark core, at
ρb = ρND = 4.3 × 1011 g cm−3, we get Rmin = 6.7 km, in agreement with
Fig. 8.5.

Note that Rmin ∝ ρ
−1/2
s . If ρb = ρND, one typically has Rmin ∼ (5 −

7) km for the EOSs based on the MIT Bag Model and Rmin ∼ 4 km for the
EOSs of Dey et al. (1998) (Table 8.1). For ρb < ρND, the minimum radius will
be smaller, Rmin ∝

√
χ(ρb).

8.17. Apparent radii of strange stars
As in the case of neutron stars (§6.6.6), the difference between apparent

radii R∞(M) and circumferential radii R(M) of strange stars increases with
increasing M and becomes large at the maximum mass. An example of the
curves R∞(M) for strange stars with and without the crust, calculated using
an MIT Bag Model EOS (ms c2 = 200 MeV, αs = 0.2, B = 60 MeV fm−3),
are shown in Fig. 8.11. For comparison, we also show the R∞(M) curves for
neutron stars, calculated for a representative set of EOSs of baryonic matter.
The curves for strange stars are qualitatively different from those for neutron
stars. The apparent radius of neutron stars is always larger than 12 km, while
there is no lower bound on R∞ for bare strange stars. This difference would
be important to identify a strange star. It would be sufficient to show that R∞
is certainly below 12 km.
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Figure 8.11. Apparent stellar radius R∞ versus gravitational mass M . The lower solid line is
for bare strange stars calculated using an MIT Bag Model EOS (msc

2 = 200 MeV, αs = 0.2,
B = 60 MeV fm−3). The upper solid line is for strange stars with the crust (ρb = ρND). Dotted
lines correspond to neutron star models calculated using EOSs from Table 5.3. The dot-and-dash
line shows the minimum of R∞ at a given M (§6.6.6). Shaded vertical band refers to the range
of precisely measured masses of neutron stars (§9.1).

The shapes of the R∞(M) and R(M) curves for strange stars are different,
especially for highest M . In contrast to the R(M) curve (Fig. 8.5), the apparent
radius R∞ of bare strange stars increases monotonically with growing M ,
except for a barely visible, tiny segment at M � Mmax. Within one percent,
the maximum value of R∞ is reached at Mmax. This maximum value is very
close to the absolute lower bound on R∞ at M = Mmax. The lower bound
of R∞(M) is reached at rg/R = 2/3, at which the equator coincides with the
closed circular photon orbit (§6.6.6). For the maximum-mass bare strange star
with this EOS, we have rg/R = 0.54, which is 19% lower than 2/3. Using
the same arguments as in §6.6.6 (expanding R∞/R around its minimum at
rg/R = 2/3) we estimate that R∞(Mmax) exceeds the minimum value of
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Figure 8.12. Surface gravity versus strange star mass (left) and compactness (right) for three
EOSs of strange quark matter; S1 is the MIT Bag Model with αs = 0.17, B = 60 MeV fm−3,
and msc

2 = 200 MeV; S2 is the SQM0 EOS of §8.5 with B = 60 MeV fm−3; S3 is the SS1
EOS from Table 8.1. The dashed line in the right panel is obtained by transforming the S2 curve
into the the S3 curve using Eq. (8.34).

R∞ at M = Mmax by ∼ 2 × (0.19)2 � 7%, in good agreement with precise
numerical results shown in Fig. 8.11.

For strange stars with the crust extended to ρb = ρND, the apparent radius
reaches minimum of ∼ 6 km at M ∼ 0.02 M�. At such a low mass the
space-time curvature is small and R∞ � R. Therefore, all results concerning
the minimum R of strange stars with the crust (§8.16.1) apply – within a few
percent – to the minimum value of R∞.

8.18. The surface gravity of strange stars
The dependence of the surface gravity gs on M for strange stars (Bejger &

Haensel 2004, Fig. 8.12) is very different from that for baryonic stars (§6.6.5)
because of the different M − R diagrams. The surface gravity of strange stars
is very model dependent. For M = 1.44 M�, the value of gs,14 ranges from
2.0 to 5.5. Such a scatter can be explained in terms of the scaling properties of
strange star models.

As shown in §8.8, various EOSs of strange matter can be quite well rep-
resented by the linear relation P = ac2(ρ − ρs), Eq. (8.18). The parameters
of strange stars calculated for the different EOSs are connected via the scaling
relations discussed in §8.13 and Appendix E. The scaling implies that at a
fixed a the ratio M/R does not depend on ρs. Therefore, the maximum surface
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gravity of stable strange stars scales as

g′
s,max =

(
ρ′

s/ρs
) 1

2 gs,max . (8.34)

The values of a for the EOSs S1, S2, and S3, used in Fig. 8.12, range from
0.30 to 0.46 (Table 8.1). The exact ratio gs,max(S3)/gs,max(S2) = 1.81, while
the scaling factor gives [ρs(S3)/ρs(S2)]1/2 = 1.63. The large difference in the
maximum surface gravities is described by the scaling with respect to ρs; the
dependence on a is much weaker and can be neglected in the first approximation.
As we see in the right panel of Fig. 8.12, the precision of this scaling increases
with decreasing the star compactness. The scaling becomes very precise for
rg/R < 0.2 because the density within such strange stars is nearly constant
and the dependence on a is really negligible.

Although the dependence of gs on M and rg/R for strange stars and
baryonic stars is very different, the range of gs,max = (3 − 6) × 1014 cm s−2 is
similar.

8.19. The conversion of neutron stars into strange stars
Let us imagine that a small nugget of SQM appears in the neutron-star

interior, for instance, as a high-energy strangelet from cosmic rays. It might
also nucleate near the center of an accreting neutron star or a spinning down
pulsar, due to the compression of the matter. Finally, it could appear owing to
large thermal fluctuations in the hot and dense core of a newly born neutron
star. In all these cases the neutron star will convert into a strange star via an
exothermic burning of baryon matter into SQM.

The growth of the core of the SQM inside a neutron star was considered
by Olinto (1987, 1991); Doroba (1989); Heiselberg & Pethick (1993) assum-
ing that the conversion takes place in the diffusive (slow combustion) regime.
The actual conversion timescale τconv, determined by the weak interaction rate
(mainly by the strangeness changing process u + d → s + u) and the dif-
fusion rate, is uncertain and depends on an initial neutron star configuration.
At kBT ≈ 10 MeV, characteristic of a newly born neutron star, Heiselberg &
Pethick (1993) got τconv ∼ 10 min. On the other hand, Olesen & Madsen (1991)
found that τconv ranges from 0.1 s to a few minutes, depending on the neutron
star temperature, the EOS of the baryon matter, and SQM parameters. Some
authors (Horvath & Benvenuto, 1988; Benvenuto et al., 1989) give arguments
in favor of the transformation of slow (subsonic) combustion into a detonation
shock in a newly born neutron star. They argue that the slow combustion front
is hydrodynamically unstable due to the development of self-turbulence. This
would strongly increase the front area and accelerate the conversion rate. Con-
sequently, a slow conversion front would be transformed into a fast (supersonic)
detonation front with τconv ∼ 0.1 ms. In the detonation scenario, the outer layer
of the neutron star would be ejected and a bare strange star would be formed.
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Recently, however, Drago et al. (2005) have shown that while the conversion
front is convectively unstable, it moves fast but subsonically in the baryon core:
burning of hadronic matter into SQM is a strong deflagration process. For the
Drago et al. (2005) models, a neutron star burns into a strange quark star in
∼ 10 ms. Clearly, especially in view of a possible relation of the conversion
process to the inner engines of long gamma ray bursts, the problem of the most
likely scenario of the conversion of a neutron star into a hot, rapidly rotating
strange quark star deserves further study.

8.20. Even stranger stars of abnormal matter and Q-stars
Several types of the hypothetical self-bound state of dense matter, different

from the SQM, could constitute the true ground state of the matter at P = 0
(§8.9). Let us consider corresponding stellar models. We will mainly concen-
trate on the values of Mmax and Rmax for non-rotating stars using the scaling
properties (§8.13 and Appendix E) of the maximum-mass configurations for
the linear approximation of the EOSs (§8.8.1).

Employing an EOS of a self-bound pion-condensed matter, Hartle (1975)
obtained Mmax = 1.3 M�, RMmax = 5.4 km, ρc,max = 8 × 1015 g cm−3, and
zs(Mmax) = 0.84. Notice that the surface redshift zs(Mmax) is very close to
the upper bound for the causality-limit EOS, zCL

max = 0.85 (§6.6.4). Indeed, the
parameters of the maximum-mass model are close to those for the causality-
limit EOS with ρs = 2.7×1014 g cm−3 (see Appendix E for relevant formulae).
This value of ρs is significantly lower than ρ(P = 0) = 2 × 1015 g cm−3 for
the EOS of Hartle (1975). The causality-limit EOS is, therefore, not a good
fit to this EOS at P � Pc,max, but this deficiency has no significant effect
on the parameters of the maximum mass configuration. Notice that because
Mmax = 1.3 M� is lower than the mass of the Hulse-Taylor pulsar, the Hartle
(1975) model is inconsistent with observations (§9.1). More exactly, the Hulse-
Taylor pulsar cannot be an abnormal star of Hartle (1975).

Such a problem does not arise for self-bound models of Migdal (1974),
provided one takes due account of large proton fraction in pion-condensed
nucleon matter (Migdal et al., 1990). A self-bound state was obtained for a
large amplitude of the π− condensate. The negative charge density of pions is
large and has to be balanced by a large positive charge of protons. Therefore,
in contrast to a small proton fraction in the non-condensed matter, the pion-
condensed matter is characterized by np ∼ nn. The EOS of symmetric nuclear
matter, used by Migdal et al. (1990), at essentially supranuclear densities is
much stiffer than the EOS of neutron matter, enlarging the maximum mass of
self-bound pion condensed stars. However, this stiffening is model dependent.
Also, the approximation of the nucleon contribution by the normal nuclear
matter and the assumption of additivity of the pion-condensate contribution,
E = EN + Eπ, is debatable (§7.3).
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The models of hypothetical Q-stars were constructed by Bahcall et al.
(1990). As we already mentioned in §8.9, two basic parameters of the model
are the energy density U0 of the scalar field inside the Q-matter and the coupling
strength αv of the vector field to nucleons. Q-star parameters show a simple
scaling with U0 provided the dimensionless parameter ζ introduced in §8.9 is
kept constant. Then, the scaling of Mmax, RMmax , Imax, and other quantities
with U0 is the same as with respect to the bag constant B for strange stars,
Eq. (8.30) (although with different numerical coefficients). For 0 ≤ ζ ≤ 16
and U0 = 13.0 MeV fm−3, one gets an astonishingly high maximum stellar
mass, 4.0 ≤ Mmax ≤ 8.3 M�. It stems from a low value of the Q-matter
density at zero pressure, ρ(P = 0) ≡ ρs. Let us recall that nucleons are
nearly massless in the Q-matter and consider the simplest case of ζ = 0. Then
the EOS for the Q-matter coincides with the EOS for the strange matter of
massless, non-interacting quarks at B = U0. However, the standard value used
in constructing Q-star models by Bahcall et al. (1990) is U0 = 13.0 MeV fm−3,
which corresponds to ρs = 1014 g cm−3. The maximum mass can then be
calculated from Eq. (8.30); Mmax ∼ 4.0 M�, in agreement with Figs. 4 and 8
of Bahcall et al. (1990). With increasing ζ, the EOS of the Q-matter becomes
stiffer. In the limiting case of ζ = 16 considered by Bahcall et al. (1990) (at the
same value of U0 = 13.0 MeV fm−3) they get ρ(P = 0) = 5.5× 1013 g cm−3

and Mmax = 8.2 M�. This is not surprising. For the causal-limit EOS, we
can use Eq. (E.6) of Appendix E with ρs = 5.5 × 1013 g cm−3 and obtain
MCL

max = 9.0 M�. This estimate reproduces within 8% the value of Mmax,
reported by Bahcall et al. (1990). Thus, while the arguments for the existence
of the Q-matter stem from sophisticated supersymmetric extensions of field-
theoretic models of dense nucleon matter, the practical reasons for a shockingly
high Mmax of Q-stars are very simple. Specifically, the predicted density of
a self-bound Q-matter at zero pressure is two to five times lower (!) than the
normal nuclear density.

8.21. Rotating strange quark stars

As we stressed many times in the present chapter, the matter distribution in
strange stars is qualitatively different from that in neutron stars. Moreover, the
mass-radius relation for strange stars with M � M� is completely different.
These differences have strong impact on rotating strange stars.

It is worthwhile to recall that rapid rotation of strange stars became a topic
of special interest in 1989, after the sensational detection of a pulsar with the
spin period 0.5 ms in SN 1987A (withdrawn one year later, §9.4). In several
papers after the detection, a strange star was advanced as an appropriate and
even unique model for this pulsar (Glendenning 1989a,b; Frieman & Olinto
1989; see, however, Zdunik & Haensel 1990).
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Let us review properties of rotating strange stars. The formalism and nota-
tions will be the same as in §6.12. However, numerical calculation of stationary
configurations of rotating strange stars deserves an additional “technical” com-
ment. As we will see, at M � M� rotation affects strange stars stronger than
neutron stars. A correct treatment of rapidly rotating strange stars requires
exact two-dimensional calculations; the approximation of slow rotation is in-
sufficient. On the other hand, bare strange stars have huge surface density
ρs ∼ (5 × 1014 − 1015) g cm−3. It implies a huge density discontinuity at
the stellar surface, a difficult challenge for accurate two-dimensional solutions
of the coupled partial differential equations for the stellar structure and metric
functions. The early two-dimensional calculations, performed by Friedman in
1989 (quoted by Glendenning, 1989a,b) and Lattimer et al. (1991), were based
on insufficiently precise methods. The most suitable method for exact two-
(and three-) dimensional calculations of rapidly rotating strange stars was de-
veloped by Bonazzola et al. (1998b). It is a multi-domain spectral method with
the exact treatment of the density discontinuity at the stellar surface (or in the
interior, for example, at the core-crust interface in strange stars with the crust).
A detailed description of this method is given by Gourgoulhon et al. (1999).
Some examples are presented below.

8.21.1 Uniformly rotating strange stars

An example of a meridional cross-section of a rapidly rotating strange star
is given in Fig. 8.13. The stellar baryon mass, the gravitational mass, and the
rotation period are Mb = 2.00 M�, M = 1.60 M�, and P = 0.87 ms, respec-
tively. The oblateness is large, because the star rotates close to its Keplerian
frequency. The density contrast in the star is small; the surface density is about
2/3 of the central one. The surface separates two domains of integration of
the equations of hydrostatic equilibrium and space-time metric. The spectral
method determines equilibrium configurations very precisely (Gourgoulhon et
al., 1999).

Rotating bare strange stars, stable with respect to axially symmetric defor-
mations, occupy a region in the M − Req plane shown in Fig. 8.14; Req is the
equatorial circumferential radius. The line S corresponds to non-rotating stars
(with the spin frequency f = 0), while the line K is for the Keplerian rotation
(f = fK). The central density increases along each line. S2 and K3 refer to
the maximum mass non-rotating and rapidly rotating stars, respectively. The
dashed line S2 − K3 shows the maximum-mass configurations with the spin
frequency from f = 0 to fK. The dashed line S2 − K2 is the track of the star
with the same fixed baryon number as the maximum-mass non-rotating star,
which is spinning up from f = 0 to fK. The dashed line S1.4 −K1.4 is a similar
track of the star which has M = 1.4 M� at f = 0.
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Figure 8.13. Cross section in the meridional plane xz of a rapidly rotating strange star (for the
SQM0 EOS with B = 60 MeV fm−3); x = r sin θ cos φ and z = r cos θ, where (r, θ, φ)
are spherical coordinates in Eq. (6.95); z is the rotational axis. Contours are isolines of the
pseudo-enthalpy H . Solid lines refer to positive values of H , Eq. (6.99), in the star. Dashed
lines refer to negative values outside the star, where H is defined by Eq. (6.100). The thick solid
line is the stellar surface. From Gourgoulhon et al. (1999).

One can see significant differences from the analogous plot for neutron
stars (Fig. 6.18). The shape of the region for stably rotating strange stars differs
from that for neutron stars, because of the different mass-radius relations. The
hatched region S2K2K3 contains supermassive strange stars (Mb > M stat

b,max,
where M stat

b,max is the maximum baryon mass for non-rotating stars). Generally,
for M � M� uniform rotation has stronger effect on strange stars than on
neutron stars. The increase in Req for strange stars is larger, because their
flat density profile amplifies the effect of the centrifugal force in the equatorial
ring. The area of supermassive region in the M − Req plane is much larger;
the centrifugal forces are more important than in neutron stars and can support
larger mass. This will also be seen from our discussion of most massive spinning
strange stars (§8.21.3). In contrast to neutron stars, rotation of bare strange stars
does not become more important with the decrease of M . In particular, there
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Figure 8.14. Families (in the M − Req plane) of spinning bare strange stars (SQM1 EOS)
stable with respect to axially symmetric perturbations. The central density increases upwards
along each solid line. The line S refers to non-rotating stars; the line K refers to Keplerian
rotation. The line “1.56 ms” corresponds to the period 1.56 ms of the second fastest rotator, PSR
B1937+21 (§9.4). Other notations are explained in the text.

is no lower bound on the mass of spinning bare strange stars, because they are
bound not by gravity but by the QCD confinement forces.

Now consider rotating strange stars with the crust extending to the neutron
drip density (ρb = ρND). The families of uniformly rotating configurations,
stable with respect to axially symmetric perturbations, are shown in Fig. 8.15.
For M � M� the effect of the crust is small, and amounts to a few percent
decrease of the Keplerian spin frequency fK at a given baryon mass. The mass
of the crust is negligibly small (∼ 10−5 M�) and its contribution to the stellar
gravitational field can be neglected. The only effect of the crust is a shift of
the equator outwards, by a few percent compared to the bare strange-star case;
it results in the decrease of fK. However, the crust becomes more important
with decreasing stellar mass, especially at M � 0.2 M�. As in the case of
neutron stars, the minimum mass increases rapidly with the growth of the spin
frequency. For instance, for the spin frequency of PSR B1937+26, f = 641 Hz,
and for our model of strange star with the crust, the rotation increases Mmin by
a factor of five, from 0.017 M� to 0.09 M�. For neutron star models based on
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Figure 8.15. Families of rotating strange stars (the SQM1 EOS) with the crust (ρb = ρND) in
the M − Req plane. Notations are the same as in Fig. 8.14. For other explanations see the text.

the SLy EOS, the effect was quite similar; Mmin increased by a factor of seven,
from 0.09 M� to 0.61 M� (§6.12.2).

Now let us analyze the effect of rotation on strange stars (with the crust) at
a fixed baryon mass Mb. These rotating configurations form a one-parameter
family, along which a spinning down pulsar moves. For instance, we can
start with a non-rotating star of M(f = 0) = 1.4 M� or 1.75 M�, and then
construct a family of rotating configurations with 0 < f ≤ fK. The results are
displayed in Figs. 8.16 and 8.17. As seen from the upper panel of Fig. 8.16,
the dependence of rpol/req on f is rather similar to that for neutron stars (Fig.
6.19); here req and rpol are equatorial and polar radial coordinates, respectively
(not to be confused, for instance, with the circumferential radius Req in Figs.
8.14 and 8.15). Notice, however, a significant difference in the rotational effect
on req and rpol at f � fK. For strange stars, the decrease of rpol with respect
to the non-rotating value r0 is similar to the increase of req. For neutron stars,
the equatorial expansion was much larger than the polar flattening due to the
importance of the crust.

At a fixed baryon mass, the central baryon number density nc decreases
with increasing f . This is illustrated in the upper panel of Fig. 8.17. At the
maximum frequency, nc lowers by 24% for the M(f = 0) = 1.4 M� sequence,
just as for neutron stars with the same M(f = 0). However, for massive
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Figure 8.16. The effect of rotation on the shape of a strange star (the SQM1 EOS) with the
crust (ρb = ρND) versus spin frequency f . We show sequences of rotating strange stars with
a fixed baryon number, starting with non-rotating stars of gravitational masses 1.4 M� and
1.75 M�, and ending at the maximum rotation frequency (filled dots). Top: The ratio rpol/req

which determines the oblateness of a spinning star. Bottom: The equatorial expansion and polar
flattening (with respect to the radius s0 of the non-rotating star). All radii are defined as values
of the radial coordinate in the space-time metric, Eq. (6.95).

strange stars with M(f = 0) = 1.75 M�, one gets much larger decompression
(≈ 45%). This is because at f = fK a massive strange star has a different
matter distribution than a non-rotating strange star of the same baryon mass.
The centrifugal force leads to a significant central decompression, which is
much larger than for neutron stars or medium-mass strange stars.

The most important difference between rotating strange stars and neu-
tron stars concerns the parameter β = Ekin/|Epot|, where the energies Erot
and Egrav are defined by Eqs. (6.105) and (6.106). For our rotating strange-
star families β is as large as 0.17 − 0.18 at f = fK, reaching the threshold
value βcrit for the secular viscosity-driven triaxial (bar) instability before the
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Figure 8.17. Top: Fractional decrease of the central density produced by rotation along the
sequences of strange stars with fixed total baryon number (as in Fig. 8.16). Bottom: The ratio
of the kinetic energy to the modulus of the gravitational energy along the same sequences.

mass-shedding limit. The situation with rotating neutron stars was different
(Fig. 6.21). Rapidly rotating strange stars with β > βcrit are unstable with
respect to the triaxial deformation (§8.21.4) and might then emit gravitational
waves. The secular viscosity-driven instability of rapidly rotating strange stars
will be further discussed in §8.21.4.

8.21.2 The crust of rotating strange stars
Preliminary studies of the crust on rotating strange stars were performed

by Glendenning & Weber (1992). They used the approximation of slow rotation
by Hartle (1967) supplemented by self-consistency conditions which allowed
them to determine stellar parameters close to Keplerian frequencies.

It is obvious that rotation increases the baryon mass of the solid crust
which can be supported by the strange star. It also increases the equatorial
thickness of the crust and the stellar equatorial radius (Fig. 8.18). In what
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Figure 8.18. Baryon mass of the crust as a function of spin frequency (Zdunik et al., 2001).
The masses of non-rotating configurations are (from top to bottom) 1.75, 1.6, 1.4, 1.2, 1 M�.
The SQM1 EOS of the quark core is used.

Figure 8.19. Gravitational mass versus circumferential equatorial radius. The SQM1 EOS for
the quark core is used. The solid line is for non-rotating bare strange stars, the dotted line
is for non-rotating strange stars with the crust (ρb = ρNS); the short- and long-dashed lines
are, respectively, for bare stars and stars with the crust which rotate at the frequency of PSR
B1937+26, 641 Hz; the open circle marks the point at which 641 Hz is the Keplerian frequency.
After Zdunik et al. (2001).
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Figure 8.20. The cross section of the crust for a strange quark star with the baryon mass MB =
1.63 M� and the spin frequency f = 1210 Hz, close to the Keplerian frequency fK = 1217 Hz.
The SQM1 EOS (Table 8.1) is used. The coordinates are the same as in Fig. 8.13. From Zdunik
(2004, unpublished), with the kind permission of the author.

Figure 8.21. Logarithm of density versus the radial coordinate [defined in Eq. (6.95)] along the
polar (dotted line) and equatorial (solid line) directions for the same rotating strange star model
as in Fig. 8.20. Shaded areas correspond to the crust. From Zdunik et al. (2001).
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follows, we will denote the baryon mass of the crust of a strange star rotating at
a frequency f by Mb,crust(f); for a non-rotating star this mass is Mb,crust(0).
The circumferential equatorial radius of the star will be Req(f). Accurate two-
dimensional calculations of the crust of rotating strange stars were performed by
Zdunik et al. (2001). These authors showed that the quadratic approximation,
typical for slow rotation, Req(f)−R(0) ∝ f2 and Mb,crust(f)−Mb,crust(0) ∝
f2 is very precise for f � 500 Hz, but becomes less precise with the further
increase of f . It badly underestimates Req and Mb,crust for f � fK.

In Fig. 8.19 we present the mass-radius relation for non rotating strange
stars and for stars rotating at the frequency f = 641 Hz of PSR B1937+26.
The minimum-mass point for strange stars with the crust corresponds to the
Keplerian frequency fK = 641 Hz. Strange stars with smaller mass have
thicker crust and fK < 641 Hz.

For a given mass, a strange star with the crust is more oblate than a bare
strange star rotating at the same f . This is because the crust is the most deformed
part of the star. The effect is demonstrated in Figs. 8.20 and 8.21. As shown
in Fig. 8.20, the crust thickness at the equator is about five times larger than at
the pole. As a result, the density gradient in the equatorial ring of the crust is
much less steeper than at the pole, Fig. 8.21.

Generally, the lower the baryon mass of the star, the steeper the increase
of req/rpole with the growth of f .

Rotation will increase both the crust mass and its equatorial thickness,
∆Req (the difference of equatorial circumferential radii at the crust surface and
bottom). For stars with M � M�, both quantities can be approximated by a
quadratic function of f up to ∼500 Hz. For higher f , this approximation is
insufficient. The expressions fitting the accurate numerical results are

Mb,crust(f)/Mb,crust(0) = 1 + 0.24 f2
3 + 0.16 f8

3 , (8.35)

∆Req(f)/∆Req(0) = 1 + 0.4 f2
3 + 0.3 f6

3 , (8.36)

where f3 ≡ f/103 Hz. Equation (8.35) is accurate nearly up to f = fK, but
the equatorial radius increases very rapidly as f → fK. In view of this one
should be careful in using Eq. (8.36) at f � 1 kHz∼ 0.8 fK, where the change
of the equatorial thickness reaches ∼ 100%.

As pointed out by Glendenning & Weber (1992), the polar thickness also
increases (albeit weakly) with the growth of f , due to the decrease of gravi-
tational force at the pole (resulting from the oblateness of mass distribution).
This effect is confirmed by calculations of Zdunik et al. (2001).
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8.21.3 Maximum mass and maximum spin frequency of
strange stars

Let us start with bare strange stars. The stably rotating configurations4 with
the maximum mass M rot

max and the minimum spin period Pmin turn out to be
very close (Gourgoulhon et al., 1999). As already mentioned in the preceding
section, the increase of the maximum mass and the corresponding equatorial
radius by rotation is much larger than for neutron stars. It can be described by
simple formulae

bare strange stars: M rot
max = 1.44 M stat

max , Rrot
eq,Mmax

= 1.54 Rstat
Mmax

. (8.37)

These relations are exact for the SQM0 EOS with massless, non-interacting
quarks (Gourgoulhon et al. 1999, see Appendix E for the derivation of the
scaling relations). For this model, the EOS has the linear form (§8.8.1) P =
c2a(ρ − ρs), where ρs = 4B/c2, a = 1/3, and B is the bag constant. For a
finite strange-quark mass in the presence of QCD interactions, Eqs. (8.37) are
approximate but still quite precise (see Appendix E). Let us notice a strong
difference between spinning strange stars and neutron stars studied in §6.12.4.
The rotational increase of Mmax by a factor of 1.44 for strange stars can be
compared to the increase by a factor of 1.18 for neutron stars. The corresponding
factors describing the rotational increase of Req are 1.54 for strange and 1.32
for neutron stars.

We can easily understand Eq. (8.37) using the scaling (Appendix E) of the
general-relativistic equations for uniform stationary stellar rotation, §6.12.1,
applied to the EOS of the linear form. At a fixed a in the linear approximation,
equilibrium configurations can be obtained from a universal dimensionless solu-
tion of the equations for spinning stars. The scaling relations for the maximum
mass configurations are

M rot′
max/M

rot
max = Rrot′

eq,Mmax
/Rrot

Mmax
=
(
ρs/ρ′

s
)1/2

. (8.38)

As the scaling for Mmax and RMmax for non-rotating stars is also given by Eq.
(8.38), the quantities for rotating stars are proportional to those for non-rotating
ones. The numerical coefficients depend rather weakly on a (Appendix E)
which implies good precision of Eq. (8.37) (within 2% for Bag Model EOSs).

The scaling relation for the minimum rotation period, which is also ob-
tained from the dimensionless form of equations of spinning stars (Appendix E),
reads

P ′
min/Pmin =

(
ρs/ρ′

s
)1/2

. (8.39)

4We restrict ourselves to configurations stable with respect to the mass shedding and axially symmetric
perturbations. They may be secularly unstable, for instance, with respect to the viscosity driven triaxial
instability or a gravitational radiation reaction driven instability (§8.21.4).
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It gives an interesting formula which relates Pmin with the mass and radius of
the maximum-mass non-rotating configuration. It can be written in the form
identical to the analogous formula (6.108) for neutron stars, but with a different
numerical prefactor,

Pmin = CSS
(
M�/M stat

max
)1/2 (

Rstat
Mmax

/10 km
)3/2

, (8.40)

CSS = 0.801 ms.

This formula is exact for the SQM0 EOS (Gourgoulhon et al., 1999), but
remains precise (within 3%) for more realistic EOSs of SQM. Notice, that
within 3% CSS � CNS = 0.82 ms, where CNS is the coefficient in the em-
pirical formula Pmin for neutron stars. Clearly, the formula for Pmin is more
universal (valid for neutron and strange stars) than the formulae for M rot

max and
Rrot

eq,Mmax
.

8.21.4 Instabilities in rotating strange stars
Let us use the notations of §6.12.10 (devoted to instabilities in spinning

neutron stars). As we stressed in §8.21.1, strange stars rotating at f ∼ fK
have much (about twice) larger β = Ekin/|Egrav| than neutron stars because
of much flatter density profiles. Accordingly, strange stars may be susceptible
to the secular viscosity driven triaxial (bar) instability, hereafter referred to as
the triaxial instability.

The triaxial instability of rapidly rotating strange stars was studied in detail
by Gondek-Rosińska et al. (2003) who constructed stationary axially symmetric
stellar models. The stability with respect to a triaxial deformation was checked
with a three-dimensional numerical code. The evolution of a deformed star was
followed by constructing a series of triaxial quasi-equilibrium configurations
(matter distribution and space-time metric) along which the perturbed configu-
ration evolves. If the perturbed configuration relaxes to the equilibrium axially
symmetric one, then the initial rotating equilibrium configuration is stable. In
the opposite case, the perturbed configuration diverges from the axially sym-
metric one, which is a signal of the triaxial instability. This method can test the
stability but does not give the timescale of the instability growth. The growth
time is related to the timescale of angular momentum redistribution produced
by the viscosity in a rotating star.

Consider a sequence of stationary configurations of rotating strange stars
with a fixed baryon number and 0 < f < fK (similar to those shown in Figs.
8.17 and 8.16). If at some fcrit < fK a rotating axially symmetric configuration
becomes unstable with respect to the triaxial deformations, then at f > fcrit
the rotation is accompanied by the emission of gravitational waves. Therefore,
an isolated strange star cannot rotate stably at f > fcrit. However, a stationary
rotation is still possible if the angular momentum loss due to the gravitational
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Figure 8.22. Critical value of Ekin/|Egrav| for the triaxial instability versus the compactness
parameter 2GM/Reqc2, for the SQM1 EOS (the solid line) and for the incompressible-fluid
stars (the dashed line). For further explanations see the text.

waves emission is balanced by an external torque. This may happen for an
accreting strange star in a compact binary. It could be a promising source of
continuous gravitational radiation (Gondek-Rosińska et al., 2003)

As noted by Gondek-Rosińska et al. (2003), the value of βcrit for strange
stars is very close to that for idealized stars built of incompressible fluid
and studied by Gondek-Rosińska & Gourgoulhon (2002). In both cases
(incompressible-fluid and strange matter) the value of βcrit depends essentially
on the only one stellar parameter, xc ≡ 2GM/Reqc

2, where Req is the circum-
ferential equatorial radius of a spinning star. Figure 8.22 presents βcrit versus xc
for strange stars and incompressible stars. In the limit of xc → 0 one recovers
the classical Newtonian result for incompressible fluid stars, βNewt

crit = 0.1375
(see, e.g., §7.3 of Shapiro & Teukolsky 1983). The two curves are almost
identical and can be approximated by the expression

βcrit = 0.1375 + 0.037xc(xc + 2) . (8.41)

General relativistic effects increaseβcrit and stabilize rotation against the secular
triaxial instability. For a given mass M , a strange star is unstable at f > fcrit.
We plot fcrit versus M for three EOSs of the SQM in Fig. 8.23. We see that
for M ∼ 1.5 M� the secular triaxial instability sets in at f � 900−1100 Hz.

The function fcrit(M) shows a useful scaling property with respect to ρs,
the parameter of the linearized form of the EOS of strange matter, studied in
§8.8. Consider two EOSs of the SQM, a nonprimed and a primed one. Then,
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Figure 8.23. Critical frequency fcrit for the secular triaxial instability versus gravitational mass
for three EOSs of the SQM based on the MIT Bag Model. They are SQM0 (the solid line);
SQM1 (the long-dashed line); and the extreme model (ms = 100 MeV c−2, αs = 0.6, B =
40 MeV fm−3; the short-dashed line), which gives very high Mmax.

to a very good approximation, one can express f ′
crit(M

′) in terms of fcrit(M),

f ′
crit/fcrit = M ′/M =

(
ρs/ρ′

s
)1/2

. (8.42)

The dependence on the second parameter a in the linear approximation is very
weak and can be neglected (Gondek-Rosińska et al., 2003).

As in the case of rapidly rotating neutron stars, one can study the stability of
rotating strange stars with respect to non-axisymmetric, gravitational-radiation
reaction driven instabilities of Chandrasekhar-Friedman-Schutz (CFS) type.
First consider the case of normal (non-superfluid) SQM. Unfortunately, the
existing investigations (Colpi & Miller, 1992) were based on the bulk viscosity
underestimated by many orders of magnitude. It is expected that with much
larger realistic bulk viscosity of normal SQM the CFS instabilities will be
damped at any f ≤ fK (Madsen, 1992). In contrast to the normal SQM, a
superconducting SQM has an exponentially suppressed bulk viscosity. Thus,
superconducting rapidly rotating strange stars can be unstable to CFS modes.

The case of r-modes, which can be unstable at any f , is of particular
interest. This problem was studied by Madsen (1998b, 2000a), who focused
on the difference of rotating strange stars from neutron stars. Let us point out,
that the bulk viscosity of the SQM, ζSQM, depends very strongly on the value
of ms (Madsen, 1992). For instance, let us fix msc

2 = 200 MeV. Because of a
very large bulk viscosity, r-modes in rotating non-superfluid strange stars are
stable up to f ∼ fK > 1300 Hz, provided the internal stellar temperature is
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5×108 K � T � 2×1010 K, the condition which is easily satisfied. However,
because ζSQM ∝ m4

s (Madsen, 1992), for msc
2 = 100 MeV the r-mode

stability window of millisecond strange stars with f � fK is much narrower,
3 × 108 K � T � 4 × 109 K. Bare strange stars with CFL superconductivity
are unstable with respect to r-modes at any f . If a star possesses the crust
(up to the neutron drip point), then r-modes become stable but only for f �
100−200 Hz, being damped by the electron shear viscosity in the crust and
by crust-core rubbing (Madsen, 2000a). This excludes superconducting strange
stars as models of millisecond pulsars. Further studies of the r-mode instability
in rotating isolated and accreting strange stars confirmed distinct features of
strange stars in this respect (Andersson et al., 2002).



Chapter 9

THEORY VERSUS OBSERVATIONS

As discussed in Chapter 5, the fundamental problem of the EOS of neutron-
star cores cannot be solved on purely theoretical basis: there is no strict theory
but many theoretical models instead. Therefore, one can try to select (constrain)
the true model using observations. In the present Chapter we will describe some
results of this activity. The methods to constrain the EOS are numerous. The
activity started just from the discovery of neutron stars in 1967 (Chapter 1). The
results obtained by the time of this writing (2006) are a tremendous challenge
of observational astrophysics, but look like a failure in their essence: the EOS
has been only weakly constrained by observations.

Nevertheless, it is certainly not a failure on a longer time scale. First,
the methods to study the neutron-star structure have been elaborated, and the
most exciting observational discoveries have been made. Second, as we will
discuss below, the situation drastically changed by the beginning of the new
millennium: even current routine observations of already discovered neutron
stars will certainly lead to a great progress in constraining the EOS, say, by
2010.

The majority of methods to constrain the EOS are based on the neutron
star mass–radius relation (Fig. 6.5). A great difference of M − R curves for
soft, moderate and stiff EOSs will hopefully allow one to select the actual EOS.
Basically, the problem looks fairly simple. If one could accurately measure the
mass and radius of one neutron star, one would position it at the M −R diagram
and determine (constrain) the EOS. More “experimental” points would tighten
this constraint.1 As is clear from Fig. 6.5, one generally needs to measure

1In the idealized case of a complete “experimental” knowledge of the M − R relation, we would be able
to deduce the real EOS and solve thus the main mystery of neutron stars. It is an example of an “inverse
problem”, encountered in many domains of physics and astrophysics. Assume that the mass density is a non-
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M and R with good accuracy (say, ±5%) at a high significance level (2σ and
better) to distinguish between different theoretical predictions.

The attempts to solve the problem by confronting the M − R diagram
with a limited existing observational evidence are described in §§9.1–9.3. The
methods of exploring the EOS using other ideas are outlined in §§9.4–9.7.
Finally, in §9.8 the arguments in favor and against the hypothesis of strange
quark stars are critically reviewed.

9.1. Masses of neutron stars in binary systems
It is difficult to simultaneously measure the mass and radius of an isolated

neutron star but it is easier to measure the mass of a neutron star in a binary
system. Neutron stars enter binaries of several types (Chapter 1). One can
distinguish X-ray and radio-pulsar binaries. X-ray binaries can be subdivided
further into low-mass and high-mass ones; radio pulsars have been observed
(Lorimer 2001) in binaries with neutron stars, white dwarfs, non-degenerate
stars, and planets. PSR B1620–26, an 11-ms pulsar in the globular cluster M4,
enters a triple system with a white dwarf and a high-mass planet (see, e.g.,
Thorsett et al. 1999, Richer et al. 2003, and references therein).

In this section we will describe numerous measurements of neutron-star
masses M in binary systems. By M we will always mean the gravitational
stellar mass. Any precisely measured mass is very important. However, it is
clear from the consideration in Chapter 6 that one needs to search for most
massive neutron stars to constrain the EOS.

Some selected observational results are plotted in Fig. 9.1 and discussed
in subsequent sections. In binaries of different types the neutron star masses
are measured using different techniques. X-ray binaries will be considered in
§9.1.1, double neutron star (radio pulsar – neutron star) binaries in §9.1.2, radio
pulsar – white dwarf binaries in §9.1.3, and radio pulsars in binaries with non-
degenerate stars in §9.1.4. The results are summarized in §9.1.5. The errorbars
in Fig. 9.1 are mainly 2σ confidence limits. If observations provide 1σ limits
only, we just widen them twice; this may be inaccurate but nevertheless is better
than displaying unrealistically narrow 1σ limits.

9.1.1 X-ray binaries
We start with X-ray binaries, containing a neutron star (observed in X-rays

but not in radio) and a companion star. Several such objects had been detected
even before the discovery of neutron stars and were recognized as neutron

negative increasing function of the pressure, and equilibrium neutron star configurations are determined from
the Tolman-Oppenheimer-Volkoff equation (§ 6.1). Then one can infer the EOS, ρ = ρ(P ), directly from
the M(R) curve (Gerlach 1968, Lindblom 1992). Unfortunately, with the observational basis, described in
this Chapter, the project sounds purely academic.
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Figure 9.1. Neutron star masses inferred from observations of neutron stars in binary systems
(by November 2005): X-ray binaries (§9.1.1), double neutron star binaries (§9.1.2), radio pulsar
– white dwarf binaries (§9.1.3), and radio pulsar – non-degenerate star binaries (§9.1.4). The
errorbars are 2σ confidence limits.

star systems later. They are mainly compact binaries; the X-ray emission is
associated with an accretion from a companion to a neutron star. The orbits
of the stars are close to Keplerian orbits. This enables one to employ the well
elaborated astronomical methods to measure neutron-star masses.
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9.1.1 a Keplerian orbits

Let us remind briefly the basic parameters of Keplerian orbits. Consider
a binary system and approximate its components by point masses, M1 and M2
(with the total mass M = M1 + M2), moving in the X − Y plane (Fig. 9.2).
Star 1 will always be a neutron star. Each companion moves along an ellipse
around the center of mass O. Let e be the orbital eccentricity, while a1 and a2
be the major semi-axes of the ellipses for stars 1 and 2. From the definition of
the center-of-mass one has M1a1 = M2a2, i.e.,

a1 = aM2/M, a2 = aM1/M, a = a1 + a2, (9.1)

where a is the major semi-axis of the ellipse of relative motion of companions.
The orbital motion is most easily analyzed in the center-of-mass reference

frame, where conservation of the total energy E and of the orbital angular
momentum J yields:

E = −GM1M2/(2a), J2 = GM2
1 M2

2 a(1 − e2)/M, (9.2)

G being the gravitational constant.
The orbits of both companions are alike. It is sufficient to describe one of

them, for instance, for star 1:

X1 = r1 cos(ω + ϕ), Y1 = r1 sin(ω + ϕ), r1 =
a1 (1 − e2)
1 + e cos ϕ

, (9.3)

where ω is the periastron longitude and ϕ is the orbital phase.
The orbital period Pb and the associated angular velocity Ωb are given by

the first Kepler law,

Pb = 2π/Ωb, Ω2
b = GM/a3. (9.4)

The time evolution of the orbit, ϕ(t), is given by the second Kepler law,
which may be written as

ϕ̇ = Ωb (1 + e cos ϕ)2 /(1 − e2)3/2. (9.5)

This evolution is conveniently parameterized as

X1 = a1

[
(cos ξ − e) cos ω −

√
1 − e2 sin ξ sin ω

]
,

Y1 = a1

[
(cos ξ − e) sin ω +

√
1 − e2 cos ξ sin ω

]
, (9.6)

with t − t0 = (ξ − e sin ξ)/Ωb. Here, t = t0 is some moment of periastron
passage, and ξ is a parameter which varies from 2πn to 2π(n+1) over an n-th
orbital cycle. Clearly, one has ϕ̇ = Ωb for a circular orbit (e = 0).
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Figure 9.2. Keplerian orbit of the primary component M = M1 of a binary; 0 is the center of
mass; X − Y is the orbital plane, 0X is the line of nodes, 0P is the periastron, and i is the orbit
inclination angle.

The orbital parameters, such as Pb, a1, a2, e, ω, t0, and the inclination i
of the orbital plane to the line of sight, fully specify Keplerian orbits of both
companions and allow one to determine their masses M1 and M2. Thus, it is
important to reconstruct these parameters from observations, which is usually
a complicated problem.

To accomplish the task one has to observe the orbital variability of radiation
from at least one of the companions. This gives the orbital period Pb. The next
important step is to measure the orbital evolution of the radial velocity vlj (the
projection of the orbital velocity on the line of sight) of the primary (j = 1)
and/or secondary (j = 2). The phase dependence of the radial velocities is

vrj = Kj [ cos(ω + ϕj) + e cos ω ] , Kj =
Ωb xj√
1 − e2

, xj ≡ aj sin i, (9.7)

where Kj is the velocity semi-amplitude, and ϕj is the phase (ϕ1 ≡ ϕ, ϕ2 =
ϕ + π, with ω referred to the primary as in Fig. 9.2).

Radial velocities of optical components are measured by observing linear
Doppler shifts of spectral lines. Radial velocities of X-ray pulsars are mea-
sured by analyzing linear Doppler delay of X-ray pulse arrival times. Fitting
an observed phase profile of the radial velocity vrj(ϕ) by Eq. (9.7), one can
determine Kj , e, ω, xj , and T0, and calculate then the mass function fj of the
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primary or the secondary,

fj ≡ (Mk sin i)3/M2 = x3
j Ω2

b/G, (9.8)

where Mk = M2 for fj = f1, and Mk = M1 for fj = f2. The expression
for fj is obtained using the Kepler law, Eq. (9.4), and is convenient for a
mass determination, but basically it gives no new equation for M1 and M2 in
addition to Eq. (9.4). The knowledge of the mass function gives constraints on
the stellar masses and orbital parameters. If, for instance, f1 is measured, then
M2 sin i = (f1M

2)1/3. From this relation one gets useful inequalities

M2 ≥ (f1M
2)1/3 ≥ f1, M1 ≤ M−(f1M

2)1/3, sin i ≥ (f1/M)1/3. (9.9)

By measuring radial velocities vrj of one binary component j, one can
determine five parameters: Pb, xj , e, ω, and T0, which are often referred to as
five Keplerian parameters of the orbit. They give us two independent equations
[which come from the expressions for Pb (or fj) and xj (or Kj)] with four
unknowns: M1, M2, a, and sin i. Clearly, we need at least two more equations
to measure the masses.

In this respect, any observation of the second binary component would be
helpful. A measurement of its radial velocity is most desirable. It will give the
second velocity semi-amplitude (the second value of xk and the second mass
function fk). The velocity semi-amplitudes K1 and K2 immediately yield the
mass ratio, q = M1/M2 = K2/K1, the third equation of the problem. The
last, fourth equation can be obtained, for instance, from observations of eclipses
in eclipsing binaries or using some other tricks (e.g., performing multiband
photometry of the optical companion in a compact binary §9.1.4).

A practical realization of this scheme is always complicated by numerous
technical problems. One of the components may be faint, and difficult to ob-
serve. The measurement of radial velocities may be obscured, for instance, by
a temporal variability of radiation from companions, accretion effects, tidal in-
teraction, etc. If the radial velocity of the second component was not measured
(and even if it was), any other information on the binary system would help.
For instance, a determination of a spectral class and luminosity of an optical
star might allow one to estimate its mass and radius. Observational indications
that the optical companion fills its Roche lobe give additional constraints on
the orbital parameters. Models for the reprocession of (pulsed) X-rays in an
accretion disk around a neutron star and on the surface of an optical star can
also be used to constrain the orbital parameters. A non-detection of eclipses
in a binary with an unknown orbit inclination can serve for constraining the
inclination angle. All in all, a study of every binary is a subject of art.

The orbital parameters of selected X-ray binaries are collected in Table 9.1.
We list also the radii R2 of companion stars which are useful for visualizing the
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compactness of the systems. We do not give statistical errors of the presented
quantities (they may be found in cited references), just the central values, suf-
ficient to understand the global parameters of the systems. The results of mass
measurements are presented in Table 9.2 and Fig. 9.1.

9.1.1 b Vela X-1

Before discussing the overall results in §9.1.1 c, let us describe an example:
the mass measurements of Vela X-1 (=4U 0900−40), the famous X-ray pulsar
in binary with GP Vel (=HD 77581, a B0.5 Ib supergiant). The pulsar spin
period is 283 s, and the orbital period is nearly 9 days. The orbit is rather
eccentric, e ≈ 0.09, as compared to other X-ray binaries. The major semi-axis
is a ≈ 50 R�; the orbit inclination angle is i � 70◦; the radius of the optical
star is R2 ≈ 30 R�. The star fills or nearly fills its Roche lobe.

Vela X-1 is a veteran source discovered by Chodil et al. (1967) in a rocket-
borne X-ray observation. It attracted great attention as a bright variable X-ray
source after the launch of the Uhuru orbital observatory (e.g., Giacconi et al.
1972). GP Vel was identified as the optical companion of the X-ray pulsar by
Brucato & Kristian (1972) and Hiltner et al. (1972). It is widely accepted that
the pulsar is a massive neutron star. The attempts to accurately measure its
mass have been numerous (Fig. 9.3).

Initially, the accurate mass measurement was expected to be easy. The
radial velocities of GP Vel in optics have been measured by many authors
starting from Hiltner et al. (1972). The X-ray observations showed eclipsing
nature of the system. Periodic 283-second X-ray pulsations were discovered
by McClintock et al. (1976). Their timing allowed Rappaport et al. (1976) to
measure radial velocities of Vela X-1; such measurements have been repeated
afterward.

The results of some measurements of the Vela X-1 mass are presented in
Fig. 9.3. Zuiderwijk et al. (1974) reported the lower limit of the Vela X-1 mass,
M1 > 1.9 M�. van Paradijs et al. (1976) obtained M1 = (1.6 ± 0.3) M� at
the 1σ level. The next measurements gave: M1(2σ) = 1.85+0.35

−0.30 M� (Rap-
paport & Joss 1983), M1(1.64σ) = 1.77+0.27

−0.21 M� (Nagase 1989), M1(2σ) =
1.9+0.7

−0.5 M� (van Kerkwijk et al. 1995a), and M1(2σ) = (1.86 ± 0.32) M�
(Barziv et al. 2001). Let us mention that Stickland et al. (1997) reported
noticeably lower values of M1 but they turned out to be inaccurate as dis-
cussed by Barziv et al. (2001). Finally, Quaintrell et al. (2003) obtained
M1(1σ) = (2.27 ± 0.17) M� assuming GP Vel fills its Roche lobe, i.e., the
ratio of the GP Vel radius to the Roche lobe radius is β = 1; the inclination
angle is then i = (70.1 ± 2.6)◦. Taking the maximum inclination, i = 90◦,
the same authors got β = 0.89 ± 0.03 and M1(1σ) = (1.88 ± 0.13) M�. By
varying i from 70◦ to 90◦, they can get any value of β between 1 and 0.89,
and the values of M1 intermediate between the two limiting cases. In reality, β
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Figure 9.3. Some measurements of the Vela X-1 mass reported in the literature by 2006.

can vary over the eccentric orbit, and the situation is more complicated. Being
conservative, in Fig. 9.3 we present the set of lower mass limits, not because
it is more realistic but because an overestimation of M1 can lead to wrong
conclusions on the EOS in neutron-star cores. All mass limits of Vela X-1 in
Fig. 9.3 are rescaled to 2σ levels. This simple rescaling may be inaccurate but
the intrinsic errors of the measurements are evidently too large, i.e., the Vela
X-1 mass is anyway not known precisely by the time of this writing.

The main obstacle of measuring M1 consists in strong deviations from
a pure Keplerian radial velocity curve of GP Vel (van Kerkwijk et al. 1995a,
Barziv et al. 2001, Quaintrell et al. 2003). The deviations are probably caused
by GP Vel oscillations excited by tidal forces in the eccentric orbit. The problem
of extracting the Keplerian parameters is complicated and ambiguous.

There is no tendency of convergence of the reported mass limits in Fig.
9.3, although the mean mass values stay pretty high, (1.8−2.0) M�, or higher.
Wide errorbars cannot allow one to pinpoint the real mass of Vela X-1. For
instance, using the results of Barziv et al. (2001) one can state that M1 > 1.54
M� at the 2σ level but even this lower limit does not seem absolutely solid.
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The absence of convergence of the mass limits in Fig. 9.3 does not mean
the absence of any progress in understanding the binary. The observations are
obviously progressing but reveal the complicated nature of the system.

9.1.1 c Neutron star masses in X-ray binaries

Let us outline briefly the results of the neutron-star mass measurements in
the selected X-ray binaries (Fig. 9.1, Tables 9.1 and 9.2).

The binaries we have chosen are either galactic sources or the sources
in the nearby galaxies, the Large Magellanic Cloud (LMC X-4) and the Small
Magellanic Cloud (SMC X-1). Every binary consists of a neutron star, observed
in X-rays, and an optical star, observed in optics and possibly in ultraviolet.
All these binaries are compact. Optical companions fill or nearly fill their
Roche lobes, so that the accretion on neutron stars sets in, either by outflow
through the first Lagrange point or in the form of a strong wind from an optical
companion. In all the cases, the radial velocities of optical companions have
been measured. The accretion and tidal interaction made the orbits close to
circular (the eccentricity e � 0.1, excluding 4U 1700–37).

The selected systems can be divided into three groups.
(i) X-ray pulsars. They are six classical X-ray pulsars observed since the

beginning of X-ray astronomy: 4U 1538–52, SMC X-1, Cen X-3, LMC X-4,
Her X-1, and Vela X-1. All of them are high-mass X-ray binaries (except for
Her X-1 which is a medium-mass X-ray binary). The optical components are
mainly O-B stars.

The periods of X-ray pulsations and the radial velocities of pulsars have
been measured. All the binaries show X-ray eclipses. Therefore, the full set of
observational data is available (radial velocities of both companions, eclipses,
spectral class of optical companions, etc.). However, this does not allow one
to accurately measure the masses (Table 9.2). The reason is the same as for
Vela X-1: radial-velocity curves of optical companions often show pronounced
deviations from the expected Keplerian shapes, presumably due to tidal effects
and nonradial oscillations of the optical companions.

The most massive neutron star in these systems seems to be Vela X-1. By
2006 its mass remained rather uncertain, as it has been discussed in §9.1.1 b.

(ii) The system 4U 1700–37. It was discovered by the Uhuru satellite in
December 1970 (Jones et al. 1973). This is also a high-mass X-ray binary,
which demonstrates X-ray eclipses and highly variable X-ray emission but no
strict X-ray periodicity. Accordingly, no radial velocity of the X-ray companion
has been measured, only the radial velocity of the optical companion, the O6.5
Iaf+ star HD 153919. A comparison of optical and ultraviolet observations
of the optical star with stellar atmosphere models (taking into account intense
mass outflow and deviations from local thermodynamic equilibrium) allowed
Clark et al. (2002) to estimate the effective surface temperature, luminosity, and
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Table 9.1. Parameters of selected X-ray binaries (by November 2005)

System Pb e x1/ca) i R
b)
2 Refs.c)

(d) (s) (deg) (R�)

2A 1822−371d) 0.232 <0.03 1.006 81–84 JK01, J03

4U 1538−52e) 3.73 0.08 52.8 ∼ 70 ≈ 15 K95

SMC X-1e) 3.89 <0.00004 53.5 ≈ 68 ≈ 15 K95, M05

Cen X-3e) 2.09 <0.0008 39.6 ≈ 73 ≈ 11 K95, A99, M05

XTE J2123−058d) 0.248 ≈ 73 ≈ 0.6 T02

LMC X-4e) 1.41 <0.01 26.3 ≈ 65 ≈ 8 K95, M05

Her X-1 1.70 <0.0003 13.2 81 ≈ 4.2 CVR95, R97

Cyg X-2d) 9.84 0.0 49–73 OK99

Vela X-1e) 8.96 0.0898 114 >70 ≈ 30 Q03

4U 1700−37e,f) 3.41 0.2 >55 ≈ 22 C02, H03

a) x1/c = (a1 sin i)/ c is the time of light propagation along the projected major semi-axis.
b) Radius of an optical component.
c) JK01: Jonker & van der Klis (2001); J03: Jonker et al. (2003); K95: van Kerkwijk et al.
(1995b); M05: van der Meer et al. (2005); A99: Ash et al. (1999); T02: Tomsick et al. (2002);
CVR95: Cheng et al. (1995); R97: Reynolds et al. (1997); OK99: Orosz & Kuulkers (1999);
Q03: Quaintrell et al. (2003); C02: Clark et al. (2002); H03: Hammerschlag-Hensberge et al.
(2003).
d) Low-mass X-ray binary.
e) High-mass X-ray binary.
f) The compact object may be a black hole.

surface gravity, but with rather large uncertainties. Without radial velocities of
the X-ray companion, this information is insufficient to determine the masses.

In this situation, Clark et al. (2002) estimated the masses using Monte Carlo
method. They randomly selected unknown or poorly known parameters (e.g.,
the radius of the optical star, the radius of the Roche lobe) within reasonable
limits (in accordance with observations). They used the Kepler laws and familiar
relations for the stars, which fill or nearly fill the Roche lobe, to determine
the masses M1 and M2 for any set of selected parameters. In this way they
obtained statistical distributions of masses over about one million of Monte
Carlo selections, and estimated M1 and M2 (Table 9.2) from these statistical
distributions. The mass of the X-ray companion is pretty high, M1 = (2.44 ±
0.27) M� (at 1σ level). This analysis was done for a circular orbit. Later
Hammerschlag-Hensberge et al. (2003) reanalyzed high-resolution ultraviolet
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Table 9.2. Masses of neutron stars and companions in X-ray binaries (by November 2005)

System M1/M� M2/M� Signif. Reference

2A 1822−371 0.97±0.24a) 0.33±0.05a) 1σ Jonker et al. (2003)

4U 1538−52 1.06+0.41
−0.34 16.4+5.2

−4.0 2σ van Kerkwijk et al. (1995b)

SMC X-1 1.05±0.09 15.5±1.5 1σ van der Meer et al. (2005)

Cen X-3 1.24±0.24 19.7±4.3 1σ van der Meer et al. (2005)

XTE J2123−058 1.46+0.30
−0.39 0.53+0.28

−0.39 1σ Tomsick et al. (2002)

LMC X-4 1.31±0.14 15.6±1.8 1σ van der Meer et al. (2005)

Her X-1 1.5±0.3 2.3±0.3 1σ Reynolds et al. (1997)

Cyg X-2 1.78±0.23 0.60±0.13 1σ Orosz & Kuulkers (1999)

Vela X-1 2.27±0.17 27.9±1.3 1σ Quaintrell et al. (2003)b)

Vela X-1 1.88±0.13 23.1±0.2 1σ Quaintrell et al. (2003)c)

4U 1700−37 2.44±0.27 d) 58±11 1σ Clark et al. (2002)

a) Is likely to be a lower mass limit.
b) Assuming the companion star fills its Roche lobe leading to inclination angle i = 70.1◦±2.6◦.
c) Assuming i = 90◦ and the ratio of the radii of the companion star and the Roche-lobe is
β = 0.89 ± 0.03.
d) The compact object may be a black hole.

spectra of this binary and noticed that these spectra are in good agreement with
optical spectra if the eccentricity is finite, e ≈ 0.22. In that case M1 and M2
should be about 4% higher than reported by Clark et al. (2002). We have not
introduced this correction in Table 9.2.

Unfortunately, one cannot exclude that 4U 1700–37 contains a black hole
rather than a neutron star (see, e.g., Clark et al. 2002, for the arguments against
and pro the black hole hypothesis). If future observations confirm the existence
of a neutron star in 4U 1700–37, it will be a good candidate for a very massive
neutron star.

(iii) Low-mass X-ray binaries. They are compact binaries containing a
neutron star and a low-mass optical companion (M2 � M�). We present three
such systems, 2A 1822–371, XTE J2123–058, and Cyg X-2.

2A 1822–371 was discovered by Jonker & van der Klis (2001) much later
than the sources described above. It is an X-ray binary with the shortest orbital
period, Pb = 5.57 h, among the selected sources. X-ray pulsations (P = 0.59
s) and X-ray eclipses have been detected; the radial velocities of the X-ray and
optical companions have been measured. Unfortunately, the neutron star has a
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low mass, M1 ∼ M� (Jonker et al. 2003), insufficient to constrain the EOS of
superdense matter.

XTE J2123–058 was also discovered later (Levine et al. 1998) than the
majority of other sources. It shows type I X-ray bursts, quasiperiodic X-ray
oscillations, partial X-ray eclipses, and behaves as an X-ray transient. The
radial velocities of the optical companion have been measured but no strictly
periodic X-ray pulsations have been detected. Nevertheless, the semi-amplitude
K1 of the radial velocity of the X-ray source has been determined (Casares et
al. 2002) by measuring extreme wings of the rotationally broadened Hα line,
assuming it originates in an accretion disk around the neutron star and shares
its orbital motion. The neutron-star mass has been estimated by Tomsick et al.
(2002) with high uncertainty, its central value M ≈ 1.46 M� is about the same
as in double neutron star binaries (§9.1.2).

Finally, Cyg X-2 is one of the brightest and oldest known X-ray sources.
The neutron star accretes at a nearly Eddington rate and shows type I X-ray
bursts, but no X-ray eclipses. No strictly periodic X-ray pulsations (thus, no ra-
dial velocities of Cyg X-2) have been detected. The optical star, V1341 Cygni,
is bright and good for a very high-resolution spectroscopy. Spectroscopic ob-
servations yielded its radial velocity and the mass function. In addition, they
allowed Casares et al. (1998) to detect rotational broadening of lines in the
spectrum of V1341. It is thought that the star fills its Roche lobe and its ro-
tation is synchronized with the orbital motion. Under these conditions, the
rotational broadening gives an independent relation for determining the masses
(instead of the mass function of the primary). The orbit inclination angle can be
constrained from general Keplerian relationships and from a non-detection of
X-ray eclipses. Using this information, Orosz & Kuulkers (1999) determined
the neutron star mass, M1(1σ) = 1.78 ± 0.23 M�. The central value is rather
high and interesting for constraining the EOS in neutron star cores but large
uncertainties hamper such an analysis.

Let us emphasize that real uncertainties of mass measurements in X-ray
binaries can be larger than cited above, because of the complicated nature of
the binaries. The best example is provided by two sets of possible masses
of the neutron star in Vela X-1 (Quaintrell et al. 2003, Table 9.2). Another
example – a reanalysis of light curves of optical components of X-ray binaries by
Abubekerov et al. (2004) and Abubekerov (2004) using, particularly, the Roche
model of optical stars. These studies lead to somewhat different values of M1
and M2. For instance, Abubekerov (2004) proposes, among other possibilities,
an interpretation of the data which gives much lower mass of the compact
object in 4U 1700–37 (M1 ∼ 1.7 M� or even lower) and much lower (and
more reasonable) mass of the companion (M ∼ 27 M�).

Thus, the uncertainties of neutron-star mass measurements (by 2006) in
X-ray binaries are too high for a definite conclusion on the EOS. Nevertheless,
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the observations give indirect evidence for the existence of massive neutron
stars, with M ∼ 1.8 M� and higher, but the evidence is still not solid. The
binaries most important for the EOS problem are: Cyg X-2, Vela X-1, and 4U
1700–37 (if its compact component is a neutron star).

9.1.2 Double neutron star binaries

High uncertainties of masses of neutron stars in X-ray binaries arise mostly
due to deviations from Keplerian motion (accretion, tidal forces, oscillations of
an optical companion) in compact binaries with an extended optical companion.

Luckily, Nature gave us a wonderful present in the form of binaries con-
taining a radio pulsar and another compact star (a neutron star or a white dwarf).
These systems have two great advantages over X-ray binaries. First, pulsar spin
periods are measured with a very high precision (more than 10 correct digits) by
methods of radio astronomy. Using these data, one can closely follow the evo-
lution of the pulsar orbital velocity. Second, a close binary system composed
of compact objects can accurately be treated as a system of two point masses.
In the present section, we start with double neutron star binaries. The pulsar –
white dwarf systems are analyzed in §9.1.3. Precise analysis of orbital motion
requires proper account of the effects of General Relativity, which is discussed
in the next section.

9.1.2 a Relativistic orbits and pulsar timing

Let us outline relativistic orbital motion of two point masses. We adopt the
standard theory of General Relativity which was proven to be a valid theory for
this problem (§9.1.2 b). The relativistic evolution of a binary is accompanied by
the losses of the total energy and the orbital momentum of the system due to the
emission of gravitational waves. Gravitational radiation from two orbiting point
masses was studied by Peters & Mathews (1963). The relativistic orbits were
analyzed in a classical paper by Peters (1964) and refined later by many authors
(see, e.g., Taylor 1987, Taylor & Weisberg 1989, and references therein). We
will mainly follow Peters (1964).

Consider a binary with the velocity of both companions much lower than
the speed of light. In the zero-order approximation, the orbital motion is Keple-
rian (§9.1.1 a), but the effects of General Relativity lead to long-term variations
of the Keplerian parameters. Thus, the energy E, the momentum J , the orbital
major semi-axis a, the eccentricity e, the orbital period Pb, and other Keplerian
parameters become slowly varying functions of time. It should be stressed that,
in principle, the relativistic effects renormalize the Keplerian relations. For in-
stance, the first Kepler law, Eq. (9.4), transforms into (e.g., Taylor & Weisberg
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1989)
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(
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]
. (9.10)

The classical relation is reproduced by replacing [. . .] → 1. As long as the
binary is not too compact, the deviation from the classical relation is small. For
simplicity, we will ignore this deviation in subsequent analysis.

The loss rates of energy and of angular momentum in a binary due to the
emission of gravitational waves are:
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Variation rates of other quantities are easily determined by expressing them
through the energy and angular momentum from Eqs. (9.2). In particular,

ȧ = − 64 G3M1M2M

5 c5a3(1 − e2)7/2

(
1 +

73
24

e2 +
37
96

e4
)

,

ė = − 304 e G3M1M2M

15 c5a4(1 − e2)5/2

(
1 +

121
304

e2
)

,

Ṗb = Pb
3ȧ

2a
,

ω̇ =
3 ΩbGM

a (1 − e2) c2 =
3 Ω5/3

b (GM)2/3

(1 − e2) c2 , (9.12)

where ω̇ describes the periastron advance, a famous General Relativity effect.
Strictly speaking, E, J and other quantities experience low-amplitude short-
term variations during every orbital period. These variations are neglected
here, and the dot means the time derivative of a quantity averaged over an
orbital period.

Dividing ȧ by ė one gets a differential equation which is analytically solved:

a(e) =
c0 e12/19

1 − e2

(
1 +

121
304

e2
)870/2299

, (9.13)

where c0 is determined by the values of a = a0 and e = e0 in an initial moment
of time t = t0,

c0 = a0 (1 − e2
0) e

−12/19
0

(
1 +

121
304

e2
0

)−870/2299

. (9.14)
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From the expression for ȧ one obtains

t − t0 =
15 c5c4

0
304 G3M1M2M

[F (e0) − F (e)] , (9.15)

where

F (e) =
∫ e

0

dε ε29/19

(1 − ε2)3/2

(
1 +

121
304

ε2
)1181/2299

. (9.16)

The integral cannot be calculated analytically. However, one can derive the
asymptotes in the limits of small and large eccentricities:

F (e → 0) =
19
48

e48/19,

F (e → 1) =
1√

1 − e2

(
425
304

)1181/2299

− 1.72892. (9.17)

We have computed F (e) and fitted it by

F (e) =
e48/19

√
1 − e2

(
0.39583 + 0.79199 e2.2876)

− 1.7289 e5.1121

1 + 1.8062 e0.30792 (1 − e2)0.51659 . (9.18)

The fit error is � 0.03% for any e.
Now the calculation of a relativistic orbit is elementary. Taking e = e0

and a = a0 at t = t0, we determine the evolution of the eccentricity, e = e(t)
from Eqs. (9.15) and (9.18), and obtain the major semi-axis, a = a(t), from
Eq. (9.13). The evolution of other parameters, for instance, the orbital period
and periastron advance can be calculated then from Eq. (9.12). The evolution
can be followed in the future (t > t0) and in the past (t < t0) down to the birth
of our binary system.

For example, Fig. 9.4 shows the evolution of the orbit of the Hulse-Taylor
pulsar, PSR B1913+16. The observations of this pulsar will be discussed in
§9.1.2 b. They have been performed over three decades (1974–2006) in the
present epoch (the dotted vertical line) and enabled one to accurately determine
a0, e0, M1, and M2. With these data, one can reconstruct the orbit. The major
semi-axis a(t) decreases with time: the binary emits gravitational waves and
the companions fall onto each other. The ellipticity also decreases and the orbit
becomes circular; the circularization goes generally quicker than the decrease
of a(t). In a finite period of time, t = tdeath, the semi-axis will become zero,
a(tdeath) = 0, which means the merging of two neutron stars and the death of
the system. The death time is given by

tdeath = t0 +
15 c5c4

0 F (e0)
304 G3M1M2M

. (9.19)
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Figure 9.4. Orbit evolution of the Hulse-Taylor pulsar (with the full major semi-axis a ≈
2.04 a1). The parameters of the system are measured in the present epoch (vertical dotted line,
t0 = 0). The theory allows us to follow the evolution in the past and future. The pulsar was
possibly born about 100 million years ago (§ 9.1.2 b).

The Hulse-Taylor pulsar will die in tdeath−t0 ≈ 300 Myr from now. Just before
the death, the relativistic effects will be the strongest (§ 9.1.2 b). To be precise,
our description of the relativistic orbit becomes invalid at some milliseconds
before the official death. Specifically, it happens when a(t) approaches the
sum of neutron-star radii, ∼ (20−30) km. At that stage, the orbital velocities
approach relativistic limit; the approximation of point masses fails; the orbital
parameters greatly evolve over one orbital cycle. The next stage of neutron-
star merging is the most interesting but a very complicated one; it is beyond
the scope of our consideration. The merging and associated phenomena have
been simulated in a number of papers (see Ruffert & Janka 2001, Rosswog &
Davies 2002, Taniguchi & Gourgoulhon 2002, and references therein).

The case of circular (non-eccentric) orbits cannot be described by Eq.
(9.15). It should be considered separately, and it is very simple. In this special
case, e(t) ≡ 0, while a(t) is determined directly from Eq. (9.12) for ȧ:

a(t) =
[
256 G3M1M2M

5 c5 (tdeath − t)
]1/4

, (9.20)
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The death time is tdeath = t0 + 5 c5 a4
0/(256 G3M1M2M); it can also be

obtained from Eq. (9.19) in the limit of e0 → 0. The Keplerian angular velocity
behaves as

Ωb(t) =
√

GM/a3 ∝ (tdeath − t)−3/8. (9.21)

Actually, these solutions describe last evolutionary stages of any binary, which
can be initially eccentric (because the circularization occurs usually quicker than
the decrease of a(t); e.g., Imshennik & Popov 1994). This will be discussed in
§9.1.2 b in more details.

One component of a double neutron star binary is usually observed as a
radio pulsar, while its companion is not observed at all (although it can be a radio
pulsar with an unfavorable orientation of pulsar beaming). Let us focus on this
case. The important exclusion, the binary pulsar J0737–3039, will be discussed
in §9.1.2 d. The observed pulsar undergoes a traditional regular spindown in its
comoving reference frame. Its orbital motion is studied by precise measuring
of arrival times of pulses. The pulse periods, detected by a distant observer, are
noticeably affected by the Doppler effect (linear and quadratic), and by general
relativistic effects. The data have to be corrected for the motion of a binary (as
a whole) and a detector (the Earth).

The interpretation of observations is done in several steps. First, even with
a short set of observations, one can easily extract radial velocities and determine
Pb, e, x1, ω, and hence the pulsar mass function f1 (as for an ordinary binary
system). These results are important: they give two (out of four) relations for
measuring the neutron star masses M1 and M2.

Two other relations must be obtained at the next steps by accumulating
data in new observation sets. In addition to the linear Doppler effect, one can
measure the quadratic Doppler effect in the pulsar motion and general relativistic
effects, such as the periastron advance, the gravitational redshift in the field of
the secondary star, the general relativistic delay of signals in the gravitational
field of the secondary (the so called Shapiro delay) and others. Of course, the
gravitational redshift in the field of the primary is higher than in the field of the
secondary, but it does not vary over an orbital cycle, being useless in timing
analysis. The procedure of extracting relativistic orbital parameters from timing
data is described by many authors (see Taylor & Weisberg 1989, Lorimer 2001,
Stairs 2003, and references therein).

The periastron advance rate, ω̇, is measured as a secular variation of the
periastron longitude. Naturally, a binary must be rather eccentric for its re-
liable determination. The expression for ω̇, Eq. (9.12), serves then as a new
independent relation for the mass determination. It gives the total system mass,
M = M1 + M2. Thus, if ω̇ is measured, then M can be known with much
better precision than the separate masses M1 and M2. The knowledge of M
sets useful constraints, Eq. (9.9), on stellar masses and the orbit inclination.
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The relative shift of pulse arrival times, produced by the quadratic Doppler
effect and the leading-order gravitational redshift in the field of the secondary,
is given by v2/(2c2) + GM2/(r12c

2), where v(t) is the orbital velocity of the
primary and r12(t) is the distance between the companions. Extracting such
shifts from timing data, one can measure the parameter

γ =
eGM2(M1 + 2M2)

Ωbc2aM
, (9.22)

which can serve as an additional independent relation for mass measurements.
Since γ ∝ e, a binary has to be eccentric for determining γ.

Detecting Shapiro time delay, one can extract two other relativistic param-
eters,

s ≡ sin i =
Ω2/3

b M2/3x1

G1/3M2
, r =

GM2

c3 , (9.23)

which characterize the “shape” and “range” of the Shapiro delay. They can
serve as two other independent relations. The range parameter r gives M2, the
companion mass, which causes the gravitational time dilatation. The shape of
the Shapiro delay is determined by an impact parameter of light rays (the closest
distance between a light trajectory andM2); the shape parameter is just s = sin i,
expressed through binary parameters using the Kepler laws. Naturally, binaries
observed “edge-on” (large sin i) are most suitable for detecting the Shapiro
effect. A non-detection of Shapiro delay in a binary with an unknown i may be
used to constrain i (provided the binary is compact enough for the effect to be
detectable at favorable i).

By following the evolution of Keplerian orbital elements in a set of ob-
servations one can obtain their time derivatives, such as Ṗb, which are associ-
ated with the relativistic evolution of the orbit in the present epoch. For this
purpose, one fits the observational data using Taylor expansions of orbital pa-
rameters. For instance, the expansion of the orbital phase can be written as
ϕ(t) = Ωb(t0)(t − t0) + 1

2 Ω̇b(t − t0)2 + . . ., where Ωb(t0) = Ωb is a cur-
rent value of the orbital angular velocity, and Ω̇b(t0) = −Ωb Ṗb/Pb is its time
derivative. Such expansions are convergent for |t − t0| � τ , where τ is a
characteristic time of the orbital evolution (τ ∼ 100 Myr for PSR B1913+16).
By extracting Ω̇b from pulsar timing, one obtains Ṗb. The derivatives inferred
in this way (Ω̇b or Ṗb in our example) are also treated as relativistic parameters.

It is difficult to measure many relativistic parameters for the same binary,
but even two of them are sufficient to infer the masses M1 and M2, while others
can be used for checking the result.

There are other tricks (described, e.g., by Thorsett & Chakrabarty 1999) for
measuring or constraining orbital parameters and neutron star masses from radio
observations of pulsars in binary systems. Radio polarization measurements
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Table 9.3. Parameters of double neutron star binaries (by November 2005)

System P Pb e x1/c i ω̇ Other Disco-

(ms) (d) (s) (deg) (deg/yr) GR verya)

J1518+4904 40.9 8.63 0.249 20.0 > 20 0.0111 Ṗb NST95

J1811–1736 104.2 18.8 0.828 34.8 0.009 L01

J1829+2456 41.0 1.176 0.139 7.24 0.28 C04

B1534+12 37.9 0.421 0.274 3.73 ≈ 77 1.76 γ, Ṗb, s, r W91

B1913+16 59.0 0.323 0.617 2.34 ≈ 47 4.22 γ, Ṗb HT75

B2127+11C 30.5 0.335 0.681 2.52 ≈ 50 4.46 γ A90

J0737–3039 22.7 0.102 0.088 1.42 ≈ 88 16.90 γ, s, r B03

J1756–2251 28.5 0.320 0.181 2.76 ≈ 73 2.58 γ, s M01

a) NST95: Nice et al. (1995); L01: Lyne et al. (2001); C04: Champion et al. (2004); W91:
Wolszczan (1991); HT75: Hulse & Taylor (1975); A90: Anderson et al. (1990); B03: Burgay
et al. (2003); M01: Manchester et al. (2001)

can be helpful to determine the position of the pulsar magnetic axis which can
be related to the spin axis and other parameters. Interstellar scintillations of
pulsar radiation can also be used in the process of reconstructing the orbital
elements. Proper motion of a binary across the sky induces a change of the
inclination angle of the orbit, and hence a kinematic change in the projected
semi-axis, ẋ1/x1. By measuring or constraining ẋ1/x1 from pulsar timing and
by measuring proper motion, one can constrain the inclination angle.

It is easy to formulate the conditions under which a double neutron star
binary is best suited for measuring the masses. First, the binary should be
compact (with the orbital period Pb � 1 day) for the relativistic effects to be
most pronounced. Second, it would excellent if our binary were eccentric; this
would simplify the measurements of two parameters, the periastron advance ω̇
and the parameter γ, sufficient to determine M1 and M2. Third, even if the orbit
is nearly circular (so that γ and ω̇ are not detectable) but the binary is observed
edge-on, one can expect to detect Shapiro delay (to measure r and s) and infer
the masses in this way. Other tricks can also work out.

By November 2005 eight double neutron star binaries have been discov-
ered. Their orbital parameters are listed in Table 9.3; the neutron star masses
have been inferred in six systems (Table 9.4 and Fig. 9.1). We will discuss these
results in §§9.1.2 b, 9.1.2 c and 9.1.2 d.
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Table 9.4. Masses of neutron stars (at 2σ levels) in double neutron star binaries (by November
2005)

System M1/M� M2/M� Reference

J1518+4904 1.56+0.20
−1.20 1.05+1.21

−0.14 Thorsett & Chakrabarty (1999)

B1534+12 1.3332±0.0020 1.3452±0.0020 Stairs et al. (2002)

B1913+16 1.4408±0.0006 1.3873±0.0006 Weisberg & Taylor (2003)

B2127+11C 1.349±0.080 1.363±0.080 Thorsett & Chakrabarty (1999)

J0737–3039 1.337±0.010 1.250±0.010 Lyne et al. (2004)

J1756–2251 1.40+0.04
−0.06 1.18+0.06

−0.04 Faulkner et al. (2005)

9.1.2 b The Hulse-Taylor pulsar

The famous Hulse-Taylor pulsar, PSR B1913+16, was the first radio pulsar
discovered in a binary system (and the system turned out to be a double neutron-
star binary!). The binary is so interesting and important that it requires a special
attention.

The story started in 1973, six years after the discovery of pulsars. Joseph
Taylor, at that time a professor of the Massachusetts University (at Amherst),
suggested a new search for radio pulsars with the Arecibo radio telescope using
a computer selection of sources and data analysis. He invited Russel Hulse, his
graduate student, to assist him. The computer occupied two big “cupboards”.
It had a core memory of 16 K but no hard disk. Hulse made the drives that
connected the computer with the outside world by himself. A teletype was used
for interactive input and output. The data were stored on a tape drive.

PSR 1913+16 was discovered on July 2, 1974; its spin period was P = 69
ms. The next observation on August 25 was unbelievable: P had changed by
an “enormous” value of 27 microseconds. It was necessary to perform new
observations to understand that the period variations were real and produced by
Doppler effect due to the orbital motion of the pulsar in a binary system with
the period of Pb = 7 h 45 min. This final conclusion was made on September
18, 1974. The discovery was announced in a paper (Hulse & Taylor 1975)
published in the January 15, 1975, issue of the Astrophysical Journal Letters.
In 1993, R. Hulse and J. Taylor were awarded the Nobel Prize for their discovery
that has had a tremendous impact on physics.

The pulsar, a very weak radio source at a distance of 5–7 kpc from us,
has been attracting permanent attention since the first publication and has been
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Figure 9.5. Mass measurements of the Hulse-Taylor pulsar and its companion (at the 2σ level).

observed numerous times (for instance, 5083 observations between 1981 and
2001, Weisberg & Taylor 2003).

Its orbit is highly eccentric (e = 0.617, see Table 9.3). Together with the
short period, this makes the binary an ideal cosmic laboratory to study the effects
of General Relativity. The major semi-axis is a ≈ 2 × 106 km. The smallest
distance between two neutron stars (in periastron) is only 7.5× 105 km (nearly
the radius of the Sun), while the largest is ≈ 3.1 × 106 km. The maximum
(periastron) orbital velocity reaches ∼400 km s−1.

The system shows very pronounced effects of General Relativity (e.g.,
Weisberg & Taylor 2003), first of all, huge advance of periastron, ω̇ =
4.226607 ± 0.000007 deg yr−1 (at 1σ level). In 30 years of the observa-
tions the periastron axis has turned by more than 125◦. This can be com-
pared with the same effect observed in the orbital motion of Mercury: 43′′
in 100 yr! The relativistic parameter γ, Eq. (9.22), has also been measured,
γ(1σ) = 0.004294 ± 0.000001. As discussed in §9.1.2 a, the measurement of
two relativistic parameters (ω̇ and γ in our example) is sufficient to find all the
parameters of the binary system.
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Moreover, it has been possible to accurately measure the third relativistic
parameter, Ṗb(1σ) = −(2.4086 ± 0.0052) × 10−12 (corrected for the galactic
acceleration). The detected decrease of the orbital period is attributed to the
emission of gravitational waves, see Eq. (9.12). For the Hulse-Taylor system,
the Einstein Theory of Relativity predicts Ṗb = −(2.40247 ± 0.00002) ×
10−12, which is in excellent agreement with the observed value. The agreement
leaves no doubt about the existence of gravitational waves and the validity of
the Einstein Theory of Relativity. These results have ruled out several other
theories of gravitation (and will likely rule out more) and constrain a possible
cosmological variation of the gravitational constant with time (see, e.g., Taylor
& Weisberg 1989, Damour & Taylor 1992, Stairs 2003, and references therein).

The current gravitational luminosity of the Hulse-Taylor system, given by
Eq. (9.11), is |Ė| ≈ 7.77 × 1031 erg s−1, about 2% of the (electromagnetic)
luminosity of the Sun. Since gravitational radiation carries away the energy
of orbital motion, the binary components are falling gradually one onto the
other, as depicted in Fig. 9.4, and will merge in ≈ 3 × 108 yr. The event will
be accompanied by a violent energy release, particularly, by a huge burst of
gravitational radiation. It should be stressed the importance of eccentricity in
the evolution of the system. Had the binary the same parameters (M1, M2, a,
Pb) but a circular orbit in the present epoch, its gravitational radiation would
be lower and the death time would be ≈ 1.64 × 109 years, more than 5 times
higher.

The inclination angle of the orbit of the Hulse-Taylor pulsar, i ≈ 47◦, is
unfavorable for measuring the Shapiro delay. By 2003, the Shapiro parameters,
r and s, Eq. (9.23), have been measured only marginally (e.g., Weisberg & Taylor
2003), but the results agree with the theoretical predictions (which can be made
because all the orbital parameters are determined from the measurements of γ
and ω̇).

Needless to say, the masses of the pulsar and the companion have been
determined with high accuracy. Some mass determinations are shown in Fig.
9.5. Taylor et al. (1979) reported M1 = (1.39 ± 0.15) M� and M2 = (1.44 ±
0.15) M�. Further measurements gave M1 = (1.42 ± 0.06) M� and M2 =
(1.41 ± 0.06) M� (Taylor & Weisberg 1982); M1 = (1.42 ± 0.03) M� and
M2 = (1.40±0.03) M� (Weisberg & Taylor 1984); M1 = (1.442±0.003) M�
and M2 = (1.386 ± 0.003) M� (Taylor & Weisberg 1989); M1 = (1.4411 ±
0.00035) M� and M2 = (1.3874 ± 0.00035) M� (Thorsett & Chakrabarty
1999). Finally, Weisberg & Taylor (2003) give

M1 = (1.4408 ± 0.0003) M�, M2 = (1.3873 ± 0.0003) M�. (9.24)

All these results are presented at the 1σ level. In Fig. 9.5 we double the errorbars
to show the mass limits at the 2σ level. One can see the rapid convergence of
the results, from one observation to another (cf. Fig. 9.3). The Hulse-Taylor
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pulsar and its companion are the stars with the best determined masses (after the
Sun). The success of their mass determination is mainly attributed to the radio
astronomy (due to highly precise pulsar timing), to the pulsar nature (perfect
rotators without phase shifts for many decades) and to General Relativity (which
provides many relations to link orbital parameters). The Hulse-Taylor pulsar
remains the most massive neutron star with an accurately measured mass till the
time of this writing (since 1980 till 2006). Curiously, its mass nearly coincides
with the Chandrasekhar mass limit of white dwarfs. The accuracy of its mass
measurement is higher than the accuracy of measuring the gravitational constant
(the latter is barely known with the three correct digits). Thus, its mass is better
measured in solar masses than in grams (because one translates stellar masses
into grams using the gravitational constant).

The observations of the Hulse-Taylor pulsar allowed one to measure an-
other, extremely tiny effect of General Relativity – the geodetic precession of the
pulsar spin axis about the vector of the total angular momentum of the binary.
The total momentum can be accurately approximated by the orbital momentum.
Thus, the pulsar spin axis should precess around the axis perpendicular to the
orbital plane. The effect is analogous to the spin-orbital interaction in atomic
physics with magnetic moments replaced by the curvature of space around a
rotating body. The precession frequency is given by (e.g., Barker & O’Connell
1975)

Ωprec = Ωb
3GM2

2a c2 (1 − e2)

(
1 +

M1

3M

)
. (9.25)

It is of the same order of magnitude as the periastron advance rate ω̇, Eq. (9.12).
The theory predicts Ωprec = 1.21 deg yr−1, for the Hulse-Taylor pulsar, which
means the precession period of ≈300 years. This effect has been really ob-
served (e.g., Konacki et al. 2003, and references therein). The angle between
the pulsar spin and the precession axis has been determined to be ≈22◦. Since
the beaming of pulsar emission is related to the pulsar magnetic axis, the ob-
servations have allowed one to infer the angle between the pulsar spin axis and
the magnetic axis (≈27◦). With these data, one can reconstruct the evolution of
the pulsar magnetic axis and the associated detectability of the pulsar emission
(e.g., Lorimer 2001, Stairs 2003). The pulsar beaming became favorable for
detecting on the Earth in approximately 1940, 34 years before the pulsar dis-
covery. It will become unfavorable by 2025, and the pulsar will disappear (what
a loss for the astrophysical community!). It will reappear again approximately
240 years later.

Finally, using the theory of relativistic orbits (§9.1.2 a), we can extend
our analysis of orbital parameters from the present epoch to the past and the
future (Fig. 9.4). Since the pulsar spin frequency and its derivative have been
precisely measured, P = 0.05903 s and Ṗ = 8.627 × 10−18 (e.g., Taylor
& Weisberg 1989), we can determine the characteristic pulsar spindown age
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Figure 9.6. Orbital period, major semi-axis (left vertical axis), and gravitational luminosity
(right vertical axis) of the Hulse-Taylor pulsar last ten years of its life before the final merging
stage (a few milliseconds before the pulsar death).

t = P/(2Ṗ ) ≈ 108 yr (§1.4). Thus, 100 Myr ago, when the pulsar was
presumably born, the orbital parameters (Fig. 9.4) were equal to: e = 0.666,
a = 2.3 × 1011 cm, Pb = 9.93 hr, and ω̇ = 3.12 deg yr−1. Looking into the
future, for instance, in 200 Myr from now, we obtain: e = 0.439, a = 1.2×1011

cm, Pb = 3.64 hr, and ω̇ = 11.5 deg yr−1.
As discussed in §9.1.2 b, the Hulse-Taylor system will die in about 300

Myr. Ten years before this event, when we should be fully prepared for its
observation, the system parameters will be like this: e = 0.00081, a = 17300
km, Pb = 23 s, and ω̇ = 3.55×105 deg yr−1= 0.011 deg s−1. The orbit will be
nearly circular; the separation between the neutron stars will still be much larger
than their radii; the periastron advance will be overwhelming (although hardly
detectable), and the gravitational luminosity of the system will be ≈ 1.2×1041

erg s−1, 30 million times larger than the electromagnetic luminosity of the Sun.
The last ten years of the Hulse-Taylor pulsar are shown in Fig. 9.6.

The circular orbit can be described by Eqs. (9.20) and (9.21), which give
a(t) ∝ (tdeath − t)1/4, Pb(t) ∝ (tdeath − t)3/8, and the gravitational lumi-
nosity behaves as |Ė| ∝ (tdeath − t)−5/4. As discussed in §9.1.2 a, this scaling
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fails at (tdeath − t) � 1 ms, at the onset of the final merging stage. By that
time the distance between the companions becomes some tens kilometers, the
orbital period decreases to ∼1 ms, and the gravitational luminosity is as high as
1055 erg s−1. From that time on we have to observe the system most attentively.

We should not be surprised by the very huge gravitational luminosity of the
system before the merging: the system turns into the most efficient gravitational-
wave emitter. The total gravitational energy release can be as high as ∼ 1053

erg, the same as the total energy release in a supernova explosion that produces
a neutron star. The huge energy release is natural: the energy released in both
processes is of the order of the gravitational energy of a neutron star, Eq. (1.1).

9.1.2 c Masses of neutron stars in double neutron star binaries

The parameters of eight double neutron star binaries, discovered by 2006,
are listed in Table 9.3. Let us discuss seven of them, which are pulsar – neutron
star binaries (the eight system, J0737–3039, will be described in the next sec-
tion). All seven binaries are alike, particularly, rather eccentric. The pulsar spin
periods are similar. The four of them – B1534+12, B1913+16, B2127+11C, and
J1756–2251 – are very compact, with the orbital periods 8–10 hours, while the
systems J1518+4904, J1811–1736, and J1829+2456 are wider. In all the sys-
tems but J1811–1736 and J1829+2456 at least two relativistic parameters have
been determined (sufficient to measure the masses), one of them being the pe-
riastron advance. In the last column of Table 9.3 we list the publications which
announced discoveries of the systems. A discovery date is particularly impor-
tant because it takes some time (Fig. 9.5) to accurately measure the masses. The
pulsars B1534+12 and B2127+11C were discovered (Wolszczan 1991, and An-
derson et al. 1990) approximately fifteen years after the PSR B1913+16, while
the pulsars J1518+4904 and J1811–1736 were discovered even later and in
much wider binaries. That is why the masses of neutron stars in these two
binaries are determined (constrained) less accurately. The pulsars J1756–2251
and J1829+2456 were recognized as members of double neutron star binaries
just before the end of this writing.

PSR B1534+12 is an especially lucky finding: it is observed edge-on,
so that the Shapiro effect has been measured. Accordingly, a collection of
relativistic parameters has been determined for this pulsar (ω̇, γ, s, r, Ṗb); see
Stairs et al. (2002). Moreover, geodetic precession, discovered in observations
of PSR B1913+16 (§9.1.2 b), has also been observed for PSR B1534+12, with
Pprec ≈ 700 yr (e.g., Konacki et al. 2003).

The periastron advance of the pulsars J1518+4904 and J1811–1736 is much
weaker than in other systems because the binaries are much wider. For the same
reason Ṗb has been measured only marginally for J1518+4904. Similarly, no
relativistic parameters (but ω̇) and no masses M1 and M2 have been determined
for J1811–1736. However, the periastron advance in PSR J1811–1736 gives the
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total system mass M(1σ) = (2.6±0.9) M�; its central value is the same as for
other neutron-star binaries. One needs more time to observe PSR J1829+2456
and measure other relativistic parameters (but ω̇) in order to determine M1
and M2. The measured periastron advance gives the total mass M(1σ) =
(2.5 ± 0.2) M�.

The inferred masses are presented in Table 9.4. The errorbars of the neutron
star masses in J1518+4904 are still too large. Ignoring this binary and adding the
system J0737–3039 (next section), by the end of 2005 we have ten neutron stars
in the five binaries with wonderfully similar masses which range from ≈1.18
M� to 1.44 M�. This might reflect a very specific evolutionary scenario in
which such binaries were formed. Among these stars, the Hulse-Taylor pulsar
is the most massive.

The neutron star masses in J1518+4904, J1811–1736, and J1829+2456
will accurately be measured in several years after 2006. Some of these neutron
stars could appear more massive than the Hulse-Taylor pulsar. However, it
would not be a surprise if the future observations gave nearly equal masses,
∼ 1.3 M�, of all these stars.

9.1.2 d The binary pulsars J0737–3039A and B

It was a dream of many observers and theoreticians to discover a compact
binary of two (observed) radio pulsars. And such a system, J0737–3039, has
been really found at a distance of 500–600 pc from us.

The first pulsar, PSR J0737–3039A (the millisecond pulsar with the spin
period of 22.6993 ms), was discovered by Burgay et al. (2003) in a high-
latitude multibeam pulsar survey with the Parkes 64-m radio telescope in New
South Wales, Australia. The first 4.5-min observation in August 2001 showed a
large variation of apparent pulsar period, indicating that the pulsar is a member
of a compact binary. The detection was followed by additional observations
with the Parkes telescope and the Australia Telescope Compact Array. These
observations started in May 2003. The first publication was based on the data
collected during five months. The orbital period Pb = 2.45 hr turned out to
be exceptionally short (Table 9.3) which means that the system is nearer to
its death, than other systems (§9.1.2 b). Among the relativistic effects, the
periastron advance was measured and appeared to be really huge, ω̇ ≈ 17
deg yr−1. Thus, the orbital ellipse rotates by 180 degrees in 10.6 years. The
measured ω̇ yielded the total system mass M(1σ) ≈ (2.58 ± 0.02) M�, but
the masses of neutron stars were not determined – one additional relation was
needed.

The next results reported by Lyne et al. (2004) appeared in the Los Alamos
electronic archive astro-ph only one month after the publication of the first
paper (Burgay et al., 2003). The new paper announced the discovery of the
second pulsar, J0737–3039B, with the spin period 2.77346 s, in the same binary.
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Timing of the second pulsar immediately gave its radial velocity semiamplitude,
sufficient to measure masses and determine orbital parameters of the system.
The masses are M1(1σ) = (1.337 ± 0.005) M� and M2(1σ) = (1.250 ±
0.005) M�, lower than the mass of the Hulse-Taylor pulsar (but in line with
accurately measured masses in other double neutron star binaries). In addition,
Lyne et al. (2004) reported the detection of the relativistic parameter γ, and the
Shapiro parameters r and s. The orbital inclination turns out to be i ≈ 87◦, very
favorable for observing the Shapiro effect. Thus, the orbital parameters have
been accurately determined in seven months since the beginning of systematic
observations (since May 2003). The authors expected to measure Ṗb, the last
unknown basic post-Keplerian parameter, within one year.

The masses of both pulsars are too small to constrain the EOS directly.
However, it seems possible to make use of tiny general relativistic spin-orbit
contribution to the periastron advance in order to measure the moment of inertia
of the more rapidly rotating pulsar A, in 5–10 years of radio observations. This
result, combined with the mass measurements, will give stringent constraints
on the EOS (Morrison et al., 2004b; Lattimer & Schutz, 2005; Bejger et al.,
2005b). In any case the discovery of J0737–3039 is of utmost importance.
Its lifetime, given by Eq. (9.19), is 86 Myr, the shortest among known double
neutron star binaries. This is the fifth double neutron star binary (along with
J1756–2251, B1534+12, B1913+16, and B2127+11C) whose lifetime is shorter
than the Hubble time. The discovery increased the expected statistics of neutron
star mergers (Burgay et al., 2003; Kalogera et al., 2004), important targets for
gravitational detectors. Using Eq. (9.25) one can easily check that the periods
of geodetic precession of the pulsars PSR J0737–3039 A and B are only 75
yr and 71 yr. Lyne et al. (2004) expected to detect this geodetic precession
within a few years and to observe also some other effects of General Relativity.
Moreover, Lyne et al. (2004) detected (radio) eclipses of J0737–3039A by
J0737–3039B. This opens a fascinating possibility to use one pulsar for probing
magnetospheric properties of the other.

9.1.3 Pulsar – white dwarf binaries

Observations of radio pulsar – white dwarf binaries are also very promising.
Both companions of such a system, a neutron star and a white dwarf, are compact
stars, i.e., the approximation of point masses is valid. A pulsar timing easily
gives at least all Keplerian parameters of the orbit (particularly, Pb, e, and x1 =
a1 sin i). In order to measure the masses, one needs however two additional
independent relations (§§ 9.1.1 a and 9.1.2 a). In a compact enough binary, the
relativistic effects in pulsar motion can be detected as described in §9.1.2 a.
With some luck, two relativistic parameters can be determined and the stellar
masses M1 = MPSR and M2 = MWD can be obtained. However, in wide
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binary systems, the relativistic effects are weak. One may reliably determine
only one relativistic parameter or no parameters at all.

The great advantage of the pulsar – white dwarf binaries is that the ad-
ditional relations for a mass measurement can be taken from optical observa-
tions of white dwarf companions, as described, for instance, by Thorsett &
Chakrabarty (1999). For example, because a white dwarf mass and radius
are theoretically related, an estimate of the radius (from measurements of the
optical flux, effective surface temperature, and distance) can give the white
dwarf mass. Another possibility is to measure the surface gravity by fitting an
observed white dwarf spectrum with spectra given by theoretical atmosphere
models.

However, the most powerful tool is provided by the so-called Pb − M2
relation (e.g, Rappaport et al. 1995, Podsiadlowski et al. 2002, and references
therein). It is expected that this relation holds for wide binaries containing
millisecond pulsars in almost circular orbits. It assumes that in the past a binary
contained a neutron star and a low-mass giant evolved later to a white dwarf.
The evolution was accompanied by a mass transfer from the giant envelope to
the pulsar. The mass exchange circularizes the orbit and recycles the pulsar to
millisecond periods. The stellar evolution theory gives a strict relation between
the mass of the giant core and the radius of its envelope. It is expected that
the envelope fills its Roche lobe until the end of the mass transfer. The orbital
separation at this phase is then a known function of the envelope radius and the
giant-core mass (equal to the mass M2 of the future white dwarf), which allows
one to estimate M2.

The parameters of some selected pulsar – white dwarf binaries are pre-
sented in Table 9.5; the inferred masses are given in Table 9.6. All the orbits,
except for J1141–6545, B1802–07 and B2303+46, are nearly circular, which is
probably a result of preceding evolution. PSR B1802–07 belongs to the glob-
ular cluster NGC 6539 – its orbit can be eccentric as a result of recent close
encounter with one of the cluster stars. The two other eccentric binaries (J1141–
6545 and B2303+46) are compact and contain rather young neutron stars born
after white dwarfs – they had not enough time to circularize their orbits. Only
two systems, B2320+46 and J1141–6545, contain slowly rotating pulsars; the
spin periods of pulsars in other systems are short, from 3 ms to 30 ms. Only four
systems, J0751+1807, J1012+5307, J1141–6545, and J1909–3744, are really
compact (Pb � 1 day), i.e., the pulsars can show strong relativistic effects. The
orbits of three of them (J0751+1807, J1012+5307, and J1909–3744) are nearly
circular, which hampers the measurement of the periastron advance ω̇ and the
parameter γ. In Table 9.5 we list the measured relativistic parameters. Let
us mention that for some systems (particularly, for PSR J1713+0747 and PSR
J2019+2425) kinematic variations of ẋ1/x1 induced by pulsar proper motion
have been extracted from pulsar timing (Nice et al. 2003) to impose constraints
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Table 9.5. Parameters of pulsar – white dwarf binaries (by November 2005)

System P Pb e x1/c i ω̇ Other Disco-

(ms) (d) (s) (deg) (deg/yr) GR verya)

J0437−4715 5.76 5.74 0.000019 3.37 ≈ 43 — Shb) J93

J0621+1002 28.9 8.32 0.002457 12.0 < 50 0.0116 — C96

J0751+1807 3.48 0.263 0.000003 0.397 65–85 — Ṗb L95

J1012+5307 5.26 0.605 < 10−6 0.582 ≈ 52 — Sh N95

J1045−4509 7.47 4.08 < 10−5 3.02 — — B94

J1141−6545 394 0.198 0.172 1.86 ∼ 76 5.3 γ, Ṗb K00

J1713+0747 4.75 67.83 0.000075 32.3 ≈ 72 — Sh F93

B1802−07 23.1 2.62 0.212 3.92 � 10 0.0578 — D93

J1804−2718 9.34 11.1 0.00004 7.28 — — L96

B1855+09 5.36 12.33 0.000022 9.23 ≈ 87 — Sh S86

J1909–3744 2.95 1.53 ∼ 10−7 1.90 86.6 — Sh J03

J2019+2425 3.93 76.5 0.00011 38.8 � 70 — — N93

B2303+46 1066 12.34 0.658 32.69 0.0101 — D85

a) J93: Johnston et al. (1993); C96: Camilo et al. (1996); L95: Lundgren et al. (1995); N95:
Nicastro et al. (1995); B94: Bailes et al. (1994); K00: Kaspi et al. (2000); F93: Foster et al.
(1993); D93: D’Amico et al. (1993); L96: Lorimer et al. (1996); S86: Segelstein et al. (1986);
J03: Jacoby et al. (2003); N93: Nice et al. (1993); D85: Dewey et al. (1985)
b) Shapiro delay (parameters r and s)

on the orbit inclination angle (as mentioned in §9.1.2 a). In Table 9.5 we also
cite the publications that reported the discoveries of the sources. Discovery
dates show how long the sources are observed (accurate measurements of rel-
ativistic effects take time, §9.1.2). In Table 9.6 we mark [by (Pb)] those cases,
where the Pb − M2 relation has been used to estimate white dwarf masses.

The most accurate mass measurements have been done for J1141–6545.
This compact (Pb = 4.7 hr) eccentric (e = 0.17) binary system was discovered
by Kaspi et al. (2000). The system is excellent for observing the relativistic
effects. Kaspi et al. (2000) measured the huge periastron advance ω̇ = 5.3 deg
yr−1 and determined the total system mass M ≈ 2.3 M�. Ord et al. (2002)
managed to pinpoint the orbit inclination i = 76 ± 2.5◦ by observing interstel-
lar scintillations of PSR J1141–6545 modulated by orbital motion. Thus, the
measurements of ω̇ and i gave two relations required to obtain the companion
masses. In addition, Bailes et al. (2003) have measured two other relativistic
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Table 9.6. Masses of stars in pulsar – white dwarf binaries (by November 2005)

System M1/M� M2/M� Ref.a)

J0437−4715 1.58±0.18 (1σ) 0.236±0.017 (1σ) vS01

J0621+1002 1.70+0.59
−0.63 (2σ) 0.97+0.43

−0.24 (2σ) S02

J0751+1807 2.1+0.4
−0.5 (2σ) 0.19 ± 0.03 (2σ) NSS04, 05

J1012+5307 1.7±1.0 (2σ) 0.165 − 0.215 (1σ) TC99

J1045−4509 < 1.48 ∼ 0.13 (P b)
b ) TC99

J1141−6545 1.30±0.02 (1σ) 0.99±0.02 (1σ) B03

J1713+0747 1.53+0.08
−0.06 (1σ) 0.30−0.35 (Pb) S05

B1802−07 1.26+0.15
−0.67 (2σ) 0.36+0.67

−0.15 (2σ) TC99

J1804−2718 < 1.73 ∼ 0.2 (Pb) TC99

B1855+09 1.57+0.25
−0.20 (2σ) 0.25 − 0.28 (Pb) NSS03

J1909–3744 1.438±0.024 (1σ) 0.2038 ± 0.0022 (1σ) J05

J2019+2425 < 1.51 0.32 − 0.35 (Pb) NSS01

B2303+46 1.24 − 1.44 1.2 − 1.4 KK99

a) vS01: van Straten et al. (2001); S02: Splaver et al. (2002); NSS04: Nice et al. (2004);
NSS05: Nice et al. (2005); NSS03: Nice et al. (2003); TC99: Thorsett & Chakrabarty (1999);
B03: Bailes et al. (2003); S05: Splaver et al. (2005); J05: Jacoby et al. (2005); NSS01: Nice et
al. (2001); KK99: van Kerkwijk & Kulkarni (1999)
b) M2 is estimated from the Pb − M2 relation.

parameters, γ and Ṗb, which confirm the previous results and refine the mass
determination. Moreover, geodetic precession of the pulsar axis has been ob-
served (Hotan et al., 2005). The system is so compact that its life time is shorter
than the Universe age. Unfortunately, the pulsar mass M1 ≈ 1.30 M� is no-
ticeably lower than the mass of the Hulse-Taylor pulsar, and it does not impose
new constraints on the EOS.

Another example of the accurate mass measurement is provided by PSR
J1909–3754, a millisecond pulsar with a very short (3 ms) spin period. The
pulsar was discovered by Jacoby et al. (2003) in a compact binary (Pb ≈ 1.5 d).
The companion was identified as a moderately hot white dwarf (Ts ≈ 8500 K).
The orbit is circular (e ∼ 10−7; no chances to measure ω̇ and γ) but, luckily,
the system is observed edge-on. Only two years of timing allowed Jacoby et
al. (2005) to measure Shapiro parameters and accurately determine the pulsar
mass, M1(1σ) = (1.438 ± 0.024) M�. It appears to be only slightly lower
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than the mass of the Hulse-Taylor pulsar. This mass value is interesting for the
theory of pulsar spin-up to millisecond periods in binary systems.

The mass of PSR B2303+46 has also been determined with reasonable
accuracy. The binary, discovered by Dewey et al. (1985), is the oldest known
source listed in Tables 9.5 and 9.6. It was initially considered as a double
neutron star binary. The eccentricity is exceptionally high, e = 0.658, but
the orbital period is large and the relativistic effects are not very pronounced.
Nevertheless, the periastron advance was measured, and it gave the total system
mass M ≈ 2.64 M�. The minimum mass limit of the companion star was
determined then from the mass function, Eq. (9.9): M2 > 1.2 M�. The last,
fourth relation for fixing the masses was absent. Fortunately, van Kerkwijk &
Kulkarni (1999) discovered a faint optical counterpart which implied that the
second companion is most probably a white dwarf, but not a neutron star. Since
the white dwarf mass cannot exceed the Chandrasekhar limit, one immediately
concludes that 1.2 M� < M2 < 1.4 M�. Thus, the pulsar mass is nicely
constrained, 1.24 M� < M1 < 1.44 M�, but it is again lower than the mass of
the Hulse-Taylor pulsar.

Another example of a not too massive neutron star is provided by the PSR
B1802–07. Its orbital period is not too large (Pb = 2.62 d) and the orbit is
eccentric (e = 0.21). The periastron advance has been measured; it gives the
total system mass M = 1.62 M�. The lower limit of the companion mass, as
deduced from the mass function, yields M2 > 0.29 M�, and the inclination is
constrained as sin i > 0.18. Assuming the uniform distribution over cos i in
the allowed range 0.18 < sin i < 1, Thorsett & Chakrabarty (1999) obtained
the mass limit, M1 < 1.41 M� (at the 2σ level). Other relativistic effects will
hopefully be observed soon and improve the mass measurement (but not the
constraint on the EOS).

The masses of neutron stars in other systems may be higher than the mass
of the Hulse-Taylor pulsar, but they are measured (constrained) with less accu-
racy. In two rather wide binaries, J1713+0747 and B1855+09, Shapiro delay
has been measured and the Pb − M2 relation has been used. This gives two
relations (the range parameter of Shapiro effect and the Pb − M2 relation con-
strain actually the same quantity, M2) to infer the masses. The central values
M1(J1713) ≈ 1.53 M� (Splaver et al., 2005) and M1(B1855) = 1.57 M�
(Nice et al., 2003) are noticeably higher than the mass of the Hulse-Taylor pulsar,
but the errors are still large (Table 9.6). In two other binaries, J0437–4715 and
J1012+5307, Shapiro delay has also been measured, which is basically sufficient
to determine M1 and M2. Again, the central values M1(J0437) = 1.58 M�
and M1(J1012) = 1.7 M� are high and interesting for constraining the EOS,
but the errors are too large. The last system is compact and therefore convenient
for measuring Ṗb, and that will considerably reduce the errors.
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The relativistic effects have been observed also in the orbital motion of PSR
J0621+1002. Six years of pulsar timing with three radio telescopes allowed
Splaver et al. (2002) to detect the periastron advance and estimate the total
system mass, M = (2.8 ± 0.3) M�. They combined their result with the mass
limits provided by the mass function and by the Chandrasekhar limit of white-
dwarf mass. In addition, they used the limits on the inclination angle i given
by the mass function and by a non-detection of Shapiro delay (Shapiro effect
would be detectable for high i). In that way they constrained the neutron star
mass (Table 9.6) with a high and interesting central value M1 = 1.7 M� but
with large errorbars (to be reduced in several years).

It is very important to mention another pulsar, PSR J0751+1807. Its orbit
is nearly circular (thus, ω̇ cannot be accurately measured). However, the orbital
period is short (Pb = 6.3 hrs), so that Ṗb has been measured, and Shapiro delay
has marginally been detected, constraining i to intermediate values. Nice et al.
(2004, 2005) have made a full relativistic analysis of the timing data obtained
by 2004. This allowed them to conclude that the pulsar mass is very high,
M1(2σ) = 2.1+0.4

−0.5 M�. The errorbar is still too wide. However, with high
probability, M1 > 1.6 M�, which is much higher than the mass of the Hulse-
Taylor pulsar. Shapiro effect is expected to be accurately measured soon after
2006. This will strictly constrain the PSR J0751+1807 mass.

Finally, let us mention the systems J1045–4509, J1804–2718 and J2019+
2425. They are rather wide binaries containing millisecond pulsars in almost
circular orbits. The Pb−M2 relation has been used to estimate M2. No relativis-
tic effects have been observed. The data are insufficient to measure the masses,
but they give conservative upper limits: M1 < 1.48 M�, M1 < 1.73 M�,
and M1 < 1.51 M�, for PSR J1045–4509, PSR J1804–2718 (Thorsett &
Chakrabarty 1999), and PSR J2019+2425 (Nice et al. 2001), respectively. PSR
J1804–2718 is potentially interesting and may be a massive neutron star. There
is a chance, that the pulsars J1045–4509 and J2019+2425 are slightly more
massive than the Hulse-Taylor pulsar, but generally these two systems are less
interesting for the EOS problem than other candidates.

In addition, let us mention two pulsars (Ter 5 I and J) discovered by Ransom
et al. (2005) in the globular cluster Terzan 5 using the Green Bank Telescope.
Both pulsars enter compact and eccentric binaries; their binary companions are
possibly white dwarfs. The orbital periods of Ter 5 I and J are Pb = 1.328
and 1.102 days, and the eccentricities are e = 0.428 and 0.350, respectively.
The pulsar spin periods are 9.57 and 80.34 ms. In both cases the periastron
advance has been measured, ω̇ = 0.255 deg yr−1 and 0.327 deg yr−1, and the
total system mass has been determined, M(1σ) = (2.17 ± 0.02) M�(for Ter 5
I) and (2.20±0.04) M�(for Ter 5 J). One equation is still missing to determine
neutron star masses but the relativistic γ parameter can be measured to solve
this problem (in 1–3 years for Ter 5 I and in 5–10 years for Ter 5 J). Statistical
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estimates assuming constant probability distribution over cos i indicate that both
pulsars are massive, M1(2σ) � 1.7 M�, but further observations are required
to confirm this result.

To summarize the above discussion, there are at least seven neutron star
– white dwarf binaries (and several promising candidates, including Ter 5 I
and J) potentially very interesting for the EOS problem. The pulsars J0437–
4715, J0621+1002, J0751+1807, J1012+5307, J1713+0747, J1804–2718, and
B1855+09 – may be more massive than the Hulse-Taylor pulsar. One pulsar,
PSR J0751+1807, is almost certainly more massive than 1.6 M�. The masses
of all these pulsars will be refined in several years after 2006.

9.1.4 Pulsars in binaries with non-degenerate stars
Three radio pulsars have been found in binaries with non degenerate stars

by 2005. In two systems the companions are massive main-sequence stars,
while the companion of the third pulsar is less massive. Pulsar timing gives
the pulsar spin period P , the orbital period Pb, and the orbit eccentricity e (and
naturally the pulsar mass function f1).

The orbits in the systems with the main-sequence stars are extremely ec-
centric. Both main-sequence stars are relatively bright, so that their types have
been determined and their masses have been estimated.

The first system (PSR B1259–63 and a Be companion) was discovered by
Johnston et al. (1992). According to the pulsar timing, P = 47.8 ms, Pb = 3.4
yr, and e = 0.87. Unfortunately, the pulsar mass function is of little use to
constrain the pulsar mass M1 for systems, where M1 � M2. In other words,
M1 is highly uncertain.

The second system (PSR J0045–7319 and a B1 V star) was discovered by
Kaspi et al. (1994) in the Small Magellanic Cloud. The pulsar timing gave:
P = 0.926 s, Pb = 51.169 days, and e = 0.808 (f1 = 2.17 M�). Bell et al.
(1995) measured the radial velocity of the optical companion and obtained the
mass ratio: M2/M1 = 6.3 ± 1.2. Thorsett & Chakrabarty (1999) reported an
estimate of the companion mass, M2 = (10 ± 1) M�, based on the observed
optical luminosity 1.2×104 L�, the effective surface temperature 2.4×104 K,
and a grid of stellar atmosphere models. This gives M1 = (1.58 ± 0.34) M�
at the 1σ level (Table 9.7). The central value is higher than the mass of the
Hulse-Taylor pulsar and potentially interesting for the EOS problem, but the
errorbar is too wide. New observations are required to pinpoint M1.

The third system is quite different. The pulsar (PSR J1740–5340) was
discovered in the globular cluster NGC 6397 by D’Amico et al. (2001a). The
timing yielded (D’Amico et al. 2001a,b): P = 3.6503 ms, Pb = 1.354 d,
x1/c = 1.653 s, e < 10−4 (and f1 = 0.002644 M�). Thus, the orbit is nearly
circular. The optical companion was identified by Ferraro et al. (2001) as a
rather bright variable object that had been detected earlier by Taylor et al. (2001).
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Table 9.7. Mass of neutron stars in binaries with non-degenerate stars (2005)

System Pb, d M1/M� Signif. Reference

J0045–7319 51.169 1.58±0.34 1σ Thorsett & Chakrabarty (1999)

J1740–5340 1.354 1.53±0.19 1σ Kaluzny et al. (2003)

Photometric observations of both groups indicated an unusual position of the
companion at the Hertzsprung-Russell diagram of the cluster: ≈0.2 mag to the
red from the turnoff and ≈0.7 mag below the base of the red giant branch. This
position possibly implies (e.g., Ergma & Sarna 2002) that the optical companion
is an evolved star with a helium core surrounded by a hydrogen envelope.
Detailed photometric and spectroscopic observations of this star were done by
Kaluzny et al. (2003). Using the photometric data on the stellar variability in
the B, V , and I bands and assuming that the star fills its Roche lobe, the authors
obtained the inclination angle i = 43.9 ± 2.1 deg. Spectroscopic observations
allowed them to measure the radial velocities. In this way Kaluzny et al. (2003)
obtained two additional relations required for mass measurements. The result
is: M1(1σ) = (1.53 ± 0.19) M� and M2(1σ) = (0.296 ± 0.034) M�. The
central value of M1 is slightly higher than for the Hulse-Taylor pulsar.

9.1.5 Summary of neutron star mass measurements
Let us summarize the results of measurements of neutron star masses in

binary systems made by the end of 2005.
(1) The most accurate measurements have been performed for eight neutron

stars in four double neutron star binaries (§9.1.2). The most massive among
them is the Hulse-Taylor pulsar, PSR B1913+16.

(2) It is likely that some X-ray binaries (§9.1.1), pulsar – white dwarf
binaries (§9.1.3), and pulsar – non-degenerate star binaries (§9.1.4) contain
more massive neutron stars. This can be a consequence of mass transfer on
neutron stars during the evolution of these systems.

(3) Three X-ray binaries, Cyg X-2, Vela X-1, and 4U 1700–37, are good
candidates for containing massive neutron stars. However, the progress in
measuring the masses in X-ray binaries is slow (§9.1.1 b).

(4) Seven pulsar – white dwarf binaries (J0437–4715, J0621+1002,
J0751+1807, J1012+5307, J1713+0747, J1804–2718, and B1855+09) contain
possibly massive neutron stars. The stellar masses in these systems (or at least
in some of them) are expected to be accurately measured in several years after
2006. The mass of PSR J0751+1807 is higher than 1.6 M� at the 2σ level.
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Thus the Hulse-Taylor pulsar remains to be the neutron star with the high-
est accurately measured mass, but the mass of PSR J0751+1807 is noticeably
higher. Accordingly, we come to the observational constraint

Mmax(EOS) > M
(max)
obs , M

(max)
obs = 1.6 M� (2006), (9.26)

where Mmax(EOS) is the maximum allowable mass for non-rotating neutron
star models; for spin periods longer than, say, 5 ms the effects of rotation on
Mmax are negligibly small (see § 6.12.2).

Using Eq. (9.26), we can rule out all EOSs, which predict the maximum
neutron star mass to be lower than M

(max)
obs . Unfortunately, this requirement

does not solve the EOS problem: it excludes only the softest EOSs that appear
in the literature (e.g., npeµ model BPAL12 of Bombaci 1995; some EOSs of
dense matter with hyperons, e.g., Pandharipande 1971b; Balberg & Gal 1997;
Vidaña et al. 2000b). All but one (BPAL12) in Table 5.3 in Chapter 5 and Table
6.1 in Chapter 6 are consistent with the current value of M

(max)
obs (see Figs. 6.3

and 6.5), with BGN1H1 being only marginally consistent. It would be highly
desirable to accurately measure the masses of more massive neutron stars, the
more massive the better. A definite discovery of a 1.9 M� neutron star would
rule out nearly all EOSs with hyperons, while a discovery of, say, a 2.1 M�
neutron star would leave us with very stiff EOSs of dense matter containing
nucleons only.

9.1.6 From November 2005 to August 2006 and beyond
The tremendous progress in neutron star mass measurements can be il-

lustrated by a short description of new results obtained from November 2005
(when this book was mainly completed) to August 2006 (when last minute
changes were introduced).

Jacoby et al. (2006) reported the direct measurement of the orbital decay
Ṗb = (−3.95±0.13)×10−12 in the double neutron star binary PSR B2127+11C
discussed in §9.1.2 c. New timing data allowed the authors to infer more ac-
curate values of neutron star masses, M1(1σ) = (1.358 ± 0.010) M� and
M2(1σ) = (1.354 ± 0.010) M� (compare with the values in Table 9.4).

Bassa et al. (2006) and Cocozza et al. (2006) presented new observations of
a compact binary containing the millisecond pulsar J1911–5958A and a white
dwarf. The pulsar was discovered in 1999 (D’Amico et al., 2001b). The pulsar
timing showed that the orbit is nearly circular and the orbital period is Pb = 0.84
days. The authors present new optical observations of the white dwarf which
allowed them to measure its radial velocities. Moreover, comparing the data
with white dwarf atmosphere models and theoretical mass-radius relations,
Bassa et al. (2006) obtained the white dwarf mass M2(1σ) = (0.18±0.02) M�.
The radial velocities and M2 gave them two equations to determine the pulsar
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mass M1(1σ) = 1.40+0.16
−0.10 M�. No relativistic effects have been detected from

this binary.
Lorimer et al. (2006) reported the discovery of PSR J1906+0746, a young

pulsar in a highly relativistic orbit with a neutron star or a white dwarf (Pb =
3.98 hr, e = 0.085). Huge periastron advance has been measured, ω̇ ≈ 7.◦57
yr−1, which gives the total binary mass M(1σ) = (2.61 ± 0.02) M� and the
binary merging time tdeath ∼ 300 Myr. Further observations are required to
resolve M1 and M2.

Finally, Freire et al. (2006) discovered a new millisecond pulsar J1741+1351
in a circular orbit with a white dwarf (Pb = 16 days). The pulsar tim-
ing shows the Shapiro effect which gives two parameters (sin i ≈ 0.96,
M2(1σ) = (0.30 ± 0.07) M�) and two respective equations to determine the
pulsar mass, M1(1σ) = (1.8 ± 0.3) M�, interesting for the EOS problem.

With this spectacular progress, new exciting and decisive neutron star mass
measurements can be expected any day!

9.2. Gravitational surface redshift
Early expectations for a direct determination of gravitational redshift zsurf

(§6.1) of spectral lines emitted from the surface of a neutron star arose from
observations of spectral lines in gamma-ray bursts. One of the most popular
hypotheses about the origin of the bursts assumed that they are associated with
neutron stars in the Galaxy. The spectra of numerous gamma-ray bursts de-
tected by several gamma-ray observatories at the end of 1970s and in the first
half of 1980s revealed the presence of broad “emission line features” which
were widely attributed to the redshifted gamma quanta from the e+e− → 2γ
annihilation process near the neutron star surface (e.g., Golenetskii et al. 1986).
The intrinsic energy of annihilation quanta, 0.511 MeV, was expected to be
redshifted for a distant observer. An analysis of ∼ 40 “emission line features”
deduced from the apparent line center position, led to gravitational redshifts
z = 0.2–0.5, with the centroid lying between 0.25 and 0.35 (Liang, 1986).
However, in the 1990s, thousands of gamma ray bursts were detected by the
BATSE detectors on board the Compton Gamma Ray Observatory, with no clear
evidence of spectral features at 0.3–0.5 MeV.

Moreover, in the late 1990s it was proved that many observed gamma-ray
bursts originate at cosmological distances, thus being unrelated to neutron stars
in the Local Group of galaxies. A notable exception is provided by soft gamma-
ray repeaters (SGRs), likely related to magnetars (ultra-magnetized neutron
stars; §1.4.5 The first gamma-ray burst useful for evaluating zsurf was the
extraordinary gamma-ray burst (GRB 790305) on March 5, 1979 (Mazets et al.,
1979b) from a source in the Large Magellanic Cloud. The burst source is now
called SGR 0526−66 (=RX J052600.3–660433). In quiescence, it behaves like
an anomalous X-ray pulsar (Kulkarni et al., 2003); see §1.4.5. The spectrum of
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the GRB 790305 exhibited a prominent emission line at 430± 30 keV with the
full width at half-maximum � 150 keV (Mazets et al., 1981, 1982). Assuming
that the line originated from e+e− → 2γ and was broadened by thermal plasma
motion, one gets zobs = 0.23 ± 0.07 (e.g., Higdon & Lingenfelter 1990). This
estimate is compared with theoretical neutron star models in Fig. 9.7. As one
can see, for a broad set of EOSs, surface redshifts of neutron stars with masses
within the range of precisely measured masses in double neutron star binaries
are consistent with this estimate.

If, however, this line was formed far above the surface, then zobs gives only
the lower bound on the true surface redshift. For instance, the emission line at
6.4 keV, observed in a burst from another soft gamma repeater, 1900+14 (very
similar to SGR 0526−66), was interpreted by Strohmayer & Ibrahim (2000) as
the non-redshifted Fe Kα line. In this case, the absence of a redshift implies
that the line was formed at least 80 km away from the neutron star (possibly in
an accretion disk).

Another method, successfully applied previously to white dwarfs, consists
in measuring redshifts of identified spectral lines for a neutron star in a binary.
First attempts to use absorption lines in X-ray spectra of X-ray binaries to
deduce zsurf were plagued by difficulties of line identification and by large line
widths. A successful measurement was probably made from the observations
of absorption lines in the X-ray burst spectra of the low-mass X-ray binary EXO
0748−676 (Cottam et al., 2002). The most significant absorption features were
identified with transitions of H-like and He-like iron and H-like oxygen, all
with the same redshift zobs = 0.35. A further theoretical analysis of Bildsten
et al. (2003) lent support to this interpretation by showing how the strength of
the observed Hα Fe XXVI line can be reconciled with the non-identification of
Lyα and photoabsorption features.

9.3. Neutron star radii
Models of dense matter can be tested by comparing neutron star radii R

determined from observations with theoretical predictions. Let us remind that
R denotes the circumferential stellar radius (§6.1). Unfortunately, for typical
neutron star masses between 1 and 2 M�, the radius is not very sensitive to the
EOS (§6.6.1). As can be deduced from Fig.6.5, in order to really distinguish
between the different EOSs, one has to measure the radius with a precision of
∼ 0.5 km (within statistical significance of 2σ or better).

Let us outline several methods to evaluate the neutron star radius from
observations. First of all, one can infer the radius by measuring zsurf and the
stellar mass M :

R =
(1 + zsurf)2

zsurf(2 + zsurf)
rg, rg =

2GM

c2 ≈ 2.95
M

M�
km . (9.27)
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Figure 9.7. The gravitational surface redshift versus stellar mass for selected EOSs (see Table
5.3) compared with observations. The horizontal band limited by dashed lines corresponds to
1σ evaluation of the redshift for the e+e− annihilation line in the spectrum of GRB 790305b.
The thick dot-and-dashed line gives the value of zsurf obtained in the analysis of spectra of
X-ray bursts by Cottam et al. (2002). The hatched area is prohibited by General Relativity
combined with the condition vsound ≤ c (§6.6.3). Shadowed vertical band is the range of
precisely measured masses of neutron stars in double neutron star binaries, §9.1.2 c.

Thus, if we need to measure R with an accuracy of 0.5 km, we must measure
M and zsurf in such a way to determine M/zsurf within ∼ 5% at the 2σ level.
Such measurements have not been performed by 2006.

9.3.1 Thermal emission of isolated neutron stars
Another way to measure neutron star radii consists in analyzing thermal

emission from neutron star surfaces (§1.4.5). Choosing a theoretical model of
the surface emission, one can try to adjust model parameters (in particular, the
radius) to the observed spectrum. As we discussed in §§6.6.6 and 1.3.3, instead
of the circumferential radius R it is often convenient to introduce the apparent
radius as would be measured by a distant observer.
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Unfortunately, the non-thermal radiation from magnetospheres of neutron
stars (§1.4.4) is usually so bright that the thermal radiation from their surfaces
is hardly observable. In particular, this is so for young active pulsars like
the Crab pulsar (age ∼ 103 yr). The thermal radiation of middle-aged (age
∼ 104–106 yr) and sufficiently warm neutron stars, with effective temperatures
(0.3 − 1) × 106 K, can dominate in soft X-ray and UV ranges. Surfaces of old
neutron stars (age � 106 yr) are too cold to emit observable thermal radiation,
but polar caps of old active pulsars can be hot enough to be detected in X-rays.

That is why the thermal radiation from neutron star surface was detected
only after the launch of X-ray satellites Einstein (1978–1981) and EXOSAT
(1983–1986). First reliable spectra of the thermal radiation from several pulsars
were obtained even later, with the sensitive X-ray observatory ROSAT (1990–
1998) as reviewed, e.g., by Ögelman (1995) and Becker (1999). A new era
in observing the thermal emission of neutron stars has started since 1999 with
the launch of X-ray observatories of outstanding capabilities, Chandra and
XMM-Newton (e.g., Pavlov et al. 2002).

Extracting neutron star parameters from these observations is a compli-
cated task. It is not sufficient to obtain a good high-quality spectrum; its inter-
pretation meets several serious difficulties. First, as a rule, a spectrum includes
both thermal and non-thermal components, so that one has to carefully separate
the thermal one. Second, theoretical interpretation of observations depends on
the composition of a neutron star atmosphere, which is unknown a priori, so that
one should try several possibilities. Third, even if the atmosphere composition
is fixed, the model of the outgoing spectral flux depends on many parameters
such as M , R, and the effective surface temperature Ts. For a strongly magne-
tized star, one should also take into account the effects of the magnetic field B
and its geometry and an associated non-uniform temperature distribution over
the stellar surface. For instance, the polar cap of a pulsar can be heated by a
stream of electrons or positrons moving along open field lines from the mag-
netosphere. This is what happens in the so called inner gap model of pulsar
emission, which stems from the seminal paper by Sturrock (1971). The tem-
perature of “hot spots” produced by this heating on the stellar surface may be
much higher than outside them. Fourth, the detected spectrum depends on the
distance d to the star and the column density of interstellar hydrogen, which are
usually poorly known. Therefore, it is not surprising that numerous attempts to
determine neutron star radii from observations of thermal radiation have been
largely inconclusive.

Generally, while fitting an observed spectrum, one infers possible values
of R∞ within some confidence interval. An assumed EOS of dense matter can
be ruled out, if the theoretical curve R∞(M) does not intersect this interval. As
a rule, these results should be taken with a grain of salt, because of difficulties in
estimating the errorbars of R∞. The emission of active pulsars may be mainly
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produced by hot polar caps, rather than by entire colder surfaces. In these cases
one will infer a polar cap radius (much smaller than R∞) from observations. For
instance, Zavlin et al. (2002), using a hydrogen atmosphere model, estimated the
radius of the polar cap of the millisecond pulsar J0437−4715 as Rpc = 2.0+0.3

−0.2
km. It can be taken as the observational lower bound to the stellar radius.
Obviously, it is too low to be useful for constraining the EOS in neutron star
cores.

However, there are several cooling (isolated) middle-aged neutron stars,
which apparently show a thermal-like emission and whose distance has been
determined from parallax measurements. The distance determination elim-
inates the largest uncertainty in constraining R∞. These neutron stars are
Geminga (PSR B0633+17), PSR B0656+14, Vela (PSR B0833−45), and RX
J1856−3754, which we consider in the rest of this section.

Golden & Shearer (1999) used HST and BTA optical photometry of Ge-
minga and PSR B0656+14 to estimate their radii. Previous X-ray observations
had indicated that a significant part of soft X-ray flux from these neutron stars is
of thermal origin. Golden & Shearer (1999) compared the sum of the Rayleigh-
Jeans tail of the thermal blackbody flux (∝ ν2, where ν is the photon frequency)
and the synchrotron-emission flux (∝ ν−α with α = 1.9 for Geminga and 1.4
for PSR B0656+14) with the pulsed optical flux detected from these pulsars
and with the upper limit to the non-pulsed optical flux. Assuming that the
thermal emission powered by neutron star cooling is non-pulsed, they obtained
the upper bound on the Rayleigh-Jeans parameter G ≡ T∞

6 (R∞
10/d500)2, where

R∞
10 ≡ R∞/10 km, T∞

6 = T∞
s /106 K is the effective surface temperature (in

MK) as detected by a distant observer, and d500 ≡ d/500 pc. For Geminga,
the restriction reads G ≤ 3.9 (at the 3σ level), while d = 159+59

−34 pc from the
parallax measurement (Caraveo et al., 1996). If one fixes d ≈ 160 pc, then
the blackbody fit of the X-ray spectrum gives T∞

6 ≈ 0.4–0.6 (Halpern et al.,
1996), so that R∞ � 10 km, below the absolute lower limits R∞ � 12– 14
km for most realistic EOSs (§6.6.6). However, taking into account rather large
errors in d, one obtains R∞ � 18 km (Haensel, 2001), which is satisfied for
any reasonable EOS and, therefore, is not useful for the EOS selection. This
may indicate that d is actually larger than the assumed 160 pc. On the other
hand, one cannot exclude that other, non-blackbody models (e.g., magnetized
atmosphere models) yield noticeably larger values of R∞.

The most comprehensive analysis of the data on PSR B0656+14 made
in the pre-Chandra era was done by Edelstein et al. (2000). Chandra X-ray
observations of PSR B0656+14 were analyzed by Marshall & Schulz (2002).
Combined optical, X-ray, and UV data gave the best estimate T∞

6 = 0.47–
0.74 (associated with the soft spectrum component) and R∞

10/d500 = 1.4–4.0
at the 99% confidence level, with the most probable distance d ≈ 200 pc (to
be compared with the estimate d = 760 pc based on the dispersion measure,
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Manchester et al. 2005). Later, Brisken et al. (2003) measured the parallax of
this pulsar and obtained d = 288+33

−27 pc. Analyzing previous R/d estimates,
the latter authors concluded that, within the model uncertainties, any radius R∞
is between ∼ 13 and ∼ 20 km, which is not useful for the EOS problem.

The parallax measurements of the Vela pulsar gave the distanced = 293+19
−17

pc (Caraveo et al., 2001; Dodson et al., 2003). The X-ray spectrum of this pulsar
observed with Chandra (Pavlov et al., 2001) and XMM-Newton (Mori et al.,
2004) can be fitted by a sum of non-thermal (power-law) and thermal (blackbody
or hydrogen-atmosphere) components. The blackbody fit yields T∞

s ≈ 1.5 ×
106 K and R∞ = 2.5 ± 0.2 km. It may describe the thermal radiation of a hot
polar cap on the pulsar surface. On the other hand, a magnetized (B = 1012 G)
hydrogen atmosphere model allows the neutron star to be “canonical” (see
Eq. (1.6)), yielding the temperature T∞

s = 0.674+0.034
−0.033×106 K and the distance

dfit = 256+44
−43 pc (Mori et al., 2004). Using the approximate scaling R∞ ∝ d

and the parallax distance d, the canonical R∞ = 13 km can be translated into
R∞ = 14.9+4.1

−2.9 km.
Another nearby neutron star with the thermal-like spectrum is RX J1856–

3754, discovered in the ROSAT observations by Walter et al. (1996) and exten-
sively studied in subsequent years. A faint optical counterpart of this star was
found by Walter & Matthews (1997). The distance determined from the parallax
measurements is d = 117 ± 12 pc (Walter & Lattimer, 2002). One-component
blackbody and atmosphere models failed to explain the spectrum in both optical
and X-ray ranges. The X-ray spectrum is well fitted by the blackbody spec-
trum with T∞

6 = 0.73 and R∞
10 = 0.44 (d/120 pc), whereas the optical data

obey the Rayleigh-Jeans law with the flux ∼ 7 times higher than that obtained
by extrapolating the X-ray spectrum into the optical range (e.g., Burwitz et al.
2003 and references therein). This may indicate the presence of a softer thermal
component, produced by the emission from the entire surface, while the “hard”
component may be emitted from a hot polar cap. The constraints obtained by
Burwitz et al. (2003) for the “soft” component read 4 eV � kBT∞

s < 33.6 eV
(i.e., 0.046 � T∞

6 < 0.39) and 1.63 < R∞
10 � 4.6 (at d = 120 pc). However,

the hot polar cap model implies pulsations of radiation from a rotating star.
Many attempt to find these pulsations failed. Burwitz et al. (2003) proposed
an alternative model, according to which the radiation comes from a solid or
liquid surface (rather than a gaseous atmosphere), which emits the blackbody
radiation but with reduced emissivity in the X-rays. This yields the lower bound
R∞ > 12.3 km at the 4σ level consistent with the majority of the EOSs of dense
matter (the upper bound is uncertain because of an unknown reflectivity in the
optical).

The latter result stimulated extensive studies of the emissivity and spectrum
of magnetized neutron stars with a condensed surface (van Adelsberg et al.
2005, and references therein). Simultaneously, the first self-consistent models
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of partially ionized hydrogen neutron star atmospheres with strong magnetic
fields have been constructed (Ho et al., 2003; Potekhin et al., 2004).

9.3.2 X-ray emission from accreting neutron stars in
binaries

X-ray bursts. Several attempts have been made to constrain the EOS in neu-
tron star cores by analyzing observations of type I X-ray bursts accompanied
by neutron star atmosphere expansion (see, e.g., Shaposhnikov & Titarchuk
2002, 2004, and references therein). The analysis is based on the well formu-
lated theory of X-ray spectrum formation in atmospheres of bursting neutron
stars, where the radiation transfer is mainly determined by electron scattering.
A standard assumption is that X-ray bursts (§1.4.6) originate from thermonu-
clear flashes in the surface layers of accreting neutron stars with weak magnetic
fields (B � 108–109 G). The model parameters in the spectral fits are neutron
star mass M , radius R, distance d, atmosphere composition, and a possible
anisotropy of the atmospheric emission. For example, Titarchuk & Shaposh-
nikov (2002) inferred the values of M and R from an analysis of three X-ray
bursts from Cygnus X-2. Assuming the helium mass fraction Y = 0.3 and the
distance d = 11 kpc, they obtained R = 9.0±0.5 km and M = 1.44±0.06 M�
(at the 1σ level). With the same Y and d = 9 kpc they got R = 7.7 ± 0.4 km
and M = 0.97 ± 0.04 M�. If true, this would favor very soft EOSs of dense
matter. Shaposhnikov et al. (2003) analyzed a set of type I X-ray bursts from
the low-mass X-ray binary (LMXB) 4U 1728–34. The data are well explained
by their theory if the burster atmosphere is dominated by helium, the distance
ranges from 4.5 to 5.0 kpc, R = 8.7 − 9.7 km and M = 1.2 − 1.6 M�.
These results also favor soft EOSs. In the same framework, Shaposhnikov &
Titarchuk (2004) derived R = 11–13 km and M ≈ 1.3–2.0M� by analyzing
an expansion stage of a type I X-ray burst of the brightest LMXB 4U 1820–30
(employing the distance d = 6.4 ± 0.6 kpc reported by Vacca et al. 1986).
This analysis favors moderately soft EOSs. Unfortunately, the accuracy of R
and M determination by this method is insufficiently high to impose stringent
constraint on the EOS but the method could be improved with new observations
of X-ray bursts and with better determination of d.

Nath et al. (2002) simulated X-ray burst oscillations observed from two
LMXBs using a model that includes emission from either a single hot spot
or a pair of antipodal hot spots on the neutron star surface. They modeled
the spreading of thermonuclear burning over the stellar surface by assuming
that the hot-spot size grows linearly with time, and calculated the radiation
flux as a function of rotational phase of hot spots. For LMXB 4U 1636−53,
they constrained the neutron star compactness as GM/(c2R) < 0.163 at 90%
confidence which requires a relatively stiff EOS of the stellar interior. For
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example, for a neutron star with the canonical mass 1.4 M� this gives R > 12.8
km.

There are promising perspectives of constraining R or M/R from bursting
LMXBs. For example, a discovery of quiescent thermal radiation from X-ray
bursters in globular clusters (where the distance and interstellar column den-
sity are known rather well) opens new opportunities for precise measurements
of neutron star radii (Rutledge et al. 2002a, see also Heinke et al. 2005 and
references therein).

Quasiperiodic oscillations (QPOs). Kilohertz quasiperiodic oscillations
(QPOs) manifest themselves in power energy spectrum of many LMXBs as
twin peaks at frequencies ∼ 0.5–1 kHz. The characteristics of kilohertz QPOs
are similar for many sources. Several models have been put forward to explain
these features. The model most fashionable in the 1990s assumed that QPOs
originate at the inner edge of accretion disks when infalling matter elements
rotate with the Keplerian frequency at their last stable orbit. The existence of
such an orbit is predicted by General Relativity; its circumferential radius is
3rg = 8.85 M/M� km. The corresponding frequency of the orbital motion is
ν0 ≈ 2.21 M�/M kHz. The theory predicted two QPO peaks at nearly the same
frequency ν0, separated by the neutron star spin frequency (the beat-frequency
model, or BFM, proposed by Alpar & Shaham, 1985). If neutron stars, which
produce QPOs in LMXBs, are localized inside their marginally stable orbits
(R < 3 rg), they have masses M ∼ 2 M�, which favors stiff EOSs (Zhang et
al., 1997).

The BFM has been elaborated in different ways. One of the modifications
was the sonic-point model (Miller et al. 1998 and references therein). The
sonic point is located in the disk layer, where the radial inflow regime changes
from subsonic to supersonic. Its position is determined by the luminosity of
the source. In this model, kilohertz QPOs are generated in the vicinity of the
sonic point, rather than near the last stable orbit.

However, all these models meet serious difficulties when confronted with
observations (e.g., van der Klis, 2000). In particular, the peak frequency sep-
aration turns out to be variable. Lamb & Miller (2001) modified the model
to allow for such variability. However, Jonker et al. (2002) found that in the
LMXB 4U 1636−53 the difference of QPO peak frequencies varies from less
than half the spin frequency (inferred from burst oscillations) to more than the
spin frequency, which strongly challenges the BFM. In addition, the neutron star
mass in Cyg X-2, evaluated from the BFM, clearly contradicts the mass inferred
from the burst model (Titarchuk & Shaposhnikov, 2002, see above). Moreover,
taking into account the correlation of QPO frequencies of white dwarf, neutron
star, and black hole binaries, Mauche (2002) argued that the data exclude a very
wide class of QPO models, particularly, those which involve the QPO produc-
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tion at the stellar surface or in the presence of a magnetic field. An alternative
model of QPOs suggested by Titarchuk et al. (1998) (see also Titarchuk 2002)
interprets the observed QPO frequencies in terms of relaxation oscillations of
a hot inner boundary region of an accretion disk.

Wijnands et al. (2003) detected kHz QPOs from a pulsar, whose spin fre-
quency is known from independent observations. Their analysis shows that the
observations contradict the existing BFM versions and pose “a severe challenge
to all other QPO models.”

Thus, at the time of this writing (2006), the model uncertainties obstruct
obtaining firm bounds on neutron star radii from observations of X-ray bursts
and QPOs.

Quiescent thermal emission. Brown et al. (1998) proposed a model for quies-
cent emission of soft X-ray transients – LMXBs containing transiently accreting
neutron stars. According to their model, the thermal emission is powered by
the heat released in the accreted matter (deep crustal heating, see §1.4.6) which
sinks deeply in the crust under the weight of newly accreted material. Along
with other mechanisms (such as a residual accretion or a pulsar shock), the
thermal surface emission due to the deep crustal heating can be an important
source of the quiescent emission of soft X-ray transients. Using this model,
Rutledge et al. (2001a,b) analyzed quiescent spectra of Aql X-1 (4 � d � 6.5
kpc) after an accretion outburst. Assuming a pure hydrogen atmosphere and
a hard power-law spectrum of nonthermal radiation component, they derived
the neutron star radius R∞ = 15.9+0.8

−2.9 (d/5 kpc) km. A similar analysis of
observations of KS 1731−260, another soft X-ray transient located near the
Galactic center, gave the estimate R∞ = 23+30

−15 (d/8 kpc) km (Rutledge et al.,
2002b). Several other results of this type have also been rather inconclusive.

Accretion disk – magnetosphere restrictions. A discovery of the first ac-
creting millisecond X-ray pulsar, SAX 1808.4–3658, raised hope to constraint
its radius. Psaltis & Chakrabarty (1999) considered four disk-magnetosphere
interaction models of this source and associated constraints on neutron star pa-
rameters. In particular, they obtained the upper limits on R as a function of
M (but neglecting space-curvature effects, crucial for the difference between
R and R∞). Their results strongly depend on an employed model and do not
give a firm unambiguous limit on R.

9.3.3 Final remarks on radius measurements

As the reader could easily conclude, the constraints on neutron star radii
made by the time of this writing (2006) are insufficiently precise to restrict the
EOS in neutron star cores. However, the progress is spectacular in recent years
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Table 9.8. Millisecond pulsars with spin periods shorter than 2 ms

No. PSR P (ms) No. PSR P (ms)

1 J1748–2446ad 1.396 6 J1748–2446P 1.729
2 B1937+21 1.558 7 J1843–1113 1.846
3 B1957+20 1.607 8 J0034–0534 1.877
4 IGR J00291+5934 1.670 9 A1744–361 1.887
5 J1748–2446O 1.677

and we expect that observations and improved theoretical models will lead to
useful constraints on neutron star radii in near future.

9.4. Millisecond and submillisecond pulsars
To be consistent with observations of millisecond pulsars, an EOS of dense

matter should give stable neutron star models at the shortest observed pulsar
period, Pmin

obs . We described theoretical models of spinning neutron stars in
§6.12. The rotation cannot be too fast and exceed the mass-shedding limit;
the hydrostatic equilibrium of the star has to be stable with respect to small
axially symmetric perturbations (§6.12.2). The “theoretical” minimum period
of uniform rotation, Pmin(EOS), consistent with these stability conditions,
depends on the EOS of dense matter. Fortunately, the values of Pmin(EOS)
obtained in extensive accurate calculations for causal EOSs are reproduced
with a surprisingly good precision (typically better than 5%) by the simple
“empirical formula” (6.108),

Pmin(EOS) ≈ 0.82
(

M�
M stat

max(EOS)

) 1
2

(
Rstat

Mmax
(EOS)

10 km

) 3
2

ms , (9.28)

where M stat
max and Rstat

Mmax
are, respectively, the mass and radius of the most

massive stable non-rotating star. Equation (9.28) gives the necessary condition
for a rotating neutron star with a given EOS to be consistent with the shortest
observed pulsar period:(

10 km
Rstat

Mmax
(EOS)

)3
M stat

max(EOS)
M�

> 0.67
(

1 ms
Pmin

obs

)2

. (9.29)

In order to rotate stably with the period Pmin
obs , a star must be sufficiently massive

and compact.
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Figure 9.8. EOS constraints from observation of rapidly rotating pulsars. The dashed line,
labeled by SS, corresponds to bare strange stars, studied in §8.11 (with the EOS of strange
quark matter described in §8.11). Precise condition discussed in the text implies that at a given
spin period (1.4 ms, 1 ms, 0.5 ms) a maximum-mass non-rotating star has to lie above a dot-and-
dashed line. For M < Mmax this condition becomes approximate.

The theoretical predictions can be confronted with observations of mil-
lisecond pulsars (which, by definition, are the pulsars with spin periods P � 30
ms – see Lorimer 2001). By 2006 approximately 150 such pulsars have been
discovered. A list of nine fastest rotators, with P < 2 ms, is given in Table
9.8. All of them but IGR J00291+5934 and A1744–361 are observed as radio
pulsars, while IGR J00291+5934 and A1744–361 are accreting millisecond
X-ray pulsars in binary systems (Galloway et al., 2005; Bhattacharyya et al.,
2006). The first millisecond pulsar discovered, PSR B1937+214 (Backer et al.,
1982), with P = 1.5578 ms, remained the most rapidly rotating neutron star till
2005. (Until its discovery, the fastest rotation, P = 33.1 ms, was demonstrated
by the Crab pulsar.) In 2005 a new spinning champion was discovered, PSR
J1748–2446ad, with P = 1.396 ms (Hessels et al., 2006). As seen from Fig.
9.8, the rotational stability curve, above which a pulsar with P = 1.4 ms is
stable, lies too low to produce any noticeable constraint on the EOS of dense
matter.

A very strong constraint would be given by a much faster submillisecond
pulsar, with P = 0.5 ms. Such a pulsar was discovered on January 18, 1998, in
a 7 hour optical observation of the supernova remnant 1987A in the Large Mag-
ellanic Cloud with the Cerro Tololo 4-meter telescope in Chile. The discovery
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ruled almost all theoretical EOSs, which were believed to be realistic – they
became forbidden by that observation! As the reader can see, the pulsar rules
out all EOSs used to calculate the M −R curves in Fig. 9.8. That nightmare for
theorists lasted for one year. In that year, all theoretical concepts of dense matter
physics were revisited in attempts to construct a realistic EOS which would be
able to explain a 0.5 ms pulsar (see, e.g., §9.8.4), but no convincing resolution
of the apparent conflict between theory and observation was found. The story
finished in February, 1990, with the discovery of exactly four times more rapid
optical oscillations from the Crab pulsar with one of the telescopes of the Las
Campanas observatory in Chile, near Cerro Tololo. Both telescopes had similar
TV cameras for transmitting images of what the telescopes were seeing to ob-
servatory control rooms. In January and February, the hottest summer period in
Chile, the TV transmitters could produce falsely modulated signals, the effect
that had not been known before. The discovery of 0.5 ms pulsar turned out to
be an artifact, and realistic theoretical EOSs were rehabilitated. Nevertheless,
the story was a good push to the neutron star theory.

9.5. The Crab Nebula and the moment of inertia of the
Crab pulsar

The AD 1054 supernova remnant, the Crab Nebula, was discovered by
amateur astronomer John Bevis in 1731 and rediscovered by Charles Messier
in 1758. John Duncan found in 1921 that the nebula is expanding (see Duncan
1939). Now it is probably the most often observed nebula in the sky. Opti-
cal observations of its filaments indicate that filaments are accelerated. This
acceleration as well as the nebula emission are powered by the Crab pulsar
which was discovered in the center of the nebula in 1968 (§1.4.2). The energy
reservoir is constituted by the pulsar rotational energy, which the pulsar loses
at a rate Ėrot = IΩΩ̇. Here, I is the pulsar moment of inertia, while Ω and Ω̇
are, respectively, the angular frequency and its time derivative, obtained from
the pulsar timing. Assuming the balance between Ėrot and the power of the
nebula radiation and accelerated expansion, one may constrain I , which may
be useful to constrain the EOS of dense matter.

The idea was proposed and realized by Manchester & Taylor (1977). Later
the problem was reconsidered using more recent data on the Crab Nebula
(Haensel, 1990). In both cases it has been assumed that the acceleration rate
v̇ is constant during the nebula expansion. The constraints derived by Manch-
ester & Taylor (1977) were weak and did not eliminate any of EOSs. The later
analysis by Haensel (1990) revealed the crucial dependence of the result on the
mass Mneb of the expanding nebula. The maximum limits on Mneb obtained
in the 1980s ruled out the softest EOSs.
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Recent estimates of the mass contained in optical filaments are significantly
higher than older ones. As shown by Bejger & Haensel (2002, 2003), this opens
the possibility of setting stronger constraints on the EOS.

9.5.1 The energy balance of the Crab pulsar and its nebula
The measured spin period of the Crab pulsar and its derivative are Pp =

33.41 ms and Ṗp = 4.228 × 10−13, which correspond to the current spin fre-
quency Ωp = 2π/Pp = 188 s−1 and Ω̇p = −2.38× 10−9 s−2. The pulsar spin
energy powers the acceleration of the nebula, the emission of electromagnetic
waves, and the sweeping away the interstellar matter. The value of Ω̇ can be
related to Ω by

Ω̇(t) = −KΩn(t), (9.30)

where K and n are constants determined from the pulsar timing (see, e.g.,
Shapiro & Teukolsky 1983; also see §1.4.4). For the Crab pulsar, we get
K = 4.68×10−15 (in CGS units). The braking index n is obtained through the
measurable timing parameters Ω, Ω̇, and Ω̈ as n = ΩΩ̈/Ω̇2 . From the timing
of the Crab pulsar in the period from 1982 to 1987 one has n = 2.509 ± 0.001
(Lyne et al., 1988). We adopt the standard assumption that n and K are fixed
after the pulsar formation (e.g., in less than a few months after the neutron star
birth). In what follows we will count the pulsar age from that moment. The
integration of Eq. (9.30) from t = 0 gives the well known pulsar spindown law

Ω(t) =
Ω0

{1 + Kt(n − 1)Ωn−1
0 }1/(n−1)

, (9.31)

where Ω0 is the initial spin frequency. Putting the current pulsar age tp = 950
years we get Ω0 = 326 s−1 and the initial period P0 = 2π/Ω0 = 19.3 ms. The
spin-down energy loss rate is

Ėrot =
d
dt

(
1
2

IΩ2
)

= −IΩ|Ω̇|, (9.32)

where I is independent of Ω because Ω is much smaller than the mass-shedding
limit (§6.10). The pulsar spin energy transforms into electromagnetic radiation
of the nebula (with the luminosity Ėrad) and into the accelerated expansion of
the nebula. When calculating the power of this expansion, Ėexp, one should
take into account that the nebula sweeps the interstellar medium:

Ėexp =
d
dt

∫
1
2

ρv2 dV ; (9.33)

the integration goes over the nebula volume V . The nebula mass Mneb is
thought to be mostly contained in luminous filaments. The velocity vectors
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Figure 9.9. Expansion of the Crab Nebula. Arrows show motion of 50 optical filaments in the
next 250 years at the current expansion speed. From Nugent (1998), with the kind permission
of the author.

of the filaments are nearly radial and have approximately the same magnitude
(Fig. 9.9). Treating v as constant in space, we get

Ėexp =
1
2

d
dt

(
Mnebv

2) = Ėacc + Ėsweep; (9.34)

Ėacc ≡ Mnebvv̇, Ėsweep ≡ 1
2

Ṁnebv
2 ,

where Ṁneb is the mass of the interstellar medium accumulated by the expand-
ing nebula per unit time.

9.5.2 Observational evaluations of the Crab Nebula
parameters

The current mass of the Crab Nebula is very important for our analysis
(Bejger & Haensel, 2002, 2003) but its observational estimation is difficult.
In the last two decades the reported values of the mass (contained in optically
shining filaments) varied from (2− 3) M� (Davidson & Fesen, 1985), through
(1 − 2) M� (MacAlpine & Uomoto, 1991) to (4.6 ± 1.8) M� (Fesen et al.,
1997).

Optical filaments form actually an expanding shell. Its motion can be
studied by comparing positions of filaments on high-resolution photographs
taken now and some time ago (Duncan, 1939; Trimble, 1968; Wyckoff & Mur-
ray, 1977; Nugent, 1998). We will use the results obtained by Nugent (1998)



504 NEUTRON STARS

from the data on 50 bright filaments observed earlier (in 1939, 1960, 1976, and
1992). His results are visualized in Fig. 9.9. By projecting the straight-line
constant velocity motion of filaments backward in time, Nugent obtained the
convergence of filament trajectories at AD 1130 ± 16 yr, in agreement with
the previous analysis by Trimble (1968). Had the Crab Nebula expanded at a
constant v, this would be the moment of the supernova explosion. However, the
date known from historical records is 1054 (see §1.4.2, page 32), which is ∼ 75
years earlier. Therefore, the expansion was accelerated (v̇ > 0), owing to which
v increased from the initial value v0 to the current value vp ∼ 1.5×108 km s−1,
also known from spectroscopic observations (e.g., Sollerman et al. 2000).

The total luminosity of the nebula is estimated as (Peterson, 1998)

Ėrad(d) � 1.25 (d/dDF)2 × 1038 erg s−1, (9.35)

where d is the distance to the nebula. The “reference value” dDF = 1.83 kpc
comes from Davidson & Fesen (1985).

9.5.3 Bound on the moment of inertia
The constraint on the moment of inertia of the Crab pulsar results from the

condition that, at any moment, the loss of the pulsar spin energy is sufficient to
power the nebula,

Ω|Ω̇|ICrab ≥ Ėrad + Ėacc + Ėsweep. (9.36)

Using the observational data and simple physical arguments one can easily
estimate (e.g., Bejger & Haensel 2002, 2003) that Ėacc is at least several times
higher than Ėrad and Ėsweep. Hence, the pulsar mainly powers the nebula
acceleration at a nearly constant Mneb; Ėsweep will dominate later.

One usually constrained the moment of inertia assuming that the nebula
acceleration v̇ is independent of time (Manchester & Taylor 1977; Haensel
1990; Bejger & Haensel 2002). Here we go beyond this model using the
approach by Bejger & Haensel (2003) and slightly improving it. We assume
that Ėacc dominated the pulsar energy loss all the time till now, after some initial
short-term period (�3 yr) in which the Crab Nebula was powered by supernova
itself (i.e., by 56Ni radioactive decay heating), but we do not assume a constant
acceleration. In our approximation

IΩ(t)|Ω̇(t)| ≈ Mnebρv(t)v̇(t). (9.37)

This immediately gives

Mneb
(
v2(t) − v2

0
)

= I
(
Ω2

0 − Ω2(t)
)
, (9.38)

which is just energy conservation of the spinning pulsar and expanding nebula.
Because the velocity variation during the acceleration is relatively small, we
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approximately have

v(t) = v0 +
I

2Mnebv0
(Ω2

0 − Ω(t)2). (9.39)

In order to complete our analysis let us approximate the expanding nebula
by a sphere and calculate its current (t = tp) radius:

Rneb =
∫ tp

0
v(t) dt. (9.40)

It is sufficient to substitute v(t) from Eq. (9.39), set v0 ≈ vp in the denominator,
and take Ω(t) from the spindown equation (9.31). The integral is then taken an-
alytically. Putting, in addition, t = tp in Eq. (9.39) in the same approximation,
we come to a set of two equations

vp = v0 +
I
(
Ω2

0 − Ω2
p
)

2Mnebvp
,

Rneb = v0 tp − IΩ3−n
0

2(3 − n)(1 − n)KMnebvp

×
{

2 + (Ωp/Ω0)
3−n
[
1 − n − (3 − n) (Ω0/Ωp)

2
]}

. (9.41)

The Crab pulsar timing constants n and K are given in §9.5.1. The present
expansion velocity vp ≈ 1.5 × 108 cm s−1 has been discussed in §9.5.2.

Thus, the two equations allow us to find v0 and I = ICrab ≡ 1045 ICrab,45
g cm2 for any values of Mneb and Rneb determined from observations. Let
us take the values Mneb = (4.6 ± 1.8) M� reported by Fesen et al. (1997).
The shell radius Rneb is also very uncertain. The spherical-shell model is the
simplest representation of the expanding filament fireball of the Crab Nebula,
which is famous for its rather complicated crab-like shape. The value of Rneb
can be estimated as a mean for an ellipsoid which is a more precise model of
the Crab Nebula shape. Assuming d = 1.83 kpc, one gets Rneb = 1.25 pc (see,
e.g., Douvion et al. 2001).

Actually, the moment of inertia of the Crab pulsar ICrab has to be con-
strained taking into account observational uncertainties of all parameters (es-
pecially, of Mneb, Rneb, and vp) as well uncertainties of the underlying model
(e.g., the spherical shell of the envelope). Such an analysis would give too large
scatter of ICrab. For illustration, we adopt the values vp ≈ 1.5 × 108 cm s−1

and Rneb = 1.25 pc, and infer ICrab assuming the central and maximum values
of Mneb given above. We obtain

Mneb = 4.6 M� =⇒ ICrab,45 = 2.2;
Mneb = 6.4 M� =⇒ ICrab,45 = 3.1 . (9.42)



506 NEUTRON STARS

Figure 9.10. Binding energy with respect to the presupernova core (§§6.2,6.7) versus neutron
star mass for selected EOSs of dense matter (Table 5.3). Shaded box is acceptable for the SN
1987A event neglecting neutrino oscillations. For further explanations see the text.

In order to get ICrab,45 = 3.1, which corresponds to Mneb = 6.4 M�, a very
stiff EOS is required (§6.10). However, the uncertainties stemming from large
errors in other input parameters weaken the real implications of this finding.
It is important to notice that the present results differ significantly from those
obtained assuming the constant nebula acceleration v̇.

9.6. Neutrinos from Supernova 1987A and binding energy
of neutron stars

The detection of the neutrino burst from SN 1987A had enormous impact
on the theory of core-collapsed (type II) supernovae (§1.4.2). Basically, it
confirmed the main idea that such supernovae result from the gravitational
collapse of a degenerate (mass ∼ 1.4 M�) core of a massive (∼ 15 M�) star
at the end of its thermonuclear evolution.

The theory of type II supernovae predicts the gravitational collapse of a de-
generate core on timescales ∼ 0.1 s and the formation of a hot (kBT ∼ 50 MeV)
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protoneutron star of radius ∼ 50 km, composed of Ab ∼ 1057 baryons, with the
electron lepton number Le � 0.35Ab (§1.4.2). The initial gravitational mass
of the collapsing core is Min � Abm0, where m0 = 1.6586 × 10−24 g is the
mass of the 56Fe nucleus divided by 56 (§6.2). The gravitational mass of the
protoneutron star is only slightly lower than Min, because the gain in the gravi-
tational energy is compensated by the increase of the internal energy contained
mostly in strongly degenerate neutrinos νe trapped in the stellar interior. On
timescales ∼ 10 s electron neutrinos diffuse out of the protoneutron star core
and the star shrinks into an ordinary neutron star of gravitational mass M . The
shrinking is accompanied by the energy release ∼ (Am0 − M)c2. Approxi-
mately 99% of the energy is carried away by neutrinos and antineutrinos of all
flavors (νe, νµ, ντ ), Eν � Ebind.

Let us analyze briefly the neutrino outburst of SN 1987A neglecting neu-
trino oscillations (for a review see, e.g., Imshennik & Nadyozhin 1988 and
Burrows 1990). The total of 25 detected captures of ν̄e by protons within
∼ 10 s enabled one to reconstruct the parameters of the original neutrino burst.
Spherical symmetry was assumed to make such an analysis feasible. The total
energy of electron antineutrinos radiated during the explosion was estimated
as Eν̄e � (5 ± 2) × 1052 erg. Numerical simulations of the neutron star
birth showed equipartition of energies emitted in all neutrino flavors. Accord-
ingly, Eν̄e � Eν/6, and the total radiated neutrino energy can be estimated as
Eν � (3 ± 1.5) × 1053 erg (the value we quote is subject to additional un-
certainties, see Lattimer & Yahil 1989; Burrows 1990 and references therein).
This could be considered as the “measurement” of the binding energy of the
newly born neutron star, Ebind � Eν . The “measured” value of Ebind could be
compared with theoretical predictions for various EOSs of dense matter. From
the evolutionary scenarios one expects that the neutron star born in SN 1987A
had M = (1.2 − 1.5)M�. In this way we obtain a shaded acceptable rectangle
in the Ebind – M plane shown in Fig. 9.10. All EOSs in Table 5.3 (and nearly
all which can be found in the literature) satisfy this “observational” constraint.

This analysis has to be revised taking into account neutrino oscillations
discovered and confirmed several years after the SN 1987A event. Oscillations
νe ←→ νµ, ντ during the neutrino propagation to the detector distort (harden)
the νe energy spectrum (see Takahashi & Sato 2003, and references therein).
However, the total neutrino energy Eν released from SN 1987A is not strongly
affected by oscillations, taking into account large uncertainties in the measured
value of Eν (Kachelriess et al., 2002).

New giant neutrino detectors built in the last decade, such as the Super-
Kamiokande Observatory, the Sudbury Neutrino Observatory and the Kamioka
Liquid-scintillator Anti-Neutrino Detector, offer much better possibilities for
neutrino detection than in 1987. To be specific, let us imagine that a galactic
type II supernova explodes at a distance of 10 kpc from us. The calculations
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performed by Takahashi & Sato (2003) who included neutrino oscillations and
used a standard model for a neutrino outburst predict ∼ 104 of νe +p → n+e+

absorptions registered by the SuperKamiokande detector. Neutrino oscillations
harden the energy spectra. Because the cross-section of νe + p → n + e+

increases with neutrino energy, the inclusion of neutrino oscillations increases
the predicted number of registered events by (20−30) % (Takahashi & Sato,
2003). Combined with the (hopefully) refined theory of type II supernovae
and a more precise model for neutrino mixing, such data could yield precious
information on the binding energy of neutron stars, and provide us with more
restrictive constraint on the EOS of dense matter.

9.7. Pulsar glitches and crustal moment of inertia
It is widely believed that sudden spin-ups of radio pulsars, called glitches

(§1.4.4), are produced by angular momentum transfer from the superfluid com-
ponent of the stellar interior to the (normal) crust. Sudden frequency jumps
of magnitude ∆Ω/Ω ∼ 10−9 − 10−5 are accompanied by jumps in the spin-
down rate, of magnitude ∆Ω̇/Ω̇ ∼ 10−3 − 10−2. In the standard scenario
(Alpar et al., 1984), a neutron star crust (a lattice of nuclei coupled by Coulomb
forces to electron fluid) spins down under the action of magnetic torque. A
superconducting proton fluid in the core is coupled to electrons via electron-
fluxoid scattering (assuming that protons form a type II superconductor). On
the other hand, neutron superfluid in the core is coupled to proton superfluid
via superfluid drag effects, resulting from the Fermi-liquid interactions. As
a consequence, the crust is thought to be rather strongly coupled to the core,
with the coupling time of the core to the magnetic field and the crust of a few
seconds. Therefore, it could be a good approximation to describe the core as
rigidly coupled to both the magnetic field and the crust. The total moment of
inertia of this rigidly rotating component will be denoted by Ic. On the con-
trary, neutron superfluid in the inner crust is only weakly coupled to crustal
lattice (with typical coupling times of weeks to months). Consequently, crustal
neutron superfluid has an excess of angular velocity, as compared to the rigidly
rotating component (the latter component constitutes typically more than 95%
of the stellar mass, §6.8).

The magnetic spindown of the crust increases the difference of angular
frequencies and induces a mechanical strain between the neutron superfluid
vortices pinned to nuclei in the crust. At a certain threshold value of the an-
gular velocity difference, some of neutron vortices (∼ 1011 for a macroglitch)
undergo a violent unpinning and move outward. The excess of angular momen-
tum is transferred to the crust leading to a pulsar glitch. The glitch is followed
by a relaxation towards a steady rotational state (on timescales of weeks to
months). Then, a new excess of the angular velocity in crustal superfluid is
built up and continues until the threshold value is reached.
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Table 9.9. Glitches of the Vela pulsar in the period from 1969 to 2000. Glitch dates are ap-
proximate (within one month); ∆Ω̇ is a change in the spin down rate that survives long after a
glitch

i Date ∆Ω/Ω ∆Ω̇/Ω̇ Relaxation
(10−6) (10−2) (d)

1 1969 Feb 2.3 0.71 35
2 1971 Aug 2.0 0.72 33
3 1974 Sep 2.0 0.72 30
4 1978 July 3.1 0.66 39
5 1981 Oct 1.1 0.63 32
6 1982 Aug 2.0 0.60 31
7 1985 July 1.3 0.65 31
8 1988 Dec 1.8 0.47 29
9 1991 July 2.7 0.74 29
10 1994 July 0.86 – –
11 1994 Aug 0.20 – –
12 2000 Jan 3.1 0.67 19

Since the discovery of pulsar glitches in 1969 till 2005, about 100 of them
have been observed from nearly 30 pulsars (§1.4.4). We will restrict ourselves
to “giant glitches” (macroglitches) with ∆Ω/Ω � 10−6, which demonstrate
largest acceleration of pulsar rotation and are, therefore, useful for studying the
neutron star structure. The largest number of macroglitches has been detected
from the Vela pulsar (twelve in the period from 1969 to 2000). One Vela’s
macroglitch implies approximately one extra pulse (pulsar rotation) per day.

Observations of macroglitches have been used by numerous authors to test
models of neutron star interior and to derive constraints on stellar parameters
(see, e.g., Alpar et al. 1984; Datta & Alpar 1993; Alpar et al. 1993; Abney et al.
1996; Link et al. 1999, and references therein). In what follows, we will use the
approach of Link et al. (1999), who proposed a general scheme for constraining
the parameters of the Vela pulsar from a minimal set of assumptions. Let ∆Ωi

be the angular frequency jump in an ith glitch, and Ω be the average value of
Ω over the entire period of t = 31 years. The cumulated angular momentum
imparted to the rigidly rotating component during a sequence of glitches is

Jglitch = Ic
∑

i

∆Ωi . (9.43)

As one sees from Fig. 9.11, to a good approximation, this quantity in-
creases linearly with time. Let us start counting Jglitch at some time moment
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Figure 9.11. Time evolution of the cumulated angular momentum transferred during glitches
to the strongly coupled crust-core component of the Vela pulsar. Filled circles correspond to
observed individual glitches (Table 9.9). The straight line is the linear fit, Eq. (9.44).

t0, preceding the first observed glitch. Then, the angular momentum transferred
to the rigidly rotating component up to a moment t is

Jobs
glitch(t, t0) � (t − t0) IcΩA . (9.44)

An average time separation between successive glitches is a few years. Putting
t0 on January 1, 1966, three years before the first observed glitch, we obtain a
good linear fit, with A = 0.685 × 10−6 yr−1 (Fig. 9.11).

The crustal neutron superfluid component, weakly coupled to the crust,
represents a reservoir of the angular momentum, Jres, accumulated during in-
terglitch periods. Let Ires = I − Ic be the moment of inertia of this component.
The angular momentum excess accumulated in this component during a time
interval t − t0 is bounded from above,

Jres(t, t0) ≤ (t − t0) Ires|Ω̇| , (9.45)

because crustal neutron superfluid spins down between glitches. Here, Ω̇ is
the average (smooth) Vela’s spin-down rate, after eliminating short term ef-
fects produced by glitches (see Fig. 6.6 of Lyne & Graham-Smith 1998). The
actual average rate of the angular momentum transfer can be calculated using
Eq. (9.44),

J̇res = IcΩA . (9.46)
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Therefore, Eq. (9.45) gives the inequality

(Ires/Ic) ≥ (Ω/|Ω̇|) A . (9.47)

For the Vela pulsar we have Ω/|Ω̇| = 2.26 × 104 yr (see, e.g., Lyne &
Graham-Smith 1998) so that Ires/Ic ≥ 1.5%. The bound on Ires/Ic can be
translated into a lower bound on Icrust/I . Under our assumptions, Ires < Icrust
and Ic > I − Icrust. This gives the constraint for the Vela pulsar in the two-
component glitch model, Icrust/(I − Icrust) � Icrust/I > 1.5%. Although
this constraint is based on general assumptions, it is not strong. For a 1.4 M�
neutron star, it is satisfied even for the softest EOS in Table 5.3.

Let us mention that much stronger constraints on Icrust/I for the Vela
pulsar were derived in the past. Analyzing first eight Vela glitches, Alpar et
al. (1993) obtained Icrust/I > 2.4%. Even higher lower bound was given
by Datta & Alpar (1993), Icrust/I > 3.4%. Such constraints would rule out
the 1.4 M� neutron star models based on soft and even medium stiff EOSs.
However, they implied a specific model of individual Vela macroglitches (even
in the “minimal” phenomenological model of Alpar et al. 1993). Thus, these
stronger lower bounds are valid only if underlying models are quantitatively
correct, a very strong requirement for so complex phenomenon as a neutron
star glitch.

The bounds on Icrust/I for several other glitching pulsars (PSR B1737–30,
PSR B1758–23, PSR B1338–62) are less stringent and precise, but generally
similar to the Vela’s one. The bound for the Crab pulsar is too low to be
interesting. According to Link et al. (1999) this may indicate that the Crab
pulsar loses a significant amount of the angular momentum contained in crustal
neutron superfluid between glitches, for instance, via thermal creep of superfluid
vortices (Alpar et al., 1984; Link et al., 1999; Chau & Cheng, 1993). The Crab
pulsar is much younger (and can be significantly hotter) than other pulsars
considered in this section. Higher internal temperature could greatly accelerate
thermal creep of neutron vortices in the crust.

9.8. Pros and cons of the existence of strange stars
If the strange matter hypothesis is true and the strange matter exists in the

Universe, then some (or maybe all) neutron stars could actually be strange stars.
Ever since the idea of strange quark stars has been advanced, a lively debate
concerning its validity has taken place. Below we discuss some pros and cons
of the existence of strange stars.

9.8.1 Con: Macroglitches of radio pulsars
It is widely believed that pulsar glitches require the presence of the solid

crust and a superfluid component weakly bound to the crust. The analysis
of macroglitches indicates (§9.7) that the fractional crustal moment of inertia
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exceeds 10−2. However, as we have seen in §8.16, the maximum fractional
crustal moment of inertia of strange stars with M > 0.5 M� is lower than
10−4.2 Therefore, it was stated long ago, that strange stars with the crust cannot
explain pulsar macroglitches; glitching pulsars are not strange stars (Alcock et
al., 1986; Alpar, 1987). Of course, it was obvious from the very beginning,
that the standard two-component model of pulsar glitches (§9.7), in which
superfluid neutrons in the inner crust transfer an accumulated excess of angular
momentum to the rest of the pulsar body, does not apply to strange stars. As
noted by Alpar (1987), a large value of ∆Ω̇/|Ω̇| ∼ 10−3 − 10−2 in glitches
requires the existence of a strange star component distinct from the quark matter.
The effective moment of inertia Id of this component should satisfy Id/I ≈
∆Ω̇/|Ω̇|. However, the moment of inertia of the strange star crust is two orders
of magnitude smaller. This statement of Alpar (1987) is based on observational
estimates for macroglitches, ∆Ω/Ω ∼ 10−6 − 10−5 � ∆Ω̇/|Ω̇|. According
to Alpar, such estimates indicate that glitches are produced by the angular
momentum transfer from the non-quark matter to the rest of the star coupled to
the magnetosphere. In his model macroglitches are not associated with sudden
changes of the moment of inertia.

The lower bound on Icrust/I might be weakened, if one uses the arguments
based exclusively on conservation of the total angular momentum J during a
glitch (Glendenning & Weber, 1992). A tacit assumption is that the angular
momentum transferred during a glitch comes from a sudden decrease of the
moment of inertia of the crust in a so called crust-quake, ∆Icrust = −fIcrust,
where f is the fraction of the decreasing moment of inertia. Notice that this
assumption is just the opposite to that made by Alpar (1987). Retaining only
terms linear in ∆Ω, we see that conservation of the total angular momentum
implies ∆J = ∆ΩI0 − ΩfIcrust = 0, where I0 is the moment of inertia
of the strange star component accelerated during the quake. This results in
fIcrust/I0 ∼ ∆Ω/Ω ∼ 10−6 for macroglitches, while from the strange star
models Icrust ∼ 10−5 I . All matter constituents (quarks, electrons, as well as
nuclei in the crust) are charged and rather strongly coupled by Coulomb forces,
so that I0 � I . Therefore, one should require f ∼ 0.01−0.1 for macroglitches.
In view of the low shear modulus (§3.7) and the associated low critical elastic
strain of the outer crust, such an amplitude of crust quakes seems unrealistically
high.

2Strictly speaking, this is true for strange stars with M > 0.5 M� and spin periods longer than 1 ms. We
do not consider too low-mass strange stars rotating close to the Keplerian limit, where Icrust/I can be as
high as 10−3 (Glendenning & Weber, 1992; Zdunik et al., 2001).
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9.8.2 Con: Strangelets in galaxies

General astronomical arguments against strange matter were presented by
Madsen (1988) and Caldwell & Friedman (1991). They argued that if some
objects built of strange matter are present in a galaxy (e.g., in our Galaxy) in the
form of strange stars or as nuggets of strange matter (strangelets) in cosmic rays,
then essentially all neutron stars must be strange stars. The argument is based
on the dramatic effects of a tiny abundance of strangelets. It was suggested,
that even if strangelets had not survived as a leftover of hadronization process
in the Big Bang, they could be produced by tidal disruption of strange stars in
collisions/coalescence with another strange star, neutron star or a black hole.
If strangelets are created in this way, the expected abundance of strangelets
in the interstellar medium would be much higher than the minimum value
required to convert all neutron stars into strange stars. Hence, all neutron stars
would actually be strange stars. But, as we argued in §9.8.1, pulsars exhibiting
macroglitches are not strange stars, and therefore the hypothesis that all neutron
stars are strange stars seems to be in conflict with reality.

However, it is far from obvious, that the fragmentation of a strange star
will necessarily produce a swarm of strangelets. Let us remind that, in con-
trast to a neutron star, fragments of a strange star will not explode after the
decompression. A fission of strange stars into a few fragments of comparable
mass may be more natural. A coalescence of a strange star with a black hole
in a close binary has been numerically simulated by Kluźniak & Lee (2003).
They find the striking difference as compared to the merging of a neutron star
and a black hole. In the latter case, the neutron star is disrupted by the tidal
forces created by the black hole. The fragments form a disk around the black
hole. A fraction of matter is engulfed by the black hole, while the other fraction
is ejected from the binary. The fragments of the strange star do not explode.
According to Kluźniak & Lee, they are totally engulfed by the black hole; no
strangelets are injected into the Galaxy during the merging of a strange star and
a black hole. This would indicate that the pollution of the Galaxy by strangelets
is not an unavoidable consequence of the existence of strange stars, contrary to
the assumption of Madsen (1988) and Caldwell & Friedman (1991).

Let us summarize. If strangelets, produced during the hadronization phase
in the expanding Universe after the Big Bang, do not evaporate completely into
nucleons, then the Galactic flux of strangelets would be too large to allow for
ordinary glitching neutron stars to exist. If strangelets could survive (e.g., due to
an additional binding resulting form the CFL superconductivity, §8.8.3), then
observations of macroglitches in some pulsars provide an argument against
the strange matter hypothesis. If, on the contrary, “primordial strangelets”
evaporated before the Universe cooled down, then the existence of strange stars
did not necessarily led to the pollution of the Galaxy by strangelets. In this
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case strange stars might coexist with ordinary neutron stars which can exhibit
macroglitches.

9.8.3 Pro: Too small radii for some neutron stars
Numerous authors used the mass-radius relation to suggest that at least

some compact X-ray sources, observed as X-ray bursters or sources of X-
ray millisecond quasiperiodic oscillations (QPOs), are strange stars rather than
neutron stars (Li et al. 1999a,b; see also Bombaci 1997 and review articles
of Bombaci 2001 and Weber 2005). Using a phenomenological model, which
reproduces the main observational properties of the transient X-ray source SAX
J1808.4–3658, Li et al. (1999a) argued that the source cannot be a neutron star
built of baryonic matter. Specifically, the radius was too small for a standard
neutron star. For instance, the authors got the radius R < 8 km for M =
1.3 M�. Such a small radius could be obtained for some models of strange
stars, and the authors concluded that “SAX J1808.4–3658 is a likely strange
star candidate”.

Li et al. (1999b) analyzed observations of the compact object in the low-
mass X-ray binary 4U 1728–34 which is a source of kilohertz QPOs. The
X-ray data were obtained with the Rossi X-ray Timing Explorer and were
analyzed using a model for kilohertz QPOs proposed by Osherovich & Titarchuk
(1999). The deduced constraints on mass and radius hinted towards strange
stars: M < 1.1 M� and R < 9 km. However, this conclusion was far from
being a clear-cut one. First, the obtained “observational” mass-radius range
was obviously model-dependent, with a complex underlying model of the X-
ray source. In such a case, one should carefully evaluate the uncertainties of
extracted stellar parameters. Second, the constraint on the mass-radius relation
was severe even for strange stars. The obtained value Mmax � M� for strange
stars was uncomfortably low, inconsistent with the 1.44 M� measured mass of
the Hulse-Taylor pulsar, Eq. (9.24).3

The present observations imply that we are far from a clear-cut situation
of, e.g., R∞ < 9 km (Fig. 8.11) which would unambiguously indicate a strange
star. Such a situation seemed to become true on April 10, 2002, when a NASA
News Release appeared together with an e-print in arXiv/astro-ph (Drake
et al., 2002). It was stated that the isolated nearby neutron star RX J1856–3754
radiates like a black body of T∞

s = 7 × 105 K, shows no sign of pulsations
(which would indicate a surface temperature anisotropy and stellar rotation), and

3The conflict might be resolved by postulating the existence of different families of compact stars with the
different formation scenarios and different values of Mmax.
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has an apparent radius of (3.8–8.2) km.4 However, as was shown in subsequent
papers by other authors, Drake et al. (2002) and their sensational result referred
only to the “hard” X-ray component of the spectrum. Actually, the spectrum
contains also the “soft” component in the visual and UV bands (Walter &
Lattimer 2002; Braje & Romani 2002; Burwitz et al. 2003; these results are
discussed in §9.3). The soft component can be modeled by an isotropic black-
body radiation with T∞

s,soft � 3.5 × 105 K and Rsoft∞ � 16 km; the latter value
is typical for an ordinary neutron star with a stiff EOS.

The spectrum of RX J1856–3754 is still a puzzle, especially because of the
absence of any pulsations. The lack pulsations in the given case might indicate
a very special orientation of the symmetry axis, strictly coincident with the line
of sight.

9.8.4 Pro: Submillisecond pulsars
Let us consider the simplest MIT bag model of strange quark matter,

described in §8.5. As we have seen in §8.21.3, the minimum stable rota-
tion period of strange stars is then given by a remarkably precise formula
Pmin � 0.63 (B60)−1/2 ms , where B60 is the bag constant B measured in
60 MeV fm−3. Thus, for sufficiently large values of B, massive strange stars
(contrary to baryonic neutron stars, §6.12.6) could be compact enough to sustain
rotation at submillisecond periods. After the announcement of the discovery of
the 0.5 ms pulsar in the SN 1987A in January 1989 (§9.4), it was suggested to
treat that pulsar as a strange star (Glendenning, 1989a). However, this would
require a “tuning” of the MIT bag model parameters. For example, it is easy
to see, that the simplest MIT bag model with massless, non-interacting quarks
at the required value of B would not give the three-flavor quark matter favored
energetically over 56Fe. A similar difficulty arises for more realistic models of
strange quark matter (Zdunik & Haensel, 1990; Prakash et al., 1990). These
problems might be alleviated if one does not wish to treat the stability condi-
tions imposed on the parameters of the MIT bag model as strict and precise
(Glendenning, 1989a, 2000).

The scaling formula for Pmin can also be obtained for other models of
strange matter; the scaling with respect to B can be replaced by the scaling with
respect to the parameter ρs in the linear approximation of the strange matter
EOS, P/c2 = a(ρ−ρs) (§8.8). We get then Pmin � 0.41 (1015 g cm−3/ρs)1/2

ms. Therefore, models of a self-bound quark matter with ρs � 1015 g cm−3

can sustain half-millisecond spin periods (Dey et al., 1998). However, because

4The NASA News Release 02-082 at http:/www.msfc.nasa.gov/news/ was entitled “Cosmic X-rays
reveal evidence for new form of matter” and resulted in headlines in many newspapers and TV news broad-
casts.
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of the scaling Mmax ∝ ρ
−1/2
s these models lead to Mmax � 1.4 M�, in conflict

with the measurements of neutron star masses (§9.1).
The discovery of a half-millisecond pulsar was withdrawn after one year of

heated debates. As for now, the shortest observed pulsar period of 1.4 ms (Table
9.8) does not require an introduction of strange stars. Were a half-millisecond
pulsar be discovered in the future, it would undoubtedly be used as an argument
in favor of strange stars.



Appendix A
TABLES OF EOSs IN NEUTRON STAR CRUST

In this Appendix we present tables of the EOS for the ground-state matter in the neutron
star crust for ρ > 107 g cm−3. At lower densities, the EOS can be influenced by the presence
of strong magnetic fields (Chapter 4) and by the thermal effects (Chapter 2). The analytical
description of properties of atomic nuclei in neutron star crusts is given in the Appendix B, and
the analytic parameterization of the EOS is presented in the Appendix C.

The outer crust. Up to ρ � 1011 g cm−3, the EOS in the outer crust is determined by
experimental masses of neutron rich nuclei. This fact was exploited by Haensel & Pichon (1994,
referred to as HP), who made maximal use of the experimental data. At higher densities, they
used the semiempirical massformula of Möller (1992).1 The HP EOS is given in Table A.1 for the
same pressure grid as in the tabulated EOS of Baym et al. (1971b, referred to as BPS), except for
the last line, which corresponds to the neutron drip point. The EOS in Table A.1 is very similar
to the BPS one; typical differences in density at the same pressure do not exceed a few percent.
One can refine the EOS by introducing density discontinuities which accompany changes of
nuclides. It can be done by inserting additional pairs of lines (ni, ρi, Pi), (ni+1, ρi+1, Pi),
corresponding to the density jumps given in Table 3.1. This would complicate the integration of
the equations of hydrostatic equilibrium while constructing neutron star models. On the other
hand, these weak first-order phase transitions soften the EOS. The softening is well reproduced
by interpolation between tabulated points in Table A.1, which leads to a smoothed EOS, easy
to use in calculations. The analytical representation of such a smoothed EOS is given in the
Appendix C.

The inner crust. Out of several existing EOSs of the inner crust, we selected a recent SLy
model of Douchin & Haensel (2001). This EOS is given in Table A.2. For a better presentation
of this EOS in the vicinity of neutron drip density ρND and the crust-core interface, ρ = ρcc,
Table A.2 is somewhat extended, using the SLy model to ρ < ρND and ρ > ρcc.

The EOSs in Tables A.1 and A.2 are based on different dense-matter models and give
different neutron drip points. Because ρND(SLy) < ρND(HP), we recommend to use ρND =
ρND(SLy). At the first glance, the SLy EOS for ρ < ρND(SLy) nearly coincides with the HP
one. Let us remind, however, that the SLy EOS (as well as the FPS one) has been calculated
within the Compressible Liquid Drop Model, with no shell or pairing effects. Therefore, the
density there is a smooth function of the pressure, except for a narrow vicinity of the neutron
drip point and the crust-core transition. Except for these two narrow regions, it can be nicely
fitted by analytical functions, as described in the Appendix C.

1After this book was almost completed, new EOSs of the outer crust appeared (Rüster et al., 2006), based
on different nuclear models and up-to-date experimental data for very neutron rich nuclei. There are some
model-dependent differences in (Z, A) at higher densities, but the smoothed EOSs of Rüster et al. (2006)
and HP are very similar.
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Table A.1. The EOS of the outer crust derived by Haensel & Pichon (1994). The last line with
a nucleus observed in laboratory and present in the ground state of dense matter, as well as the
line corresponding to the neutron drip point, are printed in boldface.

ρ P nb ρ P nb

(g cm−3) (dyn cm−2) (cm−3) (g cm−3) (dyn cm−2) (cm−3)

3.303E7 3.833E24 1.991E31 2.091E10 1.938E28 1.257E34

6.592E7 1.006E25 3.973E31 2.533E10 2.503E28 1.522E34

1.315E8 2.604E25 7.926E31 3.315E10 3.404E28 1.991E34

2.625E8 6.676E25 1.581E32 4.174E10 4.628E28 2.507E34

3.305E8 8.738E25 1.991E32 5.039E10 5.949E28 3.025E34

5.239E8 1.629E26 3.156E32 6.619E10 8.089E28 3.973E34

8.303E8 3.029E26 5.001E32 8.337E10 1.100E29 5.002E34

1.0455E9 4.129E26 6.296E32 9.631E10 1.450E29 5.777E34

1.212E9 5.036E26 7.299E32 1.091E11 1.495E29 6.545E34

1.606E9 6.860E26 9.667E32 1.4155E11 2.033E29 8.485E34

2.545E9 1.272E27 1.532E33 1.701E11 2.597E29 1.0195E35

4.166E9 2.356E27 2.507E33 2.096E11 3.290E29 1.256E35

6.606E9 4.362E27 3.974E33 2.730E11 4.473E29 1.635E35

8.031E9 5.662E27 4.830E33 3.325E11 5.816E29 1.990E35

1.011E10 7.702E27 6.081E33 4.188E11 7.538E29 2.506E35

1.319E10 1.048E28 7.930E33 4.299E11 7.805E29 2.572E35

1.661E10 1.425E28 9.982E33 4.321E11 7.857E29 2.585E35
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Table A.2. The SLy EOS of the ground state of the inner crust, together with the adjacent
segments of the SLy EOS of the outer crust and the core (calculated by Douchin & Haensel,
2001). The first and last lines corresponding to the inner crust are printed in boldface.

nb ρ P nb ρ P

(cm−3) (g cm−3) (dyn cm−2) (cm−3) (g cm−3) (dyn cm−2)

1.7590E35 2.9398E11 5.0926E29 7.6609E35 1.2831E12 1.3370E30

1.8297E35 3.0582E11 5.3344E29 1.2616E36 2.1141E12 2.1547E30

1.9024E35 3.1800E11 5.5843E29 1.8947E36 3.1766E12 3.4272E30

1.9772E35 3.3052E11 5.8426E29 2.6726E36 4.4827E12 5.2679E30

2.0540E35 3.4338E11 6.1094E29 3.6062E36 6.0511E12 7.7976E30

2.0791E35 3.4759E11 6.1968E29 4.7097E36 7.9058E12 1.1147E31

2.0823E35 3.4810E11 6.2078E29 7.4963E36 1.2593E13 2.0894E31

2.0905E35 3.4951E11 6.2150E29 1.1197E37 1.8824E13 3.5841E31

2.1604E35 3.6121E11 6.3573E29 1.5999E37 2.6920E13 5.7611E31

2.2306E35 3.7296E11 6.4675E29 2.2073E37 3.7170E13 8.8117E31

2.3114E35 3.8650E11 6.5813E29 2.9477E37 4.9677E13 1.2947E32

2.4014E35 4.0158E11 6.6998E29 4.2684E37 7.2017E13 2.1620E32

2.4997E35 4.1805E11 6.8228E29 6.2200E37 1.0509E14 3.8475E32

2.6426E35 4.4199E11 6.9945E29 7.3174E37 1.2372E14 5.0462E32

3.0533E35 5.1080E11 7.4685E29 7.5959E37 1.2845E14 5.3711E32

3.5331E35 5.9119E11 8.0149E29 7.7100E37 1.3038E14 5.3739E32

4.0764E35 6.8224E11 8.6444E29 9.7100E37 1.6441E14 9.2059E32

4.6800E35 7.8339E11 9.3667E29 1.1710E38 1.9854E14 1.5028E33

5.3414E35 8.9426E11 1.0191E30 1.3710E38 2.3281E14 2.3136E33

6.0594E35 1.0146E12 1.1128E30 1.5710E38 2.6722E14 3.4072E33



Appendix B
ANALYTICAL MODELS OF NUCLEAR DENSITY
PROFILES

Here we present analytical formulae which fit the results of calculations of microscopic
density profiles of neutrons and protons, associated with nuclear structures in the ground state of
a neutron star crust. These formulae were derived and used by Kaminker et al. (1999) (although
not published there) and elaborated further. They are useful, for instance, for calculating neu-
trino emission or electron transport properties of crustal matter which depend on proton charge
distribution within atomic nuclei (e.g., Kaminker et al. 1999; Gnedin et al. 2001). We can warn
the reader that the formulae are not meant to be used for constructing any EOS of dense matter.

The higher the density in the neutron star crust, the more important finite nuclear sizes.
Near the crust bottom, the shape of the nuclei may change from roughly spherical to cylindrical
or plane-parallel (Chapter 3). Let us consider local density profiles of neutrons and protons
within the nuclei, nn(r) and np(r), where r is the distance either from the center of a spherical
nucleus, or from the symmetry axis of a cylindrical nuclei, or from the symmetry plane of a
slablike nucleus. Let nout

j be the number densities of neutrons or protons (for j = n or p)
outside the nucleus. The mean-square radii of the neutron and proton distributions are

r2
j =

∫ rc
0 (nj(r) − nout

j )rd+1 dr∫ rc
0 (nj(r) − nout

j )rd−1 dr
, (B.1)

where rc is the Wigner-Seitz cell radius (Chapter 3), and d is the space dimension of the nuclear
phase (d = 3, 2, and 1 for spherical, cylindrical, and plane nuclei, respectively). Let us remind
that for simple three-dimensional crystals and liquids, rc equals the ion-sphere radius ai.

B.1. Steplike profile model
Far from the bottom of the inner crust, at densities much below the nuclear saturation

density, a steplike approximation of the nucleon density profile may be good,

nj(r) =

⎧⎨
⎩

nin
j at r < rj ,

nout
j at r ≥ rj ,

(B.2)

where nin
j are the number densities of neutrons or protons (for j = n or p) inside a nucleus, and

rn and rp are the radii of neutron and proton distributions, respectively. In the case of spheres,
the form factor for the steplike profile np(r) is

Fq =
3

(qrp)3
[sin(qrp) − qrp cos(qrp)] . (B.3)

The mean-square radius (for any d) equals

r2
j =

d

d + 2
r2

j . (B.4)
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In the outer crust (at ρ � ρND), the radii of the nuclei are unaffected by the pressure
of ambient medium and one can use the standard formula rp = 1.15 A1/3 fm (e.g., Pethick &
Ravenhall 1995). At higher densities, the values of rp obtained numerically (Negele & Vautherin,
1973) can be approximated as rp = 1.83 Z1/3 fm (Itoh & Kohyama, 1983).

The importance of the nuclear size effects depends on the fraction of volume the nuclei
occupy. A relevant parameter is the ratio of the proton core radius to the Wigner-Seitz cell radius,

xnuc = rp/rc. (B.5)

For spherical nuclei, we have

xnuc =

⎧⎨
⎩

0.00155 (A/Z)1/3 xr at ρ < ρND,

0.00247 xr at ρ > ρND,
(B.6)

where xr is the relativity parameter defined by Eq. (2.2).

B.2. Smooth Composition Model
At ρ � 1013 g cm−3 the nucleon density profiles deviate significantly from the steplike

distribution (Chapter 3). Oyamatsu (1993) calculated the local neutron and proton number
density distributions within a Wigner-Seitz cell and fitted them in the form

nj(r) =

⎧⎨
⎩

(ncen
j − nout

j )
[
1 − (r/Rj)tj

]3
+ nout

j at r < Rj ,

nout
j at r ≥ Rj ,

(B.7)

where ncen
j , nout

j , tj , and Rj are the fit parameters. The parameter tj controls the sharpness of
the local density profile, while Rj determines the size of a nucleus. These parameters, as well as
the sizes of Wigner-Seitz cells, are presented in Table 6 of Oyamatsu (1993) for several values of
the mean baryon number density nb (for spherical and nonspherical nuclei). With increasing nb

the profiles become smoother, approaching the limit of uniform matter; therefore, the parameters
tj decrease.

Real local density distributions of neutrons and protons are not cut off at a certain distance
from the center. Therefore, Rn and Rp can be treated only as convenient fit parameters. Near
the bottom of the crust, the local density distribution is rather smooth, and the boundary between
the free neutrons and the neutrons bound within the nuclei becomes rather uncertain. On the
other hand, while describing properties of neutron star crust, one often uses such quantities as
the radii of neutron and proton distributions (rn and rp) and the number of nucleons within a
nucleus (A). To determine them, let us consider a nucleus as a combination of imaginary neutron
and proton spheres of equivalent radii rn and rp and equivalent neutron and proton densities
nin

n and nin
p . We define the equivalent radius rj as the radius of the imaginary steplike density

distribution that reproduces the mean-square radii (B.4) of the real distribution. In this case
rj = [(1 + 2/d)r2

j ]1/2. For the distribution (B.7), the equivalent radii become

rj =
[
1 − 3

d + 2
d + 2 + tj

γ
tj

j + 3
d + 2

d + 2 + 2tj
γ

2tj

j − d + 2
d + 2 + 3tj

γ
3tj

j

]1/2

×
[
1 − 3d

d + tj
γ

tj

j +
3d

d + 2tj
γ

2tj

j − d

d + 3tj
γ

3tj

j

]−1/2

γjRj , (B.8)

where γj = rmax
j /Rj and rmax

j = min(Rj , rc). The parameter γj equals 1 (and can be dropped
out) in all the cases except for the case where the fit parameter Rj exceeds the Wigner-Seitz
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cell radius rc, that may happen near the crust-core boundary. In the latter case, the local density
profile (B.7) must be truncated at r = rc, and we get γj < 1. Our model satisfies the natural
requirement that the equivalent radii rj are smaller than rc.

We define the equivalent neutron and proton densities within the nucleus in such a way to
reproduce the total number of nucleons (protons or neutrons) implied by Eq. (B.7):

nin
j = nout

j +
d

rd
j

∫ rmax
j

0
(n(r) − nout

j ) rd−1 dr

= nout
j +

[
1 − 3d

d + tj
γ

tj

j +
3d

d + 2tj
γ

2tj

j − d

d + 3tj
γ

3tj

j

]
Rd

j

rd
j

(ncen
j − nout

j ). (B.9)

The steplike profile of the previous section is recovered from Eqs. (B.7) – (B.9) in the limit
of tj → ∞.

B.2.1 Spherical nuclei in the inner crust
Oyamatsu (1993) presented the fit parameters for spherical nuclei in the ground-state

matter at three values of the mean baryon number density nb= 0.01, 0.03, and 0.055 fm−3 (i.e.,
ρ = 1.66 × 1013, 4.98 × 1013, and 9.13 × 1013 g cm−3) in the inner crust of a neutron star.
These parameters are quite consistent with those presented by Negele & Vautherin (1973) for
nearly the same nb. Some of these parameters can also be deduced from Figs. 3 and 4 and from
Table 3 of Negele & Vautherin (1973) for several other values of nb in the inner crust. The
parameters appear to be smooth functions of nb, and we interpolated them between the given
points at ρND ≤ ρ ≤ 1.4 × 1014 g cm−3. We present rc and the parameters of Eq. (B.7) as
functions of the dimensionless argument

ν = ln(nb × 100 fm3).

The interpolation reads

rc = (31.68 − 8.4 ν − 0.238 ν2 + 0.1152 ν3) fm, (B.10a)

tn = (0.2027 + 0.004 506 eν)−1, (B.10b)

Rn = (9.406 + 1.481 ν + 0.4625 ν2 + 0.057 38 ν3) fm, (B.10c)

ncen
n −nout

n =(0.097 61− 0.013 22 ν− 0.005 544 ν2 − 7.624 × 10−4 ν3) fm−3, (B.10d)

tp = (0.1558 + 0.002 225 ν + 9.452 × 10−4 ν2)−1, (B.10e)

Rp = (8.345 + 0.7767 ν + 0.1333 ν2 + 0.008 707 ν3) fm, (B.10f)

ncen
p = (0.0404 − 0.010 97 ν − 7.23 × 10−4 ν2 + 2.25 × 10−4 ν3) fm−3. (B.10g)

This interpolation smears out the jumps in the nuclear composition with increasing ρ, but it
allows one to calculate the parameters of spherical nuclei at any density in the ground-state
matter of the inner crust.

The number of protons (Z) and the total number of nucleons (A) within a nucleus are most
easily found using the equivalent radii and densities defined by Eqs. (B.8) and (B.9) with d = 3:

Z =
4π

3
r3

p nin
p , A = Z +

4π

3
r3

n nin
n . (B.11)

Now the parameter nout
n is determined from the relation

A′ = A +
4π

3
(r3

c − r3
n) nout

n =
4π

3
r3
cnb, (B.12)

where A′ is the number of nucleons within a Wigner-Seitz cell.
The nucleus mass is assumed to be mi = Amn + Zmp.
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B.2.2 Spherical nuclei in the outer crust
Making use of the results of Haensel & Pichon (1994), we have also obtained an analytic

description of atomic nuclei in the ground-state matter for lower densities,

108 g cm−3 ≤ ρ ≤ ρND.

We have adopted the same parameterization (B.7) and constructed analytic expressions for the
nuclear parameters versus

ν = ln[1 + 2 nb/(10−8 fm−3)].

These expressions read:

Rn = (5.788 + 0.020 77 ν + 0.014 89 ν2) fm, (B.13a)

ncen
n = (0.0808 + 1.688 × 10−4 ν + 9.439 × 10−5 ν2) fm−3, (B.13b)

Rp = 5.688 + 0.026 28 ν + 0.009 468 ν2 fm, (B.13c)

ncen
p = (0.0738 + 1.22 × 10−4 ν − 1.641 × 10−4 ν2) fm−3, (B.13d)

nout
n = nout

p = 0, (B.13e)

tn = tp = 6. (B.13f)

Equation (B.13f) just formally sets tj values at ρ < ρND close to those at ρ = ρND. In many
applications it is sufficient to use steplike profiles (i.e., tj → ∞) at ρ ≤ ρND.

The free nucleons outside nuclei are absent in this regime, nout
n = nout

p = 0, and the
Wigner-Seitz radius is

rc =
(

4π

3
nb

A

)−1/3

, (B.14)

A and Z being determined by Eq. (B.11).
At low densities in the outer crust, Eqs. (B.13) reproduce the parameters of 56Fe-nuclei.

B.2.3 Exotic nuclei
According to model I of Oyamatsu (1993), the phase with spherical nuclei in the inner

crust is realized up to a density nb = 0.0586 fm−3 (ρ = 0.973 × 1014 g cm−3). It is followed
by the phase with rodlike nuclei up to nb = 0.0749 fm−3 (ρ = 1.24 × 1014 g cm−3) and the
phase with slablike nuclei (up to nb = 0.0827 fm−3, ρ = 1.37 × 1014 g cm−3). Subsequently
there are two phases with the roles of nuclear matter and neutron matter reversed, the rodlike one
(up to nb = 0.0854 fm−3, ρ = 1.42×1014 g cm−3), and the “Swiss cheese” (inverted-spheres)
one, which is the analog of the phase with spherical nuclei and is the last phase in the neutron
star crust (up to nb = 0.0861 fm−3, ρ = 1.43 × 1014 g cm−3). At higher densities the nuclei
dissolve into the uniform matter of the neutron star core.

In each crystalline phase of matter the Wigner-Seitz cell has its own geometry, but we
assume that in the phases of (body centered cubic) crystals of ordinary or inverted spherical
nuclei it may be approximated by a sphere, and in rodlike phases by a right circular cylinder. Let
the nucleon density distributions be described by Eq. (B.7). In the phases with rods and slabs,
nout

p = 0, nout
n describes the number density of free neutrons, and the region r < Rn is occupied

by the nucleus itself (with ncen
n > nout

n ). In the two “bubble” phases with the roles of nuclear
matter and neutron matter reversed, nout

p = 0, and nout
j > ncen

j , i.e., the local number density
of neutrons and protons increases with increasing distance r from the center of the Wigner-Seitz
cell. We interpolate the parameters of Eq. (B.7) as functions of nb within each phase separately.
In the rest of this Appendix, we introduce

ν ≡ nb × fm3. (B.15)
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Rodlike nuclei. For the cylindrical nuclei, we have

rc = (8.3014 + 764.026 ν − 16 827.2 ν2 + 100 759 ν3) fm, (B.16a)

tn = −0.122 016 + 163.6626 ν − 2 751.439 ν2 + 15 238.15 ν3, (B.16b)

Rn = (−40.383 47 + 2 328.248 ν − 37 345.32 ν2 + 207 924.7 ν3) fm, (B.16c)

ncen
n = (0.11371 − 0.611 5979 ν + 9.431 739 ν2 − 63.742 37 ν3) fm−3, (B.16d)

nout
n = (−0.019 130 93 + 1.706 435 ν − 12.511 92 ν2 + 59.524 78 ν3) fm−3, (B.16e)

tp = −2.521 390 + 304.3897 ν − 4966.492 ν2 + 25 571.19 ν3, (B.16f)

Rp = (−41.773 61 + 2331.504 ν − 37674.33 ν2 + 212 689.7 ν3) fm, (B.16g)

ncen
p = (11.371 − 0.611 5979 ν + 9.431 739 ν2 − 63.742 37 ν3) fm−3, (B.16h)

nout
p = 0. (B.16i)

The numbers of protons and nucleons (Z and A) inside a nucleus, and the total number of
nucleons A′ per unit length of a cylindrical Wigner-Seitz cell equal

Z = πr2
pnin

p , A = Z + πr2
nnin

n , A′ = A + π(r2
c − r2

n)nout
n , (B.17)

where rp, nin
p , rn, and nin

n are defined by Eqs. (B.8) and (B.9) with d = 2.

Slablike nuclei. For the plane-parallel nuclei,

rc = (−245.4595 + 11 168.62 ν − 157 290.7 ν2 + 722 159 ν3) fm, (B.18a)

tn = −267.2904 + 10 459 ν − 135 445.7 ν2 + 585 206 ν3, (B.18b)

Rn = (9 831.081 − 371 401.1 ν + 4 675 343 ν2 − 19 591 770 ν3) fm, (B.18c)

ncen
n = (0.247 6255 − 6.583 347 ν + 91.630 22 ν2 − 425.2562 ν3) fm−3, (B.18d)

nout
n = (−0.805 9552 + 31.998 28 ν − 401.3776 ν2 + 1 723.221 ν3) fm−3, (B.18e)

tp = 0.002 725 985 + 253.6894 ν − 5 499.141 ν2 + 33 259.03 ν3, (B.18f)

Rp = (−714.6039 + 28 584.02 ν − 380 503.3 ν2 + 1 703 796 ν3) fm, (B.18g)

ncen
p = (0.082 536 46 − 2.548 742 ν + 31.836 15 ν2 − 147.7704 ν3) fm−3, (B.18h)

nout
p = 0. (B.18i)

The numbers of protons and nucleons (Z and A) inside a nucleus, and the total number of
nucleons A′ per unit surface area of a slablike Wigner-Seitz cell equal

Z = 2 rpnin
p , A = Z + 2 rnnin

n , A′ = A + 2 (rc − rn) nout
n , (B.19)

where rp, nin
p , rn, and nin

n are defined by Eqs. (B.8) and (B.9) with d = 1.
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Cylindrical “bubbles”. For the phase of “inverse cylindrical” nuclei,

rc = (430.966 65 − 9 710.2218 ν + 56 422.005 ν2) fm, (B.20a)

tn = 64.947 03 − 1 034.690 ν + 3 501.129 ν2, (B.20b)

Rn = (271.654 − 6 015.092 ν + 35 000.53 ν2) fm, (B.20c)

ncen
n = (0.443 7022 − 9.905 772 ν + 65.004 63 ν2) fm−3, (B.20d)

nout
n = (−0.323 9546 + 9.926 548 ν − 59.979 51 ν2) fm−3, (B.20e)

tp = 94.08485 − 1 457.401 ν + 4 499.405 ν2, (B.20f)

Rp = (441.3152 − 10 140.12 ν + 60 000.7 ν2) fm, (B.20g)

ncen
p = 0, (B.20h)

nout
p = (−0.077 336 78 + 2.235 163 ν − 15.000 97 ν2) fm−3. (B.20i)

The number of protons outside the “bubbles” and the total number of nucleons (Z and A′) per
unit length of a cylindrical Wigner-Seitz cell equal

Z = π(r2
cnout

p + r2
pnin

p ), A′ = Z + πr2
cnout

n − πr2
n (nout

n − nin
n ), (B.21)

where rp, nin
p , rn, and nin

n are defined by Eqs. (B.8) and (B.9) with d = 2. In this case, nin
p is

negative, which corresponds to a deficit of protons inside the bubble relative to the surrounding
medium. Contrary to the case of the ordinary nuclei, the proton core radius rp is now greater than
rn, since the skin of the neutron bubble remains composed of neutrons, as in ordinary nuclei.

Spherical “bubbles”. For the “inverse spherical” nuclei,

rc = (36.6584 − 248.1623 ν) fm, (B.22a)

tn = 73.420 26 − 830.003 ν, (B.22b)

Rn = (10.989 02 + 50.06982 ν) fm, (B.22c)

ncen
n = (−0.039 683 58 + 1.299 808 ν) fm−3, (B.22d)

nout
n = (0.235 124 − 1.749 754 ν) fm−3, (B.22e)

tp = 105.9954 − 1 204.998 ν, (B.22f)

Rp = (2.004 501 + 150.005 8 ν) fm, (B.22g)

ncen
p = 0, (B.22h)

nout
p = (0.033 66631 − 0.350 0152 ν) fm−3. (B.22i)

The number of protons Z outside the “bubbles” and the total number of nucleons A′ in a Wigner-
Seitz cell equal

Z = (4π/3)(r3
cnout

p + r3
pnin

p ), A′ = Z +
4π

3
r3
cnout

n − 4π

3
r3

n(nout
n − nin

n ), (B.23)

where rp, nin
p , rn, and nin

n are defined by Eqs. (B.8) and (B.9) with d = 3. As for cylindrical
“bubbles”, nin

p is negative and rp > rn.
Thus, we have a simple analytic description of the neutron and proton local density pro-

files for the ground-state matter throughout the outer and inner neutron star crusts including
nonspherical phases of atomic nuclei. This description is referred to as the smooth composition
model (SCM) of ground-state matter.



Appendix C
ANALYTICAL REPRESENTATIONS OF UNIFIED
EOSs

EOSs are usually tabulated, and subsequently interpolated between mesh points in com-
puter codes. Interpolation introduces ambiguities in calculated parameters of neutron star mod-
els. Moreover, interpolation should respect exact thermodynamic relations which turned out to
be especially serious in high-precision two-dimensional modeling of rapidly spinning neutron
stars (Nozawa et al., 1998). In three-dimensional calculations of stationary configurations in
a close neutron star binary one needs derivatives of the pressure with respect to the enthalpy;
tabulated EOSs become even less useful (see, e.g., Gourgoulhon et al. 2001). The problems of
using tabulated EOSs are particularly serious for the EOSs constructed by matching different
EOS segments (e.g., the crust and the core).

In view of all these problems, it is of great interest to derive analytical representations of
EOSs. They introduce no ambiguity of interpolation; the derivatives can be precisely calculated;
they can be constructed fulfilling exactly the thermodynamic relations. Here we present, follow-
ing Haensel & Potekhin (2004), analytical representations of two unified EOSs, FPS and SLy
(see Chapters 3 and 5).

The outer and inner crusts as well as the inner crust and the core of a neutron star are
separated by phase transitions. There may also be phase transitions in the core (Chapter 7) and
weak density jumps between layers containing different nuclei in the crust (Chapter 3). These
weak jumps in the crust will be neglected; the EOSs we consider do not contain any phase
transitions in the core. We will approximate the EOSs by fully analytical functions. However,
the different character of the EOS in the outer crust, inner crust and the core is reflected by the
complexity of the fit, which consists of several fractional-polynomial parts, matched together by
virtue of the function

f0(x) =
1

ex + 1
. (C.1)

We employ two tabulated unified EOSs, FPS1 or SLy, at ρ > 5 × 1010 g cm−3. At
lower densities, 108 g cm−3 � ρ < 5 × 1010 g cm−3, the crustal matter is described by the
EOS of Haensel & Pichon (1994) (HP94), based on experimental nuclear data. This EOS is
supplemented by the BPS EOS for cold catalyzed matter at ρ � 108 g cm−3(Chapter 3). The
lowest-density parts of the tables at ρ < 105 g cm−3 have not been used in the fitting. At such
low ρ the EOS is no longer one-parametric, but depends also on temperature (see Fig. 1.3).

1The FPS table has been kindly provided by N. Stergioulas.
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Table C.1. Parameters of the fit (C.2)

i ai(FPS) ai(SLy) i ai(FPS) ai(SLy)

1 6.22 6.22 10 11.8421 11.4950

2 6.121 6.121 11 −22.003 −22.775

3 0.006004 0.005925 12 1.5552 1.5707

4 0.16345 0.16326 13 9.3 4.3

5 6.50 6.48 14 14.19 14.08

6 11.8440 11.4971 15 23.73 27.80

7 17.24 19.105 16 −1.508 −1.653

8 1.065 0.8938 17 1.79 1.50

9 6.54 6.54 18 15.13 14.67

C.1. Representation convenient for non-rotating stars
For non-rotating star, it is instructive to parameterize the pressure as function of density.

Let us introduce ξ = lg(ρ/g cm−3) and ζ = lg(P/dyn cm−2). Then the parameterization reads

ζ =
a1 + a2ξ + a3ξ

3

1 + a4 ξ
f0(a5(ξ − a6)) + (a7 + a8ξ) f0(a9(a10 − ξ))

+(a11 + a12ξ) f0(a13(a14 − ξ)) + (a15 + a16ξ) f0(a17(a18 − ξ)) . (C.2)

The parameters ai for the FPS and SLy EOSs are given in Table C.1. The typical fit error of P
is (1–2)% (for ξ � 5). The maximum error is associated with the phase transitions available in
the original tabulated EOSs but smoothed by the fit (C.2). For the FPS EOS, the maximum error
is 3.6% at ξ = 14.22 (the crust-core interface). For the SLy EOS, the maximum error is 2.9%
at ξ = 8.42 (the 62Ni-64Ni phase transition in the HP94 table).

The overall EOS throughout the neutron star is presented in Fig. 1.3 in Chapter 1. The
figure shows log P against log ρ (log ≡ lg ≡ log10) for the tabulated EOSs (symbols) and the
corresponding fit (the solid line). Triangles correspond to the BPS data, stars to HP94, and dots
to the SLy data. By construction, the fit is accurate at ρ � 105 g cm−3. As stated above, at
lower ρ the EOS becomes temperature-dependent. This is illustrated by the dashed lines, that
show the OPAL EOS of iron plasma (Rogers et al. 1996; see §2.4) for T = 106, 107, and 108 K.
However, a reasonable continuation of the fit to lower densities can be constructed by a simple
interpolation. For instance, the dotted line in Fig. 1.3 corresponds to P = 10ζ + P0, where ζ is
given by Eq. (C.2) (and ξ should be positive), and P0 = 3.5 × 1014 ρ approximates the OPAL
EOS for ρ ∼ ρs at T = 107 K (P is in dyn cm−2, ρ in g cm−3, and ρs = 7.86 g cm−3 is the
lowest density in the BPS table).

In Fig. C.1 we compare the FPS and SLy EOSs. Symbols on the top panel show the
data (triangles, stars, dots, and open circles for BPS, HP94, SLy, and FPS, respectively) and
lines show the fits (the solid line is for SLy and the dot-dashed line for FPS). In order to make
the differences between the data and fits and between SLy and FPS EOSs visible, we plot the
difference log P −1.4 log ρ, where P is in dyn cm−2 and ρ in g cm−3. The bottom panel shows
the relative difference between the tabulated and fitted EOSs (solid and dot-dashed lines for SLy
and FPS, respectively). It illustrates the accuracy of the fit (C.2).
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Figure C.1. Comparison of the data and fits for the SLy and FPS EOSs (Haensel & Potekhin,
2004). Top: Rarefied tabular data (symbols) and the fit (C.2) (lines). Bottom: Relative difference
between the data and fit. Filled dots and the solid line are for the SLy EOS; open circles and the
dot-dashed line are for the FPS EOS (triangles and stars on the top panel are the BPS and HP94
data at ρ < 5 × 1010 g cm−3).

Now the baryon number density nb(ρ) can be easily obtained from the integral form of
Eq. (5.97):

ln
(

nb

nbs

)
= c2

∫ ρ

ρs

dρ′

P (ρ′) + ρ′c2 , (C.3)

where ρs and nbs are the values of ρ and nb at some low-density (“surface”) point. Substituting
P (ρ′) from Eq. (C.2), we recover the original tabular values with maximum errors < 0.4% and
< 0.12% for the FPS and SLy EOSs, respectively.

In some applications, it may be convenient to use nb as an independent variable, and treat
ρ and P as functions of nb. For this purpose one can use the fit:

ρ

nbm0
= 1 +

p1n
p2
b + p3n

p4
b

(1 + p5nb)2
f0(−p6(log nb + p7))

+
nb

8 × 10−6 + 2.1 n0.585
b

f0(p6(log nb + p7)) , (C.4)
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Table C.2. Parameters of the fits (C.4) and (C.5)

i pi(FPS) pi(SLy) qi(FPS) qi(SLy)

1 0.320 0.423 0.608 0.183

2 2.17 2.42 2.41 1.26

3 0.173 0.031 2.39 6.88

4 3.01 0.78 3.581 3.612

5 0.540 0.238 1.681 2.248

6 0.847 0.912 0.850 0.911

7 3.581 3.674 11.64 11.56

where nb is in fm−3 and m0 = 1.66 × 10−24 g. The inverse fit nb(ρ) is given by

x

nb
= 1 +

q1x
q2 + q3x

q4

(1 + q5x)3
f0(q6(q7 − log ρ))

+
x

8 × 10−6 + 2.1 x0.585 f0(q6(log ρ − q7)), (C.5)

where x = ρ/m0 and ρ is in g cm−3. Coefficients pi and qi of the fits (C.4) and (C.5) are given
in Table C.2. The difference (ρ − nm0) is approximated by these equations with the error of a
few percent.

It should be stressed that thermodynamics requires Eq. (5.97) to be satisfied exactly. To
achieve this, one should not totally rely on the fits (C.4) and (C.5); otherwise thermodynamic
consistency will be violated on the scale of fit errors (a fraction of percent). Thus, if ρ is used as
an input, then nb(ρ) should be calculated from Eq. (C.3). Alternatively, if the input is nb, then,
after calculating ρfit(nb) from Eq. (C.4) and P (nb) = P (ρfit(nb)) from Eq. (C.2), one should
refine ρ(nb) using the relation

ρ(nb)
nb

=
ρs

nbs
+

∫ nb

nbs

P (n′
b)

n′
b
2c2

dn′
b , (C.6)

which also follows from Eq. (5.97).

C.2. Representation convenient for rotating stars
For rotating stars, it is most useful to parameterize the density and pressure as functions of

the pseudo-enthalpy H , Eq. (6.99). The latter can be written in terms of the enthalpy per baryon
h according to Eq. (6.102). Let us define η ≡ h/m0c

2 − 1. In view of the relation (6.101), the
function ξ(η) (to be parameterized) is not independent of the function ζ(ξ) parameterized by
Eq. (C.2). In order to fulfill Eq. (6.101) as accurately as possible, we first calculate η(ξ) using
Eqs. (C.2) and (6.101) and then find the inverse fit ξ(η). The best fit reads:

ξ =
(

b1 + b2 lg η +
b3η

b4

1 + b5η

)
f0(b6(lg η − b7))

+
b8 + b9 lg η + (b10 + b11 lg η)(b12η)7

1 + b13η + (b12η)7
f0(b6(b7 − lg η))

+b14 f0(b15(b16 − lg η)) , (C.7)
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Table C.3. Parameters of the fit (C.7)

i bi(FPS) bi(SLy) i bi(FPS) bi(SLy)

1 5.926 5.926 9 11.97 34.96

2 0.4704 0.4704 10 15.432 15.328

3 19.92 20.13 11 0.6731 0.621

4 0.2333 0.2347 12 49.4 63.1

5 2.63 3.07 13 11.47 68.5

6 54.7 97.8 14 1.425 2.518

7 −1.926 −2.012 15 3.0 2.6

8 36.89 89.85 16 0.913 1.363

Figure C.2. Adiabatic index for the SLy EOS. The solid line is the fit, the dotted line shows
precise values.

where the parameters bi are given in Table C.3. The typical fit error of ρ, provided by Eq. (C.7),
is about 1% at η � 10−7 (i.e., at ξ � 3); the maximum fit error < 4% occurs near the neutron
drip and near the crust-core interface.

Combining the fits (C.2) and (C.7) with Eq. (C.3) or Eq. (C.5) we get the parameterizations
of ρ(H), P (H), and nb(H) needed for calculating stationary rotating neutron star models. In
this case, the function P (H) = P (ρ(H)) obtained from Eqs. (C.2) and (C.7) reproduces the
tabular values with a typical error ∼(1–2)% and with the maximum error within 10% near the
crust-core interface.
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The remark on the thermodynamic consistency, made at the end of §C.C.1, applies here as
well. One should refine fitted values of either nb or ρ, using the exact relations (C.3) or (C.6).

C.3. Adiabatic index
An important dimensionless parameter characterizing the stiffness of the EOS at a given

density is the adiabatic index, defined by Eq. (5.109). Using our fit (C.2), we obtain the analytical
expression

(1 + P/ρ c2)−1 γ = dζ/ dξ

=
[

a2 − a1a4 + 3a3ξ
2 + 2a3a4ξ

3

(1 + a4ξ)2
− a5

11 + a2ξ + a3ξ
3

1 + a4ξ
f0(a5(a6 − ξ))

]
f0(a5(ξ − a6))

+
4∑

i=2

f0(a4i+1(a4i+2 − ξ))
[
a4i + a4i+1(a4i−1 + a4iξ)f0(a4i+1(ξ − a4i+2))

]
. (C.8)

The behavior of γ in different neutron star layers is displayed in Fig. C.2. Precise values of
γ calculated by Douchin & Haensel (2001) are shown by the dotted line, and the fit, given by
Eqs. (C.2) and (C.8), is shown by the solid line.



Appendix D
SEMI-ANALYTICAL EOSs IN NEUTRON STAR
CORES

In this Appendix we describe a class of EOSs for uniform matter in neutron star cores
composed of nucleons, electrons and muons. These EOSs are based on analytic expressions for
the energy per nucleon (excluding the rest-mass energy) quadratic in neutron excess,

EN = W (u) + S(u) (1 − 2xp)2 , (D.1)

where u ≡ nb/n0 is the dimensionless baryon number density, xp = np/nb is the proton
fraction; W (u) and S(u) are, respectively, the energy per nucleon in symmetric nuclear matter
and the symmetry energy (assumed to be given by analytic functions). The total energy per
nucleon is then E = EN + EN0 + Ee + Eµ, where EN0 is the nucleon rest-mass contribution,
while Ee and Eµ are the electron and muon contributions (also given analytically because
electrons and muons constitute almost free Fermi gases). In this case, the total energy E is
presented in an analytic form which allows one to avoid ambiguities of interpolation (of otherwise
tabulated values of EN) and to strictly satisfy thermodynamic relations and conservation laws.

The beta equilibrium conditions are given by relations between the chemical potential of
nucleons and leptons,

µn = µp + µe , µe = µµ . (D.2)

The local electric neutrality requires xp = xe + xµ, where xe = ne/nb and xµ = nµ/nb. The
electron and muon chemical potentials are equal to the appropriate Fermi energies,

µe ≈ c pFe , µµ =
√

m2
µ c4 + p2

Fµc2 , (D.3)

where pFj = � (3π2nbxj)1/3 with j = e or µ. At a fixed nb under the natural simplified
assumption that mp = mn the beta equilibrium conditions reduce to a set of two equations

xµ + xe − 1
2

+ A x1/3
e = 0 , (D.4a)

x2/3
e − x2/3

µ − B = 0 , (D.4b)

where A and B are dimensionless functions of nb,

A = �c (3π2nb)1/3/(8S(nb)) , B = (mµc/�)2/(3π2nb)2/3 . (D.5)

Beta equilibrium depends on S(u) but not on W (u). For a given nb, one can easily solve
Eqs. (D.4a) and (D.4b) and determine all particle fractions. After that one can use standard
thermodynamic relations, derive the analytic expressions for the energy density (ρc2) and the
pressure, and calculate ρ and P at given nb and the particle fractions. In this way one constructs
a semi-analytical EOS; the only simple numerical procedure consists in solving Eqs. (D.4a) and
(D.4b). The numerical accuracy of this EOS for an employed nuclear interaction model (D.1)
can be formally very high.
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Table D.1. Three sets of parameters for W (u) models of Prakash et al. (1988)

K0 A B B′ σ C1 C2

MeV MeV MeV MeV MeV

120 75.94 –30.88 0 0.498 –83.84 23.0

180 440.94 –213.41 0 0.927 –83.84 23.0

240 –46.65 39.54 0.3 1.663 –83.84 23.0

The muons appear only in sufficiently dense matter in which xe > B3/2. At lower
densities the muons are absent (xµ = 0) and Eq. (D.4b) can be disregarded. Then Eq. (D.4a)
reads 2 xe − 1 + 2 A x

1/3
e = 0 and can be solved analytically. In this case the procedure of

constructing the EOS becomes purely analytical.

Model PAL. Prakash et al. (1988) proposed a model (PAL) of W (u) which fits experimental
values of the energy per nucleon and the density of symmetric nuclear matter at the saturation
point u = 1: ( dW/ du)1 = 0, W (1) = −16 MeV, and n0 = 0.16 fm−3. They suggested
three versions corresponding to three values of the compression modulus at saturation, K0=120,
180, and 240 MeV. The functional form of W (u) is

W (u) = EFFG
0 u2/3 +

Au

2
+

Buσ

1 + B′uσ−1 + 3
∑

i=1,2

Ciα
3
i

[
u1/3

αi
− Artan

(
u1/3

αi

)]
, (D.6)

where α1 = 1.5 , α2 = 3, and the energy of free Fermi gas (FFG) is EFFG
0 = 3

5 εF(n0) =
0.3 p2

N0/mn = 22.1 MeV, where pN0 = � (1.5π2n0)1/3. The three sets of parameters for
three models of W (u) are given in Table D.1.

Prakash et al. (1988) proposed S(u) of the form

S(u) = (22/3 − 1) EFFG
0

[
u2/3 − F (u)

]
+ S0F (u) . (D.7)

Putting F ≡ 0 we recover the value of S for a free Fermi gas model, Eq. (5.103) (see a discussion
following Eq. (5.103)). Actually, the function F (u) is defined in such a way to reproduce the
experimental value S0, so that S(1) = S0 and therefore F (1) = 1. Prakash et al. (1988)
assumed S0 = 30 MeV, and proposed three models (I,II, and III) of F (u),

FI(u) = u , FII(u) = 2u2/(u + 1) , FIII(u) =
√

u . (D.8)

Thus, they get nine PAL EOSs, which differ in the stiffness and in the density dependence of the
symmetry energy.

Model PAPAL. Page & Applegate (1992) proposed one very simple power-law density
dependence of the symmetry energy

S(u) = 30u0.7 MeV . (D.9)
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They combined the above model for S(u) with K0 = 180 MeV model for W (u) of Prakash et
al. (1988). Accordingly they obtained what we call the PAPAL EOS of the npeµ matter, which
yields Mmax = 1.7 M� and a direct Urca core for M > 1.35 M�. One can also implant this
form of S(u) into other PAL models, with K0 = 120 and 240 MeV, and obtain thus softer and
stiffer EOSs (see, e.g., Yakovlev et al. 2001).

Model HHJ. Heiselberg & Hjorth-Jensen (2000) constructed a two-parameter fit to the EOS
of nuclear matter proposed by Akmal et al. (1998) (hereafter APR, with boost corrections and
three-body forces; V18 + δv + UIX∗),

W (u) = E0 u (2 + δ − u)/(1 + δu) , (D.10)

where δ is the “softness” parameter important for u � 1. By construction, W (1) = E0 =
−15.8 MeV (the value adopted by Akmal et al. 1998). The free parameter δ is related to the
incompressibility of the symmetric nuclear matter at saturation point,

K0 = 9
(

d2W

du2

)
u=1

=
18 |E0|
1 + δ

. (D.11)

As far as the symmetry energy is concerned, Heiselberg & Hjorth-Jensen (2000) fitted the
APR results with a simple formula of Page & Applegate (1992) type,

S(u) = 32 uζ MeV . (D.12)

Heiselberg & Hjorth-Jensen (2000) suggested the basic values δ = 0.2 and ζ = 0.6 which
make their EOS similar to the APR EOS. In contrast to the PAL and PAPAL EOSs, which are
largely phenomenological and relatively old, the HHJ EOS is based on the recent realistic APR
EOS.

The HHJ EOS has a very simple analytic form and can be made slightly softer (or stiffer) by
increasing (decreasing) the value of δ with respect to 0.2 (at a fixed ζ). Fixing δ one can regulate
the symmetry energy (D.12) by increasing (decreasing) ζ with respect to ζ = 0.6. This would
slightly decrease (increase) the threshold density for opening the direct Urca process (Gusakov
et al., 2005).



Appendix E
SCALING OF STELLAR MODELS FOR LINEAR
EOSs

Let us outline scaling relations of stellar models built of the matter with the linear EOS of
the form

P = ac2(ρ − ρs). (E.1)

E.1. The causal limit EOS with a = 1
It is convenient to introduce the dimensionless variables,

ρ̃ =
ρ

ρs
, P̃ =

P

ρsc2 = ρ̃ − 1 , r̃ =
r

r0
, m̃ =

m

M0
, ñb =

nb

ns
, (E.2)

where r0 = c/
√

Gρs, M0 = ρsr
3
0 , and ns is the value of the baryon number density at the stellar

surface ρ = ρs. These variables allow one to rewrite the relativistic equations of hydrostatic
equilibrium, Eqs. (6.7)-(6.8), in a dimensionless form. Using the thermodynamic relation

dρ̃/ dñb = (P̃ + ρ̃)/ñb, (E.3)

one gets

ñb =
[
2P̃ + 1

]1/2
= (2ρ̃ − 1)1/2 . (E.4)

Non-rotating stars. The dimensionless Tolman-Oppenheimer-Volkoff and mass-balance
equations read

dρ̃

dr̃
= − m̃

r̃2

(2ρ̃ − 1)
(1 − 2m̃/r̃)

(
1 + 4πr̃3 ρ̃ − 1

m̃

)
,

dm̃

dr̃
= 4πr̃2ρ̃ . (E.5)

The boundary conditions are ρ̃(0) = ρ̃c and m̃(0) = 0. The radius R̃ is determined by ρ̃(R̃) = 1
and the dimensionless total gravitational mass M̃ = m̃(R̃). The solutions of Eqs. (E.5) form
a one-parameter family of configurations labeled by P̃c = ρ̃c + 1. The dependence M̃(P̃c) is
shown in Fig. E.1. The dimensionless maximum mass is M̃CL

max = 0.0851; it is reached for
P̃c,max = 2.03 (ρ̃c,max = 3.03). The corresponding mass-radius relation is shown in Fig. E.2.
Numerical values of the surface redshift (Fig. E.3) are independent of the choice of units.

A mass-radius diagram at any given ρs can be obtained from Fig. E.2 by coming back to
ordinary units. Consequently, the points of a curve obtained for a given ρs transform into points
of a curve calculated for another ρ′

s. For example, the M ′(R′) curve is obtained via scaling of the
M(R) one, namely, R → R′ = (ρs/ρ′

s)−1/2R, M → M ′ = (ρs/ρ′
s)−1/2M . In geometrical

terms, M − R curves are self-similar. Any extremum of an unprimed curve transforms into an
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Figure E.1. The M̃(P̃c) curves labeled by the values of a. Filled circles mark maximum-mass
configurations. Solid and dotted segments correspond to stable and unstable configurations,
respectively. Prepared by J.L. Zdunik (2006, unpublished); with the kind permission of the
author.

Figure E.2. The M̃(R̃) curves labeled by the values of a. Notations are the same as in Fig. E.1.
Prepared by J.L. Zdunik (2006, unpublished); with the kind permission of the author.

extremum of a primed curve. In particular, the maximum mass configurations scale as

MCL
max = M0 M̃max = 2.116 (ρs,15)−1/2 M� , (E.6a)

RCL
Mmax = r0R̃Mmax = 8.825 (ρs,15)−1/2 km , (E.6b)

ρCL
c,max/ρs = 3.03 , (E.6c)
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Figure E.3. The zsurf(M̃) curves labeled by the values of a. Notations are the same as in Fig.
E.1. Prepared by J.L. Zdunik (2006, unpublished); with the kind permission of the author.

where ρs,15 ≡ ρs/1015 g cm−3. The density contrast within stellar models based on the causal
limit (CL) EOS is very low. Even at the maximum mass, the central density is only three times
higher than the surface one.

The maximum surface redshift zsurf for stable configuration is reached at M = Mmax. It
is independent of ρs and can be readily obtained from Eqs. (E.6a) and (E.6b),

zCL
max = 0.8509 . (E.7)

The equation which determines the moment of inertia for a slow rigid rotation, Eq. (6.65),
can be written in a dimensionless form provided one expresses angular frequencies in

√
Gρs. This

form, together with the matching conditions explained in §6.10.1, yields then the dimensionless
moment of inertia Ĩ , so that I = M0r

2
0 Ĩ . The maximum moment of inertia for the CL EOS is

given by
ICL
max = M0r

2
0 ĨCL

max = 1.979 (ρs,15)−3/2 1045 g cm2 . (E.8)

The maximum of I is reached for M slightly (by ∼ 0.5%) lower than Mmax. The value of
ICL

Mmax , which is lower than ICL
max by ≈ 1.6%, scales with ρs in the same way as ICL

max.

Rotating stars. In order to transform Eq. (6.98), which describes the structure of a rotating
star, into a dimensionless form one should supplement the dimensionless quantities (E.2) with
the dimensionless frequencies

Ω̃ = Ω/
√

Gρs , ω̃ = ω/
√

Gρs . (E.9)

In this way, one gets a dimensionless solution of Eq. (6.98). Solutions corresponding to any
ρs can then be obtained by returning to physical units. Any two solutions for ρ′

s and ρs are
self-similar. In particular, this is true for extremal configurations. For a rotating maximum-mass
star one gets the same scaling as in the non-rotating case,

MCL,rot
max

′
= MCL,rot

max (ρs/ρ′
s)

1/2 . (E.10)
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Figure E.4. The Ĩ(M̃) curves, labeled by the values of a. Notations are the same as in Fig. E.1.
Prepared by J.L. Zdunik (2006, unpublished); with the kind permission of the author.

Figure E.5. Functions FQ (Q = M, R, z, I) which determine the scaling for maximum-mass
rotating stars with respect to variations of a. Filled circles show exact results, solid lines are the
fits (E.17). Prepared by J.L. Zdunik (2006, unpublished); with the kind permission of the author.

A maximally rotating configuration has the shortest spin period P = Pmin (the highest
frequency Ω = Ωmax) of all stably rotating configurations. This configuration is only slightly
different from a maximum mass configuration. The shortest spin period Pmin scales as

PCL
min

′
= PCL

min (ρs/ρ′
s)

1/2 . (E.11)
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After integrating numerically the relevant dimensionless equations and returning to the ordinary
physical units, we get the formulae for the CL EOS in an explicit form

MCL,rot
max = 2.75 (ρs,15)−1/2 M� , (E.12a)

PCL
min = 0.415 (ρs,15)−1/2 ms . (E.12b)

E.2. The case of a < 1
The dimensionless form of the EOS is

P̃ = a(ρ̃ − 1) . (E.13)

The formula for ñb(P ) can be derived using Eq. (E.3). One gets then a generalization of
Eq. (E.4),

ñb = [(a + 1)ρ̃ − a]1/(1+a) =
[
(a + 1)P̃ a−1 + 1

]1/(1+a)
. (E.14)

Non-rotating stars. The dimensionless equations read

a
dρ̃

dr̃
= − m̃

r̃2

[(1 + a)ρ̃ − a]
(1 − 2m̃/r̃)

(
1 + 4πr̃3a

ρ̃ − 1
m̃

)
,

dm̃

dr̃
= 4πr̃2ρ̃ . (E.15)

Now we get a dimensionless solution at any a. At a fixed a, the curves calculated using normal
units and representing solutions with different ρs scale with the same power of ρs as in the case of
a = 1. However, the numerical coefficients in these scaling relations depend on a. As shown by
J.L. Zdunik (2006, unpublished), this dependence can be described by functions FQ(y), where
y = 2a/(a + 1) is more convenient than just a, and Q = M, R, z, I, . . . In particular, the
parameters of maximum-mass configurations are related to those obtained at a = 1 by

Mmax = FM (y) MCL
max , RMmax = FR(y) RCL

Mmax ,

zMmax = Fz(y) zCL
Mmax , IMmax = FI(y) ICL

Mmax . (E.16)

To a very good approximation (Fig. E.5), FQ(y) are simple power-laws (J.L. Zdunik, 2006,
unpublished),

FM (y) = y2/3, FR(y) = y1/3, Fz(y) = y0.85, FI(y) = y5/3 . (E.17)

The scaling with respect to a → a′ takes simple form in the Newtonian limit. To make
the equations of hydrostatic equilibrium independent of a, it is sufficient to “include” a into the
gravitational constant G. Equilibrium configurations for any pair of values of a and ρs can then
be obtained from the dimensionless solution (independent of a) by multiplying radius and mass
by a1/2r0 and a3/2M0, respectively. This gives new scaling relations.

Rotating stars. Solutions of dimensionless equations of stationary motion depend paramet-
rically on a. The power in the scaling under ρs → ρ′

s is the same as for a = 1, but the numerical
prefactor is modified and depends on a.
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Brack M., Guet C.,Håkansson H.-B., 1985, “Selfconsistent semiclassical description of average
nuclear properties – a link between microscopic and macroscopic models,” Phys. Rep. 123,
275–364.

Braje T.M., Romani R.W., 2002, “RX J1856-3754: evidence for a stiff equation of state,”
Astrophys. J. 580, 1043–1047.

Brecher K., Caporaso G., 1976, “Obese ‘neutron’ stars,” Nature 259, 377–378.

Brinkmann W. 1980, “Thermal radiation from highly magnetized neutron stars,” Astron. Astro-
phys. 82, 352–361.



550 NEUTRON STARS

Brisken W.F., Thorsett S.E., Golden A., Goss W.M., 2003, “The distance and radius of the
neutron star PSR B0656+14,” Astrophys. J. 593, L89–L92.

Broderick A., Prakash M., Lattimer J.M., 2000, “The equation of state of neutron star matter in
strong magnetic fields,” Astrophys. J. 537, 351–367.

Brown E.F. & Bildsten L., 1998, “The ocean and crust of a rapidly accreting neutron star:
Implications for magnetic field evolution and thermonuclear flashes,” Astrophys. J. 496, 915–
933.

Brown G.E., Weise W., 1976, “Pion condensates,” Phys. Rep. 27, 1–34.

Brown G.E., Kubodera K., Page D., Pizzochero P., 1988, “Strangeness condensation and cooling
of neutron stars,” Phys. Rev. D 7, 2042–2046.

Brown G.E., Chang H.L., Rho M., Thorsson V., 1994, “From kaon-nuclear interactions to kaon
condensation,” Nucl. Phys. A 567, 937–956.

Brown E.F., Bildsten L., Rutledge R.E., 1998, “Crustal heating and quiescent emission from
transiently accreting neutron stars,” Astrophys. J. 504, L95–L98.

Brucato R.J., Kristian J., 1972, “Optical candidates for two X-ray sources,” Astrophys. J. 173,
L105–L107.

Brueckner K.A., 1954, “Nuclear saturation and two-body forces. II. Tensor forces,” Phys. Rev.
96, 508–516.

Brueckner K.A., 1955, “Nuclear saturation and two-body forces. III. Details of the structure of
the nucleus,” Phys. Rev. 97, 1353–1366.

Brueckner K.A., Levinson C.A., 1955, “Approximate reduction of the many-body problem for
strongly interacting particles to a problem of self-consistent fields,” Phys. Rev. 97, 1344–1352.

Brueckner K.A., Levinson C.A., Mahmoud H.M., 1954, “Two-body forces and nuclear satura-
tion. I. Central forces,” Phys. Rev. 95, 217–228.

Brueckner K.A., Coon S., Dabrowski J., 1968, “Nuclear symmetry energy,” Phys. Rev. 168,
1184–1188.

Brueckner K.A., Buchler J.R., Clark R., Lombard R.J., 1969, “Statistical theory of nuclei. II.
Medium and heavy nuclei,” Phys. Rev. 181, 1543–1551.

Brush S.G., Sahlin H.L., Teller E., 1966, “Monte Carlo study of a one-component plasma. I,” J.
Chem. Phys. 45, 2102–2118.

Buchler J.-R., Barkat Z., 1971a, “Properties of low-density neutron-star matter,” Phys. Rev. Lett.
27, 48–51.

Buchler J.-R., Barkat Z., 1971b, “Clustering of nucleons in low density neutron star matter,”
Astrophys. Letters 7, 167–170.

Buchler J.-R., Ingber L., 1971, “Properties of the neutron gas and application to neutron stars,”
Nucl. Phys. A 170, 1–11.

Burgay M., D’Amico N., Possenti A., Manchester R.N., Lyne A.G., Joshi B.C., McLaughlin
M.A., Kramer M., Sarkisian J.M., Camilo F., Kalogera V., Kim C., Lorimer D.R., 2003, “An
increased estimate of the merger rate of double neutron stars from observations of a highly
relativistic system,” Nature 426, 531–533.

Burkova L.A., Dzyaloshinskii I.E., Drukarev S.F., Monozon B.S., 1976, “Hydrogen-like system
in crossed electric and magnetic fields,” Zh. Eksp. Teor. Fiz. 71, 526–530 [Engl. transl.: Sov.
Phys. JETP 44, 276–278].

Burrows A., 1990, “Neutrinos from supernova explosions,” Annu. Rev. Nucl. Part. Sci. 40, 181–
212.



BIBLIOGRAPHY 551

Burrows A., Lattimer J.M., 1984, “On the accuracy of the single-nucleus approximation in the
equation of state of hot, dense matter,” Astrophys. J. 285, 294–303.
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Nogga A., Kamada H., Glöckle W., 2000, “Modern nuclear force predictions for the α particle,”
Phys. Rev. Lett. 85, 944–947.
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Mosquera Cuesta, H. Peréz Rojas, & C.A. Zen Vasconcellos (La Habana, Cuba: ICIMAF),
33–49.



584 NEUTRON STARS

Reisenegger A., Prieto J.P., Benguria R., Lai D., Araya P.A., 2005, “Magnetic fields in neutron
stars: A theoretical perspective,” in Magnetic Fields in the Universe: From Laboratory
and Stars to Primordial Structures, edited by E.M. de Gouveia dal Pino, G. Lugones, &
A. Lazarian, AIP Conf. Proc. 784, 263–273.

Relovsky B.M., Ruder H., 1996, “Multichannel density-functional calculations for atoms and
atomic chains in magnetic fields of compact stars,” Phys. Rev. A 53, 4068–4074.

Rembges F., Freiburghans C., Rauscher T., Thielemann F.-K., Schatz H., Wiescher M., 1997,
“An approximation for the rp-process,” Astrophys. J. 484, 412–423.

Reuber A., Holinde K., Speth J., 1994, “Meson-exchange hyperon-hyperon interactions in free
scattering and nuclear matter,” Nucl. Phys. A 570, 543–579.

Reynolds A.P., Quaintrell H., Still M.D., Roche P., Chakrabarty D., Levine S.E., 1997, “A new
mass estimate of Her X-1,” Mon. Not. R. Astron. Soc. 288, 43–52.

Rho M., 2001, “Physics of dense and superdense matter,” in Explosive Phenomena in Astrophys-
ical Compact Objects, edited by H.-Y. Chang, I. Yi, M. Rho, & C.-H. Lee, AIP Conf. Proc.
556, 160–171.

Rhoades C.E., Jr., Ruffini R., 1974, “Maximum mass of a neutron star,” Phys. Rev. Lett. 32,
324–327.

Richer H.B., Ibata R., Fahlman G.G., Huber M., 2003, “The pulsar/white dwarf/planet system
in M4: improved astrometry,” Astrophys. J. 597, L45–L47.

Rikovska-Stone J., Miller J.C., Koncewicz R., Stevenson P.D., Strayer M.R., 2003, Phys. Rev. C
68, 034324 (16 pages).

Ring, P., Schuck P., 1980, The Nuclear Many-Body Problem (New York: Springer).

Rijken Th.A., Stoks V.G.J., Yamamoto Y., 1999, “Soft-core hyperon-nucleon potentials,” Phys.
Rev. C 59, 21–40.

Roberts P.H., Stewartson K., 1963, “On the stability of a MacLaurin spheroid of small viscosity,”
Astrophys. J. 137, 777–790.

Rogers F.J., 1986, “Occupation numbers for reacting plasmas – The role of the Planck-Larkin
partition function,” Astrophys. J. 310, 723–728.

Rogers F.J., DeWitt H.E., “Statistical mechanics of reacting Coulomb gases,” Phys. Rev. A 8,
1061–1076.

Rogers F.J., Swenson F.J., Iglesias C.A., 1996, “OPAL equation-of-state tables for astrophysical
applications,” Astrophys. J. 456, 902–908.
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et le Radium, Ser. VI, 2, 361–377.

van Paradijs J.A., Hammerschlag-Hensberge G., van den Heuvel E.P.J., Takens R.J., Zuiderwijk
E.J., de Loore C., 1976, “Mass determination for the X-ray binary system Vela X-1,” Nature
259, 547–549.

van Paradijs J., van den Heuvel E.P.J., Kouveliotou C., Fishman G.J., Finger M.H., Lewin
W.H.G., 1997, “Evidence for neutron star formation from accretion induced collapse of a
white dwarf,” Astron. Astrophys. 317, L9–L12.

van Straten W., Bailes M., Britton M.C., Kulkarni S.R., Anderson S.B., Manchester R.N.,
Sarkissian J., 2001, “A test of general relativity from the three-dimensional orbital geom-
etry of a binary pulsar,” Nature 412, 158–160.

Vartanyan Yu.L., Ovakimova N.K., 1976, “Cold evaporation of neutrons from nuclei in super-
dense matter,” Soobshcheniya Byurakanskoi Observatorii 49, 87–95 [in Russian].

Ventura J., Potekhin A.Y., 2001, “Neutron star envelopes and thermal radiation from the magnetic
surface,” in The Neutron Star – Black Hole Connection, NATO Science Ser. C, 567, edited
by C. Kouveliotou, E.P.J. van den Heuvel, & J. Ventura (Dordrecht: Kluwer), 393–414.

Ventura J., Herold H., Ruder H., Geyer F., 1992, “Photoabsorption in magnetic neutron star
atmospheres,” Astron. Astrophys. 261, 235–244.

Vidaña I., Polls A., Ramos A., Hjorth-Jensen M., Stoks V.G.J., 2000a, “Strange nuclear matter
within Brueckner-Hartree-Fock theory,” Phys. Rev. C 61, 025802 (12 pages).

Vidaña I., Polls A., Ramos A., Engvik L., Hjorth-Jensen M., 2000b, “Hyperon-hyperon interac-
tions and properties of neutron star matter,” Phys. Rev. C 62, 035801 (8 pages).

Vieillefosse P., Hansen J.P., 1975, “Statistical mechanisms of dense ionized matter. V. Hydrody-
namic limit and transport coefficients of the classical one-component plasma,” Phys. Rev. A
12, 1106–1116.

Vincke M., Baye D., 1988, “Centre-of-mass effects on the hydrogen atom in a magnetic field,”
J. Phys. B: At. Mol. Opt. Phys. 21, 2407–2424.

Vincke M., Le Dourneuf M., Baye D., 1992, “Hydrogen atom in crossed electric and magnetic
fields: transition from weak to strong electron-proton decentring,” J. Phys. B: At. Mol. Opt.
Phys. 25, 2787–2807.

Vonnegut K., 1963, Cat’s Cradle (New York: Holt, Rinehart, & Winston).

Walecka J.D., 1974, “A theory of highly condensed matter,” Ann. Phys. (N.Y.) 83, 491–529.

Walter F.M., Lattimer, J.M., 2002, “A revised parallax and its implications for RX J185635–
3754,” Astrophys. J. 576, L145–L148.

Walter F.M., Matthews, L.D., 1997, “The optical counterpart of the isolated neutron star RX
J185635–3754,” Nature 389, 358–360.



BIBLIOGRAPHY 593
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LIST OF SYMBOLS

This list is not comprehensive: for instance, we omit notations that are used
only a few times in a particular section, and we do not list all notations which dif-
fer only by self-explanatory subscripts or superscripts. Standard mathematical
notations (e, π, etc.) are also not listed.

A, Ai – ion mass number
A – vector potential
A′ – effective mass number including bound and free neutrons in the inner crust

(Chapters 2, 4)
A′′ – number of free neutrons per nucleus in the inner crust (Chapter 2)
Ab – total number of baryons in the star
Aj – mass number of ions of species j
a0 = 0.5291772108 × 10−8 cm – Bohr radius
ai – ion-sphere radius
am – magnetic length
B, B – magnetic field
B – bag constant
b – magnetic field in relativistic units (Chapter 4); binding energy per nucleon

(Chapter 3)
C, CV – heat capacity at constant volume
CM – Madelung constant (Chapters 2, 3)
CP – heat capacity at constant pressure
c = 2.99 792 458 × 1010 cm s−1 – speed of light in vacuum
d, D – distance
d – dimensionality of a nuclear phase (Chapter 3)
E – energy; energy per nucleon (Chapter 5)
Eκ – binding energy of a quantum state κ (Chapters 2, 4)
Egrav – gravitational energy
Eint – total internal energy of a star
Erot – rotational energy
E – energy density
e = 4.8032044 × 10−10 esu – elementary charge
F – (Helmholtz) free energy (Chapters 2, 4)
Fid – ideal-gas free energy
Fex – excess free energy
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Fq – quantum (Wigner) correction to the free energy
Fxc – exchange-correlation contribution to the free energy
f (0)(ε − µ, T ) – Fermi-Dirac distribution function
G = 6.674 × 10−8 cm3 g−1 s−2 – gravitational constant
G(k) – local field correction
Ĝ, GNN ′ , GBB′ – G-matrix of the Brueckner-Bethe-Goldstone theory (Chapter

5)
g – gravitational acceleration
g(r) – radial pair-correlation function
ge = 1.001 159 6522 – electron gyromagnetic factor
gp = 5.585 6947 – proton gyromagnetic factor
gn (n = 1, 2, 3, . . . ) – Green’s functions (Chapter 5)
gs, gv, gφ, . . . – coupling constants in a Lagrangian (Chapter 5)
gκ – statistical weight of a quantum state κ
gik – spacetime metric tensor
H – Hamiltonian function; pseudo-enthalpy (§6.12.1, Appendix C)
Ĥ – Hamiltonian operator
Hn(ξ) – Hermite polynomial (Chapter 4)
Hn(ξ) – harmonic-oscillator function (Chapter 4)
h – enthalpy per nucleon (Chapters 3, 6; Appendix C); gravitational wave strain

(§6.11.2)
he – thickness of the electron surface of the strange star (Chapter 8)
hij – metric perturbation (Chapter 6)
� = 1.05457168 × 10−27 erg s - Planck constant over 2π
I – moment of inertia
Iν – Fermi-Dirac integral
J , J – angular momentum
K̂ – kinetic energy operator
K – atomic pseudomomentum (Chapter 4)
Kc – critical value of the atomic pseudomomentum (Chapter 4)
K0 – incompressibility of nuclear matter
k – wave vector
kB = 1.380 6505 × 10−16 erg K−1 – Boltzmann constant
kF – Fermi wavenumber
kTF – Thomas-Fermi wave number
� – leptons: electrons, muons
L – stellar luminosity
L̂ – orbital angular momentum operator (Chapter 5)
LEdd – Eddington luminosity limit
L� = 3.846 × 1033 erg s−1 – solar luminosity
L – Lagrangian density
lκ – rms size of an atom or ion in a quantum state κ
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M – stellar mass; gravitational stellar mass
M� = 1.9889 × 1033 g – solar mass
m – mass of a particle; magnetic quantum number (Chapter 4); azimuthal mode

number (Chapter 6)
m = m(r) – gravitational mass inside a sphere with radial coordinate r
me = 9.109 3826 × 10−28 g – electron mass
m∗ – nucleon effective mass (Chapter 5)
m∗

e – effective dynamic mass of an electron
mi – (mean) ion mass
mj – mass of particle (species) j
mu = 1.660 5388 × 10−24 g – unified atomic mass unit
m0 = 1.658 610 × 10−24 g – mass of the 56Fe atom divided by 56
Nj – number of particles of type j
n – number density; pulsar braking index (Chapters 1, 9); polytropic index

(Chapters 2, 6); Landau quantum number (Chapter 4)
nb – number density of baryons
nB – critical value of ne in a strong magnetic field (Chapter 2); number density

of baryon species B (Chapter 5)
nb,s – baryon density at surface of bare strange star (Chapter 8)
nc – baryon density at the stellar center
ncc – baryon number density at the crust-core interface
ne – the electron number density
nj – number density of ions of species j
nN – total number density of ions (atomic nuclei)
nn – number density of free neutrons
ns – number density of neutrons in the neutron skin (Chapter 3)
ns – number density of strange quarks (Chapter 8)
n0 – normal nucleon (baryon) density = 0.16 fm−3

NB(ε) – ne in the approximation of strong degeneracy (Chapter 4)
p, p – particle momentum
p̂ – momentum operator
p̃i – electron momentum components in relativistic units (Chapter 4)
P – pressure; star rotation period (Chapters 1, 9)
Pc – pressure at the stellar center
P

(e)
id – pressure of the ideal electron gas

Pr = 1.421 775 × 1025 dyn cm−2 – relativistic unit of pressure
Q – neutrino emissivity (Chapter 1); critical wave number of density perturba-

tions (Chapter 3)
q – particle charge
qD – Debye wave number (Chapter 2)
q′
D – plasma screening wave number (Chapter 2)

rc – guiding-center coordinate vector (Chapter 4)
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R – stellar radius
R – circumferential radius of spherical star
Req – circumferential equatorial radius of rotating star
RS – ion density parameter
R� = 6.960 × 1010 cm – solar equatorial radius
R∞ – apparent (radiation) stellar radius
rc – equivalent cell radius (Chapter 3)
rD – Debye length (Chapter 2)
rg – gravitational (Schwarzschild) radius
re – electron screening length
req – equatorial radial coordinate of rotating star (Chapters 6,8)
rpol – radial coordinate of the pole of rotating star (Chapters 6,8)
Rik – Ricci tensor
rs – (plasma) density parameter
Ry = 2.179 872 × 10−11 erg – Rydberg energy unit (= 0.5 Hartree)
S – entropy
s – spin quantum number (Chapter 4)
S(q) – static structure factor (Chapter 2)
S(q, ω) – dynamic structure factor (Chapter 2)
Ŝ – total spin operator (Chapter 5)
Ŝij – tensor coupling operator of ij nucleon pair (Chapter 5)
S0 – symmetry energy at saturation density
T – temperature
T̂ , TNN ′ – in-medium T-matrix (Chapter 5)
T̂ – total isospin operator (Chapter 5)
TB , Tcycl – critical values of T in a magnetic field (Chapter 2)
Tc, Tcrit – critical temperature of a phase transition
TF – Fermi temperature
Tl – temperature of gas-liquid transition
Tm – melting temperature
Tpe – electron plasma temperature
Tpi – ion plasma temperature
Tr = 5.929 889 × 109 K – relativistic temperature unit
Ts – effective surface temperature
T∞

s – Ts as detected by a distant observer
Tik – stress-energy tensor
t – time variable
tp – quantum plasma parameter (Chapter 2); pulsar age (Chapter 9)
tr – temperature in relativistic units
U – internal energy; fluid velocity in the azimuthal direction (Chapter 6)
Û – single-particle potential operator (Chapter 5)
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U(σ) – self-interaction contribution of σ field to Hamiltonian density (Chapter
5)

U – potential energy of an ensemble of particles
u – displacement vector (Chapter 3)
uik – components of the strain tensor (Chapter 3)
V – volume; potential function
V̂ – potential energy operator
V eff(k) – Fourier transform of the Coulomb potential
V̂ijk – three-nucleon interaction potential (Chapter 5)
vF – Fermi velocity
v̂ij – potential acting between a nucleon pair ij (Chapter 5)
vs – speed of sound
WN – energy of the nucleus
w – fraction of volume occupied by atomic nuclei
wκ – occupation probability of a quantum state κ
Xν – inverse function to the Fermi integral
xB – relativity parameter in a quantizing magnetic field
xGR – compactness parameter
xj – fraction of ion species j
xr – relativity parameter
Z, Zi – ion charge number
Z – partition function
Zeff – effective charge number
Zj – charge number of ions of species j
z – gravitational redshift; proper depth (Chapter 6); starting energy parameter

(Chapter 5)
zsurf – surface gravitational redshift (Chapter 6)
αf = 0.007 297 352 57 – fine-structure constant
αs – strong interaction (QCD) coupling constant
αv – coupling strength of the vector field to nucleons
βr – relativistic electron velocity parameter
Γ – ion Coulomb coupling parameter (Chapters 2, 4); Lorenz factor (Chapters

6,7,8)
Γe – (nondegenerate) electron Coulomb coupling parameter (Chapters 2, 4)
Γj – Coulomb coupling parameter for species j (Chapters 2, 4)
Γm – value of Γ at melting (Chapters 2, 4)
γ, γad – adiabatic index (polytrope exponent)
γ – magnetic field in atomic units (Chapter 4); relativistic parameter of a binary

system (Chapter 9)
γB – electron Lorentz factor in a quantizing magnetic field
γr – relativistic electron energy parameter (fiducial electron Lorentz factor)
∆ – superfluid energy gap (Chapters 1, 5, 7, 8); resonance (Chapters 5, 7)
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δ – Dirac’s delta function; neutron excess (Chapters 3, 5); quantum defect
(Chapter 4)

ε – electron energy (Chapters 2, 4); oblateness parameter (Chapter 6); quark
energy (Chapter 6)

εF – Fermi energy
εk – kinetic energy of nucleon of momentum k (Chapter 5)
ε – dielectric (screening) function (Chapter 2)
εk – quasiparticle energy (Chapter 5)
ζ – bulk viscosity (Chapter 1); dimensionless coupling parameter (Chapter 8)
η – shear viscosity (Chapter 1); inverse quantum plasma parameter (Chapter 2)
θ – polar angle; electron degeneracy parameter (Chapter 2)
κ – thermal conductivity (Chapter 1); set of quantum numbers (Chapters 2, 4);

surface curvature (Chapter 3)
λ--C = 3.86 159 268 × 10−11 cm - Compton wavelength over 2π
λ = λ(r) – metric function (Chapter 6)
λ – squared oscillation frequency (Chapter 6); relative density jump (Chapter

7)
λe – electron thermal wavelength (Chapters 2, 4)
λH – thermal wavelength of the H atom (Chapters 2, 4)
λj – thermal wavelength of particle species j (Chapters 2, 4); Lagrange multi-

plier (Chapter 5); jth eigenvalue of λ (Chapter 6)
λQ – critical wavelength of density perturbations (Chapter 3)
µ – chemical potential; shear modulus (Chapter 3)
µb – baryon chemical potential
µe – electron chemical potential
ν – “longitudinal” quantum number (Chapter 4)
ξi – Lagrangian displacements in a perturbed star (Chapter 6)
ρ – mass density
ρc – mass density at the stellar center
ρcc – mass density at the crust-core interface
ρm – density at quantum melting
ρs – mass density at the surface of bare strange star (Chapter 8)
ρB – critical value of ρ in a strong magnetic field (Chapter 2)
ρND – neutron-drip density
ρ0 = 2.8 × 1014 g cm−3 – normal nuclear density
σ – electrical conductivity (Chapter 1); standard rms deviation (Chapters 6, 9)
σ, σs – surface tension (Chapter 7)
σ – spin
σk – Pauli matrix
σij – stress tensor (Chapters 3, 6)
σSB = 5.67 040 × 10−5 erg cm−2 s−1 K−4 – Stefan-Boltzmann constant
σT = 6.652 4587 × 10−25 cm2 – Thomson scattering cross section
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τ – isospin (Chapter 5)
τ – mean lifetime of a baryon (Chapter 5) or of a nuclear state (Chapter 7); local

proper time (Chapter 6)
Φ, Φ(r) – ground-state wave-function (Chapter 5); metric function (Chapter 6)
Φn,s(r) – Landau function
φ – azimuthal angle
φ(r) – electrostatic potential (Chapter 2)
χ – normalized chemical potential of electrons; volume fraction of denser phase

(Chapter 7)
χT , χρ – temperature and density logarithmic derivatives of pressure
ψns – basic bispinors (Chapter 4)
Ω, Ω – stellar spin frequency
Ω – thermodynamic potential (Chapters 4, 7)
ω – angular frequency of a stellar oscillation; single-particle energy (Chapter 5);

spin frequency of the local inertial reference frame (§6.10); metric function
(§6.12); photon frequency

ω – local spin frequency of a star, as measured in a local inertial reference frame
ωB – electron gyrofrequency
ωc – electron cyclotron frequency
ωci – ion cyclotron frequency
ωcp – proton cyclotron frequency
ωg – electron gyrofrequency
ωpe – electron plasma frequency
ωpl – plasma frequency in quark matter (Chapter 8)
ω∞ – proton frequency as measured by a distant observer
∇ad – adiabatic gradient
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APR – Akmal-Pandharipande-Ravenhall (EOS)
ALS – alternating-spin layers
AXP – anomalous X-ray pulsar
BB – baryon-baryon (interaction)
BZ – Brillouin zone
BBG – Brueckner-Bethe-Goldstone (theory)
BBP – Baym-Bethe-Pethick EOS; model; paper
bcc – body-centered cubic (crystal)
BCS – Bardeen-Cooper-Schrieffer (model, theory)
BPS – Baym-Pethick-Sutherland model; paper
CFL – color-flavor-locked (phase)
CFS – Chandrasekhar-Friedman-Schutz (instability)
CL – causality limit
CLDM – compressible liquid drop model
DFT – density functional theory
ee – electron-electron (interaction)
eip – electron-ion plasma
EOS – equation of state
ETF – extended Thomas-Fermi (approximation)
fcc – face-centered cubic (crystal)
FFG – free Fermi gas
FPS – Friedman-Pandharipande-Skyrme (model; EOS)
GFT – Green function theory
hcp – hexagonal close-packed (crystal)
HFB – Hartree-Fock-Bogoliubov (approximation)
HH – hyperon-hyperon (interaction)
HMXB – high mass X-ray binary
HNC – hypernetted chain (appoximation)
HP – Haensel-Pichon model; EOS; paper
ie – ion-electron (interaction)
ii – ion-ion (interaction)
IS – intermediate- and short-range (component of a potential)
LMXB – low mass X-ray binary
LOFER – Landau orbital ferromagnetism
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MEM – Meson Exchange Model
NH – nucleon-hyperon (interaction)
NN – nucleon-nucleon (interaction)
NNN – three-nucleon (interaction)
npe-matter – uniform matter of neutrons, protons, and electrons
npeµ-matter – uniform matter of neutrons, protons, electrons, and muons
OBE – one-boson-exchange
OCP – one-component plasma
OPAL – Opacity Library (project)
OPEP – one-pion exchange potential
PSN – pre-supernova
PWN – pulsar-wind nebula
QCD – quantum chromodynamics
QPO – quasiperiodic oscillation
RBHF – relativistic Brueckner-Hartree-Fock (approximation)≡DBHF – Dirac-
Brueckner-Hartree-Fock (approximation)
RETF – relativistic extended Thomas-Fermi (approximation)
RMF – relativistic mean-field (model)
RPA – random-phase approximation SGR – soft gamma repeater
SLy – Skyrme Lyon effective interaction; EOS model
SN – supernova
SNR – supernova remnant
SQM – strange quark matter (self-bound quark matter)
SXT – soft X-ray transient
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pseudomomentum 184, 190–192, 197,
201

pulsar, accreting 36, 48, 498
–, accretion-powered 34, 45, 45
–, active 9, 493, 493
–, dead 40
– death line 40
–, ordinary 181
–, binary 325, 471, 480
–, bursting 48
– energy loss 38
–, gamma-ray 34
–, magnetically powered 34, 44
–, millisecond 35, 48, 188, 332, 333,

333, 454, 482, 499ff
– model 10, 11
– (wind) nebula 9, 39, 504
– radiation 26, 472
–, radio 26, 34–41, 54, 167, 186, 296,

330, 332, 333, 399, 456, 463, 471,
480, 487, 508, 511

–, rotation-powered 34, 37, 41
– spindown 11, 18, 39, 332, 381, 398,

401, 502
– spin-up 403, 485
– wind 39
–, X-ray — see X-ray pulsar
– – –, anomalous = AXP
pulsations, stellar 266, 274, 285, 423
–, of pulsar radiation 34, 43
– –, radial and nonradial 291, 293, 427
–, subthermal 24
–, X-ray 43–48, 461, 463, 466, 495–

498
pycnonuclear (fusion) 46, 90, 164
Q-balls 421
QCD coupling constant 368, 370, 413
— vacuum 369–370, 424, 412, 411
Q-matter 301, 354, 407, 421, 440
Q-star 421–424, 439–440
quantum broadening 176
– corrections 75, 120, 147
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– crystal 79, 99, 181
– fluctuations 130, 358, 382
– defect 186
– diffraction 75, 104, 178
– liquid 89, 246
– molecular dynamics 163
– tunneling 382–389, 399, 431
quark-gluon coupling constant 365, 366
– – plasma 210
quark nuggets 410
– stars 303, 310, 343, 370, 422, 426,

440, 448, 456, 511
– matter 14, 20, 212, 279, 289, 310,

351–354, 364–373, 385–393, 400,
408–423, 430–433, 440, 500, 512,
515

– – droplet 377, 390
quasiclassical approximation 108, 384,

433
quasinucleons 358
quasiparticle 21, 220, 241, 356, 362
quasiperiodic oscillations (QPO) 45,

49, 466, 497, 514
radial perturbations 291, 296, 303, 306
radiation radius = apparent radius
random-phase approximation (RPA) 59,

60, 94, 96
Rayleigh-Jeans parameter 494
RBHF approach/scheme 132, 240
reaction matrix 235
real pions 355
reciprocal lattice 77, 86
reference proton radius 134
relativistic density 56
– mean-field model 139, 213, 246, 256
– (orbital) parameter 472, 475–481,

484
relativity parameter 56, 321, 522
relaxed configuration 159, 329
renormalization 14, 366–368, 371, 413
– group equation 367, 368
– point 366, 367, 413

rest mass (of the star) = baryon mass
retardation factor 385
RETF approximation 133
Ricci curvature tensor 282
rigid background 55, 66, 79, 88, 106
– rotation 323, 333, 345
Rossby (r-) mode 28–30, 348, 453
Saha equation 109, 112, 194, 199
saturation density 115, 117, 122, 132,

521
scalar curvature 282
– meson 227–230, 246, 370
Schwarzschild condition 64
– coordinates 281
– metric 284, 319
– radius 16, 281
screening function 96, 99
– length 58, 59
– wave number 58, 61, 171
second-order phase transition 6, 14,

162, 357–359, 364, 382, 383, 391–
397

secular instability 347, 446–451
self-energy 241, 360
self-interaction 249
semiclassical approximation 99, 102,

130, 147
semiempirical mass formula 124, 162,

517
shear modulus 156, 330, 333
– viscosity 22, 454
shell effect 93, 118, 124, 128, 147–

148, 163
shell-energy correction 148
short-range correlations 246, 262, 352,

364
single-nucleus approximation 162
single-particle potential 236, 247, 254,

362
– – energy 236, 241
– – wave functions 127, 147
Skyrme model 126, 210
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– Lyon (SLy) model 137, 152, 517
Skyrme-type interaction 126, 235
– – potential 210
slow rotation approximation 323, 341,

441, 446
– – regime 324, 337
smectics A phase 159, 379
small-increment theorem 313, 398, 402
soft gamma repeater 43–44, 490
solid π0-condensed matter (π0-solid)

333, 381
solid core (stellar) 333, 351, 378
space-time curvature 282–284, 299,

309, 311, 323, 437, 498
spectator nucleon 20, 239, 361
spectral method 441
spin-isospin ordering 353, 379
spin-orbit coupling 222, 249
spin quantization axis 379
spontaneous symmetry breaking 159
SQM (strange-quark matter) 413–416,

423–439, 453
stable equilibrium 208, 290, 291, 299,

360, 397, 451, 499
(static) stability criterion 292, 302
starting energy 237, 242
strain tensor 154
strange matter hypothesis 354, 407–

413, 430, 511
strangelet 390, 432, 438, 513–514
strangeness 14, 24, 231, 254, 255, 267,

273, 387–388, 408, 412
– production 364, 386
strangeness-changing processes 361,

413, 438
stress-energy tensor 211, 282
stress tensor 156, 328
strong-interaction timescale 410
structure factor 74, 85ff, 100ff
– –, static 74, 87
Sturm-Liouville problem 291
SU(3) symmetry 232

– breaking 232, 365
subluminality 301, 305, 308
superburst 48
superconductivity 6, 18, 365, 371, 417,

454, 513
supercritical droplets 383, 389
superdense matter 14, 50, 354, 364
– stars 352, 364
– –, branch/family 393–397
– state of matter 360
– strange nuclei 354
superfluid gap 7, 279, 417
superfluid vortex 18, 27, 36,54, 508–

511
superluminal EOS 275–279, 310, 328
supermassive configuration 337, 344
superstrong magnetic field 43, 50, 167,

177–181, 190, 192, 280
surface gravity 1, 4, 11, 16, 309–310,

319, 437, 463, 482
– –, upper bound on 309
– tension 134–137, 144, 353–389
– thermodynamic potential 135, 144,

387
– redshift 284, 303–309, 425, 429,

439, 490, 539
– –, upper bound 309, 345
symmetry energy 122, 219, 249–252,

259–266, 535
tensor correlations 215
– force 222, 227
– operator 222, 246
thermal average 69, 74, 129
– conductivity 22–24
– fluctuation 162, 390, 399, 438
– length 62, 67, 108, 175, 177, 197
– regime 386
thermodynamic consistency 65, 289,

398, 530
– limit 233, 243
– stability 176, 181, 204
thermonuclear burning 47, 165, 496
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– explosion 47
third family (of compact stars) – see

superdense stars
Thomas-Fermi approximation (model,

theory) 92ff, 97, 102, 116, 175, 180,
187, 189, 193, 195, 220, 388, 430,
433

– – –, extended = ETF
– – EOS 195
– – radius 65
– – wave number 58, 171
three-body forces 126, 210, 213, 217,

223, 264, 274, 298
– – interaction 223–235, 239, 244,

255, 298
– – clusters 236
– – correlation 233, 255
– – –, irreducible 239
– – scattering 239
three-hole-line diagrams 214
three-nucleon (force) == NNN
threshold condition, hyperons 272
– –, Urca 265
Tolman-Oppenheimer-Volkoff equation

5, 16, 283, 300, 308, 422, 456, 537
tidal force 332, 462–467, 513
tightly bound state 185ff, 199
time-like components 250, 257
time reversal invariance 323
T-matrix 237, 242
torque, spindown 37, 37, 508
translational invariance, loss of 352,

356, 363, 374
transient — see X-ray transient
transverse mass 191, 202
trial wave function 215, 234, 243
triangular lattice 161
triaxial deformation 340, 446, 451
two-body correlations 235, 239, 241,

244
two-pion exchange 224, 228, 231
type II superconductivity 19, 508

– – supernova 31, 33, 131, 286, 333,
344, 506–508

– – X-ray bursts 47, 48
ud matter 386–390, 408–409, 412–

414
uds matter 388, 408–414, 426
ultrabaric EOS 275–278
undercompressed state 376
unit cell 116–134, 138, 142, 150, 161
unpinning = depinning
unstable configuration 306, 307, 315–

316, 336, 393, 396, 423, 427, 451,
538

– equilibrium 314, 343, 343, 360
Urca process, direct 19, 25, 265, 358,

362
– – –, threshold 17, 20, 264, 265, 535
– –, modified 7, 20, 24
variational calculation/method 94, 189,

213–216, 234, 245, 246, 261
variational chain summation 246
vector meson 230, 247, 299, 370, 378
vibration mode, lattice 79, 182
– –, nuclear surface 220
virial theorem for stars 27, 287
– – for CLDM 137, 144, 377
virtual mesons 252
– particles 215, 226
– pions 354
– state 247
viscosity, bulk 22–24, 348, 453
–, shear 22, 454
– driven instability 347, 445–451
viscous redistribution of angular mo-

mentum 343–348
– timescale 348
weak coupling limit/regime, Coulomb

72, 180
– – –, QCD 364–366, 369, 371–373,

418
white dwarf 2, 5, 10, 33, 54, 208, 281,

294ff, 394, 397
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– – core 71, 90
– –, magnetic 27, 191
– –, maximum mass 2, 5, 33, 208, 477
– –, surface gravity 309
– – – redshift measurements 491
– – in a binary 29, 30–33, 44–49, 298,

346, 456, 467, 481–488, 497
Wigner, Wigner-Kirkwood (formula,

expansion, correction) — see quan-
tum diffraction

Wigner-Seitz approximation 130, 135,
143, 147, 193, 387

– – cell 77ff, 92, 93, 120, 523–526
– – radius 521–524
X-ray astronomy 8, 212, 463
– binary 9, 27, 29, 44–49, 165, 310,

456, 460–467, 488, 496, 514
– burster 29, 45, 47–49, 54, 283, 497,

514
– pulsar 34, 35, 45–49, 165, 460, 461,

463, 498, 500
– –, anomalous = AXP
– transient 27, 29, 45–48, 466, 498,

514
Young modulus 159
Zeldovich model 6, 211, 277, 278, 299
zero-point energy 80, 177
– – vibrations/motion 62, 80, 85, 89,

157, 181
zero-sound 355, 357
α-particles 116, 118, 162, 267
δ-meson 227
∆ resonance 215, 215, 224, 228, 230,

233, 257, 353, 360
∆ isobars 215, 226, 378
Λ00, Λ01, Λ11 approximations 242
Λ hyperon 13, 211, 215, 216, 221, 254,

255, 269, 412
Λ–Σ conversion 231–233
Ξ hyperons 215, 216, 254, 255, 272
π0-solid = solid π0-condensed matter

ρ-meson 227–230, 249–252

σ-meson 227, 229, 247
σ-model 420
Σ hyperons 215, 216, 221, 233, 254,

255, 269
Σ− hyperon 13, 211, 216, 255, 270,

272
σ–ω model 247, 248, 249
σ–ω–ρ Lagrangian 133, 146
ω-meson 227, 230, 247, 277
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