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Preface

This book is based on my work as an engineer and functional area manager for

37 years at NASA’s Jet Propulsion Laboratory (JPL) and my teaching experience

with graduate-level courses in Astronautical Engineering at the University of

Southern California (USC).

At JPL, I worked on the development and flight operations of space missions,

including Viking I and II (two orbiters and two landers to Mars), Mariner 9 (orbiter

to Mars), Seasat (an earth orbiter), Voyager (for the Neptune encounter), Pioneer

Venus Orbiter, Galileo (probe and orbiter to Jupiter), Ulysses (solar polar mission),

Cassini-Huygens (orbiter to Saturn and lander to Titan), and Aquarius (an earth

orbiter). I provided mission development or operation services to space missions

that traveled to all the eight planets, except Mercury. These missions furnish many

of the examples of mission design and analysis and navigation activities that are

described in this text. The engineering experience at JPL has furnished the set of

techniques and tools for space missions that are the core of this textbook.

I am an adjunct professor at USC, where I have taught a graduate course in

Orbital Mechanics since 1979, plus three other graduate courses that I have initiated

and developed. This teaching experience has enabled me to show that the

techniques and tools for space missions have been developed from the basic

principles of Newton and Kepler. The book has been written from my class notes.

So, in a sense, I have been writing it for 35 years and I am very proud to see it in

print.

The reason for writing this book is to put the results from these experiences

together in one presentation, which I will continue to use at USC and share with my

students and colleagues. The reader can expect to find an organized and detailed

study of the controlled flight paths of spacecraft, including especially the techniques

and tools used in analyzing, designing, and navigating space missions.

In academia, this book will be used by graduate students to study Orbital

Mechanics or to do research in challenging endeavors such as the safe return of

humans to the moon. (See Chaps. 6 and 7.) It will also serve well as a textbook for

an Orbital Mechanics course for upper-division undergraduate and other advanced

undergraduate students. Professional engineers working on space missions and

people who are interested in learning how space missions are designed and

navigated will also use the book as a reference.
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This presentation benefits significantly from the many references listed in the

back of the book. The list includes excellent textbooks by Marshall H. Kaplan, John

E. Prussing and Bruce A. Conway, Richard H. Battin, and others and a technical

report by Paul A. Penzo for the Apollo missions. Papers include those by Leon

Blitzer, John E. Prussing, and Roger Broucke. Finally, there is the contribution of

online sources, such as Eric Weisstein’s “World of Scientific Biography,” JPL’s

Near-Earth Objects and Solar System Dynamics, and the Rocket & Space Technol-

ogy websites. To all these sources and the many others cited in the text, I express

my gratitude.

My gratitude is also extended to my wife, Mary Louise Hintz, and our three

children, JJ, Tana, and Kristin, for their support.

Los Angeles, CA, USA Gerald R. Hintz
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Introduction

Our objective is to study the controlled flight paths of spacecraft, especially the

techniques and tools used in this process. The study starts from basic principles

derived empirically by Isaac Newton, that is, Newton’s Laws of Motion, which

were derived from experience or observation. Thus, we develop the relative 2-body

model consisting of two particles, where one particle is more massive (the central

body) and the other (the spacecraft) moves about the first, and the only forces acting

on this system are the mutual gravitational forces. Kepler’s Laws of Motion are

proved from Newton’s Laws. Solving the resulting equations of motion shows that

the less-massive particle moves in a conic section orbit, i.e., a circle, ellipse,

parabola, or hyperbola, while satisfying Kepler’s Equation. Geometric properties

of conic section orbits, orbit classification, and types of orbits are considered with

examples. Astronomical constants needed in this study are supplied, together with

several tables of geometric formulas for elliptic orbits.

After the orbit determination analyst estimates the spacecraft’s orbit, trajectory

correction maneuvers (TCMs) are designed to correct that estimated orbit to the

baseline that satisfies mission and operational requirements and constraints. Such

TCMs correct statistical (usually small) errors, while other maneuvers make

adjustments (usually large) such as insertion of the spacecraft into an orbit about

a planet from a heliocentric trajectory. Maneuver strategies considered include the

optimal 2-maneuver Hohmann transfer and the optimal 3-maneuver bi-elliptic

transfer with examples for comparison purposes. The design of TCMs determines

the amount of velocity change required to correct the trajectory. The Rocket

Equation is then used to determine the amount of propellant required to achieve

the required change in velocity. Various fuel and oxidizer combinations are consid-

ered that generate the specific impulse, the measure of a propellant’s capability,

required to implement the orbit correction.

Gravity assists obtained when flying by planets in flight to the target body

(another planet, comet or asteroid, or the sun) can produce a large velocity change

with no expenditure of onboard propellant. Types and examples of interplanetary

missions and the targeting space used in designing the required trajectories are

described.

Techniques of Astrodynamics include algorithms for propagating the

spacecraft’s trajectory, Keplerian orbit elements which describe the orbit’s size,

xv



shape, and orientation in space and the spacecraft’s location in the orbit, and

Lambert’s Problem, which is used to generate mission design curves called “pork

chop plots”. Other models advance our study to treat n bodies and distributed

masses instead of just two point masses, and measure time, which is fundamental

to our equations.

Non-Keplerian motion takes into account perturbations to the Keplerian model,

such as oblateness of the central body, gravitational forces of other bodies (“3rd

body effects”), solar wind and pressure, and attitude correction maneuvers. The

study identifies the primary perturbations for an earth-orbiting vehicle, resolves a

satellite orbit paradox, and considers “zero G” (or is it “zero W”?).

A strategy for rendezvousing a spacecraft with other vehicles such as the

International Space Station is described with examples. One example is rendezvous

of the Apollo 11 Lunar Excursion Module with the CommandModule. One strategy

is intended to avoid an unintentional rendezvous by placing the spacecraft in a

standoff position with respect to another vehicle to, for example, allow the

astronauts to sleep in safety.

Navigation techniques and tools include a TCM design tool and two methods for

designing free-return circumlunar trajectories for use in returning humans to the

moon safely. Launching into a free-return trajectory will ensure that the spacecraft

will return to a landing site on the earth without the use of any propulsive

maneuvers in case of an accident such as the one experienced by Apollo 13.

After the spacecraft is determined to be in good working condition, it can be

transferred from the free-return trajectory into one favorable for injection into a

lunar orbit.

Chapter 8 discusses opportunities for further study in navigation, mission design

and analysis, and related topics. Appendix A gives a brief review of vector analysis,

which is especially important for students who are returning to academia after a

long absence. Appendix B defines projects the students can perform to test and

strengthen their knowledge of Astrodynamics and the techniques and tools for

space missions. Appendix C provides additional parameters for use in designing

free-return circumlunar trajectories.

There are exercises at the end of each of Chaps. 1–7 for use in strengthening and

testing the students’ grasp of the technical material. To aid the students in this

process, numerical answers with units are supplied in the back of the book for

selected exercises.

References for the material covered are listed at the end of the book. References

are also listed at the end of Chaps. 1–7 and at selected points within these chapters,

where they are identified by the names of the authors (or editors). In the case of

authors who provided multiple sources, the year or year and month of the reference

is (are) given. The students can then check the list in the back of the book to obtain

the complete bibliographic information for identifying the particular source.

Chapter 8 gives complete bibliographic information for the references it cites as

sources of material for further study. The references in Chapter 8 are not repeated in

the list at the end of the book.
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Many terms are used in discussing Orbital Mechanics and Astronautics. The

definitions of terminology used in this textbook are called out as “Def.:” followed

by the definition with the term being defined underlined for clarity. Acronyms and

abbreviations are defined at their first use and included in a list in the back of the

book. Finally, an index is also provided to aid the reader in finding the various terms

and topics covered in this text.
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Fundamentals of Astrodynamics 1

1.1 Introduction

One of the most important uses of vector analysis (cf. Appendix A) is in the concise

formulation of physical laws and the derivation of other results from these laws.

We will develop and use the differential equations of motion for a body moving

under the influence of a gravitational force only. In Chap. 5, we will add other

(perturbing) forces to our model.

There are related disciplines, which are part of Flight Dynamics.

Def.: Celestial Mechanics is the study of the natural motion of celestial bodies.

Def.: Astrodynamics is the study of the controlled flight paths of spacecraft.

Def.: Orbital Mechanics is the study of the principles governing the motion of

bodies around other bodies under the influence of gravity and other forces.

These subjects consider translational motion in a gravity field.

Attitude Dynamics and Attitude Control consider the spacecraft’s rotational

motion about its center of mass.

Def.: Spacecraft attitude dynamics is the applied science whose aim is to

understand and predict how the spacecraft’s orientation evolves.

In spacecraft mission activities, there is a coupling between satellite translation

(the orbital variables) and spacecraft rotation (the attitude variables). In spite of the

coupling effects, much of orbital mechanics proceeds by largely ignoring the effects

of spacecraft attitude dynamics and vice versa. The field of Flight Dynamics,

however, considers 6 degrees of freedom (DOF), consisting of 3 DOF from Orbital

Mechanics and 3 DOF from Attitude Dynamics.

An example of an essentially 6DOF problem is: EDL (entry, descent, and

landing), e.g., the landing of the Phoenix spacecraft on Mars 5/25/08. More

information on the Phoenix mission can be found at the Phoenix Mars Mission

Website at http://phoenix.lpl.arizona.edu/.

# Springer International Publishing Switzerland 2015
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Parallel disciplines that must be part of spacecraft mission analyses include:

Orbital Mechanics Attitude Dynamics

Orbit Determination Attitude Determination

Flight Path Control Attitude Control

Of these six disciplines, we consider primarily Orbital Mechanics plus related

issues in Flight Path Control. Hence, our objective is to study the controlled flight

paths of spacecraft, viz., Astrodynamics.

1.2 Mathematical Models

Use of Mathematical Models to Solve Physical Problems

Figure 1.1 describes the procedure for using a mathematical model to solve a

physical problem.

In engineering, we make simplifying assumptions in our mathematical model to:

1. Get a good approximation to a solution

2. Gain insight into the problem

3. Get a good starting point for a more accurate numerical solution

4. Reduce computing time and costs.

Example: Archimedes

The king told Archimedes that he had given the goldsmith gold to make a crown

for him. However, he suspected that the goldsmith had kept some of the gold and

added a baser metal in its place. So his task for Archimedes was to determine

whether or not his new crown was made of pure gold. Archimedes thought about

this problem until one day when he was in the public bath and he saw water

splashing out of a bathtub. Then, he yelled “Eureka” and ran to his working area

to demonstrate the answer to the problem.

He placed the crown in a vat filled with water with a basin below the vat to catch

the overflow. He obtained the amount of gold that equaled the volume of water that

overflowed the vat. Then he placed this amount of gold on one side of a lever and

the crown on the other side as shown in Fig. 1.2. The end of the lever with the gold

descended, indicating that the crown was not pure gold. After Archimedes reported

his findings to the king, the goldsmith did not cheat any more kings.

Physical
Problem

Math
Model

Solve
the
problem
in math
model.

Apply results

Construct Math model

Fig. 1.1 Using a

mathematical model to

solve physical problems
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Dynamics, including Astrodynamics, is a deductive discipline, which enables us:

1. To describe in quantitative terms how mechanical systems move when acted on

by given forces or

2. To determine which forces must be applied to a system to cause it to move in a

specified manner.

A dynamics problem is solved in two major steps:

1. Formulation of the equation of motion (EOM), the math model, and

2. Extraction of information from the EOM.

Optimization of rocket trajectories is usually accomplished by analytical and

numerical approaches in a complimentary fashion. Dereck Lawden (cf. reference

for Lawden) says; “. . . by making suitable simplifying assumptions, the actual

problem can be transformed into an idealized problem whose solution is analyti-

cally tractable, then this latter solution will often provide an excellent substitute for

the optimal motor thrust programme in the actual situation. All that then remains to

be done is to recompute the trajectory employing this programme and taking

account of the real circumstances. Further, it is only by adopting the analytical

approach in any field of research, that those general principles, which lead to a real

understanding of the nature of the solutions, are discovered. Lacking such an

appreciation, our sense of direction for the numerical attack will be defective and,

as a consequence, computations will become unnecessarily lengthy or even quite

ineffective.”

The analytical solution provides insight into how to approach a problem. It also

enables you to verify that your solution is plausible and correct. You do not want to

put yourself in the position of having your boss tell you that the results you have

presented violate a basic principle and then be forced to say, “But the computer said

. . . .” Another reason for looking at an idealized problem is that the insight gained

can be used for mission planning and design purposes or feasibility studies for

which exact values are not available.

Au

Fig. 1.2 Archimedes’ Gold

Experiment
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High-precision software run in land-based computers or powerful real-time

onboard computing provide precision numerical results and ultimately the

commands to be executed by the spacecraft’s onboard subsystems.

Coordinate Systems

To study motion, we need to set up a reference frame because we need to know

“motion with respect to what?”

Inertial frames are “fixed with respect to the fixed stars,” i.e., non-rotating and

non-accelerating with respect to the fixed (from our perspective) stars, which is an

imaginary situation. Practically speaking, an inertial system is moving with essen-

tially constant velocity.

Example Geocentric equatorial system or Earth-centered Inertial (ECI) coordinate

system

Use: To study orbital motion about the Earth

Definition:

• Origin at the center of the earth

• X-axis pointing to the first point of Aries, i.e., the vernal equinox. The vernal

equinox direction is a directed line from the earth to the sun at the instant the sun

passes through the earth’s equatorial plane at the beginning of spring.

• Z-axis—normal to the instantaneous equatorial plane

• Y satisfies Y¼Z�X, which completes the right-handed coordinate system

Example Heliocentric-ecliptic system

Use: for example to study orbital motion in interplanetary (I/P) flight

Definition:

• Origin at the center of mass of the sun

• The fundamental (XY) plane is the mean plane of the earth’s orbit, called the

ecliptic plane.

• The reference (X) direction is again the vernal equinox, where the X axis is the

intersection of these two fundamental planes and points to the sun when it crosses

the equator from south to north in its apparent annual motion along the ecliptic.

The directions of the vernal equinox and the earth’s axis of rotation shift slowly

in ways to be discussed later (Chap. 5). Therefore, we will refer to X, Y, Z

coordinates for the equator and equinox of a particular year or date, e.g., equator

and equinox of 2000.0 or “of date.” We will consider measures of time in Chap. 4.

For now, we will not consider this level of precision, ignoring perturbations such as
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the precession of the earth. We consider an inertial system that is fixed with respect

to the fixed stars as Newton did. For more information on coordinate systems, see

for example Sect. 2.2 of the reference by Bate, Mueller, and White (BMW).

Non-inertial systems are rotating or accelerating. For example, a system that is

fixed to the earth is rotating and, therefore, non-inertial. Such a coordinate system is

chosen as the one that is natural for a particular type of problem.

1.3 Physical Principles

Tycho Brahe (1546–1601), a Danish astronomer, took accurate observations of the

position of Mars before the telescope was invented. Brahe used a quadrant circle to

sight the planets and stars. His large, accurate instruments yielded measurements

that were accurate to within 4 min of arc. Brahe hired Kepler as an assistant to

analyze the vast bulk of data that he had collected.

Johannes Kepler (1571–1630), an Austrian mathematician and astronomer,

worked briefly with Tycho Brahe and inherited his data books after Brahe’s death

in 1601. Kepler devoted many years to intense study of these data to determine a

mathematical description of the planetary motion described by the data. He derived

a set of three empirical laws that describe planetary motion and led to our current

understanding of the orbital motion of planets, moons, asteroids, and comets as well

as artificial satellites and spacecraft.

Empirical laws are known from experience or observation. We derive results

from these laws. In particular, we will derive the equations of motion from

Newton’s Laws of Motion and his Universal Law of Gravitation.

Kepler’s Laws

Kepler’s Laws are:

1. The orbit of each planet is an ellipse with the sun at a focus.

2. The line joining the planet to the sun sweeps out equal areas inside the ellipse in

equal time intervals.

Therefore, the velocity at closest approach is greater than the velocity at the

furthest distance from the sun. Kepler’s Second Law is illustrated in Fig. 1.3.

3. The square of the period of a planet is proportional to the cube of its mean

distance from the sun. That is,

vp

va

vp > va

Δt
Δt

Fig. 1.3 Kepler’s

Second Law
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τ2planet / meandistance from sunð Þ3

where the symbol τ denotes the period (duration) of an orbit.

Johannes Kepler (1571–1630), an Austrian mathematician and astronomer, pur-

sued his scientific career with extraordinary enthusiasm and diligence despite several

hardships. His hands were crippled and his eyesight impaired from smallpox as a boy.

He suffered from religious persecution for his protestant beliefs. He lost his first wife

and several children. Often in desperate financial difficulties, he endured a bare

subsistence livelihood. He even had to defend his mother from a charge of witchcraft.

Kepler, as Imperial Mathematician in Prague, published his third law in

Harmonice Mundi (The Harmony of the World) in 1619, 10 years after the

appearance of his first two laws in Astronomia Nova De Motibus Stellae Martis,
known as Astronomia Nova.

Newton’s Laws

Sir Isaac Newton1 (1642–1727) defined the forces at work in Philosophiae
Naturalis Principia Mathematica (The Mathematical Principles of Natural Philos-

ophy), usually called the Principia, 1687. Kepler’s Laws must follow. Newton

determined why the planets move in this manner. Newton’s Laws apply only to

particles moving in an inertial reference frame.

Newton’s Laws of Motion are:

1. Principle of Inertia: Every body is at rest or in uniform motion along a straight

line unless it is acted on by a force.

2. Principle of Momentum: The rate of change of linear momentum is equal to the

force impressed and is in the same direction as that force. That is,

1 Isaac Newton (1642–1727) is generally regarded as one of the greatest mathematicians of all

time. He entered Trinity College, Cambridge, in 1661 and graduated with a BA degree in 1665. In

1668, he received a master’s degree and was appointed Lucasian Professor of Mathematics, one of

the most prestigious positions in English academia at the time. In his latter years, Newton served in

Parliament and was warden of the mint. In 1703, he was elected president of the Royal Society of

London, of which he had been a member since 1672. Two years later, he was knighted by

Queen Anne.

Newton is given co-credit, along with the German Wilhelm Gottfried von Leibnitz, for the

discovery and development of calculus-work that Newton did in the period 1664–1666 but did not

publish until years later, thus laying the groundwork for an ugly argument with Leibnitz over who

should get credit for the discovery. In 1687, at the urging of the astronomer Edmund Halley,

Newton published his ground-breaking compilation of mathematics and science, Principia
Mathematica, which is apparently the first place that the root-finding method that bears his

name appears, although he probably had used it as early as 1669. This method is called “Newton’s

Method” or “the Newton–Raphson Method.”
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F ¼ d

dt
mvð Þ ð1:1Þ

where v denotes the velocity vector and m denotes the mass.

Therefore,

F ¼ ma ð1:2Þ
if the mass m is constant and a is the acceleration of m with respect to an inertial

frame.

3. Principle of Action–Reaction: For every applied force, there is an equal and

opposite reaction force. Therefore, all forces occur in pairs.

Newton’s Law of Universal Gravitation:

Any two particles attract each other with a force of magnitude

F ¼ G
m1m2

r2
ð1:3Þ

where m1, m2¼masses of the two particles,

r¼ distance between the particles,

G¼ universal constant of gravitation

We will refer to these three empirical laws as “NI,” “NII,” and “NIII,”

respectively.

Actually, NII implies NI because, if we set

ma ¼ m
d2r

dt2
¼ 0

and integrate this equation, we obtain

v ¼ c

which implies NI: v¼ 0 for a particle at rest or moving at constant velocity, if

v 6¼ 0.

Work and Energy

If the force F acting on a particle moves through a distance Δr, the work done is

equal to the scalar product F •Δr. Hence, we define the total work done in going

from r1 to r2, where r1¼ r(t1) and r2¼ r(t2), as follows.

Def.: Work (a scalar quantity) is the line integral along a path

W12 ¼
ðr2
r1

F • dr ð1:4Þ

1.3 Physical Principles 7



between positions r1 and r2 where F is the force applied to a particle of mass m.

Show: The work W12¼ΔKE, where KE denotes “kinetic energy.”

Proof:
Let m¼ constant mass.

W12 �
ðr2
r1

F • dr ¼m

ðt2
t1

a • vdt ¼m

ðt2
t1

dv

dt
• vdt ¼m

2

ðt2
t1

d

dt
v • vð Þdt

¼ m

2

ðt2
t1

d v2ð Þ
dt2

dt ¼ 1

2
mv2 v2

v1

�� ¼ 1

2
mv22‐

1

2
mv21 ¼ ΔKE: QED

Def.: The force F is said to be conservative iff the integral of F • dr is zero over all

closed paths.

Notation: We write
H
F • dr¼ 0

where the symbol
H
denotes integration over all closed paths.

Show: For a conservative force, the work to go from one point to another is

independent of the path taken.

Proof:
Let F be a conservative force (Fig. 1.4).

Then

ðr2
r1

path a

F • drþ
ðr1
r2

path b

F • dr ¼ 0 by definition of a conservative force

ðr2
r1

path a

F • dr ¼ �
ðr1
r2

path b

F • dr ¼
ðr2
r1

path b

F • dr for all paths a and b

Therefore, the result follows. QED

Remark Properties p and q are equivalent iff property p is valid implies property q

is valid and vice versa.

We have shown that
H
F • dr¼ 0 implies that work is independent of path.

The reverse of the argument is valid also. Therefore, the property for a force F that

I
F • dr ¼ 0

for all closed paths is equivalent to the property that the work to go from one point

to another is independent of the path taken. Therefore, the latter property could

be used as the definition of a conservative force as is done in the reference by

W. T. Thomson.

8 1 Fundamentals of Astrodynamics



Def.: Potential energy V(r1) is the work done by a conservative force in going from

point r1 to some reference point r0, i.e.,

V r1ð Þ ¼
ðr0
r1

F • drþ V r0ð Þ ð1:5Þ

Thus, every point in space can be assigned a scalar potential V(r), which depends

on the reference point.

Show: For a conservative force F,

W12 ¼ �ΔPE: ð1:6Þ
Proof:
Since F is conservative,

W12 �
ðr2
r1

F • dr ¼
ðr0
r1

F • drþ
ðr2
r0

F • dr from independence of path

¼
ðr0
r1

F • drþ V r0ð Þ
� �

�
ðr0
r2

F • drþ V r0ð Þ
� �

¼V(r1)�V(r2) by the definition of potential energy

¼�(V(r2)�V(r1))¼�ΔPE. QED

Show: For a conservative force F,

F ¼ �∇V rð Þ: ð1:7Þ

Proof:

W12 �
ðr2
r1

F • dr ¼ V r1ð Þ�V r2ð Þ from the argument above

Y

Path br1

r2

Pa
th 

a

Z

X

Fig. 1.4 Paths between

positions r1 and r2

1.3 Physical Principles 9



¼ �
ðr2
r1

dV

Therefore,

ðr2
r1

F • dr ¼�
ðr2
r1

dV

Therefore, F • dr¼� dV everywhere.

Therefore, F ¼ � ∂V
∂x ;

∂V
∂y ;

∂V
∂z

� �
¼ �∇V rð Þ. QED

Remark Since the reference point is arbitrary, we will select a reference point such

that V(r0)¼ 0.

Def.: If a force over a given region S of space can be expressed as the negative

gradient of a scalar function ϕ, i.e., as

F ¼ �∇ϕ ¼ �gradϕ,

we call ϕ a scalar potential.

The scalar potential describes the force by one function instead of three. A scalar

potential is only determined up to an additive constant, which can be chosen to

adjust its origin.

Remark Properties (statements) p, q, and r are equivalent means that p is valid iff q

is valid and q is valid iff r is valid and r is valid iff p is valid. To demonstrate that

these three properties are valid, it is sufficient to show p is valid implies q is valid

and q is valid implies r is valid and r is valid implies p is valid or p is valid implies r

is valid and r is valid implies q is valid and q is valid implies p is valid.

The following three relations are equivalent for a force F over a given region S

of space:

1. The force F can be expressed as the negative gradient of a scalar function ϕ, i.e.,
as F¼�∇ϕ.

2. ∇�F¼ 0

3.
H
F • dr¼ 0 over every closed path in the region S.

For a proof of this equivalence, see pp. 66f of the reference by Arfken and

Weber.

Law of Conservation of Total Energy

Let KEi¼ kinetic energy at point i and PEi¼ potential energy at point i for i¼ 1, 2.

We have shown that W12¼KE2�KE1¼ PE1� PE2

10 1 Fundamentals of Astrodynamics



Therefore,

KE2 þ PE2 ¼ KE1 þ PE1 ¼ Total Energy

This equation gives the reason why the force F is said to be “conservative.”

Examples We will find that gravity is a conservative force. However, atmospheric

drag and friction are not conservative.

Angular Momentum

Consider the inertial X, Y, Z and moving x, y, z coordinate systems displayed in

Fig. 1.5 and the linear momentum mR
•

in the inertial frame. The vector r is the

position of the mass m in the moving x, y, z coordinate system.

Def.: The angular momentum (moment of momentum) h0 of the mass m about a

point O is defined as

h0 ¼ r � mR
• ð1:8Þ

This definition implies that h0 is perpendicular to r and mR
•

.

An alternate definition is h0 ¼ r�m r
•

. The definition of angular momentum in

terms of the inertial velocity vector as is Eq. (1.8) is used in the references by

Kaplan and Thomson.

Rate of change of h0:

Y

X

Z
m

y
O

x

z

Ṙ

rR

R0

Fig. 1.5 Position of the mass

m in a moving x, y, z

coordinate system
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Since R¼R0+ r, the derivative R
• ¼ R

•

0 þ r
•

. Therefore,

h0 ¼ r � mR
• ¼ r � m R

•

0 þ r
•

� �
¼ r � m r

• þ r � mR
•

0

where the first term is the apparent angular momentum in the moving frame and the

second term is the correction due to the motion of point O.

h
•

0 ¼ d

dt
r � m r

•ð Þ þ r � mR
• •

0 þ r
• � mR

•

0

¼ d

dt
r � m r

•ð Þ � R
• •

0 � mr � R
•

0 � m r
• ð1:9Þ

where the first term is the rate of change of apparent angular momentum in the

moving frame at point O, the second term is the effect of the acceleration of point O,

and the third is the effect of the velocity of point O.

Such a rate of change of h0 could be related to an applied torque about O.

Def.: The torque, or moment, of a force F acting on the mass m about the point O is

defined as

M0 ¼ r� F ð1:10Þ
Then M0 is orthogonal to F and r.

In Fig. 1.6, x¼ rsinϕ, which implies that

M0 ¼ FrsinϕM̂ 0 ð1:11Þ
Therefore, the magnitude of the torque M0 is the product of the magnitude of the

force F and the perpendicular distance from the point O to the line of action of the

force.

F
Mo

O

x

f
f
r

Mo
^

Fig. 1.6 Torque, or moment,

of a force F
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MO ¼ r � F ¼ r � mR
• • ¼ r � m R

• •

0 þ r
• •

� �

¼ r � mR
• •

0

� �
þ r � m r

• •ð Þ

But d
dt

r � m r
•ð Þ ¼ r

• � m r
•ð Þ þ r � m r

• •ð Þ, where the first term is zero.

Therefore,

MO ¼ h
•

0 þ R
•

0 � m r
• ¼ h

•

0 ð1:12Þ

if O is fixed in space, i.e., R
•

0 ¼ 0, or r is constant.
Therefore, if the applied torque MO is zero, then h

•

0 ¼ 0 so that h0 is constant,

which implies that the angular momentum of a system is conserved if there are no

external torques acting on the system,

This fact does not depend on whether the system is a single particle, a collection

of particles, or a continuous body.

1.4 Fundamental Transformations

Transformations Between Coordinate Systems

Consider the two coordinate systems whose axes are shown in Fig. 1.5. For this

discussion, the X, Y, Z frame could be any fixed system. In the fixed frame,

R ¼ R0 þ r ¼ XÎ þ YĴ þ ZK̂

and, in the moving frame,

r ¼ xî þ yĵ þ zk̂

The inertial position X, Y, Z can be written in terms of the x, y, z components in the

moving frame as

X ¼ R • Î ¼ R0 þ rð Þ • Î ¼ X0 þ xÎ • î þ yÎ • ĵ þ zÎ • k̂

Similarly,

Y ¼ Y0 þ xĵ • î þ yĴ • ĵ þ zĴ • k̂

Z ¼ Z0 þ xK̂ • î þ yK̂ • ĵ þ zK̂ • k̂

The dot products in these three equations are the nine direction cosines for the axes

of one reference frame in terms of the other reference frame.

1.4 Fundamental Transformations 13



Notation: In subsequent text, the “^” over the unit reference vectors will be

omitted for simplicity.

Thus, we write

X

Y

Z

2
4

3
5 ¼

X0

Y0

Z0

2
4

3
5þ

I • i I • j I • k
J • i J • j J • k
K • i K • j K • k

2
4

3
5 ð1:13Þ

Now, consider the two-dimensional transformation as shown in Fig. 1.7.

In two-dimensions, the direction cosines reduce to the following.

I • i ¼ 1ð Þ 1ð Þ cos θ ¼ J • j

I • j ¼ 1ð Þ 1ð Þ cos θ þ π

2

� �
¼ � sin θ

J • i ¼ 1ð Þ 1ð Þ cos π

2
� θ

� �
¼ sin θ

Therefore,

X� XO ¼ xI • iþ yI • j ¼ xcosθ � y sin θ

Similarly,

Y � YO ¼ xsinθ þ ycosθ

Therefore,

X � X0

Y � Y0

� �
¼ cos θ � sin θ

sin θ cos θ

� �
x

y

� �
ð1:14Þ

x

y

� �
¼ cos θ sin θ

� sin θ cos θ

� �
X � X0

Y � Y0

� �
, ð1:15Þ

where the matrix in this equation is the inverse of the matrix in the previous

equation as will be shown in Exercise 1.4(a).

y

m

x
r

O

O� Xo

Ro

Yo

R

Î

ĵ î

Ĵ

q

q

Fig. 1.7 Coordinate

transformation in

two-dimensional
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Note that, in converting between the fixed and moving reference frames, the

terms X�X0 and Y�Y0 provide the translation of the origin to the point O and the

matrix provides the rotation.

Orthogonal Transformations

Notation: The matrix

α ¼
α11 α12 α13
α21 α22 α23
α31 α32 α33

2
4

3
5:

with column vectors ci¼ (α1i, α2i, α3i), i¼ 1, 2, 3.

Theorem 1.1 Any non-singular (detα 6¼ 0) matrixα defines a linear transformation
as x0 ¼αx.

Def.: The Kronecker delta function is defined as

∂jk ¼ 1 if j ¼ k

0 if j 6¼ k
, j, k ¼ 1, 2, 3

�

i.e., [∂jk]¼ I3, where I3 denotes the 3� 3 identity matrix.

Def.: Any linear transformation, x0 ¼α x, that has the property

X3
i¼1

αijαik ¼ δjk j, k ¼ 1, 2, 3 ð1:16Þ

is called an orthogonal transformation.

Properties that are equivalent (shown in Exercise 1.1) to the defining property for

an orthogonal transformation:

1. α�1¼αT

Def.: A matrix α that satisfies the condition α�1¼αT is called an orthogonal

matrix.

2. The column vectors of the α matrix are orthogonal unit vectors.

Example:

α ¼ cos θ sin θ
� sin θ cos θ

� �

Properties of orthogonal matrices (without proof):

1. Rotation matrices are orthogonal.

2. A product of orthogonal matrices is an orthogonal matrix.
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Euler Angles

Leonhard Euler (1707–1783) was the first to use mathematical rather than geomet-

rical methods for addressing problems in dynamics and, therefore, is considered the

“father of analytical dynamics.” Indeed, Euler applied mathematics to study the

entire realm of physics. He pursued mathematics and completed his work at the

Swiss University of Basel, near his birthplace, at the age of 15. He studied there

under John Bernoulli. As a measure of his dauntless spirit, several of his books and

approximately 400 of his papers were written during the last 17 years of his life

when he was totally blind. Leonhard Euler ranks with Archimedes, Newton, and

Gauss, and was the key mathematician and theoretical physicist of the eighteenth

century. His name is everywhere in mathematics: Euler’s constants, Eulerian

integrals, Euler’s formulas, Euler’s theorems, Euler angles, Euler parameters,

Euler axes, . . . .
We will see later that the Euler angles uniquely determine the orientation of an

elliptical orbit (see Kepler’s Laws) in space. For now, we consider the orientation of

a body in space through the same series of three rotations δ, γ, and β, which
produces an orthogonal transformation. We start by assuming the X, Y, Z and

body-fixed frames coincide and perform a series of three two-dimensional rotations

as shown in Fig. 1.8.

These three rotations are orthogonal transformations as defined by the following

equations:

Rotation through Ψ about the third axis Z:

ξ
0

η
0

ζ
0

2
4

3
5 ¼

cosΨ sinΨ 0

sinΨ cosΨ 0

0 0 1

2
4

3
5 X

Y

Z

2
4

3
5 ¼ δ

X

Y

Z

2
4

3
5

Rotation through y
about the Z axis

Rotation through q
about the x ′-axis

Rotation through f
about the ζ-axis

a

Y

X

Z = ζ′

h′

x ′

y

y

b

Y

X

Z = ζ′

h′
h

h

x ′ = x

q

q

q

ζ
c

y

Y

ζ = z

xX
ζ

f

f

f

Z

Fig. 1.8 Three rotations through the Euler angles
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Rotation through θ about the first axis ξ0:

ξ
η
ζ

2
4

3
5 ¼

1 0 0

0 cos θ sin θ
0 � sin θ cos θ

2
4

3
5 ξ

0

η
0

ζ
0

2
4

3
5 ¼ γ

ξ
0

η
0

ζ
0

2
4

3
5

Rotation through ϕ about the third axis ζ:

x

y

z

2
4

3
5 ¼

cosϕ sinϕ 0

� sinϕ cosϕ 0

0 0 1

2
4

3
5 ξ

η
ζ

2
4

3
5 ¼ β

ξ
η
ζ

2
4

3
5

Thus,

x

y

z

2
4

3
5 ¼ βγδ

X

Y

Z

2
4

3
5 ¼ α

X

Y

Z

2
4

3
5, ð1:17Þ

where we have defined the matrix α¼ βγδ.
Note that matrix multiplication is not commutative, so the order of multiplying

these matrices must be maintained.

Multiplying the three matrices gives

α¼
cϕcΨ� sϕcθsΨ cϕsΨþ sϕcθcΨ sϕsθ
�sϕcΨ� cϕcθsΨ �sϕsΨþ cϕcθcΨ cϕsθ

sθsΨ �sθcΨ cθ

2
4

3
5 ð1:18Þ

where c denotes the cosine and s denotes the sine function. Multiplying by the α
matrix transforms vectors in X, Y, Z coordinates to x. y, z coordinates as follows:

X

Y

Z

2
4

3
5 ¼ α�1

x

y

z

2
4

3
5 ¼ αT

x

y

z

2
4

3
5 ð1:19Þ

because α is orthogonal as will be shown in Exercise 1.4(b).

Def.: The line of nodes is the intersection of the X, Y and x, y plane.

Def.: The rotation angles ψ, θ, and ϕ are called Euler angles.

The angles ψ, θ, and ϕ considered above are called the “3� 1� 3 Euler angles.”

Relative Motion and Coriolis Acceleration

Def.: Absolute motion is movement of a point with respect to an inertial frame.

Def.: Relative motion is movement of a point with respect to a non-inertial frame.
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We now express the motion of an object with respect to a moving frame for

which ω denotes the instantaneous angular velocity of the rotating frame with

respect to the fixed frame as shown in Fig. 1.9.

Consider the motion of point P with respect to the x, y, z frame. The inertial

position and absolute velocity P are, respectively,

R ¼ R0 þ r

R
• ¼ R

•

0 þ r
•

where the dot denotes differentiation with respect to the fixed system. But

R
• ¼ X

•

Iþ Y
•

Jþ Z
•

K
R
•

0 ¼ X
•

0Iþ Y
•

0Jþ Z
•

0K

r
• ¼ d

dt
xiþ yjþ zkð Þ ¼ x

•

iþ y
•

jþ zkþ x i
• þy j

• þz k
•

The question now is: ”What are the terms i
•

, j
•

, and k
•

?

In Fig. 1.10, u¼ sinϕ, and s¼ uΔθ¼ (sinϕ)Δθ denotes arclength.

The i
•

is the rate of change of i introduced by the rotation ω. That is,

i
• ¼ velocityof i ¼ lim

Δt!0

Δi
Δt

¼ lim
Δt!0

s

Δt

� �� 	
u⊥ ¼ dθ

dt
sinϕu⊥ ¼ ωsinϕu⊥ ¼ ωxi

where û ⊥ denotes a unit vector orthogonal to u.

By the same argument,

j
• ¼ ω� j and k

• ¼ ω� k

P

Y

any fixed
system

Z

X

y

z

x

w

Ĵ

K̂

R
r

Ro

Î

ĵ
î

k̂

Fig. 1.9 Motion of an object

with respect to a moving

frame, rotating about ω
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Therefore,

r
• ¼ dr

dt

� �
b

þ ω� r

where dr
dt


 �
b
¼ x

•

iþ y
•

jþ z
•

k is the derivative of r in the rotating coordinate system

Thus, we obtain the following theorem, which provides the relation between the

derivative of position in inertial coordinates and the derivative of position in

rotating coordinates.

Theorem 1.2 For any vector r in a rotating frame, the derivative of r in inertial

coordinates

r
• ¼ dr

dt

� �
b

þ ω� rð Þ ð1:20Þ

where dr
dt


 �
b
denotes the derivative of r in the rotating (or body-fixed) coordinate

system and ω denotes the instantaneous angular velocity of the rotating system.

Since R
• ¼ R

•

o þ r
•

,

R
• ¼ R

•

0 þ dr

dt

� �
b

þ ω� r

where the term on the left-hand side denotes the absolute velocity of P, the first term

on the right-hand side denotes the absolute velocity of the origin of the moving

system, the second term denotes the derivative of r in the rotating system, and the

third the apparent motion due to rotation (ω).

f
f

u

u
u

i

Δi

i at t

Δq

Δq

u^ s

i at t+Δt

w

^

^

^

^

^D i

Fig. 1.10 Rotation about ω
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Acceleration of P with respect to the inertial frame

Notation: The velocity and acceleration of r in the rotating system are denoted,

respectively, as

r
•

b ¼ dr

dt

� �
b

¼ x
•

iþ y
•

jþ z
•

k

r
• •

b ¼ x
• •

iþ y
• •

jþ z
• •

k

Using Theorem 1.2, we obtain:

r
• • ¼ r

• •

b þ ω• �rð Þ þ 2 ω� r
•

bð Þ þ ω� ω� rð Þð Þ ð1:21Þ
See the reference by BMW, page 92 for a proof. Also,

R
• • ¼ R

• •

0 þ r
• • ð1:22Þ

Combining Eqs. (1.21) and (1.22), we obtain

R
• • ¼ R

• •

0 þ r
• •

b þ 2 ω� r
• •

bð Þ þ ω• � rð Þ þ ω� ω� rð Þð Þ ð1:23Þ
where

R
• •

0 ¼ absolute acceleration of the origin of the moving frame

r
• •

b ¼ relative (apparent) acceleration of P in the moving frame

2 ω� r
•

bð Þ ¼Coriolis acceleration due to motion of P in x, y, z frame, where

ω¼ angular velocity

ω• �r¼ acceleration of P due to ω change, i.e., due to angular acceleration, where

ω• ¼ angular acceleration

(ω� (ω� r))¼ centripetal (center-seeking) acceleration which depends on the

position of P with respect to the axis of rotation

Coriolis acceleration causes a particle moving along the Earth’s surface (in a

tangent plane) to drift to the right in the Northern Hemisphere and to the left in the

Southern Hemisphere. This acceleration determines the sense of the rotation of

cyclones. For more information on Coriolis acceleration, see the reference by Linn

and two by Van Domelen.

References for this chapter: Arfken and Weber; Bate, Mueller, and White;

Battin 1999; Kane and Levinson; Kaplan; Lawden; Linn; Schaub and Junkins;

Thomson; Van Domelen, dvandom.com and eyrie.org Websites; Weisstein; and

Wiesel.
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Exercises.

1.1 Recall the defining property for an orthogonal matrix α as defined in Eq. (1.16).

Prove that the defining property and the following two properties are

equivalent:

(i) The matrix α satisfies the equation α�1¼αT.

(ii) The column vectors of the matrix α are orthogonal, unit vectors.

1.2 Which, if any, of the following matrices, α and β, is (are) orthogonal? Explain.

α ¼
0 1 0

4=5 0 3=5
3=5 0 �4=5

2
4

3
5, β ¼

0 1 0

4=5 0 3=5
3=5 0 4=5

2
4

3
5

1.3 Which, if any, of the matrices, α and β, defined in Exercise 1.2 define(s) a linear
transformation? Explain.

1.4 (a) Show that the transformation defined by

x

y

� �
¼ α

X

Y

� �
:

is orthogonal for

α ¼ cos θ sin θ
� sin θ cos θ

� �

(b) Show that the transformation defined by

x

y

z

2
4

3
5 ¼ α

X

Y

Z

2
4

3
5

is orthogonal for the matrix α defined in Eqs. (1.17) and (1.18) as the

product βγδ of three rotation matrices.

1.5 Determine the inertial components of the point (5, 10, 15) in the rotating x, y, z

coordinate system when the Euler angles ψ¼ 60�, θ¼ 45�, and ϕ¼ 30�.
1.6 Consider the point whose inertial components are X¼ 5 km, Y¼ 10 km, and

Z¼ 15 km. Determine the components of this point in a rotating frame when

the Euler angles ψ¼ 30�, θ¼ 60�, and ϕ¼ 45�.
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Keplerian Motion 2

2.1 Introduction

Orbital Mechanics Versus Attitude Dynamics

In studying the motion of a spacecraft, we consider it to be a rigid body and rely on a

basic theorem.

Def.: A rigid body is a system of particles whose relative distances are fixed.

Theorem (which we take to be evident):

The motion of a rigid body can be described in terms of:

(a) Translations of its center of mass (Orbital Mechanics).

(b) Rotations about the center of mass (Attitude Dynamics).

Reducing a Complex Problem to a Simplified Problem

We seek to describe the flight path (translational motion) of a spacecraft through

interplanetary space or of a celestial body through the universe. Imagine a space-

craft in orbit about the moon, which is in orbit about the earth, which is in orbit

about the sun, which is in orbit about the center of the Milky Way Galaxy, which is

in orbit about the Local Cluster of galaxies, etc. How can we describe the flight path

or trajectory of the spacecraft? In this flight, the spacecraft experiences gravita-

tional attraction from all the bodies of the universe plus non-gravitational forces

(to be discussed in Chap. 5). This is a complicated problem. We will simplify the

mathematical model to get the most important features and then add perturbations

to the nominal or reference trajectory in Chap. 5.

# Springer International Publishing Switzerland 2015
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2.2 Two-Body Problem

Derivation of the Equation of Motion: The Mathematical Model

We develop the equation of motion (the math model) for a satellite experiencing

gravitational forces only. Other forces and all torques are assumed to be zero.

Consider an X, Y, Z inertial system. Figure 2.1 shows the positions r1 and r2 of

the two masses, m1 and m2, respectively, the position rc of the center of mass (cm),

and the position r¼ r1� r2 of m1 with respect to (wrt) m2.

Def.: The center of mass for the 2-body system in the X, Y, and Z frame is

rc ¼ m1r1 þ m2r2

m1 þm2

ð2:1Þ

where m1 +m2¼ the total mass of the system.

Assume:

1. The bodies of mass m1 and m2 are point masses or are spherically symmetric.

2. The particles m1 and m2 never touch.

3. No forces are acting on m1 and m2 other than the gravitational ones between m1

and m2. These forces act along the line joining the two centers of mass.

Assumptions (1) and (2) imply that we can treat m1 and m2 as particles located at

their centers of mass. We refer to the motion of the two masses as “2-body

mechanics” or “Keplerian motion.”

By rearranging Eq. (2.1), we obtain

r1 � rc ¼ m2r

m1 þm2

ð2:2Þ

which gives the distance from m1 to the center of mass of the 2-body system. By

solving this equation for r1 and differentiating with respect to t twice, we obtain the

acceleration of mass m1

m1

Y

X

Z m2

r = position of m1 wrt m2

rc
r1 – rc

rc – r2

r
r2

r1

Fig. 2.1 Two-body system

in inertial coordinates
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€r1 ¼ €re þ m2

m1 þm2

€r ð2:3Þ

Similarly, we obtain

r2 � rc ¼ � m1r

m1 þm2

ð2:4Þ

which gives the distance from m2 to the center of mass of the 2-body system, and

the acceleration of m2

€r2 ¼ €rc � m1

m1 þm2

€r ð2:5Þ

Let F1¼ the force acting on m1 and F2¼ the force acting on m2. Then, from

Eqs. (1.2) and (2.3),

F1 ¼ m1€r1
¼ m1€rc þ m1m2

m1 þm2

€r ð2:6Þ

and similarly

F2 ¼ m2€r2 ¼ m2€rc � m1m2

m1 þm2

€r: ð2:7Þ

NIII implies that

F1 ¼ �F2 ð2:8Þ
Combining Eqs. (2.6)–(2.8), we obtain the equation

m1€rc ¼ �m2€rc

which implies that

m1 þm2ð Þ€rc ¼ 0

Therefore, €rc ¼ 0 because m1 +m2 6¼ 0.

Hence, we have the following

Result: The center of mass never accelerates and _rc ¼ constant.

Therefore,

F1 ¼ m1m2

m1 þm2

€r ð2:9Þ

from Eq. (2.6).
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Newton’s Universal Law of Gravitation is

F1 ¼ �Gm1m2

r2
r

r

� �
Equating the two expressions for F1, we obtain the following equation.

(Differential) Equation of Motion for the Two-body System

d2r

dt2
þ μ

r2
r ¼ 0 ð2:10Þ

where

μ ¼ G m1 þm2ð Þ

Given a new equation, it is often productive to see what you can observe from

it. We observe the following:

Properties of the EOM:

1. The equation relates relative motion, i.e., motion of m1 with respect to m2, not

motion of r1 or r2 in the inertial system.

2. Given position r, we know the acceleration €r and vice versa.

3. There are no velocity terms.

4. The vector equation is equivalent to three scalar equations:

€xþ μ
x

r3
¼ 0

€yþ μ
y

r3
¼ 0

€zþ μ
z

r3
¼ 0

5. By writing the equation as

€r ¼ � μ

r2
r̂

we see that

€r / 1

r2

From this relationship, we see that acceleration decreases with the area of the

surface of a sphere, S¼ 4πr2.
6. The equation is a nonlinear (non-constant coefficient because of the 1/r2),

second-order vector differential equation.
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7. An alternate form of the equation is as a set of first order differential equations:

v

v
•

� �
¼ r

•

� μ

r3
r

" #

8. There are at least 6 constants of integration:

r0 ¼ x0; y0; z0ð Þ where r0 ¼ r t0ð Þ
v0 ¼ x

•

0; y
•

0; z
•

0ð Þ where v0 ¼ v t0ð Þ
9. The equation is unchanged if r is replaced by �r, so the equation gives the

motion of m2 with respect to m1 and m1 with respect to m2.

Even though the second-order vector differential equation governing the relative

motion of two bodies is nonlinear, we will find that the equation does have a

completely general analytical solution. The solution of the differential equation is

expedited by some ad hoc vector operations applied to the equation of motion.

These vector manipulations produce transformed versions of the equation of motion

that are perfect differentials and, hence, immediately integrable.

Solution of the Equation of Motion

1. Cross r with the equation of motion and, by integrating, obtain the constant of

integration h¼ r x v.

r� d2r

dt2
þ μ

r3
r

� �
¼ 0

r� d2r

dt2

� �
¼ 0 because r� r¼ 0 from Eq. (A.8)

But
d

dt
r� dr

dt

� �
¼ dr

dt
� dr

dt

� �
þ r� d2r

dt2
¼ r� d2r

dt2

Therefore,
d

dt
hð Þ ¼ d

dt
r� dr

dt

� �
¼ 0

Def.: The vector h¼ r� dr/dt¼ r� v is the angular momentum per unit mass

(or specific angular momentum).

We will call h the “angular momentum.” (We have used this term for hO.) The

vector h is interpreted as a massless angular momentum.

By integrating the equation

dh

dt
¼ 0

we see that h is a constant vector. That is, angular momentum is conserved in

2-body motion.
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Since h¼ r� v, r is orthogonal to h and v is orthogonal to h where h is a

constant vector, which implies that h is orthogonal to a plane that always contains

r and v. Therefore, the motion takes place in the plane h•r¼ 0. Hence, the plane

of motion is fixed in inertial space. We call this plane the “orbit plane.”

2. Cross the equation of motion with h and, by integrating, obtain the constant of

integration e.

d2r

dt2
� h ¼ � μ

r3
r� h ¼ � μ

r3
r� r� vð Þ½ � ¼ � μ

r3
r •vð Þr� r •rð Þvð Þ

from the vector triple product expansion in Eq. (A.12)

�μ

r3
r •

dr

dt

� �
r� r • rð Þdr

dt

� �
¼ �μ

dr

dt
r� r

dr

dt

� �
r2

fromExercise A.8 andEq. (A.3)

¼ μ
d

dt

r

r

� �
Therefore,

d2r

dt2
� h ¼ μ

d

dt

r

r

� �
where h is a constant vector.

Integrating this last equation obtains

dr=dt � h ¼ μ r=r þ eð Þ ¼ μ=rð Þ rþ reð Þ
where e¼ a constant vector of integration called the eccentricity vector.

3. Dot the equation in e with h.

dr

dt
� h

� �
• h ¼ μ

r
rþ reð Þ •h

By interchanging the dot and cross product as in Eq. (A.14), we obtain

dr

dt
• h� hð Þ ¼ μ

r
r • hþ μe • h ¼ 0

because h� h¼ 0.

� μ

r
r •hþ μe • h ¼ 0

because r•h¼ 0

Therefore, e•h¼ 0.

Therefore, e ⊥ h, so that the vector e lies in the orbit plane. We will use the

orientation of e as a reference direction.
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4. Dot r with the equation in e.

r •
dr

dt
� h

� �
¼ μ

r
rþ reð Þ • r

r� dr

dt

� �
• h ¼ μ

r
r2 þ μ

r
re • r

h2 ¼ h •h ¼ μ rþ e • rð Þ

h2

μ
¼ rþ e • r ¼ rþ er cos θ

where θ¼∠(e, r) from Exercise A.1.

r ¼ h2=μ

1þ ecosθ

where θ¼∠(e, r). We call this equation the “Conic Equation.”

But this equation for r is the general polar equation for a conic section with

origin at a focus. Therefore, the relative position r travels through a conic section

orbit. QED

There are four conic sections: circle, ellipse, parabola, and hyperbola.

Conic Equation:

r ¼ h2=μ

1þ ecosθ
ð2:11Þ

rmin ¼
h2=μ
� 	
1þ e

¼ ratθ ¼ 0 deg

Therefore, e is parallel to the direction of r that has the minimum magnitude of r.

The KE of the 2-body problem is

KE � 1

2
m1v

2
1 þm2v

2
2


 � ¼ 1

2
m1 þm2ð Þ rc• • rc

• þ 1

2

m1m2

m1 þm2

r
•

• r
•

� �

from Exercise 2.1.

Def.: The angle θ between the position vector r and the eccentricity vector e is

known as the true anomaly.

The word “anomaly” goes back to Ptolemy, who said: “Any angle that does not

increment uniformly in time iswrong or anomalous.”Hence, the angle θ is an anomaly.

An Application: Methods of Detecting Extrasolar Planets

Scientists have studied the motion of stars to detect the existence of planets outside

of the solar system. Consider a star that has a massive planet—say Jupiter-sized.

Its motion about the center of mass (barycenter) of the system can be observed,
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indicating the existence of the planet, by measuring Doppler shifts in the star’s light

caused by motion toward and away from us. This technique is sometimes called the

“radial velocity method” or the “wobble method.”

Methods of Detecting Extrasolar Planets:

1. Astrometry involves measuring the precise motions of a star on the sky as an

unseen planet tugs the star back and forth.

2. Radial velocity detects the wobble of a star by measuring Doppler shifts in the

star’s light caused by motion toward and away from us.

3. The transit method looks for dips in a star’s brightness as orbiting planets pass by

and block the light from the star.

2.3 Central Force Motion

Another Simplifying Assumption

For the problem of a spacecraft moving about a planet or a planet moving about the

sun, one mass is much greater than the other. Hence, we assume

4. m2>>m1.

Then the motion of m1 is essentially the motion of a particle in an inertially fixed

field centered at m2 because rc¼ r2. Strictly speaking, this model is the “relative

2-body problem,” because we solve for the motion of the satellite relative to the

central body. However, as we will learn later, this is the only n-body problem, for

any n, that can be solved analytically in closed form. So there is no confusion

introduced by referring to it as the “2-body problem,” as is often done (Fig. 2.2).

Recall that the cm of a 2-body system never accelerates. For example, the earth

has eccentricity e> 0 but small, which implies that the cm does accelerate slightly.

However, a system centered at the cm of the earth is “inertial enough,” i.e., it is

close enough to being inertial.

m1

Y

X

Z m2

rcr2

r1

Fig. 2.2 Moving the center

of motion for the two-body

system
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Def.: A force whose line of action always passes through a fixed point O in inertial

space and whose magnitude is a function only of the distance r from the fixed point

O is called a central force.

Def.: A central force is attractive or repulsive according to as it is directed toward or

away from the fixed point O.

Def.: An inverse square force is a central force whose magnitude is inversely

proportional to the distance squared (r2) from O.

We are interested in the gravitational force F in Newton’s Law of Universal

Gravitation:

F ¼ �Gm1m2

r2
r

r

which is an attractive central force.

Since m2>>m1,

μ ¼ G m1 þ m2ð Þ ffi Gm2

i.e., m1 is negligible.

Modeling Assumptions:

1. r
•

2 ¼ r
•

c ¼ 0

2. r2¼ rc as in Fig. 2.3

3. m1 +m2¼m2

If m2>>m1, KE ¼ 1
2
m1 r

•

• r
•� 	

from Exercise 2.2.

Central force motion results in a conic section orbit of the form

r ¼ h2=μ

1þ e cos θ

m1 at r1

Y

X

Z m2 at r2 = rc

r
r2

r1

Fig. 2.3 Two-body system

with center of motion at m2
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with the focus at the center of motion, m2, and μ¼Gm2. Thus, we have proved

Kepler’s first law (KI) from Newton’s Laws. In the process, we have extended KI to

include circles, parabolas and hyperbolas in addition to ellipses (as in KI).

We drop the subscript on m2 so that μ¼Gm. where m¼mass of the central

body. Therefore, the conic equation is independent of the mass of the orbiting body.

We have normalized the gravitational force by dividing out the mass m1 of the

smaller body to obtain

F ¼ �Gm2

r2
r

r
¼ � μ

r2
r

r
, μ ¼ Gm2

Dropping the subscript 2, we have

F ¼ �Gm2

r2
r

r
¼ � μ

r2
r

r
, μ ¼ Gm

Let

U ¼ U rð Þ ¼ μ

r

Then

F ¼ ∇U ð2:12Þ
and F is conservative from Exercise 2.14. The function U�U(r) is called the

“gravitational potential” and is equal to the negative of the potential energy,

U¼�PE, from the property shown in Chap. 1 that U¼∇V(r) where V(r)¼ PE

by definition.

If F is conservative, then the Law of Conservation of Total Energy applies, so

that

E ¼ KE

unitmass
þ PE

unitmass
¼ T � U ¼ m1 r

•

• r
•

2m1

� μ
r

That is,

E ¼ v2

2
� μ

r
¼ constant ð2:13Þ

which we call the “Energy Equation.”

One author said of this equation “If this –were absent, thenwaterwould flowuphill”

without further remarks. I thought this comment was unusual, until I realized that he

means that water would flow uphill in the model. The term μ/r decreases as r increases,
which implies that moving to lower PE would occur as r increases, i.e., as water flows

uphill. We have�μ/r, which decreases as r increases. The author is teasing us.
In the future, when we say “KE” or “PE,” we will be referring to the normalized

KE and normalized PE, respectively.

32 2 Keplerian Motion

http://dx.doi.org/10.1007/978-3-319-09444-1_1


Remarks:

1. In potential theory, we consider a force field, i.e., a region in space in which a

force F is defined at every point. For our application, the field is gravitational

with F(x, y, z) being the force acting on a unit mass at each point (x, y, z).

The force F experienced by a unit test body of the appropriate nature is called the

field intensity.

2. The amount of work that must be done when a unit test body is moved along an

arbitrary curve in the force field defined by the vector function F is the line

integral of the tangential component of F, i.e.,

W ¼
ðr2
r1

F • dr

as defined in Chap. 1. If there is no dissipation of energy through friction or

similar effects, then the force F is conservative and is the gradient of the scalar

function

U x, y, zð Þ ¼
ðr2
r1

F • dr

The function U is called the “potential function of the field.” We call U the

“gravitational potential.”

3. A gravitational field is conservative. That is, an object moving under the

influence of gravity alone does not lose or gain mechanical energy but only

exchanges one form of energy, kinetic, for another, potential energy.

4. We choose the zero reference for PE at infinity. The price we pay for this

simplification is that the PE of a satellite is always negative.

Velocity Vector

This subsection describes properties of the velocity vector for use in the continuing

development.

The velocity vector

v � dr

dt
� lim

Δt!0

r tþ Δtð Þ � r tð Þ
Δt

¼ lim
Δt!0

Δr
Δs

Δs
Δt

¼ ds

dt
r̂ T

where r̂ T denotes a unit vector tangent to the flight path at point P (as shown in

Fig. 2.4) and
ds

dt
is the rate of change of arc length. Therefore, the velocity vector v is

the rate of change of arc length traveled and is always tangent to the path of the

particle.
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Let ir denote a unit reference vector along the radial direction and iθ a unit

reference vector along the transverse that is in the orbit plane and along the

direction of spacecraft motion as shown in Fig. 2.5. The center of attraction is at

center of an inertial system, but the coordinate system having ir and iθ as reference

vectors is non-inertial, because it is rotating. We now decompose the velocity

vector into two orthogonal components.

r ¼ rir

v � dr

dt
¼ d

dt
rirð Þ ¼ r

•

ir þ r
d

dt
irð Þ ¼ r

•

ir þ r
dir

dt

� �
b

þ ω� irð Þ
� �

by Theorem 2

But
dir

dt

� �
b

¼ 0 because it is the derivative of a constant vector and

ωxir ¼ θ
•

ĥ x ir ¼ θ
•

sin
π

2
iθ so that

v ¼ r
•

ir þ r
•

θ
•

iθ ð2:14Þ
where the first term is the “radial component of v” and the second term is the

“transverse component of v.”

Center
of attraction

v = dr
dt

h

e

r

^
^

ir
iq

Fig. 2.5 Radial and

transverse components

of the velocity vector

Y

X

Z

P

r(t)

rT

r(t+Δt)

Δs

^Fig. 2.4 Defining the

velocity vector
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From Eq. (2.14), we obtain

KE ¼ v2

2
¼ r

•ð Þ2 þ r2 θ
•
� �2

ð2:15Þ

and

h � rxv ¼ rx r
•

ir þ r θ
•

iθ

� �
¼ rxr θ

•

iθ ¼ r2 θ
•

sin
π

2
ĥ

From the latter equation, we obtain

h ¼ r2 θ
• ð2:16Þ

Def.: The parameter or semilatus rectum p is

p ¼ h2=μ ð2:17Þ
Combining Eqs. (2.11) and (2.17), we obtain an alternate form of the Conic

Equation:

r ¼ p

1þ e cos θ
ð2:18Þ

At θ¼�π/2, r¼ p.

The magnitude of the eccentricity vector

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

μ
E

s
ð2:19Þ

where

e ¼ ffiffiffiffiffiffiffiffi
e • e

p

and e denotes the eccentricity vector. We know from analytic geometry that

e indicates the orbit shape.

Energy Equation

From Exercise 2.6, we obtain the (very important) Energy Equation:

E ¼ v2

2
� μ

r
¼ � μ

2a
ð2:20Þ

where a denotes the semimajor axis of the conic section orbit

E is constant at all positions in the orbit. E is called the “specific mechanical

energy (of the satellite).” We usually just call it the “energy.”
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An alternate form of the Energy Equation is obtained from Eq. (2.14) as

r
•ð Þ2 þ r θ

•
� �2
2

� μ

r
¼ � μ

2a
ð2:21Þ

Remarks:

1. The energy E is independent of the eccentricity e. That is, the energy depends

on the size of the orbit, but not on the shape of the orbit.

2. Fix r. As v increases, the energy increases and, therefore, a increases.

Vis-Viva Equation

Solving the Energy Equation for v2, we obtain the Vis-Viva Equation:

v2 ¼ μ
2

r
� 1

a

� �
ð2:22Þ

Geometric Properties of Conic Sections

The circle, ellipse, parabola, and hyperbola are often called “conic sections” because

they can be obtained as sections cut (sliced) from a right circular cone by a plane as in

Fig. 2.6. The type of conic depends on the angle between the cutting plane and the

base of the cone. If the plane section is parallel to the base, the conic is a circle. If the

plane is inclined to the base at an angle less than that between the lines that generate

the cone and its base, the section is an ellipse. If the cutting plane is parallel to one of

the generators, the section is a parabola. Finally, if the plane is inclined to the base at

a still greater angle, the plane will also cut the cone formed by the extension of the

generators. The section consisting of these two parts is a hyperbola.

Hyperbola

Hyperbola

Parabola

Ellipse

Circle

Fig. 2.6 Conic sections
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Although conic sections were known to the ancient Greeks, the simplest proof,

which relates the geometrical property to the focal definition of the ellipse, was

supplied in 1822 by the Belgian mathematician Germinal P. Dandelin (1794–1847).

Reference: Richard H. Battin, 1999.

We consider each conic section in turn.

1. Ellipse (a> 0)

Def.: An ellipse is the locus of all points, the sum of whose distances from two

fixed points (the foci) is constant.

That is, as indicated in Fig. 2.7, an ellipse is the set of all points P such that

PF þ PF� ¼ 2a

where F and F* are the foci. The central body is located at F, while F* is called

the “vacant focus.”

The following formulas are available from analytic geometry.

e ¼ a2 � b2
� 	1=2

=a

b ¼ a 1 � e2
� 	1=2

p ¼ a 1 � e2
� 	

where a is the semimajor axis, b is the semiminor axis, and p is the semilatus

rectum.

2. Hyperbola (a< 0)

Def.: A hyperbola is the locus of all points, the difference of whose distances

from two fixed points (the foci) is constant.

That is, as indicated in Fig. 2.8, a hyperbola is the location of all points P and

P* such that

b
P

F
b

F∗

a
2a

Fig. 2.7 An ellipse
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PF� � PF ¼ �2a ðreal branchÞ
P�F� P�F� ¼ �2a ðimaginary branchÞ

The spacecraft travels along the real branch.

The following formulas are available from analytic geometry.

e ¼ a2 þ b2
� 	1=2

= �að Þ

b ¼ a e2 � 1
� 	1=2

p ¼ a 1 � e2
� 	

We follow the convention that a< 0 and b< 0. Be aware that some authors do

not follow this convention.

3. Parabola

Def.: A parabola is the locus of all points whose distance from a fixed point (the

focus) is equal to the distance from a fixed straight line (the directrix).

That is, as indicated in Fig. 2.9, a parabola is the set of all points P that satisfy

the following equation:

PF ¼ PN

where N denotes the directrix N.

P

F
−a

−ae

−b
r

P∗

F∗

Real
branch of
trajectory

Imaginary
branch of
trajectory

Fig. 2.8 A Hyperbola
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Formulas:

e ¼ 1

p ¼ 2rp

where rp denotes the radius at periapsis The value of p can be determined from

the Conic Equation by evaluating r at 0	 true anomaly to obtain rp¼ p/2.

Orbit Classification: Conic Section Orbits

Figure 2.10 displays the categories of conic section orbits for e> 0. The point of

closest approach on any conic section orbit has several names: periapsis, periapse,

perifocus, plus names that are used for specific central bodies. For example, the

periapsis of an orbit about the sun is called “perihelion”, about the earth “perigee,”

about Jupiter “perijove,” about Saturn “perichrone,” and about the moon of the

earth “perilune.”

The energy E for each type of conic section orbit can be deduced from

Eq. (2.19). For example, the energy of an ellipse must be negative for the radicand

in Eq. (2.19) to be non-negative.

p for
e=1

Point of closest
approach

p for
e>1

P

F

0 < e < 1

Fig. 2.10 Conic section

orbits for e> 0

N

directrix

P
p=2rp

Frp

Fig. 2.9 A parabola
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Range of e Orbit shape Energy E
0 Circle <0

0< e< 1 Ellipse <0

1 Parabola 0

>1 Hyperbola >0

When my children were in elementary school, I conducted a Math and Science

club after school, meeting about once per month. In one of these meetings, I told a

story to describe the motion of a spacecraft at launch. Since I wanted to pick

someone in the class who had a good arm, I asked if the pitcher from the baseball

team was in the room. The answer was “No.” So I asked if the catcher was in the

classroom, knowing that she was there because she was my daughter, Tana. Tana

raised her hand. (I was very proud. By the way, I could have picked her twin sister,

Kristin, who was the shortstop and backup catcher. But I continued the story with

Tana.) Then I asked, “What is the tallest building in the world and we agreed that it

was the Sears Building in Chicago. Then I said that Tana took her baseball to the top

of the Sears Building and throw the ball off the building. The ball fell to the ground.

She was not happy with that flight so she retrieved her baseball and threw it harder a

second time. The ball traveled further from the building but fell to the ground. It

took the same length of time to hit the ground because the force of gravity was the

same. Again she was not happy. So she retrieved her baseball and wound up and

threw it even harder. This time the ball fell at the rate of the curvature of the earth,

moving in a circle about the earth. Each time Tana threw the ball I drew the path in

Fig. 2.11 on the board in the classroom. Tana put on her glove and walked to the

other side of the building and caught the ball. She threw the ball again still harder so

that the ball traveled higher than the last time. But eventually the force of gravity

pulled the ball down as it moved around the earth. It moved in an ellipse until it

arrived back where Tana caught it. Then she threw it harder so that the ball escaped

the pull of gravity, moving along a curved path called a “parabola.” Throwing the

ball still harder sent it on another path called a “hyperbola,” which I drew on the

board, as shown in Fig. 2.11. At this point, I said, “You know that a baseball cannot

be launched this way.” I said that we really use a spacecraft to launch our payload as

shown in the bottom of Fig. 2.11, which I drew on the board. I said the spacecraft

travels at about 8,000 miles per hour so that it will fall at the rate of the curvature of

the earth.

One question that remains is: “What keeps the spacecraft in orbit from falling?”

The answer is: “Nothing.” If the spacecraft were not falling, then, by Newton’s First

Law of Motion, it would continue flying in a straight line as shown in the upper

right of Fig. 2.12. But it is falling at the rate of curvature of the earth, so it travels in

a circular path around the earth.
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Types of Orbits

We consider various types of orbits that satellites or spacecraft might travel in

around a central body.

Def.: A satellite is any object in orbital motion.

Natural satellites are those objects that were not sent into space by humans.

An artificial satellite or spacecraft is a machine sent into space by humans.

Time is a fundamental parameter in the analysis of orbits. As humans improved

their ability to measure time, they noticed that the time of day as measured by a

Earth

hyperbolic
orbit

Parabolic
orbit

8,000 mi/hr
“above”

atmosphere

Se
ar
s

e = 0

0 < e < 1

Fig. 2.11 Tana throws her baseball

NI if not falling

if is falling

Fig. 2.12 What keeps the

spacecraft in orbit from

falling?
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sundial could vary from the norm (average) by as much as 15 min. in February and

November as shown in Fig. 2.13, which shows the minutes slow or fast compared to

the average solar day.

Reference: Jesperson and Fitz-Randolph, reprinted with permission of Dover

Publications, Inc.

Def.: A solar day is the time interval between two successive “high noons” or upper

transits of the sun.

Def.: A mean solar day is the average length of the individual solar days throughout

the year.

We break up a mean solar day into 24 h.

Def.: A sidereal day is the time interval between two successive high transits of a

star. That is, a sidereal day is the time required for the earth to rotate once on its axis

relative to the stars.

If, in Fig. 2.14, you follow the point A fixed to the surface of the earth, you will

see that it is initially subsolar and points to stars beyond the sun, then, as the earth

turns about its axis and revolves about the sun, A is again lined up with the same

15

10

5

0
JAN

MINUTES FAST

MINUTES SLOW

JULY DEC
5

10

15

Fig. 2.13 Variations in the

length of a day

A

A
Sun

1 Solar
day

A

1 Sidereal

day

Fig. 2.14 Solar and sidereal day
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stars, but not with the sun, and eventually points to the sun again. The point A lines

up with the stars after one sidereal day and with the sun after one solar day.

A sidereal day is shorter than a mean solar day because, during one revolution

of the earth about its axis, the earth moves some distance in its orbit about the sun.

One sidereal day is 23 h:56 min: 4 s of mean solar time.

Reasons for variations in the length of a day:

1. The earth’s orbit is an ellipse.

2. The earth’s axis is tilted at ~23.5	 with respect to the ecliptic plane.

For a sidereal day, these factors are not important at stellar distances.

Figure 2.15 displays several examples of orbits. The actual orbits are not in the

same plane, but are shown as coplanar for comparison purposes. We consider the

following types of orbits:

Fig. 2.15 Orbital altitudes for spacecraft [Published with the permission of Lloyd Wood.

accessed 1/10/2014]
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1. Low Earth Orbit (LEO)

A LEO orbit is above the thickest part of the atmosphere and below one of

different altitudes above the surface of the earth, depending on who is

discussing the matter. So LEO satisfies

~100 mi (161 km)< altitude< ~1500 km, ~2000 km, or ~3000 km

Note that altitude¼ r�R
, where R
¼ the mean equatorial radius of the

earth

Such orbits have τ ~ 90 min. with 16–17 orbits/day and usually are almost

circular with e< 0.03.

Examples: ISS and a parking orbit about the earth

Example: Aura: A Mission to Understand and Protect the Air We Breathe

Altitude ¼ 705 km Launch Date : July 10, 2004

Reference: http://aura.gsfc.nasa.gov/

2. Polar Orbit

A polar orbit travels over (or possibly nearly over) the North and South

Poles.

Objective: Global coverage

3. Geosynchronous Earth Orbit (GEO)

Def.: A geosynchronous orbit (GEO) is an earth orbit that has a period equal to

one sidereal day.

Def.: A geostationary orbit (GEO) is a circular, geosynchronous orbit in the

earth’s equatorial plane.

A spacecraft that is in a geostationary orbit will hover over a fixed point on

the earth’s equator.

4. Medium Earth Orbit (MEO)

Examples:

GPS (aka NAVSTAR)

24 active satellites in four planes of six satellites each

Glonass (Russian System)

24 satellites with 8 satellites in each of 3 planes

Galileo (European System) In development

5. HEO

Highly Elliptical Orbit, e.g., Molnya orbit

High Earth Orbit, e.g., GEO

6. Molnya Orbits

“Molnya” is Russian for “lightning.”

τffi 12 h (semisynchronous). Other orbit parameters will be defined later.

The apogee and perigee are fixed.

The spacecraft speeds through perigee (recall KII) and then spends most of

its time over Northern Europe or North America.

Applications: Such orbits were developed during the Cold War so the USSR

could spy on us. Now they are used for high latitude communication.
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7. Geosynchronous Transfer Orbit (GTO)

In a GTO, the spacecraft travels through one-half of an ellipse that connects

the LEO and GEO as is shown in Fig. 2.16

8. Frozen Orbit

Characteristics: Minimizes changes in a set of orbit parameters (to be defined

later)

9. Sun Synchronous Orbit (SSO)

Characteristics: The orbit rotates so as to maintain approximately constant

orientation (to be defined later) with respect to the sun.

10. Repeating Ground Track

Characteristic: Subsatellite ground track repeats.

Example: Aquarius/SAC-D where the Aquarius experiment was supplied by

NASA and SAC-D experiments by CONAE (Space Agency of Argentina).

Orbit characteristics: Frozen orbit, SSO, repeating ground track, nearly

polar, and LEO at 705-km altitude above the earth

Examples: The A-Train is a precession of 4 (was 5) earth-orbiting satellites,

Aqua, CloudSat, CALIPSO, and Aura. Parasol moved out of the A-Train on

December 2, 2009 to 3.9 km below the altitude of the A-Train.

Reference: Aviation Week, June 14, 2004

11. Interplanetary Trajectories are heliocentric orbits (to be defined later).

Flight Path Angle

Recall the following definition.

Def.: The velocity vector (aka velocity) is the rate of change of position.

The velocity vector is a directed quantity.

Recall that the velocity vector v is the rate of change of arc length traveled and is

always tangent to the path of the particle.

The velocity vector is

v ¼ r
•

ir þ r θ
•

iθ

with magnitude

LEO

1 an ellipse
2

GEOFig. 2.16 GTO
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v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
•� 	2 þ r θ

•
� �2r

As shown in Fig. 2.17, we define

Def.: The flight path angle β is the angle between the velocity vector v and the local
horizontal (i.e., the direction perpendicular to r along the direction of motion) with

positive values corresponding to v above (with respect to the center of attraction)

the horizontal direction.

The flight path angle gives the orientation of the velocity vector in the orbit

plane. The magnitude of the Radial component of the velocity vector is

r
� ¼ dr

dt
¼ v cos ∠ r, vð Þð Þ ¼ v sin β ð2:23Þ

The magnitude of the transverse component of the velocity vector is

r θ
•

¼ vsin ∠ r, vð Þð Þ ¼ vcosβ ð2:24Þ
We consider values of the flight path angle for each of the conic sections.

1. Circle e¼ 0

As is shown in Fig. 2.18a, β� 0	 for circular orbits.
2. Ellipse 0< e< 1

As is shown in Fig. 2.18b,

0 < θ < π iff β > 0

π < θ < 2 iff β < 0
ð2:25Þ

β¼ 0 at periapsis and apoapsis

Also,

Radial component of v ¼ r
• ¼ 0 at periapsis and apoapsis

Transverse component of v ¼ r θ
•

¼ v at periapsis and apoapsis

Center of
attraction

b

Radial component
of v

Transverse 
component of v

v

r

Ð(r,v)
Fig. 2.17 Definition of flight

path angle
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3. and 4. Parabola and Hyperbola

β ¼ 0 at periapsis

r
• ¼ 0 at periapsis

r θ
•

¼ v at periapsis

We proceed now to derive an identity relating β and θ:

v sin β ¼ r
• ¼ dr

dθ

dθ

dt
¼ dr

dθ

h

r2
from Eq. (2.16)

¼ � d

dθ

μ 1þ e cos θð Þ
h

� �
¼ μ

h
esinθ

Therefore,

vsinβ ¼ μ

h
esinθ ð2:26Þ

2.4 Position Versus Time in an Elliptical Orbit

Kepler’s Equation

Let 0< e< 1 (Fig. 2.19).

Objective: To determine how long it takes to move from one position, e.g.,

periapsis, to another position at θ in orbit along an elliptical orbit. That is, we

convert from θ to time.

At first, we determine tp from θ and then we generalize to determining Δtp
from Δθ.

One might approach this problem by separating variables and integrating as

follows.

b < 0

b = 0
v = va

b
v

r

r

v b > 0

q

ba b

v = vp
b = 0 at q = 0

Fig. 2.18 (a) Flight path angle for circles. (b) Flight path angle for ellipses
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h ¼ r2
dθ

dt

hdt ¼ r2dθðtp
0

dt ¼
ð θ
0

dθ

1 þ ecosθð Þ2
tp ¼ f θð Þ

Then we could use a table of integrals to obtain a function of θ, depending on the

value of e. Instead of deriving such functions of θ, we proceed to obtain a simpler,

classic result, Kepler’s Equation.

In Fig. 2.20, consider a position r at true anomaly θ and construct a vertical line

from the axis up through the point at the position r to the circumscribing circle of

radius a. Then construct a line from the center of the ellipse to the point of

intersection on the circle. The angle E between this line and the axis is called the

“eccentric anomaly.” The eccentric anomaly E satisfies the equation

cosE ¼ ae þ rcosθ

a
ð2:27Þ

But, from the Conic Equation by solving for cosθ, we obtain

cos θ ¼ p� r

er

r
q

ra rp

tp = time after
       periapsis

Fig. 2.19 Determining

the time after periapsis

from the true anomaly

r
q

p-q

tp

a E

a

ae

Fig. 2.20 Defining

the eccentric anomaly
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Therefore,

cosE ¼
ae þ r

p� r

er
a

¼ a � r

ae
ð2:28Þ

after substituting p¼ a(1� e2). Solving for r in Eq. (2.28), we obtain

r ¼ a 1 � ecosEð Þ ð2:29Þ
Differentiating Eq. (2.29), using the chain rule, we obtain

r
• ¼ aesinEð ÞE• ð2:30Þ

Note that we have the magnitude r as a function of θ in the Conic Equation and now
we have r as a function of the eccentric anomaly E.

Starting from the alternate form of the Energy Equation in Eq. (2.21) and, using

the equations. Equations (2.16), (2.17) and p¼ a(1� e2), we derive the equation

ar2 r
•� 	2

μ
¼ a2e2 � a � rð Þ2 ¼ a2e2 1� a � r

ae

� �2� �
¼ a2e2 sin 2θ ð2:31Þ

Using Eqs. (2.30) and (2.31) and simplifying the resulting equation gives

r E
• ¼ μ

a
¼ constant ð2:32Þ

Using Eq. (2.32) and separating variables gives

rdE ¼
ffiffiffi
μ

a

r
dt

Substituting for r using Eq. (2.29) and integrating givesffiffiffiffiffi
a3

μ

s ð E
0

1 � ecosEð ÞdE ¼
ðtp
0

dt

where the limits of the integrations can be determined from Fig. 2.20.

The integrations obtain Kepler’s Equation:

tp ¼
ffiffiffiffiffi
a3

μ

s
E � esinEð Þ ð2:33Þ

Proving Kepler’s Laws from Newton’s Laws

Setting E¼ 2π in Kepler’s Equation (2.33), we obtain

τ ¼ 2π

ffiffiffiffiffi
a3

μ

s
ð2:34Þ

2.4 Position Versus Time in an Elliptical Orbit 49



This equation proves Kepler’s Third Law, which states that

τ2 / (mean radius)3

For Kepler, a¼ (rp + ra)/2

Reference: Prussing, 1977

Def.: The mean motion or average angular velocity is

n ¼
ffiffiffiffiffi
μ

a3

r
ð2:35Þ

The mean motion is 2π/τ in radians/s.

Now Kepler’s equation can be written as

ntp ¼ E � esinE

During the period from 1618 to 1621, Kepler published a seven-volume work

entitled Epitome Astronomiae Copernicanae. Kepler’s Equation appears for the

first time in Book V of this work.

Sowe are able to relate E to tp. But supposewe are given θ and need to know the time

it takes to go from periapsis to the position at θ. How can we compute E from θ?

sinE ¼ 1 � e2ð Þ1=2 sin θ
1 þ ecosθ

cosE ¼ e þ cos θ

1 þ ecosθ
ð2:36Þ

tan
E

2
¼ 1 � e

1 þ e

� �1=2

tan
θ

2

from Exercise 2.17. The last identity is a very useful relationship between θ and E

because θ/2 and E/2 are always in the same quadrant. Now we can compute E from

θ and then tp using Kepler’s Equation.

Question: For an elliptical orbit having values a and e, how long will it take to

travel from θ¼ θ1 to θ¼ θ2?
Solution is as shown in Fig. 2.21:

Compute E1¼E(θ1) and E2¼E(θ2) from Eq. (2.36).

Compute tp1 and tp2 from Kepler’s Equation.

Compute Δtp ¼ tp2 � tp1 .

To compute θ from E, use

sin θ ¼ 1� e2ð Þ1=2sinE
1 � ecosE

ð2:37Þ
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cos θ ¼ cosE � e

1 � ecosE

which can be derived as Exercise 2.18.

Def.: The mean anomaly is

M ¼ n t � tvð Þ ¼ ntp

The mean anomaly is the central angle the satellite would be at if θ
•

were

constant. Measuring n in rad/s and tp in s gives M in rad. Here we call M an

“anomaly” even though it is linear in time, so it is an “anomalous anomaly.”

So far we have considered:

Orbit size parameters: a, τ, and E,

Orbit shape parameter: e

Shape/size parameters: rp, ra, p, and h

Location-in-orbit parameters: θ, tp, M, and E

We need three independent parameters to describe an orbit. For example, the set {a,

e, θ} is acceptable, but the set {a, τ, θ} is not, because a and τ are not independent.

Remarks:

(1) There are parabolic and hyperbolic forms of Kepler’s Equation (see Chap. 4).

(2) Kepler’s Equation and these other forms of the equation can be used to

determine the position at a specified later time (see Chap. 4). That is, as

shown in Fig. 2.22, we can compute the position r2 at time t1 +Δt.

r2
r1

t1
DtFig. 2.22 Computing

position r2 from Δt

r2

r1

r

q1

q2

tp
1

tp
2

Dtp
Fig. 2.21 Computing Δtp
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Def.: The areal velocity is the rate area is swept out by the radius vector.

As shown in Fig. 2.23,

dA ffi r2

2
dθ ¼ area of a triangle

dA

dt
¼ r2

2

dθ

dt
¼ r2

2
θ
•

¼ h

2
¼ constant

from Eq. (2.16). This argument proves KII from Newton’s Laws.

2.5 Astronomical Constants

In-plane Parameters for Elliptic Orbits of the Planets and Pluto

See Exercise 2.3(a).

Body Gm and Radius of the Planets, Pluto, Sun, Selected Moons

See Exercise 2.3(b).

Astrodynamic Constants

See Exercise 2.3(c).

For more astronomical data, see the Solar System Dynamics Website at http://ssd.

jpl.nasa.gov

2.6 Geometric Formulas for Elliptic Orbits

This section provides several formulas for use in analyzing elliptic orbits. Given

the values of two parameters, we can determine other parameters using these

formulas (Table 2.1).

Reference: Nelson and Loft

The reference provides similar formulas for hyperbolic orbits. However, in using

the hyperbolic formulas, one must make adjustments for the fact that the authors

do not follow the convention that the parameters a and b are negative. To use the

Focus

dA

≅ rΔθ
Δθ

r

Fig. 2.23 Areal velocity
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formulas, it is necessary to make the required changes in sign to have the analysis be

consistent with our approach.

References for this chapter: Arfken and Weber; Aura Website; BMW; Battin,

1999; Bond and Allman; Chamberlin; Jesperson and Fitz-Randolph; Kaplan; Lee;

Mecham; Nelson and Loft; Pierce (revised by Foster); Prussing 1977; Thomson;

Weisstein; Wertz and Larson, 1999; Wiesel; Wood; and Wylie and Barrett

Table 2.1 Geometric formulas for elliptic orbit parameters

a ¼ b

1� e2ð Þ1=2

¼ b2

p

¼ p

1� e2

¼ ra

1þ e

¼ rp

1� e

¼ rp þ ra

2

¼ b2 þ r2a
2ra

¼ b2 þ r2p

2rp

¼ r2a
2ra � p

¼ r2p

2rp � p

b ¼ a 1� e2ð Þ1=2

¼ apð Þ1=2

¼ p

1� e2ð Þ1=2

¼ ra
1�e
1þe

� �1=2
¼ rp

1þe
1�e

� 	1=2
¼ rpra
� 	1=2

¼ 2ara � r2a
� 	1=2

¼ 2arp � r2p

� �1=2
¼ ra

p
2ra�p

� �1=2
¼ rp

p
2rp�p

� �1=2

e ¼ 1� b

a

� �2
 !1=2

¼ 1� p

a

� �1=2
¼ 1� p

b

� �2� �1=2

¼ ra

a
� 1

¼ 1� rp

a

¼ ra � rp

ra þ rp

¼ r2a � b2

r2a þ b2

¼ b2 � r2p

b2 þ r2p

¼ 1� p

ra

¼ p

rp
� 1

p ¼ b2

a
¼ a 1� e2ð Þ
¼ b 1� e2ð Þ1=2
¼ ra 1� eð Þ
¼ rp 1þ eð Þ
¼ 2rpra

rp þ ra

¼ 2b2ra

b2 þ r2a

¼ 2b2rp

b2 þ r2p

¼ 2ra � r2a
a

¼ 2rp �
r2p

a

ra ¼ p

1� e
¼ 2a� rp

¼ b2

rp

¼ rp
1þ e

1� e

¼ prp

2rp � p

¼ aþ a2 � b2
� 	1=2

¼ a 1þ eð Þ

¼ b
1þ e

1� e

� �1=2

¼ a 1þ 1� p

a

� �1=2� �

¼ b2

p
1þ 1� p

b

� �2� �1=2( )

rp ¼ p

1þ e

¼ 2a� ra

¼ b2

ra

¼ ra
1� e

1þ e

¼ pra
2ra � p

¼ a� a2 � b2
� 	1=2

¼ a 1� eð Þ

¼ b
1� e

1þ e

� �1=2

¼ a 1� 1� p

a

� �1=2� �

¼ b2

p
1� 1� p

b

� �2� �1=2( )
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Exercises

2.1 Show that, for the 2-body problem,

KE � 1

2
m1v

2
1 þm2v

2
2


 � ¼ 1

2
m1 þm2ð Þr• c • r• c þ 1

2

m1m2

m1 þ m2

r
•

• r
•

� �

2.2 Show that, for the 2-body problem, if m2>>m1,

KE ¼ 1

2
m2 r

•

• r
•� 	

2.3 Refer to the Solar System Dynamics Website at

http://ssd.jpl.nasa.gov

to complete the following three tables.

(a) In-plane Orbit Parameters for the Planets and Pluto

Body a (AU) e (unitless)

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

(b) Body Gm and Radius

Body Gm (km3/s2) Mean equatorial radius (km)

Mercury 22,032.080

Venus 324,858.599

Earth 398,600.433

Mars 42,828.314

Jupiter 126,712,767.858

Saturn 37,940,626.061

Uranus 5,794,549.007

Neptune 6,836,534.064

Pluto 981.601

Body Gm (km3/s2) Mean radius (km)

Sun 132,712,440,017.987 6.96� 105

Moon 4,902.801 1,737.5

Io

Europa

Ganymede

Callisto

Titan
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(c) Astrodynamic constants

Constant Value

Length of a Julian year (days)

Mean sidereal day (h:min:s)

Gravitational constant (km3/kg s2)

Astronomical unit distance (km)

Speed of light (km/s)

2.4 Prove that

e¼ (1/μ) [(v2� (μ/r)) r� (r • v)v]

where e denotes the eccentricity vector, r the position vector, and v the

velocity vector.

2.5 Show that the eccentricity can be obtained as

e ¼ 1 þ 2E p=μð Þ1=2

2.6 Prove that the energy

E ¼ � μ

2a

Note thatE is a constant that depends only on the size (semimajor axis, a)

of the orbit and not on its shape (eccentricity, e).

2.7 Consider a spacecraft moving in an orbit having

rp ¼ 2R
and ra ¼ 4R
,

where R
 denotes the mean equatorial radius of the earth.

(a) Graph the energy, kinetic energy, and potential energy for this orbit as a

function of true anomaly, 0	 � θ� 360	.
(b) What happens to the energy, kinetic energy, and potential energy as ra

!1 holding rp fixed at 2R
? Show your work or explain your results.

2.8 (a) Derive a formula for computing circular orbit speed from the orbital

radius.

(b) For two spacecraft in circular orbits about a central body, the higher one

has greater energy E . Why does this higher spacecraft have a lower

speed?

2.9 A spacecraft is tracked by ground stations and determined to have an altitude

of 800 km and velocity vector whose radial and transverse components are

�3.5 km/s and 8.0 km/s, respectively, at a specified time t¼ t0.

(a) What type of conic section orbit is the spacecraft in? Explain your answer.

(b) Compute the true anomaly at the time t0.
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2.10 For elliptical orbits (0< e< 1), show that

(a) rp¼ p/(1 + e)¼ a(1� e)

(b) ra¼ p/(1� e)¼ a(1 + e)

(c) h¼ (μrp(1 + e))1/2¼ (aμ(1� e2))1/2

2.11 Consider a satellite in an elliptical orbit about the earth.

(a) Draw a figure that shows this elliptical orbit and label the following

parameters: p, a, b, ae, θ, r (vector), and perigee.

(b) Determine the value of the magnitude r of the position vector at the

semiminor axis in terms of a, e, and p.

(c) Determine the corresponding value of θ in terms of a, e, and p.

(d) Determine the spacecraft’s angular momentum at the semiminor axis in

terms of μ, a, e, and p.

(e) What fraction of the orbital period is required to travel from perigee to

the semiminor axis in terms of μ, a, e, and p.

2.12 Complete the following table by computing the missing entries.

Spacecraft

Body

central a (km) τ e (unitless) p (km) rp (km) ra (km)

SEASAT-A Earth 7,168 0.0008

GPS satellite Earth 0.0 26,561.7

Pioneer Venus

Orbiter

Venus 24 h 0.843

Viking Mars 24.6 h 4,900

Cassini Saturn 116

days

80,680

2.13 Prove that the eccentricity e satisfies the following equation:

e2 ¼ X0 � 1ð Þ2 cos 2β0 þ sin 2β0

where X0¼ r0v0
2/μ and r0, v0, and β0 denote the magnitude of the radius

(position) vector, speed, and flight path angle, respectively, at a specified

time t0.

2.14 The gravitational force F for central force motion in an inverse square field is

F ¼ μ
r2

r

r

with the gravitational potential

U ¼ U rð Þ ¼ μ
r

where μ¼Gm and m is the mass of the central body.

Prove that:

(a) F¼∇U

(b) F is a conservative force.
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2.15 At burnout of the upper stage of the launch vehicle, a spacecraft is at an

altitude of 622 km above the earth with a transverse velocity component of 7.0

km/s and a radial velocity component of 4.0 km/s.

(a) Compute the flight path angle and true anomaly at burnout.

(b) Compute the semimajor axis, period, eccentricity, radius at apogee, and

angular momentum of the achieved orbit.

2.16 At 02:00:00 UTC on December 25, 2004, the Cassini spacecraft delivered the

Huygens Probe to Titan from the following position and velocity vectors:

r ¼ �2684153:865, � 1666234:282, 663859:755ð Þ kmð Þ
v ¼ �0:39769724, � 1:75237359, 0:85252714ð Þ km=sð Þ

in the Saturn-centered, inertial, ecliptic of 2000 coordinate system.

(a) Calculate the flight path angle β0 at probe release in degrees and the

magnitude of the radial and transverse components of v.

(b) Calculate the radial and transverse component vectors of the velocity

vector v.

(c) Calculate the following orbital (size and shape) parameters: a, e, p, rp, ra,

and τ (in days).

(d) Calculate the true, eccentric, and mean anomalies at probe release in

degrees.

(e) Calculate the time tp after periapsis and the length of time (duration) to the

next periapsis passage in days.

2.17 Derive Eqs. (2.36).

2.18 Derive Eqs. (2.37)

2.19 Prove that the angular momentum

h ¼ rvθ

where r is the magnitude of the position vector and vθ is the transverse

component of the velocity vector.

2.20 The Space Shuttle used to orbit the earth in about 90 min. A low-altitude orbit

about either of the inner planets Mercury and Venus takes about 1½ h. An

orbit about Mars takes about the same amount of time. Why are these orbit

periods all about the same? Explain your answer.
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Orbital Maneuvers 3

3.1 Introduction

A spacecraft performs propulsive maneuvers to correct or adjust the size, shape, or

orientation (to be considered later) of its orbit. Thus, we define:

Def.: An orbital maneuver is the transfer of a spacecraft from one orbit into another

orbit via a change in the velocity vector.

Such orbital maneuvers fall into two general categories:

1. Statistical—usually small maneuvers that correct for orbit determination and

maneuver execution errors and small forces experienced in flight.

2. Deterministic—usually large maneuvers to adjust or transfer into another orbit,

e.g., an orbit insertion into a orbit about a planet.

Deterministic maneuvers are implemented with a statistical part that corrects the

errors accumulated by the time the maneuver is designed.

The first category consists of by far the greatest number of maneuvers so we

consider them first.

3.2 Statistical Maneuvers

Trajectory Correction Maneuvers

Statistical maneuvers are usually called “trajectory correction maneuvers”, but also

have other names.

Def.: A trajectory correction maneuver (TCM) is an orbital maneuver performed by

a spacecraft to correct the spacecraft’s flight path. A TCMmay also be called a trim

maneuver, a trim, an orbit trim maneuver (OTM), an orbit correction maneuver

# Springer International Publishing Switzerland 2015

G.R. Hintz, Orbital Mechanics and Astrodynamics,
DOI 10.1007/978-3-319-09444-1_3
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(OCM), or a midcourse maneuver. (The term “midcourse maneuver” is usually

applied to interplanetary corrections.)

Statistical maneuvers are performed to remove the effects of orbit determination

and execution errors experienced at previous TCMs or the launch and other small

errors (cf. Chap. 5). Methods for estimating the trajectory and computing the

associated covariance matrix, which describes dispersions statistically, are treated

in the reference by Tapley, Schutz, and Born (TSB). Maneuver execution errors are

described in terms of the Gates Model (defined in the reference by Gates), which

accounts for four independent error sources: fixed- and proportional-magnitude- and

fixed- and proportional-pointing errors. The word “fixed” does not mean that the

errors are constant, but rather refers to the independence of the two fixed errors with

respect to the magnitude of theΔv vector being implemented. “Proportional” means

that the dispersions of these two are proportional to the magnitude of theΔv. Each of
the four sources is assumed to have a Gaussian distribution with a zero mean. The

reference by Goodson documents the evolution of the execution error model

parameters for the TCMs performed by the Cassini–Huygens spacecraft, along

with the analyses, procedures, and software associated with the model development.

The opportunity to perform maneuvers to correct for statistical errors is planned

in the mission schedule and the onboard sequence of events. As the time of the

statistical TCM draws near, the Navigation Team estimates the trajectory and

compares it to the desired trajectory to see if a TCM is required. The nominal or

expected value of the Δv for such a maneuver is small or even zero and some of

these statistical maneuvers are not performed because the expected miss distance is

within the uncertainties or allowable tolerances.

For example, one or two statistical TCMs are often performed after launch to

remove the launch errors. The 1σ value for the first TCM, if performed at 10 days

after launch, is referred to as the launch vehicle’s “figure of merit” (FOM) and is

used as a measure of the vehicle’s performance.

Selecting a spacecraft maneuver strategy usually involves tradeoffs of many

competing factors. The reference by Hintz and Chadwick describes such a tradeoff

process. The method uses parametric data to cope with targeting requirements,

thruster configuration and performance, hardware constraints, operational

considerations, propellant optimization demands, and expected maneuver execution

and orbit determination errors, while remaining flexible to react to new conditions.

Maneuver Implementation

To make trim maneuvers, the spacecraft must carry propellant and oxidizer or a

monopropellant onboard. There have been spacecraft that did not have a propulsion

system.

Example 1: The Galileo probe after release from the orbiter vehicle 150 days before

arrival at Jupiter did not have the ability to adjust its trajectory, so it was necessary

to deliver the probe within specified targeting conditions at probe release.
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Reference: Hintz and Longuski

Example 2: The Swift spacecraft was launched on November 20, 2004 without a

propulsion system. It did not need to refine its trajectory to look for Gamma Ray

Bursts (GRB).

Performing a TCM usually involves:

1. Turning the spacecraft to point the thrusters in the correct direction to make the

velocity change Δv. The thrusters must point in the direction opposite the Δv
vector so that the thrust will be applied in the correct direction by means of NIII.

The thrust is usually performed in a fixed direction in inertial space. An exception

was implemented by the Cassini spacecraft at Saturn Orbit Insertion (SOI) on

July 1, 2004, when the spacecraft turned at a constant rate during the burn.

2. Igniting the engine at the correct time, equivalently location in orbit.

3. Imparting the Δv. An accelerometer is often used onboard to determine autono-

mously when the correct Δv has been imparted. A timer is used as a backup to

end the burn at a specified later time in case the accelerometer fails to terminate

the burn.

4. Turning back usually to earth pointing for communications. This turn back may

also be called a ”rewind” or an “unwind.”

No turns maneuvers are sometimes used to avoid pointing away from the earth

for safety purposes. These maneuvers are implemented by burning more than one

thruster. Neither thruster may point in the direction of the desired Δv vector, but the
sum of the two Δv vectors will as shown in Fig. 3.1.

Burn Models

These models are:

1. Finite burn—high precision trajectory integration of the equation of motion,

including the acceleration due to the maneuver. The EOM is:

r
� � ¼ � μ

r3
rþ ap

where the first term on the right-hand side of the equation is the acceleration

from two-body motion and the second term is the sum of perturbations

Δvpart 2

Δvpart 1

Δvdesire
d

Fig. 3.1 No turns Δvs
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(see Chap. 5) to two-body motion. This model is required for precision

calculations such as those to determine the maneuver parameters that will be

sent to the spacecraft and executed to obtain a trajectory correction.

2. Impulsive burn in which we set

rf ¼ r0
vf ¼ v0 þ Δv
Burn duration ¼ 0s

ð3:1Þ

where ro and vo denote the pre-maneuver position and velocity vectors, respec-

tively, and rf and vf denote the post-maneuver position and velocity vectors,

respectively. See Fig. 3.2.

This impulsive model is acceptable for analysis purposes if the distance traveled

during the thrusting is negligible when compared to the magnitude of the radius

vector. It is not used to determine maneuver parameters that are to be sent to the

spacecraft.

We will use the impulsive burn model in our analyses.

Note that vf is determined by a vector addition. Therefore, in general,

vf 6¼ v0 þ Δv

There is equality, if the vectors are collinear and have the same direction. If they are

directed in the opposite directions, then

vf ¼ vo � Δv

3.3 Determining Orbit Parameters

Parameter Estimation

Before we perform a TCM, we need to know well enough where the spacecraft

is. An orbit determination analysis uses tracking data from ground stations

and telemetry data from sensors onboard the spacecraft to provide the position

vector¼ (x, y, z), velocity vector¼ x
�

, y
�

, z
�ð Þ, and other “solved for” parameters.

r0

rf = r0

vfv0

ΔvFig. 3.2 Impulsive burn

model
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From the position and velocity vectors, we compute r0, v0, and β0 at t¼ t0, using

Eqs. (A.1), (2.23), and (2.24). The time t0 is chosen when the spacecraft is acted on

by gravity alone, i.e., essentially no drag, thrusting, or other forces.

Analytical Computations

In the following computations, we start with r0, v0, and β0 and then compute other

parameters that can be compared to desired values. If necessary, we perform a

maneuver (fire thrusters) to adjust the orbit.

1. Compute angular momentum h.

Since h is constant, we have

h ¼ r0 � v0j j ¼ r0v0 sin
π

2
� β0

� �
¼ r0v0 cos β0 ð3:2Þ

from Eq. (A.6). See Fig. 3.3.

2. Compute e, which describes the orbit shape, as in

e2 ¼ cos2β0
r0v0

2

μ

� �
� 1

� �2

þ sin2β0

from Exercise 2.13. An alternate form of this equation is

e2 ¼ cos β0 X0 � 1ð Þ2 þ sin 2β0 ð3:3aÞ
where

X0 ¼ r0v
2
0

μ
ð3:4Þ

The computation of e is simpler if it is made at periapsis or apoapsis, since

β0¼ 0 at these points. Therefore,

2
π − b0

b0

v0

r0

Fig. 3.3 Computing angular

momentum

3.3 Determining Orbit Parameters 63

http://dx.doi.org/10.1007/978-3-319-09444-1_A#Equ1
http://dx.doi.org/10.1007/978-3-319-09444-1_2#Equ23
http://dx.doi.org/10.1007/978-3-319-09444-1_2#Equ24
http://dx.doi.org/10.1007/978-3-319-09444-1_A#Equ6


e ¼ rpv
2
p

μ
� 1

�����
����� ¼ rav

2
a

μ
� 1

����
���� ð3:3bÞ

3. Compute θ0 as follows. Solve the Conic Equation (2.11) for cos θ0 to obtain

cos θ0 ¼ 1

e

h2

μr0
� 1

� �

¼ X0 cos
2β0 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X0 � 1ð Þ2 cos 2 β0 þ sin 2 β0

q ð3:5Þ

from Eqs. (3.2) and (3.3a). Using the identity in Eq. (2.26), we obtain

sin θ0 ¼ hv0

μe
sin β0 ¼

X0 cos β0 sin β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X0 � 1ð Þ2 cos 2β0 þ sin 2β0

q ð3:6Þ

from Eqs. (3.2) and (3.4). Therefore,

tan θ0 ¼ X0 sin β0 cos β0
X0 cos 2β0 ‐ 1

where X0 ¼ r0v
2
0

μ

ð3:7Þ

which gives the location in terms of r0, v0, and β0.
Solving Eq. (3.7) for X0, we obtain

X0 ¼ 1= cos2β0 � sin β0 cos β0= tan θ0ð Þ� 	
which gives X0 as a function of β0 for constant θ0. Fixing e and solving for X0 in

the equation for e2, we obtain

X0 ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� e2

cos 2β
0

s

which gives X0 as a function of β0 for constant e. Also,

cos β0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2

2X0 � X0
2

s

Graphical Presentation of Elliptical Orbit Parameters

These results are displayed parametrically in Fig. 4.13.2 of the reference by

Thomson, together with a comparable display for hyperbolic orbits in Fig. 4.13.3.

Thus, we obtain two methods of solution: analytically using the equations and

graphically using the parametric display in Fig. 3.4.
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Properties of the parametric display:

1. The same figure can be used for any central body.

2. The figure displays all possible combinations of e, θ0, β0, and X0 for elliptic

orbits. At this point, it is not clear that the range for X0 is as shown in Fig. 3.4.

However, this point will be clarified below.

3. The figure can be used for graphical determination of any two parameters if the

other two are known, except for the ambiguity case.

Example 1: Suppose r0, v0, and β0 produce the values X0¼ 1.0 and β0¼ 30� from
Eq. (3.4). By examining the parametric display in Fig. 3.4, we determine that

e¼ 0.5 and θ0¼ 120�. Note that we find the intersection of the vertical line
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Graphic presentation of elliptic orbit parameters.
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Fig. 3.4 β versus X0 with e and θ as parameters for elliptic orbits. Reference: Thomson, 1986

[Figure published with the permission of Dover Publications, Inc.]
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X0¼ 1 and the horizontal line for β0¼ 30� and then move along the θ curve to read
the value θ¼ 120� along the vertical axis on the right-hand side of Fig. 3.4.

Example 2 (Ambiguity Case): Consider the values e¼ 0.5 and X0¼ 1. By examin-

ing Fig. 3.4, we obtain two points: β0¼ 30� and θ0¼ 120� where the spacecraft is
leaving periapsis and β0¼�30� and θ0¼ 240� where the spacecraft is approaching
periapsis. The two points are symmetric about the periapsis.

By multiplying the Energy Equation in the form

E ¼ v20
2
� μ
r0

by 2r0/μ and solving for X0, we obtain the equation

X0 ¼ 2r0

μ
E þ 2

Therefore,

0 � X0 ¼ 2r0

μ
E þ 2 � 2

because the energy is negative for elliptical orbits. Equality occurs for e¼ 1

because E¼ 0 for parabolas. Note that this inequality shows that the range of

values for X0 is as shown in Fig. 3.4.

To study the figure, we consider the following cases.

Case 1: X0¼ 2

This value for X0 is along the right-hand edge of the figure and, as discussed above,

represents parabolic (escape) trajectories. Setting the Energy Equation equal to zero

and solving for v0, we obtain

v0 ¼
ffiffiffiffiffi
2μ
r0

r
¼ vesc

where vesc denotes escape velocity.

Case 2: X0 ¼ r0v0
2

μ ¼ 1

Solving for v0 obtains

v0 ¼
ffiffiffiffi
μ

r0

r
¼ vc

where vc denotes circular orbit speed. But the orbit is circular only if β0¼ 0.

Therefore, the condition v0¼ vc is necessary but not sufficient for the orbit to be

circular.
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Case 3: β0¼ 0, which implies one of three situations: elliptical orbit at periapsis,

elliptical orbit at apoapsis, or circular orbit

If β0¼ 0,

e2 ¼ X0 � 1ð Þ2
e ¼ X0 � 1j j from Eq: 3:3 and

tan θ0 ¼ X0 sin β0 cos β0
X0 cos 2β0 � 1

¼ 0

X0 � 1

This situation has four subcases:

1. For 0�X0< 1, tanθ0¼ 0, which implies that θ0¼ 0 or 180� because the tangent
function has period of 180�, but Fig. 3.4 shows that θ0 must then be 180�.

2. For X0¼ 1, e¼ 0 because |X0� 1|, which implies that θ0 is indeterminate and the

orbit is circular.

3. For 1<X0< 2, tanθ0¼ 0, which implies that θ0¼ 0 or 180�, but Fig. 3.4

shows that θ0¼ 0�.
4. For X0¼ 2, e¼ 1 so the orbit is parabolic and tanθ0¼ 0 implies θ0¼ 0.

Example (To study β):
Suppose the spacecraft is in an orbit with e¼ 0.8.

The first column of Table 3.1 gives the true anomaly in deg; the second the flight

path angle in deg as read from Fig. 3.4; and the third the flight path angle in deg as

determined from the identity in Eq. (2.26). The flight path angle data from Fig. 3.4

is graphed in Fig. 3.5. The remainder of the function is symmetric about the value at

apoapsis.

Figure 3.5b gives plots of the flight path angle as a function of true anomaly for

eccentricity e¼ 0.3, 0.6, and 0.9 made using the identity in Eq. (2.26).

Properties of β for 0< e< 1 as deduced from Figs. 3.4 and 3.5b:

1. β¼ 0 at θ¼ 0� and 180�

2. β> 0 for 0< θ< 180�

3. β< 0 for 180� < θ< 360�

4. jβ(θ)j increases as e increases
5. β� 0 if e¼ 0

In Exercise 3.4, it is left to the reader to complete column 2 of Table 3.1, using

Fig. 3.4, and column 3, using the identity in Eq. 2.26. Then make a MATLAB plot

of both columns of data to show the accuracy of the parametric tool given in

Fig. 3.4.
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Table 3.1 Beta values

from Fig. 3.4 and identity Theta (�)
Beta (�)
(from figure)

Beta (�)
(from identity)

0 0 0

25 10 11

50 21 22

100 43 42.5

150 53 52.5

175 18 19

180 0 0
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Fig. 3.5 (a) Graph of data from Fig. 3.4. (b) Flight path angle versus true anomaly
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Circular Orbits

For circular orbits,

β� 0� and e¼ 0

r¼ p¼ a (former from Conic Equation and latter from Energy Equation and

Exercise 2.8a)

v ¼ vc ¼
ffiffiffi
μ
r

r
¼ constant because r¼ a.

Slightly Eccentric Orbits

Suppose the target orbit is circular with

r ¼ rtarget

Suppose we achieve

β0 6¼ 0, but small

v� vc 6¼ 0, but small

Assume r0 is exact. (Select one of the two points in the orbit where r¼ rtarget.)

Obtain e from Eq. (3.3a) and θ0 from Eq. (3.7). Then, from Eq. (3.2), the Conic

Equation, and Exercise 2.8a, we obtain

e cos θ0 ¼ v0
2 cos 2β0
vc2

� 1 ð3:8Þ

and, from Eqs. (2.26), (3.3a), (3.7), and Exercise 2.8a, that

e sin θ0 ¼ v0
2

vc2
cos β0 sin β0 ð3:9Þ

So far, we have not used the facts that β0 and v0� vc are small. From Eq. (3.8) and a

Taylor series expansion for the cosine function, we obtain

e cos θ0 ¼ vc þ v0 � vcð Þð Þ2
vc2

1� β0
2

2
þ . . .

� �2

� 1

But, because the product of small values is negligible, all terms after the first in the

Taylor series expansion are essentially zero, so

e cos θ0 ffi 2 v0 � vcð Þ
vc

ð3:10Þ

after using again that the product of small values is negligible. By a similar

argument,
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e sin θ0 ¼ β0 ð3:11Þ
Therefore, from Eqs. (3.10) and (3.11), we obtain

tan θ0 ¼ β0vc
2 v0 � vcð Þ ð3:12Þ

which gives the location in the orbit, and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

v0 � vc

vc

� �2

þ β0
2

s
smallð Þ ð3:13Þ

which gives the shape of the orbit.

The effect of v0� vc on a is

∂a
a

¼ 2
∂v
v

ð3:14Þ

Proof:
Assume r is fixed.

By differentiating the Energy Equation and multiplying by 1/v2, we obtain

∂v
v

¼ μ∂a
2a2v2

¼ μ∂a
2aμ

¼ ∂a
2a

from Exercise 2.8a and the fact that the orbit is approximately circular.

Therefore,

∂a
a

¼ 2∂v
v

QED

Similarly, using Eq. (2.34), we obtain

∂τ
τ

¼ 3
∂v
v

ð3:15Þ

Therefore, an excess of launch velocity over vc increases a and energy (from the

Energy Equation). Increasing a increases τ from Eq. (2.34).

3.4 Orbit Transfer and Adjustment

We first treat deterministic maneuvers for which the direction of the angular

momentum vector, h, is fixed. That is, we consider maneuvers that do not change

the orbit plane.
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Single Maneuver Adjustments

From the Energy Equation and Eq. (2.19), we see that energy and e are functions of

the velocity magnitude. Therefore, maneuvers made in the orbit plane can change

the energy and eccentricity of the orbit.

We call an orbital maneuver that does not change the plane of the spacecraft’s

orbit an “in-plane maneuver.” As shown in Fig. 3.2, an in-plane maneuver can

change the magnitude of the velocity vector, so it can change the magnitude of the

angular momentum vector h¼ r� v. However, it cannot change the direction of h,

which is orthogonal to the orbit plane. Recall that we are discussing impulsive

maneuvers, not finite burns.

One restriction for a single-maneuver adjustment: The new (post-maneuver)

orbit must intercept the old (pre-maneuver) orbit at the maneuver point.

Mathematical Fact: Two confocal ellipses intersect in 0, 1, or 2 points.

Figure 3.6 shows the three different intersection situations for two confocal

ellipses. A spacecraft could transition from one of the ellipses in Fig. 3.6a to the

other by performing a maneuver at the intersection point. A spacecraft could move

from one ellipse in Fig. 3.6b to the other by performing a maneuver at either of

the two intersection points. However, a spacecraft cannot move from one orbit to

the other as shown in Fig. 3.6c by performing only a single maneuver. One could

draw two ellipses that intersect in four points, but the ellipses would not be

confocal.

We often target a value for the period τ¼ τf, which corresponds to a value a¼ af.

For example, PVO was positioned in an orbit with τf¼ 24 h to synchronize with

tracking stations on the earth. Viking maintained τf¼ 24.6 h¼ 1 Mars day, which is

called a “sol.”

Once a maneuver location has been selected (by a method such as one that uses

the tool described in Sect. 7.3), the magnitude r0 of the position vector at the

maneuver point can be calculated from the Conic Equation as

r0 ¼ p0
1 þ e0 cos θ0

where e0 and p0 are values for the initial (pre-maneuver) orbit. Note that in previous

analyses we have only had one value for each of these parameters, but now we have

different values for the initial and final orbit. If a target value τf is specified, then af

a b c

Fig. 3.6 Coplanar orbits. (a) One intersection. (b) Two intersections. (c) No intersections
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can be calculated using Eq. (2.34) and the required velocity at the maneuver point

on the post-maneuver orbit can be calculated from the Vis-Viva Equation as

vf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

rf
� μ

af

r

Now af is known, but what is the value of rf? Recall the impulsive burn model,

which assumes that rf¼ r0, so rf is known and vf can be computed.

Hohmann Transfer

Walter Hohmann (1880–1945), a German engineer, first published his result for a

Hohmann transfer as a conjecture in a monograph entitled Die Erreichbarkeit der
Himmelskörper [The Attainability of Celestial Bodies] in 1925. NASA published

an English translation in NASA Technical Translations F-44, 1960. A rigorous,

analytic proof of the optimality of such a transfer for a 2-impulse sequence was not

available until 1963.

Problem: To transfer a spacecraft between two coplanar, circular orbits about the

same central body by using the minimum ΔvTotal¼Δv1 +Δv2 for a 2-maneuver

sequence.

Notation: The Δv1 denotes the magnitude of the velocity increment for the first

maneuver of the 2-maneuver sequence and Δv2 denotes the magnitude of the

second velocity increment.

Outward Hohmann Transfer Profile
Consider two coplanar, circular orbits about a central body. Denote the inner

circle as C1 and its radius as rp. Denote the outer circle as C2 with radius ra.

The transfer orbit has rp as the radius at periapsis and ra as the radius at apoapsis.

When moving in the inner circle, the spacecraft has circular orbit speed, vc1. The

first maneuver applies Δv1 along the velocity vector to move the spacecraft into

the transfer orbit by giving the spacecraft the velocity vp at periapsis on an ellipse.

The second maneuver is performed at the apoapsis of the transfer orbit by adding

Δv2 to the velocity va at apoapsis to obtain vc2, the speed of the outer circle

(Fig. 3.7).

Note: The vc1 and Δv1 are collinear and vc2 and Δv2 are collinear. Also the

semimajor axis of the transfer ellipse is

a ¼ rp þ ra

2

Example: Recall from Fig. 2.16 that, if C2 is a GEO, then the transfer orbit is called

a GTO, a geosynchronous transfer orbit.
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Calculation of Δv1:

Δv1 ¼ vp � vc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

rp
� 2μ

rp þ ra

s
�

ffiffiffiffi
μ

rp

r

¼
ffiffiffiffiμ
rp

r ffiffiffiffiffiffiffiffiffiffiffiffi
2
ra

rp

1þ ra

rp

vuuuut � 1

2
664

3
775 ð3:16Þ

Calculation of Δv2:

h ¼ r� v ¼ constant vector

At periapsis, h ¼ rpvpsin
π

2
¼ rpvp

At apoapsis, h ¼ rava sin
π

2
¼ rava

Therefore, conservation of angular momentum implies that

h ¼ rpvp ¼ rava ð3:17Þ
Therefore,

Δv2 ¼ vc2 � va ¼
ffiffiffiffi
μ
ra

r
� rp

ra

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ
rp

� 2μ
rp þ ra

s

¼
ffiffiffiffi
μ
ra

r
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ ra

rp

vuut
2
664

3
775 ð3:18Þ

transfer orbit

C2

C1

rp

ravC2

vC1

vp

Dv1

Dv2

vaFig. 3.7 Outward Hohmann

transfer
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The total Δv required for the Hohmann transfer is

ΔvTotal ¼ Δv1 þ Δv2 ¼
ffiffiffiffi
μ

rp

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ra
rp

1 þ ra
rp

vuut 1� rp

ra

� �
þ

ffiffiffiffi
rp

ra

r
� 1

2
4

3
5 ð3:19Þ

Inward Hohmann Transfer
In Fig. 3.8, we are still calling the velocity increment performed on the outer circle

Δv2 to keep the notation the same as for the outward transfer.

As above,

ΔvTotal ¼ Δv1 þ Δv2 scalarsð Þ
The energy is reduced twice.

Remarks:

1. To transfer between two circular, coplanar orbits about the same body, the

Hohmann transfer requires the minimum total impulsive Δv for a

two-maneuver sequence. In fact, each maneuver provides the minimum Δv to

achieve the required energy change to reach the other circular orbit. We will not

prove this statement of the optimality of the Hohmann transfer, but rather cite the

following references with respect to the topic. In particular, the references by

Barrar and Prussing 1992 give such proofs.

References: Barrar, Hohmann, Lawden, and Prussing 1992

2. If ra> 11.94 rp, there is a slightly more efficient three-maneuver transfer, called a

“bi-elliptic transfer,” which is discussed in the next subsection.

vC2

vC1

Dv2

Dv1

va

vp

Fig. 3.8 Inward Hohmann

transfer
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3. Going to a higher number of impulses does not reduce the total Δv required for

impulsive maneuvers. That is, if ra� 11.94 rp, the Hohmann transfer requires the

least total impulsive Δv for an n-maneuver sequence for any n. If ra> 11.94 rp,

the bi-elliptic transfer requires the least total impulsive Δv for an n-maneuver

sequence.

Reference: Ting

4. The effects of finite thrust on the results obtained from the impulsive model are

treated in the reference by Zee.

5. For other information on optimal transfer between coplanar orbits, see the

reference by Broucke and Prado. Also, see some of the many references cited

therein for transfer between either coplanar or non-coplanar orbits.

Bi-elliptic Transfer

Notation: Let “OMi” denote orbital maneuver number i.

As shown in Fig. 3.9, the bi-elliptic transfer maneuvers are:

(a) OM1, which moves the spacecraft onto a transfer ellipse that travels well

beyond the radius of the outer orbit.

(b) OM2, which raises the periapsis of the first transfer ellipse to equal the radius of

the outer circle.

(c) OM3, which reduces the radius at apoapsis of the second transfer ellipse to

equal the radius of the outer circle.

Second Transfer Ellipse

First Transfer Ellipse

Δv2

Δv1

ri

rf

Δv3

Low Energy
Plane Change
Opportunity

Initial Orbit

Hohmann

Final Orbit

Fig. 3.9 Bi-elliptic transfer
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The ΔvTOTAL for the three maneuvers of a bi-elliptic transfer sequence is

ΔvTOTAL ¼ Δv1 þ Δv2 þ Δv3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ
r1

� 2μ
r1 þ r2

r
�

ffiffiffiffi
μ
r1

r� �
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ð3:20Þ
where r1 denotes the radius of the inner circular orbit, rf the radius of the

outer circular orbit, and r2 the radius at apoapsis of the transfer ellipses from

Exercise 3.12.

Example: The Δv savings for Bi-elliptic Transfer versus a Hohmann Transfer

Consider a spacecraft in a circular orbit about the earth at 200-km altitude.

Compute the Δv savings for a transfer to a coplanar, circular orbit with 30 times the

radius of the initial orbit if the bi-elliptic sequence transfers the spacecraft to

an intermediate ellipse having a radius at apoapsis of 50 times the radius of the

initial orbit.

Required data:

r1¼R
+ 415 km¼ 6,793.14 km (Approximate radius of the ISS on 5/19/2014).

r2¼ 50r1 km¼ 339,657.00 km.

rf¼ 30r1 km¼ 203,794.20 km.

Gm of the earth¼ 398,600.433 km3/s2 from Exercise 2.3b.

From Eq. (3.20), the Δv values for the three maneuvers of the bi-elliptic

transfer are:

Δv1¼ 3.0662 km/s

Δv2¼ 0.7236 km/s

Δv3¼ 0.1651 km/s

and the total

ΔvTOTAL¼ 3.9549 km/s

From Eq. (3.19), the Δv values for the two maneuvers of the Hohmann

transfer are:
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Δv1¼ 2.9968 km/s

Δv2¼ 1.0433 km/s

and the total

ΔvTOTAL¼ 4.0401 km/s,

providing a meager savings of 0.0852 km/s¼ 85.2 m/s.

Heuristic argument for the optimality of the bi-elliptic transfer over the

Hohmann transfer if ra> 11.94rp: When ra/rp is large, Δv1ffiΔvesc. Once at a

point whose distance is much greater than the ra of Hohmann transfer, the

corresponding Δv to raise periapsis is small. Therefore, the final reverse Δv plus

the extra Δv applied to the first maneuver may be less than the Δv required to raise
the periapsis to ra in the second burn of Hohmann transfer (for impulsive Δvs).

For a proof of the optimality of the bi-elliptic transfer, we cite the reference by

Hoelker and Silber.

The major disadvantage of the bi-elliptic transfer is that the transfer time is more

than twice the Hohmann transfer time, while the Δv saving is modest. Increasing

the transfer time increases operational costs. When the initial and final orbits are not

in the same plane, significant Δv savings can be realized as discussed in Sect. 3.6.

Examples: Hohmann Transfer

Comparison of a Hohmann Transfer to Escape from a Low-Altitude
Circular Orbit
An escape trajectory will take the spacecraft out of the gravitational field of one

central body and into the gravitational field of another. For example, a spacecraft in

orbit about the earth may be moved into a heliocentric orbit by increasing its speed

with respect to the earth to escape speed, i.e., moving it into a parabolic orbit with

respect to the earth as shown in Fig. 3.10. Therefore, escape velocity vesc satisfies

the Energy Equation for energy¼ 0. That is,

vesc
2

2
� μ

r
¼ 0

for any value of r. Solving this equation for the velocity of escape, we obtain

e = 1

vc

Dv
Dvesc

r0

Fig. 3.10 Escape trajectory
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vesc ¼
ffiffiffiffiffi
2μ
rp

s
¼

ffiffiffi
2

p
vC ð3:21Þ

where rp denotes the radius at closest approach on the parabolic orbit. Therefore, the

velocity increment required to escape is

Δvesc ¼ vesc � vc ¼
ffiffiffi
2

p
� 1

� � ffiffiffiffi
μ

rp

r
ð3:22Þ

because vesc and vc are collinear.

If this amount of energy is used to raise the spacecraft to another orbit via a

Hohmann transfer, its final radius is determined by equating

Δvesc ¼ Δv1 þ Δv2

ffiffiffi
2

p � 1
� 	 ffiffiffiffi

μ

rp

r
¼

ffiffiffiffi
μ

rp

r ffiffiffiffiffiffiffiffiffiffiffi
2
ra

rp

1 þ
ra

rp

vuuuut 1� rp

ra

� �
þ

ffiffiffiffi
rp

ra

r
� 1

2
664

3
775

and solving for ra, as

ra ¼ 3:4rp

If ra� 3.4 rp, it takes less Δv for escape than to make a Hohmann transfer to a

circular orbit of radius ra.

Remarks:

(a) For an earth orbiter, “escape” refers to escaping the pull of earth’s gravity,

which means that the spacecraft goes into a heliocentric orbit (an orbit about

the sun).

(b) A spacecraft in an elliptical orbit must still achieve

v2

2
� μ

r
¼ 0

to escape. That is,
v2esc
2

¼ μ

r

vesc ¼
ffiffiffi
2

p
vc

Therefore,

Δvesc ¼ vesc � vr

if the Δv is applied to be collinear with vr.

(c) The escape condition has no restriction on the flight path angle β. A particle that

is traveling at any angle whatever with the velocity vesc or greater will escape
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the parent body if it does not impact the central body or a satellite. Circular

orbit conditions, on the other hand, cannot be achieved without realizing a

specific angle β¼ 0� and a specific velocity v¼ vc.

A Series of Comparisons with a Hohmann Transfer
For each example in the following series, the initial orbit is a circular earth orbit at

200-km altitude.

(a) Hohmann transfer to a geosynchronous orbit

rp ¼ 200 km þ R
 ¼ 6, 578:14 km

τGEO ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
rGEO3

μ

s
¼ 23 h 56min 4s

because r¼ a if e¼ 0. Solving for the radius, we obtain

rGEO ¼ 42, 164km

Using Eq. (3.19), we determine the Δv required to transfer from a 200-km

altitude orbit about the earth to GEO is:

ΔvTOTAL ¼ Δv1 þ Δv2 ¼ 2:45km=sþ 1:48km=s ¼ 3:93km=s

(b) Translunar injection

For translunar injection ra¼ rM¼ 384,400 km, the mean distance between the

earth and the moon (Fig. 3.11). Using Eq. (3.16), we obtain

Δv1 ¼ 3:13km=s < 3:93km=s GTOð Þ

Therefore, the injection Δv that is capable of placing a payload (PL) into a

GEO could send a more massive PL to the moon.

(c) Escape trajectory

Δvesc ¼ vesc � vc ¼
ffiffiffi
2

p
� 1

� � ffiffiffiffi
μ

rp

r
¼ 3:22km=s < 3:93km=s GTOð Þ

which implies that we can send a more massive PL into a heliocentric orbit than

we can transfer to GEO.

Fig. 3.11 Translunar

injection
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General Coplanar Transfer Between Circular Orbits

I encourage the student to read pp. 166–169 of the text by Bate, Mueller and White

as an exercise for learning about the general coplanar transfer between circular

orbits. We will discuss transfer trajectories other than the Hohmann transfer in

Chap. 4 and the material in BMW may be helpful for understanding the approach.

Transfer Between Coplanar Coaxial Elliptical Orbits

We consider the transfer from periapsis on the inner ellipse shown in Fig. 3.12 to

the apoapsis of the outer elliptical orbit. The total velocity for the two-impulse

sequence is

ΔvTotal ¼ Δv1 þ Δv2

where

Δv1 ¼ vpt � vp1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

rp1
� 2μ

rp1 þ ra2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

rp1
� 2μ

rp1 þ ra1

s

Δv2 ¼ va2 � vat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

ra2
� 2μ

rp2 þ ra2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

ra2
� 2μ

rp1 þ ra2

s

and parameters for the inner ellipse are labeled with a subscript “1”, those for the

outer ellipse with a subscript “2” and the transfer ellipse with a subscript “t.” Such a

transfer is also called a “Hohmann transfer.”

Now let us consider a thought exercise. We consider an alternate maneuver

sequence as shown in Fig. 3.13. In this sequence, the first maneuver is performed at

apoapsis of the inner ellipse to increase the height at periapsis to that of the outer

orbit and then the second maneuver is performed at the periapsis of the outer orbit to

raise the height at apoapsis to match that for the outer ellipse. Let us call the Δv

ra1

ra2

rp
1

vp

rp
2

Dv2

Dv1

va

Fig. 3.12 Transfer between

coplanar coaxial elliptical

orbits
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changes Δv1,2 and Δv2,2 to stand for the first and second Δv, respectively. Call the
total for this second maneuver strategy

ΔvTOTAL2 ¼ Δv1,2 þ Δv2,2

My question is: How does this second total compare to the first? Is

ΔvTOTAL2 > ΔvTOTAL
ΔvTOTAL2 ¼ ΔvTOTAL
ΔvTOTAL2 < ΔvTOTAL

Explain your answer. (See Exercise 3.19.)

3.5 Interplanetary Trajectories

In this section, we study two types of interplanetary trajectories. For a flyby

mission, Fig. 3.14 shows that the spacecraft has been launched into a circular

parking orbit about the earth. From there, the craft performs a propulsive maneuver

to transfer into a hyperbolic trajectory about the earth. When it moves into the sun’s

gravity field, it transfers into an elliptical orbit about the sun. As it approaches

Venus, it enters a hyperbola about that planet. When it leaves Venus, it enters

another heliocentric ellipse that is not the same one as it traveled in before Venus

encounter. So Venus has changed the spacecraft’s trajectory. For the orbiter mis-

sion, the trajectory is the same until arrival at Venus, when a Venus Orbit Insertion

(VOI) is performed. This maneuver decreases the spacecraft’s energy with respect

to Venus so that the spacecraft inserts into an elliptical orbit about the planet.

Hyperbolic Trajectories

Let e> 1.

As shown in Fig. 3.15, the spacecraft travels along the incoming asymptote until

it is attracted by the gravitational force of the large body at F, which causes it to

ra1
rp1

Dv1,2

Dv2,2

Fig. 3.13 Alternate

maneuver sequence
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Fig. 3.14 Interplanetary trajectories. Upper panel: Flyby mission. Lower panel: Orbiter mission
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Fig. 3.15 Hyperbolic trajectory
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swing around the center axis and approach the outgoing asymptote after the flyby of

the central body. The point where θ¼ 0 is called the “point of closest approach” or

the “encounter point.”

Consider what happens in the limit as r approaches infinity.

lim
r!1E ¼ lim

r!1
v2

2
� μ

r

� �
¼ � μ

2a

But �μ/r approaches 0 and the energy is constant, so v must approach a limit

which we denote as v1
+. Therefore,

lim
r!1E ¼ vþ1

� 	2
2

¼ � μ
2a

Similarly, imagine that the spacecraft travels backwards to �1, so that we

would obtain

lim
r!�1E ¼ v�1

� 	2
2

¼ � μ
2a

Since these two limits are equal, we define v1 such that

v�1 ¼ vþ1 ¼ v1 ð3:23Þ
Define

B¼ the distance between the focus F and the asymptotes (This parameter will be

introduced later as the “impact parameter.”)

θ1¼ the true anomaly of the (outgoing) asymptote

v1
�¼ the hyperbolic approach velocity vector

v1
+¼ the hyperbolic departure velocity vector

δ¼ the deflection angle of the v1¼ the angle between the incoming and outgoing

asymptotes¼ (aka) the turn angle¼ the amount the v1 is turned during the flyby

ρ¼ the hyperbolic asymptote angle

Def.: The hyperbolic excess velocity (v1) is the speed that a vehicle on an escape

trajectory has in excess of escape speed. This residual is the speed the vehicle would

have even at infinity. That is,

v1 ¼ lim
r!1 vð Þ

where v denotes the velocity magnitude and r denotes the magnitude of the position

vector.

Therefore, the energy equation can be written for hyperbolic trajectories as

follows:
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v2

2
� μ

r
¼ v21

2
¼ � μ

2a
ð3:24Þ

Solving Eq. (3.24) for a, we obtain

a ¼ � μ
v21

ð3:25Þ

which is a function of v1. Note that a is negative. Also,

rp ¼ a 1� eð Þ ð3:26Þ
by the same argument used in proving this result for elliptical orbits in Exercise

2.10a. Solving this equation for e and substituting for a using Eq. (3.25), we obtain

e ¼ 1� rp

a
¼ 1þ rpv

2
1

μ
ð3:27Þ

which is a function of rp and v1, the fundamental parameters for flyby analyses.

At periapsis, the Energy Equation gives

v2p

2
� μ
rp

¼ v21
2

Solving this equation for vp, we obtain

vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ 2μ

rp

s
ð3:28Þ

which gives vp as a function of the fundamental parameters.

Determine θ1, δ, and ρ. Each of these parameters is a measure of the bending of

a hyperbolic trajectory. Solving the Conic Equation for cosθ and taking the limit as

r approaches infinity, we obtain

cos θ1 ¼ lim
r!1

1

e

p

r
� 1

n o
 �
¼ �1

e
ð3:29Þ

Therefore,

θ1 ¼ cos �1 �1

e

� �
ð3:30Þ

It is geometrically obvious that

θ1 ¼ δ
2
þ π
2

ð3:31Þ
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From Eqs. (3.30) and (3.31), we obtain

1

e
¼ sin

δ
2

� �
ð3:32Þ

Solving for δ,

δ ¼ 2 sin �1 1

e

� �
ð3:33Þ

It is geometrically obvious that

ρ ¼ π

2
� δ

2
ð3:34Þ

From Eqs. (3.32) and (3.34)

cos ρ ¼ 1

e
ð3:35Þ

ρ ¼ cos �1 1

e

� �
ð3:36Þ

Angular momentum:

From Eqs. (3.17), (3.26), and (3.28),

h ¼ rpvp ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ 2μ

rp

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 1� eð Þ2v21 þ 2μa 1� eð Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μ
v21

� �2

1� eð Þ2v21 þ 2μ
�μ
v21

� �
1� eð Þ

s

and simplifying this result gives

h ¼ μ
v1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
ð3:37Þ

Def.: The impact vector B is the vector from the center of mass of the target body to

the incoming asymptote that is orthogonal to the incoming asymptote. We call the

magnitude of the B the “impact parameter.”

Notice that B is the distance from F to the incoming asymptote, not the distance

to the trajectory (Fig. 3.16).

From Exercise 3.10 and a formula for the semiminor axis,

B ¼ �b ¼ �a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
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Multiplying this equation by v1 and using Eq. (3.25), we obtain

h ¼ v1B ¼ v1
��b�� ¼ μ

v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1ð Þ

p
ð3:38Þ

Recall that, from Eq. (3.27),

e ¼ 1þ rp

μ
v21

So the shape of the hyperbolic trajectory depends on the closest approach distance

rp, the speed at 1, and the Gm of the planet.

Recall that

1

e
¼ sin

δ
2

� �

from Eq. (3.32). From this equation we see that a large value of e implies a small δ.
Therefore, a large e implies little bending.

Small μ (i.e., small target body mass) implies large e, which implies little

bending. That is, there is a small attraction from gravity.

Large rp implies large e, which implies little bending. That is, the spacecraft is

too far away to sense the mass of the body.

Large v1 implies large e, which implies little bending. That is, the spacecraft is

moving too fast to sense the body.

If the v1 and rp are known, then the other parameters (a, e,E , θ1, δ, and h) can
be computed from these equations. The v1 is determined by the interplanetary

flight path and the injection vehicle capability.

Out-going asymptote

incoming asymptote

F
|a|

|b|

r

B

Fig. 3.16 Impact vector B
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Gravity Assist

Consider a spacecraft that is in orbit about the primary body and has an encounter

with a secondary body, e.g., primary body is the sun and the secondary is a planet.

Define:

v�, v+¼ the inertial spacecraft (absolute) velocity vectors with respect to the

primary body before and after the flyby of the secondary body, respectively.

v1/sec
� , v1/sec

+ ¼ the spacecraft velocity vectors at infinity with respect to the sec-

ondary body before (incoming v1) and after (outgoing v1) the flyby, respectively.

vsec¼ the secondary body’s inertial velocity vector with respect to the primary body

at the time of the encounter. (In the example, vsec is the planet’s heliocentric

velocity vector.)

The spacecraft travels along a heliocentric trajectory to approach the target

secondary body. The absolute velocity vector on approach is v� and the incoming

v1 with respect to the secondary body is v�� vsec as shown in Fig. 3.17a. The

spacecraft encounters the secondary body and, after the flyby, its relative velocity

vector approaches the outgoing velocity vector v1/sec
+. The outgoing absolute

velocity vector is v+¼ v1/sec
+ + vsec.

During the encounter the v1/sec is rotated through δ deg as shown in Fig. 3.17b.

Its magnitude does not change because energy is conserved with respect to the

secondary body (2-body mechanics). However, there is a change in the magnitude

and/or direction of the v with respect to the primary body. This change adds a

ΔvGA¼ v+� v� to the spacecraft’s velocity as shown in Fig. 3.17b.

sec vsec

vsec

vsec
v-¥/sec

v+
¥/sec

v-

DvGAv-

v+

v+

v-¥/sec

v+
¥/sec

d

a

b

Fig. 3.17 (a) Gravity assist flyby. (b) Effects of gravity assist
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The change in spacecraft energy with respect to the primary is provided through

an exchange of energy with the secondary body, i.e., from the angular momentum

of the secondary in orbit about the primary to the spacecraft. Since the secondary

body is many times more massive than the spacecraft, the velocity change of the

secondary is insignificant.

Thus, we have the following equations.

Relative approach velocity:

v�1= sec ¼ v� � vsec ð3:39Þ

Absolute approach velocity:

v� ¼ vsec þ vþ1= sec ð3:40Þ

Absolute departure velocity:

vþ ¼ vsec þ vþ1= sec ð3:41Þ

Note the assumption that vsec and rsec are constant during the flyby. This is

similar to the impulsive maneuver assumption and is based on the fact that the

duration of the flyby is much less than the period of the secondary.

The change in absolute velocity is

ΔvGA ¼ vþ � v� ¼ vþ1= sec � v�1= sec ð3:42Þ

Note: This equation is a vector subtraction.

Def.: The use of a celestial body to change the velocity of a spacecraft during a

flyby is called the gravity assist technique of navigation.

Figure 3.18a displays the hyperbolic trajectory for a spacecraft that passes in front

of the secondary body. Figure 3.18b displays the vector diagram for this trajectory.

Note that the v+1/sec and v�1/sec shown in Fig. 3.18b are drawn parallel to the

corresponding vectors in Fig. 3.18a. Figure 3.19a exhibits the hyperbolic trajectory

for passage behind the secondary body and Fig. 3.19b gives the corresponding vector

diagram. The v1 vectors in Fig. 3.19b are also parallel to the v1 vectors in

Fig. 3.19a. Note that Figs. 3.15 and 3.19a show the special case in which the rp is

along the vsec. Also, the secondary body is designated as F in these figures.

By selecting the spacecraft’s trajectory to pass in front of or behind the second-

ary body, the orbital energy of the spacecraft can be decreased or increased,

respectively. This fact can be seen by observing that, in the vector diagram

Fig. 3.18, the magnitude of the incoming v1 vector is greater than the magnitude

of the outgoing vector and that the reverse is true in Fig. 3.19b. Figures 3.18

and 3.19b display the result given in Eq. (3.42).

The concept of gravity assist was documented as early as the late 1700s by

D’Alembert and Laplace. Specific applications of the gravity assist technique are

considered in Subsect. 3.5, “Types and Examples of Interplanetary Missions”.
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References for Gravity Assist: Brouke 2001; Cesarone; Diehl and Nock; Doody;

Kaplan; Strange and Longuski; Uphoff, Roberts, and Friedman

Patched Conics Trajectory Model

We look at an interplanetary trajectory model that consists of:

1. An escape trajectory along a hyperbola at earth.

2. A transfer trajectory—a heliocentric ellipse.

F

δ
v+¥/F

v-¥/F

v-

v-+

vF

DvGA

a

b

F

δ

Direction of
inertial motion of F

Asymptote

v+¥/F

v-¥/F

Fig. 3.18 Vector diagram for passage in front of the secondary body
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3. An approach trajectory—a hyperbola at the target body.

4. Another heliocentric ellipse.

This model uses 2-body mechanics in each of four conic segments that are

patched together in the position vector and the velocity vector. The spacecraft is

one of the two bodies in each segment.

a

b

F

δ

Direction of
inertial motion of F

v+¥/F

v-¥/F

F

δ

v+¥/Fv-¥/F

v-

v-+

vF

DvGA

Fig. 3.19 (a) Hyperbolic passage behind the secondary body. (b) Vector diagram for passage

behind the secondary body
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Example (Venus Flyby)
Consider a Hohmann transfer from a 200-km-altitude, circular, earth orbit to pass

at a 500-km altitude on the sunlit side of Venus. The spacecraft would leave a LEO

parking orbit on a hyperbolic escape trajectory, then travel on a heliocentric trajec-

tory to a Venus hyperbolic flyby and continue on into a different heliocentric ellipse.

Comments:

1. Each segment is a 2-body problem. In each segment, we use the μ (Gm) of the

central body for that phase and the distance r to the center of that central body.

The Gm values are available from Exercise 2.3b.

2. We use an inward Hohmann transfer ellipse with Venus at periapsis (rp¼ r♀)and

the earth at apoapsis (ra¼ r
) as shown in Fig. 3.20. Of course we do not insist

that a transfer from earth to another planet always be done via a Hohmann

transfer. But, by looking at a Hohmann transfer, we know we need at least the

amount of Δv determined for this transfer.

3. We assume the motion of Venus and the spacecraft are in the ecliptic plane. (But

the method can be applied to more general cases.) We assume all the orbits are

coplanar.

4. We assume the orbits of the earth and Venus and the parking orbit are circular.

5. Def.: The sphere of influence of a celestial body is the region in three-

dimensional space in which its gravitational force is the dominant gravitational

force.

Def.: A zero sphere of influence means that the gravitational force is modeled as

being applied impulsively at the celestial body.

TheVenus-flyby example uses the zero sphere of influence assumption at earth

and Venus to include the effects of the masses of these bodies on the trajectory.

earth’s
orbit

injection Dv made here
by Dv1

no Dv here
no Dv2

Venus’
orbit

transfer orbit

sun
2a = rÅ + r

+

+

+

r

rÅ

v-/

v+/Å

Fig. 3.20 Inward Hohmann transfer to Venus
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6. Some terminology is appropriate here

General term Sun Earth

Periapsis Perihelion Perigee

Apoapsis Aphelion Apogee

7. “Sunlit side” and “sunny side” refer to the side of the secondary body towards

the sun, the dayside. That is, the spacecraft is passing between the sun and the

secondary. “Dark side” refers to the side of the secondary opposite the sun, the

night side. “In front of” means that the spacecraft passes through the path of the

secondary in front of the secondary, i.e., before the secondary gets to the point in

the orbit where the spacecraft crosses the secondary’s orbit. “Passing behind”

refers to crossing the orbit of the secondary after the secondary has gone through

that point in its orbit. So, as a word of caution, “sunlit side” does not refer to

passage in front of the secondary and “dark side” does not refer to passage

behind the secondary. (That information is the answer to a FAQ.)

Hyperbolic Escape from Earth
1. Velocities at Escape from Earth

The absolute velocity of the spacecraft as it escapes the earth v+¼ the aphelion

velocity of the Hohmann transfer ellipse. The spacecraft must leave the earth

with escape velocity (speed)¼ aphelion velocity (speed) of the transfer ellipse.

For the spacecraft’s transfer trajectory,

E ¼ v2a
2
� μ�

rp
¼ �μ�

2at
ð3:43Þ

where va¼ v+ outgoing from the earth and ra¼ r
¼ 1 AU. Thus,

E ¼ vþð Þ2
2

� μ�
r


¼ �μ�
2at

where at¼ (r
+ r♀)/2¼ 1.289� 108 km and r♀ denotes the mean distance

between Venus and the sun. Therefore,

vþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�

2

r

� 1

at

� �s
¼ 27:286km=s ð3:44Þ

outgoing from the earth. The orbital velocity of the earth is

v
 ¼
ffiffiffiffiffi
μ
r


r
¼ 29:785km=s ð3:45Þ

which is the velocity of the spacecraft when it is sitting on the surface of the

earth. Since v
> v+, earth escape must be opposite v
 as shown in Fig. 3.21.
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The v+ is determined by subtracting part of the spacecraft’s velocity, which

equals the earth’s velocity. v1
+ is the speed relative to the earth after escape,

which must be |v
� v+| for the spacecraft to reach Venus at periapsis.

That is,

vþ1=

��� ��� ¼ v
 � vþj j ð3:46Þ

(Helpful Hintz: Use the ABS function in MATLAB to evaluate this absolute

value so you can use the same computer code for both inward and outward

transfers.) For transfer to Venus,

vþ1=

��� ��� ¼ v
 � vþ ¼ 2:499km=s

v1/

+ is the speed relative to the earth after escape.

2. Hyperbolic Escape Path

The hyperbolic escape path from the parking orbit is obtained by reducing the

speed of the spacecraft so it drops behind the earth and moves toward the sun

along the transfer ellipse as shown in Fig. 3.22.

To Sun

(scalars)
vÅ = v-+ + v+¥/Å

v-+ v+¥/Å

vÅ

Fig. 3.21 Determining the

v1
+ at earth escape

v+¥/Å

v-¥/Å

vp/Å

q¥

δ/2δ/2
δ/2

δ

||

B

parking
orbit

to sun

Out-going hyperbolic
asymptote

rp

Fig. 3.22 Hyperbolic escape

from the earth
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Solving the Energy Equation for the required perigee velocity, we obtain

vp=
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1=

� 	2 þ 2μ

rp=


s
¼ 11:289km=s ð3:47Þ

where rp/
¼R
+ hp¼ 6,578.14 km. This value is the velocity at perigee of the

escape hyperbola after applying the Δvinj to enable the spacecraft to just reach

the orbit of Venus. The value of this injection Δv is

vinj ¼ vp=
 �
ffiffiffiffiffiffiffiffiμ

rp=


r
¼ 11:289� 7:784ð Þkm=s ¼ 3:504km=s ð3:48Þ

This injection Δv is supplied by the upper (usually the third) stage of the launch

vehicle.

For a hyperbolic trajectory, the shape of the orbit is given as

e ¼ 1þ
rp=
v21=


μ
¼ 1:103 > 1:0 ð3:49Þ

Also,

θ1=
 ¼ cos �1 �1

e

� �
¼ 155:0� ð3:50Þ

The deflection of the velocity vector between vp/
 and v1/
 is

δ=2 ¼ θ1 � 90� ¼ 65:0� ð3:51Þ
The escape path is displaced toward the sun by

B ¼ μ

v21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
¼ 2:97� 104 km ð3:52Þ

Therefore, the actual aphelion of transfer is slightly less than r
. There are two
approaches to this situation. The reference byBMW takes this effect into account.

However, Kaplan chooses to assume that the difference is negligible because

B rp. We will ignore the difference for simplicity. I encourage you to consider

both of these models to determine the significance of this approximation.

After earth escape, the heliocentric transfer begins along an ellipse about the

sun. We make the escape trajectory at earth produce the heliocentric ellipse.

That is, we patch together a hyperbola about the earth and a heliocentric ellipse,

which has the velocity vector needed to arrive at Venus.
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Hyperbolic Approach at Venus
1. Velocities at Venus Approach

At Venus, the spacecraft is moving faster at the periapsis of its orbit than Venus.

This trajectory is an inward Hohmann transfer without the Δv performed at

Venus. The velocity at Venus, ignoring the presence of Venus, is v�¼ the

absolute (inertial) velocity at approach to Venus.

From the conservation of angular momentum, Eq. (3.17),

ht ¼ r
vþ ¼ r♀v
� ð3:53Þ

where the v+ is at earth and the v� is at Venus and r♀ is the mean distance

between Venus and the sun. Therefore,

v� ¼ r

r♀

vþ ¼ 37:740 km=s v♀ ¼
ffiffiffiffiffiffi
μ�
r♀

r
¼ 35:029 km=s ð3:54Þ

Hence, v� > v♀ as expected for the inward Hohmann transfer. Therefore, the

vector diagram for the approach to Venus is as displayed in Fig. 3.23.

In this figure, we see that

v1=♀ ¼ v� � v♀ ¼ 37:740� 35:029ð Þkm=s ¼ 2:711km=s ð3:55Þ

We again recommend using the ABS function in MATLAB to compute

v1=♀ ¼ ABS v� � v♀ð Þ

so that your MATLAB software will cover both inward and outward Hohmann

transfers.

2. Hyperbolic Approach Path

The shape of the approach conic hyperbolic orbit is

e ¼ 1þ
rp

♀
v21=♀

μ♀
¼ 1:148 > 1 ð3:56Þ

To Sun

v--
(scalars)
v- = v¥/   + v   

+

+

+

v-
¥/

+
vFig. 3.23 Vector diagram

at the approach to Venus
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where

rp♀ ¼ R
♀
þ 500

� 	
km ¼ 6, 551:9km and v1=♀ ¼ 2:711km=s

Therefore, the deflection of v1/♀ is

δ ¼ 2 sin �1 1

e

� �
¼ 121:1� ð3:57Þ

which provides the gravity assist diagram in Fig. 3.24a.

The corresponding gravity assist vector diagram is shown in Fig. 3.24b.

Note: The Venus velocity vector is orthogonal to Venus’s position vector

relative to the sun because of the assumption that Venus’s orbit is circular.

Therefore, the angle between v♀ and v+ in Fig. 3.24b is the flight path angle β.
Given that δ, v1 and v♀ are known, we can now use the Law of Cosines to

compute

a

To Sun

δ = 121
.1�

+
v+

¥/

+
v-

¥/

b

To Sun

121.1
�

180
�−δδ

β = 3.9�

+
v+

¥/

+
v-

¥/

v--

v-+

+
v

Fig. 3.24 (a) Hyperbolic passage at venus. (b) Gravity assist vector diagram at venus encounter
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vþð Þ2 ¼ v21=♀ þ v2
♀
� 2v1=♀v♀ cos 180� � δð Þ ¼ 1, 136:2km2=s2

vþ ¼ 33:707km=s

Using the Law of Cosines again and solving for β, we compute

β ¼ sgnβð Þ cos �1
v2♀ þ vþð Þ2 � v21=♀

2v♀v
þ

 !
¼ 3:9�

where sgnβ ¼ þ1 if β > 0

�1 if β < 0

�

When the spacecraft passes on the sunlit side of Venus, as in our example,

sgn β¼ + 1.

Elliptical Post-Venus Helicentric Orbit

r ffi r♀ ¼ 1:0821� 108 km

v ¼ vþ ¼ 33:707 km=s

β ¼ 3:9�

From Eq. (3.3a),

e2 ¼ X0 � 1ð Þ2 cos 2βþ sin 2β ¼ 0:0102

where X0 ¼ rv2

μ�
¼ 0:9260 < 1:0

Then, the shape parameter e¼ 0.101< 1 for an elliptical orbit. The location in

orbit (Fig. 3.25) is given by

v+

θ = 141.0�

β = 3.9�

+
r

rp

Fig. 3.25 Location

in post-Venus elliptical orbit
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tan θ ¼ X0 sin β cos β
X0 cos2 β� 1

¼ �0:8109

θ ¼ 141:0� or 321:0�

β > 0 implies that 0� < θ < 180� from Eq: 2:25ð Þ
so that θ ¼ 141:0�

Also,

rp� ¼ h2=μ�
1þ e

¼ 9:05� 107 km

where h¼ rvcosβ¼ 3.6378� 109 km2/s2 from Eq. (3.2).

Using Eq. (2.17) and the equation p¼ a(1� e2), we solve for a to obtain

a ¼ h2

μ� 1� e2ð Þ ¼ 1:007� 102 km

τ ¼ 2π

ffiffiffiffiffiffi
a3

μ�

s
¼ 201:73days

Therefore, the post-Venus elliptical orbit is nearly circular with period close to

Venus’s 224.7-day orbit. A Venus year¼ 224.7 earth days and a Venus day¼ 243

earth days. So a Venus day is longer than a Venus year.

Summary Remarks on the Patched Conics Model:

1. For Venus and Mercury, v+< v
 at departure from the earth and v�> vTB at

arrival at the target body (TB). Recall the inward Hohmann transfer conditions.

The inward trajectory is shown in Fig. 3.26a, the vector diagram for the escape

trajectory at the earth in Fig. 3.26b, and the vector diagram for the arrival at the

target body in Fig. 3.26c.

2. For Mars through Neptune, v+> v
 at departure and v�< vTB at arrival. Recall

the outward Hohmann transfer. Trajectory and vector diagrams for outward

patched conics are given in Fig. 3.27.

References for the Patched Conics Trajectory Model: BMW, Battin 1999,

Chobotov, and Kaplan

Types and Examples of Interplanetary Missions

Types:

1. A flyby of a planet in a hyperbolic orbit.
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2. An orbiter makes a hyperbolic approach and applies a Δv to reduce its energy

(speed) to enter an elliptic orbit about the target body.

3. Soft landers are sent to the surface of target body, e.g., Viking, Phoenix and MSL

to the surface of Mars, NEAR (later called “NEAR-Shoemaker”) to the

asteroid Eros.

a
v− > vTB

v+ at ⊕ < v⊕

b cTo Sun

≈

To Sun

v+ < v⊕

vÅ = v-+ + v+¥/Å v-
     = v-¥/TB + vTB

v-+ v+¥/Å

vÅ

v--

v-
¥/TB vTB

+

Fig. 3.26 Patched conics for inward transfer. (a) Inward Hohmann transfer. (b) Vector diagram
for departure from earth. (c) Vector diagram for arrival at target body

a v− < vTB

b cTo Sun

≈

v+ > v⊕

v-+
 = vÅ + v+¥/Å vTB  = v¥/TB + v-¥

v-+

v+¥/ÅvÅ

v-¥

vTB

v¥/TB

vTB

TB

Fig. 3.27 Patched conics for outward transfer. (a) Outward Hohmann transfer. (b) Vector

diagram for departure from earth. (c) Vector diagram for arrival at target body
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4. Probes, hard landers, e.g., Pioneer Venus Multiprobes to Venus and the Galileo

Probe to Jupiter.

Examples of Gravity Assist Missions:

Example 1: Mariner Venus Mercury aka Mariner 10 (1973)

Mariner 10 made the first application of gravity assist in mission navigation. One

gravity assist flyby of Venus and three of Mercury reduced the energy of the

spacecraft’s orbit (Fig. 3.28).

Example 2: The Grand Tour

A favorable configuration of four planets, Jupiter, Saturn, Uranus, and Neptune,

occurs every 179 years. The most recent opportunity occurred in 1975–1981 and the

next will be in 2154. (The last occurrence before 1975 happened during the

administration of Thomas Jefferson, but he passed up the opportunity in favor of

the expedition of Lewis and Clark.) Grand tour trajectories are shown parametri-

cally in launch year in Fig. 3.29.

Example 3: Pioneer X (1972) and XI (1973)

The Pioneer X and XI spacecraft received gravity assists that will send them out of

the Solar System.

Example 4: Voyager I (1977) and II (1977)

Voyager I and II received gravity assists that will send them out of the solar system

and, in fact, Voyager I has been determined to have left the solar system. Both

Fig. 3.28 Mariner 10 to Venus and Mercury. Reference: http://www.jpl.nasa.gov/missions/

missiondetails.cfm?mission¼Mariner10
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spacecraft were originally targeted to flyby Titan, a moon of Saturn. After, Voyager

I flew successfully past Titan, Voyager II was retargeted to Uranus and onward to

complete the Grand Tour. Notice in Fig. 3.30 that Voyager II was originally called

NEPTUNE
ORBIT

URANUS
ORBIT

SATURN
ORBIT

T

JUPITER
       ORBIT

EARTH
76

77
78

79
80

Fig. 3.29 Grand Tour trajectories

Fig. 3.30 Ecliptic-plane view of Voyager II trajectories
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JSX, where the J denoted Jupiter, S Saturn, and the X either stood for Titan, if

Voyager was unsuccessful, or Uranus otherwise.

Figure 3.31 shows the Gravity-Assist Velocity changes for Voyager II at Jupiter,

Saturn, Uranus, and Neptune. Notice that Voyager II’s velocity was increased

enough at Jupiter to escape the solar system (SS), because its velocity exceeded

the escape velocity. Its speed was increased again at Saturn and Uranus and then

decreased at Neptune, but remained sufficient for SS escape.

Example 5: Galileo (1989)

Figure 3.32 gives an artist’s picture of the Galileo spacecraft at Jupiter. Figure 3.33

shows Galileo’s Venus–Earth–Earth Gravity Assist (VEEGA) trajectory to Jupiter.

Note that Galileo flew by Venus once and the earth twice to gain enough energy to
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Fig. 3.31 Voyager II gravity assist velocity changes

Fig. 3.32 The Galileo

spacecraft
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reach Jupiter. (The original plan was for Galileo to fly a direct (no gravity assists)

trajectory to Jupiter. But, after the Challenger disaster, which occurred on the launch

immediately before Galileo’s launch, NASA decided that it was not safe for the

astronauts to fly with so much liquid propellant onboard. So the Galileo could not

rely on a liquid upper stage. But a solid rocket could not fly a direct trajectory. Roger

Diehl, at JPL, discovered the VEEGA trajectory, which Galileo did fly.)

Example 6: Ulysses (1990)
Figure 3.34 provides an artist’s concept of the Ulysses spacecraft.

Reference: http://www.jpl.nasa.gov/missions/missiondetails.cfm?mission¼Ulysses

Figure 3.35 shows a typical overview of the trajectory. Note that the orbits of the

earth and Jupiter appear to be elliptical because they are rotated so that the

trajectory of the spacecraft is in the plane of the picture. The gravity assist at Jupiter

performed a plane change that moved the spacecraft out of the ecliptic plane and up

to 80� latitude with respect to the sun.

Example 7: Cassini–Huygens (1997)
The Cassini–Huygens spacecraft flew a VVEJGA interplanetary trajectory, receiv-

ing gravity assists at Venus twice, the earth, and Jupiter (Fig. 3.36). After

performing its Saturn Orbit Insertion maneuver, the orbiter sent the Huygens

probe to Titan from the elliptical orbit.

Earth Flyby #1
(V∞ ≅ 8 km/s)

Venus Flyby
(V∞ ≅ 5 km/s)

Venus

Venus
Orbit

Earth Orbit

Earth

To Jupiter

Time ticks:

Earth    30   days
Jupiter  100 days
S/C         30  days

Earth Flyby #2 (V∞ ≅ 10 km/s)

C3 ≅ 15 km2/s2

ΔV = 0 − 100 m/s
@ Aphelion

LAUNCH

Fig. 3.33 Galileo’s VEEGA trajectory to Jupiter
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Example 8: First Commercial Gravity Assist Mission (1998)

A satellite that was intended for a geostationary orbit over Asia was left stranded in

an unusable orbit at launch on December 25, 1997. Since the spacecraft was in good

condition with 3,700 lbs of propellant, Hughes Global Services performed a series

Fig. 3.34 Ulysses Solar Polar Mission

END OF MISSION
30 SEPT 1987

ORBIT OF
EARTH

NORTH TRAJECTORY

JUPITER
ENCOUNTER
25 MAY 1984

ORBIT OF
JUPITER

END OF MISSION
30 SEPT 1987

SUN

LAUNCH 3 FEB 1983

100 days

Fig. 3.35 Ulysses trajectory overview
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of maneuvers to raise the apoapsis of the spacecraft to produce a lunar swingby on

May 13, 1998, followed by another lunar swingby on June 6, 1998. On June

14, 1998, the spacecraft was inserted into a geostationary orbit of the earth.

Example 9: HAYABUSA nee MUSES-C (2003)

Objective: To make observations and collect samples of asteroid Itokawa

(nee 1998SF36) for return to earth.

HAYABUSA made an earth gravity assist (EGA) in the spring of 2004 and

arrived at the asteroid in the summer of 2005. The original plan was to depart in the

winter of 2005, but it actually returned to earth in the summer of 2007, arriving at

the earth on June 14, 2010.

Reference: JAXA’s Website at http://www.jaxa.jp/projects/index_e.html

JAXA denotes the Japanese Aerospace Exploration Agency (Japanese Space

Agency).

Example 10: Messenger (2004)

A launch slip changed Messenger’s trajectory from V3M2 (Venus three times-

Mercury twice) to EV2M3 (earth-Venus twice-Mercury three times as shown in

Fig. 3.37). Notice the introduction here of five Deep Space Maneuvers (DSM),

which usually are large maneuvers performed at a long distance from any celestial

bodies to set up a gravity assist flyby.

Gravity assist trajectories provide energy changes without using propellant,

which reduces the mass launch requirements. However, there is a disadvantage

because such trajectories delay the arrival at the mission destination, which

increases operations costs.

VENUS FLYBY 1
21 APR 1998

MANEUVER
2 DEC 1996

LAUNCH
6 OCT 1997

VENUS FLYBY 2
20 JUN 1999

EARTH FLYBY
16 AUG 1999

SATURN
25 JUN 2004

JUPITER
30 DEC 2000

PERIHELIA

23 MAR 1998 0.68 AU
27 JUN 1999 0.72 AU

S/C

Fig. 3.36 Cassini–Huygens VVEJGA trajectory
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Target Space

To aim our trajectory so the spacecraft will encounter our target body successfully,

we define the encounter aiming plane or B plane shown in Fig. 3.38 as follows.

Def.: The B plane with R, T, S axes is defined so that the RT plane is orthogonal to

the incoming asymptote at the target body. The T axis is parallel to a reference

plane (e.g., the equator of the target body or the ecliptic plane); the S axis is along

the direction of the incoming asymptote; and the R axis completes the right-handed

coordinate system.

Def.: The impact vector B is the vector in the B plane from the center of mass of the

target body to the intersection of the spacecraft’s incoming asymptote with the B

plane. We call the magnitude of the B vector the “impact parameter.”

Note: The “tip” of the B vector is the point where the incoming asymptote

pierces the B-plane, not the trajectory.

Figure 3.39 shows the relative size of the interplanetary aiming zones for several

NASA missions. Since the missions considered in this figure have been completed,

the aiming (success) zones have shrunk drastically.

Fig. 3.37 Messenger’s EV2M3 trajectory. Reference: http://messenger.jhuapl.edu/the_mission/

trajectory.html
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Now imagine that you are working on the Navigation Team for a space mission.

You have to consider three trajectories as shown in Fig. 3.40. First, there is the

nominal or reference trajectory which would impact the B plane at the desired

point. Then there is the estimated trajectory that members of your team have

determined using orbit determination software. You, as the maneuver analyst (flight

HYPERBOLIC PATH
OF SPACE CRAFT

TRAJECTORY PLANE

B-PLANE ⊥ TO INCOMING
  ASYMPTOTE

θB

S  INCOMING
    ASYMPTOTE

R
B

T

Fig. 3.38 Encounter aiming plane (the B plane)
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Fig. 3.39 Relative size of interplanetary aiming zones
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path control member) of your team, will use the estimated trajectory to compute

TCM parameters that will move the spacecraft from the estimated trajectory to the

nominal impact point in the B plane. Finally, there is the actual trajectory that we

will never know exactly, although we will get better and better solutions for it as we

reconstruct the trajectory. The maneuver will be applied to the actual trajectory.

We will not achieve the nominal impact point exactly because of the OD errors

experienced when estimating the trajectory and maneuver execution errors experi-

enced in executing the TCM, plus other errors we will discuss in Chap. 5.

The reasons for using the B plane in these analyses are:

1. It provides an initial guess for the Δv that leads to rapid convergence to the final
velocity correction, using precision software.

2. Errors experienced at the TCM can be mapped linearly to delivery errors in the

B-plane for analyzing and comparing OD solutions. (We state this result without

proof, leaving the derivation to an OD course that uses a textbook such as TSB.)

An analog to the B plane is used for Rutherford scattering, which is an inverse

square central force, but is a repulsive force.

Let

B ¼ B� T̂� 	
T̂ þ B� R̂� 	

R̂

Suppose you have determined that the miss in the B space is

m ¼ ΔB�R,ΔB�T, ΔLTFð Þ
Therefore, you must introduce a change in the B space of –m. So you set

�m ¼ KΔv

estimated
trajectory

actual
trajectory

nominal or
reference trajectory

R

Δv

Δv
T

Fig. 3.40 Three trajectories
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where

K ¼ ∂m
∂v

¼

∂B�R
∂v1

∂B�R
∂v2

∂B�R
∂v3

∂B�T
∂v1

∂B�T
∂v2

∂B�T
∂v3

∂LTF
∂v1

∂LTF
∂v2

∂LTF
∂v3

2
66666664

3
77777775

Therefore,

Δv ¼ �K�1m if K�1 exists: ð3:58Þ
The linearized time of flight LTF¼ the time to go from the spacecraft’s

location directly to the center of the target body. The spacecraft is not going

to fly to the center of the target body. But this variable has a very desirable

characteristic. This parameter is orthogonal to the B-plane so TCMs designed

to correct B-plane errors leave LTF unchanged and vice versa. The LTF can

be written as

LTF ¼ TCA � μ
2v21

ln 1þ B2v41
μ2

� �
ð3:59Þ

where TCA¼ the time to closest approach from the spacecraft’s location.

(We state this result without proof.) The quantity we take the natural loga-

rithm of in Eq. (3.59) is the square of the eccentricity written in terms of the

impact parameter B as seen in Exercise 3.18.

Reference: Kizner

Interplanetary Targeting and Orbit Insertion Maneuver
Design Technique

Selecting a planetary encounter aimpoint and a spacecraft propulsive maneuver

strategy usually involves tradeoffs of many competing factors. The reference by

Hintz 1982 describes such a tradeoff process and its applications to the Pioneer

Venus Orbiter mission. This method uses parametric data spanning a region of

acceptable targeting aimpoints in the delivery space, plus geometric considerations.

Trajectory redesign features exercised in flight illustrate the insight made available

in solving the interplanetary targeting and orbit insertion maneuver (OIM)

problems. Real-time maneuver adjustments accounted for known attitude control

errors, orbit determination updates, and late changes in a targeting specification. An

elementary maneuver reconstruction technique is also considered.

3.5 Interplanetary Trajectories 109



3.6 Other Spacecraft Maneuvers

We have looked at in-plane maneuvers between elliptic orbits. Next, we will

consider an in-plane maneuver from a hyperbolic trajectory to an elliptical one.

Orbit Insertion

Figure 3.41 shows a 40-min powered flight from the approach hyperbolic trajectory

into an elliptical trajectory about Mars. In performing this maneuver, the line of

apsides on the hyperbola is rotated 20� to the line of apsides on the ellipse. Notice

that our impulsive burn model will not accurately model this MOI maneuver. In our

exercises, we will simplify our model so that there is no apsidal rotation and the

maneuver is impulsive.

Examples:

1. Viking (1975)

ΔvMOIffi 1,100 mps and the duration of the burnffi40 min. Therefore, we needed

a finite burn model in our software.

DIRECTION
OF APPROACH

− −s

BURNOUT

APPROACH HYPERBOLA

MOI - Mars Orbit Insertion

MOI P
OWERED FLIGHT

IGNITION

HYPERBOLIC
PERIAPSIS

SATELLITE
ORBIT
PERIAPSIS

POST-INSERTION
ORBIT

MARS SURFACE

20 deg
ψ

Fig. 3.41 Orbit insertion geometry for a large positive apsidal rotation
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2. Pioneer Venus Orbiter (1978)

ΔvVOIffi 1,100 mps and the duration of the burn was ffi30 s. Why so large a

difference in burn duration? Ans.: We used a solid rocket for the VOI. (We will

discuss rockets and propellants in Sect. 3.7.)

3. Mars Odyssey (2001)

Figure 3.42a shows the sequence of events in performing the MOI for the 2001

Mars Odyssey spacecraft. Times are given relative to the start of MOI.

Figure 3.42b shows how the trajectory was viewed from earth, whereas

Fig. 3.42a is rotated to show all the events. Notice that the spacecraft disappeared

from our view during the burn and completed the burn during the occultation.

The engineers working in Mars Odyssey operations did not know if the burn had

been performed nominally until after the end of the occultation, a DSN antenna

acquired the spacecraft, and the OD data were processed on earth.

The measure of the price we pay for needing to perform finite burns instead of

impulsive maneuvers is the gravity losses, which are defined as follows.

Def.: Gravity losses (or finite burn losses)¼ finite burn Δv� impulsive Δv.

There are two kinds of finite burn losses during an insertion burn:

1. The Δv is not applied exactly at periapsis on the hyperbolic trajectory.

2. The Δv is not applied exactly along the velocity vector.

The Δv is usually fixed in inertial space. An exception was the SOI performed

at Saturn by Cassini, which rotated during the burn to reduce the offset of the Δv
from the velocity vector. Thus, the finite burn losses were reduced.

Example (impulsive Δv computation for orbit insertion):

In Exercise 3.16, you will compute the magnitude of the impulsive Δv that

would transfer the spacecraft from the hyperbolic approach trajectory to an

elliptical orbit about the target body. This transfer is accomplished by

subtracting the Δv from the velocity vector on the approach trajectory at

periapsis to acquire the elliptical orbit as shown in Fig. 3.43.

Plane Rotation

So far we have looked at maneuvers that are in the orbit plane. Next we will add a

Δv that is not in the orbit plane so that the spacecraft will move into another orbit

plane. We begin by making the following definition.

Def.: A pure rotation maneuver is a spacecraft maneuver that changes the orbit

plane without changing the orbit shape or energy.

In a pure rotation maneuver, all the velocity change goes into plane change, just

as before when all of the velocity change produced in-plane changes of energy or

shape. By defining such a maneuver, we are able to produce orthogonal vectors that

will add to achieve both the required in-plane and out-of-plane changes.
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Mars Orbit Insertiona

b

Burn Start
+00:00:00

Burn Start
+00:00:00

Burn End
+00:19:44

Enter Earth Occult
+00:09:37

Enter Earth Occult
+00:09:37

Exit Earth Occult
+00:29:24

2001 Mars Odyssey

2001 Mars Odyssey

Exit Earth Occult
+00:29:24

Enter Solar Eclipse
+00:09:59

Exit Solar Eclipse
+00:11:46

Periapsis - 328 km
+00:12:51

MOI - View from Earth

Fig. 3.42 MOI for 2001 mars odyssey. (a) Sequence of events at MOI. (b) MOI as seen from

the earth
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The Δi is the angle between the tangents (velocity vectors) to the two orbits at

the node line as shown in Fig. 3.44b. Therefore, it is the angle between the angular

momentum vectors for the two (pre-maneuver and post-maneuver) orbits as shown

in Fig. 3.44a. Let hi denote the angular momentum vector for the pre-maneuver

orbit and hf denote the angular momentum vector for the post-maneuver orbit.

For a pure rotation hi¼ hf� h by definition. From Fig. 3.44c, we see that

Δh ¼ 2h sin
Δij j
2

� �

approach
hyperbola

elliptical orbit
about target body

vhyp

vellipse

DvVOI

Fig. 3.43 Impulsive orbit

insertion

final orbit
(post-maneuver)

initial orbit
(pre-maneuver)

Δi

h i

Δi

hf

a

Δv

⎜Δi⎜

v1

v2node line

b Δh

Δh

2

hfhi

c

⎜Δi⎜

⎜Δi⎜

2

Fig. 3.44 Plane rotation. (a) Δi. (b) Δv. (c) Δh
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Recall, from Eq. (1.10), that

M0 ¼ rxF

where

F ¼ m r
� �

h0 ¼ rxmv

MO ¼ h
�

0

if O is not moving, from Eq. (1.12). For normalized unit mass,

M ¼ h
�

and the applied torque is M¼ Fr. Let r¼ the orbit radius at the node line. Then

Δh ¼ Δh
Δt

Δt ffi h
�

Δt ¼ MΔt ¼ FrΔt ¼ rΔv

Therefore,

Δv ¼ Δh
r

¼ 2h sin
Δij j
2

r
¼ 2vθ sin

Δij j
2

� �

because h¼ rv cosβ¼ rvθ from Exercise 2.19. Therefore, the magnitude of the

velocity change required for a pure rotation maneuver is

Δv ¼ 2vθ sin
Δij j
2

� �
ð3:60Þ

where vθ¼ the transverse component of v at the node line and Δi denotes

the required change in inclination (the tilt of the orbit or slope of the orbit plane).

(Note: vθ 6¼ v in general.) Using a small angle approximation, we obtain the

following expression for the magnitude of the velocity increment required for a

pure rotation maneuver:

Δv ¼ vθ
��Δi�� ð3:61Þ

where vθ¼ the transverse component of v at the node line and Δi denotes the

change in inclination.

For e¼ 0,
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vθ ¼ vc ¼
ffiffiffi
μ
r

r

Δv ¼ vθ
��Δi�� ¼ vc

��Δi�� ¼ ��Δi�� ffiffiffi
μ
r

r ð3:62Þ

For 0< e< 1,

Δv ¼ vθ
��Δi��

vθ ¼ r θ
� ¼ h

r

where we have used Eq. (2.16). So

Δv ¼ h

r

��Δi�� ð3:63Þ

Therefore, Δv is minimized at the crossing point on the node line where r is

larger. Therefore,Δv is less at the node line crossing point closer to apoapsis than at
the only other candidate maneuver point.

Combined Maneuvers

We can obtain a plane change and in-orbit parameter change by one maneuver as a

vector sum of Δvs as shown in Fig. 3.45. The in-plane Δv will change the size

and/or shape of the orbit. The out-of-plane Δv will change the plane of the orbit.

If both a plane change and a large in-plane correction are required, the spacecraft

can perform the combined Δv, which is not much more than the out-of-plane Δv.
Example: Recall the bi-elliptic transfer described in Fig. 3.9. The Δv savings are

modest for an inplane bi-elliptic transfer. The bi-elliptictransfer may provide

significant propellant savings if the initial and final orbits are not coplanar because

the required plane change can be accomplished at a larger radius and, therefore, for

a lower Δv. An application of the bi-elliptic transfer with orbit plane change is

launching from Cape Canaveral into a geostationary orbit. The plane-change would

decrease the inclination of the orbit obtained at launch by about 28.5�.

Dvout-of-plane

Dv co
mbin

ed

Dvin-plane

Fig. 3.45 Combined

maneuvers
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“The minimum total velocity increment required for bi-elliptic transfer between

non-coplanar circular orbits” is given as an iterative solution in the reference by

Roth. The Δv-optimization of bi-elliptic transfer between non-coplanar elliptical

orbits is given as a series of three plane change maneuvers performed along the line

of nodes of the initial and final orbits in the reference by Kamel.

References for Sect. 3.6: C. Brown, Edelbaum, Kamel, Prussing 1992, and Roth

3.7 The Rocket Equation

The “cost” of orbital maneuvers has been measured so far in terms of the amount of

Δv required to implement a trajectory correction maneuver, transfer or adjustment.

The cost in terms of resources is the amount of propellant used to implement theΔv.
In this section, we will learn how to convert Δv into the amount of propellant by

using the Rocket Equation.

A rocket can be regarded as a jet engine that carries its own oxidizer. Like any other

kind of engine, a rocket is a device for converting one form of energy into another, and

so it must be provided with a source of energy. This energy source may be chemical,

nuclear, or electrical and rocket engines are often distinguished accordingly.

Def.: The reaction force produced on a rocket as a result of the exhaust of the

high-velocity exhaust gas is called the thrust.

The faster the exhaust gas flows out of the back of the rocket, the greater is the

thrust of the rocket forward.

Thrust is generally stated in pounds of force. To lift a spacecraft off the ground,

the number of pounds of thrust by the launch vehicle must be greater than the

number of pounds the launch vehicle/payload combination weights. For example,

as Tony Simon wrote when referring to the launch of Apollo, “the ground shook,

and for rules around everyone felt the thunderous power of Saturm V as its

7,500,000 grounds of thrust lifted 6,500,000 pounds of weight”.

In Field-Free Space

Modeling assumptions:

1. Environment:We consider a rocket moving in a vacuum in “gravity-free” space, in

which the only force acting is rocket thrust. This model is a useful approximation

for “high thrust” engines, i.e., engines that provide thrust acceleration magnitudes

that are significantly higher than the local gravitational acceleration.

2. Thrust model: Let the thrust, assumed constant, act continuously in one direc-

tion. The rocket works by ejecting part of its mass at a high velocity; in assuming

its thrust to be constant, we also assume the mass ejected per second and the

exhaust velocity (measured with respect to the vehicle) to be constant.

The rocket mass is not constant during an engine burn. It decreases because

some mass is expelled out of the rocket nozzle to provide thrust, which is the
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reaction force in the opposite direction as predicted by Newton’s Third Law of

Motion. According to NII,

F ¼ d mvð Þ=dt ¼ mdv=dtþ vdm=dt ¼ ma

if m is constant. But, during a burn, dm/dt 6¼ 0 so F 6¼ma during maneuvers.

From the conservation of linear momentum, we can equate the spacecraft

momentum plus the momentum of the exhaust particles at time t +Δt to the

momentum of the system at t to get

mþ dmð Þ vþ dvð Þ þ v� veð Þ �dmð Þ ¼ mv

where v� ve is the velocity of the exhaust particles and �dm> 0. Simplifying and

noting that dmdv is a product of smalls so it is negligible, we obtain

mdvþ vedm ¼ 0

Separating variables and integrating, we obtain

mdv ¼ �vedmZ tf

t0

dv ¼ �
Z tf

t0

ve

m
dm

The result is the Rocket Equation:

Δv ¼ vf � v0 ¼ veln
m0

mf

where vf denotes the velocity attained at the final time t¼ tf, v0 the initial velocity,

m0 the initial mass, and mf the final mass.

Def.: The exhaust velocity ve is the velocity of the expelled particles relative to

the rocket.

The exhaust velocity ve depends on the heat liberated per pound and on the

molecular weight. We want the heat liberated to be large and the molecular weight

to be small.

The value of the thrust is dependent mainly on the product of the rate at which

the exhaust gasses are expelled, expressed as the mass per unit time, and the exhaust

velocity. While thrust is generally stated in pounds of force, it may be stated in

Newtons (N), where

1 N¼ 1 kg m/s2

Def.: The specific impulse Isp is

Isp ¼ ve

g


where g
 is earth gravity at sea level.
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This parameter is equal to

ve m
�

g
 m
� ¼ thrust

gravity � fuel mass flow rate
¼ thrust

weight � flow� rate

because

thrust ¼ bve þ Ae Pe � Pa½ � ffi bve

where Ae is the nozzle exit area, Pe is the gas pressure at the nozzle exit, and Pa is

the ambient pressure and we have used the fact that Ae[Pe� Pa] is much smaller

than bve in the approximation. If Ae is measured in m2, then Pe and Pa are in N/m
2.

Note that we consider the ratio of thrust to weight flow rate because the term in the

numerator and that in the denominator can be measured accurately in the laboratory

(error <1%).

Properties:

1. The specific impulse of a rocket propellant combination (fuel plus oxidizer) is

the number of seconds a pound of the propellant will produce a pound of thrust.

2. The parameter Isp, usually quoted in seconds, is a measure of a propellant’s

performance.

Thus, we obtain the Rocket Equation in the form

Δv ¼ g
Ispln
m0

mf

ð3:64Þ

where

m0¼ spacecraft mass at the beginning of the burn

mf¼ spacecraft mass at the end of the burn

g
 ¼ (constant) earth’s gravity at sea level¼ 0.00980665 km/s2¼ 9.80665 m/s2

Isp¼ (constant) specific impulse.

Note: This is the form of the Rocket Equation that we will usually use in

this book.

The rocket equation was published by Konstantin Tsiolkovsky in 1903.

Konstantin Tsiolkovsky (1857–1935) was a Russian physicist and the theoretical

father of rocketry.

Tsiolkovsky was the son of a Polish deportee to Siberia. Tsiolkovsky was an

inventor and aviation engineer who was also an insightful visionary. As early as

1894, he designed a monoplane, which subsequently flew in 1915. He also built the

first Russian wind tunnel in 1897. In 1903, as part of a series of articles in a Russian

aviation magazine, Tsiolkovsky published the rocket equation, and in 1929, a

theory of multistage rockets. Tsiolkovsky was also the author of Investigations of
Outer Space by Rocket Devices (1911) and Aims of Astronauts (1914).

One of Tsiolkovsky’s manymemorable and inspiring quotes is “Mankind will not

forever remain on Earth, but in the pursuit of light and space will first timidly emerge
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from the bounds of the atmosphere, and then advance until he has conquered the

whole of circumsolar space” (1911). Tsiolkovsky’s most famous quote is, “Earth is

the cradle of humanity, but one cannot remain in the cradle forever.”

Reference: Eric W. Weisstein, Eric Weisstein’s World of Scientific Biography,

http://scienceworld.wolfram.com/biography

Def.: The fraction m0/mf is called the mass ratio where m0 denotes the initial mass

and mf denotes the final mass.

Specific impulse is characteristic of the type of propellant; however, its exact

value will vary to some extent with the operating conditions, design of the rocket

engine, and the oxidizer used.

Examples (Propellants) (Table 3.2):

Reference: Rocket & Space Technology Website at http://www.braeunig.us/

space/propel.htm [accessed 1/2/2014]

This reference provides a list of 27 Isp values for various combinations of fuel

and oxidizer, together with information about liquid, solid, and hybrid propellants;

properties of rocket propellants (chemical formula, molecular weight, density,

melting point, and boiling point); rocket propellant performance (whether or not

it is hypergolic, mixture ratio (of oxidizer to fuel), specific impulse, and density

impulse); propellants for selected rockets (Atlas/Centaur, Titan II, Saturn V, Space

Shuttle, and Delta II). For example, the Atlas/Centaur propellants are:

Stage 0 has a Rocketdyne YLR89-NA7 (X2) engine, which uses LOX/RP-1 propellant with

Isp¼ 259 s sl and 292 s in vacuum; stage 1 has a Rocketdyne YLR105-NA7 engine, which

uses LOX/RP-1 propellant with Isp¼ 220 s sl and 309 s in vacuum; and stage 2 has a P&W

RL-10A-3.3 (X2) engine, which uses LOX/LH2 propellant with Isp¼ 444 s in vacuum.

LOX (or LO2) is liquid oxygen, which is the oxidizer, RP-1 is highly refined kerosene, LH2

is liquid hydrogen, and “sl” denotes “sea level.”

NASA has relied on the efficient but highly toxic, flammable, and corrosive

hydrazine to power satellites and manned spacecraft for decades. But NASA may

replace hydrazine with a green fuel, called AF-M315E, which has nearly 50 %

better performance and is far more benign than hydrazine. The propellant is an

Table 3.2 Examples of specific impulse, s

Fuel Oxidizer

Specific impulse

s at sea level

Liquid hydrogen Liquid oxygen 381

Liquid methane Liquid oxygen 299

Kerosene Liquid oxygen 289

Hydrazine Liquid oxygen 303

Hydrazine Nitrogen tetroxide 286

Monomethyl hydrazine (MMH) Nitrogen tetroxide 280

Unsymmetrical dimethyl hydrazine (UDMH) Nitrogen tetroxide 277

Hydrazine Hydrogen peroxide

(85 % concentration)

269
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energetic ionic liquid that evaporates more slowly and requires more heat to ignite

than hydrazine, making it more stable and much less flammable. Its main ingredient

is hydroxyl ammonium nitrate, and when it burns, it gives off nontoxic gasses like

water vapor, hydrogen, and carbon dioxide. Importantly, M315E is safe enough to

be loaded into a spacecraft before it goes to the launch pad, which would cut the

time and cost of ground processing for a vehicle headed for space. However,

M315E burns so hot that it would damage current rocket engines, requiring

development of engines that can survive the intense heat.

References: Megan Gannon, “NASA’s Quest for Green Rocket Fuel Passes Big

Test,” 7/11/2013, available at http://www.livescience.com/38120-nasa-green-

rocket-fuel-test.html [accessed 1/2/2014]; Jullian Scharr, “New Rocket Fuel

Helps NASA ‘Go Green’,” 5/16/2013, available at http://www.technewsdaily.

com/18090-new-rocket-fuel-helps-nasa-go-green.html [accessed 1/2/2014].

Consider the Rocket Equation in the form of Eq. (3.64).

Given Isp, m0, and mf, we can compute the Δv directly.

Given Isp, m0, and the required Δv, we can solve for mf as

mf ¼ m0e

�Δv
g
Isp ð3:65Þ

Then, we compute the required amount of propellant as

Δm ¼ m0 �mf ¼ m0 1� e

�Δv
g
Isp

 !
ð3:66Þ

Example: Consider a two-maneuver series, Δv1, Δv2, performed in orbit. Let m0,1,

mf,1 denote the initial and final mass for Δv1, respectively, and m0,2, mf,2 denote the

initial and final mass for Δv2, respectively. Then

Δm ¼ m0,1 �mf,1ð Þ þ m0,2 �mf,2ð Þ
¼ m0,1 �mf,2

¼ m0,1 �m0,2e
�Δv2
g
Isp

¼ m0,1 �m0,1e
�Δv1
g
Isp e

�Δv2
g
Isp

¼ m0,1 1� e
� Δv1þΔv2ð Þ

g
Isp

 !

where we have used the fact that mf,1¼m0.2 and Eq. (3.65) twice. Similarly, for any

number n of maneuvers,

ΔmTOT ¼ m0
1� e

�
Xn
i¼1

Δvi

g
Isp

0
B@

1
CA ð3:67Þ
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or

ΔmTOT ¼ m0 1� e

�ΔvTOT
g
Isp

 !
ð3:68Þ

where m0 denotes the initial mass before the first maneuver.

Note (Helpful Hintz): We do not need to compute each of the Δmi and addXn
i¼1

Δmi to get ΔmTOT. We only need to add
Xn
i¼1

Δvi and compute ΔmTOT as in

Eq. (3.68).

In the derivation of Eqs. (3.67) and (3.68), we have assumed there are no other

changes in mass, such as dropping tanks, between or during the maneuvers. For the

injection of a spacecraft into a heliocentric orbit, the initial mass consists of the

structure of and propellant in the upper stage of the launch vehicle, plus the payload

(spacecraft, including its propellant). The Isp for injection is the Isp of the propellant

for the upper stage. The structure of the upper stage is jettisoned after the injection,

so it is not part of the initial mass for the orbital maneuvers.

Remarks:

1. A high thrust chemical engine has:

• A moderate exhaust velocity (ve)

• A high mass flow rate (m
�

) because of the large amount of combustion exhaust

products flowing out of the nozzle.

2. A low thrust engine, e.g., an ion engine, has:

• A very high specific impulse because ions are expelled at tremendously high

speeds (ve) and

• A low thrust because the rate mass is expelled (m
�

) is extremely low.

Example 1: Hayabusa (nee MUSES-C) used high-performance electric propulsion

engines continuously in flight.

Example 2: Deep Space 1 (DS1) used ion propulsion that provided 90 mN¼ 1/50

lb. of thrust with Isp¼ 2,500–3,500 s.

Example 3: NASA’s Evolutionary Xeon thruster (NEXT) developed by NASA

Glenn to provide a 7-kW ion thruster.

3. Chemical rockets have demonstrated fuel efficiencies up to 35%; ion thrusters

have demonstrated fuel efficiencies over 90%.

4. Ion thrusters must be used in a vacuum to operate at the available power levels.

5. Ion thrusters cannot be used for launch because large amounts of thrust are

needed to escape the earth’s gravity and atmosphere.
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In a Gravitational Field at Launch

For launch, using a simplified model that omits forces such as atmospheric drag, the

Rocket Equation becomes:

mdv ¼ �vedm�mgdt

dv ¼ �ve
dm

m
� gdt

By integrating, we obtain:

Δv ¼ veln
m0

m
�
Z t

0

g hð Þdt

where h is the rocket’s height above a reference point. For constant g, this result is:

Δv ¼ veln
m0

m
� gt ð3:69Þ

The last term on the right-hand side of this equation is called a gravity loss term,

because it represents a decrease in the velocity change due to the gravitational force

compared with the value for field-free space. The size of the gravity loss depends on

the burn time. For a given thrust maneuver, the burn time may be quite short for a

very high-thrust engine, in which case the gravity loss is small and perhaps

negligible compared with a lower-thrust engine that must burn for a longer time

to perform the same velocity change.

For information about rocket payloads and staging and how to optimize the

allocation of mass among launch vehicle stages, see Sects. 5.5 and 5.6 of the

reference by Prussing and Conway.

References for this chapter: Barrar; Brouke, 2001; Broucke and Prado;

C. Brown; Cesarone; Chobotov; Diehl and Nock; Doody; Edelbaum; Federation

of American Scientists; Gannon; Gates; Glasstone; Hintz and Chadwick; Hintz,

Farless, and Adams; Hintz and Longuski; Hoelker and Silber; Hohmann; Kaplan;

Kizner; Lawden; Logsdon; Pisacane and Moore; Prussing, 1992; Prussing and

Conway; Rocket & Space Technology Website; Scharr; Simon; Spaceflight Now

Website; Strange and Longuski; Stricherz; TSB; Thomson, 1961; Thomson, 1986;

Ting; Uphoff, Roberts, and Friedman; Wagner and Goodson; Weisstein; Wertz and

Larson; Wylie and Barrett; and Zee.

Exercises

3.1 The upper stage of a launch vehicle has placed its payload in an orbit having

v0¼ 9 km/s, r0¼ 7,500 km, and β0¼ 0�.
(a) Did this launch achieve a circular orbit? Explain.

(b) Where is the spacecraft in its orbit? Explain.
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(c) What are the values of E (energy), a, p, and h for this orbit?

(d) Do 3.1(a–c) again, using MATLAB.

3.2 A spacecraft was launched from the Cape with booster burn-out occurring at an

altitude of 500 km with a velocity v0¼ 9.25 km/s and flight path angle β0¼ 20�

at the time t¼ t0.

(a) Determine θ0, e, a, rp, and ra.

(b) At apogee, the spacecraft’s engine is fired to circularize its orbit. How-

ever, due to errors in the maneuver execution, the resulting velocity was

inaccurate by 2% and β¼ 5� at the end of the thrusting. The resulting

value of the eccentricity e is small, but non-zero. What is this value of e?

(c) Could this maneuver be performed at perigee? Why or why not?

3.3 An earth-orbiting satellite is determined to have parameters r0¼ 7,000 km,

v0¼ 7.55 km/s, and β0¼ 20� at time t¼ t0.

(a) Approximate e, θ0, E (energy), a, rp, ra, and E (eccentric anomaly) for

these conditions.

(b) At time t¼ t0, a TCM is performed to adjust the eccentricity to 0.5 without

rotating the line of apsides. (Def.: The line of apsides is the line through

periapsis and apoapsis.) Approximate β and v just after applying the

impulsive maneuver.

(c) Sketch the original and new orbits, showing the point at which the orbit

changes and the pre- and post-maneuver flight path angles.

(d) What will happen to the satellite?

3.4 Complete column 2 of Table 3.1, using Fig. 3.4, and column 3, using the

identity in Eq. (2.26). Then make a MATLAB plot of both columns of data to

show the accuracy of the parametric tool given in Fig. 3.4.

3.5 Use MATLAB to plot the flight path angle versus true anomaly for e¼ 0.3, 0.6,

and 0.9 as in Fig. 3.5b.

3.6 A spacecraft is moved from a circular LEO having a 200-km altitude to a

circular 18-h orbit via a Hohmann transfer. Calculate the:

(a) Eccentricity of the Hohmann transfer ellipse.

(b) Total required velocity increment ΔvT.
3.7 The UCLA spacecraft is moving in a circular orbit about the earth of radius

rUCLA, while the USC spacecraft is moving in a circular orbit of radius rUSC,

where rUCLA< rUSC.

(a) Which spacecraft has the greater orbital velocity? Explain.

(b) Which spacecraft has the greater orbital period? Explain.

(c) Which spacecraft has the higher energy? Explain.

3.8 Assuming a one-impulse transfer from a 200-km-altitude LEO, which flight

requires less impulsive Δv a Venus flyby or a Mars flyby? Explain your

answer.

3.9 (a) A spacecraft is in a circular parking orbit in the ecliptic plane at an altitude

of 200 km around the earth. What is the minimum Δv required to send this
spacecraft out of its parking orbit and into a Hohmann transfer to Jupiter?

Assume the earth and Jupiter have circular heliocentric orbits in the

ecliptic plane.
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(b) What is the angular distance around the earth from perigee to escape from

the earth, θ1?

3.10 Prove that the magnitude of the impact parameter B equals the length |b| of the

hyperbolic semiminor axis.

3.11 The Pioneer X spacecraft flew by Jupiter and on to solar system escape.

During the planning phase for this mission, the possibility of using a

Hohmann transfer to Jupiter was considered. No Δv was to be imparted to

the spacecraft after leaving the parking orbit, except for small midcourse

corrections. Determine whether or not the spacecraft could achieve enough

energy via a Hohmann transfer and Jupiter flyby to escape the solar system.

3.12 Show that the ΔvTOTAL for the three maneuvers of a bi-elliptic transfer

sequence is

ΔvTOTAL ¼ Δv1 þ Δv2 þ Δv3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ
r1

� 2μ
r1 þ r2

r
�

ffiffiffiffi
μ
r1

r� �
þ rf

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ
rf

� 2μ
rf þ r2

r
� r1

r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ
r1

� 2μ
r1 þ r2

r� �

�
ffiffiffiffi
μ
rf

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ
rf

� 2μ
rf þ r2

r� �

¼
ffiffiffiffi
μ
r1

r ffiffiffiffiffiffiffiffiffi
2
r2

r1

1þ
r2

r1

vuuuut � 1

2
664

3
775þ

ffiffiffiffi
μ
r2

r ffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ r2

rf

vuut �
ffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ r2

r1

vuut
2
64

3
75þ

ffiffiffiffi
μ
rf

r ffiffiffiffiffiffiffiffiffi
2
r2

rf

1þ
r2

rf

vuuuut � 1

2
664

3
775

where r1 denotes the radius of the inner circular orbit, rf the radius of the outer

circular orbit, and r2 the radius at apoapsis of the transfer ellipses.

3.13 A spacecraft is sent on a Mars flyby mission via a direct Hohmann heliocentric

transfer orbit from a 200-km-altitude, circular parking orbit about the earth.

Assume that the earth and Mars have circular heliocentric orbits in the ecliptic

plane and that the spacecraft’s parking orbit is in the ecliptic plane.

(a) Compute the parameters e, δ, and θ1 for a passage at 590 km above the

Martian surface.

(b) Draw a diagram that shows the hyperbolic passage and a vector diagram

that shows the vectors v1
�
, v1

+
, v

�
, and vMars, if the spacecraft passes

on the sunny side of Mars. Indicate the direction to the sun in each of

these figures.

(c) Draw the same two diagrams as in part (b), if the spacecraft passes on the

dark side of Mars. Show the direction to the sun in each of these figures.

3.14 (a) Compute the following parameters for the heliocentric orbit that is

achieved by the lit-side passage considered in Exercise 3.13(b): e, θ, h,
rp, a, and τ.

(b) Compute the same parameters as in part (a) for the dark-side passage

considered in Exercise 3.13(c).
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(c) How does the orbit obtained in part (b) differ from the orbit obtained in

part (a)?

3.15 A GEO spacecraft crosses the earth’s equatorial plane when its true anomaly

is 30�. The eccentricity of the orbit is 0.1 and its initial inclination is 5� with
respect to the equator. What minimum velocity increment is required to

transfer this GEO to an equatorial orbit?

3.16 On July 1, 2004, the Cassini spacecraft approached Saturn with hyperbolic

excess velocity V1¼ 5.5 km/s to swing by the planet at the closest approach

distance rp¼ 80,680 km. Compute the impulsive ΔVmagnitude required for a

maneuver performed at the closest approach to Saturn to transfer the Cassini

spacecraft into a 116-day elliptical orbit having the same periapsis point as the

approach (hyperbolic) trajectory.

3.17 Prove that the velocity vp of a spacecraft at closest approach to a central

body is

vp ¼
ffiffiffiffiμ
rp

r
1þ eð Þ for all e > 0,

where μ denotes the gravitational constant of the central body in km3/s2,

e denotes the eccentricity of the spacecraft’s orbit, and

rp denotes the radial distance in km at closest approach.

3.18 Prove that, for a hyperbolic trajectory,

e2 ¼ 1þ B2v41
μ2

where B is the impact parameter, v1 the hyperbolic excess velocity, and

μ denotes the gravitational constant of the central body in km3/s2.

3.19 What is your answer to the thought exercise proposed at the end of Sect. 3.4?

Is the ΔvTOTAL2 for the maneuver sequence described in Fig. 3.13 greater

than, equal to, or less than the ΔvTOTAL for the maneuver sequence described

in Fig. 3.12? Explain why your answer is correct.

3.20 A spacecraft’s initial mass is 10,000 kg when its engine ejects mass at a rate of

30 kg/s with an exhaust velocity of 3,100 m/s. The pressure at the nozzle exit

is 5,000 N/m2 and the exit area is 0.7 m2.

(a) What is the thrust of the engine in a vacuum?

(b) What is the magnitude of the Δv in km/s if the spacecraft’s engine burns

for 1 min?

3.21 A spacecraft is injected from a 200-km-altitude parking orbit about the earth

into a transfer orbit to flyby Mars as described in Exercise 3.8. Immediately

before injection, the spacecraft’s wet mass is 4,000 kg and its dry mass is

1,000 kg. How much propellant is used in the injection maneuver if the launch

vehicle is an Atlas/Centaur? Assume that the wet mass of the Centaur upper

stage is 30,000 lbs., including the Centaur’s structure and propellant. [Refer-

ence: Federation of American Scientists].
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3.22 The Cassini spacecraft used a bipropellant of nitrogen tetroxide (NTO)

oxidizer and monomethyl hydrazine (MMH) fuel for the insertion into orbit

about Saturn. The wet mass prior to the insertion burn was 4,532 kg and the

specific impulse in a vacuum was 306 s. Compute the amount of propellant

that would have been consumed by the impulsive orbit insertion maneuver

computed in Exercise 3.16. (Actually, a finite burn was performed centered on

the periapsis passage of the hyperbolic trajectory and the spacecraft rotated at

a constant rate during the maneuver to reduce finite burn losses.)

3.23 Derive a formula for the gravity assist velocity increment ΔVGA in terms

of the magnitude of the spacecraft’s incoming (before flyby) and outgoing

(after flyby) inertial velocity vectors and the magnitude of the secondary

body’s inertial velocity vector.

FAQ:

I have a question regarding problem 3.13 that you went over in class this past

week. You drew the relation of the hyperbolic flyby of Mars with the light side

passage and the dark side passage.

My question is, when you drew it you had the S/C coming in from left to right on

the page and the velocity of Mars in the left direction (all relative to the page). If

you are doing a Hohmann transfer where the Earth is at rp at the “south side” of the

orbit (wrt to the paper calling North up) and the S/C arrived at Mars when Mars was

in the “north side” of its orbit, how could the S/C have incoming velocity vector

from the left to right, which is opposite the velocity of Mars? Assuming all orbits

are counterclockwise wouldn’t the S/C approach Mars from right to left and V1
�

be added to the velocity of Mars to get V�? I’m a little confused.

A: The reason why the spacecraft is shown entering from the left is that the

planet is moving faster than the spacecraft. So the S/C is moved into position in

front of the planet and the planet overtakes the S/C. If the S/C were to travel behind

the planet, the S/C would not be able to catch up to the planet and pass it. The figure

that shows the S/C traveling to the right is the picture of the 2-body model with the

S/C in a hyperbolic trajectory about the planet. The motion in that picture is wrt the

planet. Recall that we break the patched conic trajectory model into four segments.

The picture you are looking at is the third segment, which shows motion wrt the

target planet. It does not show motion wrt the sun, which would be much different.
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Techniques of Astrodynamics 4

4.1 Introduction

We now consider techniques used in the study of the controlled flight paths of

human-made vehicles, beginning with algorithms for propagating the spacecraft’s

trajectory and then defining Keplerian parameters, which describe the orbit’s size,

shape, and orientation. Lambert’s Problem is used to generate mission design

curves, called “pork chop plots.” Other models advance our study to treat n bodies

and distributed masses instead of just two point masses. Lastly, we consider how to

measure time, which is fundamental to the equations of motion.

4.2 Orbit Propagation

Position and Velocity Formulas as Functions of True Anomaly
for Any Value of e

Consider a spacecraft in a conic section trajectory as shown in Fig. 4.1. Define a unit

reference vector ip along the periapsis vector and an orthogonal vector iq that is

positive in the direction of spacecraft motion. The origin of the coordinate system

is at the center of mass of the central body. The position vector can be written in the

p–q space, using the Conic Equation, as

r ¼ r cos θip þ r sin θiq ¼ p

1þ e cos θ
cos θip þ sin θiq
� � ð4:1Þ

By differentiating Eq. (4.1) and simplifying, we obtain the velocity vector

# Springer International Publishing Switzerland 2015

G.R. Hintz, Orbital Mechanics and Astrodynamics,
DOI 10.1007/978-3-319-09444-1_4

127



v ¼
ffiffiffi
μ
p

r
� sin θip þ eþ cos θð Þiq
� � ð4:2Þ

as in Exercise 4.1. The Eqs. (4.1) and (4.2) are valid for all values of e.

Deriving and Solving Barker’s Equation

Objective: Given tp, find θ, r and v for a parabolic orbit.

Since e¼ 1, the Conic Equation, the half-angle formula for the cosine, and two

trigonometric identities give

r ¼ p

1þ cos θ
¼ p

2 cos 2 θ
2

¼ p

2

cos 2 θ
2
þ sin 2 θ

2

cos 2 θ
2

" #
¼ p

2
1þ tan 2 θ

2

� �
¼ p

2
sec 2 θ

2

Therefore,

r2 ¼ p2

4
sec 4 θ

2

Since h ¼ r2
dθ
dt

¼ ffiffiffiffiffi
μp

p
, r2 ¼ ffiffiffiffiffiμpp dt

dθ
Equating these two expressions for r2 and separating variables provides the

following differential equation

4

ffiffiffiffiffi
μ
p3

r
dt ¼ sec 4 θ

2
dθ

which can be integrated, using the integration formula

ð
sec nxdx ¼ tan x sec n�2x

n� 1
þ n� 2

n� 1

ð
sec n�2xdx

Thus we obtain Barker’s Equation:

2

ffiffiffiffiffi
μ
p3

r
tp ¼ tan

θ
2

	 

þ 1

3
tan3

θ
2

	 

ð4:3Þ

q =0t= tv

iq^

ip^

r

v

q
tp

Fig. 4.1 Position vector in

p–q space
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This cubic equation is the parabolic form of Kepler’s equation. In some references,

this equation is written in the following alternate form:

tp ¼ 1ffiffiffiμp p

2
Dþ D3

6

	 


where

D ¼ ffiffiffi
p

p
tan

θ
2

We set the mean motion n¼ μ1/2 for parabolic orbits.
Solution of Barker’s Equation:

Let tan θ
2
¼ λ� 1

λ. Then

2

ffiffiffiffiffi
μ
p3

r
tp ¼ tan

θ
2
þ 1

3
tan 3 θ

2
¼ λ� 1

λ

	 

þ 1

3
λ� 1

λ

	 
3

¼ 1

3
λ3 � 1

λ3

	 


Let λ¼� tanw and λ3¼� tan s which implies that tan3w¼ tan s. So

λ3 � 1

λ3
¼ � tan sþ 1

tan s
¼ � 1

cot s
þ cot s ¼ cot 2s� 1

cot s
¼ 2 cot 2s

from the multiple angle formula for cot 2s. Therefore,

2

ffiffiffiffiffiμ
p3

r
tp ¼ 1

3
λ3 � 1

λ3

	 

¼ 1

3
2 cot 2sð Þ

3

ffiffiffiffiffiμ
p3

r
¼ cot 2s

Thus, we have determined the following procedures.

Procedure for Solving Barker’s Equation
To find θ on a parabolic orbit for given tp, we:

1. Compute s from

cot 2sð Þ ¼ 3

ffiffiffiffiffi
μ
p3

r
tp ð4:4Þ

2. Solve for tan(w) from

tan 3 wð Þ ¼ tan sð Þ ð4:5Þ
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3. Solve for θ in

tan
θ
2

	 

¼ � tan wð Þ þ 1

tan wð Þ ð4:6Þ

Procedure for Propagating a Parabolic Orbit
Given the length of time since periapsis passage tp on a parabolic orbit, we can now:

1. Compute θ at tp by following the procedure given above for solving Barker’s

Equation.

2. Compute

r ¼ p

1þ cos θ
cos θip þ sin θiq
� �

v ¼
ffiffiffi
μ
p

r
� sin θip þ 1þ cos θð Þiq
� �

So we know r¼ r(t) and v¼ v(t) for any time t on a parabolic orbit in terms of

the reference vectors ip and iq.

Orbit Propagation for Elliptic Orbits: Solving Kepler’s Equation

Consider 0< e< 1

Problem: If the state (r0, v0) is known at some time t0, what is the state (r(t), v(t)) at

any later time t? That is, given the initial conditions

r0 ¼ x0; y0; z0ð Þ and x
•

0; y
•

0; z
•

0ð Þ at the initial time t0, determine the position and

velocity vectors at a later time t¼ t0 +Δt as shown in Fig. 4.2.

From Eqs. (4.1) and (4.2) and Exercises 4.3(a) and 4.3(b),

Δt=tp - t0

r0r(t)

v(t) v0
t= t0

Fig. 4.2 Orbit propagation

for elliptic trajectories
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r ¼ a cos E� eð Þip þ ffiffiffiffiffi
ap

p
sin Eiq

v ¼ r
• ¼ �

ffiffiffiffiffiμap
r

sin E

	 

ip þ

ffiffiffiffiffiμpp
r

cos E

	 

iq

ð4:7Þ

in terms of the eccentric anomaly E, where we have again discontinued showing the

cap notation for unit vectors.

Problem: To determine the position and velocity vectors in terms of the given initial

values.

Assume that r¼ r0, v¼ v0, and E¼E0 at t¼ t0. Note that t0 is not necessarily the

time tv of periapsis passage. Hence, at t¼ t0, we have

r0 ¼ a cos E0 � eð Þip þ ffiffiffiffiffi
ap

p
sin E0iq

v0 ¼ �
ffiffiffiffiffiμap
r0

sin E0

	 

ip þ

ffiffiffiffiffiμpp
r0

cos E0

	 

iq

by using Eq. (4.7) at time t0. Solve these two equations, as in Exercise 4.3(c), to

obtain:

ip¼ cos E0

r0
r0 �

ffiffiffi
a

μ

r
sin E0v0

iq¼
ffiffiffi
a

p

r
sin E0

r0
r0 þ affiffiffiffiffiμpp cos E0 � eð Þv0

ð4:8Þ

A good practice is to verify your work when possible. Let us perform the following

check.

If t0¼ tv, then, from Eq. (4.8),

ip ¼ r0

r

iq ¼ affiffiffiffiffiμpp 1� eð Þv0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiμp
a2 1� eð Þ2

r v0 ¼ v0ffiffiffiffiμ
rp

r
1þ eð Þ

¼ v0

v0

because vp ¼
ffiffiffi
μ
rp

q
1þ eð Þ from Exercise 3.17. Thus, we have verified that the

Eq. (4.8) are correct at t¼ tv, which is an indication (not a guarantee) that we

derived those equations correctly.

Substitute Eq. (4.8) into the position formula in Eq. (4.7) to obtain

r tð Þ ¼ a

r0
cos E� E0ð Þ � e cos E0ð Þ½ �r0

þ
ffiffiffiffiffi
a3

μ

s
sin E� E0ð Þ � e sin Eð Þ � sin E0ð Þð Þ½ �v0 ð4:9Þ
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where we have used trigonometric identities for sin(E�E0) and cos(E�E0) to

write the equation in terms of the angle ΔE¼E�E0. Then differentiate Eq. (4.9)

and use Eq. (2.32) to obtain

v tð Þ ¼ �
ffiffiffiffiffiμap
rr0

sin E� E0ð Þr0 þ a

r
cos E� E0ð Þ � e cos Eð Þ½ �v0 ð4:10Þ

Thus, we see that we need E to compute r and v from these two equations. The

functional relationship between the given tp and E is given by Kepler’s equation.

We solve Kepler’s equation in a form that includes the initial conditions at t¼ t0.

Thus, we evaluate Kepler’s equation at E and E0 and subtract to obtain

ffiffiffiffiffi
μ
a3

r
tp � tp0
� � ¼ E� E0 � e sin E� sin E0ð Þ

¼ E� E0þe sin E0 1� cos E� E0ð Þð Þ
� e cos E0 sin E� E0ð Þ ð4:11Þ

where

e cos E0 ¼ 1� r0

a
from Eq: 2:29ð Þ

e sin E0 ¼ r
•

0

a E
•

0

from Eq: 2:30ð Þ

But

e sin E0 ¼ r0 • v0ffiffiffiffiffi
aμp

from Eq. (2.32) and Exercise A-8. Therefore,

e cos E0ð Þ ¼ 1� r0

a

e sin E0ð Þ ¼ r0 • v0ffiffiffiffiffi
aμp ð4:12Þ

Thus, Eq. (4.11) can be written as

ffiffiffiffiffi
μ
a3

r
t� t0ð Þ ¼ E� E0 þ r0 • v0ffiffiffiffiffi

aμp 1� cos E� E0ð Þð Þ

� 1� r0

a

� �
sin E� E0ð Þ ð4:13Þ

In Eq. (4.13), we know t, t0, and the initial conditions r0, and v0 and a can be

computed from the Energy Equation. To determine how to find E, we begin by

showing that there exists a unique solution for E in Kepler’s Equation.
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Kepler’s equation can be written in terms of the mean anomaly M (shown in

Fig. 4.3) as

ntp ¼ M ¼ E� e sin Eð Þ ð4:14Þ

Differentiating Eq. (4.14) with respect to E, we obtain

dM

dE
¼ 1� e cos E > 0

which shows that M is monotonically increasing. Since M is unbounded, there is

one and only one solution for E for a given tp. QED

Given E, it is easy to obtain M. That is, given location, find time.

Given M, we need to solve for E. That is, given time, find the location. There are

hundreds of methods for solving this equation. Four general classes of these

methods are:

1. Graphical methods,

2. Closed form approximations,

3. Iterative methods, and

4. Series expansions.

Example (type 2) (See page 196 of Battin [1999] for a sketch of a proof of this

solution of Kepler’s equation.):

A good approximation for E is obtained for e small as follows:

E ¼ Mþ e sinM

1� e cosM
� 1

2

e sinM

1� e cosM

	 
3

ð4:15Þ

if fourth and higher powers of e are neglected.

Example (type 3) Newton’s method

(Newton’s method is the classic algorithm for finding roots of functions. The

method is sometimes called Newton–Raphson in honor of Joseph Raphson, who

published the idea before Newton did.)

E

M

p 2p

Fig. 4.3 Mean anomaly

versus eccentric anomaly
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Suppose we need to find x¼ xK such that a function G(x) satisfies

G xKð Þ ¼ K

(see Fig. 4.4a). Consider the function F(x)¼G(x)�K. Then we need to find xK
such that F(xK)¼ 0, as shown in Fig. 4.4b.

Select an initial guess x1 as shown in Fig. 4.4c. If F(x1)¼ 0, we are finished.

Hence, we suppose F(x1) 6¼ 0 and proceed as follows.

The slope of the tangent line at x¼ x1 is

F0 x1ð Þ ffi F x1ð Þ � 0

x1 � x2

Solving for x2 obtains

x2 ¼ x1 � F x1ð Þ
F0
�
x1
�

Continue with

xnþ1 ¼ xn � F xnð Þ
F0 xnð Þ

a

b

c

K

x xK

G(x)

F(x)=G(x)−K

F(x)
(x1, F(x1))

K

xK

x2 x1

G(x)

xK

Fig. 4.4 Employing

Newton’s method. (a)
Function G(x). (b) Function
F(x). (c) First iteration
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Then x1, x2, . . ., xn, . . .! xK until jxn� xn+1j< εtol) convergence, where εtol is an
input tolerance parameter.

For more information on Newton’s Method, see, for example, the reference by

Epperson.

Application of Newton’s method to Kepler’s equation:

M ¼ E� e sin E ¼
ffiffiffiffiffi
μ
a3

r
tp

That is, M¼G(E)¼K.

Define

F Eð Þ ¼ E� esinE �M

and solve for E with M (equivalently tp) given. Then

F
0
Eð Þ ¼ 1� e cos E

How do we obtain the initial guess x1?

The reference by Smith provides a table of initial guesses that include the

following:

E1 ¼ M

E1 ¼ Mþ e

E1 ¼ Mþ e sinM

E1 ¼ Mþ e sinM

1� sin Mþ eð Þ þ sinM

ð4:16Þ

The author demonstrates that the last of this set is the most efficient one computa-

tionally, but the others can also be used effectively.

Hyperbolic Form of Kepler’s Equation

Consider e> 1.

Remarks

1. Our procedure is analogous to that for elliptic orbits.

2. We substitute an area for the eccentric anomaly E.

3. This area is based on a reference geometric shape, the equilateral hyperbola.

In the hyperbolic case, we make use of hyperbolic functions such as sinhx,

coshx, and tanhx, which are treated in, for example, the references CRC Standard
Mathematical Tables handbook and Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, edited by Milton Abramowitz and

Irene A. Stegun.
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The sinhx and coshx are odd and even functions, respectively.

Def.: Let f(x) be a real-valued function of a real variable. Then f is even iff the

following equation holds for all real x:

f �xð Þ ¼ f xð Þ
Geometrically, an even function is symmetric with respect to the y-axis. The

designation “even” is due to the fact that the Taylor series of an even function

includes only even powers. For example,

coshx ¼ 1þ x2

2!
þ x4

4!
þ . . .þ x2n

2nð Þ!þ . . . ,
x < 1

Def.: Let f(x) be a real-valued function of a real variable. Then f is odd iff the

following equation holds for all real x:

f �xð Þ ¼ �f xð Þ
Geometrically, an odd function is symmetric with respect to the origin. The

designation “odd” is due to the fact that the Taylor series of an odd function

includes only odd powers. For example,

sinhx ¼ xþ x3

3!
þ x5

5!
þ . . .þ x2nþ1

2nþ 1ð Þ!þ . . . ,
x < 1

Reference: www.wordiq.com/definition/odd_function [Retrieved 9/29/13].

Cartesian equation for a hyperbola:

x2

a2
� y2

b2
¼ 1

a¼ b for an equilateral hyperbola.

Define H such that

X ¼ CR ¼ aj jcoshH
Y ¼ PR ¼ bj jsinhH

Then a hyperbolic identity implies that

x2

a2
� y2

b2
¼ CRð Þ2

a2
� PRð Þ2

b2
¼ cosh2H� sinh2H ¼ 1
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Def.: The hyperbolic anomaly is the parameter H in the parametric equations of a

hyperbola given as follows:

x ¼ aj jcoshH
y ¼ bj jsinhH

The parameter H is the hyperbolic analog of the eccentric anomaly.

The hyperbolic anomaly

H ¼ 2

a2
area CAQð Þ ð4:17Þ

where CAQ denotes the shaded region designated in Fig. 4.5 as shown in

Exercise 4.5.

For hyperbolic motion, the magnitude of the radius vector

r ¼ a 1� ecoshHð Þ ð4:18Þ
as a function of the hyperbolic anomaly H, as shown in Exercise 4.6.

The following identities that relate the parameter H to the true anomaly θ are

obtained by comparing this equation for r as a function of H to the conic equation

that gives r as a function of θ:

R

P

Q

F A C

equilateral
hyperbola (a = b)

(x, y)

tra
jec

tor
y

A = periapsis
(q = 0°)

q
CAQ

r

Fig. 4.5 Hyperbolic

trajectory and the equilateral

hyperbola
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cos θ ¼ e� coshH

ecoshH� 1

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
sinhH

ecoshH� 1

coshH ¼ eþ cos θ
1þ e cos θ

sinhH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p
sin θ

1þ e cos θ

tanh
H

2
¼

ffiffiffiffiffiffiffiffiffiffiffi
e� 1

eþ 1

r
tan

θ
2

ð4:19Þ

Def.:

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
μ

�að Þ3
s

tp ð4:20Þ

The parameter N is analogous to the mean anomaly of elliptic motion.

Then the hyperbolic form of Kepler’s equation is given as

N ¼ esinhH� H ð4:21Þ
or

tp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�að Þ3
μ

s
esinhH� Hð Þ ð4:22Þ

where

sinhH ¼ r • v

e

ffiffiffiffiffiffiffiffiffi
1

�aμ

s
ð4:23Þ

coshH ¼ a� r

ae
ð4:24Þ

H ¼ ln sinhHþ coshHð Þ ð4:25Þ

The hyperbolic form of Kepler’s equation can be obtained formally from the elliptic

form by setting

E¼� iH and M¼ iN

where i ¼ ffiffiffiffiffiffiffi�1
p

For a derivation of the hyperbolic form of Kepler’s equation, see the reference:

Battin 1999.
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Given the state vector of the spacecraft as (r, v), a hyperbolic set of orbital

elements can be obtained by the algorithm described in the reference: Llanos,

Miller, and Hintz Aug 2012.

By an argument similar to the one used for elliptical orbits, we can obtain

expressions for r(t) and v(t) as follows:

r tð Þ ¼ 1þ a

r0
cosh H� H0ð Þ � 1½ �

� �
r0

þ t� sinh H� H0ð Þ � H� H0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ= �að Þ3

q
8><
>:

9>=
>;v0 ð4:26Þ

v tð Þ ¼ �
ffiffiffiffiffiffiffiffiffi�μap
rr0

sinh H� H0ð Þr0 þ 1þ a

r
cosh H� H0ð Þ � 1½ �

n o
v0 ð4:27Þ

where (H�H0) is obtained from the equation

ffiffiffiffiffiffiffiffi
μ

�a3

r
t� t0ð Þ ¼ � H� H0ð Þ þ r0 • v0ffiffiffiffiffiffiffiffiffi�μap cosh H� H0ð Þ � 1½ �

þ 1� r0

a

� �
sinh H� H0ð Þ ð4:28Þ

Orbit Propagation for All Conic Section Orbits with e> 0: Battin’s
Universal Formulas

We have seen how to propagate a trajectory from initial conditions r0 and v0 at t¼ t0
for parabolic, elliptic and hyperbolic orbits. Now we use a set of universal formulas

to obtain r and v for any of the three conic shapes without knowing which conic

orbit we have. The problem is, given initial position and velocity vectors, determine

r and v at some specified later time t. Notice the result: given six numbers, we know

the state (position and velocity vectors) at any time for Keplerian motion.

Define the Stumpff functions (aka C and S functions) as

S xð Þ ¼ 1

3!
� x

5!
þ x2

7!
� . . . ¼

ffiffiffi
x

p � sin
ffiffiffi
x

p
ffiffiffi
x

pð Þ3
, x > 0

1=6, x ¼ 0
sinh

ffiffiffiffiffiffiffi�x
p � ffiffiffiffiffiffiffi�x

p
ffiffiffiffiffiffiffi�x

pð Þ3
, x < 0

8>>>>><
>>>>>:

ð4:29Þ
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C xð Þ ¼ 1

2!
� x

4!
þ x2

6!
� . . . ¼

1� cos
ffiffiffi
x

p
x

, x > 0

1=2, x ¼ 0
cosh

ffiffiffiffiffiffiffi�x
p � 1

�x
, x < 0

8>>><
>>>:

ð4:30Þ

Suggestions:

1. Use the definition in terms of trigonometric and hyperbolic functions, not the

series definitions.

2. In your programming code, define S(x) and C(x) as:

(a) in Eqs. (4.29) and (4.30), for x> 0, if x> 10�7

(b) in Eqs. (4.29) and (4.30), for x< 0, if x<�10�7

(c) S(x)¼ 1/6 and C(x)¼½, if �10�7< x< 10�7

We can determine the following identities for the C and S functions:

dS

dx
¼ 1

2x
C xð Þ � 3S xð Þ½ �, x 6¼ 0

dC

dx
¼ 1

2x
1� xS xð Þ � 2C xð Þ½ �, x 6¼ 0

1� xS xð Þ½ �2 ¼ C xð Þ 2� xC xð Þ½ � ¼ 2C 4xð Þ

ð4:31Þ

Given initial conditions r0 and v0, compute the magnitudes r0 and v0 and define

α0 � 2

r0
� v20

μ
¼ 1

a
, e 6¼ 1

α0 � 0, e ¼ 1

Using the variable α instead of a avoids the discontinuity in a at e¼ 1.

Theorem 4.1: Set

x ¼

E� E0ffiffiffiffiffi
α0

p for elliptic orbits

H� H0ffiffiffiffiffiffiffiffiffi�α0
p for hyperbolic orbits

ffiffiffi
p

p
tan

θ
2
� tan

θ0
2

� �
and α0 ¼ 0 for parabolic orbits

8>>>>>>>><
>>>>>>>>:

ð4:32Þ

Then Kepler’s Equation becomes the “universal Kepler’s Equation”:

ffiffiffi
μ

p
t� t0ð Þ ¼ r0 • v0ffiffiffiμp x2C α0x2

� �þ 1� r0α0ð Þx3S α0x2
� �þ r0x ð4:33Þ

for all three conic section orbits, e> 0.
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Proof (Sketch):

Let 0< e< 1. Substitute in Eq. (4.33) for x the ratio E� E0ð Þ= ffiffiffiffiffi
α0

p
to obtain Kepler’s

Equation in terms of E�E0 as in Exercise 4.7. Similarly for e> 1 and e¼ 1. QED

To solve the universal Kepler’s Equation, denote the right-hand side of

Eq. (4.33) as G(x) and the left-hand side of Eq. (4.33) as K. Then, following the

procedure described in Fig. 4.4, set F(x)¼G(x)�K so that

F0 xð Þ ¼ r0 • v0ffiffiffiμp x� α0x3S α0x2
� �� �þ 1� r0α0ð Þx2C α0x2

� �þ r0 ð4:34Þ

Set x1¼ an initial guess. See the reference P&C on pages 39–41 or the reference

Bergen and Prussing for candidate initial guesses. Then use Newton’s Method to

solve for x. That is,

x2 ¼ x1 � F x1ð Þ
F0 xð Þ

and continue with

xnþ1 ¼ xn � F xnð Þ
F0 xnð Þ

so that x1, x2, . . ., xn, . . .,! xK, where convergence has occurred when

jxn� xn+1j< εtol, an input tolerance parameter.

Then compute

r tð Þ ¼ 1� x2

r0
C α0x2
� �� �

r0 þ Δt� x3ffiffiffiμp S α0x2
� �� �

v0 ð4:35Þ

where Δt¼ t� t0.

v tð Þ ¼
ffiffiffiμp

rr0
α0x3S α0x2

� �� x
� �

r0 þ 1� x2

r
C α0x2
� �� �

v0 ð4:36Þ

Equations (4.35) and (4.36) are derived from the identities in Eq. (4.31).

Reference: P&C, pp 36ff

Procedure for Propagating an Orbit from an Initial Time t = t0 to a Later Time
t > t0 for All Values of e > 0
Given r0 and v0 at t0 and a desired time t, a computer program can be formulated to:

1. Compute

α0 ¼ 2

r0
� v20

μ
ð4:37Þ

2. Determine x from the “universal” Kepler’s equation, using an iterative routine

such as Newton’s method or the Laguerre algorithm.
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3. Compute S(α0x2) and C(α0x2) from the definitions of the S and C functions in

Eqs. (4.29) and (4.30), respectively.

4. Compute r(t) and v(t) from the formulas for the “universal” position and velocity

vectors in Eqs. (4.35) and (4.36), respectively.

Note Bene (Caution):

We do not use the definition of x given in Eq. (4.32) to determine x. We use an

iterative procedure to obtain x and, from x and α0, we determine r(t) and v(t) at t> t0.

Another method for computing r(t), v(t) without needing to use iterations:

Let 0< e< 1. Denote the coefficient of r0 in Eq. (4.9) as a function f and the

coefficient of vo as a function g. Then

r tð Þ ¼ f t; t0; r0; v0ð Þr0 þ g t; t0; r0; v0ð Þv0
v tð Þ ¼ f

•

t; t0; r0; v0ð Þr0 þ g
•

t; t0; r0; v0ð Þv0
These coefficients are called the “f and g functions.” A series expansion in terms of

the elapsed time Δt¼ t� t0 gives the f, g series solutions for the f and g functions.

This method due to Gauss eliminates iteration. Unfortunately, the truncation

error for the series increases with increasing elapsed time Δt¼ t� t0 and the radius

of convergence of the series is finite, so the use of series is limited to moderate

values of elapsed time.

Reference: P&C

References for Sect. 4.1: Battin 1999; Battin 1964; Bergam and Prussing;

Broucke 1980; Epperson; Kaplan; Llanos, Miller, and Hintz Aug 2012; Prussing

and Conway; Smith.

4.3 Keplerian Orbit Elements

Definitions

Recall the Euler angles considered in Chap. 1 and set ψ¼Ω, θ¼ i, and ϕ¼ω. Thus
we obtain the three orientation angles shown in Fig. 4.6. These angles are called:

Ω¼ right ascension of ascending node, 0� �Ω� 360�

ω ¼ argument of periapsis, 0� �ω� 360�

i¼ inclination, 0� � i� 180�

These parameters are inertial, because they are defined with respect to an

inertial X, Y, Z frame. In particular, Ω is not the “longitude of the ascending

node.” Longitude is an earth-fixed (non-inertial) parameter.

Five parameters are needed to define a Keplerian, i.e., 2-body mechanics, orbit

uniquely.
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Two in-plane size and shape parameters:

a, ef g , e, pf g ,ellipse τ; rp
� �

Three classical orientation angles�Euler angles:

Ω, ω, i

To determine the location in orbit, add one of the following parameters:

θ , tp , E , M
ellipse

to this list of parameters.

Terminology: The expression “in-plane” means “in the orbit plane.”

The parameter ω is the in-plane orientation angle.

The true classical element set is:

a, e, i, Ω, ω, time of perifocal passage

The modified classical element set (aka Keplerian elements) consists of:

a, e, i, Ω, ω, and θ or M or tp or (θ +ω)

We use the modified classical element set to avoid the complications involved in

keeping track of time.

We have shown that six numbers are sufficient to determine the location of a

satellite at any time in 2-body mechanics (Keplerian motion). We now have a set of

six elements or parameters, which provide a description of the orbit. The set has

been selected to be independent so we have a complete set of six orbit elements.

S/C motion

per
iap

sis

line of nodes

Y

i

i

Z

X

Ω
ω

descending
node

h

ascending node

Fig. 4.6 Classical

orientation angles
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Def: The argument of latitude is the central angle in the orbit plane measured from

the ascending node (positive in the direction of spacecraft motion).

If e¼ 0, replace θ by the argument of latitude, θ+ω.

Def: A posigrade orbit (aka direct orbit) is an orbit whose inclination i satisfies
0� � i< 90�, a polar orbit i¼ 90�, and a retrograde orbit 90� < i� 180�.

Often an orbit that is nearly, i.e., iffi 90�, is said to be “polar.”

Transformations Between Inertial and Satellite Orbit
Reference Frames

1. Define the unit reference vectors shown in Fig. 4.7 as

ip ¼ ê

iz ¼ ĥ

iq ¼ iz � ip

Recall the matrix α, which is defined in Chap. 1 as the product α¼ βγδ, where
the three matrices β, γ, and δ define rotations through the three Euler angles.

Setting the three Euler angles ψ¼Ω, θ¼ i, and ϕ¼ω, we can now write α as

per
iap

sis

Y

Z

X

descending node

ascending node

ip̂

iẑ

iq̂

Fig. 4.7 Periapsis set of unit reference vectors
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α ¼
cωcΩ� sωcisΩ cωsΩþ sωcicΩ sωsi
�sωcΩ� cωcisΩ �sωsΩþ cωcicΩ cωsi
sisΩ �sicΩ ci

2
4

3
5 ð4:38Þ

where c denotes the cosine function and s denotes the sine function. This matrix

gives a rotation through Ω, i, and ω and, therefore, it is an orthogonal matrix.

α : X,Y, Z ! ip, iq, iz
inertial ! satellite orbit

system reference frame

Also

αT : ip, iq, iz ! X,Y, Z

satellite orbit ! inertial

reference frame system

In particular,

î p ¼ αT 1; 0; 0ð Þ
î q ¼ αT 0; 1; 0ð Þ
î z ¼ αT 0; 0; 1ð Þ

ð4:39Þ

give the unit reference vectors of the satellite orbit frame in the inertial reference

frame.

Note that αT¼ α� 1 because α is an orthogonal matrix.

2. Define the radial set of unit reference vectors shown in Fig. 4.8 as

î r ¼ r̂ � r

r

	 

î z ¼ ĥ

î θ ¼ î z � î r

For this set, the first reference vector is along the radial direction and the rotation

matrix is α*. The matrix α* is the same as the matrix α, except that the argument of

periapsis ω is replaced by the argument of latitude, θ*�ω + θ.

Conversion from Inertial Position and Velocity Vectors
to Keplerian Orbital Elements

A spacecraft is in orbit about a central body with μ¼Gm. Consider a X, Y, Z

inertial frame whose origin is at the center of mass of the central body and has unit

reference vectors I, J, K. Suppose the spacecraft’s position and velocity vectors in
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this inertial frame are r0 and v0. We derive expressions for Ω, ω, i from the

Cartesian vectors r0 and v0.

Objective: To convert from Cartesian coordinates (r(t0), v(t0)) to classical orienta-

tion parameters, Ω, ω, and i.

Note: Then we will be able to convert from Cartesian coordinates to (modified)

classical coordinates because we already know how to compute size, shape, and

location parameters from r(t) and v(t). See Exercises 2.16 and 4.8.

Inclination i:

ĥ ¼ r̂ 0 � v̂ 0

r̂ 0 � v̂ 0

K ¼ 0; 0; 1ð Þ

cos i ¼ ĥ • K̂

i ¼ cos �1 h 3ð Þð Þ ð4:40Þ
Right Ascension of the Ascending Node Ω:

Define the vector

N̂ ¼ Kxĥ

Kxĥ
ð4:41Þ

along the line of nodes. This vector is in the X, Y plane and in the orbit plane.

Therefore,

cosΩ ¼ N̂ • Î

so that

Ω ¼ cos �1 N̂ 1ð Þ� � ð4:42Þ

θ
i

Ω
ω

r
per
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ir̂
iẑ
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Fig. 4.8 Radial set of unit

reference vectors
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If N̂ 2ð Þ > 0, then Ω is in the first or second quadrant, so Ω is found as

cos �1 N̂ 1ð Þ� �
. If N̂ 2ð Þ < 0, replace Ω by 360� �Ω.

Argument of Periapsis ω:
For ω,

cosω ¼ e • N̂

e

so that

ω ¼ cos �1 e • N̂

e

 !
ð4:43Þ

where

e¼ (1/μ) [(v02� (μ/r0)) r0� (r0 • v0)v0] from Exercise 2.4

and

0� <ω< 180� if e(3)> 0

180� <ω< 360� if e(3)< 0.

In MATLAB, we write

lomega¼acosd((dot(e,Nhat))/norm(e))

if e(3)<0

lomega¼360�lomega

end

Conversion from Keplerian Elements to Inertial Position
and Velocity Vectors in Cartesian Coordinates

Objective: Given the values of the modified classical element set

a, e, i, Ω, ω, θf g,

obtain the Cartesian (inertial) position and velocity vectors, r and v.

Procedure:

1. Compute the parameter p as

p ¼ a 1� e2
� �
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and the magnitude of r from the Conic Equation as

r ¼ p

1þ e cos θ

2. Write the position r and velocity v vectors in the periapsis-based orbital frame as

follows:

rorbital ¼ r cos θip þ r sin θiq

¼ r cos θ, r sin θ, 0:0ð Þ
ð4:44Þ

vorbital ¼
ffiffiffiμ
p

r
� sin θip þ eþ cos θð Þiq
� �

¼
ffiffiffiμ
p

r
� sin θ, eþ cos θð Þ, 0:0ð Þ

ð4:45Þ

3. Rotate rorbital and vorbital from the periapsis-based orbital frame to the inertial

frame as:

rinertial ¼ αTrorbital

vinertial ¼ αTvorbital

where

αT ¼
cωcΩ� sωcisΩ �sωcΩ� cωcisΩ sΩsi

cωsΩþ sωcicΩ �sωsΩþ cωcicΩ �sicΩ

sωsi cωsi ci

2
64

3
75 ð4:46Þ

where s denotes the sine function and c denotes the cosine function.

Alternative Orbit Element Sets

We have considered the modified classical element set: a, e, i, Ω, ω, and θ.
Sometimes, alternative sets of parameters are useful. For example, if the eccentric-

ity is near zero, the periapsis is not well defined, especially in the presence of small

perturbations, which make the orbit non-Keplerian. If the inclination is near zero,

the line of nodes is not well defined.

To remove the singularities encountered at e¼ 0 and/or i¼ 0� or 180�, we often
use equinoctial elements, consisting of six elements that are defined in terms of the

Keplerian elements that are used for elliptical orbits. Two references are: Broucke

and Cefola, Battin 1999. An alternate form of the equinoctial element set is defined

in the reference by Nacozy and Dallas.
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A set of modified equinoctial orbit elements is introduced in the references:

Walker, Ireland and Owens 1985 and 1986. Modified equinoctial elements remove

singularities for all eccentricities and inclinations, including hyperbolic and para-

bolic orbits.

There are more element sets. The survey provided in the reference Hintz 2008

discusses 22 element sets plus variations.

References for Keplerian Elements: BMW; Battin 1999; Broucke and Cefola;

Hintz 2008; Kaplan; Nacozy and Dallas; Pisacane and Moore, eds.; Walker,

Ireland, and Owens 1985, 1986.

4.4 Lambert’s Problem

Problem Statement

We have looked at the problem of determining the position and velocity vectors at a

specified time t, given a set of initial conditions r0 and v0. In the relative 2-body

problem, the six numbers in r0 and v0 completely determine r(t) and v(t) for all

t. We now look at the problem of determining flight paths about a central body of

attraction and between two given points. For example, one point might be at the

earth (representing the injection point) and the other at another planet (representing

the target body) as in Fig. 4.9. We determine families of heliocentric orbits that

could be followed. The selection of an orbit depends on energy considerations for

the launch vehicle at one end and planetary approach considerations, e.g., science

requirements, at the other.

Problem: To determine a Keplerian orbit, having a specified flight time and

connecting two position vectors. Lambert’s Problem is the 2-point boundary

value problem with a specified time of flight for the relative 2-body problem.

This method was first stated and solved by Johann Heinrich Lambert (1728–1779).

Application: To obtain mission design curves, called “pork chop plots,” used to

design trajectories that satisfy launch energy constraints and target body

requirements.

Earth at departure
date LD

c
u

at arrival date AD+

Fig. 4.9 Boundary points

in Lambert’s problem
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A Mission Design Application

Interplanetary mission design:

1. In the Patched Conics Example, using a Hohmann transfer required that the

flight time¼ 146 days and we assumed that Venus is in the ecliptic plane and

used the zero sphere of influence model. The conic segments fit together in

position and velocity vectors in an interplanetary trajectory model.

2. In the Mission Design Curves, we assume massless planets, which implies that

we have only one conic that goes from the center of one planet to the center of

the other. However, we do not assume the target planet is in the ecliptic plane.

The energy at injection into the interplanetary elliptic trajectory about the sun is

E I ¼ v21
2

¼ v2I
2
� μ
RI

ð4:47Þ

We define the launch energy

C3 ¼ C3 ¼ 2 E I ¼ v12 ¼ v2I �
2μ
RI

ð4:48Þ

where vI¼ conic injection velocity and RI¼ the magnitude of the radius vector at

injection.

Additional parameters that will be used in the following discussion are:

VHP¼ the arrival v1 at the target body,

DLA¼ declination of the launch azimuth,

TTIME¼TFL¼ time of flight, and

υ¼HCA¼ heliocentric angle between the two boundary vectors.

We also define the following trajectory types.

Def.: A Type I trajectory is a trajectory from the earth to a target body that satisfies

0<HCA< 180�

Def.: A Type II trajectory is a trajectory from the earth to a target body that

satisfies

180� <HCA< 360�

We now consider mission design curves known as “pork chop plots,” which are

contours of trajectory performance and geometry data as a function of launch and

arrival between two bodies orbiting the sun. Data types that are available include

C3, VHP, and DLA. The C3 is the launch energy required for the spacecraft to
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travel from the earth on the launch date (LD) to the target body on the arrival date

(AD); TFL is the time between LD and AD; VHP denotes the arrival velocity at the

target body; and DLA describes the launch direction when combined with the right

ascension of the launch azimuth.

In Fig. 4.10, the horizontal axis shows launch dates (LD) and the vertical axis

arrival dates (AD). In Fig. 4.10a, the blue contours are the LD/AD points that require

the C3 indicated and points inside the contour require less than that C3 to reach Venus

from the earth. Note that the C3 contours become very steep nearing the Hohmann

transfer. This extremely large Δv at injection into the heliocentric transfer trajectory

is required because of the large velocity change required to change the orbit plane

from ecliptic to the Venus orbit plane. The red lines denote the time of flight (TFL).

a EARTH TO VENUS 2016/17 Type 1, 2
      C3L [blue], TTIME [red],
           Ballistic transfer trajectory

10 / 06
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Fig. 4.10 (a): Pork chop plot of Earth–Venus trajectories for 2016–2017: C3 and TFL. (b) Pork
chop plot of Earth–Venus trajectories for 2016–2017: C3, VHP, and TFL. (c): Pork chop plot of

Earth–Venus trajectories for 2016–2017: C3, DLA, and TFL
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Figure 4.10b displays the VHP contours in red, C3L in dashed blue curves, and

TTIME in gold lines. Figure 4.10c gives the DLA curves in red, C3L in dashed blue

curves, and TTIME in bold gold lines.

Example (C3, VHP, TFL):
What are the C3, VHP, and TFL for LD¼ 1/13/2017 and AD¼ 4/29/2017?

Answer: Fig. 4.10a shows that C3¼ 10 km2/s2 and Fig. 4.10b shows

VHP¼ 4.9 km/s. The TFL¼ 107 days.

Example (constraints):
Which regions in Fig. 4.10b satisfy the constraints C3� 13.0 km2/s2 and

VHP� 5.0 km/s?

Answer: See Exercise 4.10.
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Fig. 4.10 (continued)
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Launch constraints may restrict the region of LD/AD pairs that are acceptable

for a mission. For example, launches to the ISS require a DLA less than approxi-

mately 50�. See Exercise 4.10.
People often confuse the “launch period” and “launch window.” They are

different as indicated in the following two definitions.

Def: The launch period is the set of contiguous days the LV can be launched to its

target within mission and launch vehicle performance constraints.

Def: The launch window is the duration within each day of the launch period in

which the launch can be executed within mission and launch vehicle performance

constraints.
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Fig. 4.10 (continued)

4.4 Lambert’s Problem 153



The launch window is typically 0–60 min, depending on LV performance

capability.

The launch period is typically 20–30 days to allow for delays such as bad

weather. The nominal launch day may be chosen on a C3 curve that satisfies the

launch energy constraint on C3 as, for example, a spacecraft which provides

C3¼ 15 km2/s2 for a nominal LD¼ 12/4/2016 and AD¼ 6/8/2017. Then, for

each day the launch is postponed, the LD is delayed 1 day, but the AD is held

fixed. Thus, the C3 decreases as the launch moves into the launch period. (This

requirement also accommodates the scientists because they have scheduled

science-data-taking at the target body that is time-dependent.) Note that this

strategy gives the spacecraft a launch period of 25 days that satisfy a requirement

of C3� 15 km2/s2 as on the nominal launch day.

Thus, pork chop plots are employed for many mission planning purposes,

including:

1. To determine the launch date.

2. To determine the arrival date at the target body.

3. To provide a preliminary estimate of the amount of propellant to be carried

onboard the spacecraft. This estimate dictates the launch vehicle to be used and/

or the use of navigation and mission design strategies such as aerobraking at a

target body that has an atmosphere.

4. To provide information on the capture orbit when the spacecraft arrives at the

target body. This information enables selecting the arrival date that minimizes

the amount of propellant used to brake the spacecraft’s speed to allow it to be

captured into orbit. It is also important to the scientists for meeting data-taking

requirements.

5. To verify that launch constraints such as the DLA requirement for launching to

the ISS are met.

6. To select a LD/AD pair for which the launch period is acceptable.

How do we obtain these parametric plots?

For each LD and AD pair, we know:

Distance between sun and earth at departure

Distance between sun and Venus at arrival

Distance between earth at launch and Venus at arrival

υ¼Δ heliocentric true anomaly¼ heliocentric angle (HCA)

Flight time¼ arrival time� departure time

Trajectories/Flight Times Between Two Specified Points

Survey of all Possible Flight Paths for any Flight Time:

Without loss of generality (wolog), we assume r1< r2. We will consider an

example about how we cope with the reverse inequality. The given data for
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Lambert’s Problem are shown in Fig. 4.11. Note that we do not know where the

vacant focus F* is in this figure.

We determine all conic section flight paths through P and Q. In the Mission

Design Application, flight time is known. We are not saying that we know the flight

time here as we do in generating the mission design curves. We survey all possible

flight paths between P and Q for all flight times and then throw away the trajectories

we do not need.

1. Elliptic Orbits

Let a¼ the semimajor axis of such an elliptic orbit. Then, as shown in Fig. 4.12a,

PF* + PF¼ PF* + r1¼ 2a and QF* +QF¼QF* + r2¼ 2a

so that

PF	 ¼ 2a� r1 and QF	 ¼ 2a� r2 ð4:49Þ
Since the vacant focus must satisfy both equations, each vacant focus is at the

intersection of two circles—one circle of radius 2a� r1 centered at the initial

point P and the other of radius 2a� r2 centered at the final point Q, as shown in

Fig. 4.12b. We consider all vacant foci F* for different values of the semimajor

axis a.

P (initial point)

wolog
r1<r2c

F

Q (final point)

u
r 2

r
1

Fig. 4.11 Given values

in Lambert’s problem
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r1
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circle of
radius 2a − r1

2a
m − r

2
2a

m − r
1

F∗

F∗

b

P
c

F

Q

r2
r1

~

Fig. 4.12 Location of F* for elliptical orbits from point P to point Q. (a) Elliptical orbit from
point P to point Q. (b) Vacant foci F*
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The Minimum Energy Transfer Ellipse

There is a minimum a—call it am—such that the two circles are tangent along

the chord c. For a< am, the energy is too small for an elliptic orbit to reach Q

from P. The value am satisfies the equation

minE � E m ¼ �μ= 2amð Þ
Notation:

em¼ eccentricity of minimum energy ellipse

pm¼ parameter of minimum energy ellipse

s¼ semiperimeter of the triangle FPQ, i.e.,

s¼ (r1 + r2 + c)/2

Then

2am � r2ð Þ þ 2am � r1ð Þ ¼ c

am ¼ 1=4ð Þ r1 þ r2 þ cð Þ
Therefore,

2am ¼ s ð4:50Þ
Consider the triangle PQF as shown in Fig. 4.13. Let the angle between the

sides PQ and FQ be denoted as ψ. Then the lengths of the sides of the triangle are
as shown. In particular,

QF	m ¼ 2am � r2 ¼ s� r2
PF	m ¼ 2am � r1 ¼ s� r1
FF	m ¼ 2amem
υ ¼ HCA

2am − r1 =s −r1

2am − r2=s−r2

c

u

F

(s − r
2 )cosψ

(s 
− r 2

)si
nψ

r
2 − (s − r

2 )cosψ

2a
m
e m

ψ F∗
m

Q

P

r1

r2

Fig. 4.13 Triangle PQF
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From the Law of Cosines, we determine that

cosψ ¼ 2s s� r1ð Þ
r2c

� 1 ð4:51Þ

Therefore,

2emamð Þ2 ¼ FF	m
� �2 ¼ s� r2ð Þ sinψ½ �2þ r2 � s� r2ð Þ cosψ½ �2

¼ s2 � 4s

c
s� r1ð Þ s� r2ð Þ

after using Eq. (4.51), which gives one expression for (2emam)
2. Since

p¼ a(1� e)2, a� p¼ ae2. So we obtain

2amemð Þ2 ¼ 4am am � pmð Þ ¼ s2 � 2spm

from Eq. (4.50).

Equating the two expressions for (2amem)
2, and solving for pm, we obtain

pm ¼ �2

c
s� r1ð Þ s� r2ð Þ ¼ r1r2

c
1� cos υð Þð Þ ð4:52Þ

from the Law of Cosines. Using pm¼ am(1� em
2) and Eq. (4.50) again and

solving for em
2, we obtain

e2m ¼ 1� 2pm
s

ð4:53Þ

Therefore, the size (am) and shape (em) of the minimum energy transfer ellipse

are known immediately.

For a> am, there are two possible vacant foci, F
*, F


 	, for two different ellipses
for the same a.

FF	 ¼ 2ae < F~F	 ¼ 2a~e
so e < ~e and p > ~p

What is the set of all F* for all a, {F*j for all a}?
Subtracting the two equations in Eq. (4.49) gives

PF	 � QF	 ¼ r2 � r1 ¼ constant > 0

because r1< r2 by assumption. Therefore, by the definition of a hyperbola (see

Fig. 2.8), the set {F*} of all vacant foci for all semimajor axis lengths is a

hyperbola with P and Q as foci and r2� r1¼�2aH, where aH denotes the

semimajor axis of this hyperbola. (Recall r1< r2 so r2� r1> 0). This hyperbola

bends around Q.
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2. Hyperbolic Paths between P and Q:

From the definition of a hyperbola,

PF	 � PF ¼ QF	 � QF ¼ �2a > 0

Hence,

PF	 ¼ r1 � 2a � r1
QF	 ¼ r2 � 2a � r2
QF	 � PF	 ¼ r2 � r1

Limiting case: a¼ 0 (E ¼1)

The circles for this limiting case pass through F. Denote the upper intersection

point as F0
* (Fig. 4.14).

{F*}¼ {F*jQF*� PF*¼ r2� r1¼ constant> 0}.

Therefore, the set of all vacant foci for all semimajor axis lengths (a) is a

hyperbola that bends around P minus the arc between F and F0*.

3. Parabolic Orbits:

There are two possibilities as shown in Fig. 4.15. The reference by Kaplan

provides a geometric argument that the values of the parameter p for these two

trajectories are:

p ¼ 4 s� r1ð Þ s� r2ð Þ
c2

ffiffiffi
s

2

r
�

ffiffiffiffiffiffiffiffiffiffi
s� c

2

r	 

ð4:54Þ

Also, e¼ 1 and a¼1. The times of flight, TFL1 and TFL2, from P to Q along

the two parabolic orbits are different as will be shown by Eqs. (4.63a,b).

We now obtain p for e 6¼ 1. Denote the magnitude of the position as r1 and

the true anomaly as θ1 for the point P and correspondingly r2 and θ2 at Q

(Fig. 4.16). By solving the Conic Equation for cosθ, we obtain

circle of radius
r2−2a limiting case

   =¥
a=0

circle of radius
r
1
−2a 

F∗
0

F

P

Q

r2

r1

Fig. 4.14 Location of F* for

hyperbolic trajectories and

the limiting case
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cos θ1 ¼ p

r1
� 1

	 

=e

cos θ2 ¼ cos θ1 þ υð Þ ¼ p

r2
� 1

	 

=e

Substituting these two expressions into the identity

cos 2 θ1 þ υð Þ � 2 cos θ1 þ υð Þ cos θ1 cos υþ cos 2θ1 � sin 2υ ¼ 0

obtains a quadratic equation in p.

Define angles α, β, γ, and δ such that

sin
α
2

� �
¼

ffiffiffiffiffi
s

2a

r
sin

β
2

	 

¼

ffiffiffiffiffiffiffiffiffiffi
s� c

2a

r
ð4:55a; bÞ

Q (final point)

P (initial point)

periapsis

F

u

θ2

θ1

r 1

c

r2

Fig. 4.16 Trajectories from

P to Q for e 6¼ 1

P

F
e=1
TFL2

e=1
TFL1

Q

Fig. 4.15 Parabolic

trajectories from P to Q
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sinh
γ
2

� �
¼

ffiffiffiffiffiffiffiffiffi
s

�2a

r
sinh

δ
2

	 

¼

ffiffiffiffiffiffiffiffiffiffi
s� c

�2a

r
ð4:55c; dÞ

The two solutions for each of the quadratic equations are given as

p ¼ 4a s� r1ð Þ s� r2ð Þ
c2

sin 2 α� β
2

	 

for 0 < e < 1 ð4:56aþ; a�Þ

and as

p ¼ � 4a s� r1ð Þ s� r2ð Þ
c2

sinh2
γ� δ
2

	 

ð4:56bþ; b�Þ

for e> 1

Reference: John E. Prussing 1979

Lambert’s Theorem: The transfer time between any two points on a conic orbit is a

function of the sum of the distances of each point from the focus, the distance

between the points, and the semimajor axis, i.e.,

t ¼ t r1 þ r2, c, að Þ ð4:57Þ
Proof (sketch):

For 0< e< 1, let E1, E2¼ eccentric anomalies of P, Q, respectively.

1. Kepler’s Equation implies

t ¼ 2

ffiffiffiffiffi
a3

μ

s
E2 � E1

2
� e sin

E2 � E1

2
cos

E2 þ E1

2

	 


2. Consider two identities:

c2 ¼ 2a2 sin 2 E2 � E1

2

	 

1� e2 cos 2

E2 þ E1

2

	 
	 


r1 þ r2 ¼ 2a 1� e cos
E2 þ E1

2
cos

E2 � E1

2

	 


3. Solve these two equations for

e cos
E2 þ E1

2

	 

and

E2 � E1

2
in terms of a, r1 þ r2, and c:

4. Substitute the results into the equation in (1) to show that t depends only on

a, r1 + r2, c.

Similar arguments imply the result for parabolic and hyperbolic orbits. QED
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Lambert conjectured this theorem. Lagrange proved it analytically 1 year before

Lambert died.

Note that t is independent of e.

Formulas for the flight time t:

Case 1 (E1):

1. Elliptic arc from P to Q.

2. F* is on the lower branch of the hyperbola of {F*}

3. υ< 180� (Type I trajectory)

Mathematical device:

Lambert’s Theorem implies that the shape of the elliptical path from P to Q may be

changed by moving F, F* without changing t provided r1 + r2, c, and a are held

constant.

The set of permissible F¼ {F j r1 + r2¼ constant} is an ellipse with foci at P and

Q and 2aF¼ r1 + r2.

The set {F*}¼ {F* j PF* +QF*¼ 4a� (r1 + r2)¼ constant} is an ellipse with

foci at P and Q and 2aF*¼ 4a� (r1 + r2) (Fig. 4.17).

F* 6 sector PQF for υ< 180�. Moving F to F1 and F* to F1* implies a new

elliptic path from P to Q with the same t. Moving F to F2 and F* to F2* in the

limiting case implies that the transfer ellipse flattens to the chord c, i.e.,

the orbit assumes rectilinear motion, a mathematical device that enables computing

t simply. See Fig. 4.17.

Rectilinear orbits are straight lines on the major axis, so they are

one-dimensional. They satisfy the following properties:

1. e¼ 1 for rectilinear ellipses, parabolas, and hyperbolas.

2. h¼ 0 because the position and velocity vectors are parallel or antiparallel, so

p¼ 0.

3. rp¼ 0.

t for F, F∗

cQ PF∗
2

F∗
1 F∗

F

υ < 180�
F1

F2

{F∗}

{F}

r2 r1

Fig. 4.17 Elliptic orbits with fixed time of flight from P to Q
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For more information on rectilinear orbits, see the references Roy 1988 and

Roy 2004.

Rectilinear Motion

v¼ dr/dt along the line PQ

dr

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

2

r
� 1

a

	 
s
from the Vis‐Viva Equation

dt ¼ rdr

ffiffiffiμp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r� r2

a

r !

Integration from P to Q along the line PQ according to Fig. 4.18 gives

tE1 ¼ 1ffiffiffiμp
ð s
s�c

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r� r2

a

r

Let r¼ a(1� cosσ). Then dr¼ a(sinσ)dσ and

σ¼ β for r¼ s� c from Eq. (4.55b) and

σ¼ α for r¼ s from Eq. (4.55a).

Thus, we obtain

tE1 ¼
ffiffiffiffiffi
a3

μ

s ð α
β

1� cos σð Þdσ ¼ τ
2π

α� sin αð Þ � β� sin βð Þ½ � ð4:58Þ

Note: tE1¼ tE1(r1 + r2, c, a) as in Lambert’s Theorem because a, α, β are functions
of r1 + r2, c, and a. The parameter p is computed from Eq. (4.56a+).

Case 2 (E2):

1. Elliptic arc from P to Q.

2. F* is on the upper branch of the hyperbola of {F*}

3. υ< 180� (Type I trajectory)

c

s

P

s-c

QF∗
2 F2

Fig. 4.18 Integration

interval for Case E1
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The argument is similar to that for Case E1, except each ellipse passes through

apoapsis and F* sector PQF if HCA< 180�, as shown in Fig. 4.17. Therefore,

tE2 ¼ tE1 þ 2 time from Q to F2
	ð Þ ¼ tE1 þ 2ffiffiffiμp

ð2a
s

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r� r2

a

r

so that

tE2 ¼ τ� τ
2π

α� sin αð Þ þ β� sin βð Þ½ � ð4:59Þ

The parameter p is computed from Eq. (4.56a�).
Therefore, for elliptic orbits with υ< 180�, t is obtained from tE1 or tE2,

depending on which vacant focus is selected.

Minimum Energy Transfer

Recall that s¼ 2am so that, from Eq. (4.55a),

sin
αm
2

¼ 1

αm ¼ π

and

τm ¼ π

ffiffiffiffiffi
s3

2μ

s

Therefore, from Eq. (4.58),

tm ¼ τm
2π

π� βm þ sin βm½ �
where

sin
βm
2

¼
ffiffiffiffiffiffiffiffiffiffi
s� c

s

r ð4:60Þ

Case 3 (H1):

1. Hyperbolic path from P to Q (see Fig. 4.19a)

2. F* on upper branch of {F*} (see Fig. 4.14)

From an argument analogous to that for E1, except replace α, β by γ, δ and use

Eq. (4.55c,d), we obtain

tH1 ¼
ffiffiffiffiffiffiffiffi
�a3

μ

s
sinhγ� γð Þ � sinhδ� δð Þ½ � ð4:61Þ

The parameter p is computed from Eq. (4.56b+).
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Case 4 (H2):

1. Hyperbolic path from P to Q (see Fig. 4.19b)

2. F* along lower branch of {F*} (see Fig. 4.14)

tH2 ¼
ffiffiffiffiffiffiffiffi
�a3

μ

s
sinhγ� γð Þ � sinhδ� δð Þ½ � ð4:62Þ

The parameter p is computed from Eq. (4.56b�).

Case 5 (P1) and Case 6 (P2): parabolic paths

tP1 ¼ lim�a!1 tH1 ¼ 1

3

ffiffiffi
2

μ

s
s3=2 � s� cð Þ3=2
h i

tP2 ¼ lim�a!1 tH2 ¼ 1

3

ffiffiffi
2

μ

s
s3=2 þ s� cð Þ3=2
h i ð4:63a; bÞ

The parameter p is computed from Eq. (4.54).

Case 7: (E3): Same as E1, except υ> 180�

tE3 ¼ τ� tE1 ð4:64Þ
See Fig. 4.20.

The parameter p is computed from Eq. (4.56a+).

Case 8 (E4): Same as E2, except υ> 180�

tE4 ¼ τ� tE2 ð4:65Þ
The parameter p is computed from Eq. (4.56a�).

a

F
P

υ < 180�

Q

F∗

r2

r1

υ

b

F

Q

P

υ > 180�r2

r1
υ

F∗

Fig. 4.19 Hyperbolic paths from P to Q. (a) Hyperbolic path from P to Q for υ< 180�.
(b) Hyperbolic path from P to Q for υ> 180�
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For more information on the conic transfer from P to Q, see the references by

Kaplan and Thomson.

Let r1 and r2 denote the position vectors at P and Q, respectively. What is v1, the

velocity at P?

Exercise 4.13 shows that

r2 ¼ 1� r2

p
1� cos υð Þ

� �
r1 þ r1r2ffiffiffiffiffiμpp sin υ

� �
v1 ð4:66Þ

Solving Eq. (4.66) for v1 determines the velocity vector at P in terms of r1 and r2 as

v1 ¼
ffiffiffiffiffiμpp

r1r2 sin υ
r2 � 1� r2

p
1� cos υð Þ

� �
r1

� �
ð4:67Þ

which is the velocity at P for a trajectory that will pass through Q.

If vP (velocity at P) 6¼ v1, then we make a Δv correction with

Δv ¼ v1 � vP

if the (impulsive) maneuver is performed at P.

Mission Design Application (Continued)

Procedure for obtaining a parametric tool for solving Lambert’s Problem:

1. Injection is in the direction of the earth’s velocity vector so we delete some of the

t formulas for this application.

2. Def.: A trajectory that satisfies the condition 0� < υ< 180� for points P and Q is

called a Type I trajectory; a trajectory that satisfies 180� < υ< 360� is a Type II
trajectory; 360� < υ< 540� is Type III; and so forth.

3. For a specific departure date/arrival date point in the mission design plots,

t r1 þ r2, c, að Þ ¼ arrival time‐departure time

¼ time of flight

Q

F
E3

E1

P

r2

r1

Fig. 4.20 Elliptic path from

P to Q for υ> 180�, Case 7
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is solved iteratively for a and then we compute C3, VHP, etc. Finally, a contour

plotter is used to plot the contours of C3, VHP, etc. in departure date versus

arrival date space, producing pork chop plots.

4. Alternately, we use a parametric solution tool and technique to determine the

semimajor axis a for elliptic trajectories between P and Q as described in the

following subsection.

Parametric Solution Tool and Technique

Define the following non-dimensional parameters:

E 	 ¼ E = j E m j¼ �am=a ð4:68Þ
K ¼ 1� c=s ð4:69Þ

where c¼ length of chord¼ distance from P to Q and s¼ semiperimeter

T	 ¼ nmt ð4:70Þ

where nm ¼
ffiffiffiffiffiffi
μ

a3m

r
A parametric display of possible transfers between two points is given in

Fig. 4.21.

Assumption: We ignore the effects of planetary attraction on flight time.
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Fig. 4.21 Possible elliptic transfers between two points as in Lambert’s problem with the Cassini

Earth-to-Venus and an Earth-to-Jupiter examples
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Example (Cassini transfer from Earth to Venus):

We consider the flight of the Cassini spacecraft, which was launched on

10/15/1997 to transfer to Venus for its first gravity assist flyby on 4/26/1998. For

this LD/AD pair, the flight time was:

t¼TFL¼AD�LD¼ 193 days.

Ephemeris software can be used to generate the sun–earth vector at launch and

the sun–Venus vector at arrival. Then the angle between these two vectors is

computed as υ¼ 108�

Relevant data for this transfer is displayed in Fig. 4.22a. Note that the diagram

has been labeled for a launch from Venus to satisfy our assumption that r1< r2. This

is just a matter of labeling.

We compute the non-dimensional parameters K and T* as follows.

r1 ¼ r♀ ¼ 0:723 AU from Exercise 2:3:

r2 ¼ r� ¼ 1 AU ¼ 1:496� 108km

υ ¼ 108 deg

c ¼ 1:403 AU from the Law of Cosines

s ¼ r1 þ r2 þ cð Þ
2

¼ 1:563 AU

K ¼ 1� c

s
¼ 0:1

am ¼ s

2
¼ 0:782 AU ¼ 116927840 km

nm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�=a3m

p ¼ 2:881� 10�7 rad=s

T	 ¼ nmt ¼ 4:80

Next, we use Fig. 4.21 to determine values ofE * by scanning down the vertical

line at T*¼ 4.80, as in the example in that figure, for intersections with parametric

c

Q

P

⊕
F

a +

+
r1 = r

r2 = r⊕

υ = 108�

b

c

Q = Jupiter

P = earth

r2 = 5.203AU

r1 = 1 AU

υ=147�

Fig. 4.22 (a) PQF diagram for Cassini transfer from Earth to Venus. (b) PQF diagram for mission

to Jupiter
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curves for K¼ 0.1. Thus, candidate values for E * are located. Then values of the

semimajor axis of the candidate trajectories are computed from Eq. (4.68). Each

of these candidates has a different launch time and requiredΔvinj. Consider the case
of an E2 elliptic trajectory of less than one orbit where

E *¼�0.9¼�1.169� 108/a so that a¼ 1.299� 108 km, which determines the

size of the orbit.

Then, from Eq. (4.55a,b),

sin
α
2
¼

ffiffiffiffiffi
s

2a

r
¼ 0:9487 ¼> α ¼ 143:1�

sin
β
2
¼

ffiffiffiffiffiffiffiffiffiffi
s� c

2a

r
¼ 0:3033 ¼> β ¼ 35:3�

From Eq. (4.56a�), p¼ 81,530,756.2 km.

Since p¼ a(1� e2),

e ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� p

a

r
ð4:71Þ

¼ 0.6103, which determines the shape of the orbit.

One can complete the example by:

1. Computing the magnitude v2,

2. Determining the angle between the velocity of the earth and v2,

3. Drawing a vector diagram that includes the velocity vector for the earth, v2, and
v1

+ (with respect to the earth),

4. Computing the v1 of the escape trajectory, and

5. Computing the Δv required to inject the spacecraft into an interplanetary

trajectory from a low parking orbit about the earth.

Example (Transfer from Earth to Jupiter):

Consider the example of a Mariner spacecraft as described in Exercise 4.12.

Figure 4.22b displays relevant data. Note that, for planets outside the earth in

their orbits about the sun, the spacecraft launches from the earth to travel to the

target body as shown in Fig. 4.22b, whereas, for Venus and Mercury, the spacecraft

launches from the target body to travel to the earth (in the model) as shown in

Fig. 4.22a.

For this exercise, the reader will compute the non-dimensional parameters

K¼ 0.01 and T*¼ 1.67 and then use Fig. 4.21 to determine the third

non-dimensional parameter E *¼�0.6. Refer to the Jupiter example exhibited in

Fig. 4.21 as you solve for the semimajor axis a and complete this exercise.

Summary of the use of Fig. 4.21:

We used the parametric figure that gives a summary of possible transfers

between two points as shown in Fig. 4.23.
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The computations for obtaining T* are:

s ¼ r1 þ r2 þ cð Þ
2

K ¼ 1� c

s

am ¼ s

2

nm ¼
ffiffiffiffiffiffi
μ
am

r

T	 ¼ nmt

We started with t, r1, r2, υ and computed c from the Law of Cosines. In the

example, we are given transfer time t as AD�LD.

A different way to use the parametric figure is shown in Fig. 4.24. In this

application, we are given the semimajor axis a and we obtain the transfer time t.

The computations for E * are:

s ¼ r1 þ r2 þ cð Þ
2

am ¼ s

2

E 	 ¼ �am=a

To be able to use Fig. 4.21, we also need:

K ¼ 1� c

s

Computation of t:

nm ¼
ffiffiffiffiffiffi
μ
a3m

r

t ¼ T	=nm

compute
T∗ compute

given t
fig

using
value of K −am

a

a = ∗

∗Fig. 4.23 Using the

parametric plot to compute

the semimajor axis

compute
T∗ compute

given a
fig

t∗

Fig. 4.24 Using the parametric plot to compute flight time t
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A Fundamental Problem in Astrodynamics

The problem of determining a Keplerian orbit, having a specified flight time and

connecting two position vectors, is frequently referred to as Lambert’s1 Problem,

which is a fundamental problem in astrodynamics. It is also called the Gauss

problem by some authors. R. Battin considers several methods of solving this

problem in An Introduction to the Mathematics and Methods of Astrodynamics
(Chap. 7) and in his earlier book Astronautical Guidance (Chap. 3).

One of these methods is Gauss’s method. In fact, the first real progress in the

solution of Lambert’s Problem was made by Carl Friedrich Gauss2 in his book

Theoria Motus Corporum Coelestium in Sectionibus Coicis Colem Ambientium
(Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic

Sections) or Theoria Motus.
R. Battin and R. Vaughan have developed a new (improved) method from

Gauss’ method, which appears in the reference:

Richard H. Battin and Robin M. Vaughan, “An Elegant Lambert Algorithm,”

Journal of Guidance, Control, and Dynamics, Vol. 7, November–December 1984.

This algorithm accomplishes two improvements:

1. It moves a singularity for a transfer angle of 180�.
2. It drastically improves the convergence for the entire range of transfer angles

between 0� and 360�.

References for Lambert’s Problem: BMW; Battin 1999; Battin 1964; Battin and

Vaughan; Bell; Breakwell, Gillespie, and Ross; Kaplan; Lancaster and Blanchard;

NASA’s Mars Exploration Website; Prussing 1979; Roy; Schaub and Junkins;

Weisstein

4.5 Celestial Mechanics

In previous chapters, the central mass behaves like a particle, i.e., it is either a point

mass or a body of uniform density. But, in the current discussion, we enhance our

mathematical model by considering a distributed mass that is not of uniform

1 Johann Heinrich Lambert (1728–1777), a German mathematician, proved that π is irrational and

introduced hyperbolic functions (sinh, cosh, tanh, csch, sech, coth). When asked by Frederick II in

which science he was most proficient, Lambert replied “All.”
2 Carl Friedrich Gauss (1777–1855) was born in Brunswick, Germany. He taught himself to read

and to calculate before he was 3 years old. A list of Gauss’ contributions to mathematics and

mathematical physics is almost endless. By the time of his death at the age of 78, his

contemporaries hailed him as the “Prince of Mathematicians.” For more information about

Gauss, see the reference:

Eric Temple Bell, “The Prince of Mathematicians,” The World of Mathematics, Vol. 1, Part II,
Chapter 11, pp. 291-332, Tempus Books, 1988.
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density. In previous analysis, we considered 2-body (Keplerian) motion, but, in this

section, we consider the n-body problem.

As part of the discussion of a distributed mass, we study Legendre polynomials,

which provide the mathematical model of the central body.

Legendre Polynomials

The Binomial Expansion is:

aþ bð Þn ¼ an þ nan�1bþ n n� 1ð Þ
2

an�2b2 þ . . . ð4:72Þ

Take n¼� 1/2, a¼ 1, b¼ β2� 2αβ¼ β(β� 2α)
to obtain

1þ β2 � 2αβ
� ��1=2 ¼ 1þ β β� 2αð Þð Þ�1=2

¼ 1þ �1=2ð Þβ β� 2αð Þ þ �1=2ð Þ �3=2ð Þ
2

β2 β� 2αð Þ2 þ . . .

¼ 1þ αβ1 þ �1

2
þ 3

8
4α2

	 

β2 þ . . .

¼
X1
n¼0

Pn αð Þβn, j β j< 1 for convergence

where

P0(α)¼ 1

P1(α)¼ α
P2(α)¼ (3/2) α2� (1/2)

. . .

Now take β¼ x and α¼ cosγ to obtain

1þ x2 � 2xcosγ
� ��1=2 ¼

X1
n¼0

xnPn cos γð Þ ð4:73Þ

Def.: The functions Pn are called the Legendre polynomials.

This is one way of getting these polynomials. It is the way Legendre got them.

Def.: The function (1� 2αx + x2)�1/2 is called the generating function for the

Legendre polynomials Pn(α ) or the Legendre generating function.

The functions Pn(α) are defined as the coefficients of the power series expansion

1� 2αxþ x2
� ��1=2 ¼ Σ

1
n¼0

Pn αð Þxn
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From the identity

1� 2 �αð Þxþ x2
� ��1=2 ¼ 1� 2α �xð Þ þ �xð Þ2

� ��1=2

we can deduce the property

Pn �αð Þ ¼ �1ð ÞnPn αð Þ for n ¼ 0, 1, . . .

This equation shows that Pn(α) is an odd function of α for odd n (symmetric with

respect to the origin) and an even function of α for even n (symmetric with respect

to the y-axis).

By differentiating both sides of the expansion of the generating function with

respect to x, multiplying through by (1� 2αx + x2), and equating coefficients of xn,

we can derive the following recursion formula for the Legendre polynomials

nPn αð Þ � 2n� 1ð ÞαPn�1 αð Þ þ n� 1ð ÞPn�2 αð Þ ¼ 0, n � 2 ð4:74aÞ
Therefore,

Pn αð Þ ¼ 2n � 1

n

	 

αPn�1 αð Þ � n� 1

n

	 

Pn�2 αð Þ, n � 2 ð4:74bÞ

The above recursion formula for the Legendre polynomials can be used to

complete the following table

P0 αð Þ ¼ 1

P1 αð Þ ¼ α
P2 αð Þ ¼ 1=2ð Þ 3α2 � 1ð Þ
P3 αð Þ ¼ 1=2ð Þ 5α3 � 3αð Þ
P4 αð Þ ¼ 1=8ð Þ 35α4 � 30α2 þ 3ð Þ
P5 αð Þ ¼ 1=8ð Þ 63α5 � 70α3 þ 15α

� �
P6 αð Þ ¼ 1=16ð Þ 231α6 � 315α4 þ 105α2 � 5

� �
P7 αð Þ ¼ 1=16ð Þ 429α7 � 693α5 þ 315α3 � 35α

� �
P8 αð Þ ¼ 1=128ð Þ 6435α8 � 12012α6 þ 6930α4 � 1260α2 þ 35

� �

ð4:75Þ

Remarks:

The Legendre polynomials in algebraic form satisfy the orthogonality relations

ð1
�1

Pm αð ÞPn αð Þdα ¼
0 m 6¼ n
2

2nþ 1
m ¼ n

( )
ð4:76Þ

In trigonometric form, the Legendre polynomials satisfy the orthogonality

relations
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ð π
0

Pm cos γð ÞPn cos γð Þ sin γdγ ¼
0 m 6¼ n
2

2nþ 1
m ¼ n

( )
ð4:77Þ

Reference: Wylie and Barrett

Def.: The associated Legendre functions of the first kind of degree k and order j

are given by

P
j
k ¼ 1� υ2

� �j=2 dj

dυj
Pk υð Þ ð4:78Þ

Note that the Legendre function of the first kind of degree k and order 0 is equal

to the Pk Legendre function because

P0k υð Þ ¼ 1� υ2
� �0 d0

dυ0
Pk υð Þ ¼ Pk υð Þ ð4:79Þ

which is the Pk Legendre polynomial.

Adrien-Marie Legendre (1752–1833) was a French mathematician and a disciple

of Euler and Lagrange. He published a classic work on geometry, Élements de
géométrie. He also made significant contributions in differential equations, calcu-

lus, function theory, number theory in Essai sur la théorie des nombres (1797–

1798), and applied mathematics. He expanded his three-volume treatise Exercises
du calcul intégral (1811–1819) into another three volume work, Traité des
fonctions elliptiques et des intégrales eulériennes (1825–1832). He invented the

Legendre polynomials in 1784 while studying the attraction of spheroids. His work

was important for geodesy. In number theory, he proved the insolvability of

Fermat’s last theorem for n¼ 5.

References: Weisstein; Wylie and Barrett

Gravitational Potential for a Distributed Mass

Let B denote a distributed mass.

Let dm2 denote a typical volume element of the body B and m1 a particle of mass

attracted by B, as shown in Fig. 4.25. From Newton’s Universal Law of Gravitation,

the force due to dm2 on m1 is

dF ¼ �Gm1

r12

r312
dm2

So

F ¼ �Gm1

ð
B

r12

r123
dm2
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Def.: The gravitational field at any point (or gravitational field intensity) is the force

(a vector) acting on a unit mass at that point.

“Field” is a physics term for a region that is under the influence of a force that

can act on matter within that region. For example, the sun produces a gravitational

field that attracts the planets in the solar system and thus influences their orbits.

Calculating gravitational field intensities is hard because we integrate vectors. It

is usually easier to integrate scalar functions. So we look at the gravitational

potential.

Properties of the gravitational potential of a distributed mass:

(1) Scalar function U¼U(r) of position

(2) Used to describe the attraction properties of a distributed mass.

We convert to spherical polar coordinates because they are convenient when we

work with bodies that are nearly spherical.

In the inverse square field of 2-body mechanics,

U rð Þ ¼ μ
r
¼ a constant on a sphere

In this discussion, the central body is not a point mass, but rather a distributed mass.

We will show that

U rð Þ 6¼ constant on a sphere

but rather is a function of position and magnitude.

Let P denote the vector giving the position of a point in the gravitational field of

body B expressed in a right-handed coordinate system. The Cartesian elements of P

measure distances along each of the three X, Y, and Z coordinate axes. Vector P can

also be expressed as spherical elements.

Spherical coordinate elements are defined as a radius and two angles. The radius

measures the length of the vector P. In the standard definition for spherical

elements, the first angle ϕ is the angle from the +Z axis to the P vector. The second

angle θ is the angle from the X-axis to the projection of P on the XY plane measured

r12

r12

m1

dm2

B

^

Fig. 4.25 Gravitational

potential of a distributed mass
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positive counterclockwise around the Z-axis. Thus, the position of an arbitrary

point P is determined by an ordered triplet of numbers (r, ϕ, θ), where r¼ the

magnitude of the position vector, and ϕ denotes the colatitude and θ the longitude of
the point P as shown in Fig. 4.26.

We consider the gravitational potential at P. Points (X, Y, Z) outside of B are

converted to r,ϕ,θ (fixed) and points (ξ,η,ζ) inside body B to (ρ,β,λ), as shown in

Fig. 4.27.

Spherical polar coordinates:

ξ ¼ ρsinβcosλ
η ¼ ρsinβsinλ
ζ ¼ ρcosβ

ð4:80Þ

One more fact about Legendre polynomials is the

Addition Theorem for Legendre Polynomials:

If γ is the angle between the two directions specified by the spherical polar

angles (ϕ, θ) and (β, λ), then

Pk cos γð Þ ¼
Xk
j¼0

K
j
k cos j θ� λð Þð ÞPj

k cosϕð ÞPj
k cos βð Þ ð4:81Þ

where

Z

θ

P

Y

X

r

f

Fig. 4.26 Spherical

coordinate elements

for point P

Z

z

B

P(X,Y,Z)

γ

ρ

φ
β

dm

X

Y

x

d

h

Y

ξλ
θ

ζ
r

Fig. 4.27 Conversion from

inertial to spherical

coordinates

4.5 Celestial Mechanics 175



Kk
j ¼ 1 if j¼ 0 and

K
j
k ¼ 2 k� jð Þ!

kþ jð Þ! if j 6¼ 0

A proof of this theorem is available in the reference Battin 1999, Chapter 8.

The potential at point P(X, Y, Z) due to the attraction of the element dm is

dU X, Y, Zð Þ ¼ G
dm

δ
¼ G

r2 þ ρ2 � 2rρ cos γð Þ1=2
dm

from the Law of Cosines

¼ G
dm

r

X1
k¼0

ρ
r

� �k
Pk cos γð Þ if ρ < r

from Eq. (4.73), since the fraction is the Legendre generating function with x¼ ρ/r,
after factoring out 1/r. Convergence is guaranteed outside the smallest sphere that

circumscribes the body if the origin of the inertial X, Y, Z coordinate system is

placed at the center of mass of the body B.

Therefore, the potential at P(X, Y, Z) due to the entire body B is

U ¼
ð
B

dU ¼ G

r

ð
B

X1
k¼0

ρ
r

� �k
PK cos γð Þdm

¼ G

r

X1
k¼0

ð
B

ρ
r

� �k
Pk cos γð Þdm

¼ G

r

X1
k¼0

ð
B

ρ
r

� �k Xk
j¼0

K
j
k cos j θ� λð Þð ÞPj

k cosϕð ÞPj
k cos βð Þdm

" #

by the Addition Theorem for Legendre Polynomials

¼
X1
k¼0

Xk
j¼0

G

r

ð
B

ρ
r

� �k
K

j
k cos j θ� λð Þð ÞPj

k cosϕð ÞPj
k cos βð Þdm ð4:82Þ

�
X1
k¼0

Xk
j¼0

Ukj

¼ U00ð Þ þ U10 þ U11ð Þ þ U20 þ U21 þ U22ð Þ þ . . .

where we have defined Ukj accordingly.

In practice, we cannot perform the integration over B, but we write the expres-

sion for U in a useful form. We look at specific terms.
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k¼ 0, j¼ 0:

U00 ¼ Gm

r
¼ μ

r

where m¼mass of B.

k¼ 1, j¼ 0:

U10 ¼ G

r

ð
B

ρ
r
cosϕ cos βdm ¼ G

r2
cosϕ

ð
B

ρ cos βdm ¼ G

r2
cosϕ

ð
B

ζdm

We now select the origin of our coordinate system to be at the center of mass of

B. Then

U10 ¼ G

r2
cosϕ first moment of mass about X,Y planeð Þ ¼ 0 ð4:83Þ

from dynamics

Exercise 4.15: Show that U11¼ 0 if the origin is at the center of mass.

This is as far as we can go in general without knowing the distribution of the

mass. But we can look at the character of the general term.

k,j term:

Ukj ¼ G

r

ð
B

ρ
r

� �k
K

j
k cos j θ� λð Þð ÞPj

k cosϕð ÞPj
k cos βð Þdm

¼ G

rkþ1
P
j
k cosϕð ÞKj

k

ð
B

ρkP j
k cos βð Þ cos jθð Þ cos jλð Þ þ sin jθð Þ sin jλð Þ½ �dm

¼ G

rkþ1
P
j
k cosϕð Þ cos jθKj

k

ð
B

ρkP j
k cos βð Þ cos jλdmþ sin jθKj

k

ð
B

ρkP j
k cos βð Þ sin jλdm

� �

¼ G

rkþ1
P
j
k cosϕð Þ A

j
k cos jθþ B

j
k sin jθ

h i
¼ Gm

rkþ1
P
j
k cosϕð ÞRk

e C
j
k cos jθþ S

j
k sin jθ

h i
ð4:84Þ

where we have defined

A
j
k ¼ K

j
k

ð
B

ρkP j
k cos βð Þ cos jλdm

B
j
k ¼ K

j
k

ð
B

ρkPj
k cos βð Þ sin jλdm

C
j
k ¼

A
j
k

mRk
e

and S
j
k ¼

B
j
k

mRk
e

and Re¼ the mean equatorial radius of the distributed mass B. The coefficients

Ak
j and Bk

j are divided by mRe
k to obtain dimensionless quantities Ck

j and Sk
j. The

values for Re are given in Table 4.1 for the planets, Pluto, the sun, and the moon.

References: Bills and Ferrari, Seidelmann et al., Tholen and Buie.
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Thus,

Ukj ¼ Gm

rkþ1
P
j
k cosϕð ÞRk

e C
j
kcosjθ þ S

j
ksinjθ

h i
where Re¼ the mean equatorial radius.

C
j
k ¼

K
j
k

mRk
e

ð
B

ρkP
j

k

cos βð Þ cos jλdm

¼ K
j
k

mRk
e

ððð
B

ρkPj
k cos βð Þ cos jλ ρ2 sin βΓ ρ; β; λð Þdρdβdλ� �

S
j
k ¼

K
j
k

mRk
e

ð
B

ρkP
j

k

cos βð Þ sin jλdm

¼ K
j
k

mRk
e

ððð
B

ρkP j
k cos βð Þ sin jλ ρ2 sin βΓ ρ; β; λð Þdρdβdλ� �

where

Γ(ρ,β,λ)¼ density at ρ,β,λ

and the quantity in brackets is the Jacobian of spherical coordinates.

Therefore, U¼U(r,ϕ, θ) is a scalar function of position (r¼ distance,

ϕ¼ colatitude, and θ¼ longitude) with

U r;ϕ; θð Þ ¼ Gm

r
1þ

X1
k¼2

Xk
j¼0

Re

r

	 
k

P
j
k cosϕð Þ C

j
k cos jθþ S

j
k sin jθ

n o" #
ð4:85Þ

where the origin of our coordinate system is at the center of mass of the central body

and the Ck
j and Sk

j are the Stokes coefficients of the potential. This is the form in

which we represent the external potential for all celestial bodies. The Cs and Ss are

determined experimentally from spacecraft data.

Table 4.1 Mean

equatorial radius values
Body Mean equatorial radius (km)

Mercury 2,439.7

Venus 6,051.8

Earth 6,378.14

Mars 3,396.19

Jupiter 71,492

Saturn 60,268

Uranus 25,559

Neptune 24,764

Pluto 1,151

Sun 696,000.

Moon 1,737.5
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Def.: The functions cos jθPkj(cosϕ) and sin jθPkj(cosϕ) are called spherical

harmonics.

The spherical harmonics are periodic on the surface of a unit sphere. Specifi-

cally, the indices j and k determine lines on the sphere along which the functions

vanish.

1. Zonal harmonics (aka “zonals”): j¼ 0

The zonals are Ck
jPk

j(cosϕ) because cos(jθ)¼ 1 and sin(jθ)¼ 0.

Since j¼ 0, the dependence on longitude vanishes and the field is

axisymmetric. The Legendre polynomials Pk
j(cosϕ) are periodic on the surface

of a unit sphere and there are k circles of latitude along which Pk
0¼ 0. Therefore,

there are (k + 1) zones in which the function is alternately positive and negative,

which is the reason behind the name “zonals.”

Example:

P2 αð Þ ¼ 3

2
α2 � 1

2

P2 cosϕð Þ ¼ 3

2
cos 2ϕ� 1

2
¼ 1

4
3 cos 2ϕþ 1ð Þ ¼ 0

iff ϕ ¼ �54:7deg

as shown in Fig. 4.28.

Def.: The zonal harmonic coefficients (zonals) of the gravitational potential

function are

Jk ¼ �C0
k

Thus,

U ¼ U r;ϕ; θð Þ¼ Gm

r
1�

X1
k¼2

Re

r

	 
k

JkPk cosϕð Þ
"

þ
X1
k¼2

Xk
j¼1

Re

r

	 
k

P
j
k cosϕð Þ C

j
k cos jθþ S

j
k sin jθ

n o# ð4:86Þ

f = −54.7�

f = 54.7�+

+

-

Fig. 4.28 J2 zonal harmonic

4.5 Celestial Mechanics 179



Remarks:

(a) The J2 term describes oblateness, i.e., the flattening at the poles.

(b) The zonal harmonics depend on latitude only.

2. Sectorial harmonics: j¼ k

Def.: The functions cos jθPkk(cosϕ) and sin jθPkk(cosϕ) are called sectorial

harmonics.

Def.: The coefficients of the sectorial harmonics are called sectorial coefficients.

It turns out that the polynomials Pk
k(cosϕ) are zero only at the poles (ϕ¼ 0�,

180�). The factors cosjθ and sin jθ¼ 0 for 2j different values of θ. Hence, the
lines along which cos jθPkk(cosϕ) and sin jθPkk(cosϕ)¼ 0 are meridians of

longitude, producing 2j “orange-slice” sectors in which the harmonics are

alternately positive and negative. The similarity to orange slices has motivated

the name “sectorial harmonics” as shown in Fig. 4.29.

3. Tesseral harmonics: j 6¼ k

Def.: The functions cos jθPkj(cosϕ) and sin jθPkj(cosϕ) for j 6¼ k are called

tesseral harmonics.

Def.: The coefficients of the tesseral harmonics are called tesseral coefficients.

Tesseral harmonics produce a checkerboard pattern in which the harmonics

are alternately positive and negative as shown in Fig. 4.30.

+ + +- -

Fig. 4.29 2j “Orange-slice”

sectors

+

+ +
+-

- -

+ +- -

-

+ +- -

Fig. 4.30 Tesseral

harmonics
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Example: cos(4θ)P74(cosϕ)
There are other forms of U in the literature. One form writes U in terms of

latitude instead of co-latitude, replacing Pk
j(cosϕ) with Pk

j (sin(LAT)).

Comments:

1. We have the 2-body problem iff all Js, Cs, Ss¼ 0 so U¼U(r, ϕ, θ)¼Gm/r.

2. Since we cannot evaluate an infinite series, we truncate the infinite series. The

truncation errors are distributed over the coefficients that are kept in the

expansion. To show hills and valleys in the potential function, we increase

the number of terms used to get a finer grid.

3. The Js, Cs, and Ss are definite integrals, but the integrations cannot be

performed because the density function Γ(ρ, β, λ) is unknown.
4. Values of the coefficients can be determined from spacecraft observations. We

use a least squares method to solve for the Cs and Ss as described in the

reference TSB.

5. The moon has MASCONS, large concentrations of mass near the surface. The

earth does not have these large-scale anomalies. Some analysts have modeled

the MASCONS and solved for their positions because of the computational

problems in solving for all the coefficients in the spherical harmonic expansion.

Supercomputers now make such attempts unnecessary.

6. If r>>Re, the effects of these anomalies are reduced.Only low orbits experience

the effects of the higher degree terms in a harmonic expansion of U. For such low

altitude orbits, it is said that the spacecraft is “buffeted by the harmonics.”

7. Some of the Js, Cs, and Ss for the earth are estimated as in Table 4.2. Note that

J2� 3 orders of magnitude larger than the other values.

Remarks about the Table of Spherical Harmonic Coefficients for the Earth:

(a) Data is from the NASA-NIMA Earth Gravity Model EGM96

(b) EGM96 is a 360� 360 Earth Gravity Field Model

(c) For this model, Gm is 398,600.4415 km3/s2 and the mean equatorial radius

of the earth is 6,378.1363 km.

8. Some texts assume that C2
1¼ S2

1¼ 0. Thus, they assume that the offset of the

principal axis and the rotational axis is zero. This offset is very small, but it is

not zero. The assumption that these offsets are zero is not always done in

practice; in fact, the analyst may solve for C2
1 and S2

1 and use the values

obtained as verification that the results are correct. Obtaining larger values than

expected for C2
1 and S2

1 is an indication that something is wrong. Getting small

values helps to verify the results.

9. The spherical harmonics are orthogonal. This property makes the spherical

harmonics the natural means for general (unique) representation of a function

over a spherical surface.

10. For numerical reasons, it is convenient to normalize the coefficients as

discussed in the reference by Kaula.

11. There is a solution for the Venus gravity field that involves the spherical

harmonic coefficients to degree and order 180 or 33,000 coefficients. The
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coefficients were solved for in three different sets with a maximum of 15,000

coefficients solved for at one time, using a least squares estimation procedure.

See the reference by Konopliv, Banerdt, and Sjogren. Lunar gravity models are

presented in the reference by Konopliv, Asmar, Carranza, Sjogren, and Yuan.

Table 4.2 Spherical

harmonic coefficients for

the Earth

J(2)¼ 1,082.6267� 10�6

J(3)¼�2.5327� 10�6

J(4)¼�1.6196� 10�6

J(5)¼�0.2273� 10�6

J(6)¼ 0.5407� 10�6

J(7)¼�0.3524� 10�6

J(8)¼�0.2048� 10�6

J(9)¼�0.1206� 10�6

J(10)¼�0.2411� 10�6

C(2,1)¼�0.00024� 10�6

C(2,2)¼ 1.57446� 10�6

C(3,1)¼ 2.19264� 10�6

C(3,2)¼ 0.30899� 10�6

C(3,3)¼ 0.10055� 10�6

C(4,1)¼�0.50880� 10�6

C(4,2)¼ 0.07842� 10�6

C(4,3)¼ 0.05921� 10�6

C(4,4)¼�0.00398� 10�6

C(5,1)¼�0.05318� 10�6

C(5,2)¼ 0.10559� 10�6

C(5,3)¼�0.01493� 10�6

C(5,4)¼�0.00230� 10�6

C(5,5)¼ 0.00043� 10�6

S(2,1)¼ 0.00154� 10�6

S(2,2)¼�0.90380� 10�6

S(3,1)¼ 0.26842� 10�6

S(3,2)¼�0.21144� 10�6

S(3,3)¼ 0.19722� 10�6

S(4,1)¼�0.44914� 10�6

S(4,2)¼ 0.14818� 10�6

S(4,3)¼�0.01201� 10�6

S(4,4)¼ 0.006526� 10�6

S(5,1)¼�0.08086� 10�6

S(5,2)¼�0.05233� 10�6

S(5,3)¼�0.00710� 10�6

S(5,4)¼ 0.00039� 10�6

S(5,5)¼�0.00165� 10�6

where J(n)¼ Jn; C(n,m)¼
Cn

m; S(n,m)¼ Sn
m
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A Martian gravity field model of degree and order 75 is available in the

reference by Yuan, Sjogren, Konopliv, and Kucinskas.

12. To prepare for the NEAR landing on the asteroid Eros, an ellipsoidal expansion

of the potential function was used to increase the region of convergence to be

everywhere outside a circumscribing ellipsoid about the irregularly shaped

asteroid. It was important to know the gravitational potential to avoid a

spacecraft collision caused by the gravitational attraction. See the references

by Garmier and J. P. Barriot; Garmier, Barriot, Konopliv, and Yeomans;

Konopliv, Miller, Owen, Yeomans, and Giorgini; Miller, Konopliv,

Antreasian, Bordi, Chesley, Helfrich, Owen, Wang, Williams, and Yeomans.

13. The characteristics of the various Math models are:

Spherical harmonics—unstable inside a circumscribing sphere (Brillouin

sphere)

Ellipsoidal—better, but tough to get higher order terms

Polyhedral—better, but tough to put in density variations, coupled to shape

model; lots of calculations

Surface Integration—few calculations, accurate, updatable independent of

shape model; stable very close to body. In surface integration, use Green’s

Theorem to replace the volume integral by a surface integral.

Reference: Weeks and Miller.

The n-Body Problem

Consider n particles P1, P2, . . ., Pn of mass m1, m2, . . ., mn, respectively.

Let Fi¼ gravitational force of attraction on Pi of the other (n� 1) particles.

Let ri¼XiI+YiJ+ZiK denote the inertial position of Pi, i¼ 1, . . ., n.

Def.: rij¼ ri� rj

Then rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ r2j � 2rirj cos γij

q
where γij is the angle between ri and rj as

shown in Fig. 4.31. The force

Yi

Z

X

Y

rij

gij

rj

ri

Pj

Pi

Xi

Zi

Î

K̂

Ĵ

Fig. 4.31 The n-body

problem

4.5 Celestial Mechanics 183



Fi ¼ �Gmi

Xn
j ¼ 1

j 6¼ i

mj

rij3
rij, i ¼ 1, . . . , n ð4:87Þ

Fi is conservative from Exercise 4.16. From NII,

Fi ¼ mi

d2ri

dt2

Equating the two expressions for Fi produces n vector differential equations

d2ri

dt2
¼ �G

Xn
j ¼ 1

j 6¼ i

mj

rij3
rij, i ¼ 1, . . . , n ð4:88Þ

as the EOM of the system of n mass particles.

Def.: The gravitational potential Ui at (Xi, Yi, Zi) is

Ui ¼ G
Xn
j ¼ 1

j 6¼ i

mj

rij
ð4:89Þ

The potential function depends only on the distances to the other particles so the

choice of axes is independent.

∇Ui¼ the force of attraction on a particle of unit mass at (Xi, Yi, Zi)

Therefore,

Fi ¼ mi∇Ui ð4:90Þ
which follows from Exercise 4.17.

Def.:

U ¼ 1

2

Xn
k¼1

miUi ¼ G

2

Xn
k¼1

Xn
j ¼ 1

j 6¼ i

mkmj

rkj
ð4:91Þ

Then

Fi ¼ ∇iU where ∇i ¼ I
∂ •

∂Xi

þ J
∂ •

∂Yi

þK
∂ •

∂Zi

ð4:92Þ

Properties of U:

1. U can be thought of as being the total work done by gravitational forces in

assembling the n particles from a state of infinite dispersion to a given

configuration.

2. PE of system¼�U

3. U is the gravitational potential function of n bodies.
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The idea that force can be derived from a potential function was used by Daniel

Bernoulli in Hydrodynamics (1738). The Bernoulli family tree included brothers

Johann Bernoulli (1667–1748) aka John I. Bernoulli and Jakob Bernoulli (1654–

1705). The sons of Johann were Daniel Bernoulli (1700–1782) and Nicholas

Bernoulli (1695–1726). Daniel Bernoulli was a Swiss mathematician, who showed

that as the velocity of a fluid increases, the pressure decreases, a statement known as

the Bernoulli principle. He won the annual prize of the French Academy ten times

for work on vibrating strings, ocean tides, and the kinetic theory of gases. For one of

these victories, he was ejected from his jealous father’s house, because his father

had also submitted an entry for the prize.

A complete solution of the n-body problem requires that we solve for 6n

quantities: three components of position and three components of velocity for

each of n particles referred to an inertial reference frame. But only ten

integrals are known for use in reducing the order of the system of differential

equations of motion to be solved. Recall that, in Chap. 2, we solved the relative

2-body problem, which is often referred to as the “2-body problem.” Jules Henri

Poincare (1854–1912), a French mathematician, proved that there are no more of

these constants.

The ten integrals are obtained as six from the conservation of total linear

momentum, three from the conservation of total angular momentum, and one

from the conservation of total energy. See the reference by Kaplan, pp. 283–285.

Jules Henri Poincare (1854–1912) was a French mathematician who did impor-

tant work in many different branches of mathematics. However, he did not stay in

any one field long enough to round out his work. He had an amazing memory and

could state the page and line of any item in a text he had read. He retained his

memory all his life. His normal work habit was to solve a problem completely in his

head, then commit the completed problem to paper. Poincare did fundamental work

in celestial mechanics in his treatises Les Methodes Nouvelles de la Mecanique
Celeste (1892, 1893, 1899) and Lecons de Mecanique Celeste (three volumes,

1905–1910). In these works, he attacked the 3-body problem.

Disturbed Relative 2-Body Motion

Since the n-body problem cannot be solved analytically, we consider disturbed

relative 2-body motion to introduce the gravitational effects of a third body.

Def.: Third body effects are the gravitational effects on a satellite produced by a

body other than the central body.

Example (Pioneer Venus Orbiter): The Keplerian orbital parameters for PVO

were: τ¼ 24 h, hp� 200 km (However, the spacecraft did go as low as about

140 km in altitude on the night side and as low as about 150 km on the day side

so we could study the atmosphere of Venus by determining its effect on the

spacecraft’s orbit.), i¼ 105�, Ω¼ 22.8�, and ω¼ 160.7� with respect to mean

ecliptic and equinox of 1950.0 coordinates. (See the reference by Shapiro et al.)
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The dominant perturbation to 2-body (Keplerian) motion for PVO was solar

gravity (third body effect of the sun). Figure 4.32 shows the spacecraft’s altitude as

a function of days from entry into orbit about Venus. This figure is a parametric

display for three different launch dates, June 4, May 24, and May 16 in 1978. (PVO

was launched on May 20, 1978.) This figure assumes no trim maneuvers to correct

for the increasing altitude. In reality, the altitude was decreased as illustrated in

Fig. 4.33. Note that the altitude drift was over-corrected to reduce the number of

TCMs required to keep the altitude within tolerances.

We look at relative 2-body motion with other bodies disturbing the motion as

illustrated in Fig. 4.34. We consider n-bodies P1, P2, . . ., Pn with masses m1, m2, . . .,
mn, respectively and ask the question: What is the motion of P2 with respect to P1,

given gravitational disturbances by Pj, j¼ 3, . . ., n?

INITIAL PERIAPSIS ALTITUDE  =  200 KM
                            INCLINATION  = 105° (TO ECLIPTIC)
                                     PERIOD  = 24 HRS

ARRIVAL DATE  =  4 DEC 1978, 1800 UT
                                (ORBIT DAY 0)

LAUNCH DATE, 1978 

4 JUNE

24 MAY
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ORBITS WITH PERIAPSIS IN NORTHERN HEMISPHERE
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Fig. 4.32 Parametric display of orbital altitude drift for PVO
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Examples:
Planetary theory: P1¼ sun, P2¼ a specific planet, Pj¼ the other planets

Lunar (satellite) theory; P1¼ earth, P2¼moon (spacecraft), Pj¼ the sun and

other planets

Def.:

r ¼ r2 � r1
ρj ¼ rj � r1
dj ¼ r� ρj ¼ r2 � rj

ð4:93Þ

Let Fi¼ force of attraction on Pi. Then, from NII and the Universal Law of

Gravitation,

Fi ¼ mi

d2ri

dt2
¼ G

Xn
j ¼ 1

j 6¼ i

mimj

r3ij
rj � ri
� �

, i ¼ 1, . . . , n ð4:94Þ

For i¼ 1 (j 6¼ 1)

F1

m1

¼ d2r1

dt2
¼ Gm2

r312
r2 � r1ð Þ þ G

Xn
j¼3

mj rj � r1
� �
r31j

time, days

h p
 (

A
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Fig. 4.33 PVO corrections

for altitude drift
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Fig. 4.34 Motion of body P2
about primary body P1 given

disturbances by other bodies

Pj¼ 3, 4, . . ., n
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For i¼ 2 (j 6¼ 2)

F2

m2

¼ d2r2

dt2
¼ Gm1

r321
r1 � r2ð Þ þ G

Xn
j¼3

mj rj � r2
� �
r32j

Subtracting these two equations, we obtain

d2r

dt2
þ μ
r3
r ¼ �G

Xn
j¼3

mj

d3j
dj þ

mjρj
ρ3j

 !
¼ G

Xn
j¼3

mj∇
1

dj
� r • ρj

ρ3j

 !
ð4:95Þ

where μ¼G(m1 +m2) and∇¼ gradient operator with respect to the components of

r from Exercise 4.18.

Define the n� 2 scalar quantities

Dj ¼ Gmj

1

dj
� 1

ρj
r • ρj

 !
, j ¼ 3, . . . , n ð4:96Þ

Dj is called the disturbing function associated with the disturbing body Pj.

Then the basic (differential) equation of the relative motion of P2 with respect to

P1 in the presence of a disturbing potential due to n� 2 other particles is

d2r

dt2
þ μ

r3
r ¼ ∇

Xn
j¼3

Dj

 !
ð4:97Þ

where ∇¼ the gradient operator with respect to the components of the vector r.

Note that Dj¼ 0, j¼ 3, . . ., n , 2-body problem (Keplerian motion)

Example:
For an earth satellite perturbed by the sun, the disturbing function is

D ¼ Gm�=ρð Þ 1þ Σ
1
k¼2

r=ρð Þk Pk cos αð Þ
	 


ð4:98Þ

where α is the angle between the earth-to-sun and earth-to-satellite vectors from

Exercise 4.19.

Sphere of Influence

In what region of space is one body the primary attracting mass and another the

disturbing mass?

Let P1, P3¼ attracting bodies acting on P2 with m1<<m3 as shown in Fig. 4.35.
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Example:

P1¼ earth

P2¼ spacecraft

P3¼ sun

ρffi 1 AU

When considering the disturbed motion of one body of mass m2 in the presence

of two bodies of mass m1 and m3, it is important for numerical computation to select

the appropriate body to which the motion of the body of mass m2 is to be referred.

The dividing surface is defined as the locus of points at which the ratio between

the force with which the body of mass m3 perturbs the motion of the body at P2 and

the force of attraction of the body of mass m1 is equal to the ratio between the

perturbing force of the mass m1 and the force of attraction of the body of mass m3. It

happens that the surface boundary over which these two ratios are equal is almost

spherical if r is considerably smaller than ρ as shown in Fig. 4.36.

Sphere of influence (SoI)¼ sphere about P1 of radius

r ffi ρ
m1

m3

	 
2=5

ð4:99Þ

where ρ denotes the distance between P1 and P3. See the 1999 reference by Battin

on pages 395–396 or the reference by Kaplan on pages 287–289 for a proof. The

planetary spheres of influence are given in Table 4.3.

d3r

rP1 P3

P2 (S/C)

m1

m2

m3

m1 << m3

Fig. 4.35 Two attracting

bodies for one spacecraft

P1

SoI

P3

P2 (S/C)

r

m1

m2

m3

r

Fig. 4.36 Sphere

of influence
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Inside this sphere of influence for P1, the motion of the spacecraft at P2 is

considered to be dominated by m1 and only perturbed by m3. Then P1 is used as

the origin of the inertial coordinates. When P2 is outside this sphere, the coordinate

system is centered at P3.

The concept of sphere of influence originated with Pierre-Simon de Laplace

when he was studying the motion of a comet that passed near Jupiter. In his orbit

determination calculations, he searched for a logical criterion for choosing the

origin of his coordinate system during various phases of the motion.

The sphere of influence for the planets and Pluto are given in Table 4.3.

Battin [1999] says the following about Laplace:

Pierre-Simon de Laplace (1749–1827), mathematician and French politician

during the Napoleonic era, made many important discoveries in mathematical

physics and chemistry but most of his life was devoted to celestial mechanics.

His Mecanique celeste, consisting of five volumes, published between 1799 and

1825, was so complete that his immediate successors found little to add. Unfortu-

nately, his vanity kept him from sufficiently crediting the works of those whom he

considered rivals. Laplace was the originator of that troublesome phrase, which

continues to plague students of mathematics: “It is easy to see that . . .” when, in

fact, the missing details are anything but obvious.

Example (Solar system)

rSoI ffi m1

m3

	 
2=5

ρ ¼ 0:0304� 10�4
� �2=5

1:496� 108km
� � ¼ 9:29� 105km

Example (Earth–Moon system)

GmM¼ 4,902.801 km3/s2

Moon’s average distance from earth¼ 384,400 km

m
M
/mL¼ 1/81.30059

RL¼ 6,378.14 km

Table 4.3 Planetary and Pluto’s spheres of influence

Planet or Pluto

system

Mass ratio (Sun or

planetary system)

Average distance to Sun

(105 km)

Radius of SOI

(105 km)

Mercury 6,023,600 579.1 1.12

Venus 408,523.71 1,082 6.16

Earth +Moon 328,900.56 1,496 9.29

Mars system 3,098,708 2,279.4 5.77

Jupiter system 1,047.3486 7,785 482.19

Saturn system 3,497.898 14,294 546.55

Uranus system 22,902.98 28,709.9 517.70

Neptune system 19,412.24 45,040 867.70

Pluto system 1.35E + 08 59,135.2 33.09

190 4 Techniques of Astrodynamics



Moon’s rSoI ¼ ρ
mM

m�

	 
2=5

¼ 66, 183km ffi 10R� in the literature.

The derivation of rSoI given in the reference by Walter says:

rSoI ¼ ρ
m1=m3ð Þ�2=5 þ 1

But the 1 is not negligible for the moon because

mM=m�ð Þ�2=5 ¼ 5:808:

Therefore, for the moon,

rSoI ¼ ρ
mM=m�ð Þ�2=5 þ 1

¼ 56, 462km ffi 9R�

Reference: Walter

Example (Jovian system)

Radius of Io RIo¼ 1,821.6 km, Distance between Jupiter and Io¼ 421,600 km

mass of Io

mass of Jupiter
¼ 4:7� 10�5

Therefore, for Io, rSoI¼ 4.3 RIo

References for Sect. 4.5: Battin 1999; Battin 1964; Bills and Ferrari; Hobson;

Kaplan; Kaula; Konopliv, Banerdt, and Sjogren; Konopliv, Asmar, Carranza,

Sjogren, and Yuan; Seidelmann et al.; Tholen and Buie; Walter; Weisstein;

Wylie and Barrett; and ssd.jpl.nasa.gov Website.

4.6 Time Measures and Their Relationships

Introduction

Time is a fundamental parameter in the equations of motion. To establish a system of

time, one must define two quantities: the unit of duration (e.g., the second or day),

and the epoch, or zero, of the chosen time. In physics and astronomy, there are four

types of time systems in common use. Broadly speaking, they are the following:

1. Universal time, in which the unit of duration is the (mean) solar day, defined to

be as uniform as possible, despite variations in the rotation of the earth (see

Fig. 2.14).

2. Atomic time, in which the unit of duration corresponds to a defined number of

wavelengths of radiation of a specified atomic transition of a chosen isotope.
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3. Dynamical time, in which the unit of duration is based on the orbital motion of

the earth, moon, and planets.

4. Sidereal time, in which the unit of duration is the period of the earth’s rotation

with respect to a point nearly fixed with respect to the stars.

Universal Time

Effects of Changes in Earth’s Rotation Rate
Astronomers saw that the moon and planets did not appear where they were

expected. These discrepancies are introduced by variations in the translational

and rotational motion of the earth, on which time systems have traditionally been

based. The eccentricity of the earth’s orbit about the sun introduces translational

variations. Earth’s rotation is not uniform for various reasons:

1. Earth’s rotation is gradually slowing down from tidal friction of the moon on the

earth’s oceans. (See Sect. 5.7.)

2. The positions of the North and South Poles wander around by a few meters from

1 year to the next due to seasonal effects and rearrangements in the internal

structure of the earth (implies maybe a 30 ms change).

3. There are also changes in the spin rate of the earth, causing variations in the

length of the day as described in the article located at the Website: http://www.

jpl.nasa.gov/earth/features/longdays.html

This variation is about 1 ms over a year, increasing gradually over the winter for

the Northern Hemisphere and decreasing during the summer. “There are also longer

patterns of changes in the length of day that last decades, even centuries.”

Introduction of Universal Time
These irregularities cause the earth to be a somewhat irregular clock. Therefore,

three different scales of time called “universal time” (UT0, UT1, and UT2) have

been developed as follows:

1. UT0 is the scale generated by the mean solar day. Thus, UT0 corrects for the

tilted earth moving around the sun in an elliptical orbit.

2. UT1 (a more uniform scale) is UT0 corrected for the polar motion of the earth.

(We use UT1.)

3. UT2 is UT1 corrected for the regular slowing down and speeding up of the

earth’s spin rate in winter and summer.

Universal time is the mean solar time at Greenwich, England, defining the zero

epoch from which UT is measured.
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Atomic Time

International Atomic Time (TAI)
Atomic time is based on the Système International (SI) second (atomic second),

which is defined as the elapsed time of 9,192,631,770 “oscillations of the undis-

turbed cesium atom.” Atomic time is equal to a count of atomic seconds (SI) since

the astronomically determined instant of midnight January 1, 1958 00:00:00 at the

Royal Observatory in Greenwich, England. TAI is kept by the International Earth

Rotation Service (IERS—formerly the Bureau International L’Heure, BIH) in

Paris, France. Practically speaking, this time is updated as a weighted average of

many atomic clocks corrected to sea level around the world.

Coordinated Universal Time (UTC)
Atomic time is regular. So the irregularity of the earth’s rotation rate implies that

UT and TAI will get out of step. Therefore, the “leap second” was invented in 1972.

UTC is always to be within 0.9 s of UT1. IERS notifies the world when a leap

second is to be added or subtracted (always added so far) at the end of June or

December.

Notice that the acronym for Coordinated Universal Time is “UTC”. This order of

the letters was chosen to be no one’s acronym, so people will not be jealous because

the acronym is not from their language as in the French acronyms “SI” and “TAI.”

Dynamical Time

Ephemeris Time
In 1952, the International Astronomical Union (IAU) introduced Ephemeris Time

(ET), based on the occurrence of astronomical events, to cope with the irregularities

in the earth’s rotation that affected the flow of mean solar time. The uniform time

scale ET is the independent variable (dynamical time) in the differential equations

of motion of the planets, the sun, and moon. In 1976, the IAU introduced two

dynamical times that are often called ephemeris time:

(a) Barycentric Dynamical Time (BDT) used when describing the motion of bodies

with respect to the solar system barycenter.

(b) Terrestrial Dynamical Time (TDT) used when describing the motion of objects

near the earth.

Relativistic Time Scales
While time is an absolute quantity in the context of Newtonian physics, which does

not depend on the location and the motion of the clock, the same is no longer true in

a general relativistic framework. Instead, different proper times apply for clocks

that are related to each other by a four-dimensional space-time transformation.

Geocentric Coordinate Time (TCG) represents the time coordinate of a four-

dimensional reference system.
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Sidereal Time

Apart from the inherent motion of the equinox due to precession and nutation,

sidereal time is a direct measure of the diurnal rotation of the earth. In general

terms, sidereal time is the hour angle of the vernal equinox, i.e., the angle between

the mean vernal equinox of date and the Greenwich meridian. Observatories

measure sidereal time by observing celestial objects. The observation data are

used to solve for UT1. Apparent sidereal time is the hour angle of the true equinox

(the intersection of the true equator of date with the ecliptic plane), which is

affected by the earth’s nutation. Mean sidereal time is measured to the mean

equinox of date, which is affected by precession.

Julian Days

The Julian day system provides a unique number to all days that have elapsed since

a selected standard reference day, January 1, 4713 B.C., in the Julian calendar. The

days are in mean solar measure. The Julian day (JD) numbers are never repeated

and are not partitioned into weeks or months. Therefore, the number of days

between two dates can be obtained by subtracting Julian day numbers.

There are 36,525 mean solar days in a Julian century and 86,400 s in a day. The

Julian century does not refer to a particular time system; but rather is merely a count

of a fixed number of days. Ephemeris calculations are done in Julian days and Julian

centuries.

A Julian day starts at noon UT instead of midnight, an astronomical custom that

is followed to avoid having the day number change during a night’s observations.

Julian days can be calculated from calendar dates between the years 1901 A.D. and

2099 A.D. as follows:

J ¼ 367Y� int 7
Yþ int Mþ 9ð Þ=12ð Þ

4

	 
� �
þ int

275M

9

	 

þ D

þ 1, 721, 013:5 ð4:100Þ
where J denotes the Julian day number, Y (expressed as yyyy) the calendar year,

M the calendar month number, D the calendar day and fraction, and int denotes the

greatest integer in the argument.

For more information on time and time scales, see the references: Jespersen and

Fitz-Randolph, and Seidelmann.

What Time Is It in Space?

Keeping tabs on a spacecraft way out at Saturn can get complicated. Unless

otherwise noted, all times in this subsection have been converted to US Pacific
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Time—the time zone of Cassini mission control at NASA’s Jet Propulsion Labora-

tory (JPL) in Pasadena, California. Here are some definitions to help you keep tabs

on mission time:

Coordinated Universal Time (UTC): The worldwide scientific standard of

timekeeping

It is based upon carefully maintained atomic clocks and is highly stable. The

addition or subtraction of leap seconds, as necessary, at two opportunities every

year adjusts UTC for irregularities in Earth’s rotation.

Spacecraft Event Time (SCET): The time something happens at the spacecraft, such

as a science observation or engine burn.

One-Way Light Time (OWLT): The time it takes for a signal—which moves at the

speed of light through space—to travel from the spacecraft to Earth. From Saturn,

one-way light time can range from about 1 h and 14 min to 1 h and 24 min.

Earth Received Time (ERT): The time the spacecraft signal is received at mission

control on Earth (the Spacecraft Event Time plus One-Way Light Time).

Local Time: Time adjusted for locations around the Earth. This is the time most

people use to set watches and alarm clocks.

For example, Cassini began transmitting data from its very first close Titan flyby

at 00:16 SCET on Oct. 27. The first signal arrived at Earth 1 h and 14 min later at

01:30 SCET on Oct. 27.

Adjusting for local time, the signals arrived on the screens at mission control in

Pasadena, California at 6:30 p.m. PDT (or 9:30 p.m. EDT for folks tuned in at

NASA headquarters in Washington, D.C.)

You can use a time zone converter or the chart in Table 4.4 to figure out when

Cassini’s signals would reach your house.

Table 4.4 Time zone

converter chart
Time zone Relative time (from UTC)

Atlantic Daylight Subtract 3 h

Atlantic Standard Subtract 4 h

Eastern Daylight Subtract 4 h

Eastern Standard Subtract 5 h

Central Daylight Subtract 5 h

Central Standard Subtract 6 h

Mountain Daylight Subtract 6 h

Mountain Standard Subtract 7 h

Pacific Daylight Subtract 7 h

Pacific Standard Subtract 8 h

Alaska Daylight Subtract 8 h

Alaska Standard Subtract 9 h

Hawaii–Aleutian Daylight Subtract 9 h

Hawaii–Aleutian Standard Subtract 10 h

Samoa Standard Subtract 11 h
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Reference: http://saturn.jpl.nasa.gov/mission/saturntourdates/saturntime/

[accessed 1/10/2014]

References for this chapter: BMW; Battin 1964; Battin 1999; Battin and

Vaughan; Bell; Bergam and Prussing; Bills and Ferrari; Breakwell, Gillespie, and

Ross; Broucke 1980; Broucke and Cefola; Cassini Equinox Mission Website;

Cassini Solstice Mission Website; C. Brown; Epperson; Escobal; Hintz 2008;

Hobson; Jespersen and Fitz-Randolph; Kaplan; Kaula; Konopliv, Banerdt, and

Sjogren; Konopliv, S. W. Asmar, E. Carranza, W. L. Sjogren, and D. N. Yuan;

Lancaster and Blanchard; Llanos, Miller, and Hintz 2012; Montenbruck and Gill;

Nacozy and Dallas; NASA’s Mars Exploration ProgramWebsite; Official US Time

Website; Pisacane and Moore; Prussing 1979; Prussing and Conway; Roy 1988 and

2004; Seidelmann; Seidelmann et al.; Smith; ssd.jpl.nasa.gov Website; Tholen and

Buie; Vallado; Walker, Ireland, and Owens 1985 and 1986; Walter; Weisstein; and

Wylie and Barrett

Exercises

4.1 Derive Eq. (4.2).

4.2 A non-periodic comet approaches the sun in a parabolic orbit and reaches

perihelion rp¼ 2 AU at time t¼ t0.

(a) Determine the true anomaly in this parabolic orbit exactly 10 days after

perihelion.

(b) What are the position and velocity vectors at the time t¼ t0 + 10 days in

terms of the unit reference vectors iξ and iη defined at perihelion.

4.3 Prove that, for an elliptic orbit,

(a) r ¼ a cosE� eð Þ î p þ ffiffiffiffiffi
ap

p
sin Eî q

(b) v ¼ �
ffiffiffiffiffiμap
r

sinEî p þ
ffiffiffiffiffiμpp
r

cosEî q

(c) î q ¼ cos E0

r0
r0 �

ffiffiffi
a

μ

r
sin E0v0

iq ¼
ffiffiffi
a

p

r
sin E0

r0
r0 þ affiffiffiffiffiμpp cos E0 � eð Þv0

4.4 (a) Construct MATLAB M-file(s) for the patched conic model of the inter-

planetary flight from a circular parking orbit at earth to a flyby of any

other planet. Use input commands to supply all of the input data (altitude

of parking orbit, Gm parameters, flyby altitude, etc.). In the comments to

your MATLAB program,

• Give the name of each variable/constant and describe it as appro-

priate when it is initialized and give its unit(s).

• Describe the input and output with units.

• Describe what the program does and the computations.

Then submit your well-commented code.
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(b) Run your M-file(s) to generate the numerical results for the:

• Venus flyby example we discussed in class

• Mars flyby example you computed for dark-side passage in Exercises

3.13(c) and 3.14(b).

Then submit your printout for each run from the MATLAB command

window and construct a table containing the following output data with

units:

• Δv for injection

• Post-flyby values of the scalars r, v, and β
• Post-flyby heliocentric ellipse values of e, θ, h, rp, a, and τ.

4.5 Prove that the hyperbolic anomaly

H ¼ 2

a2
area CAQð Þ

where CAQ denotes the shaded region designated in Fig. 4.5.

4.6 Prove that, for hyperbolic motion, the magnitude of the radius vector

r ¼ a 1� ecoshHð Þ
as a function of the hyperbolic anomaly H.

4.7 Complete the proof of Theorem 4.1 for elliptic orbits.

4.8 Recall that Exercise 2.16 included computing the Keplerian elements a, e, and

θ for the orbit of the Huygens Probe at Titan from position and velocity vectors.

Complete the conversion from the Cartesian position and velocity vectors to

the modified classical element set by computing the orientation angles i,Ω, and
ω in degrees.

4.9 At April 10.5 TDB, the Keplerian orbital elements for the asteroid 2005 GL

were:

a¼ 1.05448404728002 AU

e¼ 0.305256235263636

ω¼ 265.1060039173237�

Ω¼ 43.72082802193163�

i¼ 15.8687544967489�

M¼ 227.1876710870660�

in (inertial) heliocentric ecliptic of J2000 coordinates.

(a) Compute the true anomaly at this point.

(b) Compute the asteroid’s position and velocity vectors at this point in the

(inertial) heliocentric ecliptic of J2000 coordinate frame.
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4.10 (a) Use the mission design plot in Fig. 4.10b to determine which launch date/

arrival date combinations for the opportunities for launches to Venus

satisfy the constraints

C3 � 15 km2=s2 and VHP � 5 km=s

Shade in the two regions in the plot and label the region for Type I

(0� � υ� 180�) trajectories with “I” and label the region for Type II

(180� < υ< 360�) trajectories with “II”.

(b) Does a launch constraint of DLA< 50� restrict the region of acceptable

LD/AD pairs obtained in part (a)? Justify your answer by using the

appropriate pork chop plot. It is important to check this constraint when

designing a launch, especially a launch to the ISS.

4.11 Consider Lambert’s Problem for a trip from earth to a newly discovered

planet. The relevant data are:

Gm of the sun¼ 3� 10�4 AU3/day2

r1¼ 1 AU

r2¼ 2 AU

υ¼ 60�

with the earth at the initial point P, the planet at the final point, and the sun at

the focus F.

(a) Compute the values of a, n (mean motion), and t (transfer time) for

minimum energy transfer.

(b) If the transfer time is specified to be 500 days, determine the smallest

appropriate value of the semimajor axis for the transfer trajectory.

(c) If the semimajor axis a¼ 2.0 AU for the transfer path, calculate the

minimum time to make this transfer.

4.12 NASA considered sending a Mariner spacecraft to fly by Jupiter and Uranus.

It would have been launched on November 3, 1979, to arrive at Jupiter

523 days later on April 10, 1981, at a flyby radius of 5.5 Jupiter radii. Using

a Jupiter gravity assist to accelerate and turn the trajectory, the spacecraft

would then proceed to encounter Uranus in July 1985.

(a) Determine the semimajor axis of a transfer trajectory from the earth to

Jupiter that satisfies all of the above conditions, given that the angle between

the sun-to-earth vector at launch and the sun-to-Jupiter vector at arrival was

147�. Assume that the earth and Jupiter are massless as an approximation.

(b) In which case of trajectories does the trajectory chosen as the answer to

part (a) appear? Explain.

(c) Determine the eccentricity of the transfer trajectory considered in part

(a) of this problem. Give the values of any angles in degrees.

4.13 Let r1 and r2 denote the position vectors of the initial point P and final point Q,

respectively, and v1 denote the velocity vector at P for elliptic orbits in

Lambert’s Problem and show that
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r2 ¼ 1� r2

p
1� cos υð Þ

� �
r1 þ r1r2ffiffiffiffiffiμpp sin υ

� �
v1

4.14 (a) Derive the Legendre polynomials P3(α) and P4(α).
(b) Use MATLAB to plot the Legendre Polynomials P1(α), P2(α), P3(α), and

P4(α) over the interval �1� α� 1 in the same figure. Label each of the

curves in the figure to identify the polynomial being plotted, give a title to

the figure, and label the horizontal and vertical axes. Use the grid com-

mand. Submit a copy of your MATLAB code with your figure.

4.15 Show that U11 in the infinite series expansion of the potential at P(X,Y,Z) due

to the body B satisfies U11¼ 0, if the origin of the inertial X,Y,Z coordinate

system is at the center of mass of the body B.

4.16 Show that the force Fi in Eq. (4.87) is conservative.

4.17 Derive Eq. (4.90).

4.18 Derive Eq. (4.95).

4.19 Derive the disturbing function D for an earth satellite perturbed by the sun as

shown in Eq. (4.98).

4.20 (a) Compute the sphere of influence of Jupiter relative to the sun.

(b) Compute the sphere of influence of Mercury relative to the sun.

(c) Compute the sphere of influence of Titan relative to Saturn.

4.21 (a) Compute the Julian day corresponding to the calendar date May 14,

2013 at 9:00 pm PST.

(b) What is the elapsed time between October 4, 1957 UT 19:26:24 (the

launch date of the first satellite, Sputnik I, made by humans) and the date

considered in part (a) of this problem? The Julian day number of the

launch of Sputnik I is JDI¼ 2,436,116.3100.
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Non-Keplerian Motion 5

5.1 Introduction

We have emphasized the relative 2-body solution to the trajectory problem for four

reasons:

1. Only the relative 2-body problem can be solved analytically.

2. It is often a good approximation to the real solution, because the gravitational

force of the central body is much greater than perturbing forces.

3. It provides an understandable and illustrative picture of the situation, which can

be used in feasibility studies and verification of results.

4. It can be used as a reference trajectory for precise trajectory determination

techniques.

But forces other than the central body’s gravitational force act on the satellite to

perturb it away from the Keplerian orbit, giving non-Keplerian motion. In this

chapter, we transition from Keplerian motion to non-Keplerian by identifying

types of perturbations, using perturbation techniques, and drawing from the

astrodynamics techniques described in Chap. 4. We study the effects of the oblate-

ness of the central body on a spacecraft’s orbit, using the potential function of an

oblate body as described in Chap. 4. An important mission application is the sun

synchronous orbit. Finally, we culminate our study of non-Keplerian motion by

considering the satellite orbit paradox and its applications to atmospheric drag,

libration of 24-h, nearly circular equatorial satellites, and the fact that the moon is

slowly moving away from the earth, plus a discussion of “zero G.”

5.2 Perturbation Techniques

We consider methods for including perturbations to Keplerian motion in our

analyses.
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Perturbations

Def.: Perturbation forces are forces acting on an object other than those that cause it

to move along a reference trajectory.

Def.: A perturbation is a deviation from the normal or expected motion.

The expected motion is conic (relative 2-body) motion.

Def.: Changes to a trajectory produced by perturbation forces are known as

trajectory perturbations.

Def.: The trajectory that results from perturbation forces is called a perturbed

trajectory or a non-Keplerian trajectory.

Def.: The reference trajectory or expected motion is referred to as an unperturbed

trajectory or a Keplerian trajectory.

Examples of perturbation forces:

1. Gravitational forces of other attracting bodies (“3rd body effects), e.g., solar 3rd

body effects on PVO as shown in Fig. 4.32.

2. Gravitational forces resulting from the asphericity and non-uniform density of

the central body as discussed under the “Gravitational Potential of a Distributed

Mass” in Chap. 4.

3. Surface forces resulting from atmospheric lift and drag.

4. Surface forces resulting from solar wind and pressure.

5. Thrusting from spacecraft engines.

(a) Trajectory corrections—TCMs.

(b) Attitude corrections—Attitude correctionmaneuvers (ACMs) are designed to

correct the spacecraft’s attitude, but may also produce translational motion.

The resulting perturbations can be significant, especially over a long time.

Def.: The solar wind is a gale of low-energy atomic particles (a plasma) that streams

out radially from the sun.

The solar wind:

(a) Has an average speed of 300–700 km/s.

(b) Slows to much less than 20 km/s in the termination shock.

(c) Reaches a maximum every 11 years with the solar activity cycle.

Data from the Hinode (Mission to the Sun) satellite show that magnetic waves

play a critical role in driving the solar wind into space. The solar wind is a stream of

electrically charged gas that is propelled away from the sun in all directions at

speeds of almost 1 million miles per hour. Better understanding of the solar wind

may lead to more accurate prediction of damaging radiation waves before they

reach satellites. Findings by American-led international teams of researchers appear

in the Dec. 7, 2007 issue of the journal Science.
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Hinode was launched in September 2006 to study the sun’s magnetic field and how

its explosive energypropagates through the different layers of the solar atmosphere. It is

a collaborative mission between NASA and the space agencies of Japan, the UK,

Norway, and Europe and Japan’s National Astronomical Observatory. Marshall

manages science operations andmanaged the development of the scientific instrumen-

tation provided for the mission by NASA, industry and other federal agencies. The

Lockheed Martin Advanced Technology Center, Palo Alto, Calif., is the lead US

investigator for the Solar Optical Telescope. The Smithsonian Astrophysical Observa-

tory in Cambridge, Massachusetts is the lead US investigator for the X-Ray Telescope.

To view images about these findings and learn more about Hinode, visit:

http://www.nasa.gov/mission_pages/solar-b/.

Reference: Brown and Morone.

Def.: Solar radiation pressure (SRP) is the force produced by the transfer of

momentum through impact, reflection, absorption, and re-emission of photons

from the sun.

The earth is another perturbation source through reflected solar radiation and

emitted radiation as shown in Fig. 5.1. At times, the moon looks bright in the area

illuminated by the sun and dark, but not black, in the rest. The question is: where

does the light come from that partially illuminates this dark region. It is not due to

light refraction by an atmosphere because the moon’s atmosphere is extremely thin.

The answer is that the light comes from earthshine.

Recall, from Chap. 1, the definition of a conservative force and the three

equivalent properties for this definition. We say that a perturbing force Fp is

conservative if it is derivable from a scalar function, i.e.,

Fp ¼ ∇U rð Þ
Recall the gravitational potential U(r) of the earth considered in Sect. 4.4. The

perturbing forces caused by third bodies are conservative field forces. There are

also non-conservative perturbing forces such as atmospheric drag.

In the case of geostationary orbits, solar pressure tends to change the eccentricity

(shape) of the orbit. Atmospheric drag is pertinent to low-altitude orbits about the

earth. Such forces tend to decrease the major axis (size) of the orbit, eventually

causing a satellite to fall back to the earth’s surface.

Two categories of perturbation techniques, i.e., methods for solving the

equations of motion with perturbations, are:

1. Special perturbations, which use direct numerical integration of the equations of

motion, including all necessary perturbing accelerations.

MoonSun

Fig. 5.1 Earthshine on

the Moon
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2. General perturbations, which use analytic integration of series expansions of the

perturbing accelerations in the variational equations of orbit elements.

Special Perturbations

We consider the following three methods for incorporating perturbations into our

analyses:

1. Cowell’s method integrates the sum of all accelerations numerically

d2r

dt2
þ μ
r3
r ¼ ap ð5:1Þ

where ap¼ the sum of accelerations due to all disturbing forces. (Recall the

disturbed 2-body problem.)

The advantages of this method are:

(a) Its simplicity.

(b) It obtains the vectors r and v directly.

However, it is not easy to see the resulting changes in classical orbit elements,

i.e., changes caused by perturbations.

Remark: Philip Herbert Cowell (1870–1949) used this method to predict the return

of Halley’s Comet in 1910.

2. Encke’s method integrates the differential accelerations instead of the total

accelerations, omitting the gravitational acceleration of the central body.

The advantages of this method are:

(a) It is quicker than Cowell’s method.

(b) It obtains the vectors r and v directly.

However, it is not easy to see resulting changes in classical orbital elements.

Remarks about Johann Franz Encke (1791–1865):

His education, though interrupted twice by military service during the Wars of

Liberation, was guided by Gauss. His work on the computation of the orbit of a

comet with a period of 3.3 years brought him promotions and fame. The comet was

later called Encke’s comet.

Remark:
Either of these methods works if formulated correctly. However, it is appropriate

to use Cowell’s method because of its simplicity and the speed of modern

computers, which allows us to do so. Here, we work with the Cartesian state.

3. Variation of Parameters considers the influence of perturbing forces on the

Keplerian elements directly as we will see in the following discussion.
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The advantages for this method are as follows:

(a) It provides analytic description of rates of change of Keplerian elements—

thus, we obtain direct information on how a particular force affects the

orbital elements.

(b) It provides physical insight.

(c) It becomes the starting point to develop averaging techniques.

Its disadvantage is that it does not extract r and v directly in the process

(However, it is possible to compute r(t) and v(t) from the Keplerian elements as

in Sect. 4.3, Eqs. (4.44)–(4.46).)

Osculating Ellipse

For Keplerian motion, the six elements (a, e, tp, Ω, ω, i) are uniquely related to the

six state components X, Y, Z, X
•

, Y
•

, Z
•

� �
at any instant of time and may be

considered to be the six constants of integration of the equation of motion. In the

presence of perturbing forces, the orbit is not Keplerian.

Def.: The osculating ellipse at a specified time t is the path the particle would follow

if the perturbing forces were suddenly removed at the time t.

At P0 (as shown in Fig. 5.2), the osculating ellipse has Keplerian elements: are:

a0 ¼ a0 x0; y0; z0; x
•

0
; y

•

0; z
•

0
; t0ð Þ

e0 ¼ e0 x0; y0; z0; x
•

0
; y

•

0; z
•

0
; t0ð Þ

i0 ¼ i0 x0; y0; z0; x
•

0
; y

•

0; z
•

0
; t0ð Þ

Ω0 ¼ Ω0 x0; y0; z0; x
•

0
; y

•

0; z
•

0
; t0ð Þ

ω0 ¼ ω0 x0; y0; z0; x
•

0
; y

•

0; z
•

0
; t0ð Þ

At P1, the osculating ellipse has Keplerian elements are:

a1 ¼ a1 x1; y1; z1; x
•

1
; y

•

1; z
•

1
; t1ð Þ

e1 ¼ e1 x1; y1; z1; x
•

1
; y

•

1; z
•

1
; t1ð Þ

i1 ¼ i1 x1; y1; z1; x
•

1
; y

•

1; z
•

1
; t1ð Þ

Ω1 ¼ Ω1 x1; y1; z1; x
•

1
; y

•

1; z
•

1
; t1ð Þ

ω1 ¼ ω1 x1; y1; z1; x
•

1
; y

•

1; z
•

1
; t1ð Þ

P0

P1

Fig. 5.2 Osculating ellipse
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The differences

Δa ¼ a1 � a0
Δe ¼ e1 � e0
Δi ¼ i1 � i0
ΔΩ ¼ Ω1 � Ω0

Δω ¼ ω1 � ω0

are the perturbations in elements during the time interval Δt¼ t1� t0.

Note that, while X, Y, Z, X
•

, Y
•

, and Z
•

change rapidly, the osculating

elements change slowly due to the perturbations only. The Keplerian elements a,

e, i, Ω, ω, which do not change without perturbations, are called “slow variables.”

The variables θ, tp,M, which do change without perturbations, are called “fast

variables.”

5.3 Variation of Parameters Technique

Basically, we find analytic expressions for the rate of change of elements

a
•

; e
•

; i
•

;Ω
•

;ω
•

� �
resulting from perturbations and then integrate. A perturbation

force could be in any direction. We decompose perturbation velocity impulses in

a three-dimensional velocity space to study their effects on orbital elements.

In-Plane Perturbation Components

We first consider perturbations in the orbit plane.

We denote velocity components in the tangential and orthogonal direction as

shown in Fig. 5.3 as follows:

ftdt¼ tangential velocity change¼ vt
fndt¼ inward normal velocity change

where ft, fn¼ accelerations (forces/unit mass) so that ftdt, fndt¼ velocity

perturbations.

F∗ F

reference or expected motion

ft

fn
r2a − r

Fig. 5.3 In-plane perturbation components
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The perturbing accelerations are small compared to the gravitational acceleration

by the central body.

Consider vt¼ ftdt:

The Energy Equation says

E ¼ v2

2
� μ

r
¼ �μ

2a

where we consider r to be fixed. So a change in velocity magnitude will change the

energy and a according to

dE ¼ vdv ¼ μ
2a2

da ¼ vdv

so that

da

dv
¼ 2va2

μ
> 0 ð5:2Þ

Therefore, a increases as v is increased and, therefore, τ increases as v is increased.
For vn¼ fndt, the velocity increment is perpendicular to v so that the increment

vector does not change v or r to first order so that the increment does not changeE
or a or τ. But it does change the direction of the vector v. The reference by Kaplan

provides geometric and small angle approximations that demonstrate that

e
• ¼ 2ft

v
cos θ þ eð Þ � fn

v

r

a
sin θ ð5:3Þ

ω• ¼ 2ft

ve
sin θ þ fn

v
2 þ r

ae
cos θ

� �
þ fL θð Þ ð5:4Þ

where we have added a third component that is in the out-of-plane direction. We

offer no analytic formula for this third component, but will provide a graphical

display of this component for an example in Sect. 7.3.

Out-of-Plane (or Lateral) Perturbation Component

Consider the third orthogonal component fL along the vector h. The acceleration fL
rotates the orbit plane about the radius vector, so that fL does not change a, τ, or
e but it does change the orientation parameters Ω and i. In particluar,

di

dt
¼ fL

vθ
cos θ� ð5:5Þ

Ω
• ¼ fL

vθ

sin θ�

sin i
ð5:6Þ
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θ
• ¼ h

r2
� Ω

•

cos i ð5:7Þ

where

θ� ¼ θþ ω

Summary

To first order:

Only ft changes a, τ, E .

Only ft, fn change e, rp.
Only fL changes i, Ω.
All three (ft, fn, fL) change ω.

5.4 Oblateness Effects: Precession

Potential Function for an Oblate Body

Recall that the potential function for a distributed mass is

U r;ϕ; θð Þ ¼ Gm

r
1�

X1
k¼2

Re

r

� �k

JkPk cosϕð Þ
"

þ
X1
k¼2

Xk
j¼1

Re

r

� �k

P
j
k cosϕð Þ C

j
k cos jθþ S

j
k sin jθ

n o#

from Eq. (4.86). If the mass distribution of the central body is symmetric about the z

axis, then the body is an oblate attracting body so that the density function

Γ¼Γ(ρ, β). Since the density function is independent of longitude, λ, the

coefficients

C
j
k ¼

A
j
k

mRk
e

¼ constantð Þ
ð2π
0

cos jλð Þdλ∬
B

. . .ð Þdρdβ ¼ 0

because

ð2π
0

cos jλð Þdλ ¼ 0

and similarly Sk
j¼ 0 for all j � 1. Therefore, for the oblate earth model,
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where J(n)¼ Jn.

U� r;ϕð Þ ¼ Gm

r
1þ

X1
k¼2

Re

r

� �k
JkPk cosϕð Þ

" #
ð5:8Þ

since all the sectorial and tesseral terms are zero.

By consulting Table 5.1, we see that J2� 3 orders of magnitude larger than other

coefficients, so that J2 is the only term of interest here. Therefore,

U� r;ϕð Þ ¼ μ

r
1� R�

r

� �2

J2
3

2

� �
cos 2ϕ� 1

2

� �" #

¼ μ
r

1� R�
r

� �2

J2
3

2
sin 2 LATð Þ � 1

2

� �" #

¼ μ
r

1� R�
r

� �2

J2
3

2

z

r

� �2
� 1

2

� �" #
ð5:9Þ

Because cosϕ ¼ sin 90� � ϕð Þ ¼ sin LATð Þ ¼ z

r
, where LAT denotes latitude as

seen in Fig. 5.4.

Oblateness

The earth is not a perfect sphere. We now use an oblate spheroid model that is

obtained by revolving an ellipse about the earth’s axis of rotation. In this model,

cross sections parallel to the equator are circles of constant latitude and meridians of

constant longitude are ellipses as shown in Fig. 5.5 with

Table 5.1 Zonal

harmonic coefficients for

the Earth

J(2)¼ 1,082.6267� 10�6 J(16)¼ 0.0181� 10�6

J(3)¼�2.5327� 10�6 J(17)¼�0.1169� 10�6

J(4)¼�1.6196� 10�6 J(18)¼�0.0309� 10�6

J(5)¼�0.2273� 10�6 J(19)¼ 0.0203� 10�6

J(6)¼ 0.5407� 10�6 J(20)¼�0.1424� 10�6

J(7)¼�0.3524� 10�6 J(21)¼�0.0385� 10�6

J(8)¼�0.2048� 10�6 J(22)¼ 0.0763� 10�6

J(9)¼�0.1206� 10�6 J(23)¼ 0.1551� 10�6

J(10)¼�0.2411� 10�6 J(24)¼�0.0053� 10�6

J(11)¼ 0.2444� 10�6 J(25)¼�0.0229� 10�6

J(12)¼�0.1886� 10�6 J(26)¼�0.0368� 10�6

J(13)¼�0.2198� 10�6 J(27)¼�0.0206� 10�6

J(14)¼ 0.1307� 10�6 J(28)¼ 0.0687� 10�6

J(15)¼�0.0082� 10�6 J(29)¼ 0.0382� 10�6

J(30)¼�0.0471� 10�6

5.4 Oblateness Effects: Precession 209



a¼R�¼mean equatorial radius of the earth

b¼ polar radius of the earth

However, we will continue to say r¼R�+ altitude for the orbit radius of a

spacecraft.

Oblateness was caused by centrifugal acceleration

ω� (ω� r), ω¼ spinrate

when the earth was molten. Oblateness introduces the J2 term in the potential

function U.

Def.: The flattening f of a body is the difference between the semimajor and

semiminor axes of the ellipse of revolution divided by the semimajor axis, i.e.

f ¼ a� b

a
ð5:10Þ

Therefore,

f ¼ 1� b

a
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

r

LAT
zf

rFig. 5.4 Latitude and

co-latitude of position

equatora

b

0 < e < 1

Fig. 5.5 Oblate body
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Solving this equation for e2, we obtain

e2 ¼ 2f � f2 ð5:11Þ
where e¼ eccentricity of the ellipse of revolution, i.e., a meridian of longitude.

Examples: For the World Geodetic Survey (WGS-84), f�¼ 1/298.25722¼ 0.00335

and e¼ 0.0818191. For comparison, the flattening for Jupiter is fJupiter¼ 0.065.

These arguments apply to bodies other than the earth.

Examples (J2):

Venus: J2¼ 6� 10�6

Earth: J2¼ 1,082.63� 10�6

Jupiter: J2¼ 14,696.43� 10�6

Saturn: J2¼ 16,290.71� 10�6

So we see, for example, that the J2 for Jupiter is much larger than the earth’s J2.

Additional data on Outer Planet Gravity Fields are available online at

http://ssd.jpl.nasa.gov/?gravity_fields_op [Accessed 10/14/13]

Precession of the Line of Nodes

See Figure 3.1-4 in the Bate–Mueller–White text and shown here as Fig. 5.6.

The earth’s equatorial bulge provides a slight torque on an earth-orbiting space-

craft about the center of the earth so the spacecraft’s orbit plane precesses just as a

gyroscope would under a similar torque. The result is that the line of nodes moves

eastward or westward depending on the inclination of the orbit.

Lagrange’s Planetary Equations can be used to show that

dΩ
dt

¼ �3πJ2
R�
p

� �2

n cos ið Þ ð5:12Þ

Reference: Battin 1999, p 483.

Fig. 5.6 Earth’s equatorial

bulge. Reference: BMW

[Figure published with the

permission of Dover

Publications, Inc.]
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By multiplying this equation by τ and simplifying the result, we obtain

dΩ
dt

� �
av

¼ �3πJ2
R�
p

� �2

cos ið Þ ð5:13Þ

which is the change ΔΩ per orbit in radians. Hence, the orbit precesses as shown in

Fig. 5.7.

Similarly,

dω
dt

¼ 3

2
J2

R�
p

� �2

n 2� 5

2

� �
sin 2i

� �
ð5:14Þ

Therefore,

dω
dt

� �
av

¼ τ
dω
dt

¼ 3πJ2
R�
p

� �2

2� 5

2

� �
sin 2i

� �
ð5:15Þ

which is the change Δω per orbit in radians.

Similarly,

di

dt

� �
av

¼ dh

dt

� �
av

¼ de

dt

� �
av

¼ da

dt

� �
av

¼ 0 ð5:16Þ

Therefore, only Ω and ω are affected to first order by J2. Note that the effect is a

function of the inclination for Ω and ω.

Def.: A critical inclination orbit is an orbit that has an inclination for which

dω

dt

� �
av

¼ 0:

The critical values of inclinations are determined in Exercise 5.3a.

orbit n

orbit
n+1

ΔΩ

Fig. 5.7 Precession of Line

of Nodes for 0< i< 90�
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Example (precession of the line of nodes)

Relative two-body motion occurs in a fixed orbit plane in inertial space as in

Fig. 5.8a.

Def.: A sun synchronous orbit (SSO) is an orbit that maintains a constant angle

between the earth–sun vector and the normal (h) to the orbit plane.

Figure 5.8b shows a SSO that has a fixed angle between the angular momentum

vector and the earth–sun vector of 0�.
In a sun synchronous orbit, the satellite plane remains approximately fixed with

respect to the sun. We introduce this relationship by matching the nodal precession

rate (the secular variation in the right ascension of the ascending node) to the earth’s

mean orbital rate around the sun (0.986�/day). That is, we set

2π rad

365:25 day
¼ dΩ

dt

� �
av

rad

rev

� �
#revs

day

� �

¼ �3π
R�
p

� �2

J2 cos i

 !
3600ð Þ24s=day

τ

� �

¼ �3J2
R�

a 1� e2ð Þ
� �2

12 3600ð Þffiffiffiffiffiffiffi
a3=μ

q Þ cos i rad=day

0
B@

ð5:17Þ

where τ is in seconds. This form is a function of a and e times cos i. Therefore, we
need select the size, shape, and inclination of the orbit. Usually, some of these

parameters are specified by mission requirements.

A sun synchronous orbit might be selected, for example, to produce the same

lighting conditions along the ground track all year long, to avoid pointing a radiator

at the sun, or to avoid entering the earth’s shadow for thermal or power reasons.

A SSO provides global coverage at all latitudes, except a few degrees from the

North and South Pole. The reference by Boain considers the “A-B-Cs of

Sun-Synchronous Orbit Mission Design.”

orbit plane

orbit plane

E-S
vector

orbit plane
for SSO

orbit plane

a b

ĥ

Fig. 5.8 Orbit plane for an earth orbiter. (a) Relative two-body motion, (b) SSO
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Examples of SSO missions are:

1. Radarsat-1, launched 11/4/1995, was Canada’s first commercial earth-

observation satellite with an orbit at 798-km altitude and i¼ 98.6�.
2. Aquarius/SAC-D, launched on 6/10/11, was a joint effort between NASA and

CONAE (Comision Nacional de Actividades Espaciales, Argentina’s Space

Agency) with 657-km altitude and i¼ 98� providing 7-day global coverage.

3. NPOESS Preparatory Project (NPP), where NPOESS stands for “National Polar-

orbiting Operational Environmental Satellite System,” is in an 824-km altitude

SSO, orbiting the earth 16 times/day and observing nearly the entire surface of

the earth.

4. Afternoon Constellation (A-Train) 705-km altitude, i¼ 98, circular orbits

consisting of.

(a) Aqua—launched 5/4/2002

(b) CloudSat—launched 4/28/2006 in dual launch with CALIPSO

(c) CALIPSO—launched 4/28/2006 in dual launch with CloudSat

(d) PARASOL—launched from Kourou, French Guiana on 12/18/2004 for

CNES (French Agency)

(e) Aura—launched 7/15/2004

For these spacecraft, the normal altitude is 705 km and i¼ 98. Each satellite

completes 14.55 orbits/day. However, PARASOL was maneuvered out of the

A-Train on 12/2/2009 and dropped 4 km below the other satellites by early

January 2010.

5.5 An Alternate Form of the Perturbation Equations

RTW (Radial, Transverse, and Out-of-Plane) Coordinate System

Components of a perturbation force per unit mass can be considered in the RTW

coordinate system such that

R̂ is in the radial direction pointing outward from the central body.

Ŵ is in the out-of-plane direction for the instantaneous orbit plane, i.e., parallel

to the instantaneous angular momentum vector.

T̂ completes the right-handed coordinate system, i.e., along the transverse

direction.

In this system, the three components of perturbing accelerations are denoted as

fR, fT, and fW with corresponding velocity impulses fRdt, fTdt, and fWdt.

(This reference frame is often called the RTN or radial-transverse-normal system.)

The perturbing accelerations are small compared to the central gravitational

acceleration.
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Perturbation Equations of Celestial Mechanics

The perturbation equations of celestial mechanics give the rates of change induced

by perturbation forces on the Keplerian orbital elements of an elliptical orbit. The

rates of change are given in terms of the components of the applied force in the

RTW coordinate system. The differential equations for changes to the Keplerian

elements are given by the Gaussian-Lagrange planetary equations, which can be

found in the reference by Pisacane and Moore, ed. In this reference, the components

of force fR, fT, and fW are denoted as R, T, and W, respectively.

An elementary derivation of these perturbation equations is given in the refer-

ence by Burns. The method of proof in this reference is to write the orbital elements

in terms of the orbital energyE and angular momentum h and then differentiate the

resulting equations with respect to time to determine the effect on the orbital

elements of small changes in E and h. The perturbation equations in terms of

disturbing force components are then derived by computing the manner in which

perturbing forces change E and h.

5.6 Primary Perturbations for Earth-Orbiting Spacecraft

The primary perturbations for earth-orbiting spacecraft are:

(a) Gravitational forces of the sun and moon

(b) Gravitational forces of the non-spherical earth

(c) Atmospheric drag

(d) Solar radiation pressure (SRP).

The perturbations (a) and (d) affect high altitude orbits the most, while (b) and

(c) affect low orbits the most. For example, Exercise 5.5 considers the effects of the

J2 perturbation, a gravitational force of the non-spherical earth.

Reference: Wertz and Larson (ed.), pp. 141 ff.

5.7 Satellite Orbit Paradox

Introduction

The fact that atmospheric drag produces an increase in average speed and KE of a

satellite is called the “satellite drag paradox.” To explain this paradox, we return to

considering an unperturbed Keplerian orbit, then determine the effect of a

disturbing impulse on orbit characteristics, and lastly consider three applications

of this analysis.
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Keplerian Orbit

For an unperturbed elliptical orbit,

E ¼ � μ
2a

PEð Þav ¼ � μ
a

KEð Þav ¼
μ
2a

τ ¼ 2πa3=2ffiffiffiμp

n ¼ 2π
τ

¼
ffiffiffiμp

a3=2

v2ð Þav ¼
μ
a
¼ 2 KEð Þav

ð5:18Þ

where averages are taken with respect to time. If we know any of the above

parameters, we know them all.

We derive the formula for (PE)av:

PEð Þav ¼

þ
PEð Þdt
τ

¼ 1

2π
ffiffiffi
a3

μ

q ð2π
0

� μ
r

� � dE
E
• ¼

�μ
ffiffiffiffiffi
μ
a3

r
2π

ð2π
0

dEffiffiffi
μ
a

r ¼ � μ
a

from Eq. (2.32). The proof for (KE)av is similar and left as Exercise 5.6.

Orbit Paradox

Consider a disturbing force f as in Fig. 5.9, where

f
•

<<
μ
r2

r

fvFig. 5.9 Disturbing force f
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The force f is a succession of infinitesimal impulses. The work done by f is

ΔE ¼ ΔW ¼ f • Δs ¼ f • vΔt ¼ fTvΔt

where Δs is the displacement by f, f • v is the component of f along v, and fT is the

tangential component of f.

The ΔE produces changes in the other parameters as follows:

Δa ¼ 2a2

μ

� �
ΔE

Δ PEð Þav ¼ 2ΔE

Δ KEð Þav ¼ �ΔE

Δτ ¼ 3aτ
μ

� �
ΔE

Δn ¼ �3an

μ
ΔE

Δvav ¼ � a
μ

� �1=2
ΔE

ð5:19Þ

From Eqs. (5.19), we deduce Table 5.2.

Assume e¼ 0. Then

v ¼ vc ¼
ffiffiffi
μ
a

r

Δv ¼ � ffiffiffiμp
2a3=2

Δa ¼ � ffiffiffiμp
2a3=2

2a2

μ
ΔE ¼ �a1=2

μ1=2
ΔE ¼ �a1=2

μ1=2
fTvΔt

Therefore,

Δv
Δt

¼ �fT

which is an apparent contradiction of NII, which is a paradox.

Explanation: The perturbation f is not the total force. The total force, gravita-

tional force plus f, obeys NII.

From Table 5.2, an enlargement of the orbit (Δa> 0) implies an average increase

in PE¼ 2ΔE and average loss in KE¼ΔE . A shrinking of the orbit (Δa< 0)

implies an average decrease in PE¼ 2ΔE and an average gain in KE¼ΔE . In

each case, there is a net change in orbital energy ΔE ¼work done by an impulsive

force.
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Applications

Example 1: Atmospheric Drag

In the presence of atmospheric drag, the disturbing force f is directly opposed to v,

which produces ΔE < 0 at all times. From Table 5.2, we see that a and τ decrease
monotonically and the average velocity increases. The drag is greatest at perigee

where velocity and atmospheric density are greatest, which produces the greatest

energy drain at perigee and minimum at apoapsis. Therefore, the orbit becomes

more circular as it shrinks, so that the spacecraft spirals inward as shown in

Fig. 5.10 until it burns up or impacts the surface.

Example 2: Libration of 24-Hour, Nearly Circular, Equatorial Satellite

Initially, we modeled the earth as a point mass, then as a sphere, then as an oblate

spheroid, and now as a triaxial ellipsoid. The last three models are shown in

Fig. 5.11. The equations of the last three models are:

x2

a2
þ y2

a2
þ z2

a2
¼ 1

x2

a2
þ y2

a2
þ z2

b2
¼ 1

x2

a2
þ y2

b2
þ z2

c2
¼ 1

for a Cartesian coordinate system whose origin is at the center of mass of the earth.

Figure 5.12 shows the earth’s equator, which is an ellipse with the difference

between major and minor axes approximately equal to 130 m with the long axis at

Fig. 5.10 Effect of

atmospheric drag on the

spacecraft’s orbit

Table 5.2 Effect of disturbing impulse on orbit characteristics

Parameter For ΔE >0 (positive thrust) For ΔE < 0 (negative thrust)

a Increase Decrease

(PE)av Increase Decrease

(KE)av Decrease Increase

τ Increase Decrease

n Decrease Increase

vav Decrease Increase
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15�W longitude. The dashed curve in Fig. 5.12 shows the libration path of a

spacecraft in a coordinate system that is rotating with the earth. The satellite is

shown librating about a stable equilibrium point S. (Points marked “U” are unstable

equilibrium points.) Consider the spacecraft at a point in its orbit to the right of the

point S and beyond the earth’s orbit. The satellite is actually rotating about the earth

in an orbit that is slightly further away from the earth than S. At this point, the

gravitational tug of the mass bulge of the earth on the right-hand side is greater than

the force from the left-hand bulge, so the net force is a retarding force, which

reduces a. The satellite moves to the right away from the earth because it is in a

larger orbit so it is moving slower than the earth. The satellite’s orbit shrinks until it

is inside the earth’s orbit when it begins to speed up relative to the earth. The

satellite eventually overtakes the earth so that the equatorial bulge on the left has a

EARTH

ωe

FT

FT

UU

FT

FT

S

SFig. 5.12 Equatorial section

of the Earth (looking south

along the polar axis)

a b c

a
a

a
y

x

z

a
b

a
y

x

z

bc

a
y

x

z

Fig. 5.11 Earth models. (a) Sphere, (b) oblate spheroid, (c) triaxial ellipsoid
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stronger tug and provides a net positive force, increasing a and the velocity of the

spacecraft. Eventually the spacecraft moves outside the earth’s orbit and begins

slowing down and moving to the right to repeat the libration.

Librations with periods of approximately 2.1 years have been observed on a

Syncom satellite librating around the S point near 105�W longitude over Brazil.

Example 3: Secular Acceleration of a Moon

Let n¼ the secondary’s orbital angular momentum and s¼ the primary’s rota-

tional angular momentum. For the earth’s moon, s> n.
The force of the moon’s gravity decreases with the inverse square of distance

according to Newton’s Universal Law of Gravity. Therefore, the moon tugs on the

water closer to it more than on the earth so there is a high tide on the right-hand side

as shown in Fig. 5.13. (The reader might wonder why there is a high tide on the

other side of the earth. There is no force to the left pulling on the water. Since the

gravitational force of the moon decreases with distance, the moon pulls the earth

away from the water on the left side.)

Since the bulge on the right is closer to the moon than the one on the left, there is a

net tangential force fT along the moon’s velocity vector, providing ΔE > 0 to the

moon’s energy. From Table 5.2, we know that a and τ increase and the average linear
and angular velocity decrease. Therefore, the moon is receding from the earth and the

length of the month is increasing. With no external torques acting on the earth–moon

system, the total angular momentum is a constant and as the moon’s angular momen-

tum increases the earth’s spin momentum decreases due to friction on the ocean floor

(which causes the high tide to be ahead of the direction to the moon as shown in

Fig. 5.13). Therefore, the day is getting longer. Eventually, the length of the daywould

equal the length of themonth if tidal dragwere allowed to run its course. However, the

sun will become a red giant long before that happens, engulfing the earth.

If s< n as for Phobos, a moon of Mars, and Triton, a satellite of Neptune, then the

situation is as shown in Fig. 5.14. Here the tidal forces withdraw energy and angular

momentum from the orbit of the moon so the orbit collapses and usually circularizes.

References for Sect. 5.6: Blitzer; Burns; Murray and Dermott.

Material from the reference by Leon Blitzer was reproduced with permission

from the Am. J. Phys. 39, 882 (1971). Copyright 1971. American Association of

Physics Teachers.
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Fig. 5.13 High tides caused by the Moon’s gravity
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5.8 “Zero G”

When I prepared my “Tana Throws Her Baseball” talk, I found the book Weight
and Weightlessness by Franklyn Branley in the juvenile section of our local library.
This book discusses how a spacecraft is launched into an orbit in which it falls at the

rate of the curvature of the earth. So there is gravity that is causing the spacecraft to

fall, not zero G. Then he draws a cartoon of a young boy standing on a scale, which

shows that his weight is 60 lb. The scale measures the force it must apply to prevent

the boy from falling to the floor. By NIII, that force is equal and opposite to the

gravitational force of the boy, i.e., his weight. By NII, his gravitational force is

F ¼ ma ¼ mg�

where g� denotes the earth’s gravity.

The author says to imagine that someone suddenly digs a hole under the boy that

goes straight down to the center of the earth. Then a cartoon shows that the scale,

which the boy is still standing on as he falls, registers 0 lb. So the situation is not one

of “zero G,” as we often say, but one of “zero W,” i.e., “zero weight.”

Reference for Sect. 5.8: Branley.

References for this chapter: Blitzer; Boain; Bond and Allman; Branley; Brown

and Morone; Burns; Chao; Chobotov; Cutting, Born, and Frautnick; Kaplan;

Murray and Dermott; NASA website; Pisacane and Moore; Sidi; Wertz and Larson.

Exercises

5.1 A spacecraft is in a 24-h earth orbit when the Mission Design Team determines

that the period must be increased to 24.5 h. The only criterion in determining

the ΔV-maneuver to achieve this period change is that the ΔV must be

minimized to save spacecraft propellant.

(a) At what true anomaly should this (impulsive) maneuver be performed?

Explain.

(b) The velocity correction vector can be described in terms of three

components.

ΔVt¼ ftdt, the tangential component.

n

l

s

Fig. 5.14 High tides if s< n as for Phobus and Triton
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ΔVn¼ fndt, the inward normal component.

ΔVL¼ fLdt, the lateral, or out-of-plane, component.

What is the lateral component ΔVL of the minimum ΔV maneuver deter-

mined in part (a)? Explain.

5.2 (a) For what inclinations is (dΩ/dt)av¼ 0?

(b) For what inclinations will the line of nodes precess, i.e., rotate, to the west?

5.3 (a) For what inclinations is (dω/dt)av¼ 0? These values are called the “critical

values” of the inclination.

(b) For what inclinations is (dω/dt)av< 0?

5.4 Consider a spacecraft in an earth orbit having

rp¼ 6,700 km and ra¼ 7,300 km.

(a) Use MATLAB as described below to plot (dΩ/dt)av in degrees as a function
of the orbit inclination in degrees.

(b) Use MATLAB as described below to plot (dω/dt)av in degrees as a function
of the orbit inclination in degrees.

(c) Compute the daily change in ω if i¼ 90�.
In parts (a) and (b), use MATLAB’s plot function, insert grid lines, use the

xlabel command to label the x-axis as “Orbit Inclination (�),” use the ylabel

command to give an appropriate label to the y-axis (including “deg” as the

unit), and give each plot an appropriate title using the title command. Note that,

in order to produce the two figures by the same execution of MATLAB, you

will need to use a “figure” command to produce the second plot; otherwise, the

second plot will overwrite the first plot.

5.5 Construct a table of values of the rate of change inΩ and ω in �/day for the ISS,
SSO, GPS, Molnya, geosynchronous with i¼ 60�, and geostationary orbits by

an oblate earth.

5.6 Derive the equation

KEð Þav ¼
μ
2a

where the average is taken with respect to time. (See Eqs. (5.18.)

5.7 In Sect. 5.4, we consider flatness of an oblate body. Consider the flatness of a

triaxial body in the equatorial plane. Define this equatorial flatness parameter

as:

fe ¼ b� c

Re

where b–c denotes the difference between the maximum and minimum radius

of the body in the equatorial plane and Re denotes the mean equatorial radius of

the body. Compute the value of the equatorial flatness fe of the earth.
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Spacecraft Rendezvous 6

6.1 Introduction

Consider the problem of spacecraft rendezvous, e.g., the return of the Lunar

Excursion Module (LEM) to the Command Module (aka Command and Service

Module or CSM) in orbit about the moon for the Apollo mission (see Fig. 6.1). Or

consider the situation in which NASA’s Space Shuttle (crewed), the European

Space Agency’s (ESA) Jules Verne Automated Transfer Vehicle (ATV, robotic),

Russian Soyuz (crewed) or Progress (robotic), or Japanese H-II Transfer Vehicle

(robotic) vehicle performs a rendezvous and docking with the International

Space Station (ISS). For example, on March 27, 2008, the Jules Verne ATV

conducted maneuvers “to guide the ship to an ‘interface point’ 24 miles behind

and three miles below the station.” Later, the ATV performed a rendezvous and

docking with the ISS.

Rendezvous in space between two satellites is accomplished when both satellites

attain the same position vector and velocity vector at the same time. However, at the

time the rendezvous sequence is initiated, they may be very far apart, possibly with

one satellite at liftoff.

The two parts in a rendezvous sequence are:

1. Phasing for rendezvous—performing the maneuvers in the timing sequence that

will bring the two satellites into close proximity.

2. Terminal rendezvous—performing the maneuvers that induce the relative

motion between the satellites that is required for rendezvous and docking, i.e.,

the motion of one satellite (chase or active vehicle) with respect to the other

(target or passive) vehicle in a coordinate frame attached to one (target) of the

satellites.
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Description of Fig. 6.1: With a half-earth in the background, the Lunar Module

ascent stage with moon-walking Astronauts Neil Armstrong and Edwin Aldrin

Jr. approaches for a rendezvous with the Apollo Command Module manned by

Michael Collins. The Apollo 11 liftoff from the moon came early, ending a 22-h

stay on the moon by Armstrong and Aldrin.

6.2 Phasing for Rendezvous

Phasing for rendezvous may be accomplished by the (optimal) Hohmann or

bi-elliptic (with or without a plane change) transfer, either inward or outward as

appropriate, as described in Sect. 3.4, or one of the following alternate transfer

orbits.

Fig. 6.1 Lunar module approaches the command module
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Alternative Transfer Orbits

High energy (Type I) orbits as in Fig. 6.2a would be used if the transfer time is

critical, e.g., for military operations or for a human mission to Mars, requiring the

use of more energy than is required for a Hohmann transfer.

Low-thrust chemical transfer would execute a series of burns around perigee and

then one or two burns at apogee to reach the final orbit as shown in Fig. 6.2b.

Electric propulsion transfer as shown in Fig. 6.2c involves spiraling outward,

requiring less total propellant because of electric propulsion’s high Isp. The direc-

tion of the Δv varies.

Reference: Wertz and Larson 1999, p 185.

6.3 Example: Apollo 11 Ascent from the Moon

The Apollo 11 powered ascent had two phases:

1. Vertical rise to achieve terrain clearance (clearing the descent stage).

2. Orbit insertion into a 9� 45 n. mi. orbit at a true anomaly of 18� and an altitude

of 60,000 ft (10 n. mi.) with nominal ascent burn time¼ 7 min 18 s� 17 s (3σ)
and ΔV¼ 6,056 fps + contingencies.

The time of liftoff was chosen to provide the proper phasing for rendezvous.

Target requirements were on the altitude, velocity, and orbit plane. The +X body

axis jets fired for attitude control during ascent.

The ascent propulsion system (APS) provided a constant thrust of approximately

3,500 lb throughout the ascent. This thrust could be enhanced by approximately

100 lb by the reaction control system (RCS) attitude control.

Actual insertion time: 7 min 15 s from liftoff.

Resulting orbit after velocity residual trim:

Apolune altitude¼ 47.3 n. mi.

Perilune altitude¼ 9.5 n. mi.

Δvs

Δvs

a b c

Δv1

Location
of Δv2

Fig. 6.2 Alternative transfer orbits. (a) High energy, (b) low thrust chemical, (c) electric

propulsion
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A sketch of the lunar module’s ascent from the lunar surface is given in Fig. 6.3.

Reference: Bennett.

6.4 Terminal Rendezvous

Consider the problem of spacecraft rendezvous in neighboring nearly circular

orbits. It is convenient to consider relative motion between the two vehicles.

Equations of Relative Motion for a Circular Target Orbit

Consider the relative position between a target spacecraft and a chase vehicle over

an interval of time (Fig. 6.4).

Let r1¼ r1(t) denote the inertial position vector of the target vehicle at time t and

r2¼ r2(t) denote the inertial position of the chase vehicle at the same time.

Define ρ(t)¼ r2(t)� r1(t).

Assume τ1ffi τ2 and e2 (small)> e1¼ 0.

Def.: The (rotating) local vertical coordinate frame or CW frame is defined such

that the

x axis is directed along the radial direction to the target from the central body

y axis is along the target orbit path

z axis is normal to the target orbit (out-of-plane)

If this coordinate system is considered to be attached to the target vehicle and

allowed to rotate with the orbit position, then the position of the chase satellite can

be described with respect to the target. The relative position

(60 BY 60 N.MI.)
45 N.MI.

POWERED ASCENT INSERTION
(9 TO 45 N.MI. ORBIT)

SUN

10° 8°

EARTH

CSM

9 N.MI.10 N.MI.

Fig. 6.3 Lunar module ascent
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ρ ¼ x tð Þ, y tð Þ, z tð Þð Þ
with x¼ y¼ z¼ 0 is like a bull’s eye for the chase vehicle.

Consider y to be wrapped along the target orbit as is shown in Fig. 6.5 so that

y ffi r1Δθ ð6:1Þ

For the target spacecraft (passive being chased):

r
• •

1 ¼ �μ
r1

r31
ð6:2Þ

and for the chase spacecraft (may be influenced by a perturbing force):

r
• •

2 ¼ �μ
r2

r23
þ f ð6:3Þ

Circular
Target Orbit

Chase
orbit

r(t0)

r(t1)

r(t2)

r(t3)

Central
body

r2

r1

Fig. 6.4 Relative position of

target and chase vehicles in an

inertial reference frame

x = Δr

r1 (in target orbit)

Central body

y = r1Δθ

Δθ
(radians)

Fig. 6.5 y-Axis wrapped

along the target orbit
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where f is force/unit mass¼ ap, the sum of perturbing accelerations.

Define ρ¼ r2� r1 and consider ρ such that

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
<< r1 ð6:4Þ

where slightly non-coplanar (i.e., z 6¼ 0, but small) orbits are allowed. Then

ρ• • ¼ μ
r13

r1 � r1
3 r2

r23

� �
þ f

¼ n21 r1 � r1
3 r2

r23

� �� �
þ f

ð6:5Þ

where

n1 ¼
ffiffiffiffiffiffi
μ
r13

r
¼ mean motion of the target vehicle: ð6:6Þ

Consider the Binomial Expansion:

1

1� εð Þm ¼ 1�mεþm mþ 1ð Þ
2!

ε2 þ . . . ð6:7Þ

where ε2< 1 for convergence.

A linear approximation is

1

1� εð Þm ¼ 1�mε ð6:8Þ

But

r2
2 ¼ r1

2 þ 2ρ • r1 þ ρ • ρ ð6:9Þ
Therefore,

r2

r23
ffi r1 þ ρ

r13 1þ 2r1 • ρ
r12

� �3=2
because ρ<< r1

¼ r1 þ ρ
r13

1� 3

2

2r1 • ρ
r12

� �� �
by a linear approximation to the binomial ð6:10Þ

expansion. In this last step, we use the fact that
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ε ¼ 2

r12
r1ρ cos ∡ r1; ρð Þð Þ � 2ρ

r1
<< 1

implies that ε2< 1. Therefore,

ρ• • ¼ n1
2 r1 � r1

3 r2

r23

� �� �
þ f ð6:11Þ

¼ n1
2 �ρþ 3r1 • ρ

r1

r1

r1

� �
þ f from Eqs: 6:4ð Þ and 6:10ð Þ ð6:12Þ

because

n1
2=r1

2
� �

ρ r1 • ρð Þ ¼ μ
r12

ρ cos
�
∡ r1; ρð Þ
r1

ρ
r1

� μ
r1

ρ
r1

ρ
r1

� �

which is negligible because ρ<< r1.

Equation (6.12) provides one expression for ρ• •

. From Theorem 1.2, we obtain a

second expression as follows.

r
• •

2 ¼ r
• •

1 þ ρ• •

b þ 2ωxρ• b þ ω• xρþ ωx ωxρð Þ
Therefore,

ρ• • ¼ r
• •

2 � r
• •

1 ¼ ρ• •

b þ 2ωxρ• b þ ω• xρþ ωx ωxρð Þ ð6:13Þ

whereω ¼ 2π
τ

¼
ffiffiffiffiffi
μ
a3

r
¼ n1 andρ

• •

b is the relative acceleration of r2with respect to r1

in a body-fixed system.

Consider terms on the right-hand side of this second expression for ρ• •

. In the x, y, z

frame,

ρ ¼
x

y

z

2
4

3
5 and ω ¼

0

0

n1

2
4

3
5 ð6:14Þ

The vector derivatives of ρ• b and ρ• •

b in the x, y, z frame are

ρ• b ¼
x
•

y
•

z
•

2
4

3
5 and ρ• •

b ¼
x
• •

y
• •

z
• •

2
4

3
5 ð6:15Þ

because the derivatives are taken with respect to the frame in which the vectors are

expressed. Then
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ωxρ• b ¼ 0; 0; n1ð Þ x ; x
•

; y
•

; z
•ð Þ ¼ �n1 y

•

, n1 x
•

, 0ð Þ ð6:16Þ
Likewise,

ωx ωxρð Þ ¼ �n1
2 x, y, 0ð Þ ð6:17Þ

Substituting the Eqs. (6.14) and (6.15) into Eq. (6.13), we obtain the expression

ρ• • ¼ x
• •

; y
• •

; z
• •ð Þ þ 2n1 � y

•

, x
•

, 0ð Þ � n1
2 x, y, 0ð Þ ð6:18Þ

After making similar simplifications for the expression in Eq. (6.12), that equation

can be rewritten as

ρ• • ¼ �n2 x; y; zð Þ þ 3n2x, 0, 0
� �þ f ð6:19Þ

We now drop the subscript on n1 and equate the two expressions in Eqs. (6.18) and

(6.19) to obtain the following set of equations.

Hill’s Equations

x
• • �2n y

• �3n2x ¼ fx
y
• • þ2n x

• ¼ fy
z
• • þn2z ¼ fz

ð6:20Þ

where n	 (μ/a13)1/2 denotes the mean motion of the target vehicle.

Hill’s equations are also called the “Clohessy–Wiltshire (CW) equations.” Hill’s

study in the nineteenth century described the motion of the moon relative to the

earth. Clohessy andWiltshire rediscovered these equations (in a paper in September

1960) in a study of the motion of a vehicle relative to a satellite in earth orbit. These

two applications are quite different, but they both consider small displacements

relative to a known reference motion. In Hill’s application, the distance of the moon

from the earth is small compared to the distance of the earth from the sun. In the

Clohessy–Wiltshire application, the distance of the vehicle from the earth-orbiting

satellite is small compared to the distance from the satellite to the center of the

earth. That is, ρ<< r1.
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These equations are called the Euler–Hill1 equations in the reference by Pisacane

and Moore.

Remarks:

1. These equations can be used to study:

(a) The forces required to perform an orbit rendezvous.

(b) The displacements from a reference trajectory produced by maneuvers or

other velocity changes.

(c) The effects of perturbations on the displacements from a reference

trajectory.

2. These are second-order differential equations with constant coefficients. The

solution consists of:

(a) The complementary solution (of the homogeneous equation, f	 0), which is

independent of the accelerations and represents the effects of the initial

conditions, and

(b) A particular solution which represents the effects of the applied forces per

unit mass.

3. These equations are valid for small displacements—a few tens of kilometers—in the

radial (x) and out-of-plane (z) directions, but remain correct for an order of magni-

tude—a few hundreds of km—larger change in the down-track coordinate, y. The

y component need not be small provided it is measured along the target trajectory.

Solutions for the Hill–Clohessy–Wiltshire Equations

1. Complementary Solutions (f¼ 0)

By integrating the second equation in Eq. (6.20), we obtain

y
• þ2nx ¼ y

•

0 þ 2nx0 ð6:21aÞ

1 George William Hill (1838–1914) must be considered a mathematician, but his mathematics was

entirely based on that necessary to solve his orbit problems.

In 1861, Hill joined the Nautical Almanac Office working in Cambridge, Massachusetts. After

2 years he returned to West Nyack, NY where he worked from his home. Except for a period of

10 years from 1882 to 1892 when he worked in Washington on the theory and tables for the orbits

of Jupiter and Saturn, this was to be his working pattern for the rest of his life.

E. W. Brown wrote:

He was essentially of the type of scholar and investigator who seems to feel no need of personal

contacts with others. While the few who knew him speak of the pleasure of his companionship in

frequent tramps over the country surrounding Washington, he was apparently quite happy alone,

whether at work or taking recreation.

From 1898 until 1901, Hill lectured at Columbia University, but “characteristically returned the

salary, writing that he did not need the money and that it bothered him to look after it.”
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By rearranging the first equation in Eq. (6.20) and using Eq. (6.21a), we obtain

x
• • þn2x ¼ 2n y

•

0 þ 2nx0ð Þ ð6:21bÞ
Thus, we obtain linear, second order differential equations with constant

coefficients.

By integrating Eq. (6.21) and the third equation in Eq. (6.20), we obtain the

following set of equations. For the force-free case (f	 0),

x tð Þ ¼ 4� 3 cos ntð Þð Þx0 þ sin ntð Þ
n

x
•

0 þ 2
1� cos ntð Þ

n

� �
y
•

0

y tð Þ ¼ 6 sin ntð Þ � ntð Þx0 þ y0 � 2
1� cos ntð Þ

n

� �
x
•

0 þ 4

n
sin ntð Þ � 3t

� �
y
•

0

z tð Þ ¼ cos ntð Þz0 þ sin ntð Þ
n

z
•

0

ð6:22Þ
These three equations constitute the complementary solution of Hill’s equations.

Given initial conditions x0, y0, z0, x
•

0, y
•

0, z
•

0, Eq. (6.22) provide the complementary

solution

ρ tð Þ ¼ x tð Þ, y tð Þ, z tð Þð Þ 	 x; y; zð Þ
Remarks:

1. All periodic terms are at orbital frequency n, the mean motion of the target

vehicle.

2. There is a secular drift term � 6nx0 þ 3y
•

0ð Þt in the along-track y(t) that grows

linearly in time and can arise from either x0 or y
•

0.

3. The y-oscillation is a quarter period ahead of the x-oscillation with double the

amplitude.

4. The third equation represents simple harmonic motion in the z direction,

corresponding to a slight inclination difference between target andchase orbits. Also

z0 ¼ 0 ¼ z
•

0 ¼> z 	 0

5. The oscillation in x represents a varying differential radius, ∂r, which describes a
neighboring elliptic orbit.

6. The solution for y(t) has two parts:

(a) A periodic component due to the oscillatory x-motion and

(b) A term of the form k1t + k2. The term k1t is called secular and represents a

steady drift along the y-axis whose direction is determined by the sign of k1,

which is determined by initial conditions x0 and y
•

0. The drift due to a

nonzero value of k1 describes a neighboring orbit of period slightly different

from the target period. In the special case k1¼ 0, the periodic x and y motion
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(of the same period) represents a neighboring elliptic orbit with period equal

to the target period.

7. The combined effects of relative motion in all components of the CW frame

represents the general case of a neighboring orbit that is elliptic, inclined, and of

different period than the target orbit.

Example: Standoff Position to Avoid Collision with
the Target Vehicle

In Fig. 6.6, point A denotes the position of the chase spacecraft and B the position

of the target vehicle, e.g., the ISS. The standoff position might be assumed prior

to rendezvous to allow time, for example, for the astronauts to sleep, while

avoiding a collision between the two vehicles. The initial conditions are x0¼ 0,

y0¼ y0, z0 ¼ x
•

0 ¼ y
•

0 ¼ z
•

0 at time t0. By substituting these initial conditions into

Eq. (6.20), we obtain the solution

x tð Þ ¼ 0, y tð Þ ¼ y0, z tð Þ ¼ 0

for all values of t
 t0.

Spacecraft Intercept or Rendezvous with a Target Vehicle

By differentiating Eq. (6.22) with respect to time, the corresponding velocity

components for the force-free case are obtained as:

x
•

tð Þ ¼ 3n sin ntð Þx0 þ cos ntð Þ x• 0 þ 2 sin ntð Þ y• 0
y
•

tð Þ ¼ 6n cos ntð Þ � 1ð Þx0 � 2 sin ntð Þ x• 0 þ 4 cos ntð Þ � 3ð Þ y• 0
z
•

tð Þ ¼ �n sin ntð Þz0 þ cos ntð Þ z• 0
ð6:23Þ

These three equations give the relative motion (relative velocity) between the chase

and target vehicles.

A

y

B
z

Fig. 6.6 Standoff position of

chase vehicle relative to

target spacecraft

6.4 Terminal Rendezvous 233



General solution for the deviation in the state vector δs(t) of the chase vehicle

relative to the target state:

δs tð Þ ¼ δr tð Þ
δv tð Þ

� �
¼

x

y

z

x
•

y
•

z
•

2
6666664

3
7777775

ð6:24Þ

δs tð Þ ¼ Φ tð Þδs 0ð Þ, Φ 0ð Þ ¼ I6 ð6:25Þ
where Φ(t) denotes the state transition matrix for the CW equations.

Φ tð Þ ¼

4� 3cð Þ 0 0
s

n

2

n
1� cð Þ 0

6 s� ntð Þ 1 0 � 2

n
1� cð Þ 4s� 3nt

n
0

0 0 c 0 0
s

n

3ns 0 0 c 2s 0

�6n 1� cð Þ 0 0 � 2s 4c� 3ð Þ 0

0 0 � ns 0 0 c

2
666666666666664

3
777777777777775
ð6:26Þ

where s	 sin(nt) and c	 cos(nt).
An advantage of the linearized, CW frame is that the standard orbital

calculations are greatly simplified. Here we can evaluate Φ(t) and compute the

deviation in the state vector by the equation

δs tð Þ ¼ tð Þδs 0ð Þ ð6:27Þ
for any value of t.

The complementary (homogeneous) solutions to Hill’s equations are useful for

studying satellite maneuvering and rendezvous if the force applied is brief enough

so that it can be treated as an impulse providing a change in velocity (the impulsive

burn model).

We partition the 6�6 transition matrix into four 3�3 submatrices as denoted in

Φ tð Þ ¼ M tð Þ N tð Þ
S tð Þ T tð Þ

� �
ð6:28Þ

Then the relative position vector δr(t) is given by:

δr tð Þ ¼ M tð Þδr 0ð Þ þ N tð Þδv 0ð Þ ð6:29Þ
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and the corresponding relative velocity vector δv(t) is:

δv tð Þ ¼ S tð Þδr 0ð Þ þ T tð Þδv 0ð Þ ð6:30Þ
The vectors δr(0) and δv(0) represent the six scalar constants that define the orbit

relative to the origin of the CW frame. The equation for δr(t) is the linear analog of
Kepler’s equation because it gives the position δr at time t in terms of the state at

the initial time t0¼ 0.

Recall Lambert’s Problem, the orbital boundary problem in the inverse-square

gravitational field. The linear analog of Lambert’s problem is given by the above

equation for δr(t) if δr(t) and δr(0) are specified and the unknown is the required

initial value δv(0). Equation (4.67) gives the velocity vector required at the initial

point P with position vector r1 for the spacecraft to arrive at the final point Q with

position vector r2.

Assume the desired final state for the rendezvous is the origin of the CW frame.

If the origin is in the space station, the chase vehicle is performing a rendezvous

with the space station. Let tf¼ the specified final time. Then the desired final

relative position is δr(tf)¼ 0. Thus, we have the following boundary value problem

(Lambert’s Problem):

Given the initial position δr(0), desired final position δr(tf)¼ 0, and specified

transfer time tf, determine the orbit that satisfies these conditions, including the

required initial velocity vector.

For rendezvous at tf, we have

0 ¼ δr tfð Þ ¼ M tfð Þδr 0ð Þ þ N tfð Þδv 0ð Þ ð6:31Þ
Therefore, we can determine the necessary velocity vector at the initial time t¼ 0 as

δv 0ð Þ ¼ � N tfð Þð Þ�1
M tfð Þδr 0ð Þ ð6:32Þ

and the orbit that solves the boundary value problem is

δr tð Þ ¼ M tð Þδr 0ð Þ þ N tð Þδv 0ð Þ ¼ M tð Þ � N tð Þ N tfð Þð Þ�1
M tfð Þ

h i
δr 0ð Þ ð6:33Þ

Note that

δr tð Þ ! 0 as t ! tf

as required. However, N(tf) is not invertible if tf¼ kπ for any integer k and certain

other values such as 2.8135π and 4.8906π. So tf must be selected to avoid these

values.
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In general, an (impulsive) thrust, a TCM, will be needed at t0 to achieve the

required δv(0). Let δvþ (0) denote the post-maneuver velocity vector, i.e.,

δvþ 0ð Þ ¼ � N tfð Þð Þ�1
M tfð Þδr 0ð Þ ð6:34Þ

Let δv�(0)¼ the specified velocity vector before the impulsive Δv is added. Then

the Δv0 provided by the thrust made at t¼ 0 is

Δv0 ¼ δvþ 0ð Þ � δv� 0ð Þ ¼ � N tfð Þð Þ�1
M tfð Þδr 0ð Þ � δv� 0ð Þ ð6:35Þ

Executing this value of Δv0 via an (impulsive) TCM will produce intercept. To

produce a rendezvous with v(tf)¼ 0, we continue as follows.

The relative velocity vector before the second thrusting maneuver made at tf is

δv� tfð Þ ¼ S tfð Þδr 0ð Þ þ T tfð Þδvþ 0ð Þ
¼ S tfð Þδr 0ð Þ þ T tfð Þ � N tfð Þð Þ�1

M tfð Þ
	 


δr 0ð Þ
¼ S tfð Þ � T tfð Þ N tfð Þð Þ�1

M tfð Þ
h i

δr 0ð Þ
ð6:36Þ

The final velocity vector must satisfy

δvþ tfð Þ ¼ δv� tfð Þ þ Δvf ¼ 0 ð6:37Þ
Therefore,

Δvf ¼ δvþ tfð Þ � δv� tfð Þ
¼ � S tfð Þ � T tfð Þ N tfð Þð Þ�1

M tfð Þ
h i

δr 0ð Þ
¼ T tfð Þ N tfð Þð Þ�1

M tfð Þ � S tfð Þ
h i

δr 0ð Þ
ð6:38Þ

because

δvþ tfð Þ ¼ 0: ð6:39Þ
Therefore, for rendezvous,

ΔvTOTAL ¼ Δv0j j þ Δvfj j ð6:40Þ
where Δv0 and Δvf are obtained from Eqs. (6.35) and (6.38), respectively.

Remark (word of caution):

Do not make the mistake of adding the vectors Δv0 and Δvf and taking the

magnitude of the sum of the vectors. The ΔvTOTAL is the sum of the magnitudes of

two vectors, not the magnitude of the sum of two vectors.

The amount of propellant that is required to execute these two maneuvers can be

computed using Eq. (3.66), given the value of the specific impulse of the propellant

available onboard the spacecraft.
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Summary of a Terminal Rendezvous Maneuver Sequence

1. The initial velocity change ΔV0 places the chase vehicle on a trajectory that will

intercept the origin at time tf.

2. The final velocity change ΔVf cancels the arrival velocity vector of the chase

vehicle at the origin of the CW frame to complete the rendezvous.

References for Sect. 6.4: Kaplan, Prussing and Conway, Weisstein.

[Eqs. (6.24)–(6.33) and (6.35)–(6.38) were reprinted from Orbital Mechanics by
John E. Prussing and Bruce A. Conway, pp 149–152, by permission of Oxford

University Press USA.]

6.5 Examples of Spacecraft Rendezvous

The two-maneuver, terminal rendezvous sequence described in Sect. 6.4 is analyti-

cally tractable and provides an estimate of the propellant requirements for

implementing a rendezvous. This section considers variations to the rendezvous

sequence that are incorporated when we must consider such factors as the safety of

the astronauts and ways to enhance the delivery accuracy for accomplishing the

rendezvous.

Space Shuttle Discovery’s Rendezvous with the ISS

On the afternoon of 9/30/2009, a course correction burn moved Discovery to

8 n. mi. behind the ISS. At this point, Discovery performed an 11-s Terminal

Initiation (TI) burn, followed by 3–4 very small correction maneuvers. The Shuttle

moved to 725 ft below ISS along the position vector r, closing at 6 ft/s. (The

announcer on NASA TV called the position vector “rbar.”) Commander Rick

Sturckow began flying Discovery manually, moving the spacecraft along rbar to

650 ft below ISS, closing at 0.4 ft/s with pulsed firings. Rendezvous pitch

maneuvers (RPMs) implemented a “rotational back flip” that took 8.5 min, turning

at the rate of ¾�/s. The objective was to enable two astronauts aboard ISS to take

pictures of Discovery’s landing gear, external tank, and heat shield. Digital cameras

were used in this 90-s photo opportunity.

Maneuvers to move 400 ft ahead of ISS along its velocity vector and orient

Discovery for mating to the ISS achieved orientation within 1.25� pitch out. (Rick

Sturckow can easily correct pitch out in the final approach.) The shuttle proceeded

to close in along the velocity vector at 0.2 ft/s and moved inch-by-inch within the

cone of approach. The objective was to move the circular docking mechanism on

springs on Discovery to contact the pressurized docking mechanism on ISS for

link up.

Discovery braked to decrease the closing rate to 0.1 ft/s for contact and capture.

The reduced pitch out was made precisely aligned within 30 ft of ISS. The post-

contact thrust was armed 8 ft away from contact. Then there was contact and the
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post-contact thrust was performed so the two docking mechanisms were firmly set

against one another. Capture occurred over the Atlantic Ocean. The two vehicles

were allowed to fly to allow damping and stabilization of relative motion between

the two vehicles. ISS pulled Discovery into firm contact by performing ring

retraction to get a hard mate between the Shuttle and ISS. The two crews performed

leak checks for 1½ h. Then the hatches were opened for the crew greetings.

While the shuttle remained in contact with ISS, NASA examined the pictures

that were taken during the final approach. The space agency began checking for

damage to the shuttle’s delicate heat shield after the 2003 Columbia disaster. A slab

of fuel tank foam knocked a hole in Columbia’s wing, which led to its destruction

during re-entry. NASA’s Mission Management Team said, “The Damage Assess-

ment Team provided their final summary to the team (NASA’s Mission Manage-

ment Team) and declared that the TPS (thermal protection system) is acceptable for

entry.”

References: William Harwood, “Space shuttle’s heat shield cleared for entry,”

story written for CBS News and appeared in Spaceflight Now.com; NASA TV.

Mars Sample Return

A proposed future mission will return a sample from Mars, In such a mission, a

launcher will go to the surface of Mars, obtain a sample of Mars soil, rendezvous

with an orbiter, and pass the soil sample to the orbiter for return to the earth.

6.6 General Results for Terminal Spacecraft Rendezvous

Particular Solutions (f 6¼ 0)

In Sect. 6.4, we considered complementary solutions (f¼ 0) for the Hill–Clohessy–

Wiltshire equations Eq. (6.20). The particular solutions (f 6¼ 0) of these equations

are dependent on the nature of the perturbing accelerations, the forcing function f.

Decomposing the perturbations into constant and periodic functions, if possible,

may make the analysis more tractable.

Target Orbits with Non-Zero Eccentricity

In Sect. 6.4, we considered circular target orbits. The case of elliptical target orbits

is considered in the reference by Jones. This reference gives formulas “for the

perturbation state transition matrix of the two-body problem” that “are valid for

motion in the linear neighborhood of reference orbits with 0� e< 1. . . . In addition
to the general form, a simplified version, valid for small eccentricity orbits, is

given.”
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Highly Accurate Terminal Rendezvous

Accuracy for terminal rendezvous is considered in the reference by

Kechichian 1992.

“A highly accurate analytic two-impulse terminal rendezvous theory is

presented. A first-order orbit theory is combined with the second-order conic

approximation in order to create a highly accurate predictor valid for several

revolutions. The resulting set of nonlinear equations of motion are solved via a

Newton–Raphson iteration process after providing the initial guess for the

components of the first velocity change from an analytic theory developed earlier.

A computer code evaluates ΔV1 with high accuracy resulting in negligible intercept

or closure error at the specified final time.”

A typical large transfer where the two vehicles are initially separated by

2,000 km is achieved with an interception error of 5 km.

General Algorithm

An algorithm for the two-impulse, time-fixed, noncoplanar rendezvous with drag

and oblateness effects for the general elliptic orbit is given in the reference by

Kechichian 1998.

References for this chapter: Bennett, Chobotov, Clohessy and Wiltshire, Fehse,

Harwood, Hill, Jones, Kaplan, Kechichian 1992, Kechichian 1998, Prussing and

Conway, Pisacane and Moore, Vallado with contributions by Wayne D. McClain,

Weisstein, Wertz and Larson, and Wylie and Barrett.

Exercises

6.1 A chase satellite in a low earth orbit (LEO) at 200 km altitude performs a

Hohmann transfer to phase for rendezvous with a coplanar target satellite at

geosynchronous earth orbit (GEO). Compute the

ΔVTOTAL ¼ ΔV1 þ ΔV2,

where ΔV1 and ΔV2 are the magnitudes of the impulsive velocity corrections

for this Hohmann maneuver sequence.

6.2 Consider a Hohmann transfer by a chase (active) vehicle in a circular orbit of

radius ri to rendezvous with a target (passive) satellite in a coplanar, circular

orbit of radius rf with rf> ri.

(a) Show that, at the time of the first maneuver of the Hohmann maneuver

sequence, the target satellite must lead the chase satellite by an angle

ϕ ¼ π 1� ri þ rf

2rf

� �3=2
" #

radians:

(b) Compute the lead angle for the Hohmann transfer defined in Problem 6.1.
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(c) A GPS satellite is in a MEO orbit at a mean radius of 26,560 km. A chase

satellite in a 200-km-altitude LEO performs a Hohmann transfer to phase

for rendezvous with the coplanar GPS satellite. Compute the lead angle for

this Hohmann transfer in degrees.

6.3 Assume that the Space Shuttle’s orbit is circular at an altitude of 200 km above

a spherical earth. In this orbit, an astronaut will throw a baseball out of the

shuttle’s bay in the direction directly away from the center of the earth with a

velocity relative to the shuttle of 1 m/s.

(a) Sketch the trajectory of the baseball relative to the shuttle.

(b) NASA has been asked to retrieve the baseball so that it can be placed in the

Baseball Hall of Fame. What is the minimum number of maneuvers that

the Space Shuttle will have to perform to retrieve the baseball? Explain.

6.4

Contrary to the initial report, Astronaut Dallas will not reenter the earth’s

atmosphere. However, he has introduced a ΔV of 0.5 m/s in the direction

directly toward the earth. So he has begun drifting away from the Space Shuttle,

which is in a circular orbit at a 200-km altitude. The President is expected to

call the astronauts in 15 min to congratulate them on a job well done. Will

Astronaut Dallas be within the communication range of 1 km from the shuttle

to answer the call on his cell phone?

6.5 Consider a spacecraft that is in a standoff position 2 km behind the International

Space Station (ISS) when the ISS is at an altitude of 350 km. The spacecraft

initiates a two-impulse rendezvous sequence to rendezvous with the ISS in 1.5 h.

(a) Compute the mean motion of the ISS to 6-digit accuracy.

(b) Compute the total delta-V requirement for the rendezvous.

(c) Submit a copy of your MATLAB code you used to solve part (b).

(d) Submit a copy of the equations you used to solve part (b). Write the

equations in analytical form separate from your MATLAB code.

6.6 The Hubble Spacecraft was released from the Space Station, which was in a

circular orbit at 590 km altitude. The relative velocity with respect to the Space

Station of the injection was 0.1 m/s up, 0.04 m/s backwards, and 0.02 m/s to the

right. These data are interpreted according to our relative motion definitions as

x
•

0 ¼ � 0:1 m=s y
•

0 ¼ �0:04 m=s z
•

0 ¼ �0:02 m=s
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(a) Compute the position and velocity of the Hubble Space Telescope with

respect to the Space Station 1 h after release.

(b) Submit a hard copy of the MATLAB code you used to solve part (a) of this

problem.

(c) Submit a copy of the equations you used to solve this problem. Write the

equations in analytical form separate from your MATLAB code.

(d) The altitude of the ISS given in this problem is not the current value. Bring

us up to date by accessing the Heavens Above Website at http://www.

heavens-above.com/ and clicking on the “Height of the ISS” link to

determine the altitude of the ISS on the first day of the current month.

6.7 A chase/interceptor satellite is at a position x0¼ 50 km, y0¼ 100 km and

z0¼ 0 km from a target spacecraft at the initial time t0¼ 0. The target space-

craft is in a circular earth orbit with a period of 88.8 min, which corresponds to

an altitude of 222 km. The chase spacecraft performs a rendezvous with the first

maneuver at the initial time and the final maneuver 22.2 min (one-quarter

period) later.

(a) Plot the relative position of the chase vehicle in the CW frame. That is, plot

the radial component x as the dependent variable versus the downtrack

component y as the independent variable.

(b) Submit a hardcopy of the MATLAB code you used to solve this problem.
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Navigation and Mission Design Techniques
and Tools 7

7.1 Introduction

Online tools that can be used for background studies for small bodies are described

in Sect. 7.2. A tool for use in designing orbital maneuvers is treated in Sect. 7.3,

together with examples, the description of the computer algorithm, and a brief

discussion of some maneuver constraints. Two methods for designing free-return

circumlunar trajectories for use in ensuring as much as possible the safe return of

humans to the moon are described in Sect. 7.4.

7.2 Online Ephemeris Websites

We start with the following definitions:

Def.: A tropical year equals 365.24219 days.

Def.: A Julian year equals 365.25 days.

Def.: A sidereal year equals 365.25636 days.

Each of these definitions of a year expresses one earth revolution about the sun

with respect to a particular reference. A tropical year is from equinox to equinox

and a sidereal year is from fixed star to fixed star. The length of a Julian year has

been chosen as an even fixed value, while the other two definitions change slightly

with time.

Def.: The apparent distance between two objects in space is the distance between

one object and where the other object appears to be when light left the second

object.
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Def.: The geometric distance between two objects in space is the actual distance

between the objects at a specified time.

The difference between these two distances is introduced by the finite speed

of light.

Solar System Dynamics Website: ssd

The ssd Website is available at

http://ssd.jpl.nasa.gov/.

Example: Rise, Transit, and Set Times
The NASA Deep Space Network—or DSN—is an international network of

antennas that supports interplanetary spacecraft missions and radio and radar

astronomy observations for the exploration of the solar system and the universe.

The network also supports selected earth-orbiting missions. The DSN currently

consists of three deep-space communications facilities placed approximately 120�

apart in longitude around the world: at Goldstone, CA in California’s Mojave

Desert; near Madrid, Spain; and near Canberra, Australia. This strategic placement

permits continuous observation of spacecraft as the earth rotates. Thus, a spacecraft

can have radio communication with one of the three DSN antennas, eventually

move out of the 2-way communication range of that antenna and into the range of

another antenna, and continuously repeat this process. To describe this process

more carefully, we introduce additional definitions for an observer that is an earth-

based (e.g., DSN) antenna. (For more information on the DSN, see the DSN

Website at http://deepspace.jpl.nasa.gov/dsn/.)

Def.: An object is said to rise when it moves above the observer’s local horizon.

Def.: The transit of an object is its crossing of the observer’s local meridian or

longitude, i.e., the point of highest possible elevation.

The word “transit” means to “go across.” One definition of the verb “transit” in

Webster’s Dictionary is “to pass across (a meridian, a celestial body, or the field of

view of a telescope).” So we also say that Venus made a transit of the sun on June

8, 2004, meaning that the planet (a smaller body) passed across the disk of the sun

(a larger body) at an angle visible from the earth, for the first time in 122 years.

Mercury made a transit of the sun on November 8, 2006 and makes approximately

13 per century.

Def.: An object is said to set when it moves below the observer’s local horizon.

So the observer has radio communications from rise to set, minus any time of

interference from local terrain surrounding the antenna, called the “mask.”

Def.: The solar elongation of an object is the sun–earth–object angle.
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Def.: When an object has a solar elongation of 180�, the object is said to be at

opposition and the disk of the object is as large as possible.

The planets Mars through Neptune can be in opposition with the earth, but

Mercury and Venus cannot. For example, Mars will be in opposition with the

earth when the sun, earth, and Mars lie on a line in that order from the sun.

Directions for Obtaining Information About Rise, Transit, and Set Times:

1. Go to http://ssd.jpl.nasa.gov/.

2. Click on “HORIZONS.”

3. Click on “Web Interface.”

4. Click on “web-interface tutorial” for instructions.

5. Return to Web Interface to change the settings under the Ephemeris Type,

Target Body, Observer Location, Time Span, and Table Settings links as neces-

sary to obtain the information needed to answer the user’s questions. For

example, if the mask is to be taken as zero, select the RTS flag to be the True

Visual Horizon and a time step interval of 1 minute for coverage from horizon at

rise to horizon at set. Save your settings under each button by clicking on the

“Use Selected Settings,” “Use Settings Below,” or other appropriate button.

6. Click on “Generate Ephemeris.”

7. Answer such questions as: What was the solar elongation in degrees for Mars at

the transit on April 1, 2013?

Example: JPL’s HORIZONS Online Ephemeris Generation System
The JPL HORIZONS Online Solar System Data and Ephemeris Computation

Service provides access to key solar system data and flexible production of highly

accurate ephemerides for solar system objects (643,615 asteroids, 3,270 comets,

178 planetary satellites, 8 planets, the sun, L1, L2, select spacecraft, and system

barycenters—data accessed on 6/1/14 at which time asteroids were being discov-

ered at the rate of approximately 2,350 asteroids/month over the previous 7 months).

The HORIZONS is provided by the Solar System Dynamics Group of the

Jet Propulsion Laboratory and can be accessed at the Solar System Dynamics

Website at

http://ssd.jpl.nasa.gov/?horizons

Instructions for how to generate an ephemeris and the HORIZONS User Manual

are available at this Website.

Trojan Asteroids
The Trojan asteroids are in two groups of asteroids that revolve about the sun in the

same orbit as Jupiter; one group is about 60� ahead of the planet in its orbit and the

other is about 60� behind it. They are in orbits whose semimajor axis satisfies

5.05 AU� a� 5.4 AU
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The first Jupiter Trojan asteroid, Achilles, was discovered in 1906. In 1990, a

similar asteroid, Eureka, was found in the orbit of Mars. Others have been found in

Neptune’s orbit and are called “Neptune Trojans.”

Directions for Finding Information about Trojan Asteroids:

1. Go to http://ssd.jpl.nasa.gov/?bodies.

2. Click on “Asteroids.”

3. Click on “small body database search engine.”

4. Provide data and select options as appropriate in steps 1 and 2 to get a list of

Trojan asteroids that meet your specifications.

5. Save these options in step 3 by clicking the “Append Selected” button.

6. Click on “Generate Table.”

Near Earth Objects Website: neo

The Near Earth Objects Website is available at

http://neo.jpl.nasa.gov/

Near-Earth Objects (NEOs) are comets and asteroids that have been nudged by

the gravitational attraction of nearby planets into orbits that allow them to enter the

earth’s neighborhood. Composed mostly of water ice with embedded dust particles,

comets originally formed in the cold outer planetary system while most of the rocky

asteroids formed in the warmer inner solar system between the orbits of Mars and

Jupiter. The scientific interest in comets and asteroids is due largely to their status as

the relatively unchanged remnant debris from the solar system formation process

some 4.6 billion years ago. The giant planets Jupiter, Saturn, Uranus, and Neptune

formed from an agglomeration of billions of comets and the left over bits and pieces

from this formation process are the comets we see today. Likewise, today’s

asteroids are the bits and pieces left over from the initial agglomeration of the

inner planets that include Mercury, Venus, Earth, and Mars. As the primitive,

leftover building blocks of the solar system formation process, comets and asteroids

offer clues to the chemical mixture from which the planets formed some 4.6 billion

years ago. If we wish to know the composition of the primordial mixture from

which the planets formed, then we must determine the chemical constituents of the

leftover debris from this formation process—the comets and asteroids.

Example: Visualize the Orbit of a Comet or Asteroid
Procedure:

1. Go to http://neo.jpl.nasa.gov/orbits/.

2. Enter the object name and click on the “Search” button.

3. Click on “Orbit Diagram.”
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4. Use buttons with double arrows for continuous motion and buttons next to those

with the double arrows for changing position of the selected comet or asteroid

1 day at a time.

5. Use the scroll bars to rotate the viewing position of the comet or asteroid and

planets, i.e., to rotate the orbit plane of the comet or asteroid.

6. Click the “Date” button to get a dialogue box for use in changing the date, if

necessary to move to several years away.

Potentially Hazardous Asteroids

Directions for Finding Information about Potentially Hazardous Asteroids:

1. Go to http://neo.jpl.nasa.gov/.

2. Click on “NEO BASICS.”

3. Click on “NEO Groups.”

4. Then find or determine the answers to such questions as: What is a Potentially

Hazardous Asteroid (PHA)?

Online ephemeris exercises, using the ssd and neo Websites, are defined as a

project in Appendix B, section “Online Ephemeris Project on PHAs, NEOs and

Other Celestial Objects”.

References for Sect. 7.2: Deep Space Network Website; Infoplease/Encyclope-

dia Website; Near-Earth Objects Website; Seidelmann; Solar System Dynamics

Website.

7.3 Maneuver Design Tool

Flight Plane Velocity Space (FPVS)

Figure 7.1 shows the unit reference vectors V̂ M, V̂ G, V̂ N, which define the

non-inertial Flight Plane Velocity Space (FPVS). Perturbations along these refer-

ence directions satisfy

ΔVM ¼ ftdt

ΔVG ¼ � fndt

ΔVN ¼ fLdt

in terms of the perturbations ftdt, fndt, and fLdt as defined in Chap. 5. The direction

of the unit vectors change as a function of θ.
For example, Figs. 7.2, 7.3, 7.4, 7.5, and 7.6 show the gradients of orbit

parameters in FPVS for the Pioneer Venus Orbiter in the Keplerian orbit about

Venus defined as follows:
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τ¼ 24.0 h

rp¼ 6,252 km

Ω¼ 33.1�

ω¼ 147.2�

i¼ 105.0�

with respect to mean ecliptic and equinox of 1950.0 coordinates.

vN̂

vĜ

vM̂

Ω

ω

NOMENCLATURE

τ =  Orbit period

a =  Semimajor axis

Gm =  Gravitational constant

hp =  Periapsis altitude

b =  Flight path angle

q =  True anomaly

“Flight
plane
velocity
space”

=  Unit vector along nominal velocity vector

=  Unit vector normal to nominal velocity vector in
    orbit plane directed away from planet

=  Unit vector normal to orbit plane in momentum direction

=  Inclination

=  Longitude of ascending node

=  Argument of periapsis

i

vN̂
vN̂

vĜ

vĜ

r̂
r̂

vM̂

vM̂
b

b

bb

Ω
q

PERIAPSIS
τ  =  2π

Gm

¡

APOAPSIS

i

hp a3

Fig. 7.1 Orbit geometry and Flight Plane Velocity Space
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1. Period (τ)
The partial derivative of period with respect to VM is given analytically as

∂τ
∂VM

¼ 3av

μ
τ ð7:1Þ

from Exercise 7.1. Recall that the maximum value of velocity is at periapsis and

the minimum value is at apoapsis from Kepler’s Second Law. Therefore, this

equation implies that the maximum value of ∂τ/∂VM is at periapsis and the

minimum value is at apoapsis as can be seen in Fig. 7.2.

For the other two components of the gradient of period in FPVS,

∂τ
∂VG

� ∂τ
∂VN

� 0

2. Periapsis Radius (rp)

As seen in Fig. 7.3,

∂rp
∂VM

¼ 0 at θ ¼ 0�
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Fig. 7.6 Gradient of the inclination in FPVS
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∂rp
∂VM

¼ max at θ ¼ 180�

The gradient of periapsis radius is

∇rp ¼ ∂rp
∂VG

,
∂rp
∂VM

,
∂rp
∂VN

� �

where V̂
G
, V̂

M
, V̂

N
define a right-handed coordinate system and the third

component

∂rp
∂VN

� 0

3. Right Ascension of the Ascending Node (Ω)

∂Ω
∂VM

� 0 � ∂Ω
∂VG

The remaining component is shown in Fig. 7.4.

4. Argument of Periapsis (ω)
See Fig. 7.5. None of the three components of the gradient is identically zero.

Recall that, in the discussion of Eq. (5.4), we said, “We offer no analytic formula

for this third component, but will provide a graphical display of this component

for an example in Sect. 7.3.” The curve in Fig. 7.5 marked “∂ω/∂VN” is the

graphical display of the PVO example.

5. Inclination (i)
For the gradient of inclination,

∂i
∂VM

� 0 � ∂i
∂VG

and the third component is as shown in Fig. 7.6.

Maneuver Design Examples

Example 1 (Period-change) Compute the minimum ΔV for a period-change on

the PVO mission.

As shown in Fig. 7.2, the ΔV for changing the period is minimized by

performing the maneuver at periapsis along the velocity vector.

(a) Δτ¼ +10 min.

This exercise changes the period from τ0¼ 24 h. to τf¼ 24 h 10 min.

Since Δτ ¼ ∂τ
∂VM

ΔVM,
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ΔV ¼ ΔVM ¼ Δτ
∂τ
∂VM

���
θ¼0∘

¼ 10 min

5:3 min
m=s

¼ 1:9 m=s

(b) Δτ¼�10 min

This exercise changes the period from τ0¼ 24 h to τf¼ 23 h 50 min.

ΔV ¼ ΔVM ¼ Δτ
∂τ
∂VM

���
θ¼0∘

¼ �10min

5:3 min
m=s

¼ �1:9m=s

The minus sign means that the engine is fired in the opposite direction

from that in part (a) to take energy out of the system. The amount of velocity

change is

ΔVj j ¼ 1:9m=s

as in part (a).

Example 2 (rp-change) Compute the minimum ΔV for a change in the altitude at

periapsis passage and its effect on the period.

Fact (stated without proof): The ΔV for changing the radius at periapsis is

minimized by applying the ΔV along the velocity vector at apoapsis.

(a) Δrp¼ 50 km¼Δhp
Here, we change rp0 ¼ 6252 km to rp0 þ 50 km ¼ 6302 km

ΔV ¼ ΔVM ¼ Δhp
∂rp
∂VM

���
θ¼180∘

¼ 50 km
16 km=mps

¼ 3:1m=s from Fig. 7.3

(b) What change in τ will be produced by this maneuver? (Fig. 7.7)

Δτ ¼ ΔVM

∂τ
∂VM

����θ ¼ 180∘
¼ 3:1m=sð Þ 0:4

min

m=s

� �
¼ 1:2 min from Fig. 7.2.

Thus, period changes from τ0¼ 24 h to τf¼ 24 h 1.2 min.

t = 24 hr

t = 24 hr 1.2 min

Δ λp = 50 km

Fig. 7.7 Change in period

from change in rp
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Maneuver Considerations

Constraints
For example, the Navigation Team is often not allowed to perform a maneuver near

periapsis to avoid interfering with science-data-taking activities. See Exercise 7.4.

For Exercise 7.4, use the partial derivative of each of the parameters with respect to

VM at θ¼ 120�.
There may be other constraints on the implementation of the maneuver such as

not pointing optically—or thermally—sensitive instruments, e.g., a camera, at the

sun or other bright body during the burn or during the turn to or from the burn

direction. It is also desirable to avoid loosing communication with the spacecraft

during the turns and burn, but this may be impossible to avoid. Some maneuvers are

made in the blind. Sometimes they are made behind the target body, i.e., behind

when viewed from the earth. An example of performing a maneuver in the blind is

the orbit insertion burn for 2001 Mars Odyssey. (See Fig. 3.42.)

Controls
There are four controls, i.e., three components of the ΔV and the time of ignition.

Targets
There are less than or equal to four specified target parameters and not all targets are

independent, e.g., i and Ω. However, tolerances on the parameters may allow

satisfying conditions on more than four parameters and on parameters that are not

independent of each other.

Maneuver Strategies
A maneuver strategy is a sequence of interdependent maneuvers. Such a strategy

might be designed to overfly a specified site on the central body as, for example, for

Viking in orbit about Mars where the orbiters overflew the landers or to reduce the

ΔV requirement to, for example, correct the rp by performing a maneuver at or near

apoapsis and the period by performing a maneuver at or near periapsis.

Reference: Hintz, Farless, and Adams

Algorithm for Computing Gradients in FPVS

We now define an algorithm for computing gradients in FPVS such as those given

in Figs. 7.2, 7.3, 7.4, 7.5, and 7.6 for use in PVO flight operations (Fig. 7.8).

Input
Orbit parameters: τ, rp,Ω,ω, i with respect to a specified inertial coordinate system

θmin, Δθ, θmax

ΔVGp
,ΔVMp

,ΔVNp
¼ perturbations along V̂

G
, V̂

M
, V̂

N
, respectively
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μ¼Gm of central body

For Figs. 7.2, 7.3, 7.4, 7.5, and 7.6, θmin¼ 0� and θmax¼ 360�.

Algorithm (for Each θ = θmin, θmin +Δθ, θmin + 2Δθ, . . ., θmax)
1. Convert the Keplerian elements τ, rp,Ω,ω, i, θ to the Cartesian position and

velocity vectors, r(θ) and v(θ).
2. Compute the unit reference vectors in FPVS:

V̂ M ¼ V̂ ¼ V θð Þ
V θð Þ V̂ N ¼ r θð Þx v θð Þ

r θð Þx v θð Þj j ¼ ĥ V̂ G ¼ V̂ MxV̂ N

V̂ MxV̂ N

�� �� ð7:2Þ

3. Convert the Cartesian position and velocity vectors, r θð Þ, v θð Þ þ ΔVMp
V̂ M ¼

1þ ΔVMp

� �
v θð Þ to Keplerian orbit elements of the perturbed orbit. Denote these

Keplerian elements as τM, rpM,ΩM,ωM, iM.

4. Compute partial derivatives for each Keplerian element as finite differences, i.e.,

∂τ
∂VM

¼ τM � τ
ΔVMp

∂rp
∂VM

¼ rpM � rp

ΔVMp

∂Ω
∂VM

¼ ΩM � Ω
ΔVMp

∂ω
∂VM

¼ ωM � ω
ΔVMp

∂i
∂VM

¼ iM � i

ΔVMp
ð7:3Þ

5. Do likewise to obtain partial derivatives with respect to VN and VG.

Example
Using the PVO orbit elements produced Figs. 7.2, 7.3, 7.4, 7.5, and 7.6.

θ

θmin S/C motion

θmax

r

Fig. 7.8 Input to algorithm

for computing gradients

in FPVS
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Comments on This Algorithm
1. We assume Keplerian motion.

2. We assume the partial derivatives are constant over the duration of the maneu-

ver. Therefore, the accuracy in computing the ΔV decreases as the size of the

required parameter change increases.

3. We use the impulsive burn model.

4. Recall that we have an analytic formula for ∂τ/∂VM. But the finite difference

partial derivatives are acceptable and the algorithm is simpler if we use the finite

differences for the partial derivatives of all orbital elements. Thus, the software

is easier to maintain.

7.4 Free-Return Circumlunar Trajectory Analysis Techniques

Introduction

Ralph B. Roncoli’s “Lunar Constants and Model’s Document” supplies the

constants and models to be used in the trajectory and navigation design of missions

to orbit or land on the moon. It also gives the mission analyst some basic back-

ground information about the moon, its orbit, and the previous missions that have

explored the moon. Table 7.1 provides some lunar, earth, and solar data for use in

planning our return to the moon.

We need the following lunar terminology.

Def.: Apolune (aka apocynthion) is the point in a lunar orbit that is furthest from

the moon.

Def.: A lunar orbit is an orbit about the moon.

Def.: Perilune (aka periselene or pericynthion) is the point in a lunar orbit that is

closest to the moon.

Table 7.1 Lunar and related data

Parameter Value Unit Remarks

Lunar data

Mean radius 1,737.5 km

GmM 4,902.801 km3/s2

Ave. distance from earth 384,400 km

Sphere of Influence 56,462 km Approx. 9RL
Earth data

GmL 398,600.433 km3/s2

Mean equatorial radius RL 6,378.14 km

Solar data

Gm� 132,712,440,017.987 km3/s2

Mean radius 6.96E + 05 km
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Apollo Program

We begin this subsection with a brief discussion of selected Apollo lunar missions

as an introduction to our quest to return to the moon. More information about all the

Apollo missions is available at the National Space Science Data Center Website at

nssdc.gsfc.nasa.gov.

That website provides the following description of the program:

The Apollo program was designed to land humans on the Moon and bring them safely back

to Earth. Six of the missions (Apollos 11, 12, 14, 15, 16, and 17) achieved this goal. Apollos

7 and 9 were Earth orbiting missions to test the Command and Lunar Modules, and did not

return lunar data. Apollos 8 and 10 tested various components while orbiting the Moon, and

returned photography of the lunar surface. Apollo 13 did not land on the Moon due to a

malfunction, but also returned photographs. The six missions that landed on the Moon

returned a wealth of scientific data and almost 400 kg of lunar samples. Experiments

included soil mechanics, meteoroids, seismic, heat flow, lunar ranging, magnetic fields,

and solar wind experiments.

The website continues with the following explanation:

The Apollo mission consisted of a Command Module (CM) and a Lunar Module (LM). The

CM and LM would separate after lunar orbit insertion. One crew member would stay in the

CM, which would orbit the Moon, while the other two astronauts would take the LM down

to the lunar surface. After exploring the surface, setting up experiments, taking pictures,

collecting rock samples, etc., the astronauts would return to the CM for the journey back to

Earth.

In particular, Apollo 11 was launched on 7/16/1969, landed in the Sea of Tranquil-

ity on 7/20/1969, and returned to the earth safely on 7/24/1969. The commander of

the mission was Neil A. Armstrong, the lunar module “Eagle” pilot was Edwin

Aldrin, Jr. (who later changed his name to Buzz Aldrin), and the command module

“Columbia” was piloted by Michael Collins. Apollo 13 had a different adventure in

which it was launched on 4/11/1970, performed a lunar flyby and return, but an

explosion onboard forced cancellation of the lunar landing, and then the astronauts

returned safely to earth on 4/17/1970. The commander of the Apollo 13 mission

was James A. Lovell, the lunar module “Aquarius” pilot was Fred W. Haise, Jr, and

the command module “Odyssey” pilot was John L. Swigert, Jr.

The Apollo 13 failure was caused by the explosion of cryogenic oxygen tank

No. 2 55.9 h after launch. The LM had three propulsion systems: the Descent

Propulsion System (DPS), the Ascent Propulsion System (APS), and the LM

Reaction Control System (RCS). All three propulsion systems used nitrogen tetrox-

ide and unsymmetrical dimethyl hydrazine hypergolic propellants. The DPS was

used for three maneuvers (DPS-1, DPS-2, and MCC-5, Midcourse Correction 5)

after the oxygen tank explosion. The APS was not used during the flight. The RCS

provided attitude control of the LM/CSM stack for most of the mission following

the explosion and performed the MCC-7 trajectory correction and SM separation

maneuvers. (“CSM” denotes the “Command and Service Module.”)
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For more information on the GNC challenges, see the reference by Goodman,

which says:

After a mission abort was declared, four trajectory adjustment maneuvers were performed.

The first placed the vehicle on a trajectory that would ensure return to Earth with appropri-

ate trajectory conditions at Entry Interface (EI), that is, the arrival of the vehicle at an

altitude 400,000 ft above an oblate earth, a point at which the, vehicle enters the sensible

atmosphere. The second shortened the remaining flight time and moved the splashdown

point from the Indian Ocean to the mid Pacific, the normal landing area for Apollo lunar

missions. The third and fourth maneuvers were small trajectory adjustments to meet

required EI conditions.

Reference: Goodman

Free-Return Circumlunar Trajectory Analysis Method 1

Our objective is to estimate circumlunar transfer parameters from a low-altitude

circular parking orbit about the earth.

Modeling Assumptions
At periapsis, the energy equation is

vp
2

2
� μ�

rp
¼ � μ

2a
ð7:4Þ

For lunar transfer, take ra� rM, the moon’s average radial distance from the earth.

Ignoring the mass of the moon, we compute

Δv ¼ vp � vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ�
rp

� μ�
a

s
�

ffiffiffiffiffiffiμ�
rp

r
ð7:5Þ

for a Hohmann transfer, where vp is obtained by solving Eq. (7.4) for vp. For the first

maneuver of a Hohmann transfer, Δv¼ 3.13 km/s, as we determined in Sect. 3.3,

and the time of transfer is:

ttransfer ¼ τ
2
¼ π

ffiffiffiffiffiffi
a3

μ�

s
ð7:6Þ

where

a ¼ rp þ ra

2
ð7:7Þ

Based on the assumption that parking orbits have altitudes of only a couple hundred

km, we consider a low-altitude parking orbit such that

rp ffi 6600 km so that hp ffi 222 km
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Therefore, from Eq. (7.7), affi 1.96
 105 km, which implies that

ttransfer ffi 5:0days

From the first term in Eq. (7.5), vp¼ 10.90 km/s, which implies that

h ¼ rpvp ¼ 7:2
 104 km2=s ð7:8Þ
A Hohmann transfer requires the least impulsive Δv, but its transfer time is longer

than a Type I trajectory. Shorter transfer times to the moon are possible by using

transfer orbits with apogee ra> rM, which requires extra Δv. However, the addi-

tional impulse applied at perigee above that of a Hohmann transfer is small. So h is

not increased significantly above 7.2
 104 km2/s for higher energy transfers.

Alternately, we can consider the velocity vector at rM, i.e.,

v ¼ vrir þ vθiθ

Higher energy transfers have vr> 0 at rM instead of vr¼ 0 as for a Hohmann

transfer. But vθ at rM is just slightly greater than vθ for the Hohmann transfer. Since

h ¼ rxvj j ¼ rvθ ¼ rMvθM ð7:9Þ
from Exercise 2.19, the assumption of constant angular momentum for all lunar

transfers is valid within the approximation method employed here. Thus, we can

assume a constant value of

vθM ¼ h

rM
¼ 0:19km=s ð7:10Þ

at the moon’s distance rM.

However, we do not assume vr¼ 0 at rM. Once vr at rM is determined, the transfer

ellipse parameters can be determined as follows. From Eqs. (2.17) and (2.19),

Exercise 2.19, the Energy Equation, and simplifying the result, we obtain

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rMvθ2

μ�
� 1

� �2

þ rMvθvr

μ�

� �2
s

ð7:11Þ

which gives the shape of the transfer orbit. Also the semimajor axis of the transfer

orbit is

a ¼ p

1� e2
¼ h2=μ

1� e2
¼ rM

2vθ
2

μ 1� e2ð Þ ð7:12Þ
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from Eq. (2.17) and Exercise 2.19. From the Conic Equation, Exercise 2.19, and

Eq. (7.11),

cos θ ¼ 1

e

h2

μr
� 1

� �
¼ rMvθ

2

μ�
� 1

� �
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rMvθ2

μ�
� 1

� �2

þ rMvθvr

μ�

� �2
s

ð7:13Þ

which gives the true anomaly (location in orbit) at rM. The time to transfer, ignoring

lunar gravity effects, is

ttransfer ¼ E� e sin E

n
ð7:14Þ

from Kepler’s Equation, where the eccentric anomaly E is obtained from Eq. (2.27)

and the mean motion

n ¼
ffiffiffiffiffiffiffiffiffi
μ=a3

p
from Eq. (2.35). The eccentricity for the Hohmann transfer is effi 0.97 from

Exercise 7.6(a) and, for any higher energy transfer,

e ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:932þ 0:033vr

p
ð7:15Þ

from Exercise 7.6(b).

Based on this discussion, we can now say that the following set of assumptions

are justified within the approximation model being used in this analysis:

1. The moon travels in a circular orbit about the earth that is approximately

384,400 km in radius.

2. Use of the patched conic model—Since the moon is relatively close to the earth

and the two bodies actually travel around each other, the results are less accurate

than those obtained for interplanetary transfer. The earth and moon move around

a common center of mass, which is 4,670 km away from the geocenter and, thus,

the position of the earth shifts considerably in the course of time. In fact, this

approach is not satisfactory for calculation of earth return trajectories because of

the manner in which lunar gravity is handled. Also, the perilune altitude cannot

be accurately predicted. But the method is good for outboundΔv evaluations and
provides insight into the problems of lunar transfer missions.

3. In adopting the patched conics model, we assume Keplerian motion, ignoring

third body gravitational effects of, for example, the sun, and other perturbations,

and modeling the earth and moon as perfect spheres.

4. The sphere of influence of the moon is ignored until conditions at the lunar

distance have been established. (This zero sphere of influence model was also

used in the interplanetary transfer analysis in the Venus flyby patched conics

example.) However, the lunar SoI is not negligibly small compared to the earth–

moon distance. The radius of the SoI is about 15 % of the earth–moon distance
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even for the revised SoI discussed in Subsection 4.5. Therefore, the elliptic orbit

is not a Hohmann trajectory to the moon.

5. The gravitational attraction of the moon is ignored in computing the Δv for

injecting into the lunar transfer orbit.

6. The calculations are made for rp¼ 6,600 km, which implies that the altitude of

the parking orbit¼ 222 km. Thus, we assume that parking orbits have altitudes

of only a couple hundred km. Hence, we also have affi 1.96
 105 km and,

therefore, ttransferffi 5.0 days.

7. The transfer Δv is impulsive.

8. Assumption of constant angular momentum h¼ rMvθ¼ 7.2
 104 km2/s for all

lunar transfers, including transfers with higher energy than a Hohmann

trajectory.

9. Assumption of a constant value for vθ¼ 0.19 km/s at the moon’s distance.

Trajectory Design Tool: Michielsen Chart
Michielsen devised a graphical display for all lunar transfer information, including

passage effects, on a single plot. This chart is presented in Fig. 7.9 with an

application to the Apollo 11 Mission. The vr axis is calibrated in km/s, but is

directly related to transfer time. Thus, each value of vr associated with the transfer

orbit corresponds to a unique value of transfer time. The two vertical lines marking

the constant values of vθ¼�0.19 km/s at rM are calibrated in days to reach rM, i.e.,

the transfer time from earth to the moon. Transfers which have vθ¼ +0.19 km/s are

direct and those with vθ¼�0.19 km/s are retrograde.

The earth intercept zone connotes return to the earth without any thrusting

maneuvers.

Note the moon’s velocity vector vM. The magnitude

vθM ¼ vc ¼
ffiffiffiffiffiffi
μ�
rM

r
¼ 1:02 km=s

since the moon is assumed to be in a circular orbit about the earth. So the point

vθffi 1 km/s, vrffi 0 is the orbital velocity of the moon with respect to the earth.

A probe’s approach (vθ, vr) is specified by the transfer trajectory. Hyperbolic

passage of the moon is handled in an analogous manner to that for planetary

passage.

As the spacecraft reaches rM, the earth’s gravitational attraction is “turned off”

(in the model) and the moon’s gravity is “turned on” (in the model). The deflection

angle δ measures the turning of the spacecraft’s velocity in the moon-relative hyper-

bolic trajectory. A typical velocity vector diagram for lunar passage is shown in

Fig. 7.10. Since the spacecraft passes in front of the moon, the turn angle δ is taken

clockwise and geocentric energy is decreased via a gravity assist (see Fig. 3.18). These

vector triangles predict the probe’s departure velocity v+ from the moon.

7.4 Free-Return Circumlunar Trajectory Analysis Techniques 261

http://dx.doi.org/10.1007/978-3-319-09444-1_3#Fig18_3


The whole passage can be plotted on a Michielsen Chart. If the outgoing

(post-flyby) velocity

vþ >
ffiffiffi
2

p
vM ¼

ffiffiffi
2

p
vc at the moonð Þ ¼ vesc

earth escape occurs. If v+ crosses the earth escape circle, then enough energy was

added during passage to go into a heliocentric orbit. Note that energy is always

added for a Hohmann transfer (see Michielsen Chart), since

vθHoh ¼ vaHoh ¼
rp

ra
vpHoh ¼ 0:19 km=s
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Fig. 7.9 Michielsen chart for lunar transfer on Apollo 11
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The Michielsen Chart (Fig. 7.9) represents the flight of Apollo 11 from a circular

parking orbit on a high-energy, 3-day transfer trajectory. Since the spacecraft

passed in front of the moon, δ is taken clockwise such that the spacecraft returns

to low earth perigee. Figure 7.11 depicts the flight profile in an earth–moon fixed

coordinate system. Figure 7.12 is an enlargement of the flyby trajectory in moon-

fixed coordinates. Referring to the Michielsen Chart, the radial component of the

probe’s velocity vr
�¼ 0.72 km/s at rM and the transverse component

v�θ ¼ vM � vθM ¼ 0:81 km=s. Thus, the magnitude of v1/M¼ 1.08 km/s (hypote-

nuse of a right triangle.). If passage is specified to be within 111 km of the moon’s

M
1.02 km/s

vM

ΔvGA

δ

v+
¥/M

v+

v_

v-
¥/M

Fig. 7.10 Velocity diagram for hyperbolic passage of the moon

Moon

retrograde orbit (cw)

direct orbit (ccw)

Å

Fig. 7.11 Lunar transfer and

return flight profile

Moon’s SoI

M

111km

Fig. 7.12 Apollo 11’s flyby

of the moon at 111 km in

moon-fixed coordinates
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surface, the deflection of v1/M from the hyperbolic passage of the moon can be

calculated from Eqs. (3.26) and (3.32) as follows:

e ¼ 1þ rpv12

μM
¼ 1:44

where rp¼RM+111 km¼ 1,848.5 km and μM¼ 4902.801 km3/s2.

Therefore,

δ ¼ 2arcsin
1

e

� �
¼ 87:7 deg:

The v1/M
+ is plotted on the Michielsen chart for a 3-day transfer to the moon. The

deflection δ is taken clockwise because of the frontside passage. Given this deflec-

tion of the inbound asymptote, the vehicle’s inertial velocity vector with respect to

the earth outbound from the moon v+ can be plotted as in Fig. 7.9 and is seen to be

approximately symmetric with respect to the incoming inertial velocity vector v�.

The gravity assist Δv is

ΔvGA ¼ vþ � v�j j ¼ 1:2 km=s

Note that

ΔvGA 6¼ vþ � v� ¼ 0:08 km=s

where v+ and v� are (scalar) magnitudes.

So we have performed a first order mission design of a circumlunar transfer. This

method provides good outbound Δv evaluations, but is not sufficiently accurate in

calculating earth return trajectories. So we do not proceed at this point to use r, v,

and β to evaluate the trajectory parameters of the return trajectory as we have done

in Chap. 3. However, we do proceed to consider the circumlunar trajectories used

for the Apollo missions qualitatively.

Free-Return Circumlunar Trajectories and Applications to the Apollo Missions

Def.: A free-return circumlunar trajectory is a trajectory about the earth, which will

fly by the moon and return to an earth reentry point without the assistance of any

propulsive maneuvers after injection into the lunar transfer trajectory.

A free return to the earth is accomplished via a lunar gravity assist.

This type of transfer was very useful on the Apollo lunar flights. If the spacecraft

rockets could not be fired for any reason upon reaching the moon, safe return to the

earth was guaranteed. Early Apollo flights were injected into free return trajectories

of the type shown in Fig. 7.13. Typically, the spacecraft was sent on a 3-day

outbound leg to make a front-side passage such that it could enter a 3-day return

leg if a failure occurred. The corresponding simplified (from Fig. 7.9) velocity

vector diagram is shown in Fig. 7.14. With the proper approach velocity, the

trajectory is deflected into a “figure 8” pattern for free return to earth as shown in

Figs. 7.13 and 7.17 (reconstructed plot for Apollo 13).
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Direct Versus Retrograde Trajectories

Recall the definition of direct (or posigrade) orbits and retrograde orbits given in

Sect. 4.3:

Orbits with 0� < i< 90� are direct (or posigrade)
Orbits with 90� < i< 180� are retrograde

as shown in Fig. 7.15.

Figure 7.13 shows a trajectory with a direct outbound leg and direct return leg.

Figure 7.16 shows a trajectory with a direct outbound leg and a retrograde return
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leg. To change from a direct return leg to a retrograde return requires doing less

bending in the hyperbolic trajectory at the moon. Recall, from Eq. (3.32), that large

values of e imply little bending in the hyperbolic trajectory. From Eq. (3.27), we see

that the eccentricity of the hyperbolic trajectory can be increased by increasing rp or

v1. Hence, the return leg can be changed from direct to retrograde by shortening

the time of flight on the outbound leg to increase v1 and/or raising the altitude at

closest approach at the moon. In Exercise 7.7, the reader will determine the value of

the turn (deflection) angle δ and the closest approach distance rp at the moon for an

Apollo type free-return trajectory.

The reconstructed figure in the reference by Walter shows that the Apollo

11 free-return trajectory is symmetric and periodic and passes the surface of the

moon at a minimum distance of 111 km, which corresponds exactly to the

periselene (perilune) altitude of Apollo 8, 10, and 11. Later moon landing missions

entered at this point into a circular moon orbit, from which it was possible to

descend to the moon’s surface. If the mission had to be aborted for any reason, the

X

Z

Y

retrograde
orbit

direct orbit

line of nodes

Fig. 7.15 Direct versus

retrograde orbits
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retrograde
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direct
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cw return

Fig. 7.16 Trajectory with

direct outbound leg and

retrograde return
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engine ignition required for braking performed behind the moon into the circular

moon orbit would not have happened and the astronauts would automatically have

returned to the earth. This indeed happened for Apollo 13. The reference by Adamo

provides an annotated geocentric plot, as shown in Fig. 7.17, of the reconstructed

Apollo 13 trajectory accompanied by the moon’s geocentric motion.

These references also say that, while the reconstructed trajectories are fully

symmetric relative to the earth–moon connecting line, the actual trajectories of

the Apollo missions were slightly asymmetric such that on return the spacecraft

would touch the earth’s atmosphere in order to guarantee an automatic re-entry.

This asymmetry was achieved by a slight shift of the position of the periselene.

During the outward as well as the return flight, the free-return trajectory is

clearly elliptical in the proximity of the earth, as the gravitational influence of the

earth is dominating. Approaching the edge of the moon’s SoI, the trajectory

becomes more and more a straight line. Here the orbital velocity has already

decreased considerably and the gravitational influence of the earth and moon plus

centrifugal force just cancel each other. In this area, the real trajectory deviates

utmost from the patched conics approximation. Near the moon, the trajectory is

bent into a hyperbola.

As confidence in the Apollo CSM increased, the free-return trajectories were

changed to accommodate lunar orbit entry parameters. Apollo 13 had made a

midcourse correction to leave its free-return path before experiencing the failure,

which aborted the lunar landing. The lunar module engines were used after the

explosion in the CSM to modify their course to enable return to the earth re-entry

altitude in a reasonable time.

Fig. 7.17 Geocentric trajectory reconstruction plot for Apollo 13 [From “Apollo 13 Trajectory

Reconstruction via State Transition Matrices” by Daniel R. Adamo, reprinted by permission of the

American Institute of Aeronautics and Astronautics, Inc.]
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We have applied the Michielsen Chart to circumlunar free-return trajectories.

The reference by Kaplan provides information about more general applications of

this chart.

We now consider a second method of free-return circumlunar analysis that is

based on less restrictive modeling assumptions than those employed in the first

analysis method.

Free-Return Circumlunar Trajectory Analysis Method 2

Introduction
The Apollo missions were injected from a parking orbit about the earth into a free-

return circumlunar orbit, so that no major propulsiveΔVmaneuvers were needed to

return the spacecraft to atmospheric entry to achieve a specified landing site on the

earth. The main content of the following analysis is a complete parametric repre-

sentation of the outward and return orbital inclinations and times of flight with the

pericynthion (periapsis of the lunar orbit) altitude at the moon and the position of

the moon (from ephemeris input) in its eccentric orbit. We will use the parametric

approach to obtain approximate values for:

(a) Injection conditions from the parking orbit about the earth into the outbound

ellipse

(b) Approach conditions at the moon—the pericynthion distance

(c) Earth atmospheric entry and landing conditions.

These data could be used as first approximations in a precision trajectory search

program, using linear search methods to solve for the corresponding exact trajec-

tory. Thus, one could generate the nominal trajectory for a free-return circumlunar

mission.

Some examples of the comparison of data obtained in generating the parametric

plots to results obtained by running an integration program with a high-precision

model are presented in the following analyses to determine the validity of the

parametric model. But the focus of this presentation is the simplified gravitational

model of the earth–moon system provided so that trajectories in this system can be

studied qualitatively and the parametric plots used in the qualitative studies with

examples of their use.

This study concentrates on the class of free-return circumlunar trajectories that

are of interest to a crewed lunar program, i.e., injection from a circular parking

orbit, a very close approach to the surface of the moon, and re-entry into the earth’s

atmosphere at a shallow angle. In addition, relationships are presented which tie the

characteristics of such trajectories computed in an inertial coordinate system to the

geographic position of the launch and landing sites in earth-fixed (non-inertial)

coordinates.
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The parametric plots considered here can be used for feasibility analyses,

mission planning, and verification of results for lunar missions requiring free-

return circumlunar trajectories.

Model Assumptions (Simplifications) for Free-Return Circumlunar
Trajectory Parametric Plots
The parametric plots are developed utilizing the following simplified model of

motion in the earth–moon system. The model on which the following analysis is

based was first described by Egorov in 1956. (See reference by Egorov.)

Sphere of Influence

The simplified trajectory model is based on the sphere of influence concept where

motion outside of this sphere (centered at the moon) is represented by an earth-

influenced conic and motion within the sphere is a moon-influenced conic. The

conics are chosen such that the position and velocity vectors match at the spherical

boundary as well as satisfying other constraints. For the parametric plots we will

consider, the sphere of influence is taken to be about 10 earth radii, 10R�. (Note the
improved model assumption versus the zero sphere of influence model considered

for the Patched Conic example.) Thus, we obtain two earth-based ellipses and one

moon-based hyperbola as shown in Fig. 7.18. These conics are such that the

position and velocity vectors match at the earth-to-moon and moon-to-earth

phase boundaries. The apparent discontinuity in the velocity in Fig. 7.18 is due to

the moon’s motion about the earth. This discontinuity is removed in the display by

considering a rotating coordinate system fixed to the earth–moon system as we have

done previously. Thus, we obtain a “figure-8” trajectory.

Moon’s Orbit

The complex motion of the moon about the earth affects the behavior of circumlu-

nar trajectories. Not only the moon’s distance from the earth, which varies as

56 R� < LD < 64R�,

but also the path angle of its velocity vector greatly affects important parameters

such as pericynthion distance, time of flight, etc. Therefore, this study has to include

as a variable parameter the moon’s distance together with some indication of the

radial direction of the moon’s motion in terms of the inclination iM with respect to

the earth’s equatorial plane.

A first approximation to the moon’s orbit would be an ellipse with a mean

semimajor axis and eccentricity of

aM ¼ 60R� ¼ 382, 688km and eM ¼ 0:056

respectively. The inclination of the moon’s orbit plane with respect to the earth’s

equatorial plane varies as

7.4 Free-Return Circumlunar Trajectory Analysis Techniques 269



18:5� � iM � 28:5�

and the node regresses with both conditions having a period of approximately

20 years. (In 1967, the inclination was near its maximum.) Further, the line of

apsides advances at a rate of approximately 40� per year. All dependence on these

angular variations is avoided if the circumlunar trajectories are referred to the

moon’s orbit plane. However, the mean ellipse is a poor approximation of the

moon’s in-plane motion. The moon’s perigee varies by about 2.5 R� and its apogee

varies about 0.5R� as seen in the reference by Woolston. A cycle of this variation

occurs in approximately 7 months.

Because of the large variation in the perigee, we will include trajectories for both

extremes of this distance. Since the apogee variation is small, we assume it to be

MOON
PHASE EARTH PHASE

um

v

v

OUTWARD LEG

EARTH

INJECTION

LANDING POINT

LAUNCH

RE-ENTRY

RETURN LEG

SPHERE OF INFLUENCE
AT ENTRY

SPHERE OF INFLUENCE
AT EXIT

M

M

u

u
um

Fig. 7.18 Schematic of a circumlunar free-return trajectory
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constant. The notation attached to the position of the moon in its orbit is the

following set as illustrated in Fig. 7.19:

Position A: Moon at maximum perigee

Position A0: Moon at minimum perigee

Position B: Moon at its mean distance from the earth with its distance increasing

Position C: Moon at the apogee of its orbit

Position D: Moon at its mean distance from the earth with its distance decreasing

The moon’s periapsis changes with time between when it is at A0 and when it is

at A. The distance from these points to the earth and the values of the semimajor

axis for the conics through points A and A0 are given in Table 7.2.

Fixed Conditions

The following conditions are known:

1. Cape Canaveral, which is at 28.5�N latitude and 80.6�W longitude, has been

chosen as the launch site.

2. The moon’s orbital inclination has been chosen near its maximum value of

28.5�, reflecting the value at the time of the early Apollo launches. This

assumption permits launches from the Cape into the moon’s orbit plane.

B

D

A
PERIGEE

A�C
APOGEE

Fig. 7.19 Positions of the moon in its orbit about the earth

Table 7.2 Distance of the

moon from the earth
Location Distance (km)

Perigee A0 356,620

Perigee A 368,812

Position B 390,149

Position C (Apogee) 405,389

Position D 381,005

Average LD 384,400

a for Perigee A0 381,005

a for Perigee A 387,100.50
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3. The powered flight angle and time were chosen as 30� and 10 min, respectively.

4. The circular parking orbit altitude was fixed at 600,000 ft (183 km) and the

injection flight path angle at 90�.
5. Reflecting the desired value for crewed flights, the re-entry angle was chosen as

96� measured from the vertical (6� from horizontal) with a re-entry altitude of

400,000 ft (122 km). This altitude is the “entry interface (EI)” location.

Specifying the above launch and re-entry conditions is almost equivalent to

fixing the perigee altitudes of the outward and return phases of the mission. The

launch azimuth from the Cape determines the inclination of the outward phase and

the inclination of the return phase is a separate input.

Additional Assumptions Used Selectively

Seven categories of parametric plots, listed as Categories (1)–(7), are considered

below in the subsection entitled “Penzo Parametric Plots for Circumlunar Free-

Return Trajectory Analyses.” For the first three categories, no additional

simplifying assumptions were made. However, additional assumptions had to be

made to eliminate second order effects. For example, for the next three categories, it

is assumed that the declination and right ascension of the spacecraft’s entry and exit

points at the SoI are equal to those of the moon at the time of the spacecraft’s

pericynthion passage. This assumption allows the generation of first order graphical

data, which could not be done otherwise.

Free-Return Circumlunar Trajectory Selection Procedure
Since only conic motion is considered in the model, it is possible to program the

equations to satisfy certain initial and terminal conditions. Utilizing an iterative

scheme, it is possible to solve the boundary value problem.

The input quantities for this selection procedure are:

1. Day of launch

2. Launch azimuth

3. Powered flight angle from launch to burnout

4. Flight path angle at injection

5. Parking orbit altitude

6. Length of coast in the parking orbit

7. Time of flight to the moon

8. Clockwise or counterclockwise return trajectory to the earth

9. Re-entry flight path angle

10. Re-entry altitude

11. Re-entry maneuver downrange angle

12. Maneuver time to touchdown

13. Latitude of the landing site

14. Longitude of the landing site
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The first seven quantities are required to determine the outward leg of the earth-

phase trajectory. Thus, we calculate the time of launch, time (duration) of coast to

the injection point in the parking orbit, conic elements, and the position, velocity

and time of any point on the outward leg. The first aim point for this leg is the center

of a massless moon. The successive aim points, calculated from the second iteration

on, will be the entry point at the moon’s sphere of influence with the mass of the

moon considered.

The next six parameters, together with the moon-phase exit velocity magnitude

from the sphere of influence (which equals the moon-phase entry velocity magni-

tude), are used to determine the earth-phase return leg of the trajectory. The solution

of this phase requires an iterative procedure as shown in Fig. 7.20. The iterative

procedure is needed to solve for the direction of the moon-phase exit velocity

vector, which is unknown, so that the earth-phase energy is unknown. A first guess,

such as assuming that the energy is equal to that of the outward leg, is made and

successive iterations performed until the calculated earth-phase velocity at the exit

point is consistent with the required moon-phase velocity. This iterative procedure

produces a unique circumlunar trajectory.

After calculating the return phase conic, the exit velocity vector can be calcu-

lated. This velocity vector is found with respect to the moon by subtracting off the

velocity vector uM of the moon with respect to the earth at the time of exit as

indicated in Fig. 7.18. An ephemeris file provides the exact position and velocity of

the moon at any time.

The two moon-centered velocity vectors at entrance and exit of the sphere of

influence (SoI) completely determine the moon-phase conic (see Exercise 7.11);

the plane being determined by the cross-product of the two velocity vectors; and

the conic (hyperbolic) elements, a and e. From the conic elements, the entry and

exit positions at the sphere can be found. At this point, the calculated positions are

compared with those found from the earth-phase conics. If they lie within

specified tolerances, then the search is complete. If not, the old positions and

times at the sphere are replaced by the new values just calculated and the process

is repeated.

So far, we have not used the landing site longitude, because the conic calculated

for the return phase is referenced to inertial space and is independent of any

geographic position on the earth. The return phase conic and the time of landing,

which is an output parameter, determine the landing site longitude. To obtain a

desired longitude, the total time of circumlunar flight time must be altered, letting

the earth obtain the correct orientation with respect to the moon at re-entry to obtain

the desired landing longitude. The total time of flight is altered by changing the

input time of flight to the moon in the launch phase. Once this is done, the entire

circumlunar search process is repeated until the landing site longitude tolerance

is met.

7.4 Free-Return Circumlunar Trajectory Analysis Techniques 273



Trajectory Design Tool: Penzo Parametric Plots for Circumlunar Free-Return
Trajectory Analyses
This subsection provides the Penzo parametric (P2) plots, which display data with

respect to the pericynthion distance, flight time, launch azimuth, and landing site

location. The plots are treated below in seven categories:

1. Pericynthion Distance

2. Time of Flight

PROGRAM LOGIC

COMPUTE:

OUTWARD PHASE

LUNAR TRAJECTORY

COMPUTE:

VELOCITY, TIME

AT ENTRY OF S∗

COMPUTE:

RETURN PHASE,

VELOCITY, TIME

AT EXIT FROM S

TEST:

VELOCITY VARIATION

AT EXIT FROM S

TEST:

VARIATION IN THESE

POSITION VECTORS

WITH OLD

COMPUTE:

MOON PHASE CONIC,

EARTH PHASE POSITION

VECTORS TO ENTRY AND

EXIT POINTS OF S

TEST:

LONGITUDE FLAG

TEST:

VARIATION IN

LONGITUDE

REPLACE:

TIME OF FLIGHT TO MOON

WITH RECALCULATED

VALUE

REPLACE:

OLD POSITION VECTORS

BY NEW VECTORS

MET

MET

MET

EXIT

Notation: “S” denotes the sphere of influence of the moon.

NOT
MET

DESIRED

NOT
DESIRED

NOT MET

NOT
MET

Fig. 7.20 General logic block diagram
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3. Fixed Pericynthion Altitude (hp¼ 100 nm)

4. Azimuth and Inclination

5. Maneuver Angle and Touchdown Latitude

6. Touchdown Longitude

7. Some Additional Parameters

All of these plots were obtained from the reference:

Paul A. Penzo, “An Analysis of Free-Flight Circumlunar Trajectories,” STL

Report No. 8976-6010-RU-000, Space Technology Laboratories, Inc., Redondo

Beach, CA, 1962.

This report was generated for the Jet Propulsion Laboratory.

Category (1): Pericynthion Distance

Figures 7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28, 7.29, and 7.30 show the

variation of the pericynthion distance with the inclination of the return phase

conic for fixed times of flight To (in hours) to the moon. Also plotted on each

graph are two curves for fixed return times Tr (in hours) from the moon.

Specifically, Figs. 7.21, 7.22, 7.23, 7.24, and 7.25 consider launches in the

moon’s orbit plane.

Example (Apollo): Launches in the moon’s orbit plane were possible for the

early Apollo missions because the moon’s inclination with respect to the earth’s

equatorial plane was 28.5�, which equals the latitude of the launch site.

The first noticeable characteristic of these curves is that, for fixed outward flight

times, the pericynthion altitude is greater for clockwise (cw) returns than for

counterclockwise (ccw) returns. (See Fig. 7.13, which shows a direct outbound

trajectory with a direct return, and Fig. 7.16, which shows a direct outbound

trajectory with a retrograde return.) A similar characteristic is the fact that, for

fixed return flight times, the pericynthion altitudes are greater for ccw return

trajectories than for cw return trajectories.

Recall, from Eqs. (3.27) and (3.33), large e implies little bending so rp small

implies large bending as needed to achieve ccw return leg. Therefore, to change

from a posigrade to a retrograde return leg, we must shorten TFL outward and/or

raise periapsis at the moon.

Examples in Fig. 7.21:

io¼ 0�, ir¼ 70� (ccw), and To¼ 60 h

) pericynthion altitude¼ 133 nm¼ 246 km

io¼ 0�, ir¼ 110� (cw), and To¼ 60 h

) pericynthion altitude¼ 608 nm¼ 1126 km

io¼ 0�, ir¼ 70� (ccw), and Tr¼ 70 h

) pericynthion altitude¼ 311 nm¼ 576 km

io¼ 0�, ir¼ 110� (cw), and Tr¼ 70 h

) pericynthion altitude¼ 28 nm¼ 52 km
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We turn now to the effect of the moon’s distance on the pericynthion altitude for

a fixed flight time to the moon and fixed outward and return inclinations. Since the

V1 at the moon must increase with increasing lunar distance, the pericynthion

altitude must decrease to maintain the some bending of the hyperbolic trajectory for

the spacecraft’s return to this earth (see Eqs. 3.27 and 3.33). Similarly, this result

also holds true for a fixed return flight time.

Example of moon’s distance on pericynthion altitude for a fixed flight time to the

moon and fixed outward and return inclinations:

io¼ 0�, ir¼ 60�, and To¼ 68 h

Figure 7.22 (Position A)) pericynthion altitude¼ 620 nm¼ 1148 km

Figure 7.23 (Position B)) pericynthion altitude¼ 284 nm¼ 526 km

A final characteristic of these curves is the symmetry condition. As mentioned

above, circumlunar trajectories are symmetric with respect to the moon’s phase.

Figures 7.21, 7.22, 7.23, 7.24, and 7.25 for which the outward phase lies in the

moon’s plane, i.e., the outward phase inclination is io¼ 0�, indicate this result since
values for return phase inclinations ir are equal to �ir values.

Examples in Fig. 7.21:

io¼ 0�, ir¼ 60� and To¼ 62 h

) pericynthion altitude¼ 300 nm¼ 556 km

io¼ 0�, ir¼�60� and To¼ 62 h

) pericynthion altitude¼ 300 nm¼ 556 km

Figures 7.26, 7.27, 7.28, 7.29, and 7.30 are for launches normal to and below the

moon’s orbit plane, i.e., the outward phase inclination is io¼�90�. A comparison

of pericynthion altitude for return inclinations ir with inclinations �ir (where ir is
positive) indicates that negative return inclinations result in lower pericynthion

distances for a given outward phase flight time. This fact can be explained by means

of the general observation that the angle through which the moon phase velocity

vector must turn at entrance and exit of the moon’s sphere of influence is greater for

outward and return earth phases on the same side of the moon’s orbit plane

(ir¼�90� < 0 and ir< 0) than for these phases on opposite sides of the moon’s

orbit plane (ir¼�90� < 0 and ir> 0). Thus, for a fixed outward time of flight, which

implies an essentially fixed moon phase velocity magnitude, the pericynthion

distance must be less to achieve the required greater turning of the velocity vector

for (in this case) negative return phase inclinations from Eqs. (3.27) and (3.33).

Examples in Fig. 7.26 (io):

io¼�90�, ir¼ 60� and To¼ 66 h

) pericynthion altitude¼ 224 nm¼ 415 km

io¼�90�, ir¼�60� and To¼ 66 h

) pericynthion altitude¼ 150 nm¼ 278 km
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Category (2): Time of Flight

The times of flight considered here are the times from injection to pericynthion,

from pericynthion to re-entry, and the sum of these values, i.e., the total time of

flight. For the fixed conditions listed above, specifying the outward and return

inclinations and the outward time of flight determine a unique trajectory and, in

particular, a specific return time of flight. Figures 7.31, 7.32, 7.33, 7.34, 7.35, 7.36,

7.37, 7.38, 7.39, and 7.40 present this return time versus the outward time for

constant return phase inclinations with the moon’s orbit plane. Each graph is drawn

for an in-plane or normal firing with respect to the moon’s orbit plane and for a

particular position of the moon in its orbit. Constant total flight times are also

plotted as indicated by the labels shown in the right-hand side of each figure.

In comparing these graphs, several observations can be made. The first observa-

tion is that launches in the moon’s orbit plane produce equal or greater flight times in

the return phase. Return flight times for launches normal to themoon’s orbit plane are

nearly symmetric with respect to 90� returns. Secondly, the difference in the outward
and return times of flight may be considerable, as youwill demonstrate in an exercise.

As indicated on all the time graphs, the dashed curves represent extrapolated

values, i.e., values not obtainable with the simplified model in the parametric plots.

There is no guarantee that these extrapolated trajectories exist and, in fact, some do

not exist. In particular, there is a constraint cut off in the upper region of the cw

return trajectories. These extrapolated values are verified in the next step of the

trajectory design procedure, which is to run precision software after selecting the

best opportunity available in the parametric plots.

Examples in Fig. 7.31 (Minimum Perigee Position A0):

Outward FT¼ 70 h and return ir¼ 0�

) Return FT¼ 72 h¼ 3 days

Outward FT¼ 65 h and return ir¼ 30�

) Return FT¼ 68.5 h

Category (3): Fixed Pericynthion Altitude

Consider free-return circumlunar trajectories that approach very close to the moon.

This class of trajectories can be generated by cross-plotting Figs. 7.21, 7.22, 7.23,

7.24, 7.25, 7.26, 7.27, 7.28, 7.29, and 7.30. This cross-plotting was done for an

altitude of 100 nautical miles to produce Figs. 7.41, 7.42, and 7.43. One may choose

specific outward and return inclinations and then obtain a specific pericynthion

distance by controlling the outward time of flight. This time of flight depends on the

moon’s distance from the earth as indicated in Fig. 7.41 (for launches in the moon’s

orbit plane) and Fig. 7.42 (for launches orthogonal to the moon’s orbit plane) when

the moon is at positions A, B, C, or D. The required outward time of flight decreases

as the return inclinations go from 0� to 180�. However, the return time of flight

increases. Recall that the pericynthion altitude is greater for cw returns than for ccw

returns. Therefore, to decrease the pericynthion altitude for cw returns, holding the

turning angle of the moon phase velocity nearly fixed, one must increase the
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Fig. 7.31 The return flight time versus the outward flight time for constant return phase inclination

for position A0 if launched into the moon’s orbit plane
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Fig. 7.32 The return flight time versus the outward flight time for constant return phase

inclination for position A if launched into the moon’s orbit plane
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Fig. 7.33 The return flight time versus the outward flight time for constant return phase

inclination for position B if launched into the moon’s orbit plane
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Fig. 7.34 The return flight time versus the outward flight time for constant return phase

inclination for position C if launched into the moon’s orbit plane
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Fig. 7.35 The return flight time versus the outward flight time for constant return phase

inclination for position D if launched into the moon’s orbit plane
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Fig. 7.36 The return flight time versus the outward flight time for constant return phase

inclination for position A0 if launched normal to and below the moon’s orbit plane
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Fig. 7.37 The return flight time versus the outward flight time for constant return phase inclina-

tion for position A if launched normal to and below the moon’s orbit plane
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Fig. 7.38 The return flight time versus the outward flight time for constant return phase inclina-

tion for position B if launched normal to and below the moon’s orbit plane
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Fig. 7.39 The return flight time versus the outward flight time for constant return phase inclina-

tion for position C if launched normal to and below the moon’s orbit plane
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velocity magnitude, which is equivalent to decreasing the outward flight time.

A similar argument can be used to explain the increase in the return flight time

when going from ccw to cw returns. These variations in flight time are common to

both Figs. 7.41 and 7.42 regardless of whether the spacecraft is launched in the

moon’s orbit plane or perpendicular to the moon’s orbit plane. Figure 7.43 gives

the total time of flight, which is strongly affected by the distance to the moon with

variations over 20 km, but nearly constant otherwise.

Category (4): Azimuth and Inclination

Given that a specific circumlunar trajectory is to be generated, what launch azimuth

from the Cape and what return inclination with respect to (wrt) the earth’s equato-

rial plane are required? This situation would be for specific outward and return

inclinations wrt the moon’s orbit plane. First, it is clear that the launch azimuth,

together with the declination of the Cape, will determine the outward phase

inclination wrt the earth’s equator. This relationship is shown in Fig. 7.46. The

inclination iMo of this outward trajectory plane wrt the plane of the moon’s orbit

will in turn depend on the inclination io wrt the equatorial plane, the inclination iM
of the moon’s orbit plane, and the declination δM of the moon, as shown in

Fig. 7.44. Figures 7.47, 7.48, 7.49, 7.50, and 7.51 indicate the relationships between

these parameters for several inclinations of the moon’s orbit plane. These figures,

together with Fig. 7.46, determine the launch azimuth from the Cape for a desired

trajectory plane’s inclination wrt the moon’s orbit plane. Note that the inclinations

are double valued and depend on the type of coast chosen.

MOON’S ORBIT
PLANE

EQUATOR

OUTWARD
CONIC

dM

iMO

iMio

Fig. 7.44 Inclination relationships

EQUATORMOON

AZIMUTH

(1) (2) (3)
CAPE

Fig. 7.45 Mercator projection of trajectory types
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Fig. 7.48 Inclination wrt the equatorial plane versus the declination of the moon for constant

inclinations wrt the moon’s orbit plane: inclination of the moon¼ 22�
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Fig. 7.49 Inclination wrt the equatorial plane versus the declination of the moon for constant

inclinations wrt the moon’s orbit plane: inclination of the moon¼ 24�
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Fig. 7.50 Inclination wrt the equatorial plane versus the declination of the moon for constant

inclinations wrt the moon’s orbit plane: inclination of the moon¼ 26�
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But, before we can use Figs. 7.47, 7.48, 7.49, 7.50, and 7.51, we must consider

the classification of the types of coast trajectories. Since the complete trajectory

from launch to arrival at the moon may produce an in-plane angle greater than 360�,
Mercator projections such as Fig. 7.45 are very convenient. Figure 7.45 presents the

three types of coasting orbits that we may encounter:

Type (1) is defined as the coasting orbit required to intercept the moon on the

spacecraft trajectory’s first downward swing.

Type (2) is the coast trajectory that will intercept the moon on the trajectory’s next

upward swing. This coast is the section labeled (2) in Fig. 7.45.

Type (3) is the coast trajectory that will intercept the moon on its next downward

swing after the type (2) section.

It is possible that a Type (1) or (2) trajectory will not exist for a particular set of

circumstances; however, a Type (3) will always exist. In all cases, the outward

phase conic will consist of a launch powered flight arc, a coasting arc in the parking

orbit, and a free-flight (post injection) arc.

The inclination of the return phase conic as a required input in the trajectory

selection procedure must be referenced to the earth’s equatorial plane. This input

value may vary from �90� to 90�. The inclination is plus if the vehicle leaves the

sphere of influence upward wrt the equatorial plane and negative otherwise.

Fig. 7.46 provides the launch azimuth from Cape Canaveral versus the outward

phase inclination and, for the return phase, Figs. 7.47–7.51 present a direct rela-

tionship between the inclination wrt the moon’s orbit plane and the inclination wrt

the equatorial plane. For example, Figs. 7.46 and 7.51 show that, when the inclina-

tion iM of the moon is 28�, it is possible to launch into the moon’s orbit plane,

using a 90�-launch azimuth from the Cape.

In the Mercator projection in Fig. 7.52, the trajectory follows a plane that is

through the center of the earth; however, zero inclination wrt the moon is attained

only if the trajectory motion of the spacecraft corresponds with the motion of the

moon. This figure indicates that this correspondence occurs on the day when the

moon is passing through its descending node. A Type (3) coast trajectory is

necessary in the case considered in Fig. 7.52 because Type (1) is too short and

Type (2) crosses the moon’s plane with about a 57� inclination.
The next section relates the inclination to the re-entry (maneuver) angle.

TYPE 3

~28.5° ~28.5°

90°

Cape

First downward
swing of S/C Second downward
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Ascending node
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Fig. 7.52 Trajectory characteristics for launching in the moon’s orbit plane
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Category (5): Maneuver Angle and Touchdown Latitude

Re-entry is described in terms of the maneuver angle or re-entry angle ηr, which is

defined as follows.

Def.: The maneuver angle or re-entry angle ηr is the great circle arc required by the
spacecraft in going from the re-entry point, at about 400,000 ft (122 km) altitude, to

a specified landing site.

The maneuver angle is the downrange angle in the orbit plane from where the

spacecraft entered the atmosphere to landing. It is assumed that, during this “maneu-

ver,” the spacecraft remains in the same plane as the return phase conic. The magni-

tude of this angle for crewed re-entry presently varies between 20� and 60�.
Figure 7.53 is a Mercator projection of a possible return phase conic and maneuver

angle, where δi is the desired latitude of the touchdown (TD) point. The declination of
the spacecraft’s exit point from the sphere of influence is approximately that of the

moon when the vehicle is at pericynthion. (Examination of many runs indicates that

the two declinations will be within 1.5� of each other.) Also, the in-plane angle ηsr
measured from the sphere of influence S (or essentially themoon) to the re-entry point

R depends essentially on the time of the return flight from pericynthion passage to re-

entry and the re-entry (velocity) flight path angle. For a re-entry angle of 96�, an
examination of trajectory computer runs indicates that this angle ηsr will be within 5�
of 160� regardless of the time of flight and the distance of themoon. Figure 7.53 shows

that the maneuver angle is a function only of the declination δM of the moon at the

vehicle’s pericynthion, the inclination ir of the return phase conic, and the touchdown

latitude F. The relations between these quantities are given in Figs. 7.54, 7.55, and 7.56

for three fixed values of the re-entry maneuver angle. It is interesting to note the

limitations on the available touchdown latitudes for a maneuver angle of 20�. This
limitation is caused by the fact that the total in-plane angle from the moon to

touchdown adds up to 180�. Thus, for a given declination of the moon, the only

available touchdown latitude is the negative of this declination, regardless of the

return inclination. A maneuver angle of 40� will result in a total in-plane angle

of 160� þ 40� ¼ 200�. Thus, returning above the equator will cause the spacecraft to

reach touchdown latitudes lower than the negative of the declination of the moon and

returning below the equator will result in touchdown latitudes below that of the

negative of the declination of the moon. This effect is even more pronounced in

Fig. 7.56 where the maneuver angle is 60�. If maneuver angles greater than 60� are
allowed, even greater ranges of touchdown latitudes will be produced.

EQUATOR

hsr

hr

F

R
S

δi

∼δM ir

Fig. 7.53 Relation of the re-entry maneuver angle to the return phase geometry
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Examples for Figs. 7.54, 7.55, and 7.56:

ηr¼ 20� (see Fig. 7.54)
δM¼ 20� )TD latitude¼�20� for ir¼�20�

ηr¼ 40� (see Fig. 7.55)
δM¼ 20� )�19� �TD latitude� 0� for �90� � ir��20�

(returning below the earth’s equator)

�40� �TD latitude��19� for 20� � ir� 90�

(returning above the earth’s equator)

ηr¼ 60� Data from Exercise 7.16.

With the figures given here and those of the last section, it is possible to relate the

re-entry maneuver angle and the latitude of the landing site to the inclination of the

return phase wrt the moon’s orbit plane. Thus, if one begins with a day of launch

(a particular inclination and declination of the moon) and the spacecraft’s inclina-

tion wrt the moon’s orbit plane, as well as the touchdown latitude, then the re-entry

maneuver angle and the inclination wrt the equatorial plane can be found. Also, it is

interesting to note that fixing the spacecraft’s inclination, re-entry angle and

touchdown latitude determine a specific declination of the moon, which in turn

will require a specific day of launch.

Category (6): Touchdown Longitude

Returning to the Free-Return Lunar Trajectory Selection Procedure, note that we

have not included targeting to the longitude of the landing site. However, we did say

earlier that the correct longitude is acquired by adjusting the input time of flight to

the moon in the launch phase. Adjusting the outward flight time allows the earth to

attain the desired orientation wrt the moon at the time of spacecraft re-entry.

Figure 7.57 indicates the dependence of longitude on other parameters. The entry

and exit points of the sphere of influence are within 3� of each other in right

ascension and about 1.5� of each other in declination. This small difference in

location implies that, as far as the earth is concerned, the circumlunar trajectory is

~160�

hr

F

R

CAPE MOON

io ir

qo qr

do

dr

didM

Fig. 7.57 Mercator projection of the outward and return phases neglecting the moon phase
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composed of two planar motions—the two earth phases—and the effect of the

moon is to change only the orientation of the plane of motion and the energy of the

orbit, not the position in inertial space.

In terms of right ascension and time, the longitude can be given by the following

expressions,

Lo ¼ αo � ωeto � αgo
Li ¼ αi � ωeti � αgo

where Lo, Li are longitudes and αo, αi are right ascensions at launch and landing,

respectively. The times to and ti are measured from midnight of the day of launch

and αgo is the right ascension of Greenwich (or sidereal time) at midnight on the day

of launch. The constant ωe is the spin rate of the earth. If differences are taken, then

Li � Lo ¼ αi � αoð Þ � ωe ti � t0ð Þ
But, the difference in right ascension between touchdown and launch is approxi-

mately the sum of the angular differences θo and θi shown in Fig. 7.57, where θo
denotes the outward phase longitude difference and θr the return phase longitude

difference. Also, (ti� to) is the total time of flight. Then,

Li ¼ Lo þ θo þ θrð Þ � ωeTT ð7:16Þ

where TT denotes the total time of flight from injection to re-entry. The last two

subsections have covered some aspects of the geometry of the outward and return

phases. Specifically, for the outward phase, the latitude of the Cape and the launch

azimuth determine the outward phase inclination. The coast Type and the position

of the moon fix the orientation of the trajectory plane in space. Figure 7.58 presents

the angular difference θo as a function of the inclination, Type, and declination of

the moon.

For the return phase, it has been shown that the in-plane angle from the moon to

touchdown is approximately 160� for a reentry angle of 96�. Fixing the position of

the moon, the touchdown latitude and the reentry maneuver angle determine the

orientation of the return phase in space and specifically the angle θr. Figures 7.59
and 7.60 present this angle for maneuver angles of 40� and 60�, respectively. The
value of θr for a maneuver angle of 20� is 180� for all return inclinations since the

in-plane angle is approximately this value.

Once θo and θr have been found and the total flight time TT is known, Eq. (7.16)

can be used to determine the touchdown longitude. Understand that this equation is

approximate and that the greatest error is probably introduced by the flight time TT.

The rotation of the earth is about 15� per hour so that an error of 1 h in the flight time

causes the landing longitude to be off by 15�. Figure 7.61 presents the relation

L ¼ Li � θo þ θrð Þ ¼ Lo � ωeTT ð7:17Þ

7.4 Free-Return Circumlunar Trajectory Analysis Techniques 315



50

28
.5

30 20 10 −1
0

−2
0 −2

0
0

20
60

40

10
0

O
U

T
W

A
R

D
 P

H
A

S
E

 L
O

N
G

IT
U

D
E

 D
IF

F
E

R
E

N
C

E
 q

° (
D

E
G

R
E

E
S

)

14
0

18
0

22
0

26
0

30
0

34
0

38
0

30

T
Y

P
E

 1
A

 >
 9

0�

T
Y

P
E

 1
A

 <
 9

0�

T
Y

P
E

 2
A

 <
 9

0�

T
Y

P
E

 2
A

 >
 9

0�

30

40
50

60
70

80
90

70
60

50
90

80
−3

00

DECLINATION OF THE MOON δM (DEGREES)

I ° =
 4

0
60

70
80

90
80

70
60

50
40

30

28
.5

F
ig
.7

.5
8

D
ec
li
n
at
io
n
o
f
th
e
m
o
o
n
v
er
su
s
th
e
o
u
tw
ar
d
p
h
as
e
lo
n
g
it
u
d
e
d
if
fe
re
n
ce

θ o
fo
r
v
ar
io
u
s
ty
p
es

an
d
o
u
tw
ar
d
p
h
as
e
in
cl
in
at
io
n
s
w
rt
th
e
eq
u
at
o
ri
al
p
la
n
e

316 7 Navigation and Mission Design Techniques and Tools



18
0

17
0

19
0

20
0

22
0

23
0

24
0

21
0

2010

M
A

N
E

U
V

E
R

 A
N

G
LE

 =
 4

0�
 •

IF
 S

O
U

T
H

E
R

N
 E

X
IT

, S
E

T
 d

M
 =

 −
d M

 •

F
O

R
 C

LO
C

K
W

IS
E

 R
E

T
U

R
N

S
,

   
   

T
A

K
E

 T
H

E
 N

E
G

A
T

IV
E

 O
F

 q
r 

•

30
40

50
60

70
80

i r 
=

 9
0

30 20 10 −1
0

−2
0

−3
00

DECLINATION OF THE MOON δM (DEGREES)

R
E

T
U

R
N

 P
H

A
S

E
 L

O
N

G
IT

U
D

E
 D

IF
F

E
R

E
N

C
E

 q
r  (

D
E

G
R

E
E

S
)

F
ig
.7

.5
9

D
ec
li
n
at
io
n
o
f
th
e
m
o
o
n
v
er
su
s
th
e
o
u
tw
ar
d
p
h
as
e
lo
n
g
it
u
d
e
d
if
fe
re
n
ce

θ o
fo
r
v
ar
io
u
s
ty
p
es

an
d
o
u
tw
ar
d
p
h
as
e
in
cl
in
at
io
n
s
w
rt
th
e
eq
u
at
o
ri
al
p
la
n
e:

m
an
eu
v
er

an
g
le
¼
4
0
�

7.4 Free-Return Circumlunar Trajectory Analysis Techniques 317



17
0

18
0

19
0

20
0

22
0

23
0

24
0

25
0

21
0

20

10

M
A

N
E

U
V

E
R

 A
N

G
LE

 =
 6

0�
 •

IF
 S

O
U

T
H

E
R

N
 E

X
IT

, S
E

T
 d

M
 =

 −
d M

 •

F
O

R
 C

LO
C

K
W

IS
E

 R
E

T
U

R
N

S
,

   
   

   
  T

A
K

E
 T

H
E

 N
E

G
A

T
IV

E
 O

F
 q

r

30
40

50
60

70
80

i r 
=

90

30 20 10 −1
0

−2
0

−3
00

DECLINATION OF THE MOON δM (DEGREES)

R
E

T
U

R
N

 P
H

A
S

E
 L

O
N

G
IT

U
D

E
 D

IF
F

E
R

E
N

C
E

 q
r 

(D
E

G
R

E
E

S
)

F
ig
.7

.6
0

D
ec
li
n
at
io
n
o
f
th
e
m
o
o
n
v
er
su
s
th
e
o
u
tw
ar
d
p
h
as
e
lo
n
g
it
u
d
e
d
if
fe
re
n
ce

θ o
fo
r
v
ar
io
u
s
ty
p
es

an
d
o
u
tw
ar
d
p
h
as
e
in
cl
in
at
io
n
s
w
rt
th
e
eq
u
at
o
ri
al
p
la
n
e:

m
an
eu
v
er

an
g
le
¼
6
0
�

318 7 Navigation and Mission Design Techniques and Tools



350

300

250

200

150

LO
N

G
IT

U
D

E
 C

O
N

S
T

A
N

T
 L

 (
D

E
G

R
E

E
S

)

100

50

0
90 100 110 120 130 140 150

TOTAL FLIGHT TIME TT (HOURS)

160 170 180 190 200

Fig. 7.61 Longitude constant versus the total time of flight
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where Lo¼�80.5�, the longitude of the Cape, and L is defined as the longitude

constant. Thus, if (θo + θr) is known, the touchdown longitude can be found by

adding this sum to the longitude constant.

Example:

Assume that the spacecraft is launched from the Cape into the moon’s orbit plane on

a particular day when the moon is at Position A and at a declination of �15�. If the
spacecraft is to come within 100 nautical miles of the surface of the moon, then the

Fixed Pericynthion Altitude condition applies. Further, if the return inclination is to

be �40�, then Fig. 7.41 indicates that the outward and the return flight times must

be 61.5 h and 64.8 h, respectively. The total flight time is 126.3 h. Also, if the re-

entry maneuver angle is 40� and the touchdown latitude 30�, then ir¼�56� from
Fig. 7.55 and θr¼ 198� from Fig. 7.59. Figure 7.58 for a Type (2) coast gives

θo¼ 240� for io¼ 28.5� at the Cape. The sum (θo + θr)¼ 438� (mod 360�)¼ 78�.
Finally, with a flight time of about 126 h, Fig. 7.61 gives L¼ 180� for the longitude
constant. Adding 78� results in 258� (or �102�) as the touchdown longitude. This

landing site would be somewhere in Texas.

Since the touchdown longitude will most likely be a chosen parameter, it is

desirable to solve this problem in reverse.

Example:What position of themoonwill produce a specified touchdown latitude?

The total flight time can be chosen by other considerations such as how close the

spacecraft is to come to the moon’s surface. The longitude constant can then be

found and the sum (θo + θr) must then be a definite amount. Figures 7.58, 7.59, and

7.60 can then be used to determine which declination of the moon will result in the

correct sum. Note that θr will vary only about 25� for ηr¼ 40� and by about 45� for
ηr¼ 60�. The variation of θo is much more extensive: about 180� for the whole

range of declinations for the moon and Type (2) coast. Thus, if the declination of the

moon, or day of launch, is to be chosen, varying the launch azimuth will result in a

wide range of possible touchdown latitudes.

Category (7): Some Additional Parameters

The reference “An Analysis of Free-Flight Circumlunar Trajectories” by Paul A.

Penzo gives parametric plots of additional parameters, including the following:

1. Injection velocity versus the outward time of flight for various positions of the

moon in its orbit,

2. Parking orbit altitude versus injection velocity for fixed injection energies C3,

3. Probe–moon–earth angle versus the outward time of flight for various positions

of the moon in its orbit,

4. Hyperbolic excess velocity versus the outward time of flight for fixed outward

phase inclinations and various positions of the moon in its orbit,

5. Earth–moon–probe angle at exit from the SoI versus the return time of flight for

various positions of the moon in its orbit, and

6. Components of the impact vector B for constant outward times of flight.

These additional P2 plots are given in Appendix C.
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Application of the P2 Plots to the Apollo Missions
You will complete this part by working the exercises for this subsection.

References for this chapter: Adamo; Apollo Program; DSN Website; Egorov;

Goodman; Hintz, Farless, and Adams; Infoplease/Encyclopedia Website; Kaplan;

NEO Website; National Space Science Data Center Website; Penzo; Roncoli;

Seidelmann; Simon; ssd Website, Walter; Woolston; Yeomans

Exercises

7.1 (a) Derive Eq. (7.1):

∂τ=∂VM ¼ 3av=μð Þτ
(b) Use this formula to compute ∂τ/∂VM at periapsis and apoapsis for the

PVO orbit.

(c) Compare the values obtained from this formula to the values obtained from

finite differences as shown in Fig. 7.2.

7.2 Identify the conversion (rotation) process that converts Keplerian elements to

Cartesian state coordinates.

7.3 Identify the conversion process that converts the Cartesian state coordinates to

Keplerian elements.

7.4 The Pioneer Venus Orbiter (PVO) orbit parameters are:

τ¼ 24.0 h

rp¼ 6,252.0 km

i¼ 105.0�

Ω¼ 33.1�

ω¼ 147.2�

with respect to mean ecliptic and equinox of 1950.0 coordinates when the

Mission Design Team determines that the period must be decreased to

23.8 h. To avoid interfering with science-data-taking activities, the maneuver

may not be scheduled within 1 h, i.e., within 120� in true anomaly, of periapsis.

(a) Compute the magnitude (in m/s) of the minimum Δv maneuver for this

period change, subject to the above conditions and constraints.

(b) Determine the value of the parameters rp, i,Ω, and ω immediately after this

maneuver.

7.5 Write a MATLAB program for generating the gradient curves as in Figs. 7.2,

7.3, 7.4, 7.5, and 7.6 and generate these figures for PVO.

7.6 Show that the following statements are valid:

(a) The eccentricity for the lunar Hohmann transfer trajectory is effi 0.97.

(b) The eccentricity of a transfers that has higher energy than the Hohmann

transfer is

e ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:932 þ 0:033v2r

q
for any radial velocity vr at the lunar distance.
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7.7 A sightseeing space shuttle is sent on a round trip to the moon from a low earth

orbit.

(a) Use the Michielsen Chart to obtain the deflection angle δ by the lunar flyby
for a direct outward leg of 3 days and a direct return to a low earth orbit of

3 days.

(b) Should the craft pass in front of or behind the moon?

(c) What is the radial distance of closest approach to the moon?

(d) What is the pericynthion altitude ?

7.8 Apollo 17 performed a maneuver to leave its initial free-return translunar

trajectory to provide an opportunity for a more precise landing on the lunar

surface. The point of closest approach where the Lunar Orbit Insertion (LOI)

maneuver was to be performed was rp/M¼ 1,849 km. (Note that the subscript

“M” refers to the moon.) Apollo 17 passed in front of the moon.

(a) Use the Michielsen chart to determine the distance of the hyperbolic

asymptote from the moon and the eccentricity of the hyperbolic approach

trajectory for a direct outward transfer of 3.4 days.

(b) Assuming the initial circular earth parking orbit had an altitude of 200 km,

determine (estimate) the Δv needed to reach the moon.

(c) Assume that the spacecraft performed an impulsive LOI maneuver to

insert from its flyby hyperbolic trajectory into a lunar orbit having a

perilune altitude of 111 km and apolune altitude of 314 km without

rotating the line of apsides. Determine the Δv at the LOI point if this

point is the perilune position.

(d) Assume that the astronauts performed a maneuver to move the spacecraft

into a circular orbit with altitude 111 km and compute the (impulsive) Δv
for that maneuver.

7.9 Apollo 13 had the same translunar trajectory as Apollo 17. But Apollo

13 experienced a major failure en route to the moon after leaving the free-

return trajectory and before arriving at the moon.

(a) If all of Apollo 13’s rockets had then been inoperable, determine its orbit

after the flyby of the moon and the fate of the three astronauts, Lovell,

Haise, and Swigert. In particular, how close would the spacecraft have

come to the earth and how far would the spacecraft have travelled from

the earth? If the orbit is closed, what is the period of that orbit? It is not

necessary to consider subsequent gravity assists from the moon or colli-

sion with the moon.

(b) Fortunately, the astronauts were able to use the propulsion systems of the

Lunar Module (LM) to perform trajectory correction maneuvers (TCMs)

to return safely to the earth. The first of the TCMs returned the spacecraft,

consisting of the Command Module (CM) and the Lunar Module, to a

free-return trajectory. For mass data, use the value of the mass of the CM

as 28,945 kg and the mass of the LM as 15,235 kg. The LM propulsion

systems used nitrogen tetroxide as the oxidizer and unsymmetrical

dimethyl hydrazine (UDMH) hypergolic as the propellant. For this first

recovery TCM, the Δv¼ 0.0115 km/s. Compute the amount of propellant

used in this maneuver.
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7.10 Consider the Apollo free-return trajectories with a 3-day outward trajectory

from the parking orbit about the earth to the moon and a 3-day direct return

trajectory from the moon to the earth. Compute the gravity assist Δv (denoted
as ΔvGA) from the hyperbolic trajectory about the moon.

7.11 In studying the Free-Return Circumlunar Trajectory Selection Procedure, we

learned that the two moon-centered velocity vectors at entrance and exit of the

sphere of influence at the moon completely determine the moon-phase hyper-

bolic orbit.

(a) Show how to determine the hyperbolic parameters a and e from

these data.

(b) Draw a figure for use in explaining how you derived the formula for

computing the eccentricity e.

7.12 Consider the free-return trajectory designed for Apollo 11.

(a) Assume that Apollo 11 was launched in the moon’s orbit plane with an

outward flight time (from injection into the translunar free-return trajec-

tory to pericynthion) To¼ 72 h and that it had continued into a 40� return
inclination with respect to the moon’s orbit plane without stopping at the

moon. Assume the moon was at apogee with a 15� declination at the time

of the spacecraft’s pericynthion and 28� inclination with respect to the

earth’s equatorial plane. Use the appropriate Penzo parametric plot(s) to

determine the return flight time Tr from pericynthion to re-entry and the

spacecraft’s altitude at pericynthion. Show your work on a copy of the

Penzo parametric plot(s).

(b) Will the Apollo 11 trajectory examined in part (a) be direct or retrograde?

(c) What was the distance between the moon’s center of mass and the earth’s

center of mass in km?

7.13 Assume the moon is at apogee and a spacecraft is launched in the moon’s orbit

plane into a free-return trajectory.

(a) Let the spacecraft’s outward flight time To¼ 68 h.

For which return inclinations ir can this spacecraft travel in a counter-

clockwise trajectory? For which return trajectories can it travel in a

clockwise trajectory? Give answers in degrees.

(b) Let To¼ 70 h and answer the same questions as in part (a). Give answers

in degrees.

(c) If To¼ 74 h and the spacecraft travels in a return orbit having inclination

ir¼ 60�, what was the altitude above the moon at pericynthion and what is

the return flight time?

(d) Show your results on a copy of the appropriate Penzo parametric plot.

7.14 A spacecraft is on a free-return lunar trajectory with a 100-nautical mile

altitude at pericynthion.

(a) If the spacecraft was launched in the moon’s orbit plane and its return

inclination ir¼ 0�, what are the outward and inward flight times if the

moon was at the maximum perigee (Position A) and if the moon was at its

apogee (Position C)?
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(b) Answer the same question as in part (a) if the spacecraft was launched

normal to the moon’s orbit plane from the south.

(c) Use the data obtained in parts (a) and (b) to compute the difference in To

and Tr between the values for io¼ 0� and io¼�90� at maximum perigee

and apogee.

(d) Construct a table showing the 12 values obtained in parts (a), (b), and (c).

7.15 In Exercise 7.12, we considered the free-return trajectory designed for Apollo

11. We made the following assumptions:

(i) Apollo 11 was launched in the moon’s orbit plane with an outward flight

time (from injection into the translunar free-return trajectory to

pericynthion) To¼ 72 h

(ii) Apollo 11 continued into a 40� return inclination with respect to the

moon’s orbit plane without stopping at the moon.

(iii) Assume the moon was at apogee with a 15� declination at the time of the

spacecraft’s pericynthion and had a 28� inclination with respect to the

earth’s equatorial plane.

Now also assume that the spacecraft and the moon were both on an upward

swing with respect to the earth’s equator. Use the appropriate Penzo

parametric plots to answer the following questions and include the plots

with your results highlighted.

(a) What was the launch azimuth from Cape Canaveral?

(b) What was the inclination of the return trajectory with respect to the

earth’s equatorial plane?

7.16 Assume a spacecraft has a re-entry maneuver angle ηr¼ 60�.
(a) What are the spacecraft’s available touchdown (landing site) latitudes, if the

declination δM of the moon when the spacecraft is at pericynthion is 20�.
(b) What are the spacecraft’s possible return-phase inclinations measured in

degrees with respect to the earth’s equatorial plane?

(c) Highlight your results on a copy of the appropriate Penzo parametric plot.
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Further Study 8

8.1 Introduction

A student of Orbital Mechanics and Astrodynamics can now pursue further study in

related topics. Several such topics are considered at a high level in this section,

together with appropriate references for such continuing study.

8.2 Additional Navigation, Mission Analysis and Design,
and Related Topics

Mission Analysis and Design

Mission analysis and design begins with one or more broad objectives and

constraints and then proceeds to define a space mission that will meet them at the

lowest possible cost. The Space Mission Analysis and Design (SMAD) process is

an iterative one consisting of the following steps:

1. Define Objectives

(a) Define broad objectives and constraints

(b) Estimate quantitative mission needs and requirements

2. Characterize the Mission

(a) Define alternative mission concepts

(b) Define alternative mission architectures

(c) Identify system drivers for each

(d) Characterize mission concepts and architectures

3. Evaluate the Mission

(a) Identify critical requirements

(b) Evaluate mission utility

(c) Define baseline mission concept

# Springer International Publishing Switzerland 2015

G.R. Hintz, Orbital Mechanics and Astrodynamics,
DOI 10.1007/978-3-319-09444-1_8
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4. Define Requirements

(a) Define system requirements

(b) Allocate requirements to system elements

Reference: SMAD3, pp 1–2

References for Mission Analysis and Design:

1. Charles D. Brown, Spacecraft Mission Design, Second Edition, AIAA Educa-

tion Series, American Institute of Aeronautics and Astronautics, Inc., 1998.

2. James R. Wertz and Wiley J. Larson, eds., Space Mission Analysis and Design,
Third Edition, Space Technology Library, Published Jointly by Microcosm

Press, El Segundo, California and Kluwer Academic Publishers, Dordrecht,

The Netherlands, 1999.

For errata, go to http://www.astrobooks.com and click on “STL Errata”

(on the right-hand side) and scroll down to and click on the book’s name.

3. James Wertz, David Everett, and Jeffery Puschell, eds., and 65 authors,

Space Mission Engineering: The New SMAD, Space Technology Library,

Vol. 28.

Orbit Determination

Orbit determination is the statistical estimation of where a spacecraft is and where

it is going. A syllabus for a course of study in this field is:

• Navigating the solar system: an overview

• Required mathematical background

• Orbit determination problem

• Error sources included in statistical analyses

• Least squares and weighted least squares solutions

• Minimum variance and maximum likelihood solutions

• Computational algorithms for batch, sequential (Kalman filter), and extended

Kalman processing

• State noise and dynamic model compensation and the Gauss-Markov process

• Information filter

• Smoothing

• Elementary illustrative examples

• Square-root filter algorithms

• Consider covariance analyses

• Optical navigation

• Autonomous optical navigation (AutoNav)

• Space Navigation: The Practice or Meeting the Challenges of Space Navigation:

Guidance, Navigation and Control (GN&C)

• Suggestions for topics for further study such as nonlinear filters
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An excellent textbook for studying orbit determination is:

Byron D. Tapley, Bob E. Schutz, and George H. Born, Statistical Orbit Determina-
tion, Elsevier Academic Press, Burlington, MA, 2004.

Numerous other references are cited in the bibliography for this textbook.

Launch

A syllabus for studying spacecraft launch is:

• Launch considerations and concepts

• Rocket payloads

• World Launch vehicles

• Optimal staging or maximizing performance by shedding dead weight

• World-wide launch sites

• Launch vehicle selection

• Launch Integration and Operations

• Launch Schedules

References include:

1. Steven Isakowitz, Joshua Hopkins, and Joseph P. Hopkins Jr, International
Reference Guide to Space Launch Systems, Fourth Edition, Revised, American

Institute of Aeronautics and Astronautics, Washington, DC, 2004.

2. John E. Prussing and Bruce A. Conway, Orbital Mechanics, Oxford University

Press, New York, 1993.

Spacecraft Attitude Dynamics

A syllabus for a course on spacecraft attitude dynamics is:

• Preliminaries: reference frames, coordinate systems, rotations, quaternions

• Kinematics and Dynamics: yo-yo despin

• Stability of motion: polhodes; body cone and space cone

• Spinning spacecraft: large angular defections, energy dissipation, nutation

dampers

• Dual-spin spacecraft: gyrostats, reaction wheels, thrusting maneuvers

• Environmental and disturbance torques: gravitational torque

• Gravity gradient and momentum bias spacecraft: gravitational torque

This syllabus is for a graduate course taught by Troy Goodson in the Department of

Astronautical Engineering at the University of Southern California.
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References for this topic include:

1. Vladimir A. Chobotory, Spacecraft Attitude Dynamics and Control, Krieger
Publishing Company, Malabar, Florida, 1991.

2. Peter C. Hughes, Spacecraft Attitude Dynamics, John Wiley & Sons,

New York, 1986.

3. Thomas R. Kane, Peter W. Likins, David A. Levinson, Spacecraft Dynamics,
McGraw-Hill Book Co., New York, 1983.

4. Marshall H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley &

Sons, Inc., New York, 1976.

5. Malcolm D. Shuster, “A Survey of Attitude Representations,” The Journal of the
Astronautical Sciences, Vol. 41, No. 4, pp. 439–517, October–December 1993.

6. William Tyrrell Thomson, Introduction to Space Dynamics, Dover Publications,
Inc. (originally published by John Wiley & Sons, Inc. in 1961), 1986.

7. James R. Wertz with contributions by Hans F. Meissinger, Lauri Kraft Newman,

and Geoffrey N. Smit, Mission Geometry; Orbit and Constellation Design and
Management, Space TechnologyLibrary, Published Jointly byMicrocosmPress, El

Segundo, CA andKluwerAcademic Publishers, Dordrecht, TheNetherlands, 2001.

8. William E. Wiesel, Spaceflight Dynamics, Second Edition, Irwin McGraw-Hill,

Boston, 1997.

Spacecraft Attitude Determination and Control

The Introduction of reference (3) by James R. Wertz, ed. states:

Attitude analysis may be divided into determination, prediction, and control. Attitude
determination is the process of computing the orientation of the spacecraft relative to either

an inertial frame or some object, such as the Earth...

Attitude prediction is the process of forecasting the future orientation of the spacecraft

by using dynamical models to extrapolate the attitude history...

Attitude control is the process of orientating the spacecraft in a specified, predetermined

direction. It consists of two areas—attitude stabilization and attitude maneuver control...

References include:

1. Marcel J. Sidi, Spacecraft Dynamics and Control: A Practical Engineering
Approach, Cambridge Aerospace Series, Cambridge University Press, 2001.

2. Marshall H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley &

Sons, Inc., New York, 1976.

3. James R. Wertz, ed., Spacecraft Attitude Determination and Control, Dordrecht:
Kluwer Academic Publishers, 2002.

Constellations

Def.: A collection of spacecraft operating without any direct onboard control of

relative positions or orientation is a constellation.
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Earth-Orbiting Constellations

References:

1. Chia-Chun “George” Chao, Applied Orbit Perturbation and Maintenance, The
Aerospace Press, El Segundo, CA, 2005.

2. Bradford W. Parkinson and James J. Spilker, Jr., eds., Penina Axelrad and Per

Enge, assoc. eds. Global Positioning System: Theory and Applications, Progress
in Astronautics and Aeronautics Series, Vol. 163, AIAA, 1996.

Mars Network

References:

Fundamental constellation design approaches for circular orbits:

(a) Streets of Coverage technique:

L. Rider, “Analytic Design of Satellite Constellations for Zonal Earth Cover-

age Using Inclined Circular Orbits,” The Journal of the Astronautical
Sciences, Vol. 34, No. 1, January–March 1986, pages 31–64.

(b) Walker technique:

1. A. H. Ballard, “Rosette Constellations of Earth Satellites,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-16,

No. 5, September 1980.

2. J. G. Walker, “Circular Orbit Patterns Providing Continuous Whole

Earth Coverage,” Royal Aircraft Establishment, Tech. Rep. 70211 (UDC

629.195:521.6), November 1970.

Website for information on constellations;

http://www.ee.surrey.ac.uk/Personal/L.Wood/constellations/

Formation Flying

A collection of spacecraft operating without any direct onboard control of relative

positions or orientation is a constellation. Formation flying (FF) requires the

distributed spacecraft to exert collaborative control of their mutual positions and

orientations.

The spacecraft FF problem of maintaining the relative orbit of a cluster of

satellites that must continuously orbit each other is sensitive to relative orbit

modeling errors. Making linearization assumptions, for example, can potentially

lead to a substantial fuel cost. The reason is that this formation must be maintained

over the entire life span of the satellites, not for a short duration in the life span as,

for example, in rendezvous and docking. If a relative orbit is designed using a very

simplified orbit model, then the formation stationkeeping control law will need to

continuously compensate for these modeling errors by burning fuel. Depending on
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the severity of the modeling errors, this fuel consumption could drastically reduce

the lifetime of the spacecraft formation.

Selecting the cluster of satellites in formation flying to have equal type and build

insures that each satellite ideally has the same ballistic coefficient. Thus each orbit

will decay nominally at the same rate from atmospheric drag. For this case, it is

possible to find analytically closed relative orbits. These relative orbits describe a

fixed geometry as seen in a rotating spacecraft reference frame. Thus the relative

drag has only a secondary effect on the relative orbits. The dominant dynamical

effect is then the gravitational attraction of the central body, particularly the J2
perturbations of an oblate body, which cause secular drift in the mean Ω, mean ω,
and mean anomaly.

The reference by Schaub and Junkins provides a set of relative orbit control

methods:

1. Mean Orbit Element Continuous Feedback Control Laws

2. Cartesian Coordinate Continuous Feedback Control Law

3. Impulsive Feedback Control Law

4. Hybrid Feedback Control Law.

References include:

1. Hanspeter Schaub and John L Junkins, Analytical Mechanics of Space Systems,
AIAA, Inc, Reston, VA, 2009, Chapter 14.

2. Richard H. Battin, An Introduction to the Mathematics and Methods of
Astrodynamics, AIAA Education Series, AIAA, New York, 1999.

3. Hanspeter Schaub and K.T. Alfriend, “J2 Invariant Reference Orbits for Space-

craft Formations,” Celestial Mechanics and Dynamical Astronomy, Vol.

79, 2001, pp 77–95.

Aerogravity Assist (AGA)

Use the atmosphere of a celestial body such as Venus, Mars, Earth, or Titan to

increase the bending of the line of asymptotes experienced during a gravity assist.

The V1 at departure will then be less than the V1 at arrival. An adaptive ΔV can

also be executed while still in the gravity well after exiting the atmosphere to

modify the velocity if necessary.

For more information on aero-gravity assist, see the following references:

1. M. R. Patel, J. M. Longuski, and J. A. Sims, “A Uranus-Neptune-Pluto Oppor-

tunity,” Acta Astronautica, Vol. 36, No. 2., July 1995, pp. 91–98.

2. Jon A. Sims, James M. Longuski, and Moonish R. Patel, “Aerogravity-Assist

Trajectories to the Outer Planets and the Effect of Drag,” Journal of Spacecraft
and Rockets, Vol. 37, No. 1, January–February 2000, pp. 49–55.
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3. Wyatt R. Johnson and James M. Longuski, “Design of Aerogravity-Assist

Trajectories,” Journal of Spacecraft and Rockets, Vol. 39, No. 1, January–
February 2002, pp. 23–30.

Lagrange Points and the Interplanetary Superhighway

Our solar system is connected by a vast network of an interplanetary superhighway

(IPS). This network is generated by Lagrange points of all planets and moons and

is a critical, natural infrastructure for space travel. Lagrange points are locations

in space where gravitational forces and the orbital motion of a body balance

each other.

References:

1. ESA Space Science Website at http://www.esa.int/Our_Activities/Operations/

What_are_Lagrange_points [accessed 12/24/2013]

2. G. Gomez, A. Jorba, C. Simo, and J. Masdemont, Dynamics and Mission Design
Near Libration Points, Vol. I-IV, World Scientific, Singapore, 2001.

3. M. Lo, “The Interplanetary Superhighway and the Origins Program,” IEEE

Space 2002 Conference, Big Sky, MT, March 2002.

4. M. Lo and S. Ross, “The Lunar L1 Gateway: Portal to the Stars and Beyond,”

AIAA Space 2001 Conference, Albuquerque, NM, August 28–30, 2001.

5. Ulrich Walter, Astronautics: The Physics of Space Flight, 2nd Edition, WILEY-

VCH Verlag GmbH & Co. KGaA, 2012.

6. W. Koon, M. Lo, J. Marsden, and S. Ross, “Heteroclinic Orbits between Periodic

Orbits and Resonance Transitions in Celestial Mechanics,” Chaos, Vol. 10, No.
2, June 2000.

7. W. Koon, M. Lo, J. Marsden, and S. Ross, “Shoot the Moon,” AAS/AIAA

Astrodynamics Conference, Clear-water, Florida, Paper AAS 00-166,

January 2000.

8. W. Koon, M. Lo, J. Marsden, and S. Ross, “Constructing a Low Energy Transfer

Between Jovian Moons,” Contemporary Mathematics, Vol. 292, 2002.

References 6–8 describe the technical details of how the pieces of the IPS work.

References 7 and 8 give explicit construction of how transferring from one system

to another is accomplished.

Solar Sailing

The Planetary Society’s Website says, “A solar sail, simply put, is a spacecraft

propelled by sunlight.” Solar sails gain momentum from an ambient source,

viz., photons, the quantum packets of energy of which sunlight is composed.

“By changing the angle of the sail relative the Sun it is possible to affect the

direction in which the sail is propelled—just as a sailboat changes the angle of its

sails to affect its course. It is even possible to direct the spacecraft towards the Sun,
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rather than away from it, by using the photon’s pressure on the sails to slow down

the spacecraft’s speed and bring its orbit closer to the Sun.

In order for sunlight to provide sufficient pressure to propel a spacecraft forward,

a solar sail must capture as much sunlight as possible. This means that the surface of

the sail must be very large. Cosmos 1, a project of The Planetary Society and

Cosmos Studios, was to be a small solar sail intended only for a short mission.

Nevertheless, once it spread its sails even this small spacecraft would have been

10 stories tall. Its eight triangular blades would have been 15 m (49 ft) in length and

have a total surface area of 600 square meters (6500 square feet). This is about one

and a half times the size of a basketball court. Unfortunately, the launch of Cosmos

1 failed to achieve orbit.

References:

1. Colin R. McInnes, Solar Sailing: Technology, Dynamics and Mission
Applications, Springer-Praxis Series in Space Science and Technology,

Springer, London in association with Praxis Publishing Ltd, Chichester,

UK, 1999.

2. L. Friedman, “Solar Sailing: The Concept Made Realistic,” AIAA-78-82, 16th

AIAA Aerospace Sciences Meeting, Huntsville, January 1978.

3. The Planetary Society’s Website at http://www.planetarysociety.org [accessed

6/1/2014]

Entry, Decent and Landing (EDL)

For example, the Entry, Descent and Landing of the Mars Exploration Rovers

(MERs) was harrowing from the sheer number of events that had to occur autono-

mously on board the vehicle for landing to be accomplished safely. In less than

30 min, MER morphed from a spacecraft to an aeroshell, to a complex two-, then

three-body form falling furiously through the Martian atmosphere, to a balloon

encased tetrahedron jerked to a standstill and then cut loose to bounce precipitously

on the unknown terrain below.

References:

See papers in the special section on planetary entry systems in the Journal of
Spacecraft and Rockets, Vol. 36, Number 3, May–June 1999.

Cyclers

A future Earth–Mars transportation systemwill probably usemany different kinds of

spacecraft trajectories. For example, some trajectories are well suited for human

transportation, whereas others are better suited for ferrying supplies. One potentially

useful type of trajectory is the Earth–Mars cycler trajectory, or cycler. A spacecraft

on a cycler regularly passes close to both Earth and Mars (but never stops at either).

The “passenger” vehicle enters or leaves the cycler at the appropriate planet. Cyclers
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that require propulsive maneuvers are referred to as powered cyclers, whereas

cyclers that rely only on gravitational forces are referred to as ballistic cyclers.

There are some variations on cyclers, in which the spacecraft enters a temporary

parking orbit at Mars (semi-cyclers), at earth (reverse semi-cyclers), or at both earth

and Mars (stop-over cyclers). Reference 2 analyzes all cyclers that repeat every two

synodic periods and have one intermediate earth encounter. In the reference, the

Earth–Mars synodic period is assumed, at least initially, to be 2 1/7 years.

Buzz Aldrin devised a transit system between Earth and Mars known as the

“Aldrin Mars Cycler.” “Aldrin’s system of cycling spacecraft makes travel to Mars

possible using far less propellant than conventional means, with an expected five

and a half month journey from the Earth to Mars, and a return trip to Earth of about

the same duration on a twin semi-cycler. . . . In each cycle when the Aldrin Cycler’s
trajectory swings it by the Earth, a smaller Earth-departing interceptor spacecraft

ferries crew and cargo up to dock with the Cycler spacecraft.”

References:

1. Buzz Aldrin’s Website at http://buzzaldrin.com/space-vision/rocket_science/

aldrin-mars-cycler/[accessed 5/1/2014]

2. T. Troy McConaghy, Chit Hong Yam, Damon F. Landau, and James

M. Longuski, “Two-Synodic-Period Earth-Mars Cyclers With Intermediate

Earth Encounter,” Paper AAS 03-509, AAS/AIAA Astrodynamics Specialists

Conference, Big Sky, Montana, August 3–7, 2003.

3. K. Joseph Chen, T. Troy McConaghy, Damon F. Landau, and James

M. Longuski, “A Powered Earth-Mars Cycler with Three Synodic-Period Repeat

Time,” Paper AAS 03-510, AAS/AIAA Astrodynamics Specialists Conference,

Big Sky, Montana, August 3–7, 2003.

Spacecraft Propulsion

A syllabus for spacecraft propulsion is:

• History of space exploration. Types of rockets. Units. Definitions

• Orbital mechanics. Basic orbits, Hohmann transfer, maneuvers, ΔV. Launch sites.
• Thrust. Specific impulse. Rocket equation. Staging. Thermodynamics of

fluid flow.

• Combustion. Chemical equilibrium.

• One-dimensional flow.

• Flow in nozzles. Nonideal flow. Shocks. Boundary layer.

• Ideal rocket, thrust coefficient, characteristic velocity. Nozzle types.

• Rocket heat transfer. Liquid rocket systems.

• Starting and ignition. Processes in combustion chamber. Injection. Liquid

propellants. Feed systems.

• Solid rocket. Burn rate, erosive burning. Grain design.

• Solid propellants. Hybrid rockets. Thrust vector control.
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• Power sources. Electric propulsion.

• Advanced propulsion.

This syllabus is for a graduate course taught by Keith Goodfellow in the

Department of Astronautical Engineering at the University of Southern California.

References for this topic include:

1. P. Hill and C. Peterson,Mechanics and Thermodynamics of Propulsion, 2nd ed.
Addison‐Wesley Publishing Company, 1992.

Advanced Spacecraft Propulsion

A syllabus for Advanced Spacecraft Propulsion is:

• Introduction to advanced propulsion. Mission ΔV and orbital mechanics

• Review of rockets. System sizing.

• Review of thermodynamics and compressible gas dynamics.

• Review of thermal rockets. Heat transfer.

• Power systems. Nuclear reactions. Nuclear thermal rockets.

• Solar and Nuclear electric propulsion.

• Electromagnetic theory: electric charges and fields, currents, and magnetic

fields, and applications to ionized gases.

• Ionization. Introduction to rarified gases. Charged particle motion. Electrode

phenomena.

• Introduction to arc discharges.

• Electrothermal acceleration: 1-D model and frozen flow losses. Resistojet

thrusters. Arcjet thrusters.

• Electrostatic acceleration: 1-D space charge model, ion thrusters, ion production,

beam optics, beam neutralization. Other thrusters.

• Electromagnetic acceleration: MHD channel flow; Magnetoplasmadynamic

(MPD) thrusters, description and thrust derivation, operating limits, and perfor-

mance calculation.

• Hall thrusters: physics and technology. Unsteady electromagnetic acceleration:

pulsed plasma thruster (PPT).

• Overview of advanced concepts. Sails, beamed energy, fusion propulsion, anti-

matter propulsion. Interstellar missions.

• Special topics: micro-propulsion, tethers, piloted Mars mission.

This syllabus is for a graduate course taught by Keith Goodfellow in the

Department of Astronautical Engineering at the University of Southern California.
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Appendix A Vector Analysis

A.1 Vectors and Scalars

We consider column vectors

u ¼
u1
u2
u3

2
4

3
5 ¼ u1u2u3½ �T ¼ u1; u2; u3ð Þ

where u1, u2, and u3 are real numbers.

Def.: Addition of vectors u and v is defined as

uþ v ¼ u1 þ v1, u2 þ v2, u3 þ v3ð Þ
Def.: Multiplication of a vector u by a scalar is defined as

cu ¼ cu1, cu2, cu3ð Þ
where c is a (scalar) real number.

Notation: The zero vector is 0¼ [0 0 0]T.

Properties for any vectors u, v, and s:

(i) u+ v¼ v+ u; that is, vector addition is commutative.

(ii) u+ (v+ s)¼ (u + v) + s; that is, vector addition is associative.

Def.: The magnitude of the vector u is

uj j � u � u1
2 þ u2

2 þ u3
2

� �1=2 ðA:1Þ
for any vector u.
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A.2 Dot and Cross Product of Vectors

Def.: The dot (scalar or inner) product of two vectors u and v is

u • v ¼ uTu ¼ u1v1 þ u2v2 þ u3v3 a scaler numberð Þ ðA:2Þ
Notation: û¼ u/u (a unit vector)

Properties of the dot product for any vectors u, v, and s:

(i) Commutative law: u • v¼ v •u
(ii) u • u ¼ u2 so the magnitude of the vector u is u ¼ u • uð Þ1=2 ðA:3Þ
(iii) Distributive law : u • vþ sð Þ ¼ u • vþ u • s ðA:4Þ
(iv) u • v ¼ uvcosθ where θ ¼ ∠ u; vð Þ from Exercise A‐1 ðA:5Þ
(v) For any unit vector û, v • û¼ vcosθ (from property (iv)) for all vectors v

(Fig. A.1).

That is, v • û¼ vcosθ is the projection of the vector v along û.

Three basis vectors in three dimensions:

î ¼ 1; 0; 0ð Þ
ĵ¼ 0; 1; 0ð Þ
k̂ ¼ 0; 0; 1ð Þ

Def.: The vector set î; ĵ; k̂
n o

, where î ¼ 1; 0; 0ð Þ, ĵ ¼ 0; 1; 0ð Þ, and k̂ ¼ 0; 0; 1ð Þ,
is called the standard basis of all vectors in three-dimensional space.

For simplicity, we omit the “^” symbol over unit reference vectors and write

i • i ¼ 1 ¼ j • j ¼ k • k
i • j ¼ 0 ¼ i • k ¼ j • k

For any vector u¼ (u1, u2, u3), u • I¼ (u1i+ u2j+ u3k) • i¼ u1i • i+ u2j • i+
u3 k • i¼ u1.

Similarly, u2¼ u • j and u3¼ u •k.

v cosq

v

u

q
^

Fig. A.1 Projection of v
along û
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In general,

u ¼ u1; u2; u3ð Þ ¼ u1iþ u2jþ u3k ¼ u • ið Þiþ u • jð Þjþ u • kð Þk
Therefore, any vector u can be written uniquely as a linear combination of the three

basis vectors:

u ¼ ucosαiþ ucosβjþ ucosγk from property vð Þ
where α, β, and γ denote the direction angles of the vector u, α¼∠(u, i),

β¼∠(u, j), and γ¼∠(u, k) and cosα, cosβ, and cosγ are the direction cosines of

the vector u.

Remark: The direction of the zero vector is undefined.

Def.: Two vectors u and v are perpendicular (or orthogonal, u ⊥ v) iff u • v¼ 0.

Def. (geometric definition): The cross product of u and v is the vector w� u� v

that is perpendicular to u and v in the direction shown in Fig. A.2 and has the

magnitude

w ¼ uvsinθ if u, v are not zero ðA:6Þ
where θ¼∠(u, v). If u or v¼ 0, then w¼ 0.

Def.: Two vectors u and v are parallel iff u� v¼ 0.

In particular, two nonzero vectors are parallel iff the angle between them is

either 0 or π radians and the zero vector is parallel to every vector in three-

dimensional space.

Properties of the cross product of vectors:

(i) u� v¼ (u2v3� u3v2, u3v1� u1v3, u1v2� u2v1)

¼ u2 u3
v2 v3

����
����; u3 u1

v3 v1

����
����; u1 u2

v1 v2

����
����

� �
ðA:7Þ

w

v

u

q

Fig. A.2 Geometric

definition of the cross product

of two vectors
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(ii) u� v¼�v� u (not commutative)

(iii) u� u ¼ 0 and c1u� c2u ¼ 0, where c1 and c2 are real numbers ðA:8Þ
(iv) cu� v ¼ u� cv for any real number c ðA:9Þ
(v) Distributive law of the cross product over addition:

u� vþ sð Þ ¼ u� vð Þ þ u� sð Þ ðA:10Þ

vþ sð Þ � u ¼ v� uð Þ þ s� uð Þ ðA:11Þ
(vi) Vector triple product expansions:

u� v� sð Þ ¼ u • sð Þv� u • vð Þs ðA:12Þ

u� vð Þ � s ¼ u • sð Þv� v • sð Þu ðA:13Þ
Therefore, in general,

u� v� sð Þ 6¼ u� vð Þ � s

i.e., the associative law does not hold in general for vector triple products so

that it is necessary to include parentheses in these expressions.

(vii) Scalar triple product or triple scalar product or box product:

u • v� sð Þ ¼ s • u� vð Þ
¼ v • s� uð Þ ¼ v� sð Þ • u
¼ u� vð Þ • s ¼ s� uð Þ • v

Therefore,

u • v� sð Þ ¼ u� vð Þ • s: ðA:14Þ
That is, we can interchange dot and cross products in the sense shown. Also,

the triple scalar product of three vectors is zero if any two of the vectors are

parallel or the same.

Def.: A vector n is normal to a plane iff it is nonzero, originates at a point P in the

plane, and is perpendicular to any two nonparallel vectors in the plane through P.

Given two non-collinear vectors, u and v, a set of three orthogonal vectors is

obtained as

u

u� v

u� vð Þ � u
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An orthonormal basis is obtained by unitizing each of these three vectors by

dividing them by their length as follows:

u=u
u� vð Þ= u� vj j
u� vð Þ � uð Þ= u� vð Þ � uð Þj j

A.3 Derivative of a Vector Function

Let t denote a scalar variable.

Def.: If to each value of t in an interval there corresponds a vector u¼ u(t), we say

that u is a vector function of t.

The vector function may be written as

u ¼ u tð Þ ¼ u1 tð Þ, u2 tð Þ, u3 tð Þð Þ ¼ u1 tð Þiþ u2 tð Þjþ u3 tð Þk
Def.: A vector function u(t)� (u1(t), u2(t), u3(t) is continuous iff the three compo-

nent scalar functions u1(t), u2(t), and u3(t) are continuous functions of t.

If t changes by Δt, then u(t) changes in magnitude and direction as

Δu ¼ u tþ Δtð Þ � u tð Þ ¼ u1 tþ Δtð Þiþ u2 tþ Δtð Þjþ u3 tþ Δtð Þk½ �
� u1 tð Þiþ u2 tð Þjþ u3 tð Þk½ �

¼ u1 tþ Δtð Þ � u1 tð Þ½ �iþ u2 tþ Δtð Þ � u2 tð Þ½ �jþ u3 tþ Δtð Þ � u3 tð Þ½ �k
¼ Δu1iþ Δu2jþ Δu3k

Therefore, the derivative of a vector function u(t) is

du

dt
¼ lim

Δt!0

Δu
Δt

¼ lim
Δt!0

Δu1
Δt

� �
iþ lim

Δt!0

Δu2
Δt

� �
jþ lim

Δt!0

Δu3
Δt

� �
k

¼ du1

dt
;
du2

dt
;
du3

dt

� �

This equation motivates us to make the following definition.

Def.: The differential of a vector function u(t) is

du ¼ du1iþ du2jþ du3k

Notation:

u
• ¼ du

dt
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Properties of vector derivatives:

If u and v are differentiable vector functions of a scalar t and ϕ is a differentiable

scalar function of t,

(i) d uþ vð Þ=dt ¼ du=dtþ dv=dt
d u� vð Þ=dt ¼ du=dt� dv=dt

ðA:15Þ

(ii) d u • vð Þ=dt ¼ u • dv=dtþ du=dt • v ðA:16Þ
In particular, d(u • u)/dt¼ 2u • du/dt

(iii) d u� vð Þ=dt ¼ u� dv=dtþ du=dt� v ðA:17Þ
where the order of the cross products must be maintained.

(iv) d ϕuð Þ=dt ¼ ϕ du=dtð Þ þ dϕ=dtð Þu ðA:18Þ
Example: Kinematics (the study of motion)

Position vector

r ¼ r1; r2; r3ð Þ ¼ x, y, zð Þ ¼ xiþ yjþ zk

r � r tð Þ ¼ r1 tð Þ, r2 tð Þ, r2 tð Þð Þ ðA:19Þ
Velocity vector¼ rate of change of position

v ¼ r
• ¼ dr

dt
¼ dr1

dt
;
dr2

dt
;
dr3

dt

� �
¼ r

•

1; r
•

2; r
•

3ð Þ
¼ v1; v2; v3ð Þ ¼ x

•

; y
•

; z
•ð Þ ¼ _xiþ _yjþ _zk

ðA:20Þ

Acceleration vector¼ rate of change of velocity

a � dv

dt
� _v � x

• •

; y
• •

; z
• •ð Þ ðA:21Þ

Def.: The speed of a particle at the time t is the magnitude v of the velocity vector

v tð Þ ¼ x
•

; y
•

; z
•ð Þ: ðA:22Þ

That is, the speed is v¼ |v|.

Possible confusion: We often say “velocity” instead of speed for the magnitude

of the velocity vector.

A.4 Gradient

Def.: If to each point (x, y, z) of a region R in three-dimensional space there

corresponds a number or scalar ϕ (x, y, z), then ϕ is called a scalar function of

position and we say that a scalar field ϕ has been defined in the region R.
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Def.: A scalar field that is independent of time is called a stationary or steady-state

scalar field.

Def.: If to each point (x, y, z) of a region R in three-dimensional space there

corresponds a vector u(x, y, z), then u is called a vector function of position and

we say that a vector field u has been defined in the region R.

Def.: A vector field that is independent of time is called a stationary or steady-state

vector field.

Def.: If ϕ(x, y, z) is a scalar function of position possessing first partial derivatives

with respect to x, y, and z throughout a region of space, the vector function

∂ϕ
∂x

iþ ∂ϕ
∂y

jþ ∂ϕ
∂z

k

is known as the gradient of ϕ (or gradϕ).

The gradient of a function is often written in operator form as

gradϕ ¼ i
∂
∂x

þ j
∂
∂y

þ k
∂
∂z

� �
ϕ ¼ ∇ϕ

The symbol ∇ is called the “del” operator. Note that ∇ϕ defines a vector field.

(The definition given here for the ∇ operator is the Cartesian form. This operator

can be expressed in more general coordinate systems, but these forms will not be

considered in this book.)

Def.: The directional derivative Dûϕ R0ð Þ of a function ϕ(x, y, z) at the position

R0¼ (x0, y0, z0) in the direction of a unit vector û is

Dûϕ R0ð Þ ¼ lim
h!0

ϕ R0 þ hûð Þ � ϕ R0ð Þ
h

ðA:23Þ

Properties of the gradient:

(i) If ϕ and ψ are differentiable scalar functions of position (x, y, z), then

∇ ϕþ Ψð Þ ¼ ∇ϕþ∇Ψ or grad ϕð Þ þ grad Ψð Þ
(ii) The directional derivative of ϕ in the direction of a unit vector û is ∇ϕ • û ,

i.e., the component of ∇ϕ in the direction of û .

(iii) The gradient, ∇ϕ, of ϕ extends in the direction of the greatest rate of change

of ϕ and has that rate of change for its length.

Appendix A Vector Analysis 343



A.5 Curl

Def.: If u(x, y, z) is a differentiable vector field, then the curl of u, written∇� u or

curlu, is defined by

∇� u ¼ ∂
∂x

iþ ∂
∂y

jþ ∂
∂z

k

� �
� u1iþ u2jþ u3kð Þ

Alternate expressions:

∇� u ¼
i
^

j
^

k
^

∂•
∂x

∂•
∂y

∂•
∂z

u1 u2 u3

���������

���������
¼ ∂u3

∂y
� ∂u2

∂z

� �
i
^ þ ∂u1

∂z
� ∂u3

∂x

� �
j
^ þ ∂u2

∂x
� ∂u1

∂y

� �
k
^

ðA:24Þ

Note that, in the expansion of the determinant, the operators ∂
∂x,

∂
∂y, and

∂
∂z must

precede the components u1, u2, and u3.

Properties:

(i) For differentiable vector functions u and s,

∇� uþ sð Þ ¼ ∇� uþ∇� s or curl uþ sð Þ ¼ curluþ curls ðA:25Þ
(ii) For a differentiable vector function u and differentiable scalar function ϕ of

position,

∇� ϕuð Þ ¼ ∇ϕð Þ � uþ ϕ ∇� uð Þ ðA:26Þ

(iii) If ϕ is a differentiable scalar function with continuous second partial

derivatives, then

∇� ∇ϕð Þ ¼ 0 ðA:27Þ

i.e., the curl of the gradient of ϕ is zero (from an exercise).

Note that if ϕ is a function of x, y, and z and has continuous second partial

derivatives, then the order of differentiation is immaterial so that

∂2

∂y∂x
ϕ ¼ ∂2

∂x∂y
ϕ,

∂2

∂z∂x
ϕ ¼ ∂2

∂x∂z
ϕ,

∂2

∂z∂y
ϕ ¼ ∂2

∂y∂z
ϕ

For a physical interpretation of the curl of a vector, see Fig. 15.12 in the

reference by Wylie and Barrett.
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A.6 Integral of a Vector Function

ð
u tð Þdt ¼ î

ð
u1 tð Þdt ¼ ĵ

ð
u2 tð Þdt ¼ k̂

ð
u3 tð Þdtþ c ðA:28Þ

where u tð Þ ¼ u1 tð Þî þ u2 tð Þĵ þ u3 tð Þk̂ and c ¼ c1 î þ c2 ĵ þ c3k̂ denotes a constant

vector.

References for Appendix A: Arfken and Weber, BMW, Bond and Allman, Lass,

Spiegel, Wylie and Barrett

Exercises

A.1. Derive a formula for the cosine of the angle between two vectors:

r1 ¼ x1; y1; z1ð Þ and r2 ¼ x2; y2; z2ð Þ

That is, prove that

cos θ ¼ r1 • r2
r1r2

where θ denotes the angle between r1 and r2. This equation is property (iv) for
the dot product. (Do not use property (iv) in doing this exercise.)

A.2. Let r1¼ i+ 2j+ 2k and r2¼ 4i� 3k.

(a) Determine the unit vector along r1.

(b) Determine the dot product of the vectors r1 and r2.

(c) Determine the angle between r1 and r2.

A.3. Let r1¼ 3i� j+ 2 k, r2¼ 2i+ j� k, and r3¼ i� 2j+ 2 k.
(a) Compute (r1� r2)� r3.

(b) Compute r1� (r2� r3).

Note that (r1� r2)� r3 6¼ r1� (r2� r3), showing the need for parentheses

in r1� r2� r3 to avoid ambiguity.

(c) Compute r1 • (r2� r3).

(d) Compute (r1� r2) • r3.
Note that r1 • (r2� r3)¼ (r1� r2) • r3.
In general, the dot and cross product are interchangeable in the sense

shown.

A.4. Let r1¼ 2i+ j and r2¼ i+ 3j.

(a) Compute r3¼ r1� r2.

(b) Compute r4¼ r3� r1.

(c) Sketch the vectors r1, r2, and r4 in the x,y plane.

(d) Where is the r3 vector and where is it pointing?

(e) Show that r4 is perpendicular to r1.
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A.5. Let R¼ sin(t)i+ cos(t)j+ tk.

Find:

(a) dR/dt
(b) d2R/dt2

(c) jdR/dtj
(d) jd2R/dt2j
(e) R¼magnitude of R

(f) dR/dt

(g) d2R/dt2

A.6. Determine the derivative with respect to time t of the cross product r1� r2
where

r1 ¼ 2ti� 3t2j and r2 ¼ �4iþ 2tj

and compare the result to the derivative determined by the equation given in

property (iii) in the subsection entitled “Derivative of a Vector Function.”

A.7. Prove Lagrange’s identity:

a� bð Þ • c� dð Þ ¼ a • cð Þ b • dð Þ � a • dð Þ b • cð Þ
for any vectors a, b, c, and d.

A.8. Prove that, for any differentiable vector u¼ u(t),

u •
du

dt
¼ u

du

dt

A.9. A particle moves along a curve whose parametric equations are

x ¼ 2t2, y ¼ t2 � 4t, z ¼ 3t� 5,

where t denotes time. Find the particle’s velocity and acceleration in the

direction of the vector i� 3j+ 2 k at time t¼ 1.

A.10. Consider the curve which is defined parametrically by the equations

x ¼ t2 þ 1, y ¼ 4t� 3, z ¼ 2t2 � 6t

(a) Find the unit tangent vector at any point on this curve as a function of t.

(b) Determine the unit vector that is tangent to this curve at t¼ 2.

A.11. A particle moves so that its position vector is given by the equation

r ¼ cos ωtð Þiþ sin ωtð Þj
where ω is a constant.

(a) Show that the velocity v of the particle is perpendicular to the position r.

(b) Show that r� v is a constant vector.
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A.12. (a) What is the directional derivative of the function

ϕ x; y; zð Þ ¼ x2yzþ 4xz2

at the point (1, �2, �1) in the direction of the vector u¼ 2i� j� 2 k?
(b) Is ϕ increasing or decreasing in the direction of the vector u at the point

given? Explain.

A.13. Prove that if ϕ is a differentiable scalar function with continuous second

partial derivatives, then

∇� ∇ϕð Þ ¼ 0

i.e., the curl of the gradient of ϕ is zero.

A.14. A particle moves along a curve whose parametric equations are

x ¼ e�t, y ¼ 2 cos 3tð Þ, z ¼ 2 sin 3tð Þ
where t denotes time.

(a) Determine the velocity and acceleration vectors of the particle at any

time t.

(b) Compute the magnitude of the velocity and acceleration vectors at time

t¼ 0.

(c) Compute the rate of change dr/dt of the magnitude r of the position

vector at any time t.

(d) Compute dr/dt at t¼ 0.

(e) Note that |dr/dt| 6¼ dr/dt. Why?

A.15. Let ϕ¼ 1/r, where r denotes the magnitude of the vector r¼ (x, y, z).

Find ∇ϕ.
A.16. The acceleration of a particle at any time t� 0 is given by

a ¼ dv

dt
¼ 12 cos 2tð Þi� 8 sin 2tð Þjþ 16tk

If the velocity vector v and position r are zero at t¼ 0, find the vectors

v and r at any time t� 0.
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Appendix B Projects

The following projects have been designed to build on and strengthen the student’s

grasp of the material contained in Chaps. 1–8 by combining several of the topics

studied in those chapters in useful exercises.

B.1 Trajectory Propagation Project

MATLAB References

Selected MATLAB references are:

1. Brian D. Hahn and Daniel T. Valentine, Essential MATLAB For Engineers and
Scientists, Fifth Edition, Elsevier Ltd., Burlington, 2013.

2. Duane Hanselman and Bruce Littlefield,MasteringMatlab 8, Prentice Hall, 2011.
3. The MathWorks URL for online MATLAB documentation at

http://www.mathworks.com/access/helpdesk/help/helpdesk.html [accessed6/1/2014]

4. MATLAB Tutorial website at

http://www.cyclismo.org/tutorial/matlab/ [accessed 6/1/2014]

However, the reader may already own and be accustomed to using a satisfactory

alternative reference or tutorial.

Project Statement

Let initial values r0 (position vector) and v0 (velocity vector) be given at the initial

time t0. Write a MATLAB computer program to do the following:

1. Determine the type of orbit.

2. Compute Keplerian elements at the initial time t0 as follows:

(a) For elliptical orbits: e, p, a, τ, rp, ra, i, Ω, ω, θ, E, M, tp
(b) For parabolic orbits: p, rp, i, Ω, ω, θ
(c) For hyperbolic orbits: e, p, a, V1, rp, i, Ω, ω, θ
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3. Determine whether the spacecraft will or will not impact the central body.

4. Compute the position vector r¼ r(t) and velocity vector v¼ v(t) at a specified

time t, where t> t0.

Rules for Completing This Project

1. It is acceptable to use mathematical subroutines such as those used to compute

the dot or cross product of vectors.

2. It is not acceptable to call a subroutine that converts Cartesian coordinates to

classical (Keplerian) elements or vice versa unless you have written the subrou-

tine yourself.

3. It is not acceptable to call a subroutine that you have not written yourself to solve

an equation such as Kepler’s equation.

4. You may not copy or use someone else’s code, including other students,

colleagues, any textbooks, references, or online sources.

5. It is okay to discuss the project with others.

6. You may not give your code to anyone, except your instructor or assistant,

during this course or later.

7. Show angles in degrees.

Programming Guidelines

1. Construct MATLAB M-file(s) as you did in Exercise 4.4 for the patched conic

model.

2. Use input commands to supply the input data as you did for Exercise 4.4.

3. Provide comments that:

(a) Give the name of each variable and describe it when it is initialized and give

its unit(s).

(b) Describe the input and output with units.

(c) Describe what the program does and the computations.

(d) Describe the logic and functional flow of the program.

4. In general, follow the programming guidelines given in the reference by Hahn

and Valentine or an equivalent MATLAB text.

5. Then submit your well-commented code.

Final Report

Turn in all of the following:

1. Your computer printout from the command window for each of the five data

cases defined below.

2. Your well-commented code.
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3. A table of your answers for each of the data cases defined below. Submit one

table for each of the five data cases.

4. Data that verify that the final vectors r(t) and v(t) are correct. Do not just make a

generic statement such as “I made a lot of computations to verify the results.”

Give specific examples and explain how the data you provide verify that your

final vectors r(t) and v(t) are correct.

5. Something extra that is related to the project (an interesting, related, nontrivial

task), but not required by the above statement of the project. That is, do

something extra and explain it in your write-up. Do not just discuss a topic.

Then identify the extra task in your report.

Input for Computer Project

Add other input as required. Also, see the explanation below for the data cases.

Case I: Spacecraft at Earth

r0 ¼ �14192:498, � 16471:197, � 1611:2886ð Þ kmð Þ
v0 ¼ �4:0072937, � 1:2757932, 1:9314620ð Þ km=sð Þ

in an earth-centered inertial coordinate system

Δt¼ 8.0 h

Case II: Heliocentric Orbit

r0 ¼ 148204590:0357; 250341849:5862; 72221948:8400ð Þ kmð Þ
v0 ¼ �20:5065125006, 7:8793469985, 20:0718337416ð Þ km=sð Þ
Δt¼ 10 days

in the heliocentric, ecliptic of J2000 coordinate system.

Case III: Cassini Spacecraft at Saturn

On June 30, 2004, at 14:00:00 ET, the Cassini spacecraft was at the position

r0 ¼ �321601:0957, � 584995:9962, � 78062:5449ð Þ kmð Þ
with the velocity vector

v0 ¼ 8:57101142; 7:92783797; 1:90640217ð Þ km=sð Þ
in Saturn-centered, Earth mean equator and equinox of J2000.0 coordinates. What

were the spacecraft’s position and velocity vectors in this inertial coordinate system

when the spacecraft crossed the ring plane on July 1, 2004, at 00:47:39.30 ET?
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Case IV: Huygens Probe at Titan*

On January 14, 2005, at 09:00:00 ET, Cassini’s Huygens probe was at the

position

r0 ¼ 8193:2875, � 21696:2925, 7298:8168ð Þ kmð Þ

with the velocity vector

v0 ¼ �2:29275936, 4:94003573, � 1:67537281ð Þ km=sð Þ

in Titan-centered*, Earth mean ecliptic and equinox of J2000.0 coordinates. Deter-

mine the probe’s position and velocity vectors 1 h 4 min and 1.18 s later in this

inertial coordinate system.

Where was the probe at this time? As an approximation, ignore all forces other

than the gravity of Titan, i.e., use the two-body mechanics model, in answering this

question.

*Titan is a moon of Saturn with mean radius of 2,575 km, making it larger than

the planet Mercury.

Case V: Spacecraft at Earth

r0 ¼ 5492:00034; 3984:00140; 2:95581ð Þ kmð Þ

v0 ¼ �3:931046491, 5:498676921, 3:665980697ð Þ km=sð Þ

Δt¼ 5.0 h

in ECI coordinates

Explanations for these data cases:

1. Case III gives the times t0 and t as dates and epochs. It is not necessary to make

your computer project convert t� t0 from date/epoch to Δt. It is okay to do this

conversion off-line and input Δt. However, be careful in making off-line

computations. Remember GIGO (garbage in, garbage out).

2. Case IV gives Δt¼ 1 h. 4 min. 1.18 s. It is okay to convert this value of t� t0 to

Δt in hours off-line and input Δt in hours as for the other data cases.

3. It is not necessary to compute the answer to the extra question (“Where was the

probe at this time?”) for Case IV in your program. You may perform required

computations off-line and give your answer with explanation in the text of your

report.
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B.2 Online Ephemeris Project for an Asteroid

Background for Asteroids

Events for asteroids are:

1. Discovery

2. Reacquisition for Confirmation

3. Provisional (Temporary) Name, e.g., 1999 TL10

4. Number and name designation, e.g., 1 Ceres, 4 Vesta, 9007 James Bond (Closest

approach to earth at 1.516 AU on 1/22/08), and 13070 Seanconnery (Closest

approach to earth at 1.980 AU on 1/24/08)

Some facts about asteroids are:

1. The first asteroid, 1 Ceres, was discovered by Giuseppe Piazzi in January 1801.

2. The Dawn spacecraft was launched on 9/27/07 to orbit Vesta and then Ceres, the

only dwarf planet in the inner solar system.

3. Spacecraft flybys include, e.g., Galileo of Gaspra and Ida (and Ida’s satellite

Dactyl), NEAR-Shoemaker of Mathilde and landing on Eros, and Stardust of

Annefrank.

Example (Temporary Asteroid Name): 1999 TL10

In this name “1999” is the year of discovery; “T” denotes the half-month of its

discovery, which is the first half of October (after skipping “I” because it looks too

much like a “one”); and “L10” denotes the number of the asteroid in the half-month

of its discovery. In determining the half-month, “A” covers January 1–15, “B”

January 16–31, “C” February 1–15, “D” February 16–28 or 29, etc. skipping I as

noted. The first letter of the pair of letters for a given month denotes the first 15 days

of the month and the second of the pair denotes the rest of the month. Thus, “1999

TA” is the temporary name of the first asteroid discovered in October, “1999TB” the

second discovered in October, etc., skipping I, etc., 1999 TZ is the 25th, 1999 TA1

the 26th, etc., 1999 TZ1 the 50th, 1999 TZ2 the 51st, etc. Therefore, 1999 TL10 is

the (10� 25) + 11¼ 261st asteroid discovered in the first half of October 1999.

Reference: Cunningham

Project Statement

Use the web-interface option (method) in HORIZONS, JPL’s Online Solar System

Data and Ephemeris Computation Service, to answer the questions in Part

1. HORIZONS is available on the solar system dynamics website at

http://ssd.jpl.nasa.gov/

Include select printout from HORIZONS as part of your answers and “highlight”

(draw a box around) the appropriate data. Also, complete Part 2 as indicated below.
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Part 1: Questions About Asteroid 2012 DA14
The asteroid 2012 DA14, which made a closest approach (encounter) to the earth in

2013, is cited as an example for the Online Ephemeris Project, but a different small

body can be substituted by the instructor in its place.

1. What is the solution date and epoch for your data?

2. What are the period, eccentricity, perihelion distance, and aphelion distance of

the heliocentric orbit of the asteroid 2012 DA14?

3. What is the closest this asteroid came to the earth in 2013? (You need to do a

calculation off-line using data obtained from HORIZONS.)

4. On what date and at what time (to the nearest minute) did this encounter

occur?

5. In which constellation did the asteroid appear at the time of its closest approach

to the earth? (Give the full name of the constellation, not an abbreviation.)

6. What was the asteroid’s velocity with respect to the sun at closest approach to

the earth?

7. What was the asteroid’s greatest distance from the earth in the period between

1/1/13 and 3/26/13 and when was it at this greatest distance?

8. What was the asteroid’s velocity with respect to an observatory in Los Angeles

at the time of the asteroid’s closest approach to the earth?

9. What are the coordinates of the observatory in Los Angeles?

10. Find something interesting in the ssd website.

Part 2: Other Questions/Problems Related to Course Material
11. Convert the closest distance found in response to question 3 to LD (lunar

distances). That is, convert the distance to a fraction of the distance between

the earth and the moon.

12. Calculate the V1 of the asteroid’s hyperbolic trajectory at its passage of the

earth, using data available from the ssd website.

13. When was the asteroid 2012 DA14 discovered?

14. How many asteroids were discovered before 2012 DA14 in the half-month of

its discovery?

B.3 Online Ephemeris Project on PHAs, NEOs, and Other
Celestial Objects

Project Statement

Use the ssd and neo websites to answer the following questions. Dates below are

given as examples. Different dates may be specified by the instructor as appropriate

for this exercise if desired.
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Part 1: Questions About PHAs, NEOs, and the Torino Scale
1. What is a potentially hazardous asteroid (PHA)? How many PHAs are known?

2. Which near-earth objects (NEOs) came within a nominal miss distance of 0.5

LD (lunar distance) of the earth since 12/12/12? What was the nominal closest

approach (CA) distance of each of these objects? What was the date of each of

these closest approaches? Include a copy of the one page in the table from the

website with the appropriate information “highlighted.”

3. Which NEO discovered in 2012 came within the closest nominal miss distance

of the earth since 11/10/12? What was the nominal CA distance of this object

and what was the date of its CA? Highlight the appropriate information in the

page from the website supplied in your answer to question 2.

4. Which of the known PHAs will come closest to the earth, considering the

nominal miss distance, in the next 25 years? What date will this object make its

CA to the earth and how close will this object approach the earth? Include a

copy of the one page in the table from the website with the appropriate

information (asteroid name, date of CA, and nominal miss distance)

“highlighted.”

5a. What is the Torino scale?

5b. Which asteroids have a value on the Torino scale greater than zero?

6. Explore the ssd and neo websites to find something else that is interesting.

What is one interesting item that you found?

Part 2: Computation of Rise, Transit, and Set Times for Earth-Based
Observatories
1. At what time UT did Mars rise as seen from an observatory in Los Angeles, CA,

on 12/11/2013?

2. Was Mars optically observable from a site in Los Angeles, CA, as it set on

12/11/2013? Explain why or why not.

3. What constellation was Mars in when it set on 12/11/2013?

4. What are the latitude and longitude of Los Angeles, CA?

Part 3: Questions About Trojan Asteroids
1. Which Trojan asteroids have a semimajor axis that satisfies the conditions

5.328 AU� a< 5.3305 AU?

2. What are the semimajor axis, eccentricity, inclination, and argument of perihe-

lion of each of these asteroids?

For these two questions, include a copy of the one page in the table from the

website with the appropriate information (object full name, e, a, i, and peri)

“highlighted.”

3. Which of the asteroids found in the answer to question 1 of Part 3 has an IAU

name? What is the IAU name for each one?
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Part 4: Use of Orbit Diagrams in the Neo Website
Follow the procedure for visualizing the orbit of a comet or asteroid via an orbit

diagram in the neo website to answer the following questions with respect to the

comet Lulin (2007N3), nicknamed the “green comet.”

1. On what date did comet Lulin pass through perihelion and what was its distance

from the sun at that point?

2. When (approximate date) did comet Lulin make its closest approach to Mars?

3. What is the eccentricity of comet Lulin’s orbit? Make a copy of the table that

gives this value, “highlight” the appropriate entry in the table, and submit the

table with your answer. Note how close comet Lulin’s orbit is to being parabolic.

4. Is comet Lulin’s orbit posigrade or retrograde? Note how close comet Lulin’s

orbit is to being in the ecliptic plane.

References for Appendix B: Cunningham, MathWorks website, MATLAB

Tutorial website, neo website, ssd website.
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Appendix C Additional Penzo Parametric Plots

C.1 Objectives

The P2 parameters discussed so far are either constraints or have been directly

connected with a parametric representation of these constraints. They were chosen

to minimize the parametric representation required and to enhance intuitive knowl-

edge of free-return circumlunar trajectories.

The reference “An Analysis of Free-Flight Circumlunar Trajectories” by Paul A.

Penzo gives parametric plots of additional parameters, including the following:

1. Injection velocity versus the outward time of flight for various positions of the

moon in its orbit (Fig. C.1).

2. Parking orbit altitude versus injection velocity for fixed injection energies C3

(Fig. C.2).

3. Probe-moon-earth angle versus the outward time of flight for various positions

of the moon in its orbit (Fig. C.3).

4. Hyperbolic excess velocity versus the outward time of flight for fixed outward-

phase inclinations and various positions of the moon in its orbit (Fig. C.4).

5. Earth-moon-probe-angle at the spacecraft’s exit from the SoI versus the return

time of flight for various positions of the moon in its orbit (Figs. C.5 and C.6).

6. Components of the impact vector B for constant outward times of flight

(Fig. C.7).

These parameters provide velocity information at the earth and at the moon and

information about entrance and exit angles at the moon’s sphere of influence.

C.2 Injection Velocities and the PME Angle

Figure C.1 presents the injection velocities required for specified outward times of

flight. The injection altitude is fixed at 600,000 ft (183 km). This velocity is

essentially a function of only the time of flight and distance of the moon. Figure C.2

can be used to convert these injection velocities to other altitudes while holding the

energy fixed.

# Springer International Publishing Switzerland 2015

G.R. Hintz, Orbital Mechanics and Astrodynamics,
DOI 10.1007/978-3-319-09444-1
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Considering parameters in the moon phase, Fig. C.3 presents the probe-moon-

earth (PME) angle of the asymptotic velocity vector with the moon-to-earth line at

the time of pericynthion passage for various positions of the moon in its orbit. We

consider two specific types of launch trajectories:

Case I for all trajectories in which the spacecraft is launched ccw wrt the earth and

so that the outward-phase conic lies in the moon’s orbit plane.

Case II for which the spacecraft is launched normal to the moon’s orbit plane. The

symmetry relationship makes it immaterial as to whether the spacecraft

approaches the moon from above or below the moon’s orbit plane.

60

35,850

35,900

35,950

IN
JE

C
T

IO
N

 V
E

LO
C

IT
Y

 V
0 

(F
P

S
)

36,000

36,100

36,050

70 80

OUTWARD TIME OF FLIGHT T0 (HOURS)

PARKING ORBIT RADIAL DISTANCE = 0.215 × 108 FEET

90

A

A′

B

D

C

ANALYTIC PROGRAM
EXACT PROGRAM

Fig. C.1 Injection velocity versus outward time of flight for various positions of the moon

in its orbit
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Case I and Case II represent outward-phase launches in the moon’s orbit plane

and normal to the moon’s plane, respectively. Qualitatively, we can deduce that the

longer the flight time is to the moon the larger the PME angle. Also, from Fig. C.1,

since shorter distances of the moon require lower injection velocities for a given

flight time, the PME angle will increase for these shorter distances.

C.3 Moon-Phase Parameters: v1, EMP Angle at SoI Exit,
and the B-Plane

Figure C.4 presents the moon-phase hyperbolic excess velocity as a function of the

outward time of flight and the distance of the moon. The injection velocity is

essentially independent of the outward inclination, but the v1 is not. For Case II,

this velocity is from 400 to 800 fps greater than that for Case I. Exact integration

(precision) software was run to provide a comparison with the analytic software.

The exact integration software consistently produced a higher value for v1 than the

analytic program.

An estimate for the earth-moon-probe (EMP) angle at exit from the SoI is given

in Figs. C.5 and C.6. The behavior of this angle is similar to the PME angle. Three

C3 = −.30 −.25 −.20 −.15 −.10 −.05 −0

Fig. C.2 Parking orbit altitude versus the injection velocity for fixed injection energies C3
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return inclinations are considered. Note that the EMP angle increases as the return

inclination rotates from ccw to cw.

Finally, traces of the (impact) B-vector measured in the (impact) B-plane are

presented in Fig. C.7. The B-plane is defined to be perpendicular to the incoming

hyperbolic asymptote. The horizontal or B•T axis lies in the moon’s orbit plane and

is directed positively opposite the moon’s direction of motion. The vertical or B•R
axis is directed positively below the moon’s orbit plane. The origin is fixed to the

center of the moon. For all circumlunar trajectories considered here, the asymptote

is inclined only �10	 to the moon’s orbit plane. The PME angle, which indicates

the position of the asymptote wrt the earth-moon line, also indicates the position of

the impact parameter plane. Since this angle varies greatly with time of flight,

outward inclination, and position of the moon, the impact parameter plane is

oriented differently from the earth-moon line for each point in Fig. C.7.

Both graphs in Fig. C.7 are drawn for the maximum distance of the moon. The

outward flight time and the return inclination wrt the moon’s orbit plane are
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Fig. C.6 Earth-moon-probe angle versus the return time of flight for various positions of the moon

in its orbit at the spacecraft’s exit from the SoI (continued)
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indicated. The larger magnitude of the impact parameter for a fixed time of flight

implies a greater pericynthion distance. A greater time of flight produces a greater

impact parameter since the incoming asymptote must be further from the moon for

lower moon-centered energies and the same turning of the spacecraft’s velocity

vector.
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Answers to Selected Exercises

Chapter 1

1.3. α, β
1.5. (2.0164, �1.9377, 18.4981)

1.6. (17.9610, 4,7662, 2.1651) (km)

Chapter 2

2.9. (a) ellipse

(b) 286.83	

2.11. (e) (π/2� e)/(2π)
2.16. (a) β0¼ 45.17	

_r ¼ 1:41045km=s
_rθ ¼ 1:40229km=s

(b) radial component vector¼ (�1.17271992, �0.72798589, 0.29004357)

transverse component vector¼ (0.77502268,�1.02438770, 0.56248357)

(c) a¼ 970375.5 km

e¼ 0.8495

p¼ 540145.94 km

rp¼ 292046.76 km

ra¼ 3589455.02 km

τ¼ 31.92 days

(d) θ¼ 168.57	

E¼ 141.35	

M¼ 110.94	

(e) tp¼ 9.8371 days

Time to next periapsis¼ 22.0833 days

# Springer International Publishing Switzerland 2015

G.R. Hintz, Orbital Mechanics and Astrodynamics,
DOI 10.1007/978-3-319-09444-1
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Chapter 3

3.1. (c) E ¼ �12:65 km2=s2

a¼ 15,759 km

p¼ 11430.6 km

h¼ 67500 km2/s

3.3. (a) e¼ 0.34

θ0¼ 110	

E ¼ �28:4417km2=s2

a¼ 7007.3 km

rp¼ 4624.8 km

ra¼ 9389.8 km

E¼ 90	

(b) β¼ 30	

v¼ 7.91 km/s

3.9. (a) 6.305 km/s

(b) 116.07	

3.14. (a) e¼ 0.1179

θ¼ 119.48	

h¼ 5.338� 109 km2/s

rp¼ 1.9207� 108 km

a¼ 2.1775� 108 km

τ¼ 641.41 days

(b) e¼ 0.1179

θ¼ 240.52	

h¼ 5.338� 109 km2/s

rp¼ 1.9207� 108 km

a¼ 2.1775� 108 km

τ¼ 641.41 days

3.16. ΔvSOI¼ 0.624 km/s

3.20. (a) Thrust¼ 96,500 N

(b) Δv¼ 0.6152 km/s

3.21. Δm¼ 9924.72 kg

3.22. Δm¼ 850.9 kg

Chapter 4

4.8. i¼ 26.8	, Ω¼ 187.2	, ω¼ 341.9	

4.9. (a) θ¼ 207.23	

(b) r¼ (�174663897.0, 74685964.6, 49660154.5) km

v¼ (�5.44426, �21.66724, �3.38179) km/s

4.12. (a) a¼ 5.112 AU

e¼ 0.8045
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4.20. (a) 48,214,824 km

(b) 112,378 km

(c) 43,317 km

Chapter 5

5.3. (a) i¼ 63.43	 or 116.57	

(b) 63.43	 < i< 116.57	

5.7. 2.0� 10�5

Chapter 6

6.1. ΔVTOTAL¼ 3.932 km/s

6.2. (b) ϕ¼ 1.76 rad¼ 100.9	

(c) ϕ¼ 0.725 rad¼ 41.5	

6.5. (b) ΔVTOTAL¼ 0.2428 m/s

Chapter 7

7.1. (b)
∂τ
∂VM

���
θ¼0	

¼ 5:133 min=mps

∂τ
∂VM

���
θ¼180	

¼ 0:442 min=mps

7.7. (a) δ¼ 80.3	

(c) rp¼ 2,292 km

7.9. (a) rp¼ 75,121 km

ra¼ 700,546.2 km

τ¼ 27.82 days

(b) Δm¼ 186.64 kg

7.13. (c) hp¼ 639 km

Tr¼ 80 h

7.15. (a) Az¼ 90	

(b) ireq¼ 65	
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Acronyms and Abbreviations

AAS American Astronomical Society

ACM Attitude correction maneuver

AD Arrival date

AGA Aerogravity assist

AIAA American Institute of Aeronautics and Astronautics

aka Also known as

APS Ascent Propulsion System

A Train Afternoon constellation of spacecraft

AU Astronomical unit

ATV Automated Transfer Vehicle

AutoNav Autonomous (optical) navigation

BMW Text entitled Fundamentals of Astrodynamics by Roger R. Bate,

Donald D. Mueller, and Jerry E. White

C3, C3 Launch energy

CA Closest approach

ccw Counterclockwise

cw Clockwise

cm Center of Mass

CM Command Module

CNES Centre National d’Etudes Spatiales (French Space Agency)

Co. Company

CONAE Comision Nacional de Actividades Espaciales (Space Agency of

Argentina)

CSM Command and Service Module

CW Clohessy-Wiltshire (equations or reference frame)

EDT Eastern Daylight Time

DLA Declination of launch azimuth

DSM Deep Space Maneuver

DOF Degrees of freedom

DPS Descent Propulsion System

DS1 Deep Space 1 (spacecraft or space mission)

DSM Deep Space Maneuver

DSN Deep Space Network
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ECI Earth-centered inertial

EDL Entry, descent, and landing

EGA Earth gravity assist

EI Entry interface

EMP Earth-moon-probe (angle at exit of the moon’s sphere of influence)

EOM Equation of motion

ERT Earth-received time

ESA European Space Agency

ET Ephemeris Time

FAQ Frequently asked question

FF Formation flying

FOM Figure of merit

FPVS Flight Plane Velocity Space

FT Flight time

GEO Geostationary orbit, geosynchronous orbit

Glonass Global Navigation Satellite System aka Global Orbiting

Navigation satellite system

GNC, GN&C Guidance, navigation, and control

GPS Global Positioning System (aka NAVSTAR)

GRB Gamma ray bursts

GSFC Goddard Space Flight Center

GTO Geosynchronous transfer orbit

HCA Heliocentric angle

HEO High earth orbit, highly elliptical orbit

IAU International Astronomical Union

IEEE Institute of Electrical and Electronics Engineers

IERS International Earth Rotation Service (formerly the Bureau Interna-

tional L’Heure, BIH)

I/P Interplanetary

ISS International Space Station

J2 Oblateness coefficient in spherical harmonic expansion

JAXA Japanese Aerospace Exploration Agency (Japanese Space

Agency)

JD Julian Date

JPL Jet Propulsion Laboratory

KI Kepler’s first law

KII Kepler’s second law

KIII Kepler’s third law

KE Kinetic energy

LAT Latitude

LD Launch date

LEO Low earth orbit

LEM Lunar Excursion Module

LM Lunar Module

LOI Lunar Orbit Insertion
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LOX Liquid oxygen

LTF Linearized time of flight

LV Launch vehicle

MATLAB Matrix Laboratory (computing system)

MCC Midcourse correction

MER Mars Explorer Rover

MEO Medium earth orbit

MOI Mars orbit insertion, Mercury orbit insertion

MSL Mars Science Laboratory

NASA National Aeronautics and Space Agency

NAVSTAR Navigation Satellite Timing and Ranging (aka GPS)

NEAR Near-Earth Asteroid Rendezvous (mission or spacecraft)

NEO Near-earth object

NEXT NASA’s Evolutionary Xeon thruster

NI Newton’s first law of motion

NII Newton’s second law of motion

NIII Newton’s third law of motion

No. Number

NPOESS National Polar-orbiting Operational Environmental Satellite

System

NPP NPOESS Preparatory Project

NTO Nitrogen tetroxide

OCM Orbit correction maneuver

OD Orbit determination

OIM Orbit insertion maneuver

OTM Orbit trim maneuver

OWLT One-way light time

p Page

pp Pages

P2 Penzo parametric (plot)

P&C Text entitled Orbital Mechanics by John E. Prussing and Bruce

A. Conway

PDT Pacific Daylight Time

PE Potential energy

PHA Potentially hazardous asteroid

PL Payload

PME Probe-moon-earth (angle of the asymptotic velocity vector with

the moon-to-earth line at the time of pericynthion passage)

PQF Triangle in Lambert’s problem

PVO Pioneer Venus Orbiter

P&W Pratt and Whitney

QED Quod erat demonstrandtum, used to indicate the end of a proof

RCS Reaction Control System

RPM Rendezvous pitch maneuver

RTN Radial-Transverse-Normal (coordinate system)
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SAC-D Satelite de Aplicaciones Cientificas-D (Satellite for Scientific

Applications-D)

S/C Spacecraft

SCET Spacecraft Event Time

SEP Sun-earth-probe angle

SI Systeme International

sl Sea level

SM Service Module

SMAD Space Mission Analysis and Design

SMAD3 Space Mission Analysis and Design, Third Edition

SoI Sphere of Influence

SOI Saturn orbit insertion

SRP Solar radiation pressure

SS Solar system

SSD, ssd Solar System Dynamics

SSO Sun synchronous orbit

TAI International Atomic Time

TB Target body

TD Touchdown

TI Terminal initiation

TCG Geocentric Coordinate Time

TCM Trajectory correction maneuver

TDB Barycentric Dynamical Time

TDT Terrestrial Dynamical Time

TFL Time of flight

TSB Orbit Determination text entitled Statistical Orbit Determination
by Byron D. Tapley, Bob E. Schutz, and George H. Born

TPS Thermal Protection System

TTIME Time of flight

UCLA University of California at Los Angeles

UDMH Unsymmetrical dimethyl hydrazine

US United States

USC University of Southern California

USSR Union of Soviet Socialist Republics

UT Universal Time (Greenwich Mean Time)

UTC Coordinated Universal Time

VEEGA Venus-Earth-Earth gravity assist

VHP Arrival V1 at the target body

VVEJGA Venus-Venus-Earth-Jupiter gravity assist

VOI Venus orbit insertion

Vol. Volume

wolog Without loss of generality

wrt With respect to
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