


Montenbruck - Gill 
Satellite Orbits 



Physics and Astronomy 
http://www.springende/phys/  

Springer 
Berlin 
Heidelberg 
New York 
Barcelona 
Hong Kong 
London 
Milan 
Paris 
Singapore 
Tokyo 



Oliver Montenbruck Eberhard Gill 

Satellite Orbits  

Models, Methods, and Applications 

With 97 Figures 
Including io Color Figures, 
47 Tables, and CD-ROM 

Springer 



Dr. Oliver Montenbruck 
Dr. Eberhard Gill 
Deutsches Zentrum fiir Luft- und Raumfahrt (DLR) e.V. 

Oberpfaffenhofen 
Postfach  mó 
82230 WeBling, Germany 
e-mail: 
oliver.montenbruck@d1r.de  
eberhard.gill@d1r.de  

Cover picture: Designed for a mission time of two years; on duty for eight years. Built by Dornier 
SatelLitensysteme GmbH, the German X-ray satellite Rosat is an ongoing success story. © DSS 

Library of Congress Cataloging-in-Publication Data. Montenbruck,  Oliver, 1961-.  Satellite orbits : mod-
els, methods, and applications/Oliver Montenbruck, Eberhard GiLl. p.cm. Includes bibliographical ref-
erences and index. ISBN354067280X (alk. paper) 1. artificial satellites-Orbits. L Eberhard, Gill, 1961- 
II. Title. TL io80.M66 2000 629.4'113-dc21 00-038815 

Corrected 2nd Printing 2001 

1st Edition 2000 

ISBN 3-540-67280-X Springer-Verlag Berlin Heidelberg New York 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 
is concerned, specifically  the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of 
this publication or parts thereof is permitted only under the provisions of the German Copyright Law 
of September 9, 1965, in its current version, and permission for use must always be obtained from 
Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. 

Springer-Verlag Berlin Heidelberg New York 
a member of BertelsmannSpringer Science+Business Media GmbH 

http://www.springer.de  

© Springer-Verlag Berlin Heidelberg 2000 

Printed in Germany 

The use of general descriptive names, registered names, trademarks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use. 

Please note: Before using the programs in this book, please consult the technical manuals provided by 
the manufacturer of the computer - and of any additional plug-in boards - to be used. The authors and 
the publisher accept no legal responsibility for any damage caused by improper use of the instructionA, 
and programs contained herein. Although these programs have been tested with extreme care, we can 
offer no formal guarantee that they will function correctly. The programs on the enclosed CD-ROM are 
under copyright protection and may not be reproduced without written permission by Springer-Verlag. 
One copy of the programs may be made as a back-up, but all further copies violate copyright law. 

Typesetting: camera-ready copy from the authors 
Cover design: Erich Kirchner, Heidelberg 

Printed on acid-free paper 
SPIN: 10855805 	55/3141/ba - 5 4 3 2 1 0 



Preface 

Satellite Orbits — Models, Methods, and Applications has been written as a compre-
hensive textbook that guides the reader through the theory and practice of satellite 
orbit prediction and determination. Starting from the basic principles of orbital 
mechanics, it covers elaborate force models as well as precise methods of satellite 
tracking and their mathematical treatment. A multitude of numerical algorithms 
used in present-day satellite trajectory computation is described in detail, with 
proper focus on numerical integration and parameter estimation. The wide range of 
levels provided renders the book suitable for an advanced undergraduate or gradu-
ate course on spaceflight mechanics, up to a professional reference in navigation, 
geodesy and space science. Furtheimore, we hope that it is considered useful by 
the increasing number of satellite engineers and operators trying to obtain a deeper 
understanding of flight dynamics. 

The idea for this book emerged when we realized that documentation on the 
methods, models and tools of orbit determination was either spread over numerous 
technical and scientific publications, or hidden in software descriptions that are not, 
in general, accessible to a wider community. Having worked for many years in the 
field of spaceflight dynamics and satellite operations, we tried to keep in close touch 
with questions and problems that arise during daily work, and to stress the practical 
aspects of orbit determination. Nevertheless, our interest in the underlying physics 
motivated us to present topics from first principles, and make the book much more 
than just a cookbook on spacecraft trajectory computation. 

With the availability of powerful onground and onboard computefs; as well as 
increasing demands for precision, the need for analytical perturbation theories has 
almost been replaced by a purely numerical treatment of the equations of motion. 
We therefore focus on models and methods that can be applied within a numerical 
reconstruction of the satellite orbit and its fbrecast. As a consequence, topics like 
orbit design, long-term orbit evolution and orbital decay are not addressed specifi-
cally, although the required fundamentals are provided. Geodesic satellite missions, 
on the other hand, have reached an unprecedented level of position accuracy with a 
need for very complex force and measurement models, which could not always be 
covered in full detail. In any case, references to background information are given, 
so as to allow the reader easy access to these specific areas. 

Each chapter includes exercises at varying levels of complexity, which aim at 
an additional practice of the presented material, or address supplementary topics 
of practical interest. Where possible, we have tried to focus on problems that high- 
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light the underlying physicals models or algorithmic methods, rather than relying 

on purely numerical reference examples. In most cases, the exercises include a 
comprehensive description of the suggested solution, as well as the numerical re-
sults. These are either derived directly from equations given in the text, or based 
on sample computer programs. 

This book comes with a CD-ROM that contains the C++ source code of all 
sample programs and applications, as well as relevant data files. The software is 
built around a powerful spaceflight dynamics library, which is likewise provided as 
source code. For the sake of simplicity we have restricted the library to basic mod-
els, but emphasized transparent programming and in-code documentation. This, in 
turn, allows for an immediate understanding of the code, and paves the way for easy 
software extensions by the user. Free use of the entire software package including 
the right for modifications is granted for non-commercial purposes. Readers, stu-
dents and lecturers are, therefore, encouraged to apply it in further studies, and 
to develop new applications. We assume that the reader is familiar with computer 
programming, but even inexperienced readers should be able to use the library func-
tions as black boxes. All source code is written in C++, nowadays a widely used 
programming language and one which is readily available on a variety of different 
platforms and operating systems. 

We would like to thank Springer-Verlag for their cordial cooperation and in-
terest during the process of publishing this book. Our thanks are also due to all our 
friends and colleagues, who, with their ideas and advice, and their help in correct-
ing the manuscript and in testing the programs, have played an important role in 
the successful completion of this book. Real mission data sets for the application 
programs have kindly been provided by the GPS/MET project and the Flight Dy-
namics Analysis Branch of the Goddard Space Flight Center. Numerous agencies 
and individuals have contributed images for the introduction of this book, which is 
gratefully acknowledged. 

May 2000 	 Oliver Montenbruck and Eberhard Gill 
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1, Around the World in a Hundred Minutes 

Even though the first man-made spacecraft was only launched in 1957, satellite 
orbits had already been studied two centuries before this. Starting from Newton's 
formulation of the law of gravity, scientists sought continuously to develop and 
refine analytical theories describing the motion of the Earth's only natural satellite, 
the Moon. Today, several thousand man-made satellites orbit the Earth, together 
with countless pieces of space debris (Fig. 1.1). Much as celestial mechanics studied 
the laws of motion of solar system bodies, the branch of astrodynamics is concerned 
with the mathematical and physical description of artificial satellite orbits, as well 
as their control. Here, the tenn orbit refers to a trajectory that is essentially periodic 
in nature, and does not consider the special case of objects leaving the realm of the 
Earth towards interplanetary space. 

Fig. 1.1. A snapshot of orbiting satellites 
and known pieces of space debris resem-
bles a swarm of mosquitoes dancing around 
a bulb. Most objects stay in low-Earth 
orbits with altitudes typically less than 
1500 km. Aside from that, many satellites 
populate the geostationary ring at a height 
of 36 000 km. The cloud of satellites in 
the northern hemisphere mainly comprises 
navigation and science satellites (photo 
courtesy ESA/ESOC) 

1.1 A Portfolio of Satellite Orbits 

Aside from the eternal dream of mankind to overcome the two-dimensional surface 
of the Earth, there are a number of other compelling reasons to launch a satellite 
into orbit (Fig. 1.2). Satellites are the only-means of obtaining in-situ measurements 
of the upper atmosphere or the Earth's magnetosphere. Astronomical telescopes in 
orbit provide an uncorrupted, diffraction-limited view of the sky at all regions of 
the electromagnetic spectrum. By the very nature of things, one has to leave the 
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Earth to collect large-scale images of its continents, oceans, and atmosphere. Like-
wise, satellites are able to communicate with a large number of places on Earth 
simultaneously, thus forming the basis for worldwide telephone and data networks 
as well as TV transmissions. Finally, constellations of navigation satellites nowa-
days provide the means for precision localization and aircraft navigation around 
the world. 

Fig. 1.2. An album of ESA's space missions: manned and microgravity (Space station, Spacelab, 
Eureca), Earth observation (ERS, Meteosat, Envisat), telecommunications (Olympus, ECS, DRS) 
and science (Hipparcos, ISO). Photo credit ESA 

1.1.1 Low-Earth Orbits 

The applications just mentioned and the technical (and commercial) constraints 
of existing launch vehicles have led to certain commonalities among the orbits of 
present satellites. The great majority of satellites are launched into near-circular or-
bits with altitudes of 300-1500 km. Below that level, a satellite's orbit would rapidly 
decay due to the resistance of the Earth's atmosphere, thus restricting extremely 
low-altitude orbits to short-term ballistic missions or powered trajectories. Higher 
altitudes, on the other hand, are neither required nor desirable for many missions. 
A space observatory (like the Hubble Space Telescope or the XMM X-ray satellite) 
already has an unobstructed view at 600 km altitude, where the atmospheric distor-
tion and absorption is wholly negligible. Remote sensing satellites benefit from a 
higher spatial resolution at lower altitudes and, last but not least, a higher altitude 
requires more powerful launchers. 

Among the low-Earth satellites there is a wide range of orbital inclinations. The 
inclination describes the angle between the orbital plane and the equator, which is 
often determined by the geographical latitude of the launch site. Making use of the 
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Earth's rotation, one achieves the highest orbital velocity by launching a satellite 
in an easterly direction. The orbital plane, which is spanned by the instantaneous 
inertial position and velocity vector, thus exhibits an inclination that is equal to 
the  geographical  latitude at separation of the spacecraft from the launcher. Any 
change in inclination — to either higher or lower values — requires a different launch 
direction, with an associated loss in performance. 

1.1.2 Orbits of Remote Sensing Satellites 

Irrespective of the launch site restrictions, however, there is a pronounced inter-
est in injecting spacecraft into highly inclined polar orbits, to obtain a maximum 
coverage of the Earth's surface. Remote sensing satellites are designed to collect 
high-resolution images of the Earth in a variety of spectral bands (Kramer 1996). 
These comprise both optical frequencies (visible and infrared) as well as radio 
frequencies (radar) that provide an unobstructed view independent of clouds and 
weather phenomena. Resolutions presently provided by civil satellites and sensors 
(SPOT, Landsat, MOMS-2P) are in the order of 5-10m for panchromatic images 
and  10-30m  for multispectral sensors. Synthetic aperture radar (SAR) images, ob-
tained by e.g. the European ERS satellite from an altitude of 750 km, achieve a 
resolution of roughly 20 m. 

Fig. 1.3. The ERS-1 remote sensing satellite as seen by an artist (left; courtesy ESA) and imaged 
in orbit by the French Spot-4 satellite on May 6, 1998 over the Tenere Desert of Niger from 41 km 
altitude (right; photo credit CNES) 

Besides the global or near-global coverage, there are other requirements that 
affect the selection of remote sensing orbits. The ground track should be repetitive 
but free from gaps, to ensure that each point on Earth can be imaged again and 
again. Clearly the orbits should be circular, to achieve a constant spacecraft altitude 
when taking repeated images of the same area. Furtheimore, identical illumination 
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conditions are a prerequisite for comparative studies and analysis of images from 
different areas. Fortunately these requirements may simultaneously be met by a 
specific set of orbits, known as sun-synchronous repeat orbits. 

Here use is made of the fact that the Earth's oblateness causes a secular pre-
cession of the orbital plane. For orbital inclinations of 97°-102° and associated 
altitudes of 500-1500 km, the nodal line of the orbital plane on the equator is 
shifted by almost 10  per day in a clockwise direction. This value matches the ap-
parent mean motion of the Sun along the equator, and results in a (near-)constant 
alignment of the orbital plane and the projected direction of the Sun. Accordingly, 
the mean local time when the satellite crosses the equator is the same for each or-
bit (typically 10:00 a.m. at the ascending node), giving optimum and reproducible 
illumination conditions for image data takes. 

By making a proper choice of the orbital altitude, one may further achieve an 
orbital period in resonance with the Earth's rotation. At 900 km, for example, the 
satellite performs exactly 14 orbits per day, after which period the ground track is 
repeated again and again. To avoid inherent gaps in the ground coverage, a rational 
ratio is preferable, however, as is e.g. the case for the orbit of the ERS satellites. 
They performs a total of 43 orbits in a period of 3 days, which results in a ground 
track separation of about 1000  kin at the equator. In order to maintain the orbital 
characteristics of a remote sensing satellite, regular adjustments of its semi-major 
axis are required, which compensate the perturbations due to atmospheric drag. 

1.1.3 Geostationary Orbits 

The idea of geosynchronous telecommunication satellites was addressed by Arthur 
C. Clarke in his 1945 article on Extra-Terrestrial Relays (Clarke 1945), i.e. more 
than a decade before the first satellite, Sputnik 1, was launched. Even earlier, K. E. 
Tsiolkovsky (1918) and H. Noordung (1929) had pointed out that a satellite placed at 
an altitude of 35 800 km above the equator would have an orbital period matching 
the period of the Earth's rotation. The two writers may not have anticipated the 
future significance of their ideas. 

Starting with the first geostationary satellite Syncom 2, launched in 1963, and 
the transmission of the 1964 Olympic games in Tokyo via Syncom 3, geostationary 
satellites quickly foimed the basis for a commercial utilization of space. Today some 
300 active satellites are flying in a geosynchronous orbit, serving as a platform for 
all kinds of telecommunications activities. The exceptional characteristics of the 
geostationary belt and the associated space limitations have resulted in international 
regulations governing the assignment of individual longitude slots to interested 
countries and agencies. The assigned windows usually cover a range of ±0.1 0  
in longitude, which the satellite should not violate, to avoid signal interference (or 
even physical contact) with neighboring spacecraft. To do so, regular station keeping 
maneuvers are required, typically once a week, to counteract the perturbations of the 
Sun, Earth, and Moon, which would otherwise drive the satellite out of its assigned 
slot (Soop 1983, 1994). 
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Fig. 1.4. Orbital positions of geostationary satellites controlled by the European telecommunications 
organization Eutelsat (photo courtesy Eutelsat) 

Increasing communication needs could only partly be fulfilled by more and 
more powerful satellites, which has resulted in a need to co-position (or colocate) 
multiple satellites in a single control window. At present, a total of 7 ASTRA 
satellites are actively controlled in a box of ±0.1 0  x ±0.1 0  size in longitude and 
latitude at 19.2° East, giving the owners of a single antenna the opportunity to 
receive an ever-increasing number of TV and radio programs. 

Aside from telecommunications, the geostationary orbit is also of interest for 
weather satellites like Goes and Meteosat. A single satellite can provide an almost 
hemispherical coverage of the Earth at low resolution, thus making it particularly 
useful for the study of global weather phenomena. Finally, geostationary satel-
lites are of growing importance as a complement to traditional satellite navigation 
systems. The European EGNOS system, for example, makes use of an auxiliary 
navigation payload onboard the Inmarsat III satellites to provide users with real-
time corrections to the existing GPS system, which increase the available navigation 
accuracy and reliability to the level required for precision aircraft landing. 

A more specialized application of geostationary satellites is given by the United 
States' Tracking and Data Relay Satellite System (TDRSS). It offers the possibility 
of continuous communication with the Space Shuttle and satellites in low-Earth 
orbit. Furthermore, it can provide tracking data with full orbital coverage, which 
would not be possible with conventional ground stations, due to their limited visi-
bility. 
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1.1.4 Highly Elliptical Orbits 

When a satellite is brought into geostationary orbit, it is first injected into an eccen-
tric transfer orbit, which is later circularized by a -suitable apogee boost maneuver. 
Here, the highly elliptic trajectory mainly serves as an intermediate orbit. There are 
a couple of other applications, however, that intentionally select an eccentric orbit 
for a spacecraft. 

Fig. 1.5. Since 1965 Molniya satellites have provided telephone communications and television 
within the USSR as well as to western states. Photo by Karl D. Dodenhoff, USAF Museum 

Among these, the Russian Molniya and Tundra satellites (Fig. 1.5) are most 
common. Considering the fact that geostationary satellites provide unfavorable 
visibility for users in polar regions (e.g. Siberia), an alternative concept of telecom-
munications satellites was devised in the former Soviet Union. It is based on syn-
chronous 12-hour orbits of 1000 x 40000 km altitude that are inclined at an angle 
of 63.4° to the equator. The apocenter, i.e. the point farthest away from the Earth, 
is located above the northern hemisphere, thus providing visibility of the satellite 
from high latitudes for most of its orbit. Contact is lost for only a few hours, while 
the satellite passes rapidly through its pericenter, before it becomes visible again to 
the user. This gap is overcome by additional satellites in a similar, but rotated orbit. 
Despite the larger number of satellites required, the concept provides a well-suited 
and cost-effective solution for the communication needs of polar countries. 

The second application of elliptic orbits is primarily of scientific interest. In 
order to explore the magnetosphere of the Earth and the solar-terrestrial interaction, 
spacecraft orbits that cover a large range of geocentric distances up to 15 or 20 
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Earth radii are useful. Examples of related missions are the joint US/European 
ISEE-1 satellite, with an apocenter height of 140 000 km, or ESA's Cluster mission 
with four satellites flying in highly eccentric orbits in a tetrahedron formation 
(Schoenmaekers 1991). 

1.1.5 Constellations 

Constellations consist of multiple satellites that orbit the Earth in similar, but suit-
ably shifted or rotated trajectories. A famous example is the Global Positioning 
System (GPS), which allows users to accurately determine their location based on 
measuring the delays of ranging signals received from at least four GPS satellites. 
The fully operational GPS system comprises a total of 24 satellites in six orbital 
planes at 55° inclination. Four satellites each share the same orbit of 20 200 km alti-
tude, but are offset from their neighbors by a 90° longitudinal phase shift. Likewise 
the nodal lines of the three orbital planes are separated by 1200  in right ascension. 
This configuration ensures that a minimum of six satellites are continuously visible 
from any point except the polar regions. Due to the orbital period of 12 hours, the 
configuration of all satellites relative to the Earth is exactly repeated twice every 
(sidereal) day. GLONASS, the Russian counterpart of the United States' Global Po-
sitioning System, utilizes a similar constellation of 24 satellites evenly distributed 
in three planes, with an orbital inclination of 64.8° (Ivanov & Salischev 1992). At 
an altitude of 19 100 km, the orbital period of 11.25 hours is somewhat less than 
that of the GPS satellites. 

Within the past decade, the high potential of low-Earth satellite constellations 
for global mobile communication has been realized. In contrast to geostationary 

Fig. 1.6. The IRIDIUM constellation (Graph- 	Fig. 1.7. The Globalstar constellation (Graph- 
ics by SaVi, The Geometry Center, Univ. of 	ics by SaVi, The Geometry Center, Univ. of 
Minnesota) 	 Minnesota) 
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satellites, which require bulky user antennas, communication with low-Earth satel-
lites can be established from a hand-held phone, due to the much shorter signal paths. 
At least one satellite is always visible from any location. Making use of intersatellite 
links, telephone calls can then be routed around the world to other mobile-phone 
users or to a suitable ground network terminal. Following IRIDIUM, a 66 satellite 
constellation at an altitude of 700 km, which was put into operation in 1999 (Fig. 1.6, 
Pizzicaroli 1998), a couple of other constellations have been designed and partly 
implemented. These include Globalstar with 48 satellites at 1 414 km altitude (Fig. 
1.7), ICO with 10 satellites at 10 400 km, ORBCOMM (Evans & Maclay 1998) and 
Teledesic with 288 satellites at 1 350 km (Matossian 1998). Constellations require 
regular orbital control maneuvers to avoid a change in the relative configuration 
and alignment of satellites. 

1.2 Navigating in Space 

Irrespective of the level of autonomy that may be achieved with present-day satel-
lites, any spacecraft would rapidly become useless if one were unable to locate it 
and communicate with it. Furthermore, many of the spacecraft described earlier 
necessitate an active control of their orbit in accordance with specific mission re-
quirements. Navigation is therefore an essential part of spacecraft operations. It 
comprises the planning, determination, prediction, and correction of a satellite's 
trajectory in line with the established mission goals. 

1.2.1 Tracking Systems 

A variety of tracking systems may be used to obtain measurements related to the 
instantaneous position of a satellite or its rate of change. Most of these systems are 
based on radio signals transmitted to or from a ground antenna (Fig. 1.8). Com-
mon radio tracking systems are able to perform angle measurements by locating the 
direction of a radio signal transmitted by a satellite. The resolution of these measure-
ments depends on the angular diameter of the antenna cone, which is determined 
by the ratio of the carrier wavelength to the antenna diameter. Given a frequency 
of 2 GHz as applied in common antenna systems, a diameter of 15 m is required to 
achieve a beam width of 0.5°. Distance and velocity information can be obtained 
by measuring the turn-around delay or Doppler-shift of a radio signal sent to the 
spacecraft and returned via a transponder. Representative ranging systems achieve 
an accuracy between 2 m and 20 m, depending on the frequency band used and the 
type of ranging signal applied. Doppler measurements can provide the range rate of 
an Earth-orbiting satellite with an accuracy of typically 1 mm/s. In the absence of an 
active transmitter or transponder onboard the spacecraft, sufficiently powerful radar 
may also be applied for spacecraft tracking. Its use, however, is mainly restricted 
to emergency cases or space surveillance tasks (Pensa & Sridharan 1997). 

For low-Earth satellites, a purely ground-based tracking suffers from the lim-
ited station contacts that constrain the available tracking measurements to a small 
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Fig. 1.8. The ground station complex at Redu, Belgium, provides telemetry, tracking, and telecom-
mand operations for low-Earth and geostationary satellites (courtesy ESA) 

fraction of the orbit. To overcome this restriction, geostationary satellites like the 
United Sates' Tracking and Data Relay Satellite (TDRS) can be used to track a 
user satellite via a relay transponder. Going even further, GPS ranging signals of-
fer the opportunity to obtain position measurements onboard a satellite completely 
independently of a ground station. 

Aside from radiometric tracking, optical sensors may likewise be used to lo-
cate a satellite, as illustrated both by the early days' Baker—Nunn cameras (Henize 
1957) and today's high-precision satellite laser ranging systems (Fig. 1.9). Imaging 
telescopes are well suited for detecting unknown spacecraft and space debris up 
to geostationary distances, which makes them a vital part of the United States' 
space surveillance network. Instead of photographic films employed in foimer 
Baker—Nunn cameras, the Ground-Based Electro-Optical Deep Space Surveillance 
(GEODSS) telescopes are equipped with electronic sensors that allow online im-
age processing and removal of background stars. Other applications of optical tele-
scopes include the monitoring of colocated geostationary satellites, which are not 
controlled in a coordinated way by a single control center. Besides being completely 
passive, telescopic images can provide the plane-of-sky position of geostationary 
satellites to much better accuracies (typically 1" 200 m) than angle measure-
ments of common tracking antennas. 
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Fig. 1.9. Satellite laser ranging 
facility of the Natural Environ-
ment Research Council (photo: D. 
Calvert) 

Satellite laser ranging (SLR) systems provide highly accurate distance mea-
surements by determining the turn-around light time of laser pulses transmitted 
to a satellite and returned by a retro-reflector. Depending on the distance and the 
resulting strength of the returned signal, accuracies of several centimeters may be 
achieved. Satellite laser ranging is mainly used for scientific and geodetic missions 
that require an ultimate precision. In combination with dedicated satellites like 
Starlet and Lageos (Rubincam 1981, Smith & Dunn 1980), satellite laser ranging 
has contributed significantly to the study of the Earth's gravitational field. Other 
applications of SLR include independent calibrations of radar tracking systems like 
GPS or PRARE (Zhu et al. 1997). 

1.2.2 A Matter of Effort 

A discussion on spacecraft navigation sooner or later ends up with a question on 
the achieved accuracy. As illustrated in Fig. 1.10, widely varying levels of accuracy 
apply for the knowledge of a satellite's orbit, depending on the particular goals of a 
space project. In accord with these requirements, widely varying tracking systems 
are employed in present space projects. 
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Fig. 1.10. Representative tracking and orbit determination accuracies employed in current spac 
missions (pictures courtesy DLR, DSS, NASA, SES) 
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An upper threshold to the permissible position uncertainty is generally given by 
the need for safe communication with the spacecraft from the ground. Considering, 
for example, an orbital altitude of 800 km and the 0.3° (0.005 rad) half-beam width 
of a 15 m S-band antenna, the spacecraft trajectory must be predicted to within 
an accuracy of 4 km to permit accurate antenna pointing throughout an entire sta-
tion pass. A similar level of accuracy is required for many scheduling functions. 
Spacecraft-specific events like shadows, station contacts, or payload activation are  
commonly considered in the operations timeline with a one-second resolution. Con-
sidering an orbital velocity of 3-7 km/s, the spacecraft position must be known to 
within several kilometers in order to predict an orbit-related event with the de-
sired accuracy. An angle tracking system locating the direction of the downlink 
signal is generally sufficient to meet these types of basic operational requirements. 
Aside from a transmitter, which is employed anyway for ground communication, 
no specific onboard equipment is required for this type of tracking. 

Quite a different accuracy can be achieved by ground-based or space-based 
range and Doppler measurements. Their use is typically considered for missions 
requiring active orbital control. Colocated geostationary satellites, for example, 
may experience intentional proximities down to the level of several kilometers. 
Accordingly, the position knowledge and the associated tracking accuracy must at 
least be one order of magnitude better. Similar considerations hold for remote sens-
ing satellites. In order to enable a reliable geocoding of images with a resolution of 
up to 10m,  a consistent orbit determination accuracy is mandatory. Considering the 
visibility restrictions of common ground stations for low-Earth orbits, space-based 
tracking systems like TDRSS, GPS, or DORIS are often preferred to achieve the 
specific mission requirements. While ground-based tracking requires a conventional 
transponder, the use of the other systems necessitates specialized onboard equip-
ment like steerable antennas (TDRSS) or a Doppler measurement unit (DORIS). 
Utilization of GPS, in contrast, offers position accuracies of  100m  (navigation so-
lution) to 25 m (with dynamical filtering) even for simple C/A code receivers. GPS 
tracking is therefore considered to be the sole source of orbit information for more 
and more spacecraft. 

Leaving the field of traditional spacecraft operations, one enters the domain 
of scientific satellite missions with even more stringent accuracy requirements. 
Among these, geodetic satellite missions like Starlet and Lageos have long been 
the most challenging. Using satellite laser ranging systems, their orbits have been 
tracked with an accuracy in the centimeter to decimeter region, thus allowing a 
consistent improvement in trajectory models and Earth orientation parameters. For 
other Earth exploration missions like TOPEX (Bath et al. 1989, 1998), ERS, or 
JERS, the use of satellite altimeters has been a driving factor for the refinement of 
orbital models and tracking techniques. Besides selected laser ranging campaigns, 
these missions are mainly supported by space-based radio tracking systems like 
TDRSS, GPS, DORIS, and PRARE. Their use has enabled the achievement of or-
bital accuracies in the decimeter region, with focus on the exact restitution of the 
radial component. In the case of GPS usage, the differential processing of space- 
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based and concurrent ground-based pseudorange and carrier phase measurements 
provides for the required increase in precision over the Standard Positioning Ser-
vice. The GPS satellite orbits themselves are determined with position accuracies 
of several centimeters, using GPS measurements collected by a global network of 
geodetic reference stations (Springer et al. 1999). 

Looking at the future, a new era will be opened by the upcoming GRACE 
mission (Davis et al. 1999). Making use of a KJKa-band intersatellite link that 
provides dual one-way range measurements, changes in the distance of the two 
spacecraft can be established with an accuracy of about 0.01 mm. In combination 
with supplementary onboard accelerometers, this will for the first time allow the 
detection of short-term variations in the cumulative gravity field of the solid Earth, 
the oceans and the atmosphere. 





2. Introductory Astrodynamics 

Even though elaborate models have been developed to compute the motion of 
artificial Earth satellites to the high level of accuracy required for many applications 
today, the main features of their orbits may still be described by a reasonably simple 
approximation. This is due to the fact that the force resulting from the Earth's central 
mass outniles all other forces acting on the satellite by several orders of magnitude, 
in much the same way as the attraction of the Sun governs the motion of the planets. 
The laws of planetary motion, which were found empirically by Kepler about 400 
years ago, may, therefore, equally well be applied to a satellite's orbit around the 
Earth. 

In the sequel, the basic laws of orbital motion are derived from first principles. 
For this purpose, a satellite is considered whose mass is negligible compared to the 
Earth's mass  M. Assuming the Earth to be spherically symmetric, the acceleration 

of the satellite is given by Newton's law of gravity: 

GM 
= 	r (2.1) 

r 3  

Here the fraction 	in (2.1) denotes a unit vector pointing from the satellite 
to the center of the Earth, which forms the origin of the coordinate system. The 
magnitude of the acceleration is proportional to the inverse square of the satellite's 
distance r from the Earth's center. 

By measuring the mutual attraction of two bodies of known mass, the gravi-
tational constant G can directly be determined from torsion balance experiments. 
Due to the small size of the gravitational force, these measurements are extremely 
difficult, however, and G is presently only known with limited accuracy: 

G = (6.67259 ± 0.00085)- 10 -11  m3kg-1  S-2 
 

(2.2) 

(Cohen & Taylor 1987). Independent of the measurement of G itself, the gravita-
tional coefficient  GM,  i.e. the product of the gravitational constant and the Earth's 
mass, has been determined with considerable precision from the analysis of laser 
distance measurements of artificial Earth satellites: 

GM  e  = 398 600.4405 ± 0.001 km 3 s-2 
	

(2.3) 

(Ries et al. 1989). The corresponding value of the Earth's mass is given by 

Me  = 5.974.1024  kg . 	 (2.4) 



Fig. 2.1. The central force does 
not alter the plane of the satel-
lite's orbit 
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2.1 General Properties of the Two-Body Problem 

The study of the motion of a satellite in the spherically symmetric 1/r 2  force field 
of a central mass is usually referred to as Kepler's problem, or as two-body problem. 
It was first solved in the second half of the 17th century by Isaac Newton, who was 
thus able to prove the validity of Kepler's laws of planetary motion. 

2.1.1 Plane Motion and the Law of Areas 

The fact that the force exerted on the satellite always points to the Earth's center 
in the two-body problem has the immediate consequence that the orbit is confined 
to a fixed plane for all times. The satellite cannot leave the orbital plane, since the 
force is always anti-parallel to the position vector and, therefore, does not give rise 
to any acceleration perpendicular to the plane. 

(D Earth 

For a mathematical description of this fact, one forms the cross product of (2.1) 
with the position vector r: 

GMED   
rxr = 	(r x r) 

r3  

0 

The right-hand side in this equation is equal to zero since the cross product of a 
vector with itself vanishes. The left-hand side may further be written as 

rxF=rxi;+i-xi-=—
d 	

(2.6) 
dt 

Since the time derivative of rxi- equals zero, the  quantity itself must be a constant, 
i.e. 

rxi-=h= const . 	 (2.7) 

Geometrically, the cross product of two vectors is a vector at right angles to both 
of them. Therefore, the position vector r as well as the velocity vector i- are always 
perpendicular to h, or – in other words – the orbit is confined to a plane. The vector 
h is the angular momentum per unit mass or the specific angular momentum. It is 

(2.5) 
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related to the angular momentum vector 1 by 1 mh, where m is the mass of the 
satellite. 

Equation (2.7), furthermore, implies Kepler's second law or the law of areas. 
Considering the satellite's motion as linear over a small time step At, then 

1 	 1 
AA = —Ir x rAtI = —IhlAt 

2 	2  
(2.8) 

is just the area swept by the radius vector during the time At (see Fig. 2.1). The 
absolute value h = 1111 is therefore known as areal velocity and since h and h 

remain constant, the radius vector sweeps over equal areas in equal time intervals 
(Kepler's second law). 

2.1.2 The Form of the Orbit 

Some other properties of the orbit may be found by multiplying both sides of the 
equation of motion (2.1) with the vector h: 

GM@  
x h 	(h x r) 

r3  
GMED 

r3 
	((r x i.) x r) 

GME9  . 
	(r (r • r) — r (r • i-)) 

r 3  

(2.9) 

Now, since 

d r 

dt  r) 

one finds that 

1 
—r — —2 r 

1 
—Tr  (r (r • r) — r (r • i.)) 

(2.10) 

(2.11) 

(2.12) 

d  
h 	—GM@—

dt 
(—

r  
r

) 

Integrating both sides with respect to time yields 

h x = —GM @  (—
r
) — A 

where —A means an additive constant of integration that is determined by the initial 
position and velocity. A is called the Runge—Lenz or Laplace vector (Goldstein 
1980, Battin 1987). Note that the negative sign of A is just a matter of convention, 
which facilitates the geometrical interpretation. 

The vector h x r is part of the orbital plane since it is perpendicular to the 
angular momentum vector, and the same is true for the unit position vector r/r. 



18 	2. Introductory Astrodynamics 

Therefore, A lies in the orbital plane, too. Some further properties may be revealed 
by multiplying the last equation with r, which results in 

(h x i-) • r —GM er — A • r . 	 (2.13) 

Introducing y, the true anomaly, as the angle between A and the position vector r, 
one arrives at 

h2  = GMer + Ar cos y 	 (2.14) 

where the identity 

(a x b) • c 	— (c x b) • a 	 (2.15) 

has been used to simplify the left-hand side of (2.13). One may now define two 
(positive) auxiliary quantities 

h2 	 A 
p  	e 	 (2.16) 

GM 	 G 

to finally obtain the conic section equation 

r 	 (2.17) 
1 e cos y 

This equation relates the satellite's distance r to the angle between its position vector 
and the reference direction given by A, and thus defines the satellite's path in the 
orbital plane. It may further be seen that the distance varies between a minimum 
value of 

rmin  

1 

(2.18) 

(2.19) 

1 

for y -,.. 0, and 

rmax = 

+ e 

a maximum value of 

P for 0 < e < 
1 — e 	— {
oo 	for 	1 < e 	. 

The corresponding points of the orbit are known as perigee and apogee and their 
connection is the line of apsides. The mean value of the minimum and the maximum 
distance is the semi-major axis a, which is found to be 

1 	 h2  
a  = — (rmin  rm..) = 	 (2.20) 

2 	 1  _e2  GMED  (1 — e) 

for an orbit with a finite apogee distance. The constant e is called eccentricity, since 
it is a measure of the orbit's deviation from a circle (which corresponds to e =  0). 
The parameter p, which denotes the distance of the satellite from the Earth's center 
at right angles to perigee and apogee, is called semi-latus rectum (see Fig. 2.2). 

Equation (2.17) is known as the equation of a conic section in polar coordinates. 
It is an extension of Kepler's first law, stating that planetary orbits are ellipses. In 
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Fig. 2.2. Conic sections with eccentricities e = 0.5, e = 1.0, and e = 1.5 with the same semi-latus 
rectum p 

general, three distinct types of curves may be obtained from intersecting a plane 
with a cone. They are known as ellipses, parabolas, and hyperbolas, and have eccen-
tricities smaller than, equal to, and larger than one, respectively. In the following, the 
discussion is confined to the elliptic motion of Earth-orbiting satellites in contrast 
to deep space probes, which leave the Earth's gravity field on hyperbolic orbits. A 
general discussion of the geometry of conic sections may be found in Montenbruck 
(1989) together with formulas for calculating parabolic or hyperbolic orbits. 

2.1.3 The Energy Integral 

Last but not least, another interesting law of Keplerian motion may be derived, 
which relates the satellite's velocity to the distance from the center of the Earth. 
For this purpose one fauns the square of both sides of (2.12) and obtains 

r • A 
(h x ) 2  = (G M e9 ) 2  2GMe 	 A2 

(GM)2 (1 + 2e cos y + e2) 

= (GM e ) 2  (2(1 + e cos v)  —(1  — e 2)) 

(2.21) 

Since the vectors h and i- are perpendicular, the value of the left-hand side is equal  
to h2 y2 , using y = ii-1 to denote the satellite's velocity. Substituting the value 
1/a = G M @ (1 — e2)/ h2  of the reciprocal semi-major axis, and making use of the 
conic section equation, finally yields the equation 

2 	1 v2 Gme  

r a 
(2.22) 
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which is called the vis-viva law. It is equivalent to the energy law, which states that 
the sum of the kinetic energy 

Ekin —
1 

m v2  
2 

and the potential energy 

Gm Me  
Epot = 	 

is constant during motion: 

1 	Gm M ED 	1 Gm Me  
Etot = — m v 	 

2 
 

2 a 

(2.23) 

(2.24) 

(2.25) 

As may be seen from this expression, the total energy depends only on the reciprocal 
semi-major axis, not on the eccentricity of the orbit. The energy of an elliptic satellite 
orbit which is always bound to the Earth, is negative, since the semi-major axis is a 
positive quantity. Parabolic (1/a 0) and hyperbolic (1/a  <O) orbits, on the other 
hand, have a zero or positive energy, which allows a satellite to reach an infinite 
distance from the Earth. 

Fig. 2.3. Velocity and orbital pe-
riod for circular Earth satellite 
orbits 

For a satellite on a circular orbit (r = a) the vis-viva law yields a velocity of 

GM 
vcirc 	

a 
	 (2.26) 

which evaluates to 7.71 km/s for a low-Earth orbit at an altitude of 320 km, and 
corresponds to an orbital period 

27 a 
Tcirc = 	 =  2m  (2.27) 
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of 91 minutes (Fig. 2.3). For a satellite at a distance of 42 164 km from the center of 
the Earth (i.e. at an altitude of 35 786 km) the velocity is only 3.07 km/s, and the time 
of revolution amounts to 231 56m  . Since this is just the period of the Earth's rotation, 
a satellite at this height appears stationary with respect to the Earth, if it is placed 
above the equator and orbits the Earth in an easterly direction. Due to this fact, 
geostationary orbits are of special interest for e.g. telecommunications satellites, 
which may provide a continuous transmission from one continent to another. 

v=3.07 km/s 

 

Fig. 2.4. An application of the vis-viva law: 
the velocity requirement for orbital transfer 
from a circular low-Earth orbit to geosta-
tionary orbit Geostationary orbit 

For an eccentric orbit the satellite's velocity varies between a maximum of 

(2.28) 

at perigee and a minimum of 

 

v apo
\IGME9  /1—e 

a I 1 e 
(2.29) 

at apogee according to the vis-viva law. Considering, for example, an orbit with 
its perigee at an altitude of 320 km and its apogee at an altitude of 35786 km 
(a = 24430 km, e = 0.726), these velocities amount to 10.13 km/s and 1.61 krrils, 
respectively. As may be concluded from these figures, a velocity increment of 
2.42 km/s is required to transfer a satellite on a low-Earth orbit onto an elliptic orbit 
with its apogee near the geostationary orbit. An additional 1.46 km/s is, furthermore, 
required in the apogee to circularize the orbit by raising the perigee to the same 
altitude (Fig. 2.4). 
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2.2 Prediction of Unperturbed Satellite Orbits 

2.2.1 Kepler's Equation and the Time Dependence of Motion 

So far the discussion of Keplerian orbits has mainly been concerned with the geo-
metrical form of a satellite's orbit in space. From the law of gravity it has been 
concluded that the motion may not follow an arbitrary curve in space, but  is con-
fined to an ellipse or another conic section. However, no information on the time 
dependence of the motion has yet been derived, i.e. the orbital position at a specific 
time is still unknown. 

Fig. 2.5. The definition of the ec-
centric anomaly E 

Apogee 	a 	 ae e x 	Perigee 

For this purpose an auxiliary variable E, which is called the eccentric anomaly, 
is defined via the equations 

= r cos y =: a (cos E — e) 

r sin v 	a 	— e2  sin E 

or equivalently 

r = a(1 — e cos E) 

(2.30) 

(2.31) 

The geometrical meaning of E is illustrated by Fig. 2.5. 
Using the coordinates î and 9, which denote the satellite's position in the orbital 

plane with respect the center of the Earth, one may express the areal velocity h=lhl 
as a function of E: 

h = 

= a (cos(E) — e) a-11— e2  cos(E)É 

a-V1 —e2  sin(E) • a sin(E)È 

= a2-11 — e2 t(1 — e cos(E)) . 

This equation may further be simplified using 

(2.32) 

h = 1GMea(1 — e2) 	 (2.33) 
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to give the following differential equation for-the eccentric anomaly: 

(1 — e cos E)È = n 

Here the mean motion 

(2.34) 

 

G 

 

(2.35) n 
a3  

 

has been introduced to simplify the notation. Integrating with respect to time finally 
yields Kepler's Equation 

E(t) — e sin E(t) = n(t — tp) , 	 (2.36) 

where tp  denotes the time of perigee passage at which the eccentric anomaly van-
ishes. The right hand side 

M = n(t — t p) 	 (2.37) 

is called the mean anomaly. It changes by 3600  during one revolution but — in 
contrast to the true and eccentric anomalies — increases uniformly with time. Instead 
of specifying the time of perigee passage to describe the orbit, it is customary to 
introduce the value Mo of the mean anomaly at some reference epoch to. The mean 
anomaly at an arbitrary instant of time may then be found from 

M = Mo n(t — to) 
	

(2.38) 

The orbital period, i.e. the time during which the mean anomaly changes by 27r or 
360°, is proportional to the inverse of the mean motion n and is given by 

T = 	= 
27r 

(2.39) 

This relation is essentially Kepler's third law, which states that the second power 
of the orbital period is proportional to the third power of the semi-major axis. The 
same result that was earlier derived for circular orbits from the vis-viva law (see 
(2.27)) is therefore valid for periodic orbits of arbitrary eccentricity. 

2.2.2 Solving Kepler's Equation 

Kepler's equation relates the time t to the coordinates is  and 9 in the orbital plane 
via the eccentric anomaly. In order to obtain the position of the satellite at time t 
one has to know the time of perigee passage and the semi-major axis to calculate 
the mean anomaly One may then find the value of E that fulfils (2.36) and finally 
obtain î and 9 from (2.30). 

Kepler's equation can, however, be solved by iterative methods only. A common 
way is to start with an approximation of 

E0 = M or E0 = 7r 	 (2.40) 
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and employ Newton's method to calculate successive refinements Ei until the result 
changes by less than a specified amount from one iteration to the next. Defining an 
auxiliary function 

f(E) = E — e sin E — M , 	 (2.41) 

the solution of Kepler's equation is equivalent to finding the root of f (E) for a 
given value of M. Applying Newton's method for this purpose, an approximate 
root Ei of f may be improved by computing 

	

f (Ei) 	Ei — e sin Ei — M 
Ei+1 = Ei 	= Ei 	 (2.42) 

	

(Ei) 	 1 — e cos Ei 
Note that this expression has to be evaluated with E in radians (1 rad = 18077r) 
and not in degrees, to avoid erroneous results. 

The starting value E0 M recommended above is well suited for small ec-
centricities, since E only differs from M by a term of order e. For highly eccentric 
orbits (e.g. e > 0.8) the iteration should be started from E0 = TC to avoid any 
convergence problems during the iteration. 

A more general discussion of starting values and iteration procedures for solv-
ing Kepler's equation can be found in the literature (see Smith 1979, Danby & 
Burkardt 1983, Taff & Brennan 1989, and references therein). Great efforts have 
been made to develop methods that require a minimum of iterations and may safely 
be applied for all values of e and M. Since the critical case of eccentricities close to 
unity is rarely encountered in the practical computation of periodic Earth satellite 
orbits, the discussion is somewhat academic, however. Unless one has to solve Ke-
pler's equation exceedingly often or in a real-time application, there is little need 
to look for methods converging faster than Newton's method. 

2.2.3 The Orbit in Space 

So far the satellite's motion has been discussed in its natural orbital-plane reference 
system, which allows the most simple description. More general expressions can 
be obtained by introducing the unit vector P = A/IA I, which points towards the 
perigee (cf. (2.12)) and the perpendicular unit vector Q, corresponding to a true 
anomaly of v = 90°. Using these vectors one may express the three-dimensional 
position by 

r = P + Q 

= r cosy P r sin y Q 	 (2.43) 

a(cosE — e) P a-11 — e2  sin E Q 
and the velocity by 

= 

,/GMea 
( sin E P -11 — e2  cos E Q) , 

	 (2.44) 

since cIÉ = ,/GMED alr according to (2.34). 
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+x (Equinox Y) 
	a 

Fig. 2.6. The equatorial coordinate system 

The most common coordinate system for describing Earth-bound satellite orbits 
is the geocentric equatorial coordinate system, which is aligned with the Earth's 
rotation axis and equator. Its origin is the center of the Earth, the z-axis points to 
the north pole and the equatorial plane forms the x-y reference plane. The x-axis 
is aligned with the vernal equinox (Y), which describes the direction of the Sun 
as seen from Earth at the beginning of spring time or, equivalently, the intersection 
of the equatorial plane with the Earth's orbital plane (cf. Chap. 5). As illustrated 
in Fig. 2.6, the position of a point in the equatorial coordinate system may be 
specified by either the Cartesian coordinates (x,  y, z) or the polar coordinates right 

ascension a, declination 8, and geocentric distance  r.  The conversion from spherical 
to Cartesian coordinates and vice versa may be accomplished via the basic relations 

	

x 	cos 8 cos a 

	

r = ( y 	= r cos 8 sin a 
sin 8 

(2.45) 

and 

= arctan — 	8 = arctan  	r .1x2 + y2 + z2 	(2.46) 
+ y2 

Here the quadrant of a must be chosen in such a way that the sign of the denominator 
(x) is equal to the sign of cos a, i.e. —90°  <a < +900  for x > 0 and +90° < 
a  <+2700  for x  <O. 

In order to describe the orientation of the orbital plane and the perigee with 
respect to the equatorial coordinate system, three angles are commonly employed 
(see Fig. 2.7): 

The inclination gives the angle of intersection between the orbital plane and 
the equator. An inclination of more than 90° means that the satellite's motion 
is retrograde, its direction of revolution around the Earth being opposite to 
that of the Earth's rotation. 



Fig. 2.7. The orbital elements  i ,  Q, 
and co of a satellite 
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S2 The right ascension of the ascending node indicates the angle between the 
vernal equinox and the point on the orbit at which the satellite crosses the 
equator from south to north. 

co The argument of perigee is the angle between the direction of the ascending 
node and the direction of the perigee. 

The satellite's position in space may be expressed as a function of these angles 
by a sequence of three elementary transformations. In the orbital plane system, 
which is defined by the unit vectors P, Q and W = hlh, the coordinates are given 
by 

a, 9, 2) = (r cos v , r sin  y,  0) . 	 (2.47) 

In a coordinate system that is rotated around W by an angle of —co (i.e. with an 
x'-axis pointing to the ascending node), the coordinates are 

(x',  y', z') = (r cos(v + co), r sin(v + co), 0) 	 (2.48) 

and the corresponding transformation is written as 

(cos(v + co) 
r sin(v + co) J = Rz  (—co 

0 

cos v ) 
sin v 
0 

(2.49) 

In order to express the satellite's position in equatorial coordinates, two further 
rotations are required. First, a rotation around the x'-axis by an angle —i is used 
to obtain equatorial coordinates counted from the line of nodes. A final rotation 



2.2 Prediction of Unperturbed Satellite Orbits 	27 

around the new z"-axis by —0 then yields the equatorial coordinates counted from 
the direction of the equinoxl : 

x ). 	 ( cos v 
y 	=  R(—Q)R x (—i)R z (—co) r sin. v 

0 

Evaluating this expression one finds 

x 	cos u cos Q — sin u cos i sin Q 
Y 	= r cos u sin Q + sin u cos i cos Q 

sin u sin i 

(2.50) 

(2.51) 

with u = 	(argument of latitude) as the angle between r and the line of nodes. 
Similar considerations lead to the coordinate representation of the vectors P and 
Q that correspond to points at unit distance with a true anomaly of 0° and 900 : 

and 

+ cos co cos Q — sin co cos i sin Q 
P = 	+ cos co sin Q + sin co cos i cos Q 

+ sin co sin i 

— sin co cos Q — cos co cos i sin Q 
— sin co sin S2 + cos co cos i cos Q 
+ cos co sin i 

(2.52) 

(2.53) 

The third vector W may finally be expressed as 

+ sin i sin S2 \ 
W 	— sin i cos Q 	 (2.54) 

+ cos i 

It is noted that P,  Q, and W are just the column vectors of the matrix 

(P,  Q, W) = R z (— Q)R x (—i)R z (—co) 	 (2.55) 

which is especially useful when coordinates have to be transformed between the 
equatorial and the orbital-plane coordinate system. The three vectors are usually 
referred to as Gaussian vectors. 

I The elementary matrices 

1 0 	0 ) 
R x  (0) = (0 +cos0 +sin0 

0 —sin0 ±cosq5 

(-1-coscp 0 —sin/ 	+cos0 +sin0 0) 
R y 05) = 	0 1 0 	R z (0)= —sin0 +cos0 0 

+sin0 0 +cos0 	 0 	0 1 

are employed to describe rotations around the x, y and z-axes. The signs are chosen in such a way 
that a positive angle  4)  corresponds to a positive (counterclockwise) rotation of the reference axes 
as viewed from the positive end of the rotation axis towards the origin (Goldstein 1980, Mueller 
1969). 



Next, the vis-viva law yields the semi-major axis 

GM@ 

v2 
 )_1 

 
a = (2.60) 

n = 
a3  

,IGM0  
(2.61) 
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2.2.4 Orbital Elements from Position and Velocity 

As has been shown, a total of six independent parameters are required to describe 
the motion of a satellite around the Earth. Two of these orbital elements (a and e) 
describe the form of the orbit, one element (M) defines the position along the orbit 
and the three others (S2, i, and co) finally define the orientation of the orbit in space. 
Given these six elements, it is always possible to uniquely calculate the position 
and velocity vector. 

Vice versa there is exactly one set of orbital elements that corresponds to given 
initial values of r and y, and one may ask how to find these elements. Part of the 
answer is already evident from the solution of the two-body problem presented 
above. First of all the areal velocity vector 

(y i — zSi ) 
h =r xi.= zi—_x 

x .S1 — y _X 
(2.56) 

and its modulus h can be obtained from the position and velocity. Then, from the 
representation of h or W = hl h as a function of i and Q in (2.54), it follows that 

( sin i sin Q) 	( +17,1h \ 	(+W„ ) 
sin i cos S2 	= 	—h y l h 	= 	—W,, (2.57) 
cos i 	 +hz / h 1 	+Wz 

Hence the inclination and the right ascension  of the ascending node are given by 

( 	) 	
S2 	

r
W
x,  

i= arctan  	 = arctan 	 (2.58) 
WZ 	 y ) 

The areal velocity can further be used to derive the  semi-laths rectum 

h2  
P = 	 GMED  

(2.59) 

and consequently the mean motion 

2In evaluating expressions of the form a = arctan(y/x) the quadrant of a must be chosen in 
such a way that the sign of the denominator (x) is equal to the sign of cos a, i.e. —90° < a < +900 
for x > 0 and +90°  < a < +270°  for x  < 0. 
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For elliptic orbits a will always be positive. The eccentricity e follows from 

e = 1 
	

(2.62) 
a 

Considering (2.31) and the identity 

= 	a (cos(E) — e) • a sin(E)È 

e2  sin(E) • cc ,,/1 — e2  cos(E)t 
- 

= a-
9 
 nesm(E) 

(2.63) 

1 — r I a 

The eccentric anomaly may now be used to obtain the mean anomaly from Kepler's 
equation 

M (t) = E (t) — e sin E (t) 	(in radians) 	 (2.65) 

with t being the epoch of r and  r. 
In order to find the remaining orbital element co, one has to determine the 

argument of latitude u first. Solving (2.51) for cos u and sin u yields 

u = arctan 	
z/ sin i 

	

= arctan 	 (2.66) 
x cos S2 y sin S2) 	—x Wy YWx) 

Furthermore, the true anomaly is given by 

y = arctan 
(. ■,/1 — e2 sin E) 

(2.67) 
cos E — e 

taking proper care of the correct quadrant (cf. (2.30)). The result may finally be 
used to obtain the argument of perigee from 

(2.68) 

2.2.5 Non-Singular Elements 

In many applications, satellite orbits are chosen to be near-circular, to provide a 
constant distance from the surface of the Earth or a constant relative velocity. Typ-
ical examples are low-altitude remote sensing satellites  or geostationary satellites, 
which are furtheimore required to orbit the Earth in a near-equatorial plane. 

While there is no inherent difficulty in calculating position and velocity from 
known orbital elements with e and i close to zero, the reverse task may cause prac-
tical and numerical problems. These problems are due to singularities arising from 
the definition of some of the classical orbital elements. The argument of perigee, 

one may solve for e sin(E) and e cos(E) to find the eccentric anomaly from 

E = arctan 
(r- I (a2  n)) 

(2.64) 



30 	2. Introductory Astrodynamics 

for example, is not a meaningful orbital element for small eccentricities, since the 
perigee itself is not well defined for an almost circular orbit Small changes of the 
orbit may change the perigee location by a large amount, and small numerical er-
rors may lead to enhanced errors in the computation of co since the equation for E 
becomes almost singular in this case. Similar considerations apply to small incli-
nations where the line of nodes is no longer well defined and where the equations 
for a become singular. Several attempts have therefore been made to substitute 
other parameters for the classical Keplerian elements. These elements are usually 
referred to as non-singular, regular or equinoctial elements (see e.g. Broucke & 
Cefola 1972). 

A possible set of regular elements that may be used for both low eccentricities 
and inclinations is defined by3  

a 	 h = e sin(S2 ± co) p = sin(i/2) sin S2 	
(2.69) 

1= S2 +co+ M k=ecos(S2 +co) q= sin(i /2) cos S?. 

Geometrically, k and h closely approximate the projection of the Runge—Lenz 
vector A into the equatorial plane for orbits of small inclination, and are likewise 
used to define the eccentricity and the direction of perigee Similarly p and —q give 
the approximate projection of the orbital-plane nomial vector W onto the equator, 
if one neglects the factor 1/2, which has been introduced to allow use of these 
elements for high inclinations, and to avoid a singularity at i =  90°. The mean 
longitude 1, which is defined as the sum of the right ascension of the ascending 
node, the argument of perigee and the mean anomaly, may further be interpreted 
as the approximate right ascension of the satellite for near-circular orbits of small 
inclination. 

An alternative set of non-singular elements defined by 

a 	 h = esin(S2 ± co) p = ta.n(i /2) sin S2 

1= S2 ± co+ M k =ecos(S2 co) q = tan(i/2) cos 

is due to Broucke & Cefola (1972). While (2.69) is preferable, due to the sim-
plified structure of the associated partial derivatives of the position and velocity 
vector (Dow 1975), the second set (2.70) is more convenient when working with 
perturbational equations (see Battin 1987). 

Adopting the convention of equinoctial elements by Broucke & Cefola (1972), 
the satellite position and velocity vector may be expressed as 

r = Xi f + Yig 	= 	+ 	 (2.71) 

in analogy with (2.43) and (2.44). The orthogonal unit vectors 

(2.70) 

—2p 

3 For consistency with the notation commonly employed in the literature, the symbols h and p 
are used to denote non-singular elements throughout this section. They should not be confused with 
the areal velocity and the semi-latus used elsewhere. 

(1 —  p2 ±q2) 1 
f 	cos(co-FS2)P — sin(co+S2) Q = ±p2±q2 	2pq 	(2.72) 



and 

1 	
2pq 

1 rp2 +,72 1 +P2— q 
2q 

(2.73) g = sin(co+ S2) P cos(w+ S2) Q = 
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span the orbital plane like the Gaussian vectors, but are rotated by an angle of Q +co 
with respect to P and O. For small inclinations, f and g almost coincide with the 

x- and y-axis of the equatorial coordinate system, respectively. 
After proper rearrangement of (2.43) and (2.44), the Cartesian coordinates with 

respect to f and g, and the corresponding time derivatives, can be expressed as 

X1 = a ((1—h 2  18) cos(F) hk,8 sin(F) — k) 

= a ( (l  — k 2  16) sin(F) hk,8 cos(F) — h) 

a2 n 
cos(F) — (1 — h 2P) sin(F)) 

1.71 = -
a2n

(—h1cP sin(F) (1 —k 2,8) cos(F)) 

making use of the auxiliary quantity 

(2.74) 

 

1 

 

(2.75) 
1+ ,V1—h 2 —k 2  

(Cefola 1972). The eccentric longitude 

F=E-F-co-FS2 	 (2.76) 

replaces the eccentric anomaly when working with non-singular elements, and is 
found by solving a modified version of Kepler's equation given by 

F—ksin(F) h cos(F) =l=M-F-w-F-S2 
	

(2.77) 

Finally, the radius r is expressed as 

r =a (1 k cos(F) — hsin(F)) 
	

(2.78) 

in terms of the equinoctial elements. 
The equinoctial elements defining the orientation of the orbital plane are related 

to the orbital plane normal vector W = (r x 	x  r I by 

-1-Wx 	 — W Y   q 	 (2.79) P = 	= 
1+W 	 1+ W  

which may be used to detennine the vectors f and g corresponding to a given 
position and velocity. Projection of the Runge—Lenz vector 

A = x (r x — G M e —
r 
	 (2.80) 



Fig. 2.8. The ground projection of a satellite orbit 
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onto these reference vectors then yields the eccentricity components 

k= 	 

	

A -f 	
h Ag 

 
= 	 

	

GM® 	GM®  

Inserting the in-plane coordinates 

(2.81) 

Xi 	r • f 
	

r•g 	 (2.82) 

into (2.74), and solving for the sine and cosine of F, furtheimore yields the expres-
sions 

cos(F) = k + 
(1 —k2P)Xi  — hicfiYi  

a/1 —h 2 —k 2  

sin(F) =  h+ 
 (1 —h 2,8)Yi — hkf3X1 

(2.83) 

a-11—h 2  —k2 

for determining the eccentric longitude, from which the mean longitude 1 can be 
obtained via Kepler's equation (2.77). 

2.3 Ground-Based Satellite Observations 

2.3.1 Satellite Ground Tracks 

At each instant of time, the intersection of the orbital plane of a satellite with the 
surface of the Earth yields a great circle, which depends only on the inclination 
of the orbital plane and the position of the ascending node (Fig. 2.8). This great 
circle intersects the Earth's equator at an angle that is equal to the inclination i of the 
orbital plane, and covers geographical latitudes between a minimum of ço = —i and 
a maximum of ço = i. The geographical latitude ço of the satellite and its ground 



-10° 
-20 
-30" 
-40° 

-50° 

2.3 Ground-Based Satellite Observations 	33 

projection is equal to its declination 8, both of which denote the angle between 
the geocentric radius vector and the equatorial plane4 . The geographical longitude 

on the other hand, denotes the angle between the Greenwich meridian and the 
meridian through the point. It is counted positively towards the east, and differs 
from the right ascension a by the right ascension 0 (t) of the Greenwich meridian 
at time t: 

= a 	(t) . 	 (2.84) 

Denoting by d the time in days5  since 12h  on 1 January 2000, the angle 0 (t) is 
given by 

e = 280.4606° ±  360.9856473° d  , 	 (2.85) 

where small secular changes have been neglected.  &  increases by 3600  during one 
revolution of the Earth, which lasts approximately 23h56ine•e• somewhat less than 
one day. Since 0 (t) is a measure of the time between subsequent meridian crossings 
of a star for an observer on Earth, it is also known as sidereal time or Greenwich 
Hour Angle. 

Fig. 2.9. Sample ground track of the circular low-Earth orbit of Echo 1 (a = 7978 km, i = 47.2°, 
T = 118T3) 

As a result of the Earth's rotation, the actual ground track of a satellite differs 
from the simple great circle that results from the intersection of the orbital plane 
with the surface of the Earth at a specific instant of time. For a satellite with an 

4 For the sake of simplicity the small polar flattening of the Earth is neglected throughout this 
section. 

5 Malcing use of the Modified Julian Date  MID (see Annex A.1), the number of days since J2000 
is given by d = MJD — 51544.5. 
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orbital period T, the geographic longitude  Xç2 =  Q  — e at which the satellite 
crosses the equator, is shifted by 

= -6-T = —0.2507°/min- T 	 (2.86) 

from one revolution to the next. This westwards shift of ground tracks from subse-
quent orbits is clearly visible in the projection of three sample orbits of Echo 1 that 
is illustrated in Fig. 2.9 (Bohrmann 1963). After its launch in August 1960, Echo 1 
orbited the Earth once every two hours at a nearly constant altitude of 1300 km and 
an inclination of i = 47.2°. The corresponding ground tracks cover South America 
and Australia in the southern hemisphere, as well as North America, Europe and 
parts of Asia in the northern hemisphere. While the general direction of motion is 
from west to east (left to right in Fig. 2.9), the ground track is subject to a superposed 
westwards shift of almost 30° per orbit as a consequence of the Earth's rotation. 

The ground track of Echo 1 is typical of all near-circular low-altitude Earth or-
bits, which differ only in the inclination and the resulting coverage of high northern 
and southern latitudes. In the case of eccentric orbits, the resulting ground track 
pattern may be quite different, however, for a geostationary transfer orbit and a 
Molniya orbit, as illustrated in Figs. 2.10 and 2.11. 

Fig. 2.10. Ground track of a sample geostationary transfer orbit (a = 24 400km, e = 0.7307, 
= 7.0°, T = 10P5) 

Transfer orbits similar to the one shown in Fig. 2.10 are commonly used to 
raise a communications satellite to a geostationary orbit above the Earth's equator, 
where it orbits the Earth once every 23h56m and maintains a nearly fixed position 
with respect to the surface of the Earth (see also Fig. 2.3). The inclination of 7°, 
which is typical for a launch with an Ariane rocket from French Guyana, gives rise 
to small oscillations of the ground track around the equator. In contrast to low-Earth 
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orbits, however, the ground track exhibits an S-shaped pattern, which is due to the 
small angular speed of the satellite at high altitudes. Near apogee, at a distance 
of roughly 42 000 km, the satellite's inertial velocity amounts to 1 6 km/s, which 
corresponds to an angular velocity of only 190°/d. As a consequence, the satellite 
falls back behind the Earth's rotation and appears • to move in a westward direction 
opposite to the general direction of motion. 

Fig. 2.11. 24h  ground track of a sample Molniya type orbit (a = 26 555 km, = 0.7222, i = 63.4°, 
e.o = 270.0°, T =  120)  

Molniya orbits, named after a series of spacecraft built in the former Soviet 
Union, are of special interest for satellite telecommunications in high northern (or 
southern) latitudes that cannot properly be reached by geostationary satellites. The 
orbital period of Molniya-type satellites is adjusted to be half that of the Earth's 
rotation, which results in a constant ground track pattern that is continuously re-
peated (Fig. 2.11). In order to achieve an optimum coverage of a particular country 
in the northern hemisphere (e.g. Russia or Canada), the perigee of the inclined orbit 
is located at southern latitudes near co = —90°. Since the satellite spends most 
of the time near the apogee of its highly eccentric orbit (e 0.72), it is usually 
visible for at least eight hours per orbit (and day) from that country. A set of three 
satellites sharing the same Molniya-type orbit, but passing perigee eight hours apart 
is therefore sufficient to ensure full-time telecommunications services. 

A common feature of all Molniya-type satellites is the orbital inclination of 
i 63°. It ensures a good coverage of the northern hemisphere and, at the same 
time, minimizes the impact of orbital perturbations caused by the Earth's oblateness. 
Due the attraction exerted by the Earth's equatorial bulge, each satellite is subject 
to small periodic deviations from a purely Keplerian orbit. The right ascension of 
the ascending node, and the argument of perigee are further affected by a long-term 
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change that amounts to 

2 
AS2 = —0.584° (—

Re
) cos(i) 

and 

(2.87) 

2 
Zko = +0.292° (—

Re 
) (5 cos2 (i) — 1) 	 (2.88) 

per orbit (see e.g. Bohrmann 1963, Escobal 1965). Here Re  stands for the equatorial 
Earth radius of 6378 km, while p = a(1— e2 ) is the orbital parameter or semi-latus 
rectum. As can be seen from these equations, the secular drift of the perigee vanishes 
for an inclination of i = 63.4°, which is also known as the critical inclination. By 
choosing this particular value for the orbital inclination of the Molniya satellites, 
it can easily be assured that the perigee and apogee remain at the desired position 
even without active correction maneuvers. 

Fig. 2.12. Satellite motion in the local 
tangent coordinate system. Only the part 
of the orbit which is marked by a bold 
line, and the corresponding ground track, 
are visible from the given station 

2.3.2 Satellite Motion in the Local Tangent Coordinate System 

A natural coordinate system for describing the motion of a satellite with respect to 
an observer or ground station is the topocentric or local tangent coordinate system. 
For a given point on Earth, it is aligned with the local horizontal plane, i.e. with 
the plane that is tangential to the surface of the Earth at that point. Commonly, 
three orthogonal unit vectors eE, eN and ez pointing in the east, north and zenith 
direction, are employed to define the reference axes of the local tangent coordinate 
system for a given station. As illustrated in Fig. 2.12, the vectors eN and eE are 
aligned with the meridian and the parallel of latitude passing through the station, 
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while ez is perpendicular to the horizontal plane in the direction away from the 
center of the Earth. 

In order to express a satellite's position in the local tangent coordinate system, 
a three-step transformation is required. Denoting the geocentric equatorial coordi-
nates by r, a rotation by the Greenwich hour angle 0 around the z-axis yields the 
position 

ref = Rz (e)r 	 (2.89) 

in an Earth-fixed coordinate system that is aligned with the equatorial plane and 
the Greenwich meridian. The corresponding coordinates of a ground station at 
longitude X and latitude ço are given by 

( cos q) cos 
q) 

X) 
R = R e  cos sin X 	 (2.90) 

sin ço 

and the difference 

Sef =  ref — R 
	

(2.91) 

then yields the topocentric station-satellite vector in Earth-fixed, equatorial coor-
dinates. The east, north and zenith unit vectors in the same coordinate system are 
given by 

(— sin X) 	— sin q) cos X 	 cos q) cos X 
eE = ± cos X 	eN = — sin ço sin X 	ez = cos q) sin X 	(2.92) 

0 	 cos q) 	 sin q) 

Defining the orthogonal transformation matrix 

E = (eE eN ez) T  , 	 (2.93) 

the satellite's local tangent coordinates may finally be written as 

( sE 
S  = sN) = E (Rz (e)r — R) . 

sz 
(2.94) 

Here sE, si\T and sz are the projection of the station-satellite vector onto the east, 
north and zenith unit vectors. 

For the description of antenna pointing directions the Cartesian coordinates are 
commonly supplemented by the azimuth and elevation angles 

	sgr ) 

The azimuth A gives the angle between the projection of the station-satellite vector 
on the horizontal plane and the north direction. It is counted positively from the north 

A = arctan (—
sN 

SE ) 
E = arctan ( 

Sz 
(2.95) 
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to the east as illustrated in Fig. 2.12. The elevation E, on the other hand, describes 
the angle between the topocentric satellite vector and the horizontal plane. 

As an example, Fig. 2.13 illustrates the variation of the topocentric distance and 
the pointing direction for the satellite orbit and ground station shown in Fig. 2.12. 
The satellite moves around the Earth in a circular orbit at an altitude of h = 960 km 
and an inclination of i = 97°. It appears above the horizon some six minutes after its 
passage through the ascending node, which is assumed to lie above central Africa. 

The complete pass over the ground station lasts about 17 minutes, during which 
the distance s = is I varies between a minimum of 1100 km and a maximum of 
3600 km When the satellite appears above the horizon, it approaches the station 
at a maximum velocity of 6 km/s, and a similar velocity in the opposite direction 
is attained at the end of the visibility. At the time of closest approach, which more 
or less coincides with the maximum elevation, the line-of-sight velocity passes 
through zero. The S-shaped pattern in the variation of shown in Fig. 2.13 is typical 
for circular low-Earth orbits, and may be used to derive the distance and altitude 
of a satellite passing over a ground station (Mass & Vassy 1962). The elevation 
shows a steep maximum of nearly 55° when the satellite passes next to the station. 
At the same time, the azimuth value changes rapidly from its initial value of 150° 
(south-south-east) to near 0° (north) at the end of the visibility. A maximum angular 
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velocity of A 	0.5°/s is required to follow the spacecraft with a ground station 
antenna, in this particular case. 

2.4 Preliminary Orbit Determination 

Ground-based satellite observations like angle, distance or velocity measurements 
depend directly on the satellite's motion with respect to the center of the Earth. They 
may therefore be used to deduce the orbital elements of a satellite, if its orbit is not 
known from other sources. Situations in which a satellite orbit must be determined 
from a small set of available measurements without additional information are likely 
to occur during tracking of foreign spacecraft, in the case of unforeseen launcher 
injection errors, or after detection of pieces of space debris from former satellites 
and rocket upper stages. 

At least six independent measurements are required to uniquely determine an 
orbit if no further assumptions on the form or size of the orbit are made. Deriving the 
six orbital elements from this minimum set of observations is commonly referred to 
as preliminary orbit determination, since techniques like the least-squares method 
(cf. Chap. 8) can later be employed to further refine the orbit determination as more 
and more observations become available. 

Based on the formulation of the unperturbed two-body problem, a variety of 
different analytical orbit determination methods has been developed. They are gen-
erally divided into Laplacian and Gaussian type methods, referring to the two 
scientists that devised the prototypes of these methods in the late 18 th  and early 
19th  centuries for orbit determination of solar system bodies. Laplacian orbit deter-
mination methods are generally designed to derive the inertial position and velocity 
at an instant of time in the middle of the observation interval, which can then be 
converted- to orbital elements according to Sect. 2.2.4. Laplacian type orbit determi-
nations can be formulated for various combinations of measurements, but may not 
be well suited for longer tracking arcs if the velocity information has to be obtained 
from interpolation of positional measurements. Gaussian orbit determination, on 
the other hand, was originally designed to find the orbital elements from three sets 
of widely spaced direction measurements. In the case of satellite measurements, it 
may also be applied to finding the orbit from two position vectors, which is useful 
if both range and angle measurements are available. 

The choice of the most suitable preliminary orbit determination method de-
pends strongly on the type and distribution of available measurements, and is still 
an ongoing discussion, even though most methods for satellite orbit determination 
were devised in the early days of spaceflight. In View of the great variety of pos-
sible approaches to the solution of the preliminary orbit determination problem, 
the following presentation has intentionally been restricted to a brief account of a 
simple Gaussian type algorithm. 
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2.4.1 Orbit Determination from Two Position Vectors 

In favorable cases a satellite may allow simultaneous distance and angle mea-
surements yielding directly the satellite's three-dimensional position relative to the 
ground station. Accounting for the known station location, these measurements can 
be converted to the position with respect to the center of the Earth. Only two of 
these position vectors (corresponding to six independent measurements) are then 
required to determine all six orbital elements in a unique way. The method described 
in the following comes from Gauss, and provides an efficient and robust way of 
solving the orbit determination problem for two given position vectors. Further 
methods like the Lambert-Euler method, the p-iteration and the use of f and g 

series are discussed in Escobal (1965) and Bate et al. (1971). 

The Ratio of Sector to Triangle 

As shown by Gauss, the problem of determining an orbit from two position vectors 
and a time interval is closely related to the problem of finding the ratio of the sector 
and the triangle formed by the orbit and the radius vectors. 

Let T a  and Tb  denote the satellite's geocentric position at times ta  and th. The 
area A of the triangle defined by the vectors  T a  and Tb  (Fig. 2.14) depends on the 
length of the sides ra  and rb, and the included angle vh —Va ,  which is assumed to 
be less than 1800  in what follows: 

1 
A = —

2
rarb • sin(vh — va) • 	 (2.96) 

Here va  and vh are the values of the true anomaly at the times under consideration. 

Fig. 2.14. Areas of sectors and 
triangles 

The area S of the sector that is bounded by  T a  and Tb  and the arc of the orbit 
between them, is proportional to the difference between the times ta  and th according 
to Kepler's second law (2.8): 

S -1--VGMe  -la (1 — e2) (tb — ta) • 	 (2.97) 
2 

Here a and e denote the semi-major axis and the eccentricity of the orbit that joins 
the given points. Substituting the semi-latus rectum p = a(1 — e2 ) yields the 
expression 

- 7.1 	— 
ra rb • sin(vb 	va) 

 

(2.98) 7 
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for the ratio n between the two areas, where, for simplicity, the normalized time 
interval r is defined by 

r = N/GM  ED • (tb ta) 	 (2.99) 

If the semi-latus rectum is replaced by known quantities using the equations for the 
two-body problem, one finds that it is no longer possible to express n as a solvable 
algebraic equation. Instead one obtains a system of two equations 

2g sin(2g) 

(2.100) 

77
2 = m 

1+ sin (g/2)  
with the (positive) auxiliary variables 

t 2 

	 ,3 
N/2(rarb T a  rb) 	 (2.101) 

ra 	 1 
1 =  	

	

2,/2(rarb r a  • r b ) 	2 
from which n can be determined together with the value g that equals half the 
difference of the eccentric anomalies at times th and ta .  Eliminating g yields the 
transcendental equation 

n = i. + 	. w (—,-,- — / 
Tr 	ir 

m ) 
, 	 (2.102) 

m 

where the function W is defined by 
2g — sin(2g) 

' 
W (w)  	g = 2 sin-1  -1 -- -w 	 (2.103) 

sin 3  (g)  

2  
W(W) 	 (2.104) —

3 
± —

3.5
w + 

3.5.7w 
 + .. 

(Bucerius 1950, Escobal 1965). The argument w is always positive and smaller than 
one for elliptic orbits. To determine n iteratively, one may use the secant procedure 

rii — qi-1 

for finding the root of 
ni 	m 

f (x) = 1 — x 	 (2.106) 
x 	x 

Appropriate starting values 

111 = rio ± 0.1 and  712 = rio 
	 (2.107) 

may be computed from Hansen's approximation (Bucerius 1950, Battin 1987) 

= 
sin 3  (g) 

1 

171 = 

Or 

= rui f(m)  
f (7-  i) — f 

(2.105) 

12 10 	44 m 
= 	

1 + 	 
9 1 + 5 /6 • 

(2.108) 



e cos(y a ) = plra  — 1 

e cos(vb) = p I rb  — 1  

when solving for e cos(v). Taking into account that 

(2.11 1) 

cos(vb) = cos(va ) cos(vb — va ) — sin(va ) sin(vb — va ) 

= cos(va ) 
(rb. ea ) 

sin(v a) (—
ro) 

rb 	 ri,  

on e  ob tains the two equations 
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Orbital Elements from Two Positions 

The orbit of a satellite that passes through the points ra  and Tb  is always restricted 
to the plane determined by these two points and the center of the Earth. In order 
to derive the inclination i of this plane with respect to the equator, as well as the 
right ascension of the ascending node, one first obtains the orthogonal unit vectors 
Ca  and eo, which both lie in the orbital plane: 

T a  
(2.109) 

Iral 
TO  

eo = 	 where ro = rb— (rb • ea)ea 	 (2.110) 
Irol 

Ca  is aligned with ra , ro and eo are perpendicular to it. If one now fowls the cross 
product of ea  and eo, the result obtained is the Gaussian vector W = ea X  Co, 
which is perpendicular to the orbital plane, and is likewise nounalized to unit 
length. Equation (2.58) then yields the right ascension of the node and the orbital 
inclination. Furthermore, the argument of latitude ua  may now be determined from 

In order to determine the remaining orbital elements, one requires the ratio sector to 
triangle, which was derived in the previous subsection. One is then able to express 
the semi-latus rectum 

2.(A 77) 2  

ua  = arctan 	
Za 

— XaWy YaWx) 

P = (2.112) 

(2.114) 

(2.115) 

= p/ra — 1 

= (p/ ra — 1) ( 
rb • ea) 

(plrb —1)1 (:2-) 
rb 

e cos(v a )  

e sin(va ) 

in terms of the interval r and the area 
1 	 1 

= —
2

ra  rb sin(vb — va ) = —2 ra ro 	 (2.113) 

of the triangle defined by the vectors ra  and rb. 
The eccentricity of the orbit follows from the conic section equation (2.17) that 

leads to 

(2.116) 
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which may themselves be solved for the eccentricity and the true anomaly at time 
ta . The argument of perigee now follows from the difference between the argument 
of latitude and the true anomaly: 

CO = lia 	Va • 
	 (2.117) 

From the semi-latus rectum and the eccentricity, one furthermore obtains the  semi-
major axis 

a = 	 
1 — e 2  

(2.118) 

Finally, the sixth element is the mean anomaly Ma, which is obtained from Kepler's 
equation 

Ma = Ea e sjn Ea 	(radians) . 	 (2.119) 

Here the eccentric anomaly Ea  follows from the equations 

cos v 	e 
cos Ea  = 	 

1 	e • cos v a  

— e2  sin va  
sin Ea  = 	 

1 	e • cos  V a  
(2.120) 

Or 

(-V 	1 — e 2  sin va  
Ea  = arctan 

cos va  e 
(2.121) 

2.4.2 Orbit Determination from Three Sets of Angles 

In order to obtain the three-dimensional satellite position at a specific instant of 
time, simultaneous angle and distance measurements are required. Distance mea-
surements, however, require special onboard equipment like a retro-reflector  or 
transponder, in order to determine the round-trip time of a signal from the ground 
to the satellite and back. In general, they are less easily available than passive angle 
measurements, which can be obtained by optical observations or the localization 
of arbitrary radio signals transmitted from a satellite. Orbit determination from ex-
clusive angle measurements is therefore of special interest for applications like the 
identification of unknown spacecraft. 

As was shown by Gauss in his analysis of minor planet orbit determination, 
the problem of finding an orbit from angle observations can be reduced to that of 
finding an orbit from two position vectors by accounting for various geometrical and 
dynamical relations between the observations. Each set of angle measurements (for 
example azimuth and elevation) defines a unit  vector, which describes the direction 
from the station to the satellite at the instant of the observation. The distance is 
unknown, however, and has to be derived during the process of determining the 
orbit. In order to obtain all six orbital elements in an unambiguous manner, three 
sets of observations (i.e. six angle measurements) must be available. From these 
values, and the known station location, the satellite position at the time of each 
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observation can be derived in an iterative way. Knowing the position vectors, the 
orbital elements may finally be computed as illustrated in the previous section. 

Let el, e2 and e3 denote the unit vectors that describe the direction of observa-
tion at the measurement times t1  <t2  < t3, and let R1, R2 and R3 be the equatorial 
coordinates of the ground station, from which the corresponding measurements 
have been obtained. Note that the observations may be obtained from different sta-
tions, and that all vectors have to be converted to a common, space-fixed coordinate 
system, which is in general aligned with the equator. The Earth—satellite—station 
triangle then yields the fundamental relation 

ri = Ri + piei 	(i = 1, 2, 3) 	 (2.122) 

between the given quantities and the unknown station—satellite distances pi and 
Earth—satellite position vectors ri. 

Since the satellite's orbit lies in a plane with the center of the Earth for unper-
turbed Keplerian motion, it is possible to express the second position vector by an 
appropriate linear combination of the other two: 

r9 = niri + n3r3 . 	 (2.123) 

The factors ni.  and n3 depend on the relative position of r 1, r2 and r3, and are 
positive, provided that the entire arc of the orbit is less than 180°. By inserting 
(2.123) into (2.122), the unknown position vectors can be eliminated, yielding 

p2e2 — n3p3e3 = n1R1 — R2 ± n3R3 	 (2.124) 

after suitable rearrangement. Following Bucerius (1950) one introduces the auxil-
iary vectors 

=  e2 x e3 d2 =  e3 x  e d3 =  e1 x e2 	 (2.125) 

to solve this vectorial equation for pi, p2 and p3. By definition d1 is perpendicular 
to e2 and e3, d2 is perpendicular to e3 and el, and d3 is perpendicular to el and e2. 
Consequently, the dot product ei • d only differs from zero for i = j. Multiplying 
(2.124) by d1, d2 and d3 therefore yields the equations 

(2.126) 

D = ei • (e2 x e3) = e2 • (e3 x ei) 
= e1. d1 	= e2 d2 

= e3 • (el x e2) 
= e3 • d3 

	

—niPi (el • d1) = 	 R2+ n3R3) • di 

	

P2(e2 • r12) = 	— R2 +n3R3) - d2 

— n3P3(e3 • d3) = (niRi — R2 +n3R3) • d3 . 

These expressions may further be simplified using the abbreviations 

and 

(2.127) 

Dii = di Ri , 	 (2.128) 



Or 

11'2 x r3I 	Ai 
(2.131) 

In  1 x r21 	Z13  
123= 	= -- 

ri  x r3 I 	ZA2 	Vi  X r31 	Z12 

which finally gives the three equations 
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P1 = 

P2=  

P3 = 

1 
— —(niDii — 

n i D 
1 

—(ni D21 — D22 
D 

1 
— —(n 1 D31 — 

n3D 

Di2 + n3D13) 

± n3 D23) 

D32 + n3D33) 

(2.129) 

The distances P1'  p2 and p3 can therefore be expressed in terms of ni and n3, as 
well as the vectors ei and  R.  

By introducing equation (2.123) for the orbital plane, the number of unknowns 
has thus been reduced from three (p1,2,3) to two (n1,3). Furthermore, the newly 
introduced coefficients are of particular interest, since they can be closely approx-
imated by expressions involving the time intervals between the observations. For 
this purpose the equation of the orbital plane is again considered. Forming the cross 
product of both sides of (2.123) with r3 and ri, one obtains the expressions 

(r2 x r3) = ni • (ri x r3) 
	

(ri  x  r2)  =  12 3 .  (ri  x  r3) 	(2.130) 

ni and  12 3 can therefore be interpreted as ratios of the triangle areas fowled by ri, 
r2, and r3 (see Fig. 2.15). 

Fig. 2.15. Sector and triangle areas for three satellite positions 
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For small arcs of the orbit in particular, the areas of the triangles differ only 
slightly from the corresponding sector areas Si = qi ik, which are themselves 
proportional to these time intervals: 

272 t3 — t2 	t3 — t2 	 272 t2 — t1 	t2 — t1 
ni .---- 	 n3 =   . 	(2.132) 

771 t3 — t1 	t3 — t1 	 273 t3 — ti 	t3 — ti 

Approximate values for  n 1  and n3 are therefore known, which provides a way to 
determine first approximations for the geocentric distances (pi). 

These coarse initial values may then be improved by an iterative method. As 
outlined in the previous subsection, an orbit is unambiguously determined if one 
knows the geocentric position of a satellite at two given times. The same applies to 
the orbital elements and the sector—triangle ratio. If, on the other hand, one knows 
the value of the sector—triangle ratio for a set of three observed positions, the position 
vectors with respect to the station and the center of the Earth may be calculated. 
A simple iteration scheme may therefore be applied to determine an orbit from 
three sets of angle measurements. To start with,  ni  = (t3 — t2)/(t3 — ti) and n3 = 

(t2 — ti)/(t3 —  ti) are used as initial approximations for the ratios of the triangle areas. 
Improved values of both quantities are then obtained by calculating the station—
satellite distances pi from (2.129), the geocentric position vectors ri from (2.122), 
the sector—triangle ratios Ili for each pair of geocentric position vectors, and finally 
the corresponding triangle ratios from (2.132). These steps may be repeated until 
the various quantities change only negligibly from one iteration to the next. 

The iteration described here is due to Bucerius (1950) and provides the easi-
est way of solving the given orbit determination problem on the basis of Gauss's 
method. More refined algorithms may be used to improve the convergence, and 
extend the range of applicability. For a description and valuation of these methods 
the reader is referred to Escobal (1965). 
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Exercises 

Exercise 2.1 (Orbit raising using Hohmann transfer) Compute the total ve-
locity increment required for a Hohmann transfer between two circular orbits of 
radius ri = a and r2 = a+ Aa. The Hohmann transfer makes use of a first velocity 
increment vi to change the orbit into an  ellipse with perigee radius ri and apogee 
radius r2. At apogee, a second maneuver tAy2 is performed, which circularizes 
the transfer orbit again at a radius of r2. Expand your result, assuming  Lia << a 
and demonstrate that, to first order, the required velocity increment is equal to the 
difference of the orbital velocities. Check the expressions for the case of an orbit 
raising maneuver changing the altitude of a remote sensing satellite from 750 km 
to 775 km. 

Solution: From the vis -viva law (2.22), orbital velocities of 

and 	v2=  

are obtained for the initial and final circular orbits. The transfer ellipse has a semi-
major axis at  = • (ri  + r2), yielding a perigee and apogee velocity of 

V = 

	

( 2 	2  ) 	GM@ 	r2 
G Me) 

	

ri 	ri 	r2 	at ri 

and 

li Va = GMe 
( 2 

T2 ri + T2 

GMe  ri 
at r2 

respectively. In total, a velocity increment of 

zAy = 	+ tAv2 = (Vp V1) ± ( V2 Va) 

is required to perform the orbit raising. 
Substituting y = , the linear expansion in  Lia  yields at 

as 

2 

a + Lia/2 as well 

1 Aa 
v2 v (1 — 	, 

Accordingly,  

1 Aa 	 3 Aa 
vp  v (1+ -zt —a ) --) . 

4 a 

1 Aa 
Avi Av2 = --v— =V1 V2 2 a  

for small altitude raising maneuvers of circular orbits. Note, however, that both ma-
neuvers increase the instantaneous velocity of the satellite, but effectively decrease 
the mean orbital velocity. 
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For the given sample case, the following results are obtained from the rigorous 
equations: 

vi = 7.478 lcm/s v = 7.484 lcm/s 
V2 = 7.465 lcm/s va  =-- 7.458 km/s 
v2 — vi = 13.08 m/s zAv = 13.08 m/s 

Both values for the velocity difference agree well with each other and with the 
approximate value of ZA v 13.11 m/s. 

Exercise 2.2 (Kepler's equation) Solve Kepler's equation for an eccentricity of 
e = 0.72 and a mean anomaly of M = 4° (the typical values of an Ariane geosta-
tionary transfer orbit at spacecraft separation). Compare the number of iterations 
and the total number of trigonometric function evaluations required by Newton's 
method with the simple fixed-point iteration 

E0  = M  
E1+1 =-- M + e sin(Ei) . 

Which method performs better for M = 50°? 

Solution: In the first case, Newton's iteration converges within three steps, whereas 
a total of sixty steps are required for the fixed-point iteration. In terms of trigono-
metric function evaluations, Newton's method outperforms the fixed-point iteration 
by a factor of ten: 

Newton's iteration 
i 	E  LE  n trig  

Fixed-point iteration 
i 	E  LIE   n trig  

1 0.24807037959 4.88 • 10-3  2 1 0.12003783118 1.23 • 10-1  1 
2 0.24319412989 6.93-10-6  4 2 0.15603300183 8.72-10-2  2 
3 0.24318719638 1.38 • 10-11  6 3 0.18170162689 6.15-10-2  3 

20 0.24304481906 1.42 • 10-4  20 
21 0.24308769931 9.95 • 10-5  21 
22 0.24311766554 6.95 • 10-5  22 

58 0.24318719620 1.73-10-10  58 
59 0.24318719625 1.21 • 10-1°  59 
60 0.24318719629 8.47•10-11  60 

Further away from pericenter, however, the fixed-point iteration may well be applied 
even for large eccentricities. Despite the larger number of iterations, the computa- 
tional effort may even be smaller than that of Newton's method, as illustrated by 



the .case M = 500 : 
Newton's iteration 

dE n trig  

Fixed-point iteration 
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n trig 

1 1.89939446077 3.07 • 10-1  2 1 1.42421662504 1.68-10 -1  1 
2 1.61923760464 2.67-10-2  4 2 1.58494364580 7.55 • 10-3  2 
3 1.59274371561 2.49 • 10-4  6 3 1.59259257441 9.74 • 10-5  3 
4 1.59249515283 2.19-10-8  8 4 1.59249360526 1.53-10-6  4 
5 1.59249513093 0.00 10 5 1.59249515476 2.38-10-8  5 

6 1.59249513056 3.72 • 10-1 ° 6 
7 1.59249513094 5.82-10-12  7 

Exercise 2.3 (Osculating Elements) Compute the Keplerian elements for an 
Earth-orbiting satellite located at 

r = (+10000.0, +40000.0, -5000.0) km 

and moving at a velocity of 

= (-1.5, +1.0, -0.1) km/s . 

Solution: 

Semi-major axis 
Eccentricity 
Inclination 
RA ascend. node 
Arg. of perigee 
Mean anomaly 

a 25015.181km 
0.7079772 

6.971° 
S2 	173.290° 

91.553° 
M 144.225° 

Exercise 2.4 (Topocentric satellite motion) Compute the motion of a polar 
satellite at 960 km altitude (e =  0, i = 97°) relative to a ground station in central 
Europe (A: = +11° East, go = +48°). Assume the satellite crosses the equator at 
right ascension Q = 130.7° at the reference epoch 1.0 January 1997 (MJD 50449.0) 
and predict its motion (azimuth, elevation, distance) for a period of 30 mins How 
long is the satellite visible, and what is the maximum elevation? Compare your 
results with Figs. 2.12 and 2.13. 

Solution: The spacecraft is visible for about 18 minutes and achieves a peak 
elevation of roughly 55°. 

UTC A E  s  UTC A E 
hh:mm:ss [°] [0 ] [km] hh:mm:ss [°] [0 ] [km] 

00:06:00.0 151.1 -0.1 3644.9 00:15:00.0 48.4 53.7 1167.0 
00:07:00.0 149.8 3.5 3262.7 00:16:00.0 23.0 43.6 1321.7 
00:08:00.0 148.2 7.7 2884.1 00:17:00.0 10.1 32.9 1574.2 
00:09:00.0 146.0 12.5 2512.4 00:18:00.0 3.1 24.2 1884.9 
00:10:00.0 142.9 18.3 2153.0 00:19:00.0 358.8 17.3 2228.7 
00:11:00.0 138.2 25.6 1814.8 00:20:00.0 356.0 11.7 2591.4 
00:12:00.0 130.3 34.8 1514.1 00:21:00.0 354.1 7.1 2965.0 
00:13:00.0 115.6 45.8 1278.8 00:22:00.0 352.6 3.1 3344.7 
00:14:00.0 86.8 54.9 1151.0 00:23:00.0 351.6 -0.5 3727.3 
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Exercise 2.5 (Sun-synchronous Repeat Orbits) The orbital plane of a remote 
sensing satellite is commonly required to maintain a fixed angle (e.g 30 0) with 
respect to the mean Sun direction, to ensure adequate illumination conditions for 
image data collection. Considering the secular motion6  

3 	 G --n0J2--"-- cos i with no = 	 and J2 = +1.08340—  
2 	

3 
a2 	 a3  

of the ascending node, a sun-synchronous orbit may be obtained by adjusting the 
inclination i in such a way that s'2 = el 0  = 0.985647240°/d for a given semi-major 
axis  a.  At the same time, it is generally desirable to select the altitude in such a 
way that the resulting ground track is repeated after a specified number of days 
and orbits. Here "one orbit" refers to the time between subsequent nodal crossings, 
which is also known as the draconic orbit period. Due to secular perturbations 

3 	Ri 	 3 
= — —no .12- (1 — 5 cos2  i) An = n —no = 	(1 — 3 cos 2  i) 

4 	a2 	 C/2  
of the argument of perigee and the mean anomaly, the draconic period TN = 
2n-/ (n + ci)) differs slightly from the Keplerian orbital period To = 27r/no. In 
the case of the European Remote Sensing Satellite (ERS-1/2) a sun-synchronous 
orbit is required, for which the Greenwich longitude kg = Q — 0 of the ascending 
node equator crossing is repeated after K = 3 cycles (days) and N = 43 orbits, i.e. 

N • (.f .  — 6) . TN = — K 360°  . 

Determine the corresponding altitude h = a — Re  and inclination i of the ERS orbit, 
taking into account the above-mentioned secular perturbations. Verify your result 
by computing the Greenwich longitude Xs? of the ascending node for N subsequent 
equator crossings (starting at an initial value of Xs2 = 0 without loss of generality). 

Hint: For sun-synchronous orbits Ô  — 	—360°/d, giving the simplified 
relation TN = (KIN) d or  271- NI(K d) = no + An + ci). Ignoring the difference 
between the draconic and Keplerian orbital period (An + c't) 0), a first guess of 
the semi-major axis is obtained. From this, an approximate value of the inclination 
can be determined from the known secular rate Q of the ascending node. After 
computing the perturbations An and ci), a refined value of no and the semi-major 
axis is obtained, which may be used as input for a subsequent iteration. 

Solution: Starting from TN = (K I N) d, the iteration of the semi-major axis and 
inclination yields the following values: 

Iteration 0 1 2 

TN [d] 0.0697674 
2n-/ [° /d] 5160.00000 
(;) [°/d] 0.00000 —2.96073 —2.97087 
n — n [°/d] 0.00000 —3.10679 —3.11652 
no [°/d] 5160.00000 5166.06752 5166.08739 
a [1(1111 7158.747 7153.141 7153.123 
h [km] 780.610 775.004 774.986 

[O ] 
98.521 98.498 98.498 

6 Valid for circular orbits. i.e. e 	0. 
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Convergence is achieved within 2-3 steps, giving the final solution h = 774.99  l -
and  i = 98.50° for the parameters of the ERS orbit. 

Consecutive ground tracks are shifted by in.Q = 360° K I N = -25.12° at 
the equator. As required, the ground track is closed after 3 days and 43 orbits: 

Day 1 
ÀS2 

Day 2 
Xs2 

Day 3 
Xs2 

0 0.000  15 -16.74° 30 -33.49° 
1 -25.12° 16 -41.86° 31 -58.60° 
2 -50.23° 17 -66.98° 32 -83.72° 
3 -75.35° 18 -92.09° 33 -108.84° 

10 108.84° 25 92.09° 40 75.35° 
11 83.72° 26 66.98° 41 50.23° 
12 58.60° 27 41.86° 42 25.12° 
13 33.49° 28 16.74° 43 0.00° 
14 8.37° 29 -8.37° 44 -25.12° 

Exercise 2.6 (Initial Orbit Determination) An Indian ground station collects 
two sets of range and angle measurements of a satellite: 

Date UTC Azim. Elev. Range [km] 
1999/04/02 00:30:00.0 132.67° 32.44° 16945.450 
1999/04/02 03:00:00.0 123.08° 50.06° 37350.340 

Given the Greenwich coordinates 

X +1344.143 km , Y +6068.6011cm , Z +1429.311 lcm 

of the station, find the inertial position vector of the spacecraft at both times, and 
use the result to derive the Keplerian elements of the orbit. 

Solution: • The observed distances and pointing angles correspond to the following 
positions with respect to the Earth equator and vernal equinox: 

Date 	UTC 	x [km] 	y [km] 	z [km] 
1999/04/02 00:30:00.0 +11959.978 -16289.478 -5963.827 
1999/04/02 03:00:00.0 +39863.390 -13730.547 -4862.350 

Taking into account the flight time of 2.5 hours between both points, a highly 
eccentric orbit with elements 

Semi-major axis a 28196.776km 
Eccentricity 	e 	0.7679436 
Inclination 	i 	20.315° 
RA ascend. node S2 	359.145° 
Arg. of perigee 	co 	179.425° 
Mean anomaly M 	29.236° 

is obtained, where the value of the mean anomaly applies for the epoch of the first 
observation. 
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3.1 Introduction 

In the framework of Newtonian physics the motion of a satellite under the influence 
of a force F is described by the differential equation 

= F(t,r,v)Im , 	 (3.1) 

where r and y are the position and the velocity of the satellite in a non-rotating 
geocentric coordinate system, and m denotes the satellite's mass. As shown in the 
previous chapter, one obtains elliptic satellite orbits with fixed orbital planes for 
the special case of a radially symmetric force 

GM63, 
F 	m 	r2 er 	 (3.2) 

which decreases with the second power of the distance. Here er  denotes the nor-
malized position vector of the satellite pointing in radial direction. This simple 
inverse-square law describes the gravitational attraction of a point-like mass, and 
can also be shown to be true for extended bodies, provided that they are built up of 
concentric shells of constant density. Since this is a basic model for the structure 
of the Earth, Keplerian orbits provide a reasonable first approximation of satellite 
motion. 

Due to its daily rotation, the Earth is not, however, a perfect sphere, but has 
the fowl of an oblate spheroid with an equatorial diameter that exceeds the polar 
diameter by about 20 km. The resulting equatorial bulge exerts a force that pulls 
the satellite back to the equatorial plane whenever it is above or below this plane 
and thus tries to align the orbital plane with the equator. As may be expected 
from the small flattening of the Earth, this perturbation is about three orders of 
magnitude smaller than the central attraction but it may nevertheless be easily 
detected. Due to its angular momentum the orbit behaves like a gyroscope, and 
reacts with a precessional motion of the orbital plane, and a shift of the line of 
nodes by several degrees per day. Aside from this secular perturbation of the orbital 
plane, the asphericity of the Earth gives rise to a variety of further perturbations that 
affect all orbital elements, and are most pronounced for satellites at low altitudes. 

A different behavior is observed for the perturbations that arise from the grav- 
itational attraction of the Sun and the Moon. In order to describe the motion of a 
satellite with respect to the center of the Earth, one has to consider the lunar and 
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solar forces on both the Earth and the satellite. Their difference increases almost 
linearly with the satellite's distance from the Earth and yields a perturbation of the 
geocentric orbit that is comparable in size to that of the Earth's equatorial bulge 
for geostationary orbits. The resulting acceleration points away from the Earth 
whenever the satellite is aligned with the Earth and the Sun or Moon, and is di-
rected towards the Earth when the satellite is approximately at right angles to the 
Earth—Sun/Moon line. Similar forces as for the Moon and the Sun arise from the 
gravitational attraction of the planets. However, their amplitude is much smaller 
than the lunisolar perturbations; the dominant planetary contributions stem from 
the planets Venus and Jupiter. 

Satellites with altitudes of several hundred kilometers above ground are subject 
to an additional, velocity-dependent force that is caused by the resistance of the 
Earth's atmosphere. Since the atmospheric density decreases exponentially with 
increasing height, drag affects mainly the low-Earth satellites, and is strongest 
during the perigee of an orbit. It reduces the orbit's kinetic energy and angular 
momentum, and leads to a slow decrease of the semi-major axis and the eccentricity. 
For uncontrolled satellites, the loss of altitude and the circularisation of the orbit 
pose severe limits on the satellite's lifetime Drag has little or no effect on the orbital 
plane since its main component is always anti-parallel to the velocity vector. 

While the acceleration due to gravitational forces is independent of the satel-
lite's mass and area, this is not true for drag and other surface forces. Among these, 
the solar radiation pressure is most notable, especially for communications satel-
lites with large solar panels. The radiation pressure arises when photons impinge 
on the satellite surface, and are subsequently absorbed or reflected, transferring the 
photons' impulse to the satellite. In contrast to drag, the solar radiation pressure 
does not vary with altitude. Its main effect is a slight change of the eccentricity and 
of the longitude of perigee. 

The effect of various perturbations as a function of geocentric satellite distance 
is illustrated in Fig. 3.1. For the calculation of the influence of atmospheric drag 
on circular low-Earth satellite orbits, exospheric temperatures between 500 K and 
2000 K (cf. Sect. 3.5) have been assumed. The area-to-mass ratio used in the com-
putation of non-gravitational forces is 0.01 m2/kg. For specially designed geodetic 
satellites like LAGEOS, the corresponding value may be smaller by one to two or-
ders of magnitude. The perturbations due to various geopotential coefficients 41,m 

and the lunisolar attraction have been calculated from rule-of-thumb foimulas by 
Milani et al. (1987). For the purpose of comparison it is mentioned that a constant 
radial acceleration of 10 -11  km/s2  changes the semi-major axis of a geostationary 
satellite by approximately 1 m. 

Aside from the aforementioned forces, various minor perturbations are consid-
ered in Fig. 3.1 which produce accelerations in the order of 10-15-10-12  lun/s2 . The 
most notable are due to the radiation pressure, resulting from the sunlight reflected 
by the Earth (albedo), as well as relativistic effects and the solid Earth tides. 
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3.2 Geopotential 

In the introductory chapter on unperturbed Keplerian motion, it was assumed that 
the total mass of the Earth is concentrated in the center of the coordinate system, 
and the gravitational law (2.1) 

GM 
r = 	 

r3  
can therefore be used to calculate the acceleration felt by a satellite at r. For the 
following discussion of a more realistic model, it is convenient to use an equivalent 
representation involving the gradient of the corresponding gravity potential U 

1 
r = VU with U = GMe —

r 
. 	 (3.3) 

This expression for the potential may easily be generalized to an arbitrary mass 
distribution by summing up the contributions created by individual mass elements 
dm = p (s) d3  s according to 

U = G
f p (s)  d3  s 
 (3.4) 

IT —s i  

Here p (s) means the density at some point s inside the Earth, and ir — si is the 
satellite's distance from this place (Fig. 3.2). 

Fig. 3.2. The contribution of a small mass 
element to the geopotential 

3.2.1 Expansion in Spherical Harmonics 

In order to evaluate the integral in the above equation, the inverse of the distance 
may be expanded in a series of Legendre polynomials. For r >  s,  which holds for 
all points r outside a circumscribing sphere, one has 

1 " (s ) n 
13, (cos y) with cos y = r 	s 	 (3.5) 

1 

Ir  — si 	 r s 
n= 

Here 

13,(u) = 	 1 dn  (u 2 — 1) n 
2'n! dun 

is the Legendre polynomial of degree n, and y is the angle between r and  s.  

(3.6) 
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By introducing the longitude  A (counted positively towards the East) and the 
geocentric latitude of the point r according to 

x = r cos 0 cos 

y = r cos 0 sin X 
	

(3.7) 

z = r sin 	, 

as well as the corresponding quantities A.' and Of  for s (cf. Fig. 3.2), one can make 
use of the addition theorem of Legendre polynomials, which states that 

(n — m)! 	. 
Pn (cos Y) = 	(2—  80m) 

(n+m)!
Pnm(sln 0) Pnm (sin 0') cos(m (X —  A')).  (3.8) 

Here Pnm , which is called the associated Legendre polynomial of degree n and 
order m, is defined as 

dm  
PnnAu) = (1 — u 2)m12 	P(u) 

dum 	• 
(3.9) 

Explicit formulas for selected low-order Legendre polynomials may be found in 
Table 3.1. 

Table 3.1. Low-order Legendre polynomials 

n m Pnm (u) Pnm (sin g» 
00  1 1 

u sin 0 
1..1

  

1..1
  

(1  _ u2)112 cos 0 

0
 ,--1  C

N
1 

11,1„2  —1)  2 k'1".  

1(3 sin2 0 _ 1) 

cv 3u(1 — u2) 1 /2  3 cos 0 sin0 
3(1 — u2) 3 cos2  0 

One is now able to write the Earth's gravity potential in the form 

oo n G MED 	RI 
U = 	 — Pnm (sin 0)(Cnn, cos(mX) + Snm  sin(m)0), 

r 	rn 
n=0 m=0 

with coefficients 

(3.10) 

M=0 

2-80 (n—m)!  f sn 
1  

M 	
' 

e, (n +m)! 
—

RI 

Pnm (sin 0) cos(mX C nm =  	 ) p (s) d3  s 

2-80m  (n—m)!  f sn 

Me, (n +m)! 	
/--i-1 

Pnm(sin. 0 1) sin(mXI)p(s) d3  Snm = 	 s 

which describe the dependence on the Earth's internal mass distribution. Geopo- 
tential coefficients with m =0 are called zonal coefficients, since they describe the 

(3.11) 



(2 - 80m) (2n -1-1)(n — m)! 
Pnm = (3.16) Pnm (n +m)! 
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part of the potential that does not depend on the longitude. All Sno vanish due to 
their definition, and the notation 

Jn  = — CnO 
	 (3.12) 

is commonly used for the remaining zonal ternis. The other geopotential coefficients 
are known as tes serai and sectorial coefficients for (m  <n)  and (m = n), respectively. 

A close look at (3.10) reveals that a change of Ro  affects the geopotential 
coefficients Cnm  and Snm . Therefore, care must be taken to apply matching values 
of  GM, Ro , as well as Cnni  and Snm  , when computing the satellite's acceleration. 

Since the geopotential coefficients Cm', and Snm  cover a range of ten or more 
orders of magnitude, even for a small model, the nomialized coefficients enm  and 
:9-nm  are usually given, which are defined as 

'-'Snnmm I 	-1 	(2 —80m  )(n2+n+171 1) ; —m)!I CSn'imm  I 
	

(3.13) 

The nomialized coefficients are much more unifomi in magnitude than the unnor-
malized coefficients, and their size is given approximately by the empirical Kaula 
rule (Kaula 1966) as 

n m Snm 

 

(3.14) 
n2  

Making use of the nomialized geopotential coefficients, the acceleration due 
to the Earth's gravity potential may be rewritten as (Milani et al. 1987) 

GME, °° n 	- 
=V 	= Pnm(Sin 0)(C-  nm  COs(mA.) + S nnz  sin(mX)) rn 

n=0 m=0 

where the nomialized associated Legendre functions are given as 

(3.15) 

    

In contrast to the unnomialized functions Pnnz, the Pnni  exhibit a less pronounced 
variation with n and m, according to their normalization relations. 

Note: The reader should be aware that a slightly different definition of the associ-
ated Legendre polynomials is frequently used, which involves an additional factor 
(-1)m. Both definitions are distinguished by the notation P,T = (-1)m Pnrn  fl 
Abramowitz & Stegun (1965), but often the two notations are mixed up in the 
literature. For applications in geodesy and related fields it is important to use the 
definition given here (i.e. the one without the factor (-1)m) in order to be consistent 
with published geopotential coefficients. 
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3.2.2 Some Special Geopotential Coefficients 

Even though the definition of the geopotential coefficients Cnni  and Sn,n  is rather 
complicated at first sight, one may nevertheless derive some simple results if only 
low-degree and order coefficients are considered, or if one uses an approximate 
model for the terrestrial density variation. 

First of all, it is easy to show that C00 is always equal to 1, since the integral 

f  so 
— Poo (sin 0') cos(0)p(s) d3 s = p(s) d3  s = MED 	 (3.17) 
143, 

yields just the total mass of the Earth. The first term in the expansion of the Earth's 
potential is therefore just the two-body potential U =GMED Ir. Furthermore, one 
recognizes from (3.11) that all terms Sno vanish, since sin(mX 1 ) in the integrand is 
equal to zero for m = O. 

As mentioned in the introductory section of this chapter, the potential of a 
spherical body that is built up from concentric shells of constant density is the same 
as that of a point-like mass, and it is now possible to prove this statement with the 
help of (3.11). If the density p depends only on s, but not on 41 and X', then all 

Snm = K f
S

n 

— Pnni (Sin 41) sin(mA, 1)p(s)d 3s 
R E9n  

Rea +7r/2 2r 

0 —7r/2 0 
RG) 	 +7r/2 	 27r 

= K 
f sn+2 

	P(s)ds • 
 R 	
f Prun  (sin g5 1 ) cos(e)dck' 

 . f  sin(mX1)dX' 
,m," 

O 	- 	—7r/2 	 0 

2 - 30,7, (n - m)! 

	

with K = 	 
M  (n m)! 

Kf f fsn R ,p(s)P„,, (sin c/i) sin(m4s 2  cos(0') 	dc/l ds 

(3.18) 

vanish, since f sin(mXI)dX' = 0 for all m and the same proof applies to  Cnm = 
for n, m O. For m= 0 the integral f cos(m4dX1  does not vanish, but 

+z/2 	 1 

f PnO(Sin 0 1 ) COS(41)dq51 
 = f  Pn (u)du = 0 

-7r/2 	 -1 

for all  n > O. Therefore all C„,, and Snn, vanish, with the exception of Coo, and the 
potential reduces to that of a point-like mass, as long as the density does not vary 
with longitude and latitude. 

A similar consideration shows that the expansion of the potential contains only 
zonal terms (Co),  if one considers the more general case of a mass distribution that 
is symmetric with respect to the axis of rotation. For an oblate rotational ellipsoid 
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J = —3/2C20 is the largest geopotential coefficient aside from Coo, and its value 
is approximately given by 

w2 R2/ 2 

GM / R 

where the flattening f measures the difference between the polar and the equatorial 
diameter in units of the equatorial diameter, while M, R and w are the mass, radius 
and rotational velocity of the body, respectively. The relation follows from the 
condition that the sum of the gravitational potential and the centrifugal potential 
must be constant on the surface of a fluid body, and is derived in standard textbooks 
on geodesy (e.g. Bomford 1980, Torge 1991). Using appropriate values 

f 
GMED  
R ®  
we  

= 
= 
= 
= 

1/298.257 
398 600.4405 km3 s-2 

 6378.137 km 
0.7292115-10-4  rad 

(3.20) 

for the Earth, one finds that J =0.001621 . 
The Earth is not an ideal rotational ellipsoid, however, which gives rise to 

additional tesseral and sectorial geopotential coefficients. Approximate values of 
the Earth's low-order potential coefficients can be found in Table 3.2. 

Table 3.2. Geopotential coefficients up to degree and order three 

Cnm  m0  1 3 

+1.00 
0.00 0.00 

N
 —1.08-10-3  0.00 +1.57-10-6  

+2.53-10-6  +2.18-10-6  +3.11-10-7  1.02•10-7  

n  m=0 1 2 3 

0
 ,--1  

N
 cn 

ll  0.00 
0.00 0.00 
0.00 0.00 —9.03.10-7  
0.00 +2.68-10-7  —2.12.10-7  1.9840-7  

Aside from the coefficients Sno, which are zero by definition, there are five 
other coefficients that vanish as a consequence of a special choice of the coordinate 
system. By choosing the center of mass 

1 = 	f s p (s) d3  s (3.21) 

i To be precise, equation (3.19) in a slightly extended fowl is used in geodesy to define the 
flattening f of a suitable reference ellipsoid, since J2 is easier to determine than the mean figure of 
the Earth (see e.g. Kaula 1966). 

(3.19) 



C io=
1  

s sin 01  p (s) d3  s = 
Ms  Rs  j f p d3  s=—  

Re Me Re  
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as the origin of the coordinate system, one may always observe that the three 
coefficients 

(3.22) 

of degree one are equal to zero. Similarly C21 and  521,  vanish as long as the z-axis 
is aligned with the Earth's main axis of inertia. 

3.2.3 Gravity Models 

Because the internal mass distribution of the Earth is not known, the geopotential 
coefficients cannot be calculated from the defining equation (3.11), but have to be 
determined indirectly. Three principal types of measurements and observations are 
currently used to improve Earth gravity models 

• Satellite Tracking: From the very beginning of spaceflight, ground-based ob-
servations of artificial satellites allowed scientists to determine the Earth's 
gravity field through the perturbations seen in the satellite orbits. The first ob-
servations mainly used Baker–Nunn wide angle telescopes, which provided 
pictures of the satellites' orbital tracks. Subsequently, it turned out that radio-
metric Doppler tracking led to models superior to those based on optical data. 
The development of satellite laser ranging (SLR) systems around 1965, and 
their continuous refinement up to a precision of better than 1 cm, significantly 
improved the knowledge of the gravity field. In the beginning of the 1990s, 
the French DORIS system with a Doppler precision of 0.4 mm/s, as well 
as the German PRARE system with a range noise of 7 cm, provided further 
advanced tracking systems with a high potential for satellite geodesy. Latest 
enhancements in the gravity field recovery from satellite tracking are due to 
the inclusion of satellite-to-satellite (SST) tracking Especially the GPS track-
ing of satellites, starting with the TOPEX/POSEIDON spacecraft in 1992, 
may significantly improve the gravity models due to its nearly continuous, 
high-precision and three-dimensional information. The global coverage of 
the Earth's surface with satellite tracks allows the retrieval of global infor-
mation on the long-wavelength gravity field of the Earth. 

• Swface Gravimetry: Static spring gravimeters measure the local gravita-
tional acceleration with an accuracy of 10 -3  mGal (Torge 1991) (1 mGal = 
10-5  m/s2 ), and thus provide precise local and regional (short-wavelength) 
information on the gravity field. Relative gravimetry measures the gravity 
differences from point to point by sensing the inertial reaction of a test mass 
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in response to the change in gravitational acceleration. Since gravimetry is 
always limited by geographic and political inaccessibility, ship-borne or air-
borne gravimeters may supplement terrestrial measurements at a reduced 
accuracy of 0.1-5 mGal, with a 10-20 km resolution for airborne measure-
ments (Nerem et al. 1995). Even though these data describe the small scale 
variations of the Earth's gravitational field very well, a careful inclusion into 
global gravity models is required due to their inhomogeneous distribution 
over the whole surface of the Earth. 

• Altimeter Data: Altimeters measure the height of a satellite above sea level, 
and can be used for a high-precision determination of the mean sea surface 
level. Since this is closely related to the equipotential surface, altimeter data 
provide detailed information about the form of the geoid, which may in turn 
be used to derive geopotential coefficients. The first satellite altimeter was 
launched aboard the GEOS 3 satellite in 1975, followed by Seasat in 1978 
and TOPEX/POSEIDON in 1992. Satellite altimeter data provide an accuracy 
better than 15 cm for a typical resolution of 5-30 km, which allows a short 
wavelength resolution of the marine geoid. 

The combined use of satellite tracking, terrestrial gravimetry and altimetry mea-
surements for gravity field determination is described in e.g. Rapp (1989). 
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Fig. 3.3. Evolution of the complexity of Earth gravity models 

In Fig. 3.3 the evolution of the Earth gravity models, as derived from satellite 
tracking data, is depicted in terms of the characteristic order of the models. The 
launches of Sputnik 1 in 1957, and of Vanguard 1 in 1959, allowed the first precise 
deteimination of J2, and led to the detection of the J3 coefficient, which indicates the 
north-south asymmetry of the geoid. A major improvement in gravity field models 
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was achieved in 1966 by Anderle, using radiometric Doppler data instead of the 
camera data, that had been previously applied (Nerem et al. 1995). Between 1966 
and 1977, the leading models were those derived by Gaposchkin and colleagues at 
the Smithonian Astrophysical Observatory (SAO). 

As a reaction to the military classification of Doppler-based gravity models, 
NASA's Goddard Space Flight Center (GSFC) started in 1972 to develop a series of 
models GEM 1—GEM 10 (Goddard Earth Model) of degree 12-22. Here the odd-
numbered models are exclusively based on satellite observations, the correspond-
ing even-numbered models have been derived using additional surface gravimetry 
data. While the satellite tracking data determine the long-wavelength components 
of the gravity field of degree n, according to a spatial resolution of 2n-  Re / (2n) 
or — 20000 km/ n, the altimeter and surface gravimetry data allow a much higher 
resolution at shorter wavelength. An example is the GEM 10C model of degree 
and order 180, while at the same time the GEM 10B model of degree and order 
36 was developed using a less dense grid of surface gravimetry and altimetry data 
(Lerch et al. 1981). The models GEM-Tl (Marsh et al. 1988) and GEM-T2 (Marsh 
et al. 1990), both complete to order and degree 36, were entirely based on satellite 
tracking data from 17 and 31 satellites, respectively. In addition to a small augmen-
tation of satellite tracking data, the GEM-T3 model (Lerch et al. 1994) also applied 
altimeter data from GEOS 3, Seasat and Geosat, and was complete to degree and 
order 50. 

The oceanographic mission TOPEX/POSEIDON  (TIP), with its challenging 
requirement on the radial orbit accuracy of 13 cm, led to a cooperation between 
NASA's GSFC, the University of Texas Center for Space Research (CSR) and the 
Centre National d'Études Spatiales (CNES) for gravity field determination. As a 
result, the final prelaunch TIP gravity model JGM-1 (Joint Gravity Model) of order 
and degree 70 was issued in 1994 (Nerem et al.). It reiterated the GEM-T3 gravity 
model solution by processing all of the data with improved models and constants. 
Its successor JGM-2 (Nerem et al. 1994) was a first postlaunch TIP  model, which 
included a six-month set of  TIP SLR and DORIS data. A further improvement in 
accuracy was obtained with JGM-3 (Tapley et al. 1996), which comprised new TIP 
SLR, DORIS, as well as for the first time GPS tracking data of  TIP.  In addition, 
new LAGEOS 1, LAGEOS 2 and Stella laser tracking, as well as DORIS tracking 
of the SPOT 2 satellite, were included. A subset of the JGM-3 model (Tapley et al. 
1996) is reproduced in Table 3.3. 

Although JGM-3 is a very elaborate global gravity model for precision orbit 
determination, new models are continuously being developed. This is demonstrated 
by a collaboration of NASA's Goddard Space Flight Center (GSFC), the National 
Imagery and Mapping Agency (NIMA) and the Ohio State University (OSU), that 
published the EGM96S (Earth Gravity Model) of degree and order 70, and the 
EGM96 model of degree and order 360 (Lemoine et al. 1998). The inclusion of 
tracking data from 40 satellites, with more continuous data from GPS and TDRSS 
satellite-to-satellite tracking, contributes to a further improvement of the gravity 
field model. 
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Table 3.3. JGM-3 nounalized gravitational coefficients up to degree and order 20, in units of 10-6  
(GMe  = 398 600.44151cm3 s-2 , Re  = 6378.136301cm) (Tapley et al. 1996) 

n m E'n,m 	Er 1,m n m Cn,m :S;n,m n m ST'n,m 

2 0 -484.165368 	0.000000 2 1 -0.000187 	0.001195 2 2 2.439261 -1.400266 

3 0 0.957171 	0.000000 3 1 2.030137 	0.248131 3 2 0.904706 -0.618923 
3 3 0.721145 	1.414204 

4 0 0.539777 	0.000000 4 1 -0.536244 -0.473772 4 2 0.350670 0.662571 
4 3  0.990869-0.200987  4  4-0.188481 	0.308848 

5 0 0.068659 	0.000000 5 1 -0.062727 -0.094195 5 2 0.652459 -0.323334 
5 3 -0.451837 -0.214954 5 4 -0.295123 	0.049741 5 5 0.174832 -0.669393 

6 0 -0.149672 	0.000000 6 1 -0.076104 	0.026900 6 2 0.048328 -0.373816 
6 3 0.057021 	0.008890 6 4 -0.086228 -0.471405 6 5 -0.267112 -0.536410 
6 6 0.009502 -0.237262 

7 0 0.090723 	0.000000 7 1 0.280287 	0.094777 7 2 0.329760 0.093194 
7 3 0.250502 -0.217320 7 4 -0.275541 -0.124142 7 5 0.001644 0.018075 
7 6 -0.358843 	0.151778 7 7 0.001380 	0.024129 

8 0 0.049118 	0.000000 8 1 0.023334 	0.058499 8 2 0.080071 0.065519 
8 3 -0.019252 -0.086286 8 4 -0.244358 	0.069857 8 5 -0.025498 0.089090 
8 6 -0.065859 	0.308921 8 7 0.067263 	0.074813 8 8 -0.123971 0.120441 

9 0 0.027385 	0.000000 9 1 0.142230 	0.021910 9 2 0.022621 -0.032175 
9 3 -0.161064 -0.074546 9 4 -0.008202 	0.020068 9 5 -0.016325 -0.054272 
9 6 0.062833 	0.222677 9 7 -0.118159 -0.096899 9 8 0.187984 -0.003015 
9 9 -0.047725 	0.096586 

10 0 0.054130 	0.000000 10 1 0.083759 -0.131554 10 2 -0.093558 -0.051416 
10 3 -0.007197 -0.154180 10 4 -0.084335 -0.078485 10 5 -0.049520 -0.050293 
10 6  -0.037419-0.079464  10 7  0.008208-0.003149  10 8  0.040468-0.091917  
10 9  0.125403-0.037737  10 10  0.100382-0.023809  

11 0 -0.050161 	0.000000 11 1  0.016107-0.027892  11 2  0.018430-0.098452  
11 3  -0.030561-0.148803  11 4 -0.040024 -0.063596 11 5 0.037436 0.049828 
11 6 -0.001461 	0.034173 11 7 0.004706 -0.089777 11 8 -0.006141 0.024572 
11 9 -0.031456 	0.042041 11 10 -0.052129 -0.018302 11 11 0.046227 -0.069593 

12 0 0.036383 	0.000000 12 1 -0.054192 -0.042012 12 2 0.013986 0.031048 
12 3 0.038979 	0.024577 12  4-0.068420 	0.002954 12 5 0.031107 0.007639 
12 6 0.003324 	0.039369 12 7 -0.018603 	0.035571 12 8 -0.025703 0.016667 
12 9 0.041793 	0.025325 12 10 -0.006169 	0.030986 12 11 0.011321 -0.006344 
12 12 -0.002349 -0.010959 

13 0 0.039946 	0.000000 13 1 -0.052967 	0.039877 13 2 0.056039 -0.062699 
13 3 -0.021817 	0.098209 13 4 -0.001471 -0.012614 13 5 0.058253 0.065846 
13 6 -0.035312 -0.006058 13 7 0.002706 -0.007711 13 8 -0.009887 -0.009729 
13 9 0.024754 	0.045359 13 10 0.040892 -0.037099 13 11 -0.044739 -0.004833 
13 12 -0.031410 	0.088106 13 13 -0.061211 	0.068409 
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Table 3.3. (continued) 

n  ni  S;11,in n 172 Cn,m 3n,m n  ni  Cn,m 'gn,nz 

.14 0 -0.021804 0.000000 14 1 -0.019024 0.027472 14 2 -0.036979 -0.002989 
14 3 0.036809 0.020313 14 4  0.001712-0.020688 14 5  0.029900-0.016858 
14  6-0.019401 0.002413 14 7  0.036851-0.004222 14 8 -0.034867 -0.014888 
14 9 0.032377 0.028698 14 10 0.038839 -0.001466 14 11 0.015357 -0.039039 
14 12  0.008505-0.030922 14 13 0.032167 0.045200 14 14 -0.051783 -0.005014 

15 0 0.003166 0.000000 15 1 0.012019 0.008173 15 2 -0.021746 -0.031733 
15 3 0.052403 0.015160 15  4-0.042163 0.007827 15 5 0.013451 	0.008982 
15 6 0.033463 -0.037753 15 7 0.059913 0.006056 15 8 -0.031990 	0.022271 
15 9 0.013027 0.037876 15 10 0.010311 0.014956 15 11 -0.000952 	0.018716 
15 12 -0.032729 0.015720 15 13 -0.028289 -0.004294 15 14 0.005305 -0.024443 
15 15 -0.019228 -0.004704 

16 0 -0.005430 0.000000 16 1 0.027534 0.033708 16 2 -0.022395 	0.026207 
16 3 -0.035101 -0.023242 16 4 0.041219 0.046057 16 5 -0.013495 -0.001679 
16 6 0.014321 -0.034445 16 7 -0.007813 -0.008510 16 8 -0.021538 	0.005248 
16 9 -0.022777 -0.038924 16 10 -0.012129 0.012065 16 11 0.019266 -0.002975 
16 12 0.019698 0.006915 16 13 0.013837 0.000994 16 14 -0.019126 -0.038862 
16 15 -0.014461 -0.032699 16 16 -0.037529 0.003591 

17 0 0.018108 0.000000 17 1 -0.026389 -0.029853 17 2 -0.017379 	0.009197 
17 3 0.007423 0.008195 17 4 0.007520 0.023382 17 5 -0.017058 	0.005353 
17 6 -0.013467 -0.028275 17 7 0.024011 -0.005884 17 8 0.037625 	0.003761 
17 9 0.003291 -0.028586 17 10 -0.004304 0.018038 17 11 -0.015726 	0.011021 
17 12 0.028689 0.020744 17 13 0.016603 0.020305 17 14 -0.014061 	0.011376 
17 15 0.005332 0.005387 17 16 -0.030061 0.003724 17 17 -0.034064 -0.019733 

18 0 0.007269 0.000000 18 1  0.004210-0.039076 18 2 0.012828 	0.013586 
18 3 -0.003760 -0.003109 18 4 0.053092 0.001460 18 5 0.007314 	0.024650 
18 6 0,013378 -0.015661 18 7 0.006529 0.006280 18 8 0.031066 	0.002470 
18 9 -0.019183 0.036144 18 10 0.005566 -0.004595 18 11 -0.007643 	0.002117 
18 12 -0.029603 -0.016193 18 13 -0.006380 -0.034980 18 14 -0.008003 -0.013078 
18 15 -0.040536 -0.020249 18 16 0.010671 0.006965 18 17 0.003600 	0.004510 
18 18 0.002621 -0.010810 

19 0 -0.003519 0.000000 19 1 -0.006968 0.000158 19 2  0.031435-0.004330 
19 3 -0.009900 -0.000988 19 4 0.015827 -0.005662 19 5 0.012058 	0.027204 
19 6 -0.002385 0.017952 19 7 0.007368 -0.008665 19 8  0.031052-0.010463 
19 9 0.003031 0.006452 19 10 -0.033378 -0.007090 19 11 0.016081 	0.011000 
19 12 -0.002989 0.009310 19 13 -0.007447 -0.028398 19 14 -0.004529 -0.013114 
19 15 -0.017839 -0.014106 19 16 -0.021421 -0.006958 19 17 0.029106 -0.015153 
19 18 0.034714 -0.009439 19 19 -0.002371 0.004780 

20 0 0.018790 0.000000 20 1 0.008348 0.006245 20 2 0.020030 	0.0148 85 
20 3 -0.005935 0.035571 20 4 0.005457 -0.022410 20 5 -0.011452 -0.006935 
20 6 0.011565 -0.000423 20 7 -0.020302 -0.000130 20 8 0.004922 	0.004067 
20 9 0.018044 -0.005865 20 10 -0.032549 -0.005760 20 11 0.014563 -0.018930 
20 12 -0.006409 0.018154 20 13 0.027324 0.007033 20 14 0.011894-0.014472 
20 15 -0.025833 -0.000766 20 16 -0.012064 0.000330 20 17 0.004435 -0.013703 
20 18 0.014917 -0.000984 20  19-0.002963 0.010960 20 20 0.004045 -0.012347 
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3.2.4 Recursions 

In the computation of the Earth's gravity potential at a given point, several recur-
rence relations for the evaluation of Legendre polynomials can be used. Starting 
with Poo = 1, all polynomials Pmn, up to the desired degree and order are first 
calculated from 

Pinin(u) = (2m - 1)(1 — u 2) 1/2 Pm—i,m—i , 	 (3.23) 

where u and (1 — ti 2 ) 112  stand for sin and cos ¢), respectively. With these results 
the remaining values may be obtained from 

(u) = (2m -1- Ou Pmni (u) 	 (3.24) 

and from the recursion 

PP(u) = 	
1 

n — m
((2n — 	Pn—i,m(u) — +m  — 1) Pn-2,m(14 )) 	(3.25) 

for n > m  +1. 
The above relations for the Legendre polynomials may, according to Cunning-

ham (1970), be favorably combined with the addition theorems 

cos((m + 1) ).) = cos(mX) cos(h) — sin(mX) sin(h) 	
(3.26) 

sin((m 1)h) = sin(mh) cos(h) cos(mh) sin(h) 

for the angular functions of the longitude-dependent terms into a single recursion. 
This allows an efficient computation of the geopotential and the resulting acceler-
ation as a function of the Cartesian coordinates (x, y,  z) of the satellite. Defining 

Rn+1 

Vnm = ( .33.1 ) • Pnm (sin q5) • cos m) 

= 
( R  ) n+1 

 

7 	. Pnm (sin 0) - sin mX 

the gravity potential may be written as 

Wnin 

(3.27) 

(CnmVnm SnmWnm) (3.28) 

The VI1171 and Wnm  satisfy the recurrence relations 

VMM (2m — 1) 
y Re  

r 
2 	Vm-1,m-1 	

r
2  Wm-1,m-1 

(3.29) 

   

WM111 (2m — 1) 
x Re 	 y RG 

In-1 ' in—  
W 	1 + 	Vm-1,-1 I 2 r- 

m 
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and 

(2n -1 Z  RED 	(n+m-1) 
Vnm 

r2 
 Vn-1,m 

r2 
 Vn-2,m n—m 

(2n 	 zR ED 	(n-l-m-1 
Wnm  n—m 	r2 Wn-1,m n—m 	r2  Wn —2,m 

(3.30) 

which follow immediately from the above relations for the Legendre polynomials 
and the trigonometric functions. The second set of equations holds for n = m +1, 
too, if Vm-1,m and Wm-i,,n are set to zero. Furthermore, 

Voo = —
r 

and W00 = 0 
	

(3.31) 

are known. 
In order to calculate all Vnm  and W„, (0  <m < n  < nmax), one first obtains 

the zonal terms Vo by using (3.30) with m=0. The corresponding values Wno are 
all identical to zero. Now, (3.29) yields the first tesseral terms VIA and W11 from 
V00, which allows all Vn  (1 < n < nmax ) to be determined. Thus the recursions 
are used according to the following scheme: 

	

Voo, Woo 	 Eqn. (3.29) 
4, Eqn. (3.30) 

	

Wio 	Vii, Wll  

4, 

	

V20, W20 	V21, W21 	V22, W22 

4, 

	

Vn(), Wn0 	Vn i, Wnl 	Vn2, Wn2 	 Vnn, Wnn 

Finally it should be noted that many other recursion formulas exist for the calcu-
lation of Legendre polynomials, and may be looked up in standard text books or 
mathematical tables (Abramowitz & Stegun 1965). Not all of these are, however, 
equally well suited for the numerical computation, especially if high-order polyno-
mials are required (cf. Lundberg 1985). The recursions presented here are stable, 
which means that small numerical errors in the computation of low-order terms .do 
not lead to meaningless results for high orders. As was shown by Deufihard (1976), 
recurrence relations for P„,n  that keep either order (m) or degree (n) constant are 
more stable than others. This is the case for (3.25) and applies equally well to 
the formulas for Vn„, and Wri ,n . As a rule of thumb, one can expect to loose 2-3, 
4-5, and 5-6 digits when evaluating these functions up to orders 15, 50, and 100, 
respectively. 
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3.2.5 Acceleration 

The acceleration which is equal to the gradient of U, may be directly calculated 
from the Vn,n  and VIT„„, as 

= 	X nm  7 
	 nm 	 nm 	 (3.32) 

n,m 	 n,m 

with the partial accelerations 

(m>0) 

GM 
{— CnOVn+1,1 } 

 

GM 1 

4 2 

(n—m+2)! 

(n—m)! 
(+CnmVn+1,m-1 + SnmWn+1,m-1)/ 

inm 
(m=0) 

{( — CninVn+1,m+1 — SnmWn+1,m+1) 

Ynm 
(m=o) GM 
	 {— CnOWn+1,1 
Rt, 

(m>0) GM 1 f 
( — Cnin  Wn+1,m+1 + Snm • Vn+1,m+1) 2 

(3.33) 

(n—m+2)! 
	 ( CiunWn+1,m-1 SnmVn+1,m-1)/ 

(n—m)! 

inm 
	GM 

 R2 
{ (n—m+1) - ( — CnmVn+1,m SnmWn+1,m)) • 

The derivation of these equations is given in Cunningham (1970), together with 
similar relations for the second-order partial derivatives of the potential. It is noted 
that the Vvi, and Kt, terms are required up to degree and order n+1 if the partial 
accelerations due to geopotential coefficients up to Cnn  and Snn  are to be calculated. 

The formulas given so far yield the acceleration r  = 53, i) in an Earth-fixed 
coordinate system as a function of the Earth-fixed position vector r = (x, y, z). 
Some coordinate transformations are therefore required to obtain the acceleration 
in an inertial or Newtonian coordinate system which is consistent with the equation 
of motion (3.1). Using indices ef and sf to distinguish Earth-fixed from space-fixed 
coordinates, one has 

ref = U(t) • rsf and isf = UT  (t) ief 7 	 (3.34) 

where U(t) is a time-dependent matrix that describes the Earth's rotation. The 
rigorous computation of U(t), furthermore, has to account for the long and short-
term perturbations of the Earth's axis, known as precession and nutation, that are 
described in detail in Chap. 5. 
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3.3 Sun and Moon 

3.3.1 Perturbing Acceleration 

According to Newton's law of gravity, the acceleration of a satellite by a point mass 
M is given by 

=  GM. 	
s — r 	

(3.35) 
Is — ri 

 

where r and s are the geocentric coordinates of the satellite and of M, respectively. 
Some care is required, however, before this expression can be used for describing 
the satellite's motion with respect to the center of the Earth. The value of in (3.35) 
refers to an inertial or Newtonian coordinate system in which the Earth is not at 
rest, but is itself subject to an acceleration 

r= GM 	 
is i 3  

due to M. Both values have to be subtracted to obtain the second derivative 

(3.36) 

= GM 
s — r 	s 

	

Is — ri 3 	Is13 	
(3.37) 

of the satellite's Earth-centered position vector. 
Since both the Sun and the Moon are much further away from the Earth than 

most of the satellites, one may derive a simple approximation from (3.37) which 
gives an insight into the structure of the acceleration in an Earth-centered reference 
frame, and is often used for analytical perturbation theories. For this purpose the 
denominator of (3.35) is expanded as 

1 	 1 	3/2 	1 
—

3 a -1-311 (eser)) Is — rI 3  = s2±r2 — 2sr(es er) 	s 	s 

with the unit vectors 

(3.38) 

(3.39) e, = — and  er= -
s  

pointing in the direction of s and r. This yields the approximate relation 

GMr 
	 ( er  +3es(eser)) 

s3  

which reduces to 
2GM

r  
53  

for er  = ±es , and to 

GM 
r F 

(3.40) 

(3.41) 

(3.42) 
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Fig. 3.4. Tidal forces due to the gravitational attraction of a distant point-like mass 

for eres =0. Therefore the satellite experiences an acceleration away from the Earth 
whenever it is collinear with the Earth and the perturbing body, but is attracted 
towards the Earth whenever it is perpendicular to this line (cf. Fig. 3.4). 

One may further see from (3.40) that the acceleration increases linearly with 
the satellite's distance r from the center of the Earth, while it decreases with the 
third power of the distance of the perturbing body. 

3.3.2 Low-Precision Solar and Lunar Coordinates 

Since the forces exerted by the Sun and the Moon are much smaller than the central 
attraction of the Earth, it is not necessary to know their coordinates to the highest 
precision when calculating the perturbing acceleration acting on a satellite. For 
many purposes it is even sufficient to use simple equations for the solar and lunar 
coordinates that are accurate to about 0.1-1% and follow from more advanced 
analytical theories for the motion of the Sun and the Moon (see e.g. van Flandern 
& Pulkkinen 1979, Montenbruck 1989, Montenbruck & Pfleger 2000 for further 
references). 

Geocentric solar coordinates can easily be obtained from the assumption of an 
unperturbed motion of the Earth around the Sun. Appropriate mean orbital elements, 
which approximate the Sun's elliptic orbit with respect to the Earth and the ecliptic 
for some decades around the year 2000, are given by 

a 	= 149 600 000 km 
= 0.016709 

?0000 
± co = 282?9400 

= 357?5256 35999?049 T 

where 

T = (JD — 2451545.0)/36525.0 
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is the number of Julian centuries since 1.5 January 2000 (J2000), and JD is the 
Julian Date (cf. Annex A.1). The position coordinates may be found from these 
elements using the equations for Keplerian orbits that were derived in the previous 
chapter. Due to the small eccentricity and inclination, the use of some simple series 
expansions is, however, recommended to speed up the calculation without loss of 
accuracy. This results in the expressions 

X0 = 	± co M 6892" sin M 72" sin 2M 
re  = (149.619 — 2.499 cos M — 0.021 cos 2M) 106  km 

for the Sun's ecliptic longitude A,0  and distance re , whereas the* ecliptic latitude 
/30  vanishes within an accuracy of 1' (cf. Montenbruck 1989). 

These values may be converted to Cartesian coordinates referring to the equator 
by applying an appropriate rotation 

/ re  cos A.0  cos fie  
ro  = 1?,(— s) ro sin A.e  cos Po 	 (3.44) 

\ re  sin fie  

where 

s = 23?43929111 
	

(3.45) 

is the obliquity of the ecliptic, i.e. the inclination of the ecliptic relative to the Earth's 
equator. Since 130  = 0, the expression for re  may further be simplified to give 

re  cos A.e 
r = ro  sin Xe  cos 8 	 (3.46) 

re  sin A.0  sin s  

To be precise, the longitude A.e , the latitude fie , and the position vector r e  
in (3.44) refer to the mean equinox and ecliptic of J2000 (EME2000). Precession, 
which is a result of perturbing forces of the Sun, Moon and planets, gives rise to a 
slow motion of both the ecliptic and the equinox. While the ecliptic changes its ori-
entation by less than 1' per century, the motion of the equinox is more pronounced, 
however, and amounts to 5030" per century. Referred to the mean equinox of 1950, 
for example, the Sun's longitude is smaller than the above value by about 2515". 
In order to refer the coordinates to .  the equinox of some epoch Teqx  (measured in 
centuries since the epoch 2000), one has to add a correction of 

1 ?3972 Teq,, 

to the value of A.e  given above. The ecliptic latitude need not be changed since it 
varies by less than one arcminute within a full century. 

Series expansions similar to those for the Sun exist for the lunar coordinates as 
well. Due to the strong solar and terrestrial perturbations, a larger number of terms 
are, however, needed to describe the lunar motion in terms of the mean arguments 
of the lunar and solar orbit. The following relations allow the computation of lunar 

(3.43) 
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longitude and latitude with a typical accuracy of several arcminutes and about 
500 km in the lunar distance. The calculation of the perturbations is based on five 
fundamental arguments: the mean longitude Lo of the Moon, the Moon's mean 
anomaly 1, the Sun's mean anomaly 1',  the mean angular distance of the Moon from 
the ascending node F,  and the difference D between the mean longitudes of the Sun 
and the Moon. The longitude of the ascending node Q is not explicitly employed. 
It is obtained from the difference Q = Lo —  F.  

218?31617 + 481267?88088 T — 1?3972 T 
134?96292 + 477198?86753 • T 
35752543+ 3599904944. T 	 (3.47) 
93?27283 + 483202?01873 • T 
297?85027 + 445267?11135 • T 

Using these values the Moon's longitude with respect to the equinox and ecliptic 
of the year 2000 may be expressed as 

A.m = L0+22640" sin(/) + 769" sin(21) 
—4586" • sin(/ —2D) + 2370" • sin(2D) 
—668" sin(r) — 412" - sin(2F) 
—212" • sin(21 —2D) — 206" • sin(/ +/' —2D) 	 (3.48) 
+192" • sin(/ +2D) — 165" sin(/' — 2D) 
+148" • sin(/ —l') — 125" • sin(D) 
—110" sin(/ 	—55"  sin(2F — 2D) . 

Here, the first two terms describe the motion in an ellipse of eccentricity e = 0.055, 
whereas the remaining terms denote the various perturbations. The lunar latitude 
is given by 

Pm = 18520" sin(F+X—Lo+412" • sin 2F+541" - sin 1') 
—526" • sin(F — 2D) + 44" - sin(/ + F —2D) 
—31" - sin(—/+F —2D) — 25" - sin(-21+ F) 	 (3.49) 
—23" sin(r+F —2D) + 21" • sin(—l+ F) 
+11" sin(-1' + F —2D) , 

where the leading teim is due to the inclination of the Moon's orbit relative to the 
ecliptic, which amounts to approximately 5.1 0 . Finally the Moon's distance from 
the center of the Earth is 

rm = ( 385 000 — 20 905 cos(l)  —3699   cos(2D —l) 
—2956  cos(2D) — 570 cos(21) + 246 cos(21 —2D) 

(3.50) —205 cos(/' —2D) — 171 cos(/-1-2D) 
—152 cos(/+r— 2D) ) km , 

where terms smaller than 150 km have been neglected. 
The spherical ecliptic coordinates may again be converted to equatorial Carte-

sian coordinates using the transformation 

rm cos Xm cos Pm 
rm sin A.m cos tim  J 	 (3.51) 

\ rm sin fim 

1,0 = 
1 = 

=  
F = 
D = 

rm =  R( -8) 
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A .change of the reference system from EME2000 to the equator and equinox 
of some epoch Teqx  is further accounted for in the same way as for the Sun's 
coordinates. 

3.3.3 Chebyshev Approximation 

The above description of the solar and lunar motion is well suited for deriving 
analytical expressions of the perturbations exerted on a satellite by these bodies, or 
for low accuracy requirements. If, however, one requires accurate numerical values 
of the solar and lunar coordinates very frequently, approximations by Chebyshev 
polynomials may be more adequate. These polynomials are defined as 

T(r) = cos(n-arccos r) 	 (3.52) 

for I r I < 1, and may recursively be computed by 

To (r) 	= 1 

(r) 	
= r 

T1(r) = 2r Tn(r) 	(r) for  n> 1 . 

The property which makes these polynomials so well suited for the approximation 
of functions is their behaviour within the interval [-1, +1]. As can be seen from 
Fig. 3.5, the absolute value of each polynomial Tn  (r) is always less than or equal 
to one for —1 < < 1. Therefore, given an approximation 

n-1 

f (t) 	ai Ti(r) 
	

(3.54) 
i=o 

(3.53) 

1 

Fig. 3.5. The Chebyshev polynomials T1 to T5 
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of some function f (t) over a finite time interval [t1, t2] that is mapped to [-1, +1] 
by the transformation 

(3.55) 

one may easily judge the contribution of each individual term to the total accuracy 
of the approximation. If, for example, one would like to neglect the final teina 
an _iTn _i, then one would produce an error that varies uniformly between t1 and t2, 
and never exceeds the absolute value of an_i. If, on the other hand, one had chosen 
a Taylor series approximation 

n-1 

f (t) 
	

r 
i=0 

of equal order, the error of neglecting bn_i rn -1  would be negligible in the middle 
of the approximation interval, but most pronounced at the beginning and the end. 
Furthermore, the coefficients bi are generally found to be much larger than ai , so that 
a higher number of terms would be needed for a similar degree of approximation. 

The way in which the coefficients for the approximation of a function f may 
be calculated depends on the fowl in which this function is available. If f is known 
analytically, then one may use the relation 

2  sio  n-1 

ai =  	f 	TiK) 	i = 0, . . . , n — 1 	 (3.56) 
k=0 

(see Press et al. 1992), to construct an approximation of order n —1 from n values 
of f at predefined times t that correspond to the n roots 

__ 
2 	

t 
r 

 
1 

t2 	tl 

= cos  (71-  
2k + 1) 

2n 
(3.57) 

of  T. This algorithm is not, however, feasible for the approximation of a function 
that is only known at a number of evenly spaced times. In this case one has to 
use standard least-squares fit techniques to obtain the desired coefficients for the 
approximation of  f.  In the case of JPL's Development Ephemerides, a least-squares 
fit is used to obtain the n coefficients (ao, . . . , an_i) from equally spaced positions 
generated by the numerical integration (Newhall 1989). By using a constrained 
least-squares adjustment it is, furthermore, assured that continuous position and 
velocity values are obtained from the Chebyshev approximations at the interval 
boundaries. 

In order to evaluate a given Chebyshev approximation it is not necessary to 
calculate the Chebyshev polynomials explicitly. An algorithm due to Clenshaw is 
recommended instead, which minimizes the total number of multiplications re-
quired. To start with, fn  and in+  i  are set equal to zero. Subsequently the values 

= 2r fi — fi+2 ai for i =  n-1,  n — 2, . . . , 1 	 (3.58) 
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are computed using the normalized time r. The approximate value of f is then 
given by 

• f (t) = rft — f2 ao 	 (3.59) 

For some applications, e.g. for the computation of the spacecraft velocity from 
the Chebyshev approximation of the spacecraft position, the derivative of a given 
Chebyshev approximation is required. To this end, one may obtain the coefficients 
of the approximation 

n-2 d 	2 
f (t) 	

l 	
a; Ti  (r) 	 (3.60) 

t 	. 
i=0 

of the time derivative of f from the set of coefficients (ao, al, . . . , an_i) approxi-
mating f (t) itself, using the recurrence relation 

ao  

= a' 2  . + 2(i + 1)ai+1 	= n —2, ... , 1) t+ 

a;12 
(3.61) 

with an  = an' _ 1  = 0. The same method would yield Chebyshev approximations of 
the higher order derivatives of f (t) if required. 

3.3.4 JPL Ephemerides 

The Jet Propulsion Laboratory (JPL) provides a series of solar system ephemer-
ides in the form of Chebyshev approximations. The Development Ephemerides 
(DE) are _publicly available and have emerged as a standard for high-precision 
planetary and lunar coordinates (Seidelmann 1992). Currently the DE200 (Standish 
1982, 1990) and DE405 (Standish 1998) ephemerides are most widely used for 
general applications. They cover a total of roughly 600 years from 1600 to 2170. 
An extended version of DE405 is, furthermore, available for historical purposes. It 
is known as DE406 and covers the time span —3000 to +3000. 

While the B1950 reference system has been employed in ephemerides with 
series numbers of less than 200 (e.g. DE118), the DE200 series uses the dynamical 
equator and equinox of J2000 (EME2000) as reference system. In the recent DE400 
series all data are referred to the International Celestial Reference Frame (ICRF, 
cf. Sect. 5.2), which is realized through a catalog of radio sources. The difference 
between the dynamical J2000 reference frame and the ICRF is at a level of 0'.'01, 
and determined with an accuracy of 0'.'003 (Standish et al. 1995). 

All ephemerides are based on a rigorous numerical integration of the respec-
tive equations of motion (Newhall et al. 1983, Seidelmann 1992). In addition to the 
point-mass interactions among the Moon, the planets and the Sun, the perturbations 
from selected asteroids are considered, as well as relativistic post-Newtonian cor-
rections to the equations of motion. Furthermore, the lunisolar torques on the figure 
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Table 3.4. Number of Chebyshev coefficients (n) per coordinate, number of sub-intervals (k), and 
sub-interval size (At) in days, used in DE200 and DE405. EMB denotes the Earth-Moon-Barycenter. 

#  Body  
DE200 

n 	k 	At 
DE405 

n 	k 	At 

1 Mercury 12 4 8 14 4 8 
2 Venus 12 1 32 10 2 16 
3 EMB 15 2 16 13 2 16 
4 Mars 10 1 32 11 1 32 
5 Jupiter 9 1 32 8 1 32 
6 Saturn 8 1 32 7 1 32 
7 Uranus 8 1 32 6 1 32 
8 Neptune 6 1 32 6 1 32 
9 Pluto 6 1 32 6 1 32 

10 Moon 12 8 4 13 8 4 
11 Sun 15 1 32 11 2 16 

12 Nutation 10 4 8 10 4 8 
13 Libration 10 4 8 

of the Earth, and the Earth's and Sun's torques on the figure of the Moon, are taken 
into account. The observational database for the development of DE405 comprises 
mainly optical transit measurements of the Sun and the planets since 1911, radar 
ranging to Mercury and Venus since 1964, tracking of deep space probes, planetary 
orbiters and landers since 1971, and lunar laser ranging since 1970. 

In addition to planetary and lunar coordinates, nutation angles and lunar li-
bration angles are available with some of the ephemerides. In order to obtain a 
compact representation of the ephemeris data, the discrete positions are replaced 
by Chebyshev approximations, which allow a direct interpolation of the position 
and velocity of each body. The complete ephemeris is blocked into data records, 
where each record covers a fixed time interval of typically 32 days, and contains 
coefficients for the Chebyshev polynomial approximation of the positions of eleven 
solar system bodies. As shown in Table 3.4, the order and the time covered by each 
polynomial has been chosen in accordance with the period of revolution of the 
individual bodies. An evaluation of the polynomials yields Cartesian coordinates 
x, y, z in km for the planets, the Earth-Moon barycenter and the Sun with respect 
to the barycenter of the solar system, while lunar positions are given with respect 
to the center of the Earth. 

While the lunar coordinates rm of the JPL ephemerides are already given in the 
desired form for perturbation calculations (i.e. with respect to the Earth's center), 
the geocentric position of the Sun re is not directly available from the ephemeris 
but may be computed as 

1 
r® = 	— rEmg 	 rm 	 (3.62) 

1 -I- p,* 

from the position vector of the Sun's center with respect to the solar barycenter 
the position of the Earth-Moon barycenter TEMB  and the geocentric lunar coordi- 
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nates  TM.  Here p,* 81.3 denotes the ratio of the Earth's and the Moon's masses. 
For compatibility with the generation of the ephemeris, the value of /,/,* used in the 
transformation should be retrieved from the DE file. 

3.4 Solar Radiation Pressure 

A satellite that is exposed to solar radiation experiences a small force that arises from 
the absorption or reflection of photons. In contrast to the gravitational perturbations 
discussed up to now, the acceleration due to the solar radiation depends on the 
satellite's mass and surface area. 

The size of the solar radiation pressure is determined by the solar flux 

AE 
0 = 	 (3.63) 

A A t 

i.e. by the energy AE that passes through an area A in a time interval At. A single 
photon of energy E, carries an impulse 

E, 
Pv = 

where c is the velocity of light. Accordingly, the total impulse of an absorbing body 
that is illuminated by the Sun changes by 

	= —AAt Ap = AE 
	

(3.65) 

during the time At. This means that the satellite experiences a force 

Ap 0 
(3.66) 

At 	c 

that is proportional to the cross-section A or, equivalently, a pressure 

0 
P = —

c 	
(3.67) 

In a distance of 1 AU from the Sun — i.e. in the vicinity of the Earth — the solar flux 
amounts to 

0 1 367 Wm-2 	 (3.68) 

(McCarthy 1996), and the solar radiation pressure is, therefore, given by 

P0  4.56-10-6  Nm-2  (3.69) 

if one assumes that the satellite's surface A absorbs all photons and is perpendicular 
to the incoming radiation. 

The more general case of a satellite surface with an arbitrary orientation is 
illustrated in Fig. 3.6 for the cases of complete absorption (reflectivity s = 0) and 
complete specular reflection (reflectivity s = 1). In contrast to specular reflection, 

(3.64) 
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s = 0 	 E = 1 

Fig. 3.6. The force due to solar radiation pressure for absorbing (E = 0) and reflecting (s = 1) surface 
elements 

the diffuse reflection of light is neglected in the sequel. The normal vector n gives 
the orientation of the surface A. It is inclined at an angle 9 to the vector e®  which 
points into the direction of the Sun. 

For an absorbing surface, it follows from the consideration given above that 
the force Fabs  is equal to 

Fabs = — Po COS(0)Ae® 
	 (3.70) 

where cos(0)A is the cross-section of the bundle of light that illuminates A. For a 
reflecting surface, the force is not, in general, directed away from the Sun, since no 
impulse is transferred in the direction parallel to the surface. Due to the reflected 
light rays, the impulse transferred in the direction of n is twice as large, however, 
as in the case of pure absorption, and the resulting force is, therefore, given by 

F refl = —2P® cos(0)A cos(0)n . 	 (3.71) 

Both formulas may be combined for a body that reflects a fraction 8 of the incoming 
radiation tAE, while it absorbs the remaining energy (1 —6).%1E: 

F = —Po  cos(0)A [(1—s)eo ± 2s cos(0)n] . 	 (3.72) 

For typical materials used in the construction of satellites, the reflectivity s lies in 
the range from 0.2 to 0.9 (see Table 3.5). 

Table 3.5. Reflectivity, absorption and radiation pressure coefficient of selected satellite components 
(cf. van der Ha & Modi 1977) 

Material s 1—c CRÇ-,-,1-Es 

Solar panel 0.21 0.79 1.21 
High-gain antenna 0.30 0.70 1.30 
Aluminum coated mylar solar sail 0.88 0.12 1.88 
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Due to the eccentricity of the Earth's orbit, the distance between an Earth-orbiting 
satellite and the Sun varies between 147.106 km and 152.106 km during the course 
of a year. This results in an annual variation of the solar radiation pressure by about 
±3.3%, since the solar flux decreases with the square of the distance from the Sun. 
Accounting for this dependence, one finally obtains the following expression for 
the acceleration of a satellite due to the solar radiation pressure: 

1AU2  A 
= — PG 	 c s(0) [(1—e)e® + 2e cos(0)n] . 

m 

Here m means the satellite's mass and cos 0 may be calculated from 

(3.73) 

cos 6)  = nT  e 	, 	 (3.74) 

since both n and e®  are unit vectors. 
For many applications (e.g. satellites with large solar arrays) it suffices, how-

ever, to assume that the surface normal n points in the direction of the Sun. In this 
case (3.73) may further be simplified, yielding 

A re  
= — P0CR — --3-AU` , 

m re  

where the radiation pressure coefficient CR stands for 

(3.75) 

CR =1+e . 	 (3.76) 

Equation (3.75) is commonly used in orbit determination programs with the option 
of estimating CR as a free parameter. Orbital perturbations due to the solar radiation 
pressure may thus be accounted for with high precision, even if no details of the 
satellites structure, orientation and reflectivity are known. 

For high-precision applications, which are required for geodetic space mis-
sions, the simple model of Equation (3.75) no longer suffices. In this case the 
complex satellite structure, as well as the various surface properties, have to be 
treated. To avoid an excessive computational effort during orbit determination, a 
complex micro model may be established prior to the mission, which is used to 
adjust parameters of a simplified macro model, applied during routine spacecraft 
operations (Marshall et al. 1991). To this end, a finite element method is applied to 
model the complex spacecraft shape and orientation, the optical and thermal prop-
erties of the surfaces, and the impinging radiation. The definition of a simplified 
macro satellite model may then consist of a "box-wings" satellite shape, with six 
flat plates as the satellite body, and four fiat plates for the front and back of the two 
connected solar arrays. The adjustable parameters of the macro model consist of the 
area and specular and diffuse reflectivities of the individual plates; the individual 
vector accelerations are finally summed to compute the total acceleration on the 
satellite's center-of-mass. 
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3.4.1 Eclipse Conditions 

So far, the size of the solar radiation pressure has been derived under the assumption 
of full illumination by the Sun. For most Earth-orbiting satellites, however, partial 
or total eclipses occur when the satellite passes the night side of the  Earth. Apart  
from occultations of the Sun by the Earth, the Moon may also cast a shadow on the 
satellite, even though these events occur less frequently and in a "random" fashion. 
Although the computation of eclipse conditions is generally applied for the Earth 
as occulting body, the following models are generic and may well be adapted to 
other cases. 

Neglecting the atmosphere or oblateness of the occulting body, eclipse con-
ditions may be derived from a conical shadow model as illustrated in Fig. 3.7. 
Let 

So = r® — rB 	 (3.77) 

and 

S = r — TB 
	 (3.78) 

denote the coordinates of the Sun and the spacecraft with respect to the occulting 
body at TB. The fundamental plane, which is perpendicular to the shadow axis and 
passes through the satellite, then intersects the shadow axis at a distance 

■ 
SO = (—S T  son1

IS01 (3.79) 
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from the center of the occulting body  in anti-Sun direction. Accordingly, 

/ = 1/s2  sg 	 (3.80) 

is the distance of the spacecraft from the shadow axis. 
Making use of the solar radius Ro  and the body radius RB, the generating 

angles of the shadow cones are given by 

sin fi = (Re + RB)/s® 
sin f2 = (Ro  — RB)/so  . 

Here and in the sequel, the index i  denotes quantities related to the shadow cone 
of the penumbra, whereas the index 2 refers to the cone of the umbra. When the 
occulting body is the Earth, the half cone angle of the umbra is 0.264° and 0.269° 
for the penumbra. This yields the distances 

ci = so + RB/ sin fi 
C2 = SO - R13/ sin f2 

(measured in anti-Sun direction) of the fundamental plane from the vertices Vi and 
V2 of the shadow cones, as well as the radii 

12 = C2 tan f2 

of the shadow cones in the fundamental plane. Regarding the sign of  12, it is noted 
that 12 is negative between the occulting body and the vertex of the  umbra! cone 
(total eclipse region). Behind the vertex V2 (C2 > 0,  12 > 0), with a geocentric 
distance of 1.384 106  km for the Earth, the apparent diameter of the occulting 
body is less than that of the Sun, implying an annular eclipse if the spacecraft is 
inside the  umbra! cone. 

3.4.2 Shadow Function 

The orbital perturbations resulting from shadow transits may be treated by gener-
alizing (3.73) according to 

1AU2  A 
= —yPo 	 c s(19) [(1 s)e 0  + 26 cos(9)n] 	 (3 .84) 

r` 0 

where y is the shadow function, such that 

= 0 if the satellite is in umbra 

y = 1 if the satellite is in sunlight 

0 <  y  < 1 if the satellite is in penumbra. 

(3.81) 

(3.82) 

/1 =  q  tanfi  (3.83) 

The degree of the Sun's occultation by a body like the Earth or the Moon is computed 
from the angular separation and diameters of the respective bodies. Due to the small 
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Fig. 3.8. Occultation of the Sun by a spher-
ical body. 

apparent diameter of the Sun, it is sufficient to model the occultation by overlapping 
circular disks. Let 

Re  
a = arcsin 

 

(3.85) 

 

ira—ri  

be the apparent radius of the occulted body (i.e. the Sun), 

B. R 
b arcsin 	 (3.86) 

be the apparent radius of the occulting body, and 

—s T  (ro — r) 
c = arccos 	 (3.87) 

sire  — ri 

be the apparent separation of the centers of both bodies (cf. Fig. 3.8). Then the area 
of the occulted segment of the apparent solar disk is 

(3.88) A .--- AcFcr Acpc/ 

provided that 

la — bl < c < a + b . 

The occulted area may be expressed as 

A = 2(ABc — AEcE) 2(AAcp — AAcE) 

(3.89) 

(3.90) 

Using the notation AE = x, EC = y, and L.CAE = a, the individual areas are 
given by 

AACD = -laa2 	

(3.91) 
AACE = -2xy 

with similar relations for the other area sections. Finally we end up with 

A = a2  • arccos(x/a) b 2  • arccos((c — x)/b) — c • y 	 (3.92) 
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where 

 

e2 a2 b2 

    

X  = and 	y = A/a2  — x2  . (3.93) 
• 2c 

The remaining fraction of Sun light is thus given by 

A 
v = 1 ' 	 (3.94) ira2  

If the condition (3.89) is not satisfied, no occultation takes place (a + b < c) or 
the occultation is total (c < b — a implying that a < b) or partial but maximum 
(c < a — b implying that a > b). It is noted that shadow transits violate the as-
sumption of continuous high-order derivatives of the force function, which is made 
by all common algorithms for the numerical integration of the equation of motion. 
Especially if the penumbra regime is not sampled by the integration algorithm due 
to a large stepsize, an apparent discontinuity is noted, leading to numerical inte-
gration errors. In some cases, the error when entering the shadow is opposite to the 
error when exiting the shadow, but an error cancellation will not inevitably occur. 
Hence, for long-term orbit prediction, the integration step size should not be in 
resonance with the shadow entry period (i.e. the time interval between shadow en-
tries in subsequent orbits) to avoid an accumulation of numerical integration errors 
(Lundberg 1996). 

3.5 Atmospheric Drag 

Atmospheric forces represent the largest non-gravitational perturbations acting on 
low altitude satellites. However, accurate modeling of aerodynamic forces is diffi-
cult from three points of view. Firstly, the physical properties of the atmosphere, in 
this case especially the density of the upper atmosphere, are not known very accu-
rately. Secondly, the modeling of these forces requires detailed knowledge of the 
interaction of neutral gas, as well as charged particles, with the different spacecraft 
surfaces. Thirdly, the varying attitude of non-spherical satellites with respect to the 
atmospheric particle flux has to be taken into account. 

The dominant atmospheric force acting on low altitude satellites, called drag, 
is directed opposite to the velocity of the satellite motion with respect to the atmo-
spheric flux, hence decelerating the satellite. Minor contributions to atmospheric 
forces are the lift force and binormal forces, acting perpendicular to this relative 
velocity. In most cases they can safely be neglected. The dependence of the drag 
force on the velocity of the object relative to the atmosphere I), can be derived in a 
simple way. Consider a small mass element Am of an atmosphere column that hits 
the satellite's cross-sectional area A in some time interval At 

Am = p A I), At , 	 (3.95) 
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where p is the atmospheric density at the location of the satellite. The impulse dp 
exerted on the satellite is then given by 

= dm = p A V r2 	, 	 (3.96) 

which is related to the resulting force F by F = Ap 1 At . The satellite acceleration 
due to drag can therefore be written as 

= 	CD — p tr4 e, 	 (3.97) 
2 	m r  

where m is the spacecraft mass. The drag coefficient CD is a dimensionless quantity 
that describes the interaction of the atmosphere with the satellite's surface material. 
Typical values of CD range from 1.5-3.0, and are commonly estimated as free 
parameters in orbit determination programs. The direction of the drag acceleration 
is always (anti-)parallel to the relative velocity vector as indicated by the *unit 
vector e v = vrIvr. Here the factor of has been introduced to preserve a consistent 
notation in all branches of aerodynamics, sincelp Av 2  At is the increase in pressure 
when low-speed air is stopped. 

The drag coefficient CD depends on the interaction of the atmospheric con-
stituents with the satellite surface. In the free molecular flow regime, where the 
satellites usually move, the particles re-emitted from the satellite do not interfere 
with the incident molecules, i.e. the mean free path X is much greater than the typi-
cal satellite dimension 1. This regime can be characterized by a so-called Knudsen 
number K = A/i > 10. At lower altitudes X decreases, and a situation with 
K < 0.1 may occur which is then called the hypersonic continuum flow. In this 
regime, which is entered in most cases only near the end of low-Earth satellite 
lifetimes, the CD coefficient is reduced from about 2.3 to about 1.0, since the re-
emitted molecules partially shield the satellite from the incident flow. In Fig. 3.9 
the Knudsen numbers depending on the satellite dimension and altitude are shown. 

Fig. 3.9. Knudsen numbers depending on satellite dimension and altitude 
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. Two principally different scattering mechanisms are possible: a specular, elastic 
reflection of the impinging particles, and a diffuse reflection (Fig. 3.10). Diffuse 
reflection occurs when the atmospheric particles penetrate the satellite • surface, 
interact with the body molecules, and are finally re-emitted in a random manner, 
producing forces tangential to the local surface element. In fact, both types of 
scattering appear to various degrees. A variety of different algorithms for computing 
the gas-surface interaction has been established. In Schamberg's model (Schamberg 
1959), for example, this interaction is parameterized by the relation of incident and 
reflection angle, the speed of reflected molecules, and the angular width of the 
reflected beam. 

Fig. 3.10. Two principally different scattering mechanisms: specular and diffuse reflection 

The a priori knowledge of CD is generally not very good, because the drag 
coefficient depends in a complex way on the spacecraft surface material, the chem-
ical constituents of the atmosphere, the molecular weight, and temperature of the 
impinging particles . Therefore, if possible, the drag coefficient is estimated during 
the orbit determination process. A crude approximation is CD = 2 in the case of a 
spherical body, whereas typical values for non-spherical convex-shaped spacecraft 
range from 2.0 to 2.3. 

The area-to-mass ratio in principle requires the knowledge of the spacecraft 
attitude. A constant area-to-mass ratio can, however, be assumed in the Earth-
pointing mode, where one of the satellite's main axes of inertia is permanently 
aligned with the radial direction vector. 

The relative velocity of the satellite with respect to the atmosphere depends 
on the complex atmospheric dynamics. However, a reasonable approximation of 
the relative velocity is obtained with the assumption that the atmosphere co-rotates 
with the Earth. Therefore one can write 

V r  = V — We X r , 	 (3.98) 

with the inertial satellite velocity vector y, the position vector r, and the Earth's 
angular velocity vector coe of size 0.7292 .10-4  rad/s. Maximum observed devia-
tions from this assumption are of the order of 40% (King-Hele 1987), leading to 
uncertainties in the drag force of less than 5%. A global atmospheric wind model 
above 220 km was established by Hedin et al. (1988) using a limited set of vector 
spherical harmonics. 

As the drag force depends on the atmospheric density p at the satellite location, 
the modeling of the complex properties and dynamics of the Earth's atmosphere is 
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a challenging task of modern precision orbit determination. A variety of more or 
less complicated atmospheric models have been established recently, with typical 
density differences for different models of about 20% at a lower altitude of 300 km, 
even increasing at higher altitudes. It is remarkable that the accuracy of empirical 
drag models has not significantly improved during the past two decades (see e.g. 
Marcos et al. 1989). 

3.5.1 The Upper Atmosphere 

The density of the upper atmosphere depends in a complex way on a variety of 
different parameters. The most evident dependency, however, is its decrease with 
increasing altitude. A very rough estimate of this dependency is expressed in the 
strongly simplified formula 

= Poe—h/Ho 	 (3.99) 

where po is the atmospheric density at some reference height, and Ho is the density 
scale height, which is 7.9 km at mean sea level and increases with geodetic height. 
According to the theory of thermodynamics, the hydrostatic equation together with 
the gas law can be used to derive HO as 

RI 
Ho= 

jig 	
(3.100) 

Here, R, denotes the universal gas constant, T the absolute temperature, g = 
GM/r2  the Earth's gravitational acceleration, and p, the molecular weight of 
the atmospheric constituents. From (3.100) it is seen that the partial densities of 
the different gas constituents decrease at different rates. Therefore, the distribution 

Fig. 3.11. Number density of atmospheric constituents at Tco  = 1000 K 
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of .chemical constituents in the atmosphere has to be taken into account. While 
below 100 km the atmospheric species are in a state of turbulent mixing, called 
homosphere, the molecular dissociation and diffusion leads to an inhomogeneous 
species distribution in the heterosphere. Below 170 km altitude, nitrogen is dom-
inant (cf. Fig. 3.11), whereas up to 500-600 km, depending on solar activity, the 
atmosphere mainly consists of atomic oxygen. In the regime from 500 km to 900 km 
helium dominates, followed by atomic hydrogen at higher altitudes. 
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Fig. 3.12. Temperature stratification in the atmosphere with respect to altitude 

From (3.100) it is also evident that a model of the atmospheric temperature 
variation is required. In Fig. 3.12 the temperature stratification in the Earth's atmo-
sphere with respect to geodetic height is shown. The lower atmosphere is divided 
into the troposphere, stratosphere and mesosphere. At mean sea level the typical 
temperature is 290 K, which decreases with increasing height to 220 K. A local 
temperature maximum of 280 K is reached at a height of 50 km, due to the absorp-
tion of solar ultraviolet radiation in an ozone layer. Again, the temperature drops to 
a minimum of about 180 K at the mesopause, the transition from the mesosphere 
to thermosphere at 90 km height. The thermosphere is characterized by a rapid in-
crease in temperature, approaching the exospheric temperature at the thermopause 
at 450-600 km altitude. As indicated in Fig. 3.12, the exospheric temperature is no 
longer dependent on the height, therefore it is often denoted by T. However, the 
exospheric temperature is strongly dependent on many parameters, and varies in a 
regime of typically 400 K to 2000 K. Once the exospheric temperature is known, the 
temperature stratification in the thermosphere can be derived. This fact explains the 
great importance of the exospheric temperature in atmospheric density modeling, 
such as e.g. in the Jacchia models. 

There are mainly three effects of solar radiation that affect the upper atmo-
sphere. Firstly, the diurnal or day-night effect, resulting from the solar ultraviolet 
radiation heating, produces a diurnal variation of the atmospheric density. The 
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maximum density occurs two hours after local noon, approximately at the latitude 
of the sub-solar point, while a minimum density is found three hours past midnight 
near the same latitude but in the opposite hemisphere. This density variation is 
therefore dependent on the geographical latitude. The second effect results from 
the extreme ultraviolet radiation of the Sun, varying on different time scales. Be-
sides a short-term 27-day period, related to the rotation period of the Sun, the Sun's 
activity is characterized by the 11-year Sun spot cycle. It has been discovered that 
variations in the solar decimeter flux are related to the extreme ultraviolet radiation 
from the Sun. Therefore, the 10.7 cm radiation index denoted by F103 is intro-
duced, which accounts for extreme ultraviolet radiation effects. F10.7 is measured 
in units of 10-22w/m2/s  = 4 10 Jansky (Jy). Since 1947, measurements of this 
flux line have been recorded by the National Research Council in Ottawa on a daily 
basis, and from 1991 on by a radio telescope in Penticton, British Columbia. These 
values appear in printed form as "Solar-Geophysical Data prompt reports" as well 
as electronically, published by the National Geophysical Data Center (NGDC) in 
Boulder, Colorado Finally, the third effect results from the corpuscular solar wind, 
which is responsible for short-term fluctuations in the atmospheric density. 

Table 3.6. Relation of geomagnetic ap  to Kp  values (Mayaud 1980) 
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Geomagnetic storms affecting the thermosphere have been observed for many 
years. They increase the temperature, as well as the total density, associated with 
chemical composition changes on a timescale of one or two days. Although a large 
number of satellite acceleration measurements are available (Berger at al. 1988) the 
basic physical processes are not yet known precisely. It is, however, evident that 
the interaction of the solar wind and the Earth's magnetic field plays a major role in 
perturbations of the geomagnetic field. The "three-hourly planetary geomagnetic 
index" K p  is used as a global measure of a three-hour variation in the Earth's 
magnetic field. It is obtained from K -indices that are measured at 12 observatories 
situated at locations ranging from 48° to 63° geomagnetic latitude. The K-indices, 
integers in the range 0 to 9, correspond to variations in the horizontal component of 
the geomagnetic field with respect to a quiet day, as measured by magnetometers. 
These variations amount up to 400 nT, compared to the Earth's magnetic field of 
about 30 000 nT. In some cases geomagnetic data are given as ap  values, the "three-
hourly planetary amplitude index", which is related to K p  as given in Table 3.6. 
Note that K p  is a one-digit number, subdivided into units of 1/3. 

A collation of minimum, typical and maximum numbers of the daily F10.7 
index, the É10.7,  averaged over 90 days, and the geomagnetic K p  index, is given in 
Table 3.7. The short- and long-term evolution of solar flux values and prediction 
algorithms are discussed in Sect. 3.5.5. 
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Table 3.7. Solar flux values and geomagnetic indices 

F10.7 P10.7 K p 

Minimum • 	70 70 Oo 
Typical 200 155  40 
Maximum 330 240 80  

A lag of 6.7 hours in the response of temperature changes to geomagnetic 
storms, indicated by K p  values from 6 to 9, has been observed. Along with the solar 
flux values, geomagnetic data are also available in the above-mentioned "Solar -
Geophysical Data prompt reports". 

Semi-annual variations in the atmospheric density show a strong height depen-
dence and periodic variations throughout the year. However, these variations seem 
not to be connected with the solar activity, and the geophysical mechanisms behind 
these variations are not well understood. 

At lower altitudes of 90-120 km, latitudinal density fluctuations have been 
observed in the thermosphere related to seasonal variations. The amplitude of these 
variations attains a maximum at about 110 km height, and is assumed to decrease 
rapidly with increasing height. 

Seasonal-latitudinal variations of the helium density in the upper atmosphere 
have been observed, resulting from helium migration towards the winter pole. No 
major height-dependency seems to exist. 

Additionally, there are a number of further atmospheric processes that affect 
the density, as e.g. variations in the hydrogen density and pressure waves in the 
atmosphere. However, as accurate modeling of global atmospheric properties is 
lacking, these smaller effects are neglected in most cases. 

3.5.2 The Harris—Priester Density Model 

Although the dynamics of the upper atmosphere shows a significant temporal and 
spatial variation, there exist relatively simple atmospheric models that already allow 
for a reasonable atmospheric density computation. Thus, prior to a description of 
elaborate and complex models, we consider the algorithm of Harris—Priester (Harris 
& Priester 1962, see also Long et al. 1989), which is still widely used as a standard 
atmosphere and may be adequate for many applications. 

The Harris—Priester model is based on the properties of the upper atmosphere 
as determined from the solution of the heat conduction equation under quasi-
hydrostatic conditions. While neglecting the explicit dependence of  semi-annual 
and seasonal latitude variations, it has been extended to consider the diurnal den-
sity bulge. As the atmospheric heating due to the solar radiation leads to a gradual 
increase of the atmospheric density, the apex of this bulge is delayed by approxi-
mately 2 hours, equivalent to a location 30° to the east of the subsolar point (Long 
et al. 1989). The antapex and apex density Pm  (h)  and pm (h) at a given altitude h is 
computed through the exponential interpolation between tabulated minimum and 
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maximum density values  pm (hi) and pm (hi) according to 

hi — h 
Pm (h) = 	(hi ) exp ( 	) 

hi —h  
PM(h) = pm (hi) exp ( 	 

Hm 

(h i  <h  h 1 +1) 
(3.101) 

where h is the height above the Earth's reference ellipsoid. The corresponding scale 
heights are given as 

Hm (h) = 
InCom (hi+1) Pin(hi)) 	. 

hi+1 
H m (h) = 	  

ln(pm(hi+01 Pm (hi)) 

hi — 

(3.102) 

The diurnal density variation from the apex to the antapex due to the solar radiation 
is accomplished through a cosine variation according to 

p(h) = Pm (h) (pm(h) — p ni (h)) cos (-
2
) 	 (3.103) 

where W is the angle between the satellite position vector and the apex of the diurnal 
bulge. In practice, the latitudinal density variations are roughly taken into account 
by the declination-dependent angle W and by the exponent n, which has a numerical 
value of 2 for low-inclination orbits, and 6 for polar orbits. Using trigonometric 
calculus and the definition of W we derive 

= 1 ± COS 	= (1 e r  e 12) cos' 
2 ) 	2 	2 	2 ) 

(3.104) 

with the unit satellite position vector er  . The unit vector eb to the apex of the diurnal 
bulge is given as 

( cos (S 	0 o  cos(ao  + 2 
eb = = 	cos (So  sin(ao  + Xi) 	 (3.105) 

sin So  

with the Sun's right ascension ao , declination (So  and the lag angle in longitude 
X1ç-z-,-' 30° 

In Table 3.8 the minimum and maximum density values are given for an altitude 
regime of 100 km to 1000 km and mean solar activity. In addition to its computa-
tional simplicity, the benefit of the Harris—Priester density model is that it can easily 
be tailored or extended to other altitude regimes or to other solar flux conditions. A 
multi-parametric comparison with the Jacchia 1971 model shows a mean deviation 
in density of about 40% for mean solar flux conditions, which increases to 60% for 
maximum solar activity. Since considerably higher deviations have been observed 
for minimum solar flux conditions, the tabular coefficients should be modified suit-
ably for low solar activity phases. 
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Table 3.8. Harris-Priester atmospheric density coefficients valid for mean solar activity (Long et 
al. 1989)  

h 
[km] 

pm  

[g/km3 ] 
Pm 

[g/km3 1 
h 

[km] 
pm  

[g/km3 ] 
PM  

[g/lan3 ] 

100 497400.0 497400.0 420 1.558 5.684 
120 24900.0 24900.0 440 1.091 4.355 
130 8377.0 8710.0 460 0.7701 3.362 
140 3899.0 4059.0 480 0.5474 2.612 
150 2122.0 2215.0 500 0.3916 2.042 
160 1263.0 1344.0 520 0.2819 1.605 
170 800.8 875.8 540 0.2042 1.267 
180 528.3 601.0 560 0.1488 1.005 
190 361.7 429.7 580 0.1092 0.7997 
200 255.7 316.2 600 0.08070 0.6390 
210 183.9 239.6 620 0.06012 0.5123 
220 134.1 185.3 640 0.04519 0.4121 
230 99.49 145.5 660 0.03430 0.3325 
240 74.88 115.7 680 0.02632 0.2691 
250 57.09 93.08 700 0.02043 0.2185 
260 44.03 75.55 720 0.01607 0.1779 
270 34.30 61.82 740 0.01281 0.1452 
280 26.97 50.95 760 0.01036 0.1190 
290 21.39 42.26 780 0.008496 0.09776 
300 17.08 35.26 800 0.007069 0.08059 
320 10.99 25.11 840 0.004680 0.05741 
340 7.214 18.19 880 0.003200 0.04210 
360 4.824 13.37 920 0.002210 0.03130 
380 3.274 9.955 960 0.001560 0.02360 
400 2.249 7.492 1000 0.001150 0.01810 

3.5.3 The Jacchia 1971 Density Model 

A number of different atmospheric density models have been published since 1965 
by L. G. Jacchia (1965, 1970, 1971, 1977) and Jacchia & Slowey (1981). The first 
model, called J65, was solely based upon the primary parameters geodetic height 
and temperature, with the latter determining the atmospheric conditions. When 
further density-related data became available from the analysis of satellite acceler-
ations due to drag, an improved atmospheric model was established (Jacchia 1971). 
The J71 model includes density variations as a function of time, and covers the al-
titude interval from 90 km to 2500 km. It was adopted by the  COS PAR (Committee 
on Space Research) working group as the International Reference Atmosphere in 
1972, for heights ranging from 110 km to 2000 km (see CIRA 1972). 

In 1977 Jacchia published the atmospheric model J77 (Jacchia 1977), which 
was based upon measurements of the acceleration of satellites, and additionally 
upon analyses of mass spectrometer data. The J77 model was revised once more in 
1981 (Jacchia et al. 1981). 
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All Jacchia models employ the exospheric temperature Too  as a basic parameter 
for the computation of the atmospheric density. The models are based upon the 
assumption that the chemical constituents of the atmosphere are in a state of mixing 
below heights of 100 km. The density for altitudes from 90 to 100 km is computed 
by integration of the barometric equation. At higher altitudes the atmosphere is 
assumed to be in diffusion equilibrium, where the constituents N9, 02, 0, Ar, He 
and H2 are taken into account. These two assumptions cause the Jacchia Models 
to be static in nature. Therefore, temperature and density predictions will be poor 
when dynamical variations with time scales shorter than those typical for diffusion 
are present in the atmosphere. The densities from 100 km upwards are computed 
by integration of the differential equations for diffusion. 

The J71 model offers a reasonable description of the atmospheric density at 
moderate computational expense, and is therefore widely used in the fields of orbit 
determination and prediction. The computation of atmospheric densities in the J71 
model is perfouned in three steps: 

1. The exospheric temperature Too  is computed from data on solar activity and 
from the geomagnetic index, in combination with a model of the diurnal 
variations in the atmosphere. 

2. Once Too  is known, a temperature profile is assumed, which is input for the 
integration of the barometric or diffusion equation (whichever is applicable). 
It is this integration in particular that turns out to be time-consuming. As 
an alternative, use is made of the coefficients of a bi-polynomial fit for the 
computation of the standard density values. 

3. Time-dependent corrections are applied to the density, which account for 
various observed density variations. 

Exospheric Temperature 

In the J71 model, the minimum global exospheric temperature without solar ra-
diation or geomagnetic activity is assumed to be Tc = 379.0°. The exospheric 
temperature with the effect of solar radiation included is given by 

Tc = 379.0° ± 3.24°F10.7 1.3° (F10.7 — 	 (3.106) 

(Jacchia 1971), where F10.7 is the actual solar flux at 10.7 cm, and  F107 the average 
solar flux (both measured in Solar Flux Units of 10-22  W/(m2Hz)) at this wave-
length. In this model the actual flux is taken to be the average over the day before 
the date under consideration. The mean flux .24-).0.7 is found by taking an average 
over three solar rotations of 27 days. The last tem.). in (3.106) thus represents daily 
variations around the mean global exospheric temperature. 

The actual exospheric temperature is a function of local time or, in other words, 
depends on the local hour angle of the Sun with respect to the satellite. It also 
depends, however, on the declination of the Sun and the geographic latitude of the 



1 
= —

2 
(q) + (So) 

1 
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(3.108) 
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satellite. The actual exospheric temperature T1 with the diurnal variations included 
can be computed from 

= T  [1 + 0.3 (sin2-2 101 	(cos2.2ini_ sin2.2101)  cos3.0  (1))] 	, (3.107) 
2 / / 

(Jacchia 1971) with the angles t  (- 180°  <t < +1800), e, 77 given by 

H — 37.0° + 6.0° sin(H ± 43.0°) 

In these equations 8®  denotes the Sun's declination, ço the geographic latitude and 
H the local hour angle of the Sun with respect to the satellite. The additional terms 
in (3.108) which modify the hour angle H, account for asymmetric effects in the 
temperature variation relative to the position of the Sun. The difference between 
the geographic and the geocentric latitude is always less than 12' and can therefore 
be neglected. The local hour angle H is simply given by 

H = CYSAT — a® , 	 (3.109) 

where asAT and a®  are the right ascension of the satellite and of the Sun respectively. 
Jacchia's original representation (3.107) can further be amended by 

= 	
]2
.1.. (1 — cos 0))

1.1  

1.1 
= 	(1 + COS a)) 

(3.110) 

to avoid the noun of the angles. 
Geomagnetic activities axe taken into account by using the three-hourly plan-

etary geomagnetic index Kp  for a time 6.7 hours earlier than the time under con-
sideration (Jacchia 1971). The resulting change in exospheric temperature can be 
written as 

AT0,1,/, = 28.0°Kp  0.030eKP (Z > 350 km) 

TooL  = 14.0°Kp  0.020 eKP (Z < 350 km) 

for high and low altitude (Z) respectively. In order to retain continuity of the tem-
perature correction at 350km, Jacchia introduced a transition function f 

f = —
1

(tanh(0.04(Z — 350 km)) + 1) . 	 (3.112) 
2 

The temperature correction due to geomagnetic activity can then be written as 

(3.113) 
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It should be noted that in the J71 model, geomagnetic perturbations affect the den-
sity in a twofold hybrid manner. Firstly, the temperature perturbations are directly 
reflected in the density and, secondly, an additional geomagnetic density correction 
term is added. 

Finally, the full expression for the exospheric temperature, with solar and ge-
omagnetic teims included, becomes 

Too  = Ti ± A Too  , 	 (3.114) 

which, together with the height Z, determines the standard density values. 

Standard Density Computation 

The standard Jacchia 1971 model is based upon an empirical temperature profile 
which starts from a fixed value To = 183 K at 90 km. The temperature increases with 
altitude in a transition region until it reaches Too  asymptotically (Jacchia 1965). The 
standard density is obtained by integration of the barometric differential equation 
below 100 km and of the diffusion differential equation above this height. The 
molecular weights, and the fraction by volume of the atmospheric species nitrogen 
(N2), oxygen (02), argon (Ar), and helium (He) at sea level, are input parameters 
to the model. 

The Fortran source code provided in CIRA (1972) uses a Newton—Cotes five-
point quadrature formula for the numerical integration of the individual constituent 
number densities. The advantage of this approach is that only few input data are 
necessary in order to get the full information content of the Jacchia model. The 
inherent drawback, however, is the computational effort, because each time a density 
is calculated, the equations must be integrated. It is estimated that more than 90% 
of the processing time is consumed by the computation of the standard density in 
this method. A graphical presentation of the J71 standard density as a function of 
altitude and exospheric temperature is given in Figure 3.13. 

Considerable savings in processing time may be obtained by interpolating the 
standard density from precomputed tabular values or corresponding polynomials 
A sophisticated bi-polynomial representation 
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Z  ) 
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 (  1000 K j 
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of the standard density p (in [kg/m3]) as a function of height and exospheric tem-
perature was developed by Gill (1996). It achieves a representative accuracy of 7% 
with coefficients cii given in Tables 3.9 and 3.10. The approximation is applicable 
within the altitude range 90-2500 km and the temperature range 500-1900 K, which 
is divided into 4 x 2 subintervals. In order to ensure continuous density values and 
first-order derivatives at the sub-interval boundaries, the polynomial coefficients 
were obtained from a constrained least-squares fit that is described in detail in Gill 
(1996). 

log p(Z, Too ) = (3.115) 
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Fig. 3.13. Logarithm of the standard density in the J71 model as a function of temperature and 
altitude 

Density Corrections 

In addition to the computation of the standard density, several density corrections 
have to be applied to account for various observed density variations. Below 350 km 
there is an additional geomagnetic term 

log pGm = (0.012Kp  + 1.2.10-5  e l<" P) (1 f) 	 (3.116) 

as part of the hybrid Jacchia geomagnetic algorithm. 
The semi-annual density variation in the thermosphere and the lower exosphere 

is only considered by temperature corrections in the Jacchia 1965 model. Large 
discrepancies with this model were found, however, when actual data of the drag 
force on satellites became available. This forced Jacchia to the assumption that those 
density variations are not primarily caused by variations in temperature. Hence, an 
empirical relationship 

	

log psA = f (Z) g(t) 	 (3.117) 

for the density correction was assumed, where g(t) represents the temporal varia-
tion, and f (Z) is the amplitude of the density variation at a given altitude. A b'est 
fit to the available data was found with the functions 

,. f (Z) = (5.876 10 (z ikm 2331 

	

— 	)7 	+ 0.06328 e (-0.002868 Z/Icm)) 

g(t) = 0.02835+ 	 (3.118) 

(0.3817+0.17829 sin(27rrsA +4.137)) x sin(47rtsA +4.259) . 
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Table 3.9. Coefficients cif of Jacchia 1971 standard density polynomials in temperature (index j) 
and height (index i) below  500 km 

901cm < Z < 1801cm 500K < Too  <850K  

0 1 2 3 4 

0 
1 
2 
3 
4 
5 

-0.3520856402 
 +0.1129210404 
 -0.1527475.105 

 +0.9302042-105 
 -0.2734394.106 

 +0.3149696-106  

+0.3912622.10 1 
 +0.1198158, 104 

 -0.3558481.105 
 +0.3646554.106 

 -0.1576097.107 
 +0.2487723.107  

-0.8649259.102 
 +0.8633794-103 

 +0.1899243• 105 
 -0.3290364.106 

 +0.1685831• 107 
 -0.2899124.107  

+0.1504119.103 
 -0.3577091.104  

+0.2508241•10  
-0.1209631.105 

 -0.4282943.106 
 +0.1111904.107  

-0.7109428.102 
 +0.1970558.104 
 -0.1968253.105 

 +0.8438137• 105 
 -0.1345593.106 

 +0.3294095.104  

901cm < Z < 1801crn 850K < Too  <1900K  

i 0 1 2 3 4 

0 -0.5335412402  +0.2900557402  -0.2046439.102  +0.7977149 .10 1  -0.1335853-10 1  
1 +0.1977533-104  -0.7091478.103  +0.4398538-103  -0.1568720 •103  +0.2615466402  
2 -0.2993620-105  +0.5187286-104  -0.1989795.104  +0.3643166 -103  -0.5700669402  
3 +0.2112068-106  -0.4483029404  -0.1349971.105  +0.9510012 •104  -0.1653725.104  
4 -0.7209722-106  -0.7684101.105  +0.1256236.106  -0.6805699 • 105  +0.1181257.105  
5 +0.9625966.106  +0.2123127.106  -0.2622793.106  +0.1337130 .106  -0.2329995.105  

180 km < Z < 500 km 500K.< Too  <850K  

i 0 1 2 3 4 

0 +0.2311910.102  +0.1355298.103  -0.8424310.103  +0.1287331.104  -0.6181209.103  
1 -0.1057776404  +0.6087973.103  +0.8690566.104  -0.1715922405  +0.9052671.104  
2 +0.1177230405  -0.3164132.105  -0.1076323.104  +0.6302629.105  -0.4312459.105  
3 -0.5827663405  +0.2188167.106  -0.2422912.106  +0.2461286.105  +0.6044096.105  
4 +0.1254589.106  -0.5434710.106  +0.8123016.106  -0.4490438.106  +0.5007458.105  
5 -0.9452922-105  +0.4408026.106  -0.7379410.106  +0.5095273.106  -0.1154192.106  

1801an < Z < 5001an 850K < Too  < 1900K 

0 1 2 3 4 

0 +0.4041761402  -0.1305719.103  +0.1466809403  -0.7120296.102  +0.1269605.102  
1 -0.8127720-103  +0.2273565.104  -0.2577261.104  +0.1259045 • 104  -0.2254978.103  
2 +0.5130043.104  -0.1501308405  +0.1717142.105  -0.8441698.104  +0.1518796.104  
3 -0.1600170.105  +0.4770469.105  -0.5473492.105  +0.2699668.105  -0.4870306.104  
4 +0.2384718-105  -0.7199064.105  +0.8284653.105  -0.4098358.105  +0.7411926.104  
5 -0.1363104-105  +0.4153499 • 105  -0.4793581.105  +0.2377854•05  -0.4310233.104  

Here the time-dependent parameter is 

+ sin(2n-  + 6.035)) 1 .65- I 
2 2 	 2 

with 
(t - 36204) 

= 
365.2422 

rsA = 0 +0.09544 (3.119) 

(3.120) 

In equation (3.120), t is the time expressed in Modified Julian Days (MJD 
JD -2400000.5). Hence, 0 is the number of tropical years since January 1, 1958. 
The maximum semi-annual density correction is A log pm" IsA 	0.21. 



500 km < Z < 1000km 500K  < Too  <850K  

0 1 2 3 4 

o -0.1815722.10 +0.9792972.104  -0.1831374.105  +0.1385255 • 105  -0.3451234-104  
1 +0.9851221.104  -0.5397525.105  +0.9993169.105  -0.7259456 • 105  +0.1622553.105  
2 -0.1822932-105  +0.1002430.106  -0.1784481.106  +0.1145178 .106  -0.1641934-105  
3 +0.1298113-10 5  -0.7113430.105  +0.1106375.106  -0.3825777 •105  -0.1666915-105  
4 -0.1533510.104  +0.7815537.104  +0.7037562.104  -0.4674636 .105  +0.3516949-105  
5 -0.1263680.10 +0.7265792-104  -0.2092909.105  +0.2936094 • 105  -0.1491676-105  

500 km < Z < 1000km 850K < Too  < 1900 K 

0 1 2 3 4 

o -0.4021335-102  -0.1326983.10 3  +0.3778864 • 103  -0.2808660.103  +0.6513531.102  
1 +0.4255789.103  +0.3528126.103  -0.2077888.104  +0.1726543-104  -0.4191477-103  
2 -0.1821662.104  +0.7905357.103  +0.3934271.104  -0.3969334-104  +0.1027991.104  
3 +0.3070231 • 10 -0.2941540.10 -0.3276639.104  +0.4420217.104  -0.1230778.104  
4 -0.2196848.104  +0.2585118.104  +0.1382776.104  -0.2533006-104  +0.7451387-103  
5 +0.5494959 • 103  -0.6604225.10 3  -0.3328077.10 3  +0.6335703.103  -0.1879812-10 3  

1000km < Z < 2500km 500K  < Too  <850K  

0 1 2 3 4 

O +0.3548698 -103  -0.2508685.10 +0.6252742 • 10 -0.6755376.104  +0.2675763.104  
1 -0.5370852 • 103  +0.4182586 • 10 -0.1151114.10 5  +0.1338915.10 5  -0.5610580.104  
2 -0.2349586 .102  -0.8941841.10 3  +0.4417927 • 104  -0.6732817.104  +0.3312608 • 104  
3 +0.3407073 -10 3  -0.1531588.10 +0.2179045.10 -0.8841341.103  -0.1369769-103  
4 -0.1698471 .103  +0.8985697.1 0  -0.1704797.10 +0.1363098.10 -0.3812417.103  
5 +0.2497973 -102  -0.1389618.103  +0.2820058 • 103  -0.2472862.103  +0.7896439.102  

1000krn < Z < 2500 Ian 850K < Too  < 1900K 

0 1 2 3 4 

O +0.1281061.102  -0.3389179.10 3  +0.6861935 • 103  -0.4667627.10 3  +0.1029662-103  
1 +0.2024251-103  +0.1668302-103  -0.1147876.10 +0.9918940 • 103  -0.2430215.103  
2 -0.5750743.10 3  +0.8259823.103  +0.2329832.103  -0.6503359.10 3  +0.1997989.10 3  
3 +0.5106207.103  -0.1032012.10 +0.4851874.103  +0.8214097.102  -0.6527048.102  
4 -0.1898953.103  +0.4347501.103  -0.2986011.103  +0.5423180.102  +0.5039459 • 10' 
5 +0.2569577.102  -0.6282710.102  +0.4971077.102  -0.1404385.102  +0.8450500 • 10°  
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Table 3.10. Coefficients cif of Jacchia 1971 standard density polynomials in temperature (index j) 
and height (index i) above 500 km  

So far, the model gives a constant density over the globe at 90 km. This contra-
dicts observations of density variations below 120 km, which indicate a seasonal-
latitudinal density dependence with a maximum amplitude at Z 110 km In tel ins 
of the latitude, ço, and the deviation from the reference height, AZ90 = Z - 90 km, 
the deviation in density can be written as 

A log PSL = 0.014A Z90e(-0.00 1 3Az30) sin(27ro  + 1.72) 	
s i n3 w  

I sin ço I 
. 	(3.121) 

In a computer application sin ço/ I sin  'pi  should be replaced by SIGN(sin2  ço, ço). 
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A strong increase of the helium concentration above the winter pole has been 
found from mass-spectrometer data, as well as from satellite drag data. This phe-
nomenon is accounted for in the Jacchia 1971 model by an empirical seasonal-
latitudinal correction 

A log //He  = 0.65 
80  / 3 7 7 	9 \ 

 13Z  ) 0.35355) 	 (3.122) 

  

to the helium number density He  (in [1/m3]), where E is the obliquity of the eclip-
tic. The maximum helium density contribution to the standard density is given by 
A log pAleax  0.88. It is straightforward to compute this correction from the inte-
gration of the diffusion equation, which yields the number density of the individual 
species. However, a standard density computation from tabular data now requires 
additional table values for the helium number density as a function of altitude and 
of exospheric temperature. 

Therefore, a polynomial approximation, similar to the one for the standard 
density, is also made for the helium density. To this end the helium density correction 
is written as 

(iolognue _ 1) APHe = 101°g 
n He m He  

(3.123) 
A„ 

with the helium number density 

1=0 j=0 

the helium molecular weight mile  = 4.0026, and the number of Avogadro  A.  
Coefficients hi./ for a smooth and continuous approximation of the helium number 
density as derived by Gill (1996) are collated in Table 3.11. 

3.5.4 A Comparison of Upper Atmosphere Density Models 

Only after the advent of the space age, with the launch of the Sputnik satellite in 
1957, could information on the physical properties of the upper atmosphere above 
150 km be deduced. In particular, atmospheric densities can be derived from the 
evolution and decay of the satellite orbits, assuming a given drag coefficient. This 
method was primarily used for the density model development up to the mid seven-
ties. Its inherent drawback is, however, that only integrated drag effects over several 
orbit revolutions may be resolved from orbit determination, and thus the method is 
restricted to a limited spatial and temporal resolution. Its benefit, on the other hand, 
is that density models derived from these observations can consistently be applied 
to other space missions, being free from any further instrument calibration. 

Rapid developments in satellite and ground system instrumentation consider-
ably improved the knowledge of detailed atmospheric properties in the seventies. 
The use of spacecraft accelerometers directly monitored the non-inertial forces act-
ing on the satellite. Mass spectrometers were integrated into the satellite hardware 

log nHe(Z, Too) 
5 4 

( Z  '(T   ) 

j 	1K 
(3.124) 
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Table 3.11. Coefficients hij of Jacchia 1971 logarithmic helium number density polynomials in 
temperature (index j) and height (index i) 

90 km <Z  < 5001cm 

ifi 0 1 2 3 4 

+1.831549 • 10+°1  +5.887556.1 003  —4.813257.10-06  +1.701738 • 1 009  —2.128374.10 -13  
—7.374008.10-02  —1.251077.10—°4  +1.039269 • 1 007  —3.679280.10 — " +4.555258 • 10-15  
-L4.384164.10-04  +8.657027 • 1 007  —7.216946.10-1 0  +2.481534 • 10-13  —2.859074.10-17  
—1.411195.10-06  —2.483834.1(09  +2.004107.10-12  —6.244985.10-16  +5.561004.10-20  
+2.153639.1 009  +3.421944.10-12  —2.628961.10 -15  +7.085655.10 -19  —3.279804.10 -23  
—1.255139.10 -12  —1.827253.10-15  +1.321581.10-18  —2.887398.10 -22  —7.827178.10 -27  

500km < Z < 1000Icm 

i fj 0  1 2 3 4 

+1.627089.10+°1  —1.786816.10-02  +3.079079 • 1 005  —2.043431.10-08  +4.643419.10 -12  
—1.958297.10 -02  +1.386126 • 1 004  —2.532463.1(07  +1.714183.10 -1°  —3.934230.10 -14  
+2.514251.1(05  —3.806339.1 007  +7.692376.10-1° —5.394766.10-13  +1.260304.10 -16  

cn
 —2.983314.10-08  +5.855851.10-1 0  —1.210663.10-12  +8.561632.10-16  —2.009030.10 -19  

+1.802028.10 — " —4.382878.10-13  +9.201530.10-16  —6.543935.10-19  +1.540220.10 -22  
—4.243067.10 -15  +1.268830.10-16  —2.695807.10-19  +1.925469.10-22  —4.542329.10 -26  

1000km < Z < 2500km 

iti 0 1 2 3 4 

cD
 	

(N
I 	

•zt..  
tr

) 

+1.873346.10+° 1  +2.285683-10-02  —6.860776.1(05  +5.379623-10-08  —1.327559.10-11  
—2.362530.10 -02  —6.907613.1(05  +2.251680.1(07  —1.795937.10 -1°  +4.463659.10 -14  
+1.893899.1 005  +1.145960 • 1 007  —3.183259.10-1°  +2.461076.10-13  —6.040423.10 -17  
—1.132198.10-08  —7.438326.10-11  +2.040288.10 -13  —1.573191.10 -16  +3.857032.10-20  
+3.465014.10 -12  +2.308943 • 10-14  —6.320466.10 -17  +4.871419.10-2°  —1.194139.10-23  
—4.156710.10 -16  —2.791930.10-18  +7.632792.10-21  —5.881112.10-24  +1.441455.10 -27  

that produced in-situ measurements of the chemical composition and temperature 
at upper atmospheric altitudes. Incoherent radar scattering techniques  from ground-
based antennas provided measurements of atmospheric electron and ion properties 
that could be related to the neutral atmospheric density and composition. More 
recent atmospheric models, such as the J77 model, or the series of MSIS (Mass 
Spectrometer and Incoherent Scatter) models, make extensive use of those data. 
The spatial and temporal resolution of these models is therefore high, at the cost of 
increased complexity and CPU time. 

Apart from the well-known and frequently applied J71 model, a variety of other 
density models of the upper atmosphere exists. These range from very simple, easy 
to implement algorithms to elaborate theories, which either require much CPU 
time, or refer to a large number of numerical coefficients. A brief summary of 
the various models is given in this section, and a comparison is made in teints of 
computation time and of relative density difference with respect to the original J71 
model provided in CIRA (1972). 

The Jacchia—Roberts model of the atmosphere (Roberts 1971) was originally 
derived from J70. Later on it was modified according to J71 (Long et al. 1989). 
Roberts' method is based upon analytical solutions of the barometric and diffusion 
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Table 3.12. Comparison of density models. Relative CPU time performance, mean, and maximum 
difference in density relative to J71 

Model CPU Pmean dPmax 
Jacchia 71 1.00 - 
Jacchia-Roberts 0.22 0.01 0.03 
Jacchia-Lineberry 0.43 0.13 0.35 
Jacchia-Gill 0.11 0.02 0.08 
Jacchia 77 10.69 0.13 0.35 
Jacchia-Lafontaine 0.86 0.13 0.36 
MSIS 77 0.06 0.18 0.53 
MSIS 86 0.32 0.21 1.45 
TD88 0.01 0.91 7.49 
DTM 0.03 0.40 1.22 

differential equations, which are obtained by integration of partial fractions. The 
original Jacchia temperature profile (exospheric temperature computed as in J70) 
is used between 90 and 125 km. Above 125 km a different temperature profile is 
assumed, which results in a diffusion equation that can be integrated analytically. 
Hence, Roberts' results match Jacchia's exactly between 90 and 125 km, and are 
in close agreement above 125 km The mean relative difference in density and the 
maximum relative differences with respect to J71 are 1% and 3% respectively. 
According to Long et al. (1989) the maximum density difference amounts to 6.7%. 
This demonstrates the close agreement between both models. The CPU performance 
is better by a factor of almost five compared to J71, as can be seen from Table 3.12. 
The advantage of the Roberts model is that numerical integration is avoided, and 
storage of a large number of coefficients is also unnecessary. At the same time the 
computational speed is good. 

The Jacchia-Lineberry model (Mueller 1982) assumes that the logarithm of the 
density can be computed as a truncated Laurent series in temperature and altitude. 
The altitude is split into nine intervals at most, and the necessary number of coef-
ficients in this model is about a hundred. However, the seasonal-latitudinal helium 
variation is not included. Density differences between the Jacchia-Lineberry model 
and J71 are typically 13%, and the gain in computational speed is moderate. 

The model ofJacchia-Gill (Gill 1996), as described above, uses a bi-polynomial 
approximation of the Jacchia 1971 standard density model. It is based upon poly-
nomials of elth order in temperature and of 5th degree in altitude. The temperature 
interval from 500 to 1900 K and the altitude interval from 90 to 2500 km are divided 
into eight sections, each with its own bi-polynomial fit. A continuous transition be-
tween the several height intervals is ensured by the use of a constrained least-squares 
fit. The helium number density is obtained in a similar way. The total number of 
coefficients required in the Jacchia-Gill model is 330. Typical differences with J71 
are 2% and the maximum deviation is 8%. The computing time is reduced by a 
factor of nine. 

In 1977 Jacchia published an updated atmosphere model, J77, which was re-
vised once more in 1981 (Jacchia et al. 1981). These models are based upon mea- 
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surements of satellite acceleration and, additionally, upon analyses of mass spec-
trometer data. Similar to the older Jacchia models a physical description of the 
upper atmosphere with regard to satellite drag is attempted by the integration of the 
barometric and diffusion equations. However, a greater complexity is introduced 
through a species-dependent pseudo-temperature in order to account for the fact 
that the density of different constituents peaks at different hours of the day. Further-
more, the mean solar flux is replaced by a weighted mean value which is centered 
around the epoch. Finally, the time at which the Kp  index is required is corrected 
for the geomagnetic latitude of the satellite position. These extensions make the 
model significantly more complex. This is of course directly reflected in the CPU 
time, which is ten times higher than for the J71 model. Yet, the J77 model does not 
significantly improve the accuracy of density modeling for satellite orbit prediction 
and determination. 

Modifications of the temperature profile at low altitudes in the J77 model, as 
compared to the J70 and J71 models, caused Roberts' approach to be no longer 
applicable. This situation was resolved by de Lafontaine & Hughes (1983). They 
modified Jacchia's temperature profile below 125 km and extended Roberts' expo-
nential temperature profile above 125 km in order to obtain an analytical version 
of the J77 model. Their approach is more general than Roberts' method and it is 
not restricted to the J77 model, but can also be applied to the J70 and J71 models. 
The computational efficiency is considerably better than that of the original J77 
foimulation and, in contrast to Roberts' method, continuity of the first derivative of 
the density is guaranteed for all exospheric temperatures. The mean and maximum 
deviations relative to the J71 density are 13% and 36% respectively. 

A different class of models was published in papers by A. E. Hedin. These 
models are entirely based upon in-situ data from satellites and sounding rockets, as 
well as incoherent scatter measurements. The first model was published in 1977 by 
Hedin et al. and is known as MSIS-77 (Mass Spectrometer and Incoherent Scatter). 
When more data became available, this model was upgraded yielding MSIS-83 
(Hedin 1983) and MSIS-86 (Hedin 1987) models. The latter model was adopted 
as the CIRA 1986 reference atmosphere. MSIS-86 is based on a complex function, 
which has to be evaluated to compute the density, as well as other atmospheric 
quantities. More than 850 coefficients have to be provided, which, in turn, allows 
a detailed modeling of the complex atmospheric properties. 

Barlier et al. (1978) published the thermospheric density model, DTM, which 
is based upon total density data derived from satellite drag observations. An expan-
sion in terms of spherical harmonics is performed for the exospheric temperature 
and for the density of the main atmospheric constituents helium, atomic oxygen, 
and nitrogen comprising up to terdiumal and semi-annual terms. The total density 
depends in a simple analytical  foini  upon the altitude and is obtained from the 
integration of the diffusion equation with an empirical temperature profile. About 
150 parameters are required for the evaluation of the model, which requires ex-
tremely little computer time. However, very high density differences of typically 
40% relative to the J71 model are found. The maximum difference lies at 122%. 
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The simple atmospheric model TD88 was derived by Sehnal & Posprgilovd 
(1988) mainly by fitting an analytical series of exponential functions in height and 
of trigonometric functions in time to the density values from the DTM model. The 
resulting model requires only 40 parameters and is according to Sehnal applicable 
for altitudes between 150 and 750 km. Compared to the performance of J71 a run-
time gain of a factor of a hundred is obtained. The density differences, however, 
seem to be unacceptably high, lying on the average at 91%. In Table 3.12' the 
maximum density deviation of 749% with respect to J71 was due to an evaluation 
at 130 km altitude, which is just outside the validity interval of the model given by 
Sehnal. 

There have been a number of publications which analyze and compare the per-
formance of different density models (e.g. Gaposchkin & Coster 1990, Marcos et 
al. 1989). The conclusion is that the models have statistical accuracies of about 15% 
and that there has been no significant improvement in density models over the last 
two decades. The profit achieved by the application of complex atmosphere models 
in the field of satellite orbit determination and prediction is therefore question-
able. It appears fully justified to select density models with a moderate complexity 
only, which essentially minimize the computational effort and coefficient storage 
requirements. 

3.5.5 Prediction of Solar and Geomagnetic Indices 

Low-Earth satellite orbits are severely affected by atmospheric drag, which strongly 
varies with the solar flux and geomagnetic activity. While the measured solar and 
geomagnetic activity indices can be applied in orbit determination, orbit forecasts 
have to rely on predictions of these parameters. Short-term to mid-term predictions 
are required for spacecraft operations, especially for ground station scheduling and 
maneuver planning of low-Earth satellites. In particular, remote sensing missions 
require the control of orbit equator crossings within specified equatorial longitude 
bands, which are maintained by orbit raising or lowering maneuvers. Hence, the 
orbit maneuver schedule depends on the evolution of the semi-major axis within pe-
riods of typically some weeks, while the semi-major axis evolution itself is governed 
by the evolution of the solar and geomagnetic flux in that time frame. Long-tenri 
predictions of the solar and geomagnetic flux, on the other hand, are important for 
mission planning and analysis. The knowledge of the profile and magnitude of the 
next solar cycle, for example, is crucial for the logistic planning of the assembly of 
the International Space Station. Furthermore, mission planning requires long-term 
forecasts for estimates of the expected satellite lifetime. 

It is therefore adequate to distinguish three different time scales for solar and 
geomagnetic index forecast, namely 

1. Short-terri predictions (days) 
2. Mid-term predictions (months) 
3. Long-term forecasts (years) 
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Fig. 3.14. Short-term variation of solar flux values due to solar rotation 

each of which may apply mathematical methods or physical models or a combina-
tion thereof as forecast algorithms. 

Short-term predictions have to account for the 27-day periodicity of the solar 
activity that results from the synodic solar rotation with this period (Fig. 3.14). The 
periodic variation in the F10.7 index may be forecasted using a regression algorithm 
(Nostrand 1984) that compares the long-ten.'" trend from three solar rotations with 
a recent trend from the past three days. Supposing that the two trends are directed 
opposite, the prediction follows the recent trend with a later regression towards the 
long-term trend. This method assures that the predicted values evolve smoothly 
from the observed values and it leads to a particularly good prediction accuracy for 
the first 7-10 days (Frauenholz & Shapiro 1991). 

Mathematical methods are in general applied to mid-term predictions. The 
linear-regression technique of McNish & Lincoln (1949) makes use of the relation 
between the solar flux F10.7 values and the sunspot numbers to compute a mean 
solar cycle. This approach considerably improves the database, since F10.7 data are 
available only from 1947 onwards, whereas the first sunspot numbers date back to 
1749. Departures of the current cycle from the mean cycle are then based on the 
assumption that they are related to deviations of the previous cycle from the mean 
cycle (Mugellesi & Kerridge 1991). This method provides monthly smoothed F103 

values and can correspondingly be applied to geomagnetic index predictions. The 
drawback of this method is that the prediction accuracy deteriorates with increasing 
forecast periods and that no understanding of the involved physical mechanisms is 
achieved. 

The long-term evolution of solar flux values is governed by the 11-year solar 
cycle as depicted in Fig. 3.15. Among various prediction methods, the precursor 
models have shown the best performance. Here, it is assumed that the solar cycle 
actually starts in the declining phase of the previous cycle, where the next cycle 
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Fig. 3.15. Monthly averages of the solar flux for solar cycles 20-23. Predicted average values and 
+2a uncertainties in the predicted average are due to Schatten (1999). 

manifests itself in the occurrence of coronal holes and the strength of the polar 
magnetic field of the Sun. According to the solar dynamo model, the Sun's polodial 
magnetic field at solar minimum is transformed by differential rotation to a toroidal 
field that gives rise to phenomena such as sunspot numbers and solar activity for 
the next cycle (Schatten et al. 1978, Schatten & Pesnell 1993). Although the model 
allows a physical connection between the Sun's polar magnetic field, and coronal 
holes, as well as solar and geomagnetic activity, a drawback of this method is that 
the Sun's polar magnetic field is difficult to measure and that the assumed physical 
model might be oversimplified. 

3.6 Thrust Forces 

Aside from the natural forces discussed so far, the motion of a spacecraft may also 
be affected by the action of an onboard thruster system. Thrusters are frequently 
applied for orbit control, attitude control, or a combination of both, and exhibit 
a variety of performance levels (cf. Table 3.13) and burn durations. In view of a 
significant impact on the spacecraft orbit, thrust forces must be taken into account 
in the trajectory prediction using an adequate mathematical model. In turn, thruster 
and maneuver parameters may be calibrated by adjusting them along with other 
parameters in an orbit determination. 

While attitude thrusters are ideally burned in pairs to produce a pure momentum-
free torque, changes in the shape and orientation of the orbit are accomplished by 
thrusters acting primarily in the along-track and cross-track directions. In the case 
of orbital maneuvers the overall thruster activity is generally confined to a finite 
time interval, ranging from seconds or minutes for ground track control of remote 
sensing satellites to several hours for inclination control of geostationary satellites 

2000 
	

2010 
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Table 3.13. Representative values of the thrust level, the ejection velocity, the specific impulse 
(hp  ve/9.81 m/s2), and the mass flow rate for various thrust systems 

Propulsion system F Ve ithi 

Solid propellant boost motor 40 kN 3000 m/s 300 s 1.3 kg/s 
Liquid propellant boost motor 400 N 3500 mJs 350 s 130 g/s 
Station keeping thruster 10 N 3500 m/s 350 s 3 g/s 
Ion thruster 20 mN 25 km/s 2500 s 0.8 mg/s 

with ionic propulsion. Whereas maneuvers may conveniently be treated as instan-
taneous velocity increments 

= v(Ç) Av(t m ) 	 (3.125) 

occurring at the impulsive maneuver time tm  whenever the thrust duration is small 
as compared to the orbital period, an adequate thrust model is required for extended 
maneuvers. This is particularly true for orbital transfers with large boost maneuvers 
that are applied e.g. in the positioning of geostationary satellites (see Fig. 2.4). Here, 
a substantial amount of propellant is consumed during a single maneuver, which 
results in a continuous change of the spacecraft mass along the burn. 

Despite the variety of spacecraft propulsion systems, a simple, constant thrust 
model is often sufficient to describe the motion of a spacecraft during thrust arcs. 
The model described in the sequel is applicable to most types of extended orbit 
maneuvers ranging from high-thrust orbital transfer maneuvers to low-thrust orbit 
corrections. To ensure compatibility with commonly employed impulsive maneuver 
models, a formulation in terms of velocity increments is chosen. - 

Under the action of a propulsion system which ejects a mass Idm  I  = Irhidt of 
propellant per time interval dt at a velocity ve , a spacecraft of mass m experiences 
a thrust ' 

F = lth IVe 	 (3.126) 

which results in an acceleration 
F 	Intl 

a = — = —V e  (3.127) 

Upon integration over the burn time At, the total velocity increment is given by 

to-FAt 	 m(to-I-At) 
1 

 Av = f a(t)dt = —v e  f --dm  = —ve 
m(to -I-  At) )  

MO 
to 	 MO 

Or 

(3.128) 

Av  F  = -- In (1 I7i11/1  3 ) 
Intl 	\ 	mo I 

assuming a constant mass-flow rate  Intl. 

(3.129) 
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Making use of the total velocity increment Av, the acceleration may be ex-
pressed as 

3.130) 

which approaches the limiting value 

a(t) 	 (3.131) 

in the case of negligible mass flow (IrhizAt <<mo). 
The one-dimensional motion considered so far may be generalized by intro-

ducing a time-dependent set of orthogonal unit vectors el, e2 and e3 with constant 
projected thrust vector components F1, F2 and  F3.  The resulting acceleration vector 
is given by 

1 	7F1 
a(t) = —E F2 

m 
 

\ 

(3.132) 

IhI 	1  
a(t) = 

m(t) 21'1 
 v 

— ln 1 
mo 

Here 

(zAvi 
4 .11(0= 	A v2 	 (3.134) 

.6,1)3 

is the vector of velocity increments in the chosen thrust reference frame, while the 
rotation matrix 

E(t)= (el, e2, e3) 	 (3.135) 

performs the transfonnation into the inertial reference frame used to describe the 
spacecraft motion. 

In most cases the spacecraft maintains a constant orientation during the thrust 
phase, either with respect to the orbital frame or the inertial reference system. In the 
orbital frame the unit vectors el and e3 are aligned with the radial direction and the 
angular momentum vector ,  e2 completes the right-handed system and is parallel to 
the velocity vector for circular orbits: 

el 	
Id 

e2 	e3 x 
	 (3.136) 

r x v 
e3 	

Ir x vi 
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The. orbital frame is a co-moving frame, which is particularly suited to separate 
in-plane thrust components, which change the size and shape of the orbit, and 
out-of-plane components, which affect the orbit's spatial orientation. 

The inertial thrust direction model is e.g. applicable to spin-stabilized space-
craft. Here, the inertially fixed spacecraft attitude results in a constant thrust direc-
tion vector and the transformation matrix E = I is simply the identity matrix. 

It should be noted that for a numerical treatment of accelerations due to thrust, 
both instantaneous and extended maneuvers lead to discontinuities in the equations 
of motion. Thus, a proper maneuver treatment requires the restart of the numerical 
integration algorithm at the beginning and end of each thrust phase. 

3.7 Precision Modeling 

For a wide range of applications, the accelerations described so far are fully suf-
ficient for a precise description of the satellite orbit. However, there are missions 
with challenging accuracy requirements, such as in satellite geodesy, which have 
to account for even more and smaller perturbations. A prominent example is the 
US/French TOPEX/POSEIDON mission, which requests a radial position error 
of less than 10 cm. Such high-precision modeling needs to account for additional 
perturbations like the radiation pressure of the Earth, tidal forces that modify the 
Earth's gravity field, as well as general relativistic deviations to the Newtonian 
equations of motion. Finally empirical accelerations may be introduced to account 
for effects that cannot suitably be described by physical models. 

3.7.1 Earth Radiation Pressure 

In addition to the direct solar radiation pressure, the radiation emitted by the Earth 
leads to a small pressure on the satellite. Two components are distinguished: the 
shortwave optical radiation and the longwave infrared radiation. In both cases the ac-
celeration on the satellite decreases slightly with increasing altitude. This is caused 
by the inverse square law of the emitted radiation pressure, which is partially com-
pensated for by an increase of the illuminating surface section of the Earth with 
altitude. The amplitude of the typical albedo acceleration for low-Earth satellites 
is 10% to 35% of the acceleration due to direct solar radiation pressure (Knocke et 
al. 1988). 

The optical albedo radiation is produced by reflection and scattering of incident 
solar radiation on the Earth's surface. This reflection is described by the albedo 
factor a, defined as the fraction of the shortwave radiation reflected from the Earth 
to space to the incident shortwave solar radiation. The average global albedo value is 
a 0.34, equivalent to a radiation of 459 W/m2  of the Earth surface elements. The 
optical albedo radiation has essentially the same spectral distribution as the direct 
solar radiation pressure. It is emitted only by the daylight side of the Earth and may 
vary significantly due to different surface characteristics and cloud coverage. 
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In contrast to the optical radiation, the infrared radiation is a near isotropic re-
emission of the direct solar radiation absorbed by the Earth and its atmosphere. The 
average emissivity E is approximately 0.68. Its contribution to the flux is, however, 
reduced by a factor of 4 due to the ratio of the irradiated Earth cross-section r 
to the total radiating Earth surface 47 4. Hence, the effective radiation of Earth 
surface elements due to infrared emission is 0.17 45 or 230 W/m2 . 

The acceleration of the spacecraft due to Earth radiation is summed up from 
j (j = 1, .. . , N) individual terms, corresponding to different Earth area elements 
d A 
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where the vi denote the Earth element shadow functions and Of and (PI are the 
angles of the Earth surface or satellite surface normals to the incident radiation. 
The unit vector ei points from the Earth surface element to the satellite, while the 
distance is rj. The albedo and emissivity may be expressed using a second-degree 
zonal spherical harmonic model (Knocke et al. 1988). Typically about 20 Earth 
surface elements are considered. 

3.7.2 Earth Tides 

The gravitation of the Sun and the Moon exerts a direct force on Earth satellites, as 
discussed in Sect. 3.3. In addition, those forces are also acting on the body of the 
Earth and thus lead to a time-varying deformation of the Earth. The small periodic 
deformations of the solid body of the Earth are called solid Earth tides, while the 
oceans respond in a different way to lunisolar tidal perturbations, known as ocean 
tides. As a consequence, the Earth's gravity field is no longer static in nature, but 
exhibits small periodic variations, which also affect the motion of satellites. 

In a co-rotating frame, the gravitational field of the Sun or the Moon of mass 
M implies a potential U at a point P on the Earth's surface, which is given by 

GM  1 
(3.138) U =  

Is—RI 
+ n2d2 i  

where R and s are the geocentric coordinates of P and of the tide generating body, 
respectively. Furthermore, n is the mean motion of the body about an axis through 
the system's center of mass and d is the distance of P to this axis. Since s»  R for 
the Sun and the Moon, the denominator of (3.138) is expanded as 

1 1 	 1R2  3R2  
— 

( 	R 
1 — cos y — 	--- COS

2 y) 	 (3.139) 

	

I s  — RI 	 2s 	2 s2  
where y is the angle between s and R. The distance d may furthermore be expressed 
as 

d2 	R2c0s20 2d,R cos cos(A).) 

dc2  R2cos20 — 2d,R cos y , 
(3.140) 

= 
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where c/c. = Ms/ (M MED ) is the geocentric distance of the center of mass of the 
system, 0 is the geocentric latitude and AX is the difference of the East longitudes 
of P and the perturbing body. With the above relations and n2s3  = G(M Me), 
the potential may thus be written as (Bertotti & Farinella 1990) 

U = 	

 

GM!  
1+

1  M  ) GM R 2 (
3 cos2  y 1) 

n2R2 
cos-  0 . (3.141) 

s 	2 M MED 	2s3 	 2 

While the first term is constant, the third term describes the rotational potential 
about an axis through the Earth's center and perpendicular to the orbital plane. It 
adds a small permanent equatorial bulge to the Earth, similar to the one produced 
by the rotation of the Earth, but of a much smaller size, since n2  << 

The second term in (3.141) is called the tidal potential U2. It  is a second-order 
zonal harmonic that deforms the equipotential to a prolate, axisymmetric ellipsoid, 
aligned along the direction to the Moon or to the Sun. Its amplitude is proportional 
to GM/s 3  and thus the lunar tides are about twice as strong as the solar tides. The 
dominant periodicity of the tidal acceleration is nearly semi-diurnal according to 
the dependence of U2 on cos2  y , which itself is a function of cos 2X. 

The tidal potential essentially leads to an elastic deformation of the Earth. This 
may mathematically be described by a linear relation of the tidal potential U2 and the 
resulting perturbed gravity potential UT, the ratio of both potentials being the Love 
number ic  c  0.3. A completely stiff body would therefore have a vanishing Love 
number. As the tidal potential is a second-order harmonic, the perturbed gravity 
potential falls off with 1/ r 3  and can finally be expressed as 

1 GMR1 

	

UT = 
2

K 
 s3r3— 

 (3 cos2  y — 1) 	 (3.142) 

The Earth is, however, only elastic to first order. Deviations from an elastic tidal 
response are due to the rate-dependent behavior of terrestrial fluids, like the Earth's 
inner core and the oceans, as well as friction, i.e. energy dissipation in matter. The 
latter causes phase lags of the tidal bulge with respect to the position of the Sun 
and the Moon. The tidal-induced gravity potential contains many different periods, 
as the angle y depends on the position of the Sun and the Moon with respect to 
the rotating Earth. Moreover, the potential varies with 1/s 3  and accordingly the 
variation in the eccentricity of the Sun's and Moon's orbit leads to monthly and 
annual periods. 

The perturbations of satellite orbits from the lunisolar solid Earth tides are 
derived by an expansion of the tidal-induced gravity potential using spherical har-
monics in a similar way as for the static gravity field of the Earth. For practical 
purposes, the time-dependent corrections to the unnounalized geopotential coeffi-
cients can be computed according to 

I ACnm1=4kn ( 
 GM  ) 

A

( Re V +111(n+2)(n—m)! 3  pn. (sin 0)  jcos(mX) 

AS nm  G.11/1e s (n+m)!3  sin(mX) 
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(Sanchez 1974) for the Sun and the Moon respectively, where kn  are the Love 
numbers of degree n, çb  is the Earth-fixed latitude and the Earth-fixed longitude 
of the disturbing body. As the acceleration due to solid Earth tides falls off at least 
with 1/r 4 , a careful evaluation of an adequate force model is required especially 
for low altitude missions, depending on the accuracy requirements. 

Ocean tides also play an important role in satellite geodesy, although their am-
plitudes are about one order of magnitude smaller than that of solid Earth tides. 
Their contributions can be expressed by an ocean tide potential, which is expanded 
in terms of spherical harmonics and mapped to time-varying geopotential coeffi-
cients 

C, m  1 47r G Rip ?, 1+1c1„ 

12AS nin 	GM 	2n-I-1 

(Cs1-2m+ Cs—nnz )COS Os  ± (S-sf-nni+ Ss—nm  ) sin O 

(Ss+nm+ Ss—mn )cos Os — (C,n+ Cs—nm  )sin O 

 

   

(Eanes et al. 1983) where pu, is the density of seawater, knI  are the load deformation 
coefficients and Cs±n,„ and Ss±nn, are the ocean tide coefficients in meters for the 
tide constituent s. Moreover, Os  is the weighted sum of the six Doodson variables. 
Doodson variables denote fundamental arguments of the Sun's and Moon's orbit, 
being closely related to the arguments of the nutation series. An alternative rep-
resentation of ocean tide harmonics may be found in Schwiderski (1983). For a 
rigorous computation of the solid Earth and ocean tides, the Love numbers may no 
longer be treated as constant values, leading to a dual-step approach in the evalu-
ation of the geopotential coefficient corrections. The practical computation of the 
solid Earth and ocean tides is therefore a complex task, which is described in detail 
in Seidelmann (1992) and McCarthy (1996). 

3.7.3 Relativistic Effects 

A rigorous treatment of the satellite's motion should be formulated in accordance 
with the theory of general relativity. While the special theory of relativity considers 
a fiat four-dimensional space-time, this is no longer true in the vicinity of the 
Earth. Instead, the Earth's mass MED  with the potential U = G1141 r and the 
Earth's angular momentum vector / 0  with the potential V = G12(1 x r)/r3  
lead to a curvature of the four-dimensional space-time Making use of the standard 
coordinates xi.' = (ct , x', x2 , x 3) the post-Newtonian space-time can be described 
using the invariant element 

ds2=_c2d.r 2 

=giLvdxlidx v  

2U U2 	0 9 	Vi 
(1— ---+

2 
	)(dx — 4—dx °dx i  ( 2U 1+ 	dx c2 	c4 	 2 	if C3  

(3.143) 
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between two events (Soffel 1989). Here, Einstein's summation convention is ap-
plied, which states that summation is assumed, when a literal index is repeated in 
a term, both as a subscript and a superscript. The Greek indices run from 0.  . . 3 
and the Roman indices from 1 . .  .3. The time r is the proper time that would be 
measured by an atomic clock comoving with the satellite, while the coordinate time 
t may be associated with an atomic clock located at the geocenter. In (3.143) the 
so-called gravito-electric contributions stem from the curvature of space-time due 
to the Earth's mass, which is (GM6B)/(c2 REB ) 7 - 10-10  at the Earth's surface. The 
gravito-magnetic contributions, on the other hand, stem from a dragging of space-
time due to the rotation of the Earth with a magnitude of (G L ED) / (c3  4.10-16 .  

According to the theory of general relativity, the motion of a satellite can be 
expressed using the geodesic equation (Weinberg 1972) 

d2x 	dxv dxOE 
dr2  
	 r 

' dr ch 
bt    =0 	 (3.144) 

where the Christoffel symbols V are obtained from derivatives of the space-time 
metric gp,v 

1 	ag„vgŒP 
1,1;' = 

cr 	2 	axa 	axv 

agvcr) 

 axa 
(3.145) 

Here ei can be computed as elements of the matrix inverse of gap,. 
Based on the given metric in the vicinity of the Earth, the geodesic equation 

may be expanded to first order in the relativistic terms U/c2  and .V/c3 . This pro-
cedure leads to the Newtonian equation of motion with additional post-Newtonian 
correction terms. Following McCarthy (1996), the coordinate time t is associated 
with the Terrestrial Time TT (see Sect. 5.1) and dropping the gravito-magnetic 
contributions leads to the post-Newtonian correction of the acceleration 

GM ED  ( GM  ED  v 2 
 r 2 	C r 	c 2 	- 

v - 
cz 

where er  and e v  denote the unit positon and velocity vector. For a circular orbit 
GIV E) / r = y2  and the velocity is perpendicular to the radius vector. Accordingly 
the relativistic correction of the acceleration 

GM ED  e  (3 .1) 2  ) 
2 r 	e2 

(3.147) 

is equal to the product of the Newtonian acceleration and a factor of 3v 2/c2  which 
is roughly 3-10-10  for a typical satellite velocity. 

As a rough rule, the size of general relativistic effects is given by the Schwarz-
schild radius of the Earth (2G/14)/c 2  1 cm. Any application in satellite geodesy 
that approaches this level of accuracy must carefully consider the effects of general 
relativity. The relativistic effects due to the mass of the Sun on the orbit of an Earth 

r = (3.146) 



GM ° r GM0  
AU 3  n c2  AU — 

0.1mm (3.148) 

112 	3. Force Model 

satellite show up as post-Newtonian corrections to the third-body (tidal) forces of 
the Sun and lead to a relativistic satellite distance variation of 

where n is the mean motion of the satellite. 

3.7.4 Empirical Forces 

Despite the tremendous improvements of force models applied within orbit deter-
mination, further progress is getting more and more difficult. This is, in general, 
caused by the growing complexity and computational load of these models. In par-
ticular, the imperfect non-conservative force models impose major limitations to a 
high-precision force modeling of Earth observing platforms. Even the most detailed 
models for the satellite's surface forces are limited by uncertainties in the knowledge 
of the time-varying orientation, material properties, and surface temperatures. 

Based on a highly precise force model, small  unmodeled forces may be ac-
counted for using the concept of empirical accelerations. Much of this mismodel-
ing occurs at a frequency of one-cycle-per-orbital-revolution (1CPR). Accordingly, 
constant and 1CPR empirical accelerations 

r = E (ao - - al sin v a2 cos v) 	 (3.149) 

are employed to accommodate the effect. Here, ao is a constant acceleration bias, 
while al and a2 are the 1CPR coefficients and y is the true anomaly. The direction 
of the empirical acceleration is commonly specified in the local orbital frame, 
with principal axes in the radial, cross-track, and along-track direction, which is 
transformed into the inertial system by the matrix E. In order to provide an optimum 
compensation of unmodelled forces, the empirical acceleration coefficients have to 
be adjusted along with other parameters in an orbit determination. 

Empirical accelerations have successfully been employed to mitigate the effects 
of force model errors and spacecraft momentum unloads of GPS satellites (Colombo 
1989, Bertiger et al. 1994) as well as for TOPEX/POSEIDON (Tapley et al. 1994). 
While this technique is especially well suited for an a posteriori high-precision orbit 
restitution, care must be taken to apply the empirical acceleration parameters for 
orbit prediction purposes, since this may lead to a substantial degradation of the 
position accuracy. 
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Exercises 

Exercise 3.1 (Gravity Field) The processor time required to compute the satel-
lite acceleration due to the Earth's gravity field is to be determined as a function 
of the model's order using the Cunningham algorithm and a maximum order of 
20. Compare the observed times with the assumption of a quadratic increase of the 
workload with the order of the gravity field. 

Solution: In a sample test run the CPU times have been determined for 10 000 
evaluations of the gravity field at a given order and are marked in Fig. 3.16. As can 
be seen the CPU times may be modelled by a parabola that intersects the abscissa 
at a value of about 0.3 s, which reflects a computational overhead for function 
calls, initialization, and other computations performed independently of the actual 
Cunningham recursions. As a consequence, the evaluation of a  10x10 gravity field 
takes only 3 times longer than that of a 4 x 4 field. This is about two time less than 
would be expected for a purely quadratic increase. 

Fig. 3.16. Sample CPU times for 10 000 evaluations of the gravity field 

Exercise 3.2 (Moon ephemerides) The Moon ephemeris is to be computed and 
evaluated. To this end the geocentric Cartesian position coordinates of the Moon are 
to be computed from 2006/03/14 00:00 to 2006/03/18 00:00 (Terrestrial Time) in 
steps of one day. A comparison of low-precision analytic lunar coordinates is to be 
made with positions as derived from the Chebyshev coefficients of JPL's DE405. A 
listing of the 39 Chebyshev coefficients (13 per coordinate) is given below, which 
covers the DE405 subinterval size of 4 days. 

a, [km] ay  [km] 	. az  [km] 
0 —0.383089044877.10+06  —0.379891721705 —0.178496690739.10+ 05  
1 0.218158411755.10+°5  —0.143611643157-10+ 06  —0.788257550332- 10+°5  
2 0.179067292901.10+°5  0.187126702787-10+04  0.880684692614.10+03  
3 —0.836928063412.10+02  0.112734362473.10+°4  0.618395886330.10 +°3  
4 —0.628266733052.10+02  0.932891213817-10+0°  0.103331218595.10+01  
5 —0.459274434235.10+°°  —0.191932684131.10+ °1  —0.104949867328- 10+ °1  
6 0.491167202820.10-01  —0.266517663332-10 —m  —0.150337371963.10-01 
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7 0.770804039288-10-m 0.104558913449-10-02  0.569056416308-10-m  
8 —0.125935992206-10-m  —0.359077689124-10 -04  —0.186297523287-1(04  
9 0.500271026611-10-4)5  —0.123405162037 -1(0 4  —0.680012420654-10 -05  

10 0.107044869186-1 005  0.180479239596-10 -06  0.902057208454-10 -°7  
11 0.172472464344-10-08  0.525522632334-10 -07  0.287891446432-1(0 7  
12 —0.269667589577-10-08  0.543313967009-10 -09  0.319822827700-10 -09  

Solution: The Cartesian position coordinates of the Moon using the analytic équa-
tions are given as 

Date 11 x [km] Y [km] z [km] 
2006/03/14 00:00:00.0 —387105.185 106264.577 61207.474 
2006/03/15 00:00:00.0 —403080.629 33917.735 21704.832 
2006/03/16 00:00:00.0 —401102.631 —39906.188 —18757.478 
2006/03/17 00:00:00.0 —381055.373 —111853.486 —58337.911 
2006/03/18 00:00:00.0 —343564.315 —178551.672 —95178.733 

In comparison, the position coordinates as derived from the Chebyshev coefficients 
of the Development Ephemeris DE405 are 

Date IT x [km] Y [km] z [km] 
2006/03/14 00:00:00.0 —386976.783 106369.219 61240.442 
2006/03/15 oo:oo:oo.o —403002.331 34008.826 21741.255 
2006/03/16 oo:oo:oo.o —401058.650 —39859.480 —18729.305 
2006/03/17 oo:oo:oo.o —381019.563 —111859.423 —58322.341 
2006/03/18 oo:oo:oo.o —343513.403 —178603.217 —95176.374 

The position differences in the above interval amount to 169 km at maximum, 
consistent with the relative accuracy of the analytic theory of 10-3  

Exercise 3.3 (Accelerations) The selection of an appropriate force model for a 
specific satellite orbit requires an assessment of the various perturbations acting on 
the satellite. To first order the analytical acceleration equations may be evaluated 
and the altitude regimes determined, where certain perturbations exceed others. 

Determine the altitudes where the acceleration from the Earth's dominant zonal 
gravity term J20 and sectorial term J22 equals the acceleration due to the Moon and 
Sun. In addition, determine the altitude, where the non-conservative accelerations 
due to atmospheric drag and solar radiation pressure balance (CR = 1.3, CD = 2.3). 

Hint: Make use of the following simplified relations 

GM Dn @ 
ajmn  = (n + 1)  2  

r 	rn 

as 1m 	
2G M 

r 
s 3  

 

A 
aSRP = r P 

1 A GM @  
aDRG = —

2 m 
CDp 	

a 

that are derived from (3.15), (3.41), (3.75), and (3.97), respectively. 
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Solution:  The geocentric distance, where the lunar and solar acceleration balances 
that of the Earth's gravity field, is 

+3  n +1 GM0  
r' 3    s CL+ .  OV 2 	 GM nm  

The density p, where the solar radiation pressure is balanced by the atmospheric 
drag, is given as 

CR a 
p  =2- P0 	 

CD GMED  

The associated altitude may be determined from the difference of the two accel-
erations using a conventional root-finding algorithm. The following relations are 
obtained: 

aDRG for 	h 	7521cm > asRp 	 < _ 
aJ22 _.> am 	for 	h < 8750 km 
ai22

_ 
> ao 	for 	h < 112981cm 

al20 _ 
	 _ 

> am 	for 	h < 35983 km 
ano _ 
	 _ 

>ao 	for 	h < 431171cm . _ 	 _ 

Note that the dependence of the various acceleration sources on the altitude is 
depicted in Fig. 3.1. 

Exercise 3.4 (Orbit Perturbations) The orbit perturbations due to the non-
spherical gravity field of the Earth, the third-body forces of the Sun and the Moon, 
as well as the solar radiation pressure and the atmospheric drag are to be evaluated. 
To this end, the equations of motion of the satellite are to be numerically integrated 
for a reference (truth) orbit that takes into account all relevant perturbations and is 
based on a gravity model of the Earth complete to order and degree 20. To compute 
the orbit perturbations, the satellite position using a restricted force model with 
individual perturbations switched off is computed and the difference with respect 
to the reference trajectory is derived. 

The orbit perturbations are to be computed for a remote sensing satellite of 
area 5 m2  and mass 1000 kg with the initial orbital elements at epoch 1999/03/01 
00:00:00.0 UTC of 

Semi-major  axis a 7178 0 km 
Eccentricity 	e 	0.001 
Inclination 	i 	98.57° 
RA ascend. node Q 	0.0° 
Arg. of perigee 	co 	0.0° 
Mean anomaly M 	0.0° 

for a propagation period of one revolution as well as for a one-day period. The 
considered perturbations are to describe the position errors arising, when the Earth's 
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gravity model is restricted to J20, J22,  J,  J10,10  and when Sun, Moon, solar 
radiation pressure and drag are neglected, respectively. 

In addition, the orbital perturbations are to be computed for a geostationary 
satellite of area 10m2  and mass 1000 kg with initial orbital elements 

Semi-major axis a 42166 0 km 
Eccentricity 	e 	0.0004 
Inclination 	j 	0.02° 

	

RA ascend. node Q 	0.0° 
Arg. of perigee 	co 	0.0° 

	

Mean anomaly M 	0.0° 

for propagation periods of one and two days. Both satellites are supposed to have 
a solar radiation pressure coefficients of 1.3 and a drag coefficient of 2.3. 

Solution: The equations of motion are numerically integrated over the specified 
time intervals, both with the reference force model and the restricted models. The 
resulting position differences exhibit both a steady increase and periodic varia-
tions. Below, the maximum position differences within the propagation interval are 
tabulated. 

Restricted force model Remote sensing Geostationary 
1 rev 1 day 1 day 2 days 

[rill {111] [rill [nil 
J20 595 5034 669 2533 
J22 231 3104 1 2 
./44 154 1997 0 0 
J10,10 22 457 0 0 
Sun 3 34 3142 4833 
Moon 6 66 5078 5432 
Radiation pressure 1 14 415 830 
Atmospheric drag 1 105 0 0 

It should be noted that the position differences for a restricted gravity field model in 
the above table describe the position errors arising from a neglect of the respective 
higher-order terms. 



4. Numerical Integration 

The high accuracy that is nowadays required in the computation of satellite orbits 
can only be achieved by using numerical methods for the solution of the equation of 
motion (cf. Gendt & Sorokin 1978). A variety of methods has been developed for 
the numerical integration of ordinary differential equations and many of them have 
successfully been applied in the field of celestial mechanics. Since each method has 
its own inherent advantages and drawbacks, it is in general not possible to simply 
select one method as best suited for the prediction of satellite motion. 

The present chapter describes the basic principles and properties of the most 
important integration methods and assesses their usefulness for orbit computation 
purposes: 

o Runge—Kutta methods that are particularly easy to use and may be applied to 
a wide range of different problems, 

• multistep methods that provide a high efficiency but require a storage of past 
data points, and 

o extrapolation methods that are famous for their high accuracy. 

Special attention is also given to methods for the direct integration of second-order 
equations of motion. These methods may be preferable in those cases where the 
forces acting on a satellite do not depend on its velocity. 

The discussion of numerical integration methods is by no means exhaustive, 
however, and the reader who wants to study the matter in more detail should con-
sult one of the various textbooks published on this subject, e.g. Lambert (1973), 
Shampine & Gordon (1975), Stoer & Bulirsch (1983) or Hairer et al. (1987). For 
further reading the reviews of integration methods by Gupta et al. (1985) and by 
Kinoshita & Nakai (1989) are recommended. 

To start with, it is assumed that the differential equations to be solved are 
n-dimensional first-order equations of the form 

= f (t 	Y .i7 , f E 	, 

	 (4.1) 

where dotted symbols denote derivatives with respect to time t.  This form can 
always be obtained from the second-order differential equation 

= a(t,r,r) 	 (4.2) 
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for the acceleration of a satellite by combining position r and velocity r into the 
6-dimensional state vector 

'Y  =(*) 

	
(4.3) 

which satisfies 

= f (t, y) = a(t , 
	 (4.4) 

4.1 Runge—Kutta Methods 

4.1.1 Introduction 

Starting from initial values yo  = y (to) at time to one may calculate a simple 
approximation of y at some later time to -I- h from a first-order Taylor expansion 

y(to h) 	yo  h Y o  
= Yo + hf (to, Yo) 
	 (4.5) 

which is known as a Euler step. The geometrical interpretation of this equation is to 
start with (to, yo) and to proceed with a time-step of size h along the tangent to the 
graph of y. Performing a series of subsequent Euler steps (see Fig. 4.1) one obtains 
approximate values n i  of the solution at distinct times ti = to ih (1=1, 2, .). 

Fig. 4.1. Approximate solu-
tion of a differential equa-
tion ji = f (t, y) using Euler 
steps of size h 

Obviously the stepsize has to be very small if one wants to follow the solution 
curve over several steps and it seems worthwhile to look for better approximations. 
Using the general notation 

y(to + h) y 0 + h • 45 = y(t0+ h) 	 (4.6) 

for the approximate solution n (to  + h), it is evident that 45, the increment func- 
tion, should closely approximate the slope of the secant through (to, y o) and (to -I- 
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h, y (to -I- h)) which may deviate considerably from the slope f of the tangent used 
in the Euler step. 

To overcome this deficiency, the mathematicians Carl Runge and Wilhelm 
Kutta develèped improved expressions around the end of the 19th century, which 
are based on the slopes at various points within the integration step. In the classical 
RK4 Runge—Kutta method, the increment function 0 is calculated as the weighted 
mean 

1 
RIC4 = —

6 
(k1 2k2 2k3 k4) 

of four slopes 

k1 = f (to, yo) 
k2 = f (to + 	yo  + hk112) 

k3  = f (to + h /2, yo  + hk212) 

k4 = f (to + h, yo  + hk3) 

(4.7) 

(4.8) 

This formula is designed to approximate the exact solution up to terms of order h4 , 
provided that y (t) is sufficiently smooth and differentiable, and the RK4 method is 
therefore called a 4th-order method. Its local truncation error 

eRK4 = (to h) — y(to + h)1 < const • h 5 	 (4.9) 

is bound by a term of order h 5 . 
The accuracy of the RK4 method is comparable to that of a 4th-order Taylor 

polynomial 

h2  (2) 	h3  (3) 	h4  (4) 
Yo + hi'o + 	+ —3 , Yo + Yo 

where the superscripts in brackets indicate the order of derivatives with respect to 
time. However, the Runge—Kutta method avoids the calculation of the derivatives 

:Y0 =f (to, yo) 

(2) d 	a 
Yo 	Yo  = 	J°  

8 t0 

(3)_ d (2) 	
8Y(2)  

yo 	Y o = " 0  
81-0  

(4) d (2) 8 y (3) 

 Yo 	Y o = ° 8 t0  

	

8 :Y0 	a f(to, yo) 
 + 

 f (to, Yo)  

	

Yo 	8t0 	8Y0 	
;0 

 
(2) 

aY0 
 :Yo 

aY0 
(3) 

+ aY0
Yo 

ay() 

(4.11) 

which may be pretty cumbersome and replaces them by evaluations of the function 
f.  This makes Runge—Kutta methods an easy to use standard technique for the 
numerical solution of ordinary differential equations. 

(4.10) 
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4.1.2 General Runge—Kutta Formulas 

The RK4 method presented so far is the prototype of Runge—Kutta formulas all 
of which share the same common structure'. In an s-stage RK formula, s function 
evaluations 

k 1  = 	(to+ 	Yo) 
i- 1 

ki = 	 if 
 i) (i =2 ...$) 
	 (4.12) 

.i=I 

are used to form the increment function 

0 = 	biki 

which yields an approximation 

y(to ± h) = yo  ILO . 

Each method is fully described by the coefficients 

(4.13) 

an 
a3 1 a32 

as 1 a52 • • 

b1 	b2 	b5--1 	bs 

Cl 

C2 

C3 

cs  

(4.14) 

which are chosen in such a way that the order p of the local truncation error is as 
high as possible. Usually the coefficients are determined such that they obey the 
relations 

i-1 

= 1 , 	Ci  -= 0 , 	c 	• • (i > 1) . 	(4.15) 

For the RK4 method described above the number s of function evaluations is 
just equal to the order p of the local truncation error, but this is not generally the 
case. Butcher (1964, 1965, 1985) has shown that at least one additional evaluation 
is required for methods of order 5 and 6, that two additional evaluations are required 
for order 7 and three for order 8 and upwards. These rules are known as Butcher 
barriers. Only few methods of higher order are currently known, since the derivation 

1 To be precise, only explicit Runge—Kutta methods are considered here. See e.g. Hairer et al. 
(1987) for a discussion of implicit methods which require the solution of a nonlinear system of 
equations to obtain the increment function. An overview of explicit methods is provided in the 
review of Enright et al. (1995) 
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of appropriate coefficients becomes increasingly difficult. The tenth-order method 
of Hairer (1978) requires a total of 17 function evaluations per step. 

Since the coefficients are not uniquely determined by the condition of maximum 
order, one May find various Runge—Kutta methods with an equal number of stages. 
Furtheimore it is possible to construct methods of neighboring order that are based 
on the saine set of function evaluations. These methods are known as embedded 
Runge—Kutta methods and allow an easy estimation of the local truncation error 
which is a prerequisite for an efficient stepsize control during the integration. An 
embedded method of s stages yields two independent approximations 

TI N + 	= yo +h biki 
i=1 

W0+0 = Yo±h Liki 
i=1 

of orders p and p +1 with local truncation errors 

(4.16) 

e  = ly(to+h)— n(to 	< c hp-FI 	
(4.17) 

= ly(to+h) — i(to h) 	êhP 

Now, since ê is smaller than e by the order of h (which we assume to be a small 
quantity), one has 

e = — 	— vl 
	

(4.18) 

which means that one is able to get an estimate of the local truncation error of 
the pth-order formula from the difference of the two solutions. While this would 
also be possible with arbitrary methods of neighboring order, using an embedded 
method has the advantage of requiring only s instead of 2s-1 function evaluations. 

As an example Table 4.1 lists the coefficients of the embedded RK8(7)-13M 
method2  of Prince & Dormand (1981) which can be recommended as a general 
purpose method for a wide range of applications. A Fortran implementation (DO-
PRI8) of this method is described in Hairer et al. (1987). Even though methods up 
to an order of 10 have been developed by some authors (Curtis 1975, Hairer 1978) 
they have not become widely accepted due to the lack of an embedded lower-order 
formula for stepsize control. Except for very high accuracies there seems to be no 
advantage of using them instead of DOPRI8 (Hairer et al. 1987). 

4.1.3 Stepsize Control 

During the numerical integration of a differential equation the stepsize should be 
chosen in such a way that each step contributes uniformly to the total integration 

2The notation RKp(q)s is used for a method of order p with an embedded qth-order method 
for stepsize control and a total of s stages. 
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0 

3 
00 

32 32 

5 5 75 75 
0 

16 16 64 64 

3 3 3 3 
0 0 

80 16 20 

59 29443841 
0 0 

77736538 28693883 23124283 

614563906 692538347 1125000000 1800000000 400 

93 16016141 61564180 22789713 545815736 180193667 
0 0 

946692911 158732637 633445777 2771057229 1043307555 200 

5490023248 39632708 433636366 421739975 100302831 790204164 800635310 
0 0 

9719169821 573591083 683701615 26162923001 723423059 839813087 3783071287 

13 246121993 
0 0 

37695042795 309121744 12992083 6005943493 393006217 123872331 

1340847787 15268766246 1061227803 490766935 2108947869 1396673457 1001029789 20 

1201146811 1028468 189  8478235783 1311729495 10304129995 48777925059 15336726248 45442868181 3065993473 
0 0 

1299019798 846180014 508512852 1432422823 1701304382 3047939560 1032824649 3398467696 597172653 

185892177 3185094517 477755414 703635378 5731566787 5232866602 4093664535 3692137247 65686358 
1 0 0 

718116043 667107341 1098053517 230739211 1027545527 850066563 808688257 1805957418 487910083 

1 
403863854 

0 0 
5068492393 411421997 652783627 11173962825 13158990841 3936647629 160528059 248638103 

0 
491063109 434740067 543043805 914296604 925320556 6184727034 1978049680 685178525 1413531060 

L, 14005451 
0 0 0 0 

59238493 181606767 561292985 1041891430 760417239 118820643 528747749 1 

4 335480064 1068277825 758867731 797845732 1371343529 1151165299 751138087 2220607170 

13451932 
0 0 0 0 

808719846 1757004468 656045339 3867574721 465885868 53011238 2 

455176623 976000145 5645159321 265891186 1518517206 322736535 667516719 45 
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error. While obviously a single step should not be too large, it should not be too 
short either, since this might increase the total number of steps, round-off errors, 
and the computational effort considerably. A common technique of stepsize control 
for Runge—Kutta methods is based on the error estimate available with embedded 
methods. It tries to limit the local truncation error e, an estimate of which can be 
computed in each step. 

Suppose that a single integration step has been performed with a given stepsize 
h yielding an estimate 

(4.19) 

for the local truncation error of the lower-order formula. If this value is larger than 
a tolerance E, the step has to be repeated with a smaller stepsize h*. Knowing that 
e(h) is proportional to hP+ 1  for the method of order p, the local truncation error 
will then be equal to 

e(h*) e(h) (
h*
—h

y +1  
— 

1
11 .12—h

* y+1  
(4.20) 

for the new stepsize. Requiring this to be smaller than E and solving for h* yields 
the maximum allowed stepsize 

h 	P
+1 	 h 

Iii — iii  

(4.21) 

for repeating the step. In practice about 0.9 times this maximum value is commonly 
used for safety reasons to avoid another unsuccessful step. If the step was successful 
one may use h* for the next step. In order to avoid rapid oscillations of the stepsize, 
h should not, however, be changed by more than a factor of 2 to 5 from one step to 
the next. 

While this kind of stepsize control is well capable of adapting the current 
stepsize to the behavior of the differential equation, it does not relieve the user from 
supplying an initial guess of the starting step size.  As long as one is concerned with a 
special type of problem, some test calculations and a bit of experience will certainly 
help to find a reasonable value. For the integration of a satellite orbit one may e.g. 
start with h equal to 1/100 of the time of revolution, integrate over several orbits 
and monitor the stepsize calculated by the stepsize control. The obtained value may 
then be used as starting stepsize for similar calculations. Aside from this approach 
some methods have been devised to calculate an initial stepsize guess from several 
evaluations of the function f (Watts 1983, Gladwell et al. 1987). 

4.1.4 Runge—Kutta—Nystriim Methods 

Many problems in physics and especially the motion of artificial satellites and 
celestial bodies may be described by a second-order differential equation 

= 	 (4.22) 

for the acceleration F as a function of time t, position r and velocity y = 
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If one rewrites this second-order equation as a system of first-order equations, 
applies a standard Runge—Kutta method and keeps in mind the relation ci = 
one arrives at 

r (to h) = r 0 + hvo + h2 

 v(to + h) = vo + h 
	

bik 

with 

(4.23) 

= ci h , ro + ci hvo + h2  aiiej ) 	(4.24) 

and coefficients 

= 	aikaki 
	bi = 
	

b1 a1 	 (4.25) 

Runge—Kutta—Nystrom methods differ from standard Runge—Kutta methods by 
using (4.23) and (4.24) in combination with coefficients that are especially adapted 
to the direct integration of second-order differential equations and do not necessarily 
obey equation (4.25). Several methods of this type have been developed by Fehlberg 
(1975), the highest of which is of order 7 and requires a total of 13 stages. 

The advantages of Runge—Kutta—Nystrom formulas over standard Runge-
Kutta methods are most pronounced if the acceleration 

= a(t , r) 	 (4.26) 

does not depend on the velocity of the body. In this case special Runge—Kutta-
Nystrom methods may be derived that usually need a smaller number of stages 
to provide a given order of the local truncation error. An embedded 6(4)th-order 
method may be realized e.g. using 6 function evaluations (Donnand & Prince 
1987), only, instead of 7 evaluations required by the Butcher barriers for standard 
Runge—Kutta methods. 

Runge—Kutta—Nystrom methods of order p + 1 (p) which allow for an easy 
stepsize control and are well suited for high accuracy requirements have been 
developed by Donnand & Prince (1978), Filippi & Grdf (1986) and Dounand et al. 
(1987). They are described by the equations 

i -1  

ki 	= a ( to + cih , ro + cihvo + h 
j=0  

r (to ± 	= ro + hvo h 
	

biki 	e = 0 (hP+1 ) 
1,0 

(to + h) = ro + hvo +h2 k 	ê  = O(h) 
i=0  

(to + h) = vo + h 	-ki 
i.o 

(4.27) 



4.1 Runge—Kutta Methods 	125 

and  coefficients 

Co =0  

c1 	a10 

a20 	a21 C2  

cs  =1 a50 	a51 	 a_1 =0 

	 (4.28) 

bo = aso b1 = as 	.. 	= 	b5 =A. 

10 =b0  1 1=b1 	Ls—i=0 	bs =o 
Lo 	Li 	• • • 

The formulas for and i) yield an approximation of position and velocity at 
to +h of order p + 1 while r gives an estimate of the local truncation error 

e 	— ri = 	ks I 	 (4.29) 

of the embedded pth-order formulas. This may then be used to control the stepsize 
using the same strategy that led to (4.21) for the classical Runge—Kutta methods: 

h* = 13+1.1 	 h — 13+1 	  h 	 (4.30) 
e(h) 	V  Xh 2 lk5-1 —k 5 i 

The coefficient Ls  = A > 0 is a free parameter which is not determined by the 
order conditions. It does not affect the solution r and y, since it only appears in 
the stepsize control formula. By changing the value of  A one may influence the 
estimation of the truncation error and adjust the value of e required to obtain a 
certain stepsize and error. Recommended values are usually given together with the 
other coefficients of the methods. 

The s'pecial conditions c s  = 1 and bi  = asi  for i =0, . , s —1 which are part of 
the design of these methods result in a saving of one evaluation of the function a 
per step. This is due to the fact that the final function evaluation 

s-1 

ks  = a (to  + cs h , ro+ cs hvo as k) 	 (4.31) 
i=o 

in the step from to to to + h is just the same as the first evaluation 

ko = a (to  + h , (to  + h) ) 

= a (to  + h , + hvo + h 
s-1 

biki ) 
i.0 

(4.32) 

of the next step starting at to + h. It is, therefore, common to speak of s-stage 
methods, even though an individual step actually requires s + 1 function values. 
As an example, the coefficients of the seventh-order method of Dounand & Prince 
(1978) are listed in Table 4.2. A Fortran subroutine that implements this method 
may be found in Hairer et al. (1987). 
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4.1.5 Continuous Methods 

In the discussion of stepsize control for Runge—Kutta methods no notice was taken 
of the fact that the solution of a differential equation is often required at prede-
fined output points. This does not cause major problems as long as the difference 
between two subsequent points is considerably larger than the stepsize proposed 
by the stepsize control. If, however, the stepsize has to be truncated very often to 
reach predefined output points, the use of a Runge—Kutta method turns to be very 
ineffective. Considering the case of satellite orbits the problem of dense output 
may, for example, arise from ephemeris printout requirements or from the need for 
a smooth graphical representation of the orbit. Dense satellite position points are 
furtheimore required for an iterative search for special events like shadow entries 
of a satellite. 

The straightforward way to cope with this problem is to calculate the solution 
of the differential equation at widely spaced time steps and to interpolate it to 
the desired dense output points by means of an appropriate polynomial. A major 
disadvantage of this method is, however, that the results of subsequent Runge—Kutta 
integration steps have to be stored for interpolation similar to common multistep 
methods. 

Within the last decades several authors (e.g. Horn 1981, 1983, Shampine 1985, 
Doiniand & Prince 1986, 1987, Sharp & Verner 1998) have, therefore, been con-
cerned with the design of interpolation foimulas for Runge—Kutta methods that 
preserve the character of a single-step method. The idea of these famiulas is to 
use the function values ki (which have already been calculated to obtain the in-
crement function ÇA) and a few additional evaluations to construct  an interpolating 
polynomial valid between y (to) and y (to -I- h). 

As an example of an interpolant, one of the first continuous methods, which 
has been proposed by Horn (1981, 1983), is described in what follows. It is based 
on the embedded 6-stage Runge—Kutta—Fehlberg method RKF4(5) 

= f (to cih, y o  h 	) (i = 1 . . . 6) 

= y0  +h 
i= 1 

5 

TIN h) = yo  h 	biki 
i=1 

which is defined by the coefficients of Table 4.3. 
In addition to k1 . . . k6, the method of Horn requires the value 

1 	1 	2 
k7 = f (to h, yo  + h 	—k5 —k6)) 

6 	6 	3 

(4.33) 

(4.34) 
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Table 4.3. Coefficients of the 6-stage Runge—Kutta—Fehlberg method RKF4(5) for use with the 
interpolant of Horn (1981, 1983) 

ai  

3 
32-  

1932 

ai2 

9 
32  

-7200  

ai3 

7296 

ai4 

-845 

ai5 

-11 

a1 6 

2197 

439 

2197 

—8 

2 

2197 

3680 
216 

-8 
27 

513 

-3544  
4104 

1859 
2565 4104 40 

25 0 

0 

1408 2197 -1 
5 

-9 
50 

2 
55 

216 

16 

2565 

6656 

4104 

28561  
135 12825 56430 

to compute the solution at any point between to and to ± h. For 0 < cr < 1 an 
approximation at t = to ± ah may be obtained from 

7 

n(to  ± h) = yo + ah 	bl'(a)ki 	 (4.35) 

where the coefficients b;' are polynomials in the independent variable a. They are 
defined as: 

(_43. ,w) ) 

- 0 

	

7168 	496 	0.14287458))  
- a  (1425 	

03  ± 4  

	

b4 	 28561 	„ (199927 	„ 371293  \) 	 (4.36 

	

2, 	 ) ( 8360 ' 	k 22572 	75240 

b; —  

40 	102 \) = 

= 

Intennediate values of the solution may thus be obtained at the expense of evaluating 
several polynomials instead of f which usually results in a considerable saving of 
computing time if dense output is required. 

The algorithm of Horn is given here as a simple example of an interpolation 
foiniula for Runge—Kutta methods. It is intended to illustrate the basic ideas but 
is not necessarily the most efficient solution for practical applications. A different 
approach that is based on the RKF4(5) method, too, but uses yo  and n(to  ± h) in 
addition to the ki is e.g. described in Enright et al. (1986). 
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Up to some time ago interpolants were only available for several methods of in-• 

 termediate order. Recently, however, a 7th-order interpolant based on an embedded 
8(6)th-order/12-stage Runge—Kutta pair has been announced by Dormand & Prince 
(1989). This interpolation formula requires four function evaluations in addition to 
those of the basic method. 

Dense output formulas have also been developed for several Runge—Kutta-
Nystrom methods. A 6th-order interpolant is, for example, available for the RKN6(4) 
pair of Dormand & Prince (1987) and the authors are concerned with the search for 
an interpolant for their 12(10)th-order pair (see Brankin et al. 1989). 

4.1.6 Comparison of Runge—Kutta Methods 

For the assessment of different numerical integration methods several sets of test 
problems have been developed by Hull et al. (1972) which greatly facilitate the 
comparison of performance data obtained by different authors. From the various 
test problems proposed by Hull et al. the plane two-body problem is frequently 
used by many authors and describes the main aspects of satellite motion very well. 
Even though it is not possible to cover all aspects that might affect the choice of 
an integration method by such a simple example, one can get a first idea of the 
performance of the Runge—Kutta methods discussed so far. For further discussion 
the reader is referred to Sect. 4.4. 

The differential equation of the two-body problem is given by 

571 = .Y3 

512 = Y4 

513 = —Y1/ (Y? Y) 3/2  

.574 = — Y2/(Y? +Y )312  

(4.37) 

which results from writing 1 	—r/r 3  as a first-order equation with r =  (Yip y2) 
and y = (y3, y4). Initial values for t =0 that describe an orbit with semi-major axis 
a =1 and eccentricity e starting at pericenter are given by 

571(0) = 1 — e 

5/2(0) = 0 

573(0) = 0 

514(0) = ,N/(1 + e)I(1 — e) 

(4.38) 

Since the velocity variations in an eccentric orbit are a crucial test for the capability 
of a numerical integration method to change its stepsize, Hull et al. (1972) defined 
the distinct test problems  Dito  D5 with eccentricities ranging from e = 0.1 to 
e = 0.9 in steps of 0.2. The stop time is defined as  t=20  in all cases, corresponding 
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Fig. 4.2. Performance diagram of several embedded Runge—Kutta—(Nystrom) methods for test case 
DI (e=0.1) of Hull et al. (1972). The number of function calls is plotted versus the accuracy in digits 

to 20/27r 	3.2 revolutions. The analytical solution of the Kepler problem yields 
reference values 

y1(t) = cos E - e 	y2(t) 	1 - e2  sin E 

- sin E 	 - e2  cos E 
	 Y4 (t) = 	  1 - e cos E 	 1 - e cos E 

for calculating the total (global) integration error. The eccentric anomaly E has to 
be obtained by an iterative solution of Kepler's equation which takes the form 

E - e sin E = t . 	 (4.40) 

Results for various Runge-Kutta and Runge-Kutta-Nystrom methods are given 
in the performance diagram of Fig. 4.2. Here the total number of function evalu-
ations is plotted against the final accuracy for an orbit of e =  0.1 (test case D1). 
For higher eccentricities one obtains similar results since the stepsize control of all 
methods is essentially the same. The following methods were used for the compar-
ison: 

• DOPRI5 (RK5(4)7FM) is a 7-stage method of order 5 with an embedded 
method of order 4 developed by Dormand & Prince (1980). 

• DOPRI8 (RK8(7)13M) by Prince & Dormand (1981) requires 13 function 
evaluations for 8th-order approximation. The Fortran subroutines DOPRI5 
and DOPRI8 used in the comparison are provided in Hairer et al. (1987). The 
authors recommend the lower-order method for relative accuracies of 10-4  
to 10-7 , while DOPRI8 may be used for the adjacent range from 10-7  to 
10-13 . The latter should not, however, be used for higher accuracies, since 
the coefficients are not given with a sufficient number of digits in this case. 

(4.39) 
y3(t) 
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• RKF7 - a famous method developed by Fehlberg (1968) - is similar to 
DOPRI8 but uses the 7th-order method for integration, while the 8th-order 
method is only used for error estimation. A total of 13 function evaluations 
are required per step. 

• DOPRIN (RKN7(6)9) is an embedded Runge-Kutta-Nystrom method of 
order 7(6), which - in contrast to the aforementioned methods - is used for 
the direct integration of special second-order differential equations of type 
y" = f (t, y). The Fortran implementation is taken from Hirer  et al. (1987). 

• RKN(.5c)7(8) is a 13-stage Runge-Kutta-Nystrom method of order 7 devel-
oped by Fehlberg (1975) which - in contrast to the other Nystrom methods 
considered here - may also be used for second-order differential equations 
depending on i-. An implementation is described in Schastok et al. (1989). 

• 1-1LG11 is based on the 11(10)th-order/17 stages RKN coefficient set K17M 
by Filippi & Grdf (1986) and has been implemented similar to DOPRIN. 

• RKN12(10)17M is a 12(10)th-order/17-stage Nystrom method recently de-
veloped by Dormand et al. (1987). Implementations of this code are de-
scribed in Brankin et al. (1987, 1989). The authors' RKNINT program, which 
combines the RKN12(10) method with the RKN6(4) Runge-Kutta-NystrOm 
triple (Dormand & Prince 1987), has been used for the present comparison. 
It allows the user to choose between a high-precision solution obtained with 
the 12th-order formulas and dense output at a somewhat lower precision. 
The code is also available under the name DO2LAF in the well known NAG 
library. 

The comparison of the various methods clearly shows that high-order methods are 
required to achieve accuracies of better than 10 -8 . Forcing a low-order code like 
DOPRI5.  to produce a highly accurate solution by using small stepsizes results 
in excessive computing times. A comparison of RKF7 and DOPRI8 - both of 
which are embedded methods of order 7 and 8 - clearly shows the superiority 
of the approach of Dormand and Prince to optimize the higher-order method for 
calculating the solution and only use the low-order method for stepsize control. The 
excellent performance of the methods developed by Dormand and Prince is also 
seen in a comparison of DOPRI8 or DOPRIN with Fehlberg's Nystrom method 
RK.N(5c)7(8). Methods like DOPRI8 or DOPRIN can be recommended for a wide 
range of accuracies, but high-order codes like FILG11 or RKN12(10) are certainly 
more efficient even for moderate accuracy requirements. Where applicable, the 
special Runge-Kutta-Nystrom methods are preferable to standard Runge-Kutta 
methods of similar order. 

The stepsize control of all codes performs well up to high eccentricities since 
all methods considered are embedded methods. Even though this is not essential 
for near-circular orbits, it facilitates the use of Runge-Kutta methods, since even 
a bad initial stepsize can easily be corrected to the optimum stepsize during the 
integration. All examples were calculated with a starting step size  of h= 0.1. 
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The discussion given here is intended to help the reader in a valuation of existing 
codes and a comparison with the entire range of Runge—Kutta and Runge—Kutta-
Nystrom methods available today. In Sect. 4.4 a subset of these methods is compared 
with multistep and extrapolation codes to provide a more general assessment of the 
performance of different types of integration methods. 

4.2 Multistep Methods 

The Runge—Kutta methods discussed so far may be characterized as single-step 
methods. No use is made of function values calculated in earlier steps, which 
means that all integration steps are completely independent of one another. This 
feature allows a compact implementation of single-step methods and makes them 
particularly easy to use. Since a new stepsize may be used in each step, single-step 
methods are well suited for differential equations with rapid changes in the function 
to be integrated. 

One may, however, think of a completely different approach that tries to reduce 
the total number of function evaluations as much as possible by storing values 
from previous steps. This leads to the concept of multistep methods which are most 
efficient for differential equations defined by complicated functions with a lot of 
arithmetic operations. 

The development of multistep integration methods in the 19th and early 20th 
centuries is closely linked with the work of astronomers who utilized them for an 
accurate description of solar system bodies. Among these are J. C. Adams, who is 
most famous for his contribution to the discovery of Neptune, F. R. Moulton, and 
Ph. H. Cowell, who accurately predicted the motion of Halley's comet before its 
1910 return. 

4.2.1 Introduction 

In order to illustrate the basic principles of multistep methods, it is assumed for the 
moment that one has already obtained approximate values ?i f  of the solution y (ti ) 
at equidistant times t1 to jh for j = 0, 1, .. . ,  i.  Integrating both sides of the 
differential equation 

= f (t, 31 ) 	 (4.41) 

with respect to t from ti to ti+1  one obtains the equivalent expression 
ti+h 

y (ti +i) = y(ti) f 	f (t , y(t))dt . 	 (4.42) 

The integral cannot, however, be evaluated as it is, since it depends itself on the 
unknown solution y (t) of the differential equation. To circumvent this difficulty, 
one replaces the integrand by a polynomial p(t) that interpolates some of the values 

f = f (ti , ni ) 	 (4.43) 
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at previous times ti that are already known according to the initial assumption. This 
results in 

= 
 + f

ti+h 

p(t)dt 	 (4.44) 

and the increment function of a multistep method is therefore given by 

1 f ti±h  
= — 	p(t)dt . 	 (4.45) 

h ti  

As an example a third-order polynomial is considered (see Fig. 4.3), which is 
defined by the four function values f i -3'  f i -2'  f and  f.  at times ti_3, 4-2, 
ti_i and  t1 . This polynomial may be written as 

p(t) = ao aia a2a2  a3a3 	 (4.46) 

with cr(t) = (t — ti)/ h. This yields the simple expression 

= 
 f

(ao aia a2cr 2  a3a3)da = ao ai/2 a2/3 a3/4 (4.47) 
0 

for the increment function. Substituting the coefficients 

ao = ( 	 6f i)/6 
ai = (-2fi_3 +9f i-2-18f i_i+11f i ) /6 
a2 = (-3f i_3+12, fi_2-15 f 	-F6fi)/6 
a3 =  (-1f 3  +3f 2 	+1 f i ) 

finally leads to the 4th-order Adams—Bashforth formula 

(4.48) 

AB4 = —
24 

(-9 f i-3 + 37  fi-2 — 59f ± 55  f i) 
	

(4.49) 
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which may be used to calculate the approximate solution 

(4.50) 

of the differential equation at ti+1 =  t  + h. Repeated application of the Adams-
Bashforth formula then yields the solution of the differential equation for subse-
quent times ti +j h.  

In order to start the integration scheme the first four values f 0, f 1 , 12  and f 3  
or, equivalently, no , 17 1,  172 and 11 3  are required. They may, for example, be obtained 
from to and 11 0  using three steps of a fourth or higher-order Runge—Kutta method 
with sufficient accuracy. 

4.2.2 Adams—Bashforth Methods 

The simple procedure described in the introductory section may easily be extended 
to derive general multistep methods of arbitrary order. 

For this purpose one makes use of Newton's founula for a polynomial prni  of 
order m —1 that interpolates m points 

(ti_„1±1 , fi —m+1) 	 (ti, i) 

with equidistant nodes ti. This polynomial is given by the compact expression 

p(t) = 	+ h) 

m-1 

)V i fi , (4.51) 
1-=-0 

where the binomial coefficient stands for 
(—cr) 	(—a)( —c-  — 1) . . . 	— j 1) 

j! 

if j > 0 and is equal to 1 for j O. The backward differences of f i  are recursively 
defined by 

yo u  = f 

Vfi — fi —  fi-1 
v n f 	vn—i f _  —1f  

and may be computed from the given function values as outlined in Fig. 4.4. 
Using this notation the increment function of the mth-order Adams—Bashforth 

multistep method may now be written as 

(PABm = —
1 ff± 	

m-1 
h prn

i  (t)dt = yiVi f 	 (4.54) 
h Li  

j=0 

with stepsize independent coefficients 

yi (-1)i f 1  ( a ) do- (4.55) 

(4.52) 

(4.53) 
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. f i-4 . . . 

fi -3  --> V 1  fi_3 	. • 

fi-2 --> V 1  fi_2 --> 

f 	

▪ 	

f 

f 	

▪ 	

f 	--> 

V2  f_2 

v2 f i_  

v2 f i  

----> V 3  f 

---> V3  f 	

▪  

v4 f i  

Fig. 4.4. Backward difference table for polynomial interpolation 

Numerical values of  yo.  )18 are given in Table 4.4. They may be obtained from a 
simple recurrence relation (see e.g. Hairer et al. 1987): 

yi 	1 (4.56) 

Table 4.4. Coefficients of Adams—Bashforth methods in backwards difference notation 

0 1 2 3 4 5 6 7 8 

yi  1 It ?1  i 311,  1  6108807 i57225870  31067180170  

The local truncation error of the Adams—Bashforth method decreases with the 
order m and may be estimated by comparing two methods of order m and m +1: 

eABm  = 1Y (ti h) — 11ABInl 	1 11ABm+1 hlABmI = hlYinV m  fi I • 	(4-57) 

Since Vm f 1 hm is an approximation of the m-th derivative of  f,  the truncation 
error may also be expressed as 

eABm hm+1  I yn, fri)  I  = hm±l lym y7n+1)  I 	 (4.58) 

which shows that the order of the Adams—Bashforth method is equal to the number 
(m) of nodes (ti_m±i • • - ti). 

Substituting the definition of backwards differences into (4.54), the increment 
function may also be written in terms of the function values f 

(PAM = tim 1 fi-m+1 + + fl,nmfj = 
	

flrnj f i_m ±; 
	 (4.59) 

j=1 

This formulation of the increment function, which has already been used in our 
introductory example, avoids the computation of the backwards differences and 
is therefore more convenient and efficient as long as methods of fixed order are 
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Table 4.5. Coefficients of Adams—Bashforth methods up to order m = 8. 

j 1 2 3 4 5 6 7 8 

pi;  1 
_1 3 

P2j 2 2 

5 —16 23 
P3 j  

—9 37 —59 55 
P4i  24 5 24 -51. 

251 —1274 2616 —2774 1901 
P5 :I 720 720 720 720 720 

a —475 2877 —7298 9982 —7923 4277 
P6I 1440 1440 1440 1440 1440 1440 

R 19087 —134472 407139 —688256 705549 —447288 198721 
fr'7  / 60480 60480 60480 60480 60480 60480 60480 

—36799 295767 —1041723 2102243 —2664477 2183877 —1152169 434241 
138/ 120960 120960 120960 120960 120960 120960 120960 120960 

considered. There are, however, several applications where (4.54) is preferable, 
since the use of backwards differences allows a straightforward estimation of the 
local truncation error and an easy change of the order from one step to the next. 

The new coefficients /3„,i — which are no longer independent of the order m — 
may be obtained from the yi 's using the relation 

m-1 

Pmi = (-1)m-f 	Y1( 	. 
1 ) 

l=m—i 

for j = 1, . , m (Grigorieff 1977). Explicit values are given in Table 4.5. 

(4.60) 

4.2.3 Adams—Moulton and Predictor—Corrector Methods 

In the mth-order Adams—Bashforth method the polynomial p(t) is defined by m 
function values up to and including f i  at time ti. The integration is, however, 
performed over the subsequent interval ti ti+1  where the approximation cannot 
be expected to be very good. 

Another type of multistep method — known as the Adams—Moulton method — 
therefore uses the polynomial p im+ 1 (t) which interpolates m function values at time 
steps ti_m+2 and ti±i : 

pm  (t ) = pm  (ti  + ah) = 

j=0 

(-1)i ( —a 4- 1 ) vii +1 	(4.61) 

Upon integration this yields the Adams—Moulton formula 

1 f  ti+h 

Amm  — 	mi+1  (t)dt = 
h ti  

m-1 

j=0 

YI i f 
 (4.62) 



E *  ( 1 

m - j ) 

trz-1 

l=m—j 

(4.67) 
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with coefficients 

(4.63) 
0 

that are given in Table 4.6. Further values may be calculated from the recurrence 
relation 

(4.64) 

Table 4.6. Coefficients of Adams—Moulton methods in backwards difference notation 

j 0 1 2 3 4 5 6 7 8 
, 1  -1 =1 —1 —19 —3 —863 —275 —33953 Yi _I 2 12 24 720 160 60480 24192 3628800 

The order of the Adams-Moulton method is equal to m and is, therefore, the 
same as that of an Adams-Bashforth method involving m grid points for the in-
terpolating polynomial. The local truncation error of the Adams-Moulton method, 
which is given by 

e m 	hm+ 1 I ym* Yi (m+1) 	, 	 (4.65) 

is smaller, however, than that of an Adams-Bashforth method of equal order, since 
the error constant I ym* I is smaller than I )6, I. 

As with the Adams-Bashforth methods, the backwards differences may be 
substituted to yield a formulation that depends on f only: 

(P AMm Pm*  1 f i—m+2 4-  • 	Pm*  m f i+i = 	Pm*  f i+l— m±j 
	(4.66) 

j=1 

The coefficients fim* si  (see Table 4.7) of the mth-order method may be obtained from 
the y7 using the relation 

for j = 1, . , m (Grigorieff 1977). 
Since the increment function of the Adams-Moulton method depends on 

f i+i = f (ti+i, i+1) 
	

(4.68) 

it is not possible to calculate an explicit solution at ti ± i from 

ni+1 = + hoAmm 	 (4.69) 
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Table 4.7. Coefficients of Adams—Moulton methods up to order m = 8. 

j 1 2 3 4 5 6 7 

1 1 
P2 j  

—1 8 5 
/33/  12 12 12 

1 —5 19 9 
P4j -2-zi 24 271. 5 

—19 106 —264 646 251 
135i 720 720 720 720 720 

27 —173 482 —798 1427 475 
P6i 1440-  1440 1440-  1440 1440 1440 

—863 6312 —20211 37504 —46461 65112 19087 
137i 60480 60480 60480 60480 60480 60480 60480 

1375 —11351 41499 —88547 123133 —121797 139849 36799 
138j 120960 120960 120960 120960 120960 120960 120960 120960 

The Adams—Moulton formula is therefore called an "implicit" method and some 
iterative procedure is required to solve for y i±i  

To avoid this difficulty, an Adams—Bashforth method of order m is usually 
combined with an Adams—Moulton method of order m or m 1 in a so-called 
predictor—corrector or PECE-algorithm which consists of four steps: 

1. In the first step — the Predictor step — an initial estimate of the solution at ti 
is calculated from the Adams—Bashforth formula 

=  ii  +htPAB • 	 (4.70) 

2. The result is used in the Evaluation step to find the corresponding function 
value 

f 1+ 1 	f (t1+1 ' 71 i+1) 
	

(4.71) 

3. In the third step — called the Corrector — the Adams—Moulton formula is 
applied to find an improved value 

= +hoAm(f+1) - 
	 (4.72) 

4. The final Evaluation step yields the updated function value 

f i±i = f (ti+i, 
	 (4.73) 

which may then be used for the start of the next integration step. 

In principle the third and fourth step would have to be repeated until convergence 
is achieved to find the exact solution of the Adams—Moulton formula, but since 
each such iteration costs another function evaluation, this would not be worth the 
effort. A single corrector step is enough to assure that the order of the combined 
Adams—Bashforth—Moulton method is equal to that of the implicit method, even 
though the local truncation error is slightly larger (cf. Grigorieff 1977). 
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The justification for using the somewhat complicated predictor—corrector al-
gorithm, lies in the stability of multistep methods at large stepsizes. Due to the 
truncation at a fixed order and a limited computing accuracy, the individual steps of 
the numerical integration are always affected by small local errors. An analysis of 
the way in which these errors are propagated from one step to the next shows that 
the errors may grow exponentially for large stepsizes. In order to avoid this unfa-
vorable behavior and to guarantee stability, the stepsize may not exceed a certain 
limit that depends on the method and the differential equation to be solved. 

Low-order methods are generally more stable even for large stepsizes. Due to 
their modest accuracy, small steps have to be used anyway and stability is often not 
a serious problem. When using high-order multistep methods, however, stability 
can pose stringent limits on the allowed stepsize. Even steps that yield a sufficiently 
small truncation error may then be too large since the propagation of local errors 
could result in an unbounded growth of the global integration error. 

The implicit Adams—Moulton methods behave much better in this respect than 
the explicit Adams—Bashforth methods and even the approximate solution of the 
Adams—Moulton formula in the PECE algorithm improves the stability consider-
ably. This is the main reason why it is generally recommended to use one additional 
function evaluation for the corrector step. Another advantage is that the local trun-
cation error can be reduced by using the corrector. The doubled expense for a single 
integration step can at least partially be compensated for by larger stepsizes. 

o 	5 
	

10 
	

15 
	

20 

Fig. 4.5. A plot of the global integration error versus time t for an orbit of e = 0.1 reveals the effect 
of instability of high-order Adams—Bashforth methods 	• 

To illustrate the practical meaning of stability, the two-body problem (D1) has 
been integrated.with both a 6th-order and an 8th-order Adams—Bashforth method 
(AB6, AB 8) at a stepsize of h = 0.04 (see Fig. 4.5). Since the local truncation 
error decreases with higher order, one might expect more precise results for the 
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AB 8 method, but the growth of the global integration error clearly shows the onset 
of instability. When combined with a corrector, the resulting Adams—Bashforth-
Moulton method (ABM8) is stable, however, even at twice the stepsize. 

As a compromise between a cheap predictor-only method and a more stable 
PECE method, a PECE* algorithm (cf. Long et al. 1989) may be useful for the treat-
ment of perturbed satellite orbits. Here E* stands for a pseudo-evaluate step, which 
means that some simplifications are made in the final evaluation step. According 
to (4.4) the evaluation of f involves the computation of the acceleration 

GM@  
a(t, r, 	r 	p(t,r,r) , 	 (4.74) 

r3  

where the dominant first term arises from the central gravity field of the Earth and 
p means the sum of all perturbations. Since the perturbations are much smaller 
than the central force, one makes a small error only if one does not recompute them 
after the corrector step. In a pseudo-evaluate step only the dominant term of the 
total acceleration is therefore updated with the coordinates obtained in the corrector 
step, while the perturbations are taken from the predictor step: 

ED 
r 	p(t, rP , i.P) 	. a* (t , r, 	

GM 
i-) =  	 (4.75) 

r 3  

Since the computation of the perturbations is much more time-consuming than that 
of the central acceleration term, the PECE* method increases the stability at almost 
no additional cost. 

Irrespective of the use of a stabilizing corrector step one should not arbitrarily 
increase the order of a multistep method in an attempt to increase the stepsize and 
the accuracy. For the requirements of typical orbit computations orders in the range 
from 8 to 12 can usually be recommended. 

4.2.4 Interpolation 

The multistep methods of Adams' type may be extended in a straightforward manner 
to provide a solution at intemiediate output points. For this purpose it is assumed 
that a PECE step of size h has been used to advance from ti to ti  and that one is 
interested in the approximate solution at some time t ah, where 0  <o  < 1. 
From a total of m+1 points 

(ti—m+i, f 	. • . 	(te, f i) , 	f4i) 

one may construct the interpolating polynomial 

P 	 (ti + oh) = 
j=0 

(-1)i ( —(7  + 1 ) V f* 	(4.76) 

that was already used in the implicit Adams—Moulton folinula of the corrector step. 
Here the * denotes that f4 1  is a predictor value while all  other f result from the 



Or 

fti 	

*,i+1 n(ti ah) 	 p.+1  Wdt 
n+ah 

(4.77) 
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final (corrector) values of previous steps. Inserting this polynomial into the integral 
form of the differential equation leads to 

n(ti  -I- ah) =  j ,  + h 	Pi(a)Vi  .174-1 	 (4.78) 
1=0 

with 
a 

Pi(a) fo 	( —s  ± 1 ) ds 	 (4.79) 

The coefficients p;  depend on a and must therefore be calculated separately for 
each desired output value. Appropriate recurrence relations may be found e.g. in 
Shampine & Gordon (1975). Since the differential equations that are usually treated 
by multistep methods are characterized by complicated functions f,  the computa-
tional effort for the interpolation coefficients is negligible in most applications. 

It should be noted that the interpolant given here is continuous at the grid points 
ti, by definition, but that the same is not true for the first derivative. For a more 
detailed discussion of smooth interpolants we refer to Watts & Shampine (1986) 
and Higham (1989). 

4.2.5 Variable Order and Stepsize Methods 

In the derivation of the Adams—Bashforth and Adams—Moulton methods it has so 
far been assumed that the solution of the differential equation is calculated with 
a constant stepsize, i.e. on a series of equidistant time points. This concept has to 
be modified whenever the behavior of the solution requires changes of the stepsize 
during the integration. 

The easiest way to realize a variable stepsize consists of stopping the integration 
and calculating new starting values for another stepsize (e.g. with a Runge—Kutta 
method) whenever the current stepsize has to be modified. Alternatively one may 
use interpolation foiniulas like those described above to find a new set of starting 
values. Both approaches are feasible when stepsize changes are rare events, i.e. 
when a constant stepsize can be used for most of the integration. 

A more flexible solution is obtained by generalizing the Adams foimulas of the 
previous sections. In the case of arbitrary stepsizes the mth-order predictor foimula 
for the computation of the solution at 4+  I may be written as 

m — 1 

ni+ 1 =-- n i +(ti+1—ti). 	 . 	 (4.80) 
j=0  
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Here the factors 

1 	4+1 	t — 
	dt = —  ti 	1=I0  ti±i - ti_i 

correspond to the coefficients yi of the fixed stepsize formula, while the 

j-1  

=  I  1(ti± i 	- f[4, 	, 
1=0 

(4.81) 

(4.82) 

replace the backward differences Vi f.  (see e. g. Hairer et al. 1987). The expressions 
f[ti, . . ,ti_i] are known as divided differences and result from the use of Newton's 
formula for a general interpolation polynomial. They are recursively defined by 

= fi  

f f  

- ti_i 
f[4, ti -11 - 	ti-21  

ti -  

(4.83) 

For constant stepsize h 

1 
f [ti , 	, ti_ i] = —7V f 	. 	 (4.84) 

' 

The coefficients MO and obi  (i) as well as those of a corresponding corrector 
fonnula may be calculated from recurrence relations which are essential for an 
efficient implementation of variable order methods (see e.g. Shampine & Gordon 
1975). 

For the selection of order and stepsize the error for the order currently in use 
is estimated as well as the expected error for adjacent orders. At the same time a 
new stepsize is calculated based on the current error estimate and the current order. 
Evaluating this information a new order or stepsize can be chosen. Since changes 
in the stepsize require an increased effort for the computation of the coefficients 
8,1(i) the stepsize is changed only if the recommended stepsize is larger or smaller 
than the present one by a factor of at least two. 

A great advantage of variable order and stepsize methods is the fact that they 
do not require a starting procedure. Starting from order one and a very small initial 
stepsize, both order and stepsize may be increased up to an optimum value within 
a few steps. This makes variable order and stepsize codes particularly easy to use. 
Among the various implementations the following are mentioned: 

• DVDQ — developed at the Jet Propulsion Laboratory by Krogh (1969, 1974) 
— is one of the earliest variable order and stepsize multistep codes. DVDQ 
has, for example, been used for the numerical integration of the solar system 
ephemeris DE102 (Newhall et al., 1983). 
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• DE/DEABM is one of the most popular methods of its kind. The code and its 
theoretical background are explained in detail in the textbook of Shampine 
& Gordon (1975). The original code DE has since been improved to meet the 
needs of program libraries (Shampine & Watts 1979) and is available under 
the name DEABM now. Further amendments of the interpolation routines 
are reported in Watts & Shampine (1986). 

• VOAS is a variable order and stepsize multistep code by Sedgwick (1973). 
Aside from a different implementation its characteristics and performance 
are similar to DE/DEABM. 

• The predictor—corrector method of Hall & Watts — implemented as DO2CJF 
in the NAG Fortran library — provides interpolation for dense output similar 
to DE/DEABM. 

4.2.6 Stoermer and Cowell Methods 

In the discussion of Runge—Kutta methods, Nystrom methods have been introduced 
that are especially designed for the direct integration of second-order differential 
equations. Corresponding multistep methods that are known as Stoenner and Cow-
ell methods may be derived by an extension of the concept of Adams methods. For 
this purpose the differential equation 

= a(t, r) 	 (4.85) 

is integrated twice to font' the equivalent integral equation 

ti 	t 

r(ti + h) = ri + i 	f f r, r(r))d-rdt 	 (4.86) 

Using partial integration the double integral can be replaced by a single integral: 

ti-Fh 	t 	 ti-ph t 	 tid-h 

f 1 f a (- c r (-c))dr dt = 	t • f a( -  r(z))dr 	f t a(t, r(t))dt 

ti+h 

f (tid-h—t)a(t, r (t))dt 
ti  

= h2  f  (1—s) (ti +sh, r(ti+sh))ds 

0 
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Table 4.8. Coefficients of Stoermer and Cowell methods in backwards difference notation. See e.g. 
Schubart & Stumpff (1966) for higher-order coefficients. 

0 1 2 3 4 5 6 7 8 

•  1 0 1 77-7 T z . 
1 

1-7.- i L. 

19 3 
-4-5 

863 275 33953 
240 12096 4032 518400 

*
 '^-, 

C.<:) 1 	- 1 -i ii 0 
—1 —1 —221 —19 —9829 
— 240 240 60480 6048 3628800 

By adding r (ti + h) and r (ti — h) one can eliminate the velocity i-i, which results 
in 

r(ti+h) — 2r (ti) r (ti —h) 
1 

= h2  f (1  —s)[a(ti +sh, r(ti +sh)) a(ti—sh, r(ti —sh))]ds 
	(4.87) 

O 

As in the derivation of the Adams—Bashforth foiniulas one may now use a polyno-
mial through m points 

(4—m±i, ai—m+i), • • • , (ti, ai) 

to approximate a and to evaluate the integral. This yields the Stoenner  foi 	nula 
m-1 

ri+1 = 2r — ri_1+ h2 	8iViai 	 (4.88) 
i=o 

with coefficients given by 

Si = 	f (1 — s)[(7 5 ) + (lids 	 (4.89) 
J 	J 

0 
They are easily obtained from the coefficients yi* of the implicit Adams method 
(see Table 4.6) via the relation 

8i = (1 — Dy7 . 	 (4.90) 

Numerical values for j < 8 are given in Table 4.8. 
The use of the Stoeinier foiniula requires the knowledge of two position vec-

tors r11,  . . . , ri and m accelerations ai_m+i, , ai. These initial values may be 
obtained from a special starting procedure (see e.g. Schubart & Stumpff 1966) or 
a Runge—Kutta method. 

The explicit Stoenner method may be supplemented by the implicit Cowell 
method 

m -1 

r 	= 2r — ri_1+ h 
	

e Via 1+1 
	 (4.91) 

j=0 

as corrector. The coefficients are given in Table 4.8 up to order 8. Further values 
follow from the simple relation 

8.7 = 8i — 8.1_1 . 	 (4.92) 
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4.2.7 Gauss—Jackson or Second Sum Methods 

The Gauss—Jackson or second sum methods (Jackson 1924, Merson 1974) are 
slightly modified versions of the Stoerrner—Cowell methods for second-order dif-
ferential equations and probably the most recommendable fixed-stepsize multistep 
methods for orbit computations. The explicit Stoeuner formula is replaced by the 
equation 

m+1 

ri+i = 
	

(5j 
 vj-2a1 	 (4.93) 

i=o 

and the modified Cowell formula is given by 

m-1-1 

ri+i = (4.94) 
i=o 

Velocities at each step may be obtained from similar equations that follow from the 
Adams—Bashforth—Moulton formulas: 

= h (4.95) 
j=0 

and 

vi+i = 
	* vj-1 	 (4.96) 

j=0 

The coefficients yi , 31,  (5j  and Sy are listed in Tables 4.4, 4.6 and 4.8. 
The expressions for ri±i and vi+ i involve the use of first and second sums 

(V-1 , V-2), which are generalizations of the backwards differences introduced 
earlier. They are implicitly defined by the recursions 

ai 	=  v —i ai  _ 
v-2ai  v-2ai_  

in close analogy with definition (4.53). By applying the backward difference oper-
ator V twice to the explicit second sum formula (4.93) for  r+1,  one obtains 

m- 1 

ri+i — 2r i  ri _ 	SiViai 	 (4.98) 
j=0 

which is just equation (4.88) of the Stoeiffler method. In a similar manner one 
may prove the validity of the implict second sum formulas as well as the first sum 
formulas for the prediction of v. 

Despite the apparent equivalence of the Bashforth—Moulton and Stoemier-
Cowell formulas and the first and second sum formulas, the latter are generally 
preferred in practical computations. According to Henrici (1962) and Herrick (1971, 

(4.97) 



(4.99) j-2a0  
v  

2  v — 
h2  

j=1 
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1972) the sum formulas are less influenced by round-off errors that result from the 
finite computing accuracy. This is especially important in long-term integrations 
where round-off errors are the main source of error, since the local truncation error 
can always be limited by choosing a high-order method and/or a small stepsize. 

In order to use the summed version of the Stoeimer—Cowell formulas one has 
to determine initial values of the first and second sums in addition to the initial set 
of backward differences. For starting the calculation it is assumed that one knows  
the position and velocity (r1,  v1) of the satellite for a given set of m equidistant 
times tj= to + jh (j = —m +1, ..., 0). These data can always be obtained from 
the initial values (to, ro, vo) by a backwards integration with a high-order Runge-
Kutta method or an extrapolation method. From position and velocity one is able to 
calculate the accelerations (21 and the backward differences Vao Vm —l ao. The 
desired values of the first and second sums can now be determined by solving the 
implicit Adams—Moulton and Cowell foimulas for V —l ao and V-2a0: 

As an alternative to using a single-step method for obtaining the initial set 
of accelerations and backward differences one may use a special starting calcula-
tion. It involves an iterative refinement of a crude approximation of the satellite's 
coordinates and the corresponding difference table that may be based e.g. on the 
assumption of an unperturbed Keplerian orbit. For a detailed description of this 
method the reader is referred to Herrick (1971, 1972). 

4.2.8 Comparison of Multistep Methods 

The relative performance of some of the multistep methods described so far is com-
pared in Fig. 4-.6. The test set covers a 6th-order Adams—Bashforth method (AB6), 
two Adams—Bashforth—Moulton methods of order 8 and 12 (ABM8, ABM12) and 
the variable order, variable stepsize code DE (Shampine & Gordon 1975), all of 
which may be used for integrating general first-order differential equations. In ad-
dition two high-order Stoenner and Stoeimer—Cowell methods (S14, SC14) for the 
integration of second-order differential equations are included. 

When considering fixed-order multistep methods the user must be careful to 
select a method of appropriate order for a given accuracy requirement. While low-
order methods may be inefficient for high accuracies, the higher-order methods 
are subject to instability at low accuracies (i.e. at large stepsizes). As an example, 
the  ABM 12 method can only be used to integrate problem D1 with accuracies of 
better than 9 digits, whereas the ABM8 method becomes inefficient at just the same 
accuracy. These problems may be avoided, however, by using a variable order and 
stepsize method like DE, since the automatic order selection avoids an unstable 
behavior and, simultaneously, guarantees a high efficiency. 
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Fig. 4.6. Performance diagram of several multistep methods for test case D1 (e=0.1) of Hull et al. 
(1972). The number of function calls is plotted versus the relative accuracy in digits. 

While the use of a corrector is essential for all but the lowest-order Adams 
methods, the same is not true for the Stoenner(—Cowell) methods, which are con-
siderably more stable. Predictor methods of the  Stoei nier type have therefore been 
preferred by several authors (see e.g. Schubart & Stumpff (1966), Herrick (1971, 
1972)) for applications in celestial mechanics, especially for long-tenn integrations 
of the solar system. Due to their high stability, Stoenner(—Cowell) methods may 
be used up to very high orders which makes them the most efficient methods of the 
test set. 

4.3 Extrapolation Methods 

The extrapolation method is a powerful single-step method that extends the idea 
of Richardson extrapolation (i.e. extrapolation to zero stepsize) to the numeri-
cal solution of ordinary differential equations. It is often called Bulirsch—Stoer or 
Gragg—Bulirsch—Stoer method in honor of the pioneering work of Gragg (1965) 
and Bulirsch & Stoer (1966). A general review of extrapolation methods may be 
found in Deuflhard (1985). 

4.3.1 The Mid-Point Rule 

In order to find the solution of a first-order differential equation at some time to+H 
from given initial values (to, yo), the interval [to, to -I- H] is first subdivided into 
n (micro-)steps of size h = HIn. A simple Euler step is then used to find an 
approximation u1 at to +h, while further values ui are obtained from the so-called 
mid-point rule: 

2000 

1000 

ui 	= Yo +hf (to, Yo) 
ui.+1 = 	-I-2h f (to-Pih, ui) 

(4.100) 
(i = 1, 	, n — 1) . 



= (to+ 11) + 64 0 (12 2h12 ) 
h/2  h2  

h/2  71(h) — h 2 71(17/ ) 
(4.103) 
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This yields an approximate solution 

1 	1 	1 
71(h) = —

4
11

n
_2 + —

2 
un_i + —

4
U

n 
y (to+ H) 	 (4.101) 

at to+ H which may be considered a function of the stepsize h. 
According to Gragg (1965) the difference between n(h) and the exact solution 

may be described by an asymptotic expansion 

71(h) 	(to +H) = E2h2 84h4 s6h6 	 (4.102) 

in h2  for sufficiently smooth functions and even values of n. The error coefficients 
si depend on to and H but are independent of h. 

4.3.2 Extrapolation 

As may be expected from the simple formulas used for the micro-steps, the order 
of the approximation is quite low. However, one may improve it considerably after 
repeating the integration with a different stepsize  h".  Forming 

one can eliminate the leading error term s2h 2  and thus reduce the error by two 
orders. 

Fig.4.7. Extrapolation of n(h) for 
0. 

Equation (4.103) describes a linear extrapolation of 71 as a function of h2  down 
to h  =0  and it is obvious that even better approximations may be obtained by using 
higher-order extrapolation formulas (see Fig. 4.7). This requires that the mid-point 
rule integration from to to to + H is repeated several times with different step sizes 
hi = Hlni, where the ni are taken from a sequence like 

n = 2, 4, 6, 8, 12, 16, 24, 32, 48 ... (ni = 2ni_2 for i  ?4) 	(4.104) 
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which is called the Bulirsch sequence. The extrapolation is then performed accord-
ing to the following scheme: 

n(hi) 

1  1 OD 

q(h3) 

Vh4) 

1105) 

= 

= 

= 

= 

= 

111 , 1 

77 -.2,1 

77 .3,1 

7/ -.4,1 

ll -5,1 

\ 
—>  

\ 
—> 

\ 
—> 

\ 
—> 

172,2  

173,2  

174,2  

q5 , 2  

\ 
—> 

\ 
—> 

\ 
—> 

17 3 , 3  

17 4, 3  

17 5 , 3  

\ 
—> 

\ 
—> 

174 , 4  

17 5 , 4  

\ 
—> n 

(4.105) 

When using polynomial extrapolation3  each entry of the table is a simple linear 
combination 

i n — nid —  
ni,i+i = 	

, 
_ 	= 	(ni ni i)2 _ 1 	 (4.106) 

of the entries to the left and upper left of it. 
From the asymptotic expansion of the error and  62j = 0 (H) one obtains the 

following estimate: 

= ly(to+H)—n id i = s21 0(12f. 	 i+i) = 0 (H2i+ 1 ) .(4.107) 

This means that each value Il i;  in column j of the extrapolation table provides an 
approximation comparable to that of a Runge—Kutta method of order 2f.  Since 
the number of columns may be quite high (e.g. 7-10), the extrapolation method 
exceeds any known Runge—Kutta method with respect to the attainable order and 
is therefore often considered the best method for very high accuracy requirements. 

The stepsize control of the extrapolation method may be based on the same 
consideration that led to (4.21) for embedded Runge—Kutta methods. For a given 
size of the extrapolation table one can estimate the truncation error from the dif-
ference of two neighboring values 1 .;, ;_ 1  and n and calculate a new stepsize 
from 

H* = 0.9H • 2j- 

    

(4.108) 

 

where 0.9 is a safety factor that avoids an overoptimistic stepsize estimate and s 
is the required tolerance. Simultaneously one may check whether the order of the 

3 Bulirsch & Stoer (1966) proposed an extrapolation involving rational functions, but polynomials 
are at least equally well suited (see e.g. Hairer et al. (1987)). 
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extrapolation table should be changed to decrease the total integration effort. For 
details of the stepsize control used in practical implementations of the extrapolation 
method the reader is referred to Hussels (1973), Deuflhard (1983) and flairer et al. 
(1987). 

4000 

3000 
DIFSY1 

rFt' 
z 0 2000 

1000 

0 	  
4 	6 

   

8 	10 
Accuracy (in digits) 

12 	14 

Fig. 4.8. Performance diagram of several extrapolation methods for test case DI (e=0.1) of Hull et 
al. (1972). The number of function calls is plotted versus the relative accuracy in digits. Note the 
jump in the graph for DIFSY1  that is caused by the stepsize and order control 

4.3.3 Comparison of Extrapolation Methods 

Implementations of the extrapolation method have been published by various au-
thors. They differ mainly in the choice of polynomial or rational extrapolation, the 
set of micro-stepsizes and the stepsize and order control: 

• DIFSY1, DIFSY2: Extrapolation methods using rational instead of polyno-
mial extrapolation (Bulirsch & Stoer 1966). The initial stepsize control has 
been improved by Hussels (1973). DIFSY2 has been developed by Hussels 
(1973) for special second-order differential equations j) = f (t, y) that do 
not depend on first-order derivatives. For this purpose the mid-point rule is 
replaced by the lowest-order Stoermer formula (y +1  = 2y — y i _ i  h2  f i ). 
Compared to DIFSY1, computing times may be reduced considerably by 
using DIFSY2 whenever appropriate. 

• DIFEX1, DIFEX2: Extrapolation codes for first and second-order differential 
equations with a new kind of order and stepsize control developed by Deu-
flhard (1983). The Bulirsch sequence (4.104) is replaced by the harmonic 
sequence (n = 2, 4, 6, 8, 10, 12, 14, .. .). 
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. • ODEX1, ODEX2: Implementations of the extrapolation method described 
in Hairer et al. (1987). ODEX2 — like DIFSY2 — is intended for use with 
second-order differential equations. 

As with the Runge—Kutta methods (see Fig. 4.2), test problem D1 of Hull et. al. 
(1972) is used to compare the performance of some of these extrapolation codes 
(Fig. 4.8). The high order of the extrapolation methods is evident from the fact that 
even a small increase in the number of function evaluations leads to a considerable 
increase of the number of accurate digits. Within the set of first-order methods 
(DIFSY1, DIFEX1, ODEX1) performance differences of about 20% are observed 
in agreement with Hairer et al. (1987). The use of DIFEX2 and ODEX2 which have 
been developed for the direct integration of second-order differential equations in-
creases the efficiency by about 30-50%. Concerning the order and stepsize control, 
the ODEX codes are notable for the smooth relation between function evaluations 
and accuracy in the performance diagram. 

Since the effective order of extrapolation codes can be quite high, the integra-
tion is usually performed with large stepsizes. This may be pretty inefficient, if 
dense output is required. The situation is similar to that of high-order Runge—Kutta 
methods with the difference that an extrapolation method may be considered as a 
variable order method. If the maximum stepsize is limited by the requested out-
put points, codes like DIFEX1 and ODEX therefore try to reduce the order as far 
as possible using only one column of the extrapolation table, if necessary. Even 
though the costs per integration step are reduced to a minimum in this way, the total 
integration effort may still be quite high. As a possible solution to this problem 
Shampine et al. (1982) have constructed a low-order interpolating Runge—Kutta 
formula based on the function evaluations that are required for the first entries of 
the extrapolation table. An interpolation algorithm that preserves the high order 
of  extrapolation  codes has only recently been developed by Hairer & Ostelinann 
(1990) for first-order differential equations, but has not yet been tested for use in 
high-precision ephemeris calculations. 

4.4 Comparison 

In the preceding sections the basic concepts and features of Runge—Kutta, multistep, 
and extrapolation methods for the integration of ordinary differential equations have 
been discussed. Regarding the class of Runge—Kutta methods, it has been shown that 
only high-order methods are reasonable candidates for the accuracy requirements 
of orbit computations. FILG11 and RKN12(10) were identified as the most efficient 
methods, but if the acceleration involves velocity dependent terms, DOPRI8 will 
serve best. Among the extrapolation codes ODEX2 is most promising, being about 
40% faster than the corresponding codes for first-order differential equations. As 
expected, an excellent performance is also found for all multistep methods. 

The sample calculations presented so far have been restricted to near-circular 
orbits, however, and in order to extend the discussion to more general orbits, highly 



Fu
nc

tio
n  

ca
lls

  

4000 

2000 

6000 

8000 

0 

152 	4. Numerical Integration 

eccentric orbits (e = 0 .9 ; test case D5 of Hull et al. (1972)) have been considered, 
too. In addition to DOPRI8, FILG11, and ODEX2 the variable order, variable 
stepsize multistep code DE/DEABM is used for this comparison. 

As before, the valuation of the different integration methods is based on a perfor-
mance diagram showing the relation between the number of function evaluations 
and the achieved accuracy. This approach avoids the measurement of machine-
dependent computing times but some comments may be helpful to illustrate its 
validity. 

The total computing effort of a numerical integration method depends not 
only on the number of function evaluations but also on the extent of additional 
arithmetic operations that are required inside the integration routine. In the case 
of the two-body problem the total computing time is, for example, about 30-60% 
higher than expected from the number of function evaluations alone, if one uses a 
Runge—Kutta or Extrapolation method. For variable-order and stepsize multistep 
methods which require a lot of work to calculate new coefficients at each step, 
this computational overhead is even higher and may well be in the order of 200%. 
The situation changes, however, if one considers a realistic force model that is 
appropriate for the prediction of satellite orbits. While the additional perturbations 
do not affect the number of function evaluations, they increase the total computing 
time considerably and make the integration overhead more or less negligible. As 
an example we found values between 5% (single-step methods) and 20% (variable-
order and stepsize multistep methods) for a satellite force model including a 3 x 3 
geopotential, lunisolar gravitational attraction, and solar radiation pressure. 

The number of function evaluations that are required to achieve a given accuracy 
is, therefore, an appropriate performance measure for our purposes and we may now 
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Fig. 4.9. Performance diagram of several single- and multistep methods for test cases DI (e=0.1, 
lower set of curves) and D5 (e=0.9, upper set of curves) of Hull et al. (1972). The number of function 
calls is plotted versus the relative accuracy in digits. 
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turn to Fig. 4.9 which presents the results for the various integration methods under 
consideration. First of all it is evident that the total integration effort for a highly 
eccentric orbit is larger by a factor of about 3-4 than that for a near-circular orbit. 
Since this factor is almost the same for all methods, it can be concluded that the 
stepsize control of all codes works well even for Orbits of high eccentricity. While 
the good performance of the multistep methods at low eccentricities is beyond 
doubt, it is noteworthy that DE is well suited for very high eccentricities, too. This 
clearly indicates the usefulness of variable-order and stepsize multistep methods for 
application to general types of orbits. A regularization of the equations of motion 
(see e.g. Long et al. 1989), which is essential for an efficient use of simple fixed-
stepsize multistep methods at high eccentricities, can thus be avoided completely. 

A comparison of single-step methods with multistep methods indicates that 
both classes of integration methods have become almost competitive by now. While 
the 8th-order code DOPRI8 needs still 2-2.5 times the computing effort required 
by DE, one may note that the 11th-order Nystrom method FILG11 is even more 
efficient than the multistep method for both low and high eccentricities. An excellent 
performance is also found for the ODEX2 code, which shows that all types of single-
step methods are well worth considering for applications in the field of orbital 
mechanics. 

This result is somewhat in contrast to the common opinion that the use of a mul-
tistep method is an indispensable prerequisite for an efficient numerical integration 
of satellite orbits due to the small number of function evaluations required. While 
there is strong support for this point of view in earlier reviews (Moore 1974, Fox 
1984) one should keep in mind that the technique of Runge—Kutta integration has 
been improved considerably within the past two decades and that new high-order 
methods like FILG11 are much more efficient than their predecessors. Fox (1984), 
for example, recommends the Gauss—Jackson method (without corrector step) for 
near-circular orbits, since he finds it superior to the 8th-order Runge—Kutta method 
DOPRI8 by a factor of about 3. This result is in close agreement with our com-
parison of DOPRI8 and the multistep method DE/DEABM and Fox's conclusions 
can be supported as long as methods for general first or second-order differential 
equations are considered. If the equation of motion does not contain any veloc-
ity dependent term, however, then high-order Runge—Kutta—Nystrom codes like 
FILG11 or RKN12(10) may be used which are even faster than multistep methods 
like DE or VOAS. 

The good performance of Runge—Kutta and extrapolation methods exhibited in 
the sample calculations should not, however, obscure the fact that the efficiency of 
these method deteriorates considerably when the distance between subsequent out-
put points becomes smaller than the natural stepsize. This situation might change 
with the development of interpolants for high-order Runge—Kutta methods, but up 
to now single-step methods can only be recommended, if less than 50 to 100 output 
points per revolution are required. Multistep methods are still, therefore, prefer-
able for the generation of equidistant ephemerides at small time intervals. With 
the availability of variable-order and stepsize codes these methods are no longer 
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restricted to near-circular orbits, but may also be used for high eccentricities with-
out any precautions. Due to this increased flexibility, variable-order and stepsize 
multistep methods are ideal candidates for use in general satellite orbit prediction 
and determination systems. Nevertheless, fixed stepsize codes that have been fa-
vored in software packages like GTDS (Long et al. 1989), GEODYN (Martin et al. 
1976), UTOPIA (Schutz & Tapley, 1980), and PEPSOC (Soop 1983) are useful for 
an efficient treatment of near-circular orbits like those of geodetic or geostationary 
satellites. 

Exercises 

Exercise 4.1 (4th-Order Runge—Kutta Method) Apply the 4th-order Runge-
Kutta method (cf. Sect. 4.1.1) to integrate the normalized two-body problem from 
to = 0 to t = 20 for an eccentricity of e = 0.1 (test problem D1, cf. Sect. 4.1.6). 
Determine the resulting accuracy of the state vector at the end point using n = 
{50, 100, 250, 500, 750, 1000, 1500, 2000} steps and count the corresponding 
number of function evaluations. 

Solution: Reference values obtained with thEE  8-byte floating point arithmetics 
(double precision) are given below: 

nfne  Accuracy Digits 
200 1.953.10-1  0.71 
400 6.663.10-3  2.18 

1000 9.051-10-5  4.04 
2000 4.012-10-6  5.40 
3000 6.847.10-7  6.16 
4000 1.996.10-7  6.70 
6000 3.608.10-8  7.44 
8000 1.089.10-8  7.96 

Exercise 4.2 (4th-Order Gauss—Jackson Method) Implement the 4th-order 
Gauss—Jackson method (cf. Sect. 4.2.7) and integrate the second-order differen-
tial equation F = —r/r 3  of the normalized two-body problem from to = 0 to 
t = 20 for an eccentricity of e = 0.1 (Test problem D1, cf. Sect. 4.1.6). De-
termine the resulting accuracy of the state vector at the end point using n = 
{100, 300, 600, 1000, 1500, 2000, 3000, 4000} steps and count the correspond-
ing number of function evaluations. 

Hint: Apply the 4th-order Runge—Kutta method to compute position and velocity 
at times to — h, to — 2h and to — 3h from the intial values ro and vo. The correspond- 
ing accelerations ao, 	,  a_3  can then be used to foam the backwards differences 
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Vqao, 	, V3 a0 and to initialize the sums 

V -2a0  

_1  vOao  _1  V l ao — — V
2
ao 	 

2 	
19 

12 	24 	720 a°  
 u,3 

—NPao — 	— 
40

V ao 
12 	 240 V  ° 
1 	1 	2 

at the starting point to. 

Solution: Reference values obtained with IEEE 8-byte floating-point arithmetics 
(double precision) are given below: 

nfnc Accuracy Digits 
116 2.456.10—°3  2.61 
316 3.363-10-06  5.47 
616 7.705-10-08  7.11 

1016 4.539-10—°9  8.34 
1516 5.174.10-10  9.29 
2016 1.166.10-10  9.93 
3016 1.499.10-11  10.82 
4016 3.577.10-12  11.45 

Exercise 4.3 (Stepsize Control for Eccentric Orbits) Integrate the nontialized 
two-body problem with eccentricity e = 0.9 from to = 0 to t = 20 (test problem 
D5, cf. Sect. 4.1.6) using the DE multistep method of Shampine & Gordon (1975) 
and monitor the step size variation as a function of time and distance. 

Solution: Using double-precision arithmetics and a value of Sabs = 10-8  for 
the error control parameter of the DE method, the results shown in Fig. 4.10 are 
obtained. -  

Fig. 4.10. Stepsize variation of DE multistep method during integration of normalized two-body 
problem with eccentricity e =-- 0.9. 
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Following an infinitesimal initial step, the order and stepsize of the DE multistep 
method are continuously increased, until a typical order of ten is achieved. During 
the integration small steps are chosen close to pericenter, where the orbital position 
changes rapidly. Near apocenter, in contrast, the slow motion allows for much 
larger steps. It may be observed that the stepsize varies roughly as the  square  of 
the distance from the center, and is thus almost proportional to the inverse of the 
central acceleration. In total the stepsize varies by two orders of magnitude during 
one orbit. 



5. Time and Reference Systems 

The physical and numerical models presented so far have tacitly assumed the avail-
ability of a unique time and reference system for the equation of motion. In practice, 
however, one faces a multitude of historically grown concepts and definitions, which 
are employed along with each other. Whereas the definition of both time and the 
fundamental reference systems has traditionally been based on the rotational and 
translational motion of the Earth, one has now advanced to ideally unifona atomic 
time scales and an ideally non-rotating quasar-tied celestial reference frame. Nev-
ertheless, a thorough understanding of the Earth's motion and rotation remains 
essential for a rigorous description of satellite orbits and even more the accurate 
modeling of ground based measurements. 

5.1 Time 

Despite the apparent familiarity and its use in everyday life, time has remained an 
issue that requires careful attention in the description of astronomical, physical, and 
geodetic phemomena. In accordance with the advance of physical theories, obser-
vational Methods, and measuring devices, the underlying concepts and definitions 
have undergone continued revisions and refinements up to the present date. 

Time is traditionally measured in days of 86 400 seconds duration, where the 
length of the solar day is determined from subsequent meridian transits of the 
Sun. Because of the orbital motion of the Earth around the Sun, the Sun's right 
ascension changes by approximately one degree per day and the solar day is thus 
about 4 minutes longer than the period of the Earth's rotation. The latter time 
interval, which is also known as a sidereal day, amounts to 231 56m4 1 (solar time) 
and is equal to time between successive meridian passages of the vernal equinox. 

In view of the eccentricity of the Earth's orbit and the resulting seasonal varia-
tions of the Sun's apparent motion, the real Sun is pot, however, well suited for time 
reckoning purposes. Instead it had to be replaced by the concept of a mean Sun, 
that moves unifolinly in right ascension at a rate determined from observations and 
analytical ephemerides. Based on a conventional expression for the right ascension 
of the mean Sun that was derived from Newcomb's Tables of the Motion of the 
Earth, the Greenwich Mean Time GMT or Universal Time UT was established in 
1925 as an international time scale for astronomical and civil purposes. 
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When imperfections in the UT time scale became apparent that are due to 
irregularities and secular variations in the Earth's rotation, it was decided to establish 
a new time scale in 1960 that was based exclusively on the orbital motion of solar 
system bodies. This time scale, known as Ephemeris Time ET, defined time as the 
independent argument of planetary and lunar ephemerides. Based on this definition 
ET could be determined by comparing observed positions of the Sun, the planets, or 
the Earth's Moon with tabulated data predicted from analytical or numerical theories 
of motion. Ephemeris Time is thus the prototype of a dynamical time scale, which 
considers time as a continuously and unifolinly passing physical quantity in the 
dynamical theories of motion. 

With the advent of atomic clocks Atomic Time was introduced as a new tim-
ing system that was more easily accessible by laboratory standards and free from 
deficiencies of dynamical models. More recently a set of time scales has been 
defined that accounts for the effects of general relativity in the framework of a 
four-dimensional space-time 

Today the following time scales are of prime relevance in the precision modeling 
of Earth orbiting satellites: 

• Terrestrial Time (IT), a conceptually unifoun time scale that would be mea-
sured by an ideal clock on the surface of the geoid. TT is measured in days 
of 86 400 SI' seconds and is used as the independent argument of geocentric 
ephemerides. 

• International Atomic Time (TAI), which provides the practical realization of 
a uniform time scale based on atomic clocks and agrees with TT except for 
a constant offset of 32.184 s and the imperfections of existing clocks. 

• GPS Time, which like TAI is an atomic time scale but differs in the chosen 
offset and the choice of atomic clocks used in its realization. 

• Greenwich Mean Sidereal Time (GMST), the Greenwich hour angle of the 
vernal equinox. 

• Universal Time (UT]),  today's realization of a mean solar time, which is 
derived from GMST by a conventional relation. 

• Coordinated Universal Time (UTC), which is tied to the International Atomic 
Time TAI by an offset of integer seconds that is regularly updated to keep 
UTC in close agreement with UT1. 

For a description of planetary and lunar motion as well as solar system events within 
a general relativistic context, the above time scales are further supplemented by 
Geocentric and Barycentric Coordinate Time (TCG and TCB) as well as Dynamical 
Barycentric Time (TDB). 

The mutual relation of the above time scales and their historical evolution is 
outlined in Fig. 5.1. Here distinction is made between dynamical time scales that 
serve as independent argument in the equations of motion, atomic time scales that 
provide the practical realization of a unifoun clock, and the non-uniform solar time 
scales that are tied to the motion of the Sun and the rotation of the Earth. 

1 Système International (cf. Goodman & Bell 1986) 
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Dynamical Time Atomic Time Mean Solar Time 

Universal Time 
UT 

(Greenwich Mean Time GMT) 
Solar day defined as time 

between two meridian transits 
of the fictitious mean Sun 

Universal Time 
UT1 

1mplicitely defined by the 
adopted right ascension of the 

mean Sun and the observed 
Greenwich Sidereal Time 

Ephemeris Time 
ET 

Time argument of Newcomb's Tables 
of the motion of the Earth; second defined 

by duration of the tropical century. 
(ET-UT on Jan. 1, 1900) 

Terrestrial Dynamical Time TDT 
Independent variable of geocentric 

ephemerides; lday = 86400 SI seconds. 
ET-TDT=TAI+32.184s 

Barycentric Dynamical Time TDB 
Independent variable of barycentric 

solar system ephemerides; 
rate and unit of length adjusted 

to retain only periodic terms (-2ms) 
in TDB-TDT time difference. 

Terrestrial Time TT 
Independent variable of geocentric 

ephemerides; Id =86400 SI seconds 
of a clock on the geoid; renames TDT. 

TT=TAI+32.184s 
Geocentric Coordinate Time TCG 
Relativistic time coordinate of the 
4-dimensional geocentric frame. 

TCG = TT + 2.2s/cy .(year-1977.0) 
Barycentric Coordinate Time TCB 

Relativistic time coordinate of the 
4-dimensional barycentric frame. 

TCB = TDB + 46.7s/cy .(year-1977.0) 

International Atomic Time 
TAI 

SI second defined by hyperfine 
radiation of cesium-133 atoms. 

ET=TA1+32.184s 
(TA1-UT on Jan 1, 1958) 

GPS Time 
Atomic time scale of the 

Global Positioning System 
GPS=TAI(GPS)-19s 

(GPS=UTC on Jan 6, 1980) 

Coordinated Universal Time 
UTC 

Common civil time; differs 
from TAI by an integer number 
of leap seconds to follow UT1 

within 0.9s 

Universal Time 
UT 1 

Conventional relation 
between UT1(Oh) and 
GMST (FK5 equinox) 

Fig. 5.1. Evolution of conventional time scales 
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5.1.1 Ephemeris Time 

Ephemeris Time was adopted in 19602  to cope with irregularities in the Earth's 
rotation that had been found to affect the flow of mean solar time. Even though its 
definition is based on Newtonian physics and has meanwhile been replaced by TT, 
TCG, and TCB within a relativistic framework, Ephemeris Time still represents 
the prototype of a dynamical time scale and provides a useful link to historical 
planetary observations. 

The definition of Ephemeris Time is based on Newcomb's analytical theory 
of the Earth's motion around the Sun (Newcomb 1898). In his analytical solution 
of the equations of motion, Newcomb expressed the relative motion of the Earth-
Moon barycenter and the Sun by a set of secularly perturbed Keplerian elements 
and superimposed periodic perturbations. Based on his theory and an adjustment 
to obervations, he derived the expression 

L o  = 279°41'48'.'04 + 129 602 768 1.1 13 • T 1 1.'089 • T2 	 (5.1) 

for the geometric mean longitude of the Sun with respect to the Earth-Moon 
barycenter. Here L 0 refers to the mean equinox of date while T measures time 
from noon 1900 January 0 (JD 2 415 020.0) GMT in Julian centuries of 36525 
days. 

While a day was originally meant to represent a mean solar day in Newcomb's 
computations, the above relation was later adopted as a conventional expression in 
the definition of Ephemeris Time. To this end, the instant at which the geometric 
mean longitude of the Sun had a value of 279°41'48 1.'04 near the beginning of the 
calendar year AD 1900 was defined as 1900 January 0, 12h  Ephemeris Time (ET). 
The rate of change dL oldT at this epoch is given by the linear  tenu in (5.1), which 
corresponds to an orbital period of 

360 • 3600" 
P = 	  36525 86400s  = 31 556 925.9747 s . 	(5.2) 

129 602 768n3 
Accordingly, the ephemeris second was defined as the fraction 1/31556925.9747 
of the tropical year at 1900 January 0.5 ET, where a tropical year specifies the time 
during which the Sun's mean longitude, as referred to the mean equinox of date, 
increases by 360°. 

Even though Ephemeris Time provides a conceptually smooth and unifoiiii 
time scale it is more difficult to measure than mean solar time that is closely related 
to the Earth's rotation. In practice Ephemeris Time has to be determined by com-
paring observations of the Sun, Moon or planets with precomputed ephemerides. 
Among these bodies the Moon exhibits the fastest orbital motion and has therefore 
formed the basis for the actual implementation of Ephemeris Time. Soon, however, 
Ephemeris Time became superseded by the use of atomic time scales, which pro-
vided a much better short-term availability together with an excellent long-term 
stability. 

2A preliminary definition of Ephemeris Time was actually devised about ten years earlier (see 
Seidelmann 1992), but was refined and revised in subsequent resolutions. 
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5.1.2 Atomic Time 

Atomic (or molecular) clocks are based on the periodic oscillation of a microwave 
signal that is in resonance with a low-energy state transition of a specific atom or 
molecule. While the first clock built at the National Bureau of Standards in 1948 
used an ammonia (NH3) absorption line to control the frequency generation (For-
man 1985), today's atomic clocks are generally based on cesium ( 133 Cs), hydrogen 
( 1 H), or rubidium (87Rb) (McCoubrey 1996). Among these types, cesium clocks 
provide the best long-temi stability and are therefore used as primary standards in 
the practical realization of atomic time scales. 

The principle of a cesium-beam atomic clock is illustrated in Fig. 5.2. A beam of 
cesium-133 atoms leaves an oven through a thin hole and enters the inhomogenous 
field of a Stern—Gerlach magnet. It then passes through a microwave resonator and 
a second magnet before it is finally collected by a detector (cf. Vessot 1974). 

dH/dz 

Cesium 
Oven Magnet 

Microwave Resonator 

9 192 631 770 Hz 

dH/dz 

F=3 
_ 

F=4 

Magnet 	Detector 

F=3 

F=4 

  

  

     

Fig. 5.2. Schematic view of a cesium-beam atomic clock 

Depending on the nucleus and outer electron spins, the cesium atoms exhibit 
a total angular momentum of either F = 3 or F = 4. Both states are separated 
by a small energy of about 0.04 meV and are almost equally populated in thermal 
equilibrium. Atoms in the F  =3 state experience an acceleration along the gradient 
of an external magnetic fi eld, while atoms in the F = 4 state are deflected into 
the opposite direction. The first Stern—Gerlach magnet thus acts as a state selector, 
which allows only atoms in the F =  3 state to enter the subsequent microwave 
resonator. Here the beam passes through an electromagnetic field with a nominal 
frequency of 9 192 631 770 Hz, which corresponds to the energy difference between 
the two states. Accordingly, atoms in the F = 3 state may absorb a microwave photon 
and change the electron spin from anti-parallel to parallel orientation with respect 
to the spin of the nucleus. Upon leaving the resonator, the atoms pass a second 
Stern—Gerlach magnet (analyzer) that separates the F = 3 and F = 4 states and 
allows only the latter (i.e. those with modifed electron spin) to enter the detector. A 
maximum signal is thus obtained, if the microwave radiation frequency is properly 
centered to the hyperfine transition. The detector signal can, therefore, be used to 
adjust the resonator frequency to a fraction of the natural linewidth and obtain a 
highly stable frequency reference. Upon continued subdivision, lower frequencies 
of equal stability are obtained that ultimately provide the desired clock signal. 

Due to the sharpness of the absorption line, the resonance frequency can be 
matched with great precision and is thus ideally suited as an accurate time reference. 
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Typical accuracies achieved with present cesium clocks range from 10-12  to 10-14 
 (Guinot 1989) with prospects for stabilities down to 10-16  (Wolf & Petit 1995). 

This may be compared to a stability of the Earth's rotation of about 10-8  (0.3 s/year) 
and an accuracy of ephemeris time determination in the range of 10-10  (0.05 s in 
10 years). • 

In comparison with Ephemeris Time as derived from lunar observations, the ce-
sium resonance frequency was determined as 9 192 631 770 ± 20 Hz by Markowitz 
(1958). The numerical value was finally adopted in 1967 to independently define 
one second in the Système International (SI) as the duration of exactly 9 192 631 770 
periods of the radiation corresponding to the transition between the two hyperfine 
levels of the ground state of the cesium-133 atom. 

At the French Bureau International de l'Heure BIH atomic clocks were used 
as early as 1955 in addition to traditional astronomical time keeping procedures. In 
1972, the BIH atomic time scale was adopted as a world-wide standard time under 
the name International Atomic Time TAI. The unit of time of TAI is defined as the 
SI second and the origin has arbitrarily been chosen such that TAI closely matches 
Universal Time on 1958 January 1.0, yielding the relation 

ET = TAI + 32.184 s . 	 (5.3) 

Today TAI is established at the French Bureau International des Poids et Mesures 
BIPM using an elaborate stability algorithm and clock readings from a large number 
of atomic clocks (Guinot 1989). 

In addition to TAI, the atomic time scale established by the Global Positioning 
Satellite (GPS) system has become of great significance in the past decade due 
to the common availability of GPS receivers. Besides serving the direct needs 
of geodetic and navigational measurements, GPS provides high-precision timing 
signals with a near-instantaneous and worldwide availability. GPS time is realized 
by an independent set of atomic clocks and is maintained to follow the United States 
Naval Observatory (US NO) atomic clock time with an accuracy of 1 /Is, which itself 
differs from TAI by less than 5 tis. The origin of GPS time was arbitrarily chosen 
to coincide with UTC on 1980 January 6.0 UTC, i.e. GPS time differs from TAI by 
a constant offset of 

GPS = TAI — 19 s 	 (5.4) 

aside from the aforementioned clock offsets on the micro-second level. 

5.1.3 Relativistic Time Scales 

While time is an absolute quantity in the context of Newtonian physics, which does 
not depend on the location and the motion of a clock, the same is no longer true in a 
general relativistic framework. Instead, different proper times apply for each clock, 
that are related to each other by a four-dimensional space-time transformation. This 
transformation requires knowledge of the space-time metric, which itself depends 
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on the location and motion of the gravitating masses. Within the solar system, a 
first-order post-Newtonian approximation is generally adequate for a treatment of 
relativistic effects in view of moderate velocities and gravitational potentials (Soffel 
& Brumberg 1991). 

In the vicinity of the Earth, it is possible to choose a rotation-free system of 
four-dimensional space-time coordinates (x°  = ct, x = (x 1 , x2 , x3)) in such a 
way that the invariant space-time distance between two events is given by 

2U 	 2U ds2 = _c2d .r.2 = _1 — —) (dx
0 	( 

± 1 ± —) (dx)2 	 (5.5) 
c2 	 c2  

to lowest order. Here c denotes the speed of light, T.  is the proper time (as opposed 
to coordinate time t) and U is the sum of the Earth's gravitational potential and 
the tidal potential generated by external bodies. Eqn. (5.5) implies that the rate of 
a clock at rest on the surface of the Earth differs from the rate of coordinate time 
by a factor of 

dt 

2U v 2 	GM 	v 2  
1 

 c2 	c2 	R@c2 	
1 — 740-1° 	 (5.6) 

2c2  

where y we Re  cos  go  is the clock's speed in the non-rotating frame for a given 
latitude (p. Likewise, clocks at different altitudes will have different proper times 
and experience a rate difference in long-term comparisons. 

The conceptual difference between proper time and coordinate time has led the 
International Astronomical Union (TAU) to adopt two different time scales for use 
since 1992, which are named as Terrestrial Time 11:1"(faunerly Terrestrial Dynamical 
Time TDT)3  and Geocentric Coordinate Time TCG. Terrestrial Time has as its unit 
the SI second as measured on the geoid and provides a smooth continuation of 
Ephemeris Time, i.e. 

TT = TDT = ET = TAI + 32.184 s . 	 (5.7) 

Geocentric Coordinate Time TCG in contrast represents the time coordinate of a 
four-dimensional reference system and differs from TT by a constant scale factor 
1 — LG with 

LG =  6 . 9692903.10_ 10 	 (5.8) 

(Wolf & Petit 1995). By convention TCG agress with TT on 1977 January 1.0, 
yielding the relation 

TCG = TT + LG (JD —2443144.5)  86400 s . 	 (5.9) 

Around the epoch J2000, the difference TCG—TT amount to roughly 0.5 s. 

3 The word dynamical was originally used to emphasize its nature as the argument of dynamical 
theories of motion in contrast to atomic time scales governed by the laws of quantum mechanics. 
It was eventually dropped in 1992, since for practical purposes Terrestrial Time is actually derived 
from the atomic TAI time scale. 
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Supplementary to TCG, the Barycentric Coordinate Time TCB has been intro-
duced to describe the motion of solar-system objects in a non-rotating relativistic 
frame centered at the solar-system barycenter. Both time scales are defined to match 
each other on 1977 January 1.0 TAI but exhibit a rate difference 

d(TCB — TCG) GM®  vi 
? P®  1.5-10-8 	 (5.10) 

dTCG 	ac2 	2c2  2 ac2  

that depends on the gravitational potential of the Sun at the mean Earth-Sun distance 
a = 1 AU and the Earth's orbital velocity ye . Due to the eccentricity of the Earth's 
orbit and the associated variations of the heliocentric distance and velocity, the 
rigorous transformation involves additional periodic terms and is given by 

TCB TCG Lc • (JD — 2443144.5) • 86400 s P 	 (5.11) 

with 

Lc =  1 .4808268457.10_ 8 	 (5.12) 

(McCarthy 1996) and 

P 	+0!0016568-sin(35999?37T 357?5) 
+0!0000224•sin(32964?5T + 246°) 
+0!0000138- sin(71998?7T + 355°) 
+0!0000048 • sin(3034?9T + 25°) 
+0!0000047 • sin(34777?3T + 230°) 

T = (JD — 2451545.0)/36525 

(Seidelmann & Fukushima 1992). The leading periodic  tenu  is of 1.7 ms amplitude 
and varies with the sine of the Earth's mean anomaly. All other terms are about 
two orders of magnitude smaller. In view of the significant rate difference between 
TCB and TCG/TT the accumulated TCB—TT time difference amounts to roughly 
11 s around the epoch J2000 (cf. Fig. 5.3). 

TCB supersedes a time scale known as Barycentric Dynamical Time TDB, 
which was introduced by the TAU in 1976 and defined to differ from IDT (now 
TT) by periodic  tenus,  only. Accordingly TDB and TCB are related by 

TCB = TDB + LB • (JD — 2443144.5) • 86400 s , 	 (5.14) 

where the scale difference 

LB = Lc LG = 1.5505197487-10 -8 
	

(5.15) 

(McCarthy 1996) synchronizes the average rate of Barycentric Dynamical Time 
with that of Terrestrial (Dynamical) Time. While the definition of TDB appeared to 
be useful at first sight in view of the small amplitude of the TDB-TT time difference 
it has a subtle implication for models of solar system dynamics. While the post-
Newtonian equations hold irrespective of the use of TCB or TDB time, the TDB 

(5.13) 
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Fig. 5.3. Difference of atomic, dynamical, and solar time scales between 1950 and 2020. Periodic 
terms in TCB and TDB have been exaggerated by a factor of 100 to make them discernible. (Adapted 
from Seidelmann & Fukushima 1992) 

second is longer than the TCB second by a factor  LB.  Furthermore, in order to 
maintain the adopted numerical value 

c = 299 792 458 m/s 	 (5.16) 

of the speed of light, the length of a meter is likewise different in the TCB and TDB 
system. In a similar manner derived quantities like the masses of the Sun, Earth, 
and planets are affected by the scaling difference (Hellings 1986). Considering, 
however, that all precise solar system ephemerides are so far based on a TDB time 
scale, the continued use of TDB is still accepted by the current TAU resolutions. 

5.1.4 Sidereal Time and Universal Time 

Greenwich Mean Sidereal Time GMST, also known as Greenwich Hour Angle, 
denotes the angle between the mean vernal equinox of date and the Greenwich 
meridian. It is a direct measure of the Earth's rotation and may jointly be expressed 
in angular units or units of time with 360° (27) 'corresponding to 2411 . In terms of 
SI seconds, the length of a sidereal day (i.e the Earth's spin period) amounts to 
23h56m4091 ±  0O05, making it about four minutes shorter than a 24h solar day. 
Due to length-of-day variations with an amplitude of several milliseconds, sidereal 
time cannot be computed from other time scales with sufficient precision but must 
be derived from astronomical and geodetic observations. 
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BULLETIN B 135 
03 May 1999 

Contents described in the Explanatory Supplement, mailed with Bulletin B133 

1 - EARTH ORIENTATION PARAMETERS (IERS evaluation). 
The values in this section are samplings of section 2 given at five-day 
intervals. 

Date 	MJD 
	

UT1R -UTC 
	

UT1R-TAI 	dPsi dEpsilon 
1999 
	

0.001" 	0.001" 
(Oh UTC) 

Final Bulletin B values. 

MAR 2 51239 
MAR 7 51244 
MAR 12 51249 
MAR 17 51254 
MAR 22 51259 

MAR 27 51264 
APR 1 51269 

	

.06888 .24160 	.651265 

	

.06436 .24260 	.646766 

	

.05871 .24135 	.641753 

	

.05110 .23914 	.636039 

	

.04643 .24049 	.629993 

	

.03623 .24148 	.623165 

	

.02603 .24102 	.616594 

-31.348735 
-31.353234 
-31.358247 
-31.363961 
-31.370007 

-31.376835 
-31.383407 

-45.4 	-5.7 
-46.6 	-5.6 
-45.8 	-5.9 
-44.7 	-6.2 
-45.3 	-6.4 

-44.2 	-7.0 
-44.1 	-7.1 

Preliminary extension, to be updated weekly in Bulletin A and monthly 
in Bulletin B. 

APR 6 51274 	.01733 .23957 	.609575 -31.390425 
	

-45.1 
	

-7.2 
APR 11 51279 	.01051 .24108 	.602247 -31.397753 	-43.6 	-7.0 
APR 16 51284 	.00731 .24620 	.595119 -31.404881 	-44.6 	-7.4 

JUN 10 51339 -.04182 .28130 
JUN 15 51344 -.04460 .28498 
JUN 20 51349 -.04711 .28882 
JUN 25 51354 -.04935 .29281 
JUN 30 51359 -.05133 .29693 

.519993 -31.480007 

.514725 -31.485275 

.509953 -31.490048 

.505676 -31.494324 

.501881 -31.498119 

-45.1 	-7.3 
-46.4 
	

-8.1 
-45.4 
	

-7.4 
-47.9 
	-7.4 

-47.4 
	-7.7 

Note. In UT1R, the effects of zonal tides with periods shorter than 35 days 
are removed; UT1-UT1R ( smaller than 0.0025s in absolute value ) should be 
added after quadratic interpolation of UT1R.Section 2 of this Bulletin gives 
the daily interpolation of x, y, UT1, duration of day, dPsi, and dEpsilon. 

2 - SMOOTHED VALUES OF X, Y, UT1, D, DPSI, DEPSILON (IERS EVALUATION) 
at one-day intervals. For smoothing characteristics, see Table2 in the 
explanatory supplement. The reference system is described in the 1997 
IERS Annual Report. 

1999 	MJD 
(0 h UTC) 

UT1-UTC UT1-UT1R 	D 
ms 	ms 

dPsi dEpsilon 
0.001" 	0.001" 

MAR 1 51238 .06996 .24157 .652011 -.154 .960 -45.4 -5.7 
MAR 2 51239 .06888 .24160 .651078 -.187 .944 -45.4 -5.7 
MAR 3 51240 .06806 .24156 .650161 -.277 .930 -45.7 -5.7 
MAR 4 51241 .06740 .24173 .649232 -.391 .990 -46.0 -5.7 
MAR 5 51242 .06657 .24214 .648193 -.490 1.053 -46.3 -5.6 

APR 26 51294 -.00689 .25211 .580721 -.475 1.379 -42.7 -6.9 
APR 27 51295 -.00808 .25277 .579283 -.552 1.425 -42.0 -6.8 
APR 28 51296 -.00831 .25398 .577792 -.641 1.475 -42.4 -6.8 
APR 29 51297 -.00846 .25501 .576290 -.705 1.469 -42.8 -6.8 
APR 30 51298 -.00871 .25641 .574839 -.713 1.405 -42.9 -6.9 

Fig. 5.4. Sample set of Earth Orientation Parameters as provided by the Bulletin B of the WRS 
International Earth Rotation Service 
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Universal Time UT]  is the presently adopted realization of a mean solar time 
scale with the purpose of achieving a constant average length of the solar day of 
24 hours. As a result, the length of one second of Universal Time is not constant, 
because the actual mean length of a day depends on the rotation of the Earth and the 
apparent motion of the Sun (i.e. the length of the year). Similar to sidereal time, it 
is not possible to determine Universal Time by a direct conversion from e.g. atomic 
time, because the rotation of the Earth cannot be predicted accurately. Every change 
in the Earth's rotation alters the length of the day, and must therefore be taken into 
account in  UT 1. Universal Time is therefore defined as a function of sidereal time, 
which directly reflects the rotation of the Earth. For any particular day, O h  UT1 is 
defined as the instant at which Greenwich Mean Sidereal Time has the value 

GMST(OhUT1) = 24110 54841 8640184 812866 • To 
+ 0 093104 To2  —  0 0000062 To3 

	(5.17) 

(Aoki et al. 1982). In this expression the time argument 

JD(OhUT1) — 2451545 
To =  	 (5.18) 

36525 

denotes the number of Julian centuries of Universal Time that have elapsed since 
2000 Jan. 1.5 UT1 at the beginning of the day. For an arbitrary time of the day, the 
expression may be generalized to obtain the relation 

GMST =  241105484l  

-I- 8640184 812866 To ± 1.002737909350795 UT1 

+ 0 093104 T 2  — W0000062 T 3  , 

where the time argument 

Jll(UT1) — 2451545 
36525 

(5.19) 

(5.20) 

specifies the time in Julian centuries of Universal Time elapsed since 2000 Jan. 1.5 
UT1. 

The difference between Universal Time and Terrestrial Time or International 
Atomic Time can only be determined retrospectively. At the end of the 20th century 
zAT = TT — UT1 amounts to roughly 65s  and increases by about 0.5 to 1.0 seconds 
per year (cf. Fig. 5.3). In addition to the secular variation, which is caused by tidal 
friction in the Earth-Moon system, UT1 is subject to periodic variations on the 
1 ms level that are caused by tidal perturbations of the polar moment of inertia (see 
McCarthy (1996) and references therein). By convention, zonal tide terms with 
periods between 5 and 35 days are removed from UT1 to obtain the regularized 
Universal Time UT1R. Values of the UT1R—TAI time difference are published on a 
monthly basis in Bulletin B of the International Earth Rotation Service (MRS) (cf. 
Fig. 5.4), while the adopted expression for UT1-UT1R is given in McCarthy (1996). 
Aside from reconstructed, post-facto values of the Earth orientation parameters, the 
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bulletin provides approximate forecasts over a two month time frame at 5-day and 
1-day intervals. Using quadratic interpolation of the tabulated data, UT1 may be 
obtained for arbitrary instants from given TAI (or T1"), which then allows GMST 
to be computed as a function of TAI using the conventional relation (5.19). 

Clock time, which is used for everyday purposes, is derived from Coordinated 
Universal Time (UTC). Since 1972, UTC is obtained from atomic clocks running at 
the same rate as International Atomic Time and Terrestrial Time. By the use of leap 
seconds, which may be inserted at the end of June and/or the end of December, care 
is taken to ensure that UTC never deviates by more than 0.9 seconds from Universal 
Time UT (cf. Fig. 5.3). Between 1972 and 1999, a total of 23 leap seconds have been 
introduced as summarized in Table 5.1. New leap seconds are announced in Bulletin 
C of the 1ERS (cf. Fig. 5.5) about half a year in advance of their implementation. 

INTERNATIONAL EARTH ROTATION SERVICE (IERS) 
SERVICE INTERNATIONAL DE LA ROTATION TERRESTRE 

BUREAU CENTRAL DE L'IERS 
OBSERVATOIRE DE PARIS 
61, Av. de l'Observatoire 75014 PARIS (France) 
Tel. : 33 (0) 1 40 51 22 26 
FAX 33 (0) 1 40 51 22 91 
Internet : iers@obspm.fr  

Paris, 17 July 1998 

Bulletin C 16 

To authorities responsible for 
the measurement and distribution 
of time 

UTC TIME STEP 
on the 1st of January 1999 

A positive leap second will be introduced at the end of December 1998. 
The sequence of dates of the UTC second markers will be: 

1998 December 31, 	23h 59m 59s 
1998 December 31, 	23h 59m 60s 
1999 January 1, 	Oh Om Os 

The difference between UTC and the International Atomic Time TAI is: 

from 1997 July 1, 	Oh UTC, to 1999 January 1, Oh UTC : 	UTC-TAI = - 31s 
from 1999 January 1, Oh UTC, until further notice 	: 	UTC-TAI = - 32s 

Leap seconds can be introduced in UTC at the end of the months of 
December or June, depending on the evolution of UT1-TAI. Bulletin C mailed 
every six months, either to announce a time step in UTC, or to confirm that 
there will be no time step at the next possible date. 

Fig. 5.5. Announcement of new UTC leap seconds in Bulletin C of the I E.RS  International Earth 
Rotation Service 
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Table 5.1. Leap seconds introduced in Coordinated Universal Time (UTC) since 1972. 

From UTC—TAI From UTC—TAI From UTC—TAI 

1972 Jan. 1 —10 s 1981 July 1 —20s 1996 Jan. 1 —30s 
1972 July 1 —11 s 1982 July 1 —21 s 1997 July 1 —31s 
1973 Jan. 1 —12s 1983 July 1 —22s 1999 Jan: 1  —32s 
1974 Jan. 1 —13s 1985 July 1 —23s 
1975 Jan. 1 —14s 1988 Jan. 1 —24s 
1976 Jan. 1 —15s 1990 Jan. 1 —25s 
1977 Jan. 1 —16s 1991 Jan. 1 —26s 
1978 Jan. 1 —17s 1992 July 1 —27s 
1979 Jan. 1 —18s 1993 July 1 —28s 
1980 Jan. 1 —19s 1994 July 1 —29s 

5.2 Celestial and Terrestrial Reference Systems 

The equation of motion as derived in Chap. 3 describes the orbit of a satellite with 
respect to a quasi-inertial or Newtonian reference system, i.e. with respect to a 
coordinate system that moves with the center of the Earth but is free of rotation. 
Satellite observations on the other hand are commonly obtained from an observing 
site on the surface of the Earth, which is not at rest with respect to this reference 
system. In order to compare ground-based measurements with the computed satel-
lite position, a concise definition of celestial and terrestrial reference systems is 
required and their mutual relation has to be established. 

Traditionally, celestial reference frames have been tied to the Earth's rotation 
and its annual revolution around the Sun. In view of the apparent constancy of both 
the orbital plane and the rotation axis of the Earth, two global coordinate systems 
can be defined in a straightforward manner. The first one gives the position of a 
point in space with respect to the ecliptic (the Earth's orbital plane), while the other 
one refers to the Earth's equatorial plane (the plane perpendicular to the rotation 

Fig. 5.6. Ecliptic and equator 
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axis). These planes are inclined at an angle 8 23.5° and the line of intersection is 
a common axis of both coordinate systems (cf. Fig. 5.6). The  x '-axis is defined as 
being the direction of the vernal equinox or First Point of Aries, designated by T. 
It is perpendicular to both the North Celestial Pole (the z-axis) and the north pole 
of the ecliptic (the Z-axis). According to their definition the equatorial coordinates 
r and the ecliptic coordinates r' of a given point are related by a rotation 

= Rx (s)r , 	 (5.21) 

where the precise value of the obliquity e is given in (5.42). The choice between 
ecliptic and equatorial coordinates is mainly a question of vividness and conve-
nience. Planetary orbits, for example, are inclined at small angles to the Earth's 
orbital plane and are therefore commonly described in ecliptic coordinates. Equa-
torial coordinates, on the other hand, are closely related to geographical coordinates 
and provide a natural link to an Earth-fixed reference system. 

While the orbital plane of a body around a central mass is fixed in space as 
long as the attractive force is parallel to the radius vector, this condition does not 
hold for the Earth due to the presence of other solar system planets. This results in a 
small secular variation of the orbital plane which is known as planetary precession. 
At the same time the Earth's axis of rotation is perturbed by the torque exerted on 
the equatorial bulge by the Sun and Moon. This torque tries to align the equator 
with the ecliptic and results in a gyroscopic motion of the Earth's rotation axis 
around the pole of the ecliptic with a period of about 26 000 years. As a result of 
this lunisolar precession the vernal equinox recedes slowly on the ecliptic, whereas 
the obliquity of the ecliptic remains essentially constant. In addition to precession 
some minor periodic perturbations of the Earth's rotation axis may be observed that 
are known as nutation and reflect variations of the solar and lunar torques on time 
scales larger than a month. In view of the time-dependent orientation of equator and 
ecliptic a standard reference frame is usually based on the mean equator, ecliptic, 
and equinox of some fixed epoch, which is currently selected as the beginning of the 
year 2000. Access to the Earth Mean Equator and Equinox of J2000 (EME2000) 
is provided by the FK5 star catalog (Fricke et al. 1988), which provides precise 
positions and proper motions of some 1 500 stars for the epoch J2000 as referred 
to the given reference frame 

In view of conceptual difficulties related to the dynamical definition of the 
ecliptic and equinox (see e.g. Kinoshita & Aoki 1983), it was decided by the TAU 
in 1991 to establish a new International Celestial Reference System (ICRS) 4  and 
adopt it for use from 1998 onwards (Feissel & Mignard 1998). The origin of the 
ICRS is defined as the solar-system barycenter within a relativistic framework 
and its axes are fixed with respect to distant extragalactic radio objects. These are 
supposed to have no proper motion, thus ensuring that the ICRS exhibits no net 
rotation. For a smooth transition to the new system, the ICRS axes are chosen in 

4 Here, the term Reference System means the set of basic concepts and models used to define at 
any instant the orientation of the reference axes. A Reference Frame, in contrast, means a specific 
realization in accordance with the concepts. 
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such.  a way as to be consistent with the previous FK5 system to within the accuracy 
of the latter. The fundamental plane of the ICRS is closely aligned with the mean 
Earth equator at J2000 and the origin of right ascension is defined by an adopted 
right ascension of the quasar 3C273. 

The practical realization of the ICRS is designated the International Celestial 
Reference Frame (ICRF) and is jointly maintained by the I FRS and the TAU Working 
Group on Reference Frames (cf. Arias et al. 1995). It is mainly based on high-
precision observations of extragalactic radio sources using Very Long Baseline 
Interferometry (VLBI) and may be accessed through a catalog providing source 
coordinates of 608 objects (cf. McCarthy 1996). Links to existing optical catalogs 
are provided by radio stars (Seidelmann 1998), while the ICRS and planetary frame 
tie is provided by VLBI observations of planetary spacecraft as well as lunar laser 
ranging (LLR) (Folkner et al. 1994, Standish 1998). 

Complementary to the ICRS, the International Terrestrial Reference System 
(ITRS) provides the conceptual definition of an Earth-fixed reference system (Mc-
Carthy 1996). Its origin is located at the Earth's center of mass (including oceans 
and atmosphere) and its unit of length is the SI meter (consistent with the TCG 
time coordinate). The orientation of the IERS Reference Pole (IRP) and Meridian 
(IRM) are consistent with the previously adopted BIH system at epoch 1984.0 and 
the former Conventional International Origin (CIO) (cf. Sect. 5.4.3). The time evo-
lution of the ITRS is such that it exhibits no net rotation with respect to the Earth's 
crust. Realizations of the ITRS are given by the International Terrestrial Refer-
ence Frame (ITRF) that provides estimated coordinates and velocities of selected 
observing stations under authority of the TF,RS. Observational techniques used in 
their determination include satellite laser ranging (SLR), lunar laser ranging (LLR), 
Global Positioning System (GPS), and VLBI measurements. New versions of the 
ITRF are published annually and exhibit global differences at the centimeter level. 

The transformation between the International Celestial Reference System and 
the International Terrestrial Reference System is accomplished by conventional 
models for 

• precession (Lieske et al. 1977), describing the secular change in the orienta-
tion of the Earth's rotation axis and the equinox, 

• nutation (Seidelmann 1982), describing the periodic and short-tenn variation 
of the equator and the vernal equinox, and 

• Sidereal Time in relation to UT1 (Aoki et al. 1982), describing the Earth's 
rotation about its axis. 

These models are supplemented by the II-RS  Earth Observation Parameters (EOP), 
comprising 

• observations of the  UT 1-TAT difference and 
• measured coordinates of the rotation axis relative to the I I-RS Reference Pole 

(1ERS 1998). The resulting transfonnation may be expressed as 

rims = H(t) (t) N (t) P (t) ricRs 	 (5.22) 
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where the rotation matrices P, N, 0, and IT describe the coordinate changes due 
to precession, nutation, Earth rotation, and polar motion, respectively. A detailed 
account of the underlying concepts of these transfoimations and the adopted nu-
merical expressions is presented in the subsequent sections. 

5.3 Precession and Nutation 

5.3.1 Lunisolar Torques and the Motion of the Earth's Rotation Axis 

In order to describe the precession of the Earth's rotation axis, the Earth is considered 
as a rotationally symmetric gyroscope with an angular momentum / that changes 
with time under the influence of an external torque D according to 

dl 
dt D  

Even though the direction of the angular momentum may, in general, differ from 
the symmetry axis of a gyroscope and the instantaneous axis of rotation, one may 
neglect these differences in the discussion of precession and nutation and assume 
that 1 is parallel to the unit vector ez  that defines the Earth's axis (cf. Fig. 5.7). Then 

= Cakoz 	 (5.24) 

where 

7.29 10-5  rad/s 
	 (5.25) 

is the angular velocity of the Earth's rotation and C is the moment of inertia. For a 
spherical body of homogeneous density with mass Me  and radius Re  the moment 
of inertia is given by 

2 
I = —Me R2 	 (5.26) 

5 	8  
for an arbitrary axis of rotation. Due to the Earth's flattening and its internal structure 
the actual moments of inertia are given by slightly differing values 

A = 0.329Me R1 	and 	C = 0.330MED R1 	 (5.27) 

for a rotation around an axis in the equatorial plane and a rotation around the 
polar axis, respectively. It may be noted that these quantities are related to the C20 
geopotential coefficient by 

C — A = —C20MED R1 . 	 (5.28) 

The torque D due to a point mass m (i.e. the Sun or Moon) at a geocentric 
position r is given by 

(5.23) 

D = 	(r x 	 (5.29) 
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Fig. 5.7. Motion of the Earth's axis under the influence of solar and lunar torques 

if designates the acceleration of m by the gravitational force of the Earth. Ne-
glecting higher-order zonal teuns in the expansion of the geopotential,  r is obtained 
as 

GM ED  3 GMeR 2  C20  

	

[ (5z 2 —r 2)r — 2(zr 2)ez  r = 	 
r3 	2 

(5.30) 

for a rotationally symmetric Earth (cf. Sect. 3.2), where z =rez  is the distance of m 
from the equatorial plane. All terms of the acceleration that are parallel to the radius 
vector affect the Earth's center of mass, only, and the resulting torque is given by 
the simple expression 

3z(r x ez) 	 (5.31) D = Gm(C — A)  r5  

The Sun moves around the Earth in a near-circular orbit that is inclined at an 
angle E with respect to the equator and the resulting torque vanishes whenever the 
Sun crosses the equator (z = 0). Introducing the unit vector ex  in the direction of 
the vernal equinox (cf. Fig. 5.7), the torque of the Sun at right angles to the line of 
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nodes is found to be 

D0  = GM0 (C — A)
3 sin e cos s 

ex 	 (5.32) 
r(3)  

irrespective of whether the Sun is above or below the equatorial plane. This results 
in a mean solar torque 

Do  = GM0(C — A) 
3 sin E cos E 

e x 	 (5.33) 
2r2)  

in the direction of the vernal equinox during the course of a year, whereas the mean 
component in the direction perpendicular to ex  vanishes. Making use of Kepler's 
third law, the last expression may further be written as 

3 
Do  = —

2 
(C — A) sin 6' COS s 71 20  ex 	 (5.34) 

where no  is the mean motion of the Sun in its orbit around the Earth. 
Similar considerations hold for the Moon, with the exception that the inclination 

of the lunar orbit with respect to Earth's equator is not fixed, but varies between 
18° and 28° during a period of about 18 years. Since this period is small compared 
to the time scale of precession, one may, however, assume that the Moon moves in 
the ecliptic just like the Sun. This yields a total mean torque of 

Mm = -3 
(C — A) sin e cos e (n 2  + 	e 0 	 x, m 	 (5.35) 

2 	 e 
which changes neither the Earth's total angular momentum nor the obliquity s but 
forces 1 to move around the pole of the ecliptic at an angular velocity 

	

3 C — A 
— 	 

nLMA4/ Me  
prec — . 	= 	cos(E) 	 (5.36) 

	

sin(E)1/1 	2 C 	 co0  

of one revolution in 26 000 years. 

5.3.2 Coordinate Changes due to Precession 

The combined effects of precession on the orientation of the ecliptic and the equator 
are illustrated in Fig. 5.8, where the motion of both planes is described with respect 
to the mean equator and ecliptic of the reference epoch J2000 (2000 January 1.5). 

Due to lunisolar precession the intersection of the mean equator of epoch t and 
the mean ecliptic of J2000 lags behind the vernal equinox T2000 of J2000 by an 
angle 

5038 1.'8 • T — 1 1.1 1 • T2 	 (5.37) 

that increases almost linearly with time, while the inclination of the mean equator 
with respect to the ecliptic of J2000 is nearly constant: 

= 23°26'21" +  0' /05 • T 2  . 	 (5.38) 
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Fig. 5.8. The effects of precession on the ecliptic, equator, and vernal equinox 

Here 

T = (JD — 2451545.0)/36525.0 	 (5.39) 

is measured in Julian centuries Terrestrial Time5  since J2000 TT. 
While the gravitational pull of the Sun and Moon changes the direction of the 

Earth's axis and the equatorial plane, it does not affect the orientation of the ecliptic. 
Long-term changes of the mean orbit of the Earth around the Sun do, however, arise 
from the influence of the planets, which results in a corresponding motion of the 
ecliptic. With respect to the ecliptic of J2000 the ecliptic at another epoch is inclined 
at an angle of 

= 47 1:0029 • T — 0 1:03302 • T 2  + 0 1:000060 - T3  , 	 (5.40) 

where the line of intersection is described by the angle 

H = 174?876383889 —  869'8089•  T 0'03536-  T2 	 (5.41) 

These values follow from a theory of the secular changes of the Earth's orbital 
elements and have been derived by Lieske et al. (1977) following earlier calculations 
by Newcomb. 

5Following a recommendation of the IERS (McCarthy 1996), the expressions for precession and 
nutation are to be evaluated in terms of Terrestrial Time, instead of Barycentric Dynamical Time. 
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As a result of planetary precession the obliquity of the ecliptic is slightly de-
creasing and amounts to 

= 23?43929111 — 46/.18150 T — 0/100059 T2  + 01001813 T3  . 	(5.42) 

The combined precession in longitude 

p = A — 17  = 5029'.10966 • T 1 1.'11113 - T 2  — 0000006T3 	(5.43) 

is somewhat smaller, therefore, than the lunisolar precession 1r alone. 
The orientation of the mean equator and equinox of epoch T with respect to 

the equator and equinox of J2000 is defined by the three angles 

= 2306 1.'2181 T 0 1.130188 T2  + 0 1./017998 T3  

= 2004n109 T — 0 1.'42665 T2  — 0M41833 T3 
	

(5.44) 

z = + 0'179280 T 2  + 0/.1000205 T3  

that follow from the fundamental quantities 7r, 17, p, and s. 
According to Fig. 5.8 the transfolination from coordinates ricRF (referred to 

the mean equator and equinox of J2000) to coordinates referred to the mean equator 
and equinox of some other epoch ("mean-of-date") may now be written as 

rmod =  P rICRF 
	 (5.45) 

where the matrix P is the product of three consecutive rotations: 

P =  R(-90 ° — z)  R,(0) R z  (90° — 	
(5.46) 

Evaluating the matrix product, one obtains the following expression for P = (pif): 

Pli = — sin z sin + cos Z cos 29' cos  

P21 -= + COS Z sin + sin cos 0 cos 

P31 = + sin 0 cos 

P12 = — sin z cos — cOs cos 0-  sin 

P22 = + cos Z COS —  Sm  Z cos  29-  sin 

P32 = — sin 0 sin 

P13 = — COS z sin .0 

P23  = — sin sin 0-  

P33 = + COS 1.7 . 

(5.47) 

Since P is a rotation matrix, its inverse P -1  is equal to the transpose  PT :  

p-1 = pT 	 (5.48) 
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The precession transfonnation between arbitrary epochs T1 and T2 is thus obtained 
from 

r2 = P (T2) PT  (TO r • 	 (5.49) 

Here P(T) denotes the rotation from the mean equator and equinox of J2000 to the 
mean equator and equinox of epoch T.  

Alternatively, the generalized expressions 

, t) = (+2306'12181 +  1"39656  T — 0'.'000139 T 2) t 

+(+0'.'30188 — 0 11000344 T) t 2  0'1017998 t 3  

z(T, t) =  (+2306'12181 +  139656  T — 0'.'000139 T 2) t 

+ (+1 1.'09468 + 0 11000066 T) t 2  011018203 t 3  

7,(T, t) = (+2004'13109 —  0'85330 T  — 0'1000217 T 2) t 

+ (-0 1.42665 — 0 11000217 T) t 2  — 0'1041833 t 3 

 (Lieske et al.1977, Lieske 1979) with 

T =  Ti 	= (JD1(TT) — 2451545.0)/36525.0 
t =  T2 —T1  = (M2(TT) — iDi(TT))/36525.0 

can be used to compute the transfoimation matrix 

P(T2, T1) =  R( —z(T, t))R y (i(T , t))R z (- -  (T, t)) 

directly from the mean equator and equinox of epoch Ti to the mean equator and 
equinox of epoch T2. 

The 3rd-order polynomials6  for the precession angles given in (5.50) obey the 
identities 

z(T t, —t) = 
t, —t) = —z(T, 	 (5.53) 

0- (T + t, —t) = 	t) . 

Accordingly, 

P(Ti, T2) =  R( —z(T +t, —0)R y (-1-0(T -Ft, —t))R z (— VT -Ft, —t)) 

= R z  (T , R y  (— (T 	R z (z(T , t)) 	 (5.54) 

PT (T2, 

yields the rigorous inverse of P (T2, TO . On the other hand, the transitivity relation 

P(T3, T1) = P(T3, T2)P(T2, 	 (5.55) 

is not maintained exactly by the generalized precession angles. It is therefore better 
in practical applications of expression (5.50) to avoid the sequential use of preces-
sion matrices. Otherwise, errors typically of the order of 10-11  rad, or 10-6", will 
arise for epochs lying within one century from the reference epoch J2000. 

(5.50) 

(5.51) 

(5.52) 

6The coefficient 	.10 3 782taT is originally given as —0.000345 in Lieske (1977) and has 
been replaced by the proper value —0.000344 in Lieske (1979). 
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5.3.3 Nutation 

Aside from the secular precessional motion the orientation of the Earth's rotation 
axis is affected by small periodic perturbations that are known as nutation. They 
are due to the monthly and annual variations of the lunar and solar torque that have 
been averaged in the treatment of precession. The main contribution to nutation 
arises from the varying orientation of the lunar orbit with respect to the Earth's 
equator as expressed by the longitude of the Moon's ascending node Q. It induces 
a periodic shift 

A * —17 /.1200 • sin(Q) 	 (5.56) 

of the vernal equinox and a change 

As +9 11203 • cos(Q) 	 (5.57) 

of the obliquity of the ecliptic during the 18.6-year nodal period of the Moon. As a 
result the true celestial pole performs an elliptic motion around the mean position 
as affected by the lunisolar precession. 

The currently adopted IAU 1980 nutation series is based on theories of Ki-
noshita (1977) and Wahr (1981). It expresses the nutation angles 

106 

A W = 

As 

i=1 
106 

i=1 

(AW)i sin(0i) 

(A s)  i • cos(0i) 

(5.58) 

by a total of 106 terms, which are summarized in Table 5.2 (Seidelmann 1982). 
Each term describes a periodic function of the mean elements of the lunar and solar 
orbit with argument 

= P1,il + py,it + PF,iF + p D,i D ps2,i 	 (5.59) 

and integer coefficients 	pF,i, PD,i, and  p,  . The other parameters are 
the Moon's mean anomaly (1), the Sun's mean anomaly (1 1), the mean distance of 
the Moon from the ascending node (F), the difference between the mean longitudes 
of the Sun and the Moon (D), and the mean longitude of the ascending node of the 
lunar orbit (Q). Numerical values for use with the IAU 1980 theory of nutation are 
originally given as 

1 = 134°57'46 1.1733 + 477198°52'02 1.1633 T + 31 n10 T 2  +  0''064T3  

= 357°31'39 1.'804 + 35999°03'01 /.1224 T — 0 /./577 T 2  — 0 1./012 T 3  

F = 93°16'1e877 + 483202°01'03/. 1 137 T —  13"257T2  +0'011  T 3 
 

(5.60) 

D =297°51'011.'307 + 445267°06'41/.1 328 T — 6/./891 T 2  + 0/.1019 T3  

= 125°02'40 /280 — 1934°08'10 1.1539 T 	7/./455 T 2  + 0 1.1008 T3  
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Table 5.2. The IAU 1980 nutation theory 

PI  pl,  PP pp ps2 AW [0.00011 As [0.00011 i pr pp pp- PD ps2 AW As i 

0 	0 	0 	0 	1  —171996-1742 T +92025+8.9 T 1 1 	0 	2 	2 	2 

I
l
  

54 
0 	0 	0 	0 • 2 2062 	+0.2 T —895+0.5 T 2 1 	0 	0 	0 	0 55 

—2 	0 	2 	0 	1 46 —24 3 2 	0 2 —2 	2 56 
2 	0-2 	0 	0 11 0 4 0 	0 	0 	2 	1 57 

—20202  —3 1 5 0 	0 	2 	2 	1 58 
1—i 	0-1 	0 —3 0 6 1 	0 	2-2 	1 59 
0-2 	2-2 	1 —2 1 7 0 	0 	0-2 	1 60 
2 	0-2 	0 	1 1 0 8  1-1 	0 	0 	0 61 
0 	0 	2-2 	2 —13187 	—1.6 T 5736-3.1 T 9 2 	0 	2 	0 	1 62 
0 	1 	0 	0 	0 1426 	—3.4 T  54-0.1 T 10 0 	1 	0-2 	0 63 
0 	1 	2-2 	2 —517 	+1.2 T 224-0.6 T 11 1 	0-2 	0 	0 64 
0-1 	2-2 	2 217 	—0.5 T —95+0.3 T 12 0 	0 	0 	1 	0 65 
0 	0 	2-2 	1 129 	+0.1 T  —70 13 1 	1 	0 	0 	0 66 
2 	0 	0-2 	0 48 1 14 1 	0 	2 	0 	0 67 
0 	0 	2-2 	0 —22 0 15  1-1 	2 	0 	2 68 
0 	2 	0 	0 	0 17 	—0.1 T 0 16 —1 —1 	2 	2 	2 69 
0 	1 	0 	0 	1 —15 9 17 —2 	0 	0 	0 	1 70 
0 	2 	2-2 	2 —16 	+0.1 T 7 18 3 	0 	2 	0 	2 71 
0-1 	0 	0 	1 —12 6 19  0-1 	2 	2 	2 72 

—20021  —6 3 20 1 	1 	2 	0 	2 73 
0-1 	2-2 	1 —5 3 21 —1 	0 	2-2 	1 74 
2 	0 	0-2 	1 4 —2 22 2 	0 	0 	0 	1 75 
0 	1 	2-2 	1 4 —2 23 1 	0 	0 	0 	2 76 
1 	0 	0-1 	0 —4 0 24 3 	0 	0 	0 	0 77 
2 	1 	0-2 	0 1 0 25 0 	0 	2 	1 	2 78 
0 	0-2 	2 	1 1 0 26 —1 	0 	0 	0 	2 79 
0 	1-2 	2 	0 —1 0 27 1 	0 	0-4 	0 80 
0 	1 	0 	0 	2 1 0 28 —2 	0 	2 	2 .  2 81 

—10011  1 0  29-1 024 	2 82 
0 	1 	2-2 	0 —1 0 30 2 	0  0-4 	0 83 
0 	0 	2 	0 	2 —2274 	—0.2 T 977-0.5 T 31 1 	1 	2 —2 	2 84 
1 	0 	0 	0 	0 712 	+0.1 T —7 32  1022 	1 85 
0 	0 	2 	0 	1 —386 	—0.4 T 200 33 —2 	0 2 	4 	2 86 
1 	0 	2 	0 	2 —301  129-0.1 T 34 —1 	0 	4 	0 	2 87 
1 	0 	0-2 	0 —158 —1 35  1-1 	0-2 	0 88 

—1 	0 	2 	0 	2 123 —53 36 2 	0 	2-2 	1 89 
0 	0 	0 	2 	0 63 —2 37 2 	0 	2 	2 	2 90 
1 	0 	0 	0 	1 63 	+0.1 T —33 38 1 	0 	0 	2 	1 91 

—1 	0 	0 	0 	1 —58 	—0.1 T 32 39 0 	0  4-2 	2 92 
—1 	0 	2 	2 	2 —59 26 40 3 	0 	2-2 	2 93 

1 	0 	2 	0 	1 —51 27 41 1 	0 	2-2 	0 94 
0 	0 	2 	2 	2 —38 16 42 0 	1 	2 	0 	1 95 
2 	0 	0 	0 	0 29 —1 43  —1-1 	0 	2 	1 96 
1 	0 	2-2 	2 29 —12 44 0 	0-2 	0 	1 97 
2 	0 	2 	0 	2 —31 13 45 0 	0 	2-1 	2 98 
0 	0 	2 	0 	0 26 —1 46 0 	1 	0 	2 	0 - 99 

—1 	0 	2 	0 	1 21 —10 47 1 	0 —2 —2 	0 100 
—1 	0 	0 	2 	1 16 —8 48  0-1 	2 	0 	1 101 

1 	0 	0-2 	1 —13 7 49 1 	1 	0-2 	1 102 
—10221  —10 5 50 1 	0 —2 	2 	0 103 

1 	1 	0 —2 	0 —7 0 51 2 	0 	0 	2 	0 104 
0 	1 	2 	0 	2 7 —3 52 0 	0 	2 	4 	2 105 
0 —1 	2 	0 	2 —7 3 53 0 	1 	0 	1 	0 106 
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Fig. 5.9. The shift in the posi-
tions of the equator, the eclip-
tic and the vernal equinox, 
caused by nutation 

in Seidelmann (1982), while slightly modified expressions recommended by the 
I ERS are given in McCarthy (1996). 

Following Fig. 5.9, the transformation from mean-of-date coordinates (referred 
to the mean equator and equinox) to true-of-date coordinates (referred to the true 
equator and equinox) may be written as 

rtod = N(T)r mod, 	 (5.61) 

with 

N(T) =  R(—s— 4s) R(—Aifr) R(s) . 	 (5.62) 

The elements of the transformation matrix N = (nu) in equatorial coordinates are 
given by 

cos(W) 

Cos (e l) • sin(AW) 

sin(e) • sin(A W) 

nu = 

n21 = 

n3i = 

nil  = 

n22 = 

n32 = 

— cos(e) • sin(AW) 

Cos(s) • cos(6 1) • cos(LW) sin(s) • sin(e) 

cos(s) • sin(e) • cos(AW) — sin(s) • cos(e) 

(5.63) 

n 	= — sin(s) • sin(AW) 

n23 = 	sin(s) cos(e) • cos(W) — cos(s) • sin(e) 

n33 = 	sin(8) • sin(e) - cos(AW) cos(s) cos(e) , 

where e and s' = s+ A6 are the mean and true obliquity of the ecliptic at time 
T = (JD(TT) — 2451545.0)/36525. 

From VLBI and LLR observations, the  TAU  1980 theory of nutation is known 
to be in error on the level of several milli-arcseconds and an improved nutation the-
ory (IERS 1996) due to T. Herring has been made available in McCarthy (1996). 
Nevertheless, the  TAU  1980 series is retained as official standard in the I FRS con-
ventions and the existing deficiencies are compensated for by observed values of 
the celestial pole offsets SAip .  and SAE. Improved nutation angles are obtained by 
adding these corrections to the  TAU  1980 values: 

Alfr = A *IAU1980 	SA* 
As = A 8IAU1980 	As  • 

(5.64) 
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The corresponding correction to the nutation matrix is obtained from 

	

( +8A-tfr cos s 	1 	—SAE 	 (5.65) 

	

+8.Alk sins 	+SAE 1 	
NuU1980 

1 	—8.Aik cos s —8.%Aik  sin s  

(McCarthy 1996). Post-facto determinations and short-term predictions of the ce-
lestial pole offsets are published on a monthly basis in Bulletin B of the !FRS  (cf. 
Fig. 5.4). 

5.4 Earth Rotation and Polar Motion 

5.4.1 Rotation About the Celestial Ephemeris Pole 

The IAU precession and nutation theories yield the instantaneous orientation of the 
Earth's rotation axis, or, more precisely, the orientation of the Celestial Ephemeris 
Pole (CEP)7  with respect to the International Celestial Reference System. The ro-
tation about the CEP axis itself is described by the Greenwich Mean Sidereal Time 
(GMST) that measures the angle between the mean vernal equinox and the Green-
wich Meridian (cf. Sect. 5.1.4). Given the UT1—UTC or UT1—TAI time difference 
as monitored and published by the I ERS, the Greenwich Mean Sidereal Time at 
any instant can be computed from the conventional relation (5.19). 

Similar to GMST, the Greenwich Apparent Sidereal Time (GAST) measures 
the hour angle of the true equinox. Both values differ by the nutation in right 
ascension 

GAST — GMST = Li,1r  cos E , 	 (5.66) 

which is also known as the equation of the equinoxes 8  . Given the apparent sidereal 
time, the matrix 

e (t) = R z  (GAST) 	 (5.67) 

yields the transformation between the true-of-date coordinate system (as defined 
by the adopted precession—nutation theory) and a system aligned with the Earth 
equator and Greenwich meridian. 

7The Celestial Ephemeris Pole differs slightly from the instantaneous rotation axis which was 
used in the earlier nutation theory of Woolard (1953). The adoption of the CEP is related to the fact 
that the rotation axis performs a predictable daily motion around the CEP under the action of Sun 
and Moon and is not, therefore, a proper reference pole for theoretical and observational reasons. 
On the Earth's surface the difference between both poles amounts to approximately 0.6 m. For à. 
detailed discussion the reader is referred to Seidehnann (1982) Groten (1984), and Capitaine et al. 
(1985). 

81f milliarcsecond accuracy is required in the equation of the equinoxes, two additional terms 
+0'.'002649 sin S2 — 0'.'000013 cos S2 with S2 denoting the longitude of the Moon's ascending node 
should be added to the right-hand side of (5.66). These terms represent a second-order correction 
resulting from a coupling between precession in longitude and nutation in obliquity in a kinematical 
definition of apparent sidereal time (cf. Capitaine & Gontier 1993, McCarthy 1996). 
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The common z-axis of both systems points to the Celestial Ephemeris Pole, 
which is not, however, fixed with respect to the surface of the Earth, but performs 
a periodic motion around its mean position from which it differs by at most 10m.  
This motion is known as polar motion and can be understood by considering a 
rotationally symmetric gyroscope, in which the rotation axis moves around the axis 
of figure in the absence of external torques. 

5.4.2 Free Eulerian Precession 

In a body-fixed coordinate system (e  i,  e2, e3) that is aligned with the principal axes 
of inertia the angular momentum 1' of a symmetric gyroscope is given by 

A 0 0 ) 
0  A 0 	, 	 (5.68) 

0 0 C 

where co is the instantaneous rotation axis and where A and C are the moments of 
inertia for a rotation around the el- or e2-axis and the e3-axis, respectively. Without 
external torques the angular momentum / is constant in an inertial reference system, 
but since 1' refers to a rotating system it obeys the relation 

dl 	dl' 
+ x = 0 	 (5.69) 

dt 	dt 

Upon insertion this yields Euler's equations 

dcoi 
A 	+ (C — A) co2w3 = 0 

dt 
do2, 

A 	
c 	

(C — A) coico3 = 0 
dt 

C dc°3 

 

=0  
dt 

(5.70) 

for the motion of co with respect to the body-fixed coordinate system in the special-
ized case of a symmetric gyroscope. While the third equation implies a constant 
component of co around the symmetry axis e3, the solution of the first two equations 
is given by 

W1 = a cos 
(C — A 

 A 
(03t + 

(02 = a sin ( C 	— A 
A 

 co3t + 
(5.71) 

The instantaneous rotation vector therefore describes a circle around the e3-axis, 
where the radius a and phase b are fixed by the initial conditions. The period 

27r-  A 
P =  	 (5.72) 

£03  C — A 
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depends on the angular velocity and the flattening of the gyroscope as expressed 
by the fraction of the moments of inertia. For the Earth, the dynamical flattening 

C l(C — A) as derived from the observed precession rate (cf. Sect. 5.3.1) amounts 
to 0.00326, which yields a period of 305 days. 

5.4.3 Observation and Extrapolation of Polar Motion 

Observations show that the Earth's polar motion is actually a superposition of 
two components. One is the free precession with a period of about 435 days (the 
Chandler period) that is not, however, in accord with the expected 305 day period 
and can only be explained by a non-rigid Earth model. The second part is an annual 
motion that is induced by seasonal changes of the Earth's mass distribution due to 
air and water flows. 

In contrast to precession and nutation the motion of the rotation axis with respect 
to the surface of the Earth cannot, therefore, be predicted from theory but has to be 
monitored by continuous observations. For this purpose the mean position of the 
pole of rotation during the years 1900 to 1905 is usually chosen as the origin for polar 
motion measurements. Historically two slightly differing reference points have been 
employed by various institutions. The CIO (Conventional International Origin) is 
defined by the location of five stations of the International Latitude Service (ILS)  
that has been involved in polar motion measurements from the beginning of the 
century, whereas the BIH pole was later adopted by the Bureau International de 

l'Heure. The difference between the two definitions is estimated to be less than 1 m 
(Groten 1984). Following the introduction of the International Terrestrial Reference 
System (FIRS) all polar motion data have consistently been referred to the 1ERS 
Reference Pole  (TRIP), which was initially aligned with the BIH pole in 1984.0. 

Fig. 5.10. Due to polar motion the Celestial Ephemeris Pole (CEP) performs a periodic oscillation 
around the IERS Reference Pole (IRP). The superposition of the annual oscillation and the Chand-
lerian free precession results in a pronounced beat frequency of roughly 5-6 six years. In addition, 
the CEP exhibits a secular motion in the y-direction 
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Examples of polar motion observations are given in Fig. 5.10 which shows the 
coordinates xp  and yp  of the Celestial Ephemeris Pole with respect to the 1ERS 
Reference Pole as a function of time The x and y-axes are aligned with the !FRS 

 Reference Meridian (Greenwich meridian) and the 90°-West meridian. A displace-
ment of 0 1./ 1 corresponds to 3 m on the surface of the Earth. Since 1900 the mean 
position of the pole has shifted by about 10 m due to small changes in the Earth's 
mass distribution (cf. Fig. 5.10). As a result of this motion, which is known as' polar 
wander, the observed oscillation of the rotation axis is no longer symmetric with 
respect to the adopted CIO/BIH-pole. The superposition of the annual oscillation 
and the free precession is evident from the frequency spectrum of polar motion 
shown in Fig. 5.11. Both contributions are of near-equal magnitude and almost 
cancel each other with a beat period of 5 to 6 years (cf. Fig. 5.10). Current values 
of the pole coordinates are published on a monthly basis in Bulletin B (cf. Fig. 5.4) 
of the International Earth Rotation Service with a resolution of one and five days, 
respectively. From these data intermediate values for any time may be obtained by 
quadratic interpolation with sufficient accuracy. 

Fig. 5.11. The polar motion fre-
quency spectrum for the xp  coordi-
nate (continuous line) and the yp  co-
ordinate (dashed line) clearly shows 
the annual and the Chandlerian pe-
riod 

Even though polar motion cannot rigorously be predicted, an extrapolation over 
a certain interval is nevertheless possible from previous data. For this purpose the 
motion of the pole may be modeled as a superposition of a linear motion (polar 
wander), an oscillation with a period of 365.25 days (annual term), and an oscillation 
with a period of 435 days (Chandler term). Appropriate coefficients that provide an 
extrapolation of tabulated polar motion data with an accuracy of about 0'.'01 over 
one month are published twice per week in MRS Bulletin A issued jointly by the 
I ERS and US National Earth Orientation Service (NEOS). Similar predictions are 
also provided by the US National Imagery and Mapping Agency (NIMA) as part 
of the GPS precise ephemeris generation process (NIIVIA 1999). 

For a prediction over longer time scales a more flexible model has been proposed 
by Chao (1985). The two components of polar motion are represented by time- 
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dependent functions 

xp  = ax  bxt cax  cos(2211 I Pax  + 40ax) ccx  cos(2711 Pcx Ocx) 	
(5.73) 

yp  = ay  + by t cay  sin(27r tIPay Oay) cc), sin(221-  t I Pcy  Ocy) 

with a total of 16 free parameters ax , . . . , Ocy  that are obtained from a least-squares 
fit to six years of past polar motion data. By allowing for different annual and 
Chandlerian periods Pa  and Pc  as well as different phases Oa  and (joc  in the x- and 
y-component of polar motion some additional degrees of freedom are introduced 
in this model that improve the prediction in times of notable period changes (e.g. 
starting in 1977). Within a one-year prediction interval an accuracy of 0'.'025 can 
thus be achieved. 

5.4.4 Transformation to the International Reference Pole 

Based on the previous discussion, the transformation from true-of-date coordinates 
(as defined by the theory of precession and nutation) to the International Terrestrial 
Reference System may be expressed as 

riTRF = H(t) e (t) rtod • 
	 (5.74) 

Here 0 (cf. (5.67)) describes the Earth's rotation about the CEP axis, while 

/ 1 0 +xp  
R(-x) R( --yp) 
	

0 1 —yp 	 (5.75) 
\—xp+yp  1 

accounts for polar motion and describes the subsequent transition to the Interna-
tional Reference Pole and Meridian. In view of the small angles involved (On 
1.5 Arad), second order terms can safely be neglected in the expansion of the 
trigonometric functions and the linearized form of H is fully adequate for all ap-
plications. 

5.5 Geodetic Datums 

Besides the International Terrestrial Reference System and its annually updated 
realizations ITRFyy, a variety of other global geodetic datums are in widespread use. 
Common to all systems is the goal of establishing a global coordinate system that 
originates at the Earth's center of mass and is closely aligned with the Greenwich 
meridian and the adopted pole. 

The World Geodetic System 1972 (WGS72) and 1984 (WGS84) have been 
established by the United States Department of Defense (DoD) and the Defence 
Mapping Agency9  (DMA) for use with the TRANSIT and GPS satellite navigation 
systems. WG584, in its initial realization, was itself based on reference station 

9Now: National Imagery and Mapping Agency (1\111VIA) 
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coordinates obtained by TRANSIT Doppler measurements and achieved a global 
accuracy of 1-2 meters. To improve its precision, two new realizations named 
WGS84 (G730) and WGS84 (G873) were established (Malys & Slater 1994, Malys 
et al. 1997) based on accurate GPS positioning techniques. The revised systems are 
considered to agree with the ITRF on the decimeter and centimeter level (cf. NTMA 
1997). Similar to the use of WGS84 in GPS applications, the Russian GLONASS 
system employs a specific datum known as PZ-90 reference frame (ICD-GLONASS 
1998). 

Table 5.3. Helmert transformation parameters for global geodetic datums References: (a) McCarthy 
1992, (b) McCarthy 1996, (c) Cunningham & Curtis 1996, (d) Mitrikas et al. 1998 

From 	To Ti 
[cm] 

T2 

[cm] 
T3 

[cm] 
D 

10 -9  
R1 

0'.'001 
R2 

0 1.'001 
R3 

0001 
Ref. 

ITRF90 	WGS72 +6.0 -51.7 -472.3 -231 +18.3 -0.3 +547.0 (a) 
ITRF90 	WGS84 +6.0 -51.7 -22.3 -11 +18.3 -0.3 -7.0 (a) 
ITRF90 	ITRF88 +0.0 -1.2 -6.2 +6 +0.1 0.0 0.0 (a) 
1TRF94 	ITRF88 +1.8 0.0 -9.2 +7.4.  +0.1 0.0 0.0 (b) 
1TRF94 	ITRF90 +1.8 1.2 -3.0 +0.9 0.0 0.0 0.0 (b) 
1TRF94 	ITRF92 +0.8 0.2 -0.8 -0.8 0.0 0.0 0.0 (b) 
1TRF94 WGS84 (G730) -2 +2 -1 +0.2 +2.5 +1.9 -2.5 (c) 
1TRF94 WGS84 (G873) +1 -1 -2 +0.3 +0.6 +1.2 +0.7 (c) 
WGS 84 	PZ-90 +47 +51 +156 -22 +15.7 +3.5 -356 (d) 

Except for statistical errors in the associated station coordinates, the relation 
between different datums may be expressed by an infinitesimal seven-parameter 
transformation. This is known as Helmert transformation and accounts for an off-
set in the adopted origin (T1,2,3), a scale difference (D) and a misalignment of 
the coordinate axes (R1,2, 3 ). Given the coordinates r in the original system, the 
coordinates in another system may be expressed as 

/7'1\ ■ +D -R3 +R2\ 
r'=  T2 + +R3 +D -R1  r 	 (5.76) 

\T3/ \-R2 +RI +DJ 
Sample parameters for common transformations are provided in Table 5.3. In view 
of different conventions for the names and signs of the transformation parameters, 
care should be taken when applying the above equation with other parameter sets. 

Supplementary to the Cartesian coordinates in the terrestrial reference system 
the location of points on or near the surface of the Earth is commonly expressed in 
terms of geodetic coordinates relative to a chosen reference ellipsoid. The geodetic 
longitude X is identical to the geocentric longitude and measures the angle between 
the Greenwich meridian (or the International Reference Meridian) and the meridian 
through the point. By convention X is counted positive towards the east of Green-
wich. Unlike the geocentric latitude yl that specifies the inclination of the position 
vector with respect to the equatorial plane, the geodetic latitude ço gives the angle 
between the Earth's equator and the normal to the reference ellipsoid. It thus equals 
the elevation of the north celestial pole above the local tangent plane. 
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North pole +z 

Fig. 5.12. Geocentric and geodetic latitude 

The reference ellipsoid is rotationally symmetric and any plane through the 
symmetry axis intersects the ellipsoid in an ellipse of flattening f which is defined 
by the relative difference of the equatorial radius and the polar radius: 

f = 
Re — Rpole  (5.77) 

Re  

All points on the Greenwich meridian therefore obey the relation 

Z
2 

= R2  X 2 + 	 

	

(1 - D2 	e  
7 

(5.78) 

which may also be written in the differenced form as 

dz 
- —dx = —(1  — f  )2 X  Z 	• 

(5.79) 

On the other hand 

dz 	1 = 	 
dx 	tan q) 

according to the definition of q), and by equating both expressions 

z = x (1 — f) 2  tan q) . 

(5.80) 

one obtains 

(5.81) 

Inserting this relation into the equation of the ellipse and solving for x finally leads 
to 

1 	 cos ço 
x = Re  , 	  = Re 	  

+  (1—f) 2  tan2  q) 	1 f (2—  f) sin2  q) 

(1 — f) 2  tan ço 	 (1 — f) 2  sin ço 
z = Re 

V  , 
	  = Re 	  
1 + (1— f) 2  tan2  ço 	-11 — f (2 — f) sin2  q) 

(5.82) 
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This relation between Cartesian and geodetic coordinates may easily be generalized 
for arbitrary points yielding 

I (N h) cos ço cos A.\ 
r = 	(N + h) cos q) sin X 	 (5.83) 

\ ((1 — f) 2N + h) sin q)) 

where 

N 

 

Re 
(5.84) 

  

  

1 f (2 — f) sin2 ço  

is an auxiliary quantity that is illustrated in Fig. 5.12 and where h is the height 
above the reference ellipsoid. 

While the computation of Cartesian coordinates from given geodetic coordi-
nates is fairly simple, the inverse transformation is slightly more involved. Besides 
direct methods that involve the solution of a quartic equation (Borkowski 1989, 
Bowring 1985) there are several iterative methods, which usually converge rapidly. 
The method described here utilizes the quantity 

Az = z — (N + h) sin q) =-- N e2  sin q) 	 (5.85) 

where 

e = 1 — (1 — f)2 	 (5.86) 

stands for the eccentricity of the reference ellipsoid. Initially Az is set to e2z, which 
is a good approximation for all  points that are reasonably close to the surface of the 
Earth. Improved values are then calculated from 

z +  Az 
sin g) = 

ibc2 + y2 ± 	(z  Az)2 

Re 
(5.87) 

— e2  sin2  

Az = N e2  sin ço , 

until the iteration converges. The geodetic longitude and latitude and the height 
above the reference ellipsoid may then be calculated from 

 

= arctan ( 2)-) 

z + Az  ) 
= arctan 

+ y2  

 

(5.88) 

h Atx2 + y2 + 	Az)2 N 
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Table 5.4. Common reference ellipsoids 

Datum Re  1/f  Reference 

GEM-10B 6378 138 m 298.257 McCarthy 1992 
. GEM-T3 6378  137m  298.257 McCarthy 1992 
WGS72 6378 135 m 298.26 McCarthy 1992 
WGS84 6378 137 m 298.257223563 NIMA 1997 
ITRF (GRS-80) 6378  137m  298.257222101 McCarthy 1996, Moritz 1980 
PZ-90 6378  136m  298.257839303 ICD-GLONASS 1998 

which follows immediately from Fig. 5.12. It is noted that the above relations are 
singular for points on the z-axis, which is likewise the case for many direct methods 
(see e.g. Seidelmann 1992). 

Since the difference between the Earth's equatorial and polar radii is less than 
22 km, the flattening f • 1/298.257 is a very small quantity and the difference 
between geodetic and geocentric latitudes amounts to twelve arcrninutes at most. 
To a first approximation 

ço = 	f sin(2V) , 	 (5.89) 

which shows that the difference between ço and qi reaches its maximum for inter-
mediate latitudes but vanishes at the poles and the equator. Numerical values of the 
inverse flattening for various datums and reference ellipsoid are presented in Table 
5.4. 
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Exercises 

Exercise 5.1 (ICRS to ITRS Transformation) Compute the transformation 
from the International Celestial Reference System (or the mean equator and equinox 
of J2000) to the International Terrestrial Reference System (or the reference - pole 
and Greenwich meridian) for the epoch 1999 March 4, Oh  UTC. 

Hint: Obtain Terrestrial Time (TT) and Universal Time 1  (UT 1)  as well as pole 
coordinates at the time of interest from the respective IERS bulletins (cf. Figs. 5.4 
and 5.5). Employ the  TAU  1976 precession theory and the IAU 1980 nutation 
theory to compute the instantaneous orientation of the Celestial Ephemeris Pole 
(neglecting any corrections to the nutation angles). In computing the Earth rotation 
transformation account for the conventional relation between UT1 and GMST as 
well as the first-order teim of the equation of the equinoxes. 

Solution: The IERS Bulletins B (No. 135) and C (No. 16) provide the following 
Earth orientation parameters and derived quantities: 

UTC - TAI = -32 
TT - UTC =  +64184 

 UT1 - UTC = +0 649232 
xP 	= +0 1.106740 

Yp 	= +0 1.'24713 

Using the above assumptions, the following step-by-step transformation matrices 
for precession (P), nutation (N), Earth rotation (0), and polar motion (17) are 
obtained: 

( +0.99999998 +0.00018581 +0.00008074 \ 
P 	-0.00018581 +0.99999998 -0.00000001 

- 0.00008074 -0.00000001 +1.00000000 / 

( +1.00000000 +0.00004484 +0.00001944 
N = -0.00004484 +1.00000000 +0.00003207 

- 0.00001944 -0.00003207 +1.00000000 

( -0.94730417 +0.32033547  +0.00000000'\  
0 	-0.32033547 -0.94730417 +0.00000000 

+0.00000000 +0.00000000 +1.00000000 j 

( +1.00000000 +0.00000000 +0.00000033 
H 	+0.00000000 +1.00000000 -0.00000117 

- 0.00000033 +0.00000117 +1.00000000 

Multiplication then yields the matrix 

( -0.94737803 +0.32011696 -0.00008431 
UM = 110NP= -0.32011696 -0.94737803 -0.00006363 

-0.00010024 -0.00003330 +0.99999999 

that describes the full ICRS to ITRS transformation. 
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Exercise 5.2 (Velocity in the Earth-fixed Frame) The GPS precise ephemerides 
of the National Imagery and Mapping Agency (NIMA) provide the state vectors of 
the GPS satellites in an Earth-fixed reference system (presently WGS84 (G873)). 
This frame is considered as rotating, which implies that the rotation of the axes 
must be considered in the transformation of the velocity vector, i.e. 

rwGs = UWIa (t) rICRS 
TTICRS 

WGS 1  
VWGS = Uk,Vra (t ) V ICRS 	 rICRS 

dt 

Given the state vector 

(5.90) 

r WGS = ( 19440.953805, 16881.609273,  —6777.115092)  km 

VWGS = ( —0.8111827456, —0.2573799137,  —3.0689508125)  km/s 

of satellite PRN 15 at epoch 1999 March 4, Oh  GPS time, compute the position and 
velocity vector in the International Celestial Reference System (mean equator and 
equinox of J2000). Check your result by showing that the corresponding orbital 
elements describe a near-circular orbit with a twelve-hour period (a 26560 km) 
and an inclination of about 56°. 

Hint: The WGS84 (G873) frame is identical to the International Terrestrial Refer-
ence Frame within an accuracy of a few centimeters. In computing the derivative of 
the ICRS to ITRS transfoimation, the precession, nutation and polar motion matrix 
may be considered as constant, i.e. 

dir r icRs (f)  
" ITRS "  H de 

N P  
dt 	dt 

Furthemiore, the time derivative of the Earth rotation matrix is given by 

(5.91) 

0 +1 0 ( 
—1 0 0 ) e(t ) 
0 0 0 

de (t) 
dt 

= COED 

where 

(5.92) 

d  (GAST) 	 27t 
coe  = 	 1.002737909350795 	= 7.2921158553-10 -5  s -1  

dt 	 86400s  

(cf. (5.19)) is the Earth's angular velocity. MRS Earth orientation parameters for 
the date of interest are provided in the previous exercise. 

Solution: The GPS—UTC time difference amounts to 13s, which results in the 
ICRS-ITRS transformation matrix 

( U = 
—0.94707414 
—0.32101491 
—0.00010024 

+0.32101491 
—0.94707414 
—0.00003330 

—0.00008425 
—0.00006371 
+0.99999999 
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and in its derivative 

VICRS 

—0.23408779 	—0.69061744 
+0.69061743 	—0.23408779 
+0.00000089 	—0.00000005 

= U T  rWGS 

= 	(-23830.593, —9747.074, 

= U T  VwGs + Û T  rWGS 

—0.00004561 
+0.00006167 
+0.00000000 

—6779.829) km 

• 10 -4/s U = ( 

Then 

rICRS 

(+1.561964, —1.754346, —3.068851) km/s 

is the state vector in the inertial celestial reference system. The associated osculating 
orbital elements of the GPS satellite are obtained as 

Semiinajor axis a 26561.013 km 
Eccentricity 	e 0.0070606 
Inclination 	i 	56.338° 
RA ascend. node Q 	12.146° 
Arg. of perigee 	w 	87.617° 
Mean anomaly M 109.435° 

which matches the specified orbital characteristics of the GPS space segment. 

Exercise 5.3 (Geodetic coordinates) The Cartesian coordinates of the NIMA 
GPS receiver at Diego Garcia are given by 

rWGS84(G873) = (+1917032.190, +6029782.349, —801376.113) m 

at epoch 1997.0 (Cunningham & Curtis 1996). Compute the corresponding geodetic 
coordinates using the WGS84 reference ellipsoid. 

Solution: 

East longitude X = +72.36312094° 
Latitude 	ço = —7.26654999° 
Height 	h =  —63.667m  . 



6. Satellite Tracking and Observation Models 

6.1 Tracking Systems 

Orbit determination of an artificial satellite requires as input measurements that are 
related to the satellite's position or velocity. These data are collected by a satellite 
tracking system that measures the properties of electromagnetic wave propagation 
between the transmitter and the receiver. The transmitter as well as the receiver 
may either be a ground station or a satellite. 

6.1.1 Radar Tracking 

Since the early times of spaceflight radar techniques have been utilized to gather 
information on the position and velocity of artificial satellites. Restricting to a 
simple configuration with one ground station and one satellite: 

1. the pointing angles in the topocentric system of the ground station are ob-
tained by measuring the direction of the maximum signal amplitude of the 
spacecraft; 

2. the slant range or distance from the satellite to the station is computed from 
the round-trip light time of a radar signal emitted from the ground station 
antenna to the satellite and radiated back to the station; 

3. the range rate or line-of-sight velocity of the spacecraft relative to the ground 
station can be derived from the Doppler shift of a radar wave emitted from the 
ground station, transponded by the satellite, and received again at the ground 
station. 

In many cases range and range rate measurements are two-way measurements 
with a ground station serving as transmitter and receiver. This is related to the 
fact that only few satellites are equipped with high-precision time and frequency 
standards to perform one-way range (high-precision transmit time required) or 
one-way Doppler (high-precision transmit frequency required) measurements. In 
case of ground-based two-way measurements the transmit time and frequency as 
well as the reception time and frequency are determined very accurately using the 
high-precision ground station equipment. In the sequel a variety of different radar 
tracking systems and principles is addressed in more detail. 
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Angle Measurements 

To determine the direction towards a radio signal emitted by the satellite, the ground 
antenna has to automatically follow the satellite beacon (autotrack mode). This may 
be achieved using the conical scan method, where the antenna feed perfonns a slight 
rotation in such a way that the cone always covers the direction to the satellite. The 
amplitude modulation of the received signal leads to an error signal that can be 
used to steer the antenna. 

Fig. 6.1. Antenna beams of a monopulse autotrack system (left) and associated sum and difference 
signals (right) 

The monopulse technique derives antenna-angle offsets by the extraction of 
two signals from the satellite beacon: the difference signal A and the sum signal .E, 
which are illustrated in Fig. 6.1 (see Hartl 1977). There are two different methods 
to obtain these signals: 

• a feed network attached to the radiator system measures the incident direction 
of the satellite signals. By differencing and summation of the individual 
feed outputs the difference and sum signals are derived. This technique is 
hardware-intensive, since it requires several feed units. 

• a single feed such as a corrugated horn is applied. The incoming satellite 
signal generates low and high-oscillation modes. High modes are excited on 
the horn aperture by the asymmetry of the received wavefront caused by the 
antenna pointing error and extracted by a mode coupler. These error signals 
are similar to signals obtained with differencing techniques. 

The sum signal is essentially applied as a reference for the error signal. The ampli-
tude of the difference signal is proportional to the amplitude of the antenna-angle 
offset, while the phase of the difference signal corresponds to the direction of the 
offset. The error signal together with the sum signal is fed to a tracking unit to 
provide azimuth and elevation error outputs. The difference signal is, in contrast 
to the sum signal, extremely sensitive to the antenna angle offset (cf. Fig. 6.1) and 
may therefore be used to precisely measure the antenna angle offset and to control 
the antenna motion. 



15.0 / 2.2-2.3 / 2.3 GHz 

13.8 / 2.0-2.1 / 2.1 GHz 

e TDRSS 

13.4-14.1 GHz 

14.6-15.2 GHz 

6.1 Tracking Systems 	195 

a S-band ranging 
	

b S-band Doppler 

c PRARE 
	

d DORIS 

Fig. 6.2. Methods of radar range and range rate tracking 
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The angle measurement errors depend essentially on the beamwidth of the 
ground station antenna. The beamwidth itself depends linearly on the carrier fre-
quency of the satellite signal and the inverse of the antenna diameter. For an an-
tenna of 15 m diameter the 3 dB beamwidth amounts to 0.6° at 2 000 MHz (S-
band). Nevertheless, a resolution of about 50" can be achieved in combination 
with a monopulse tracking system. At Ku-band (14 000 MHz) an accuracy of 10" 
(0.05 mrad) may be obtained with an antenna of 10 m diameter that is commonly 
used for the control of geostationary communications satellites. Depending on the 
altitude, the position of a spacecraft can be obtained with accuracies between 100 m 
and 5000 m using typical angle tracking systems. 

In general, angle measurements are severely affected by systematic errors that 
are due to calibration deficiencies, thennoelastic distortions, and wind or snow 
loads. Within an orbit determination the systematic angle errors may partially be 
absorbed by the estimation of angle measurement biases, although the error sources 
lead, in general, to varying angle errors. 

Ranging 

The classical two-way radar ranging employs a ranging signal that is radiated from 
the ground station to the satellite. A satellite transponder is required to receive the 
signal and to transmit it back to the ground station (see Fig. 6.2a). The ground 
station receives the transponded ranging signal from the satellite and determines 
the signal travel time r. This is expressed as an equivalent range value p = 1/2-cr, 
which is equal to the average of the uplink and downlink distance. 

Fig. 6.3. Principle of distance measurements using tone ranging (left) and code ranging (right) 

There are basically two different techniques to generate ranging signals. Com-
mon tone-ranging systems modulate the carrier signal with a sine wave of frequency 
fo 100 kHz, which is known as major tone. Upon reception, the ranging demod-
ulator locks onto the incoming tone and determines its phase with respect to the 
outgoing tone (Fig. 6.3). The phase shift AO is directly proportional to the turn-
around signal travel time 

M' = 	 
27rfo 

(6.1) 
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and can be measured with a resolution of about (To = 10-2  cyc = 27 .10-2  rad. As a 
result, the two-way range is obtained with a typical accuracy of ap  =10-2c1 (2 fo ) = 
15 m. Because the phase shift can only be measured in the interval [0, 27], the range 
measurements suffer from an indetermination or ambiguity of 

2f 	
(6.2) 

0 

which amounts to 1500 m in the given example. To overcome this difficulty, the 
ranging signal is supplemented by a series of sub-harmonic minor tones, which are 
derived from the major tone and coherently modulated on the carrier. A representa-
tive sequence of major and minor tones is given by the frequencies fo = 100 kHz, 
fi = 20 kHz, f2 = 4 kHz, f3 = 800 Hz, fe, = 160 Hz, f5 = 32 Hz, and f6 = 8 Hz 
(Zarrouati 1987). Here, the turn-around time can uniquely be measured up to a 
value of 1/8 s as determined by the lowermost minor-tone frequency. This results 
in an overall range ambiguity of a =  c/ (2f6)  = 18 750 km that can readily be 
accepted in practice. 

In contrast to harmonic signals, the code-ranging system applies a pseudo-
noise (PN) code that is continuously modulated onto the carrier (Fig. 6.3). The PN 
code consists of a random-like sequence of bits (or chips) that each take a value 
of zero or one. It is repeated again and again after a predefined number of bits, 
which is known as code length. Upon reception of the ranging signal the turn-
around light time is obtained by correlating the incoming signal with a replica of 
the uplink code. The ranging accuracy is thus determined by the code rate (or, 
equivalently, the chip length), whereas the range ambiguity is given by the code 
length. The advantage of a code-ranging system lies in the simple acquisition of PN 
signals and the continuous frequency spectrum that allows sharing of the ranging 
signal with telecommand signals. On the other hand the acquisition time for weak 
signals is higher than that of tone-ranging systems and the achieved measurement 
accuracy may be worse, unless a pre-steering Doppler shift is used to reduce the 
loop bandwidth of the system (Gaudenzi et al. 1990). 

PRARE 

PRARE (Precise Range and Range Rate Equipment) is a spaceborne tracking sys-
tem that provides high-precision two-way range and range rate measurements (Hard .  
1984). The PRARE system was developed by the Institut fiir Navigation (INS) of 
the University of Stuttgart and has been operated since 1995 aboard the European 
remote sensing satellite ERS-2. 

The measurements are based on the signal travel time of an X-band ranging 
signal transmitted from the satellite, transponded by a PRARE ground-based user 
station, and received again by the satellite. Here the two-way signal travel time 
is measured, from which range data are derived (Fig. 6.2c). The Doppler shift of 
the X-band carrier frequency is, furthermore, measured to derive precise range rate 
data. 
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The space-based PRARE unit has dimensions 40x21x18 cm and a power con-
sumption of 30 W in operational mode. Two crossed dipole antennas transmit 
continuous ranging signals to the ground segment in the S-band (2248 MHz) and 
X-band (8489 MHz) as well as station-relevant information, such as visibility pre-
diction. The ranging signals are pseudo-noise (PN) codes, modulated on the carriers 
with a rate of 10 MChips/s in X-band and 1 MChip/s in S-band. With a hardware 
resolution of 1/1000 an effective range resolution of c 10-7s 10-3  3 cm is'given, 
while the Doppler hardware resolution is 1/1000 of the wavelength within one sec-
ond, thus c/ (8.5.109Hz) 10-3 /s 0.04 mm/s. The overall accuracy (r. m. s.) is 
about 6 cm for range and 0.4 mm/s for range rate at a 1 s integration time (Bedrich 
et al. 1997). Four independent correlators and four Doppler counters allow a simul-
taneous data collection from up to four stations in a code multiplexing mode. 

The user-station network currently comprises a worldwide net of about 30 
small transportable and automated ground stations, equipped with 60 cm diameter 
antennas. Since the user stations measure the downlink signal travel time both in 
S-band and X-band, the ionospheric path delay (TEC) along the signal path may 
be derived and subsequently corrected within the orbit determination. The received 
X-band signal is then coherently transposed to 7225 MHz, modulated with the 
regenerated PN code, and uplinked together with the dual frequency time delay, 
meteorological data at the ground site and housekeeping data. 

The PRARE control segment comprises a command station, a master station, 
as well as a calibration station. While the command station performs the monitoring 
of the space system and commanding, the master station serves as central reception 
station, receiving the measured tracking data, time difference data from the user 
stations, and meteorological data from the global network. The data are processed, 
time-tagged to the UTC time scale, archived and disseminated to the users. The 
calibration station uses a laser tracking system to determine the hardware biases of 
the PRARE system. 

TDRSS 

NASA's Tracking and Data Relay Satellite System (TDRSS) is a constellation of 
six geosynchronous satellites and a ground system which provides tracking and 
communications support for low-Earth orbiting space vehicles. The first TDRS 
starting operated in 1983 and since then spacecraft like the Extreme Ultra-Violet 
Explorer (EUVE), the Compton Gamma Ray Observatory (CGRO), the Earth Radi-
ation Budget Satellite (ERBS), Landsat-4, TOPEX/Poseidon, and the Space Shuttle 
have been tracked by TDRSS. 

The space segment consists of geostationary satellites at longitudes of 41° West 
(TDE), 171° viz. 174° West (TDW) and, to close a gap in coverage over the Indian 
Ocean (zone of exclusion), 275° West (LUZ) (STDN 1998). Each TDRS can relay 
voice, television, and digital signals between a ground station and a user satellite. 
In the altitude regime from 1200 km to 3000 km the primary satellites TDE and 
TDW are sufficient to ensure continuous communication, while an 85% coverage 



6.1 Tracking Systems 	199 

can be achieved for altitudes of 200 km (STDN 1998). The TDRS provides links to 
the user spacecraft through two steerable single-access (SA) antennas with 4.9 m 
diameter in the Ku-band and S-band. In addition a multiple-access (MA) S-band 
array may receive data from up to 20 satellites simultaneously and transmit to 
one satellite at a time. The communication to the ground is achieved using a 2 m 
Ku-band space-to-ground link (SGL) antenna. 

The ground segment comprises the White Sands Ground Terminal (WSGT) in 
New Mexico, operating three 18 m antennas for Ku-band communication and one 
6 m S-band antenna, as well as a second TDRSS ground terminal (STGT). The 
WS GT/STGT performs the tracking, telemetry, and telecorrunand operations for 
TDRSS and collects the user spacecraft data. Through the NASA ground terminal 
(GT) the communication with the Network Control Center (NCC) at the Goddard 
Space Flight Center (GSFC) is established, which manages the space network 
through system scheduling and TDRSS monitoring. 

A TDRS allows relayed two-way range and range rate tracking of user satel-
lites and, for user spacecraft equipped with an ultra-stable frequency reference, 
also precise relayed one-way range rate measurements. In case of two-way mea-
surements, the signals are transmitted (14.6-15.25 GHz) (SN 1995) from the White 
Sands station to the TDRS, where they are coherently forwarded (2.1064 GHz MA, 
2.0258-2.1179 GHz SA, 13.775 GHz SA) to the user spacecraft (Fig. 6.2e). The 
signals are transponded by the user satellite and transmitted (2.2875 GHz MA, 
2.200-2.300 GHz SA, 15.0034 GHz SA) back to the TDRS, where they are relayed 
(13.4-14.05 GHz) to the receiving antenna at White Sands (Long et al. 1989). In the 
same way as the TDRS tracks a user satellite, each TDRS may also track ground-
based TDRSS transponders, which are located at four different sites and are part of 
the Bilateration Ranging Transponder System (BRTS). 

The overall quality of TDRS-relayed range and range rate data is similar to 
ground-based tracking. In the case of TOPEX/Poseidon the relayed two-way range 
and range rate residuals show a standard deviation of 2 m and 0.5 mm/s (Marshall et 
al. 1996). The operational TDRSS orbit determination is based on relayed two-way 
range data from the BRTS. Due to a limited observation geometry, unmodeled iono-
spheric perturbations, and measurement biases, the operational TDRS trajectories 
are limited to 30-40 m (1u) total position accuracies (Cox & Oza 1994). When 
'1DRS tracking of TOPEX/Poseidon is applied together with a highly precise a 
priori ephemeris of TOPEXJPoseidon, the TDRS ephemerides may be determined 
with a total position accuracy of 1-3 m ( 1 ) (Rowlands et al. 1997). 

Doppler Tracking 

The Doppler tracking of satellites is based on the frequency shift 

fr 1  – vr  elc UrIc2  ± v2, I (2 c2  ) — = 	 (6.3) 
ft 	1– v t  elc -FUt /c2  v?:1(2c2 ) 

of radio waves (Soffel 1989), which depends on the relative motion between the 
transmitter and receiver. Here ft  and fr  are the transmitted and received signal 
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frequencies, v t  and V,. are the velocities of the transmitter and the receiver, e is 
the unit vector in the direction of the signal propagation, and Ut  and Ur  are the 
Newtonian potentials at the transmitter and the receiver. The c2-terms in (6.3) 
result from the general and special theory of relativity. 

The frequency shift cannot, however, be measured instantaneously. The Doppler 
shift is measured instead by counting accumulated cycles of zero-crossings between 
the received frequency fr  and a reference frequency fref over a count time tcf. The 
measurement is also referred to as integrated Doppler measurement and must be 
clearly distinguished from the instantaneous Doppler shift. 

Table 6.1. Transponder turn-around ratios (CCSDS 1998) 

Band fe  [MHz] fr [MHz] T1,2 

S/S 2025 — 2120 2200 — 2300 240/221 
X/X 7145 — 7235 8400 — 8500 880/749 
SIX  2025 — 2110 8450 — 8500 900/221 
XIS  7190 — 7235 2200 — 2290 240/765 

Consider a two-way Doppler measurement, where a radar signal is emitted from 
a ground station with frequency fe  and is received at the satellite with a certain 
Doppler shift (Fig. 6.2b). To avoid interference of the received and transmitted 
signals at the satellite, a satellite transponder coherently multiplies the received 
frequency by the transponder turn-around ratio T1,2 before the transmission to the 
ground station. Within the transponder a phase locked loop (PLL) assures that the 
precise fidelity of the received signal is transmitted by the satellite. The transponder 
ratios are standardized and depend on the frequency bands involved (Table 6.1). The 
carrier signal is then received at the same ground station (two-way) with about twice 
the Doppler shift of the uplink or at a separate station (three-way). The Doppler 
measurement provides the number of accumulated cycle counts 

N 
 = f

(fr fref) dt 	 (6.4) 
t i  

in the interval [t1, t2]. Under the assumption of a constant reference frequency over 
the count interval this can also be expressed as 

N 
 = f

t2 

frdt — fref(t2 — t1) • 
t i  

(6.5) 

The same number of accumulated cycles N is present in the interval [t1 —  t1, t2 — T2], 
where ri and r2 are the signal travel times for signals received at the station at the 
start ti and end t2 of the count interval. Let T1,2 fe. be  the reception frequency for 
zero Doppler, then 

—r2 t2 

frdt = T1,2 fedt . 	 (6.6) 
—ri 

t2 
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Assuming a constant transmission frequency over the count-time interval, the num-
ber of counts is given by 

N = T1,2 feRt2 — --C2) 	(t1 	r1)] 	fref(t2 	ti)  • 	 (6.7) 

Provided that the reference frequency fi ef at the ground station is set to T1,2 fe  the 
Doppler count may finally be expressed as 

N = T1,2fe(ri — r2) • 	 (6.8) 

As the two-way Doppler counts themself are abstract measurements, a conversion 
is usually applied to average range rate measurements according to 

1 cN 
P = 	 (6.9) 

2 T1,2 fetc 

Here t, = t2 — t1 denotes the duration of the count interval and the negative sign 
relates a positive Doppler frequency shift (approach) to a negative range rate. The 
measurement may then be modeled as the difference of the two-way range at the a 
delta range over the count time 

1 cer2 — 	P2 — P1 p =  	 (6.10) 
2 	t, 	t, 

Here pi = 1/2c -ci is the two-way range, i.e. one half of the light path of a signal 
being transmitted at t1 — r1 from the station and received again at the station at time 
t1. Likewise p2 is the two-way range value for a ground reception time t2. 

Existing Doppler tracking systems usually derive the reference frequency from 
the transmitted carrier frequency. Furthermore, the electronic implementation must 
assure that the frequency being counted exhibits no zero-crossings. A known fr-
requency bias is therefore added to the received signal prior to" subtracting the 
reference frequency from it. Basically two different realizations of cycle counters 
are available. The first method counts the number of cycles of the reference fre-
quency N required to accumulate a fixed number of cycles of the Doppler-plus-bias 
cycle counter. The count time t, is not fixed for this measurement technique. The 
cycle counter is reset after each measurement. Therefore, this method is called 
a destructive Doppler measurement. The second approach accumulates the Dop-
pler-plus-bias count over a pre-defined number of reference frequency cycles, or 
equivalently, a fixed count time tc . The Doppler-plus-bias counter is not reset after 
each measurement, therefore this method is referred to as a non-destructive Doppler 
measurement. As the counter is not reset an accumulated phase variation over time 
is recorded and the non-destructive Doppler measurement may be referred to as a 
biased range measurement. 

The noise of two-way Doppler data is often expressed by the phase noise av  with 
typical values of 0.1 rad. This may be converted to the range rate noise according 
to (Segura 1998) 

(Tv  
af3 =  	 (6.11) 

27'1,2 fetc 

For S-band signals (2 GHz) and a count time of 1 s a representative accuracy of 
about 1 mm/s is achieved. 
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DORIS 

DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) is a 
precise Doppler tracking system developed by CNES (Centre National d'Études 
Spatiales), GRGS (Groupe de Recherche en Géodésie Spatiale), and the IGN (Insti-
tut Géographique National). The first DORIS receiver was implemented on  SPOT2 
in 1990, followed by receivers on TOPEX/Poseidon, SPOT3, SPOT4, and a planned 
utilization for ENVISAT, Jason, and SPOT5. 

DORIS is a one-way Doppler tracking system, where the frequency shift of a 
radio signal transmitted from a ground beacon is measured onboard the satellite 
(Fig. 6.2d). To this end, the satellite receiver applies an ultrastable oscillator (USO), 
i.e. a temperature-controlled crystal oscillator with an Allen variance of 5 -10-13  
over the count time of 10 s, which results in a Doppler noise value of 0 3 mm/s for the 
precision measurements (Laudet et al. 1995). As DORIS is a single-channel, dual-
frequency receiver, only signals from one ground station at a time are supported. 

The DORIS ground segment comprises about 50 uniformly distributed small 
ground stations that provide a geographical coverage of better than 80% for the 
TOPEX/Poseidon mission. Each of the automated ground stations consists of a 
beacon that transmits two ultrastable frequencies: 2036.25 MHz for precise Doppler 
tracking and 401.25 MHz for ionospheric Doppler correction. The latter frequency 
is also used for auxiliary data transmission, such as meteorological data at the 
ground site that are required for tropospheric corrections. 

The DORIS control center is situated at Toulouse, France, where the daily 
schedule of the beacon contacts is computed. The command transmission and 
telemetry reception is performed using two master beacons at Toulouse and Kourou. 
In addition, the master beacon also provides the long-term frequency stability, as 
it is linked to a cesium atomic clock. To cope with deviations of the ground-based 
beacons and the satellite USO, biases are solved for each individual pass, and the 
satellite frequency is thus linked to the frequency of the master beacon. The track-
ing data collected at the satellite are stored in the receiver's telemetry memory and 
dumped twice a day to the ground, where time-tagging, preprocessing, and orbit 
determination are performed. 

6.1.2 Laser Tracking 

Satellite laser ranging (SLR) is a technique for precisely measuring the range be-
tween a laser station and a satellite that is equipped with retroreflectors. SLR was 
demonstrated as early as 1964 and since then a continuous extension of laser track-
ing networks has been achieved together with a steady improvement of the measure-
ment accuracy. Nowadays more than 40 laser stations track satellites like GFZ-1, 
Lageos I, TOPEX/Poseidon, ERS-2, as well as the GPS-35 and GPS-36 satellites 
with a precision in the range of one centimeter. 

Modern laser transmitters use a solid-state pulsed laser that applies neodymium 
as a lasing impurity in a lattice of yttrium aluminum garnet (Nd:YAG) (Degnan & 
Pavlis 1994). This allows the generation of green laser light with a wavelength of 
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532 rim and ultra-short pulses of 30-200 ps width that are repeated at a rate of 5— 
10 Hz. When a laser pulse is transmitted by the telescope (Fig. 1.9), a discriminator 
starts a time interval counter for initialization of a range measurement. The laser 
pulse then propagates through the atmosphere until it is reflected by a retroreflector 
array onboard a satellite. When the pulse is received at the telescope, a high-speed 
photodetector stops the time interval counter with a time granularity of less than 
20 ps, equivalent to a one-way range precision of better than 3 mm. The half 
difference of the counter stop and start time multiplied by the velocity of light 
hence gives an unambiguous average one-way range. The measurement is time-
tagged with an accuracy of better than a microsecond, when a rubidium or cesium 
atomic clock is applied that is regularly synchronized by a GPS time receiver. 

The precision of modern SLR systems is usually given as the root-mean-square 
of the single-shot accuracy over a single pass and is in the order of 5-50 mm. To 
further reduce the data scatter, normal points are formed at the laser stations by 
averaging individual range measurements over a two-minute data interval. This 
reduces the RMS values by a factor of 4-5 (Husson 1997) and thus leads to a 
normal point RMS of 1-12 mm. Systematic errors in the station hardware, such as 
non-linearities in the tracking electronics, lead to biases that limit the absolute SLR 
accuracy to +1 cm (Marshall et al. 1995). 

Due to the high accuracy of SLR data, geodetic applications in the fields of 
crustal dynamics, gravity field determination, and Earth rotation parameter esti-
mation are the major applications of SLR. In addition, the development of precise 
satellite force models, and the calibration of other tracking devices significantly 
benefit from SLR (Zhu et al. 1997). 

It is noted that laser tracking (other than radar tracking) does not allow auto-
tracking of satellites, but depends on the availability of high-precision a priori orbit 
elements for antenna pointing. Furthermore, the use of SLR for regular tracking is 
restricted due to its dependence on the weather at the laser stations and to the dense 
operations schedule of the ground segment. 

6.1.3 The Global Positioning System 

NAVSTAR GPS (NAVigation System with Time and Ranging Global Positioning 
System) is a satellite-based radio navigation, positioning, and time-transfer system. 
It was initiated in 1973 and achieved its full operational capability in 1995. GPS 
consists of three major segments: the space segment, the control segment, and the 
user segment. 

The GPS space segment comprises 24 satellites deployed in six evenly spaced 
planes (A to F) with 55 0  inclination, and with four satellites per plane (Fig. 6.4). The 
GPS satellites move in near-circular orbits with an altitude of about 20 200 km and 
a period of 12 sidereal hours. The space segment provides a global and continuous 
coverage with at least four simultaneously visible satellites. A ground-based user 
will observe the same satellite constellation once per day but four minutes earlier 
each day due to the difference between the sidereal and solar day. 
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Fig. 6.4. GPS Space Segment Constellation 

The GPS control segment consists of five monitor stations, a master control sta-
tion, and three ground control stations. The unmanned monitor stations are located 
at Colorado Springs, Hawaii, Kwajalein, Diego Garcia, and Ascension Island. They 
are equipped with a GPS receiver and a cesium atomic clock to perform continuous 
one-way pseudorange measurements to all GPS satellites in view as well as weather 
data measurements for tropospheric corrections. The coordinating master control 
station at the Schriever Air Force Base, Colorado Springs, Colorado, is responsible 
for the GPS satellite control and system operations. It collects the tracking data from 
the monitor stations and computes the satellite ephemerides and clock parameters 
that are transferred to the ground control stations for daily command upload. The 
ground control stations operate in the S-band and are collocated with the monitor 
stations at Ascension, Diego Garcia, and Kwajalein. 

GPS provides two levels of service to the user segment. A Standard Positioning 
Service (SPS) provides position and timing information to any user on a contin-
uous worldwide basis. The Precise Positioning Service (PPS) provides position, 
velocity, and timing information to authorized U.S. and allied military, federal gov-
ernment, and civil users who can satisfy specific U.S. requirements. The specified 
50th percentile SPS and PPS accuracies are compiled in Table 6.2, and are based 
on instantaneous GPS measurement sets for the computation of the position and 
velocity in the presence of typical random and systematic errors. 

The GPS satellites transmit microwave carrier signals at the  Li frequency 
(1575.42 MHz) and the L2 frequency (1227.60 MHz). The second frequency allows 
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Table 6.2. SPS and PPS 50th percentile accuracies for instantaneous measurements (NRC 1995) 

Specification SPS PPS 

Position 
horizontal  40m 8 m 
vertical  47m 9m 
spherical 76m 16m 

Velocity 
any axis - 0.07 in/s 

Time 
GPS 95 ns 17 ns 
UTC 115ns 68ns 

measurement of the ionospheric signal delay using PPS-capable receivers. Three 
binary codes are modulated on the  Li or L2 carrier or both: 

1. The Coarse Acquisition (C/A) code is a short pseudorandom noise (PRN) 
code of 1023 bits or 1 ms duration at a 1.023 Mbps bit rate (Spilker 1978). 
The C/A code modulates the  Li carrier and is the basis for the civil SPS. Since 
each satellite has a specific and different C/A code PRN, GPS satellites may 
uniquely be identified by their PRN number. 

2. The Precise (P) code is a PRN code with about 6-10 12  bits, equivalent to a 
period of exactly one week and a bit rate of 10.23 Mbps. The P code modulates 
both the  Li  and L2 carrier phases and is the basis for the military PPS. When 
the Anti-Spoofing (AS) mode is active, the P code is encrypted into the Y 
code and requires a classified AS module with cryptographic keys. 

3. The navigation data are transmitted in a 50 bit/s stream, added to the C/A and 
P(Y) codes on the  Li frequency and, depending on the satellite mode, also 
on the L2 P(Y) code. Each message word consists of 30 bits with 10 words in 
one subframe. Each frame consists of 5 subframes and a superframe consists 
of 25 frames. Thus the navigation message comprises 37 500 bits and is re-
peated every 12.5 minutes (Spilker 1994). The navigation message contains 
low-accuracy (almanac parameters) and high-accuracy (broadcast ephemeris) 
GPS satellite orbit data as well as clock corrections, and other system param-
eters (see Annex A.2). 

An overview of the GPS signal characteristics is given in Table 6.3, where the 
frequency and wavelength for the PRN-codes refers to their chip length. 

Table 6.3. GPS satellite signal characteristics (Spilker 1978) 

Signal Type f Frequency [MHz] Wavelength [cm] 

Satellite Clock fo 10.23 2931 
Carrier Signal Li 154 fo 1575.42 19.05 

L2 120 fo 1227.60 24.45 
PRN-Codes P fo 10.23 2931 

C/A 0.1 fo 1.023 29310 
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The GPS-based positioning relies essentially on the measurement of biased 
one-way range data, called pseudoranges (Fig. 6.2f). To perform pseudorange mea-
surements, the GPS receiver produces replicas of the C/A or P(Y) code for a specific 
GPS satellite and shifts the code in time until the cross-correlation of the satellite 
and the receiver codes achieves a maximum. The measured code phase 0 (4.) cor-
responds to a reception time t,. at the receiver clock while the signal transmission 
time t, is provided via the PRN code. Hence the difference of the transmission and 
reception time readings multiplied by the velocity of light c yields a range value of 

PO (tr) = C(tr 	tt) . 	 (6.12) 

This is actually called apseudorange (Hofmann-Wellenhof et al. 1997) since tr  and 
t, are obtained by different clocks. Denoting GPS system time by a superscript GPS  
and offsets of the receiver and transmitter clocks from GPS time by the symbols 
Str  and 84 the pseudorange is obtained as 

po  r) = c  ((trGPS +80 _ (ttGPs +80) 
	

(6.13) 

Using  4 tGPS = trGPS tGPS and 8 t  = 8.r  _ r 84 it can be seen that the pseudorange 

1)0(0 = C (LO )S  8t) 	 (6.14) 

is larger than the actual signal path by a distance c8t, which depends on the relative 
offset of the two clocks. Since the individual clock errors exhibit independent 
variations with time, the difference between the pseudorange and the actual range 
is also a time-varying quantity. 

Due to the C/A code length of about 1 ms the C/A code pseudoranges are 
ambiguous at about 300 km, while the P(Y) code pseudoranges are unambiguous. 
As the code phases are determined with a typical accuracy of 0.1 rad (lo- ) or about 
0.01591 cycles, the noise figures for code phases are 0.01591 - 293 m 5 m for 
C/A code pseudoranges and 0.5 m for P code pseudoranges. 

Highly precise GPS carrier phase measurements or phase pseudoranges apply 
the carrier phase instead of the code phase 0 and thus require no information 
modulated on the carrier. Here the phase of the GPS satellite signal received by the 
user at GPS system time t is given as 

Or(t) = ft  (t —  \t0P5) ft8tt 	 (6.15) 

where ft  is the emitted frequency and ft At GPs  denotes the phase retardation due 
to the signal propagation from the transmitter to the receiver. At the receiver a 
reference signal with phase 

ref (t) = fref t fref 8 tr 	 (6.16) 

is generated using the receivers reference frequency fref.  . The phase difference 

(t) 	ref (t) = N AO 	 (6.17) 
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which is also called the beat phase, may then be expressed by an integer number 
of cycles N and the actual measurement value AO, known as the instantaneous 
fractional beat phase. Provided that the reference frequency equals the transmitted 
frequency, insertion of (6.15) and (6.16) into equation (6.17) gives, the observation 
equation 

po(t) = cAt GPs  ± AN c8t 	 (6.18) 

where po = — X,A0 is the range equivalent of the measured phase difference. The 
integer number of carrier cycles N is unknown, hence carrier phase measurements 
are ambiguous with one wavelength A of about 20 cm. During a continuous signal 
lock of a GPS satellite by the receiver, the integer ambiguity N remains constant for 
that satellite. The ambiguity resolution may be achieved with different techniques 
(Hofmann-Wellenhof et al. 1997). It has, however, to be kept in mind that ambiguity 
resolution may require a high computational effort or may even fail under certain 
conditions. When the signal lock is lost, the integer ambiguity after re-establishing 
the lock is changed, which is known as cycle slip. Considering that carrier phases 
are determined with an accuracy of at least 0.1 rad or about 0.01591 cycles, the 
noise figures for carrier phases are less than 3 mm and 4 mm for L2 and  Li signals, 
respectively. 

GPS users with moderate or low-positioning requirements may directly apply 
the receiver's navigation solution or position fixes, i.e. the receiver coordinates 
(x, y, z) in the Earth-centered, Earth-fixed reference frame WGS-84. Position fixes 
are not raw GPS measurements, but are derived from code pseudoranges that may 
have been smoothed by carrier phases within the receiver for data noise reduction. 
The derivation of position fixes is based on the geometric method of triangulation, 
where three range measurements to three locations of known position uniquely 
determine the receiver's coordinates. For GPS applications, pseudoranges to at least 
four GPS satellites simultaneously have to be available to determine, in addition to 
the position, the receiver's instantaneous clock offset with respect to GPS system 
time. 

As the inherent SPS performance leads to a positioning accuracy of about 10 m 
(Parkinson 1994), an intentional degradation has been implemented, called Selec-
tive Availability (SA). SA consists of a manipulation of the navigation message 
orbit data (c process) as well as the intentional degradation of the satellite clock 
frequency (8 process), also known as clock dither. The clock dither leads to oscil-
lations in the C/A code and P code pseudoranges of 23 m (la) with a period of 
2-5 min (van Graas & Braasch 1994), while the c process leads to a slow varia-
tion of the satellite positions with an amplitude of 50-150 m (Hofmann-Wellenhof 
et al. 1997) and a period of the order of hours. As a result, the achievable SPS 
position accuracy in the presence of SA amounts to roughly 100 meters and only 
authorized users are able to correct for these errors. In support of commercial GPS 
applications SA has been deactivated, however, on 1 May 2000 by decision of the 
US government. Since then every user of a single-frequency GPS receiver is able 
to achieve a position accuracy of 10 m. 
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The GPS makes use of two dedicated representations of the GPS satellite or-
bits, which are known as almanac and (broadcast) ephemeris (see Annex A.2). Both 
parameter sets are transmitted as part of the GPS navigation message and enable 
a user receiver to compute positions of the GPS satellites with different levels of 
accuracy. Almanac data are mainly used to determine the constellation of visible 
satellites above the horizon, to select the best satellites for navigation and to de-
termine approximate Doppler shifts for improved signal acquisition. The  receiver  
has to demodulate the entire navigation data superframe within 12.5 minutes to 
completely retrieve all almanac data. The almanac accuracy is about 900 m within 
a one-day interval from the transmission of the almanac and degrades to 1200 m 
and 3600 m respectively within a one-week and two-week interval (Spilker 1994). 
Almanac updates are performed at least once in six days. The ephemeris parame-
ters, on the other hand, provide a much more accurate description of the spacecraft 
trajectory that is essential for the computation of precise user position fixes. The 
broadcast ephemerides are accurate to 5-10 m in the absence of SA and 5-100 m 
(Hofmann-Wellenhof et al. 1997) if SA is active. Broadcast ephemeris updates are 
performed approximately every hour and are valid through a period of four hours. 
In accordance with the envisaged usage, the low-accuracy almanac parameters are 
always provided for the full constellation of active satellites, whereas each satellite 
only transmits ephemeris parameters for itself. 

In addition to the raw GPS measurement types, a variety of combinations of 
raw measurement types can be applied to facilitate the data analysis. These derived 
measurement types are, in general, constructed by computing the difference of 
raw GPS measurements referring to the same measurement epoch. Taking single 
carrier phase differences that involve two receivers and a single GPS satellite, it can 
e.g. be shown that the satellite clock error cancels. Likewise, double carrier phase 
differences are computed from single carrier phase differences to two GPS satellites. 
Both GPS satellite and user clock errors are cancelled for this data type. Vice-versa, 
the combination of raw measurement types allows the isolation of specific error 
contributions. As an example, multipath effects that are caused by reflecting surfaces 
in the vicinity of the GPS antenna can be evaluated by forming the difference of 
ionosphere-corrected code and carrier pseudoranges. 

6.2 Tracking Data Models 

6.2.1 Transmitter and Receiver Motion 

Satellite tracking methods involve the propagation of a signal over a finite time 
span. The signal originates from a transmitter at a certain time t and is recorded at 
the receiver at a later time t r > t. Thus, a rigorous observation model has to 
account for the motion of the transmitter and the receiver during the signal travel 
time r . 

The signal travel time r ranges from 5 ms for low-Earth orbiting (LEO) satellites 
up to 100 ms for geostationary satellites (GEO). Thus, the computation of the 
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satellite position at the time of signal transmission r (t — r) can be performed either 
by an interpolation of adjacent position values or by a Taylor expansion 

1 	f, 
(6.19) 

2 

where r and Y are the inertial satellite velocity and acceleration, respectively. With 
a satellite velocity of 3 km/s for GEO's and 7 5 km/s for LEO's the linear term in 
(6.19) is about  400m  for GEO's and 100 m for LEO's, while the second-order term is 
about 2 mm. When using numerical integration methods for the trajectory prediction 
the satellite position at signal transmission may be obtained from interpolation of 
subsequent integration steps. Preferrably, however, an integration method should 
be used that directly supports dense output generation (cf. Chap. 4). 

The motion of a ground station in an inertial reference system is dominated 
by the Earth rotation with a velocity of 460 m/s at the equator. When the motion 
of the ground station is modeled in the inertial International Celestial Reference 
System (ICRS, see Sect. 5.2), the position RITRS of the station in the International 
Terrestrial Reference System (ITRS) has to be transformed using the matrices for 
precession (P), nutation (N), Earth rotation (0) and polar motion (II) according 
to 

RicRs = PT  (t) 	(t) eT(t) fir(t) RITRS • 	 (6.20) 

In addition, the precise computation of the ground station position requires mod-
eling site displacements due to tidal perturbations and plate motion. Due to the 
differential lunisolar acceleration, the solid Earth tides cause a maximum radial 
site displacement of 25 mm with a daily period. Horizontal displacements are less 
than one millimeter, and are in general neglected. The ocean tides deform the Earth's 
crust and hence each ground station undergoes a displacement that reaches a few 
centimeters near the coast and less than one centimeter for continental stations (Mc-
Carthy 1996). The pole tides are caused by the contribution of the polar motion in 
the centrifugal potential due to the Earth rotation. They lead to a tidal response with 
a maximum radial displacement of 25 mm and a maximum horizontal displacement 
of 7 mm (McCarthy 1996). Similar amplitudes are found for atmospheric loading, 
i.e. temporal variations in the geographic distribution of atmospheric masses that 
deform the Earth's surface (Manabe et al. 1991). For geodetic applications, the 
relative motion of stations on different tectonic plates with rates of 5 cm per year 
or larger may be accounted for using a plate motion model (DeMets et al. 1994). 

6.2.2 Angle Measurements 

Light Time and Aberration 

Angle measurements are modeled using the vector d = r — R from the ground 
station to the satellite. Due to the finite velocity of light, the geometric relative 



position do = r(t) — R(t) at the time t of signal reception is different, however, 
from the true signal path. This is given by the vector 

d = r (t —r) — R(t) 	 (6.21) 

that links the ground station position R(t) at the reception time to the satellite 
position r (t —r) at the transmission time (cf. Fig. 6.5). The signal travel time r may 
thus be computed from the implicit light-time equation 

cr = Ir(t —r) — R(t) 	 (6.22) 

Starting from an initial value of r (°) = 0 the light time is consecutively determined 
using the fixed-paint iteration 

= vc  Ir(t —r (i) ) — R(t)I 	 (6.23) 

The iteration may be continued until successive values of r agree to better than a 
certain threshold, such as 10-7  s for general data types. Given a light time of 0.01 s 
for a low-Earth orbiting satellite, the light-time correction for angle measurements 
is in the order of 7 1' . Here, the correction refers to the difference between the true 
signal path (d) and the geometric relative position (do). 

Fig. 6.5. The motion of the satellite during sig- Fig. 6.6. The effect of aberration 
nal travel time for the downlink 

The solution of the light-time equation yields the true signal path in the inertial 
system which is different, however, from the apparent direction to the spacecraft 
for a moving ground station. This effect is known as aberration and may be under-
stood by considering the relative motion of the incoming signal and the observer 
(Fig. 6.6). Neglecting a rigorous formulation within the theory of special relativity, 
the observed direction is given by the vector 

d' = d 	, 	 (6.24) 

where V is the inertial velocity of the ground station relative to the geocenter. Thus 
the apparent position 

d' =d+TV=r (t --r) — R(t) TV (t) r (t -r) — R(t — r) 	(6.25) 

matches the geometric position at time t — r to first order. The aberration is about 
0.6" for low-Earth satellites and 0.3" for geostationary satellites. It can be neglected 
in most cases in view of the limited resolution of common radar tracking systems. 
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Local Tangential Coordinates 

For a station with geodetic coordinates (X, cp, h) the three unit vectors 

(— sin X) 	— sin ço cos X 	 cos ço cos X 
eE = 4- cos X 	eN = — sin go sin X 	ez = cos sin X 	(6.26) 

0 	 cos y) 	 sin  'p 

that point to the east, north, and zenith direction provide a natural and convenient 
frame for describing a satellite's motion with respect to an antenna (cf. Fig. 6.7). 
According to their definition, eE and eN span the tangential plane to the reference 
ellipsoid, while ez points to the geodetic zenith. Aside from small deviations of 
the geoid from the adopted reference ellipsoid, the tangential coordinate system 
is aligned with the horizon and the zenith as defined by the local direction of the 
plumb line. 

North 

 

Fig. 6.7. Orientation of local horizontal co-
ordinate systems South  

The satellite coordinates in the local tangential coordinate system may be ob-
tained by projecting the station-satellite vector ref — R ef in the Earth-fixed system 
onto the axes eE, eN, and ez: 

sE 
S  = sN) 

( 
= E  (ref  — Ref) (6.27-) 

sz 

Here 

— sin X ± cos X 0 
E = 

eETT) ( 
— sin 	cos X — sin 	sin X q) 4- cos g) (6.28) 

ezT  ± cos yo cos X ± cos cio sin X ± sin 
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is an orthonoimal matrix made up by the east, north, and zenith unit vectors. How-
ever, because the Cartesian coordinates cannot be measured directly by tracking 
radars, spherical coordinates are frequently employed to specify the satellite posi-
tion in local tangential or horizontal coordinates. 

Zenith 

South 

North 

Fig. 6.8. Definition of azimuth and elevation 

The most common spherical coordinates are known as azimuth and elevation. 
The azimuth angle A measures the longitude in the horizontal plane and is counted 
positively from north to east as illustrated in Fig. 6.8. The elevation angle E specifies 
the latitude above the horizontal plane and is measured positively to the zenith. The 
mutual conversion between the Cartesian and spherical coordinates is provided by 
the relations 

and 

	

(SE 	(sin A cos E) 

	

SN 	cos A cos E 

	

sz 	sin E 
(6.29) 

A = arctan — ( sE 
sN 

E = arctan 

 

SZ 
(6.30) 

  

ii/ C.2 	,2 

South 
North 

East 	 East 

Fig. 6.9. Definition of X-Y-angles for north-south antenna mount type (left) and east-west antenna 
mount (right) 



and 

XNs = arctan (— 
SE ) 
Sz 

YNS = arctan (6.31) 
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Alternatively X-Y-angles are sometimes used that differ from azimuth and elevation 
by the choice of a reference plane at right angles to the horizon (cf. Fig. 6.9): 

Both X- and Y-angles are less than 90° (7/2) by magnitude for all points above the 
horizon. 

XEW = arctan 
—sSzN 

YEW = arctan 	
SE   ) 

(.1sA -I- si 
(6.32) 

6.23 Range Measurements 

Round-trip Light Time 

Two-way radar and laser ranging comprises the signal uplink from the ground 
station to the satellite and the downlink from the satellite to the ground station. 
When a two-way range measurements has been recorded at the ground station at 
time t, the signal has been received and transmitted back by the satellite at t — rd, 
where rd is the downlink light travel time. The transmission time of the signal at 
the ground station is thus given by t td tu,  where ru  is the uplink light travel 
time. 

Therefore, the modeling of range measurements requires the iterative solutions 
of two light-time equations for the downlink and the uplink path (cf. Fig. 6.10). 
The algorithm for the downlink light-time computation was described in (6.22) and 
(6.23) as part of the angle measurement modeling. For the uplink the light time is 
given by the implicit equation 

Cru 	I r (t — rd) — R (t — rd 	I 
	

(6.33) 

A fixed-point iteration for the uplink with 

= 1/c • ir (t — td) — R (t — d — 
	 (6.34) 

is perfouned until successive values of ru  agree to better than a certain threshold, 
e.g. 10-7  s. It requires one iteration step less than for the downlink, since an initial 
value of riP)  = rd can be applied. In addition, the light-time correction to the 
uplink is a factor of about 20-30 smaller than for the downlink, due to the ratio of 
the inertial ground station velocity and the inertial velocity of the satellite. 

The two-way range measurement p is then modeled from the average of the 
uplink and downlink range pu  and pd, according to 

1 	 1 
P = i(Pu Pd) = —

2c (ru TO • 	 (6.35) 
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As can be shown by a first-order Taylor expansion the two-way range is almost 
identical to the geometric distance between the station and the satellite at time 
t —r /2. The total light-time correction for two-way range measurements is therefore 
given by 1/2 r /5. Thus the typical light-time correction is at most 80 m for low-Earth 
orbiting satellites. 

Fig. 6.10. The motion of the satellite and the ground 
station during the signal travel time for two-way range 
measurements 

Transponder Delay and Ambiguity Resolution 

Up to now, it has been assumed that the satellite instantaneously retransmits the 
received range signal to the ground station. Actually, the satellite transponder delays 
the ranging signal and thus leads to an artificial increase of the range measurement 
that has to be corrected for in the orbit determination process. A typical value for 
an S-band transponder is 3000 ns, equivalent to a 450 m range bias. High-precision 
range modeling has to account for the  transponder delay variation with the signal 
frequency, the temperature at the satellite, and the signal strength. However, typical 
variations are of the order of a few nanoseconds that can be neglected for most 
applications. 

In addition, corrections depending on the ground station hardware have to be 
applied. First, a geometrical reduction of the measurement to a common antenna 
reference point has to be applied. If the two antenna axes do not intersect this 
correction is not a constant, but depends on the orientation of the antenna. This 
is e.g. the case for X-Y-antenna mounts for which an additional (Moyer 1971) 
correction 

zip  = —b cos Y 	 (6.36) 

has to be applied that depends on the Y-angle at the time of the measurement. Here 
b is the antenna axis offset with typical values of 1-10 m. 

Secondly, the propagation delay in the ranging equipment and the electronic 
link to the antenna equipment has to be considered. This delay varies slightly 
with time, for example due to changing meteorological conditions at the ground 
station. Therefore, a range calibration prior to the satellite pass is performed in 
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a so-called closed-loop configuration. Typical range calibration values are in the 
order of several thousand nanoseconds. 

Depending on the ranging method, the collected range value is ambiguous 
by a certain value a. For a tone ranging system with a lowest frequency of 8 Hz 
the respective one-way ambiguity is 18 750 km. Other ranging systems may even 
provide range data with a varying ambiguity. The ambiguity resolution requires a 
priori knowledge of the satellite position to compute the expected range p with 
an accuracy of better than the ambiguity value. The integer ambiguity n is then 
computed from minimizing the expression lp — nat. 

Since the satellite reception and transmission antennas are not located at the 
center of mass of the satellite, a corresponding correction has to be applied for high-
precision range modeling. An adequate knowledge of the instantaneous attitude is 
necessary to compute the inertial antenna location with respect to the satellite's 
center of mass. 

Multiple Ranging Links 

The principle of two-way ranging may be generalized to arbitrary links with space-
borne as well as ground-based transmitters and receivers. An example is the four-
way ranging of the geostationary satellite Meteosat, where ranging signals are 
broadcast from the Primary Ground Station (PGS) at Fucino, Italy, to the satel-
lite. The satellite retransmits the signals to a land-based transponder (LBT), an 
unattended ground station near Kourou, French Guiana, that transponds the signals 
via the satellite back to the PGS for reception and range measurement recording 
(EUMETS AT 1999) . 

Another example is described in Chap. 6.1 and illustrated in Fig. 6.2, where 
TDRS four-way ranging measurements are initiated by sending a ranging signal 
to one of the geostationary relay satellites. From here it is forwarded to the user 
spacecraft, retransmitted and linked back to the ground station after passing the 
relay satellite a second time 

In each particular ranging configuration the light-time equations for the indi-
vidual signal paths is formulated and solved along the principles described before. 
The case of TDRS four-way ranging is furthermore addressed in (9.23). 

6.2.4 Doppler Measurements 

Two -Way Range Rate 

Two-way Doppler measurements are obtained from the integration of Doppler 
counts over a count-time interval tc . The measured range rate may be modeled 
as the difference of the two-way ranges at the end and at the beginning of the count-
time interval. Thus a total of four light-time iterations is required for the modeling 



tc 	 tc  

, 	(r2  — r1) 	(P2 — Pi)  p = c (6.38) 
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of a single average range rate measurement (cf. Fig. 6.11). When the Doppler mea-
surement time tag t refers to the end of the count interval t2, the associated carrier 
signal was transponded by the satellite at t2 — r2u  and transmitted by the ground 
station at time t2 — r2u — r2d . Similarly, the signal at count interval start ti = t2 — tc  

was transponded at the satellite at time ti — ri u  and broadcast from the ground 
station at time ti —  t1u rid. Thus the average range rate measurement may be 
modeled as 

C ( t2u  r2d) (Tlu ± rid)
= 

 1. (P2u + P2d) — (Plu + Pid) , (6.37)  
p(t) = 	2 2 	 tc 	 tc  

where the pi = Cti denote the individual one-way ranges involved. For three-
way Doppler measurements, where the signal is transmitted from a ground station, 
transponded by the satellite, and received at a different ground station, the model 
is accordingly applicable. 

Fig. 6.11. The motion of the satellite and the ground 
station during signal travel time for two-way Doppler 
measurements 

One - Way Range Rate 

The model for one-way Doppler measurements is easily derived from the two-way 
range rate model. Here the carrier signal is transmitted from the ground to the 
satellite (DORIS) or from satellite to the ground. Considering a measurement with 
time tag t that refers to the end of the count interval t2, the signal transmission time 
is t2 — r2. The beginning of the count interval is then ti =  t2  — t, and the associated 
transmission time is ti —  ri.  Hence, the one-way range rate model is 

It is noted that in contrast to two-way Doppler measurements, one-way Doppler 
measurements require precise frequency standards both at the transmitter and at the 
receiver. Nonetheless, the frequency difference of the transmitter and the receiver 
should be estimated as part of the orbit determination. 
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Rotational Doppler Bias 

A spinning spacecraft exhibits a modulation of the two-way Doppler shift due to 
the rotational motion of the spacecraft antenna onto the direction vector from the 
satellite to the ground station. Following Kallemeyn & Vaughan (1996) the average 
range rate during the count interval is changed by 

- 	1  
= 

 —J 
 t 

d • co sin a sin(cot)dt . 	 (6.39) 
tc t--tc  

Here d is the distance of the spin axis to the electric antenna center, co is the satellite's 
angular velocity, and a is the angle between the spin axis and the direction to the 
ground station. In addition to the periodic Doppler modulation, a rotational Doppler 
bias is also present for circular polarized signals. To understand the principle of 
this bias, a satellite antenna is considered which rotates in a right-hand sense about 
the positive z-axis of the antenna zenith. As the antenna emits a right-hand circular 
polarized wave along the positive z-axis the transmission frequency is increased by 
the spin rate of the antenna. If the antenna emits a left-hand circular polarized signal 
along the positive z-axis, the transmitted frequency is decreased by the spin rate of 
the satellite. Spinning satellites cause such frequency shifts both at the reception 
and at the transmission of the signal. According to Marini (1970) this frequency 
shift introduces a bias 

_ Act) SR ± ST/  T1,2  
A 16 = 	 (6.40) 

27r 	2 
to the range rate measurements, where 2k. is the signal wavelength, T1,2 is the 
transponder turn-around ratio and  SR  and ST denote the  signs of the frequency 
shift on reception and transmission, respectively. Considering a satellite spinning 
at two revolutions per second and a satellite antenna with the same polarization for 
transmission and reception (i.e. ST  = sR), the rotational Doppler bias is 28 cm/s in 
the S-b and. 

6.2.5 GPS Measurements 

Pseudoranges 

Following (6.13), pseudoranges may be modeled as 

Po = (rd4-3tr —6 4) 
	

(6.41) 

Here rd is the signal travel time from the GPS satellite to the user satellite, which 
is obtained from the iterative solution of the light-time equation. 

The offset 8tr (t) of the user satellite clock from GPS system time is commonly 
estimated within the orbit determination program based on a second-order Taylor 
expansion 

1..  
Str  (to ± At) 	Str  (to) + 3.t r  (to) At 	— St r  (to) Lit  

2 
(6.42) 
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around a reference epoch to, where the receiver clock bias 3tr(t0), the clock drift 
r , and the clock drift rate cii r  are included in the estimated parameter set. 

The offset 64(0 of the GPS satellite clock from GPS system time may be 
derived from the transmitted broadcast ephemeris parameters according to 

34(0 = apo afi(t — tc) af2(t — 0 2 
	

(6.43) 

where tc  denotes the satellite clock reference epoch and afo, a fi, and af2 are the 
clock bias, frequency bias, and frequency drift, respectively. 

In addition to the dependency of the signal travel time and the GPS and user 
clock errors, the pseudorange measurement is affected by ionospheric perturbations, 
multipath effects, the offset of the GPS antenna phase center from the satellite center 
of mass, as well as the Selective Availability (SA). 

Integrated Carrier Phases 

According to (6.18) the integrated carrier phase measurement may be modeled as 

pi, = ctd-1- XN atr  — att 
	 (6.44) 

To resolve the integer ambiguity N,  different techniques may be applied, as dis-
cussed in Hofmann-Wellenhof et al. (1997). 

A rigorous formulation of the measurement process has to account for the 
general theory of relativity, which implies that two clocks at different altitudes (a 
transmitter at geocentric distance rt  and a receiver at geocentric distance rr ) run at 
different rates in the gravity field of the Earth. As a consequence, the relativistic 
light travel time r is given as (Gibson 1983) 

3GM  ( 1 1) 	

c 

2 	2 
td 	 —r r  V r  — rtvt 	 (6.45) 

2c2 	rt. 

where rr , v r , and rt , v t  are the position and velocity vectors of the receiver and 
transmitter. The term in brackets is constant for circular orbits and introduces a time 
bias, while the velocity-dependent terms are linearly dependent on the eccentricity 
and vary with the sine of the eccentric anomaly. It is noted that the time-varying 
relativistic effects of the GPS satellite have already been mapped to the broadcast 
parameters arc),  api, and af2 at a level of better than 9 ns within a one-hour interval 
(van Dierendonck et al. 1978). Therefore, a precise treatment of the relativistic GPS 
effects based on (6.45) requires the removal of the relativistic contributions from 

ap, and af2 making use of the equations given in van Dierendonck et al. 
(1978). 

Integrated carrier phase measurements are affected by ionospheric perturba-
tions and Selective Availability (SA). Multipath effects are much smaller than for 
pseudoranges, since the carrier wavelength is smaller than the code wavelength. 
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Navigation Solution 

The navigation solutions (x, y, z) provided by the GPS receiver are not mea-
surements in a rigorous sense, since they are actually derived from raw pseudor-
ange measurements. Nevertheless, navigation solutions may in practice be applied 
as pseudo-measurements for satellite orbit determination (Carter et al. 1995, Gill 
1997). The need for processing navigation solutions within an orbit determination 
software, instead of using the solutions itself, may arise for various reasons. Most 
notably the use of a dynamic model allows the smoothing of SA-effects, the detec-
tion of outliers, and the bridging of gaps without GPS measurements. Furthermore 
a dynamic filtering of the position solution can be used to obtain reliable velocity 
infoimation. This is important, because the receiver-provided velocity solutions 
exhibit typical errors of 1 m's, which prevents their use in orbit predictions. An 
inherent advantage of using navigation solutions instead of pseudoranges is their 
simple measurement modeling. As the user satellite orbit may be integrated in a 
mean-of-date reference system, the measurement modeling just requires the trans-
formation from the mean-of-date system to the WGS84 coordinate system, where 
the navigation solution vector is given by 

r\yQ =  ri N rmod • 
	 (6.46) 

Thus, any knowledge of the GPS satellite ephemerides is avoided as well as the 
need for light-time iterations. This renders the use of navigation solutions especially 
interesting for spacebome applications. 

6.3 Media Corrections 

6.3.1 Interaction of Radiation and Atmosphere 

Electromagnetic signals that are transmitted from a spacecraft traverse the Earth's 
atmosphere before they are received by a ground station. As the signals propa-
gate, the electromagnetic radiation interacts with the electrons, ions, atoms, and 
molecules constituting the Earth's plasma environment and atmosphere to a var-
ious extent. As a consequence, the signals undergo a change of direction, known 
as refractive bending, and a change of the velocity of propagation. In addition, the 
atmosphere affects the signal polarization and field strength. 

The velocity of propagation and the wavelength of electromagnetic waves de-
pend on the refractive index n of the surrounding medium. Given the vacuum 
wavelength X and speed of light c, the corresponding values X, and c, in a medium 
of refractive index n are related by the expression 

X 
n = — = — 

Cn  X n  
(6.47) 
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As the refractive index of the Earth's atmosphere deviates only slightly from unity 
the refractivity 

N = (n — 1)10 6 	 (6.48) 

is introduced. The refractive index depends on the material properties of the medium, 
especially the dielectric constant, the peimeability, and the conductivity. In the se-
quel different models of the refractive index will be discussed for the  troposphere,  
which is composed of neutral gas, and the ionosphere, which is made up of a plasma 
of charged particles. 

Fig. 6.12. Atmospheric refraction 

Irrespective of the detailed physical properties, the basic impact of the atmo-
spheric refraction on the propagation of electromagnetic signals may be understood 
by considering the simplified model of a plane atmosphere with constant refractiv-
ity (Fig. 6.12). Based on Snellius's law a signal entering the atmosphere at a zenith 
distance zo, traverses the atmosphere at a smaller angle z, which is given by the 
relation 

n sin z = sin zo . 	 (6.49) 

Upon substitution of the elevation E = 90° — z and expansion in ZAE = E — Eo 
one obtains the expression 

tan Eo 

for the bending angle, where n — 1 is of the order of 3-10-4  rad or one arcminute 
for the troposphere. 

Aside from the signal bending the reception time of a ranging signal is delayed 
due to the reduced velocity inside the atmosphere (assuming n > 1). From Fig. 6.12 
the time required to traverse a layer of height h is given by t  = nhl (c sin E). 
The corresponding vacuum value would be obtained from n = 1 and E = Eo. 

1 
ZAE = (n 1) (6.50) 
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Neglecting the small bending angle, the difference between the two values may be 
expressed as a range difference 

Ap 	
1 

h(n —1) 	 (6.51) 
sin E0 

The measured range value is thus larger than the one that would be obtained in the 
absence of an atmosphere. 

For the modeling of ionospheric refraction it is necessary to distinguish between 
the refractive index  ni-  of a single electromagnetic wave (e.g. the carrier phase) 
and the refractive index ng, of wave groups (e.g. ranging signals). This is due to the 
fact that the refractive index depends on the frequency f of the respective waves 
in a dispersive medium like a plasma of charged particples. For a signal composed 
of different harmonic frequencies the resulting wave group propagates at the group 
velocity cg, = cing, where 

d n ph 

df 

is the group refractive index. The resulting group velocity is always smaller than 
the vacuum speed of light c. In contrast to this the phase velocity cph = c2 /cgr  is 
larger than c for dispersive media. For non-dispersive media like the troposphere 
both refractive indices are equal as are the group and phase velocity c, = c In < c. 

6.3.2 Tropospheric Refraction 

The troposphere, composed almost totally of neutral gas, is the lower atmosphere 
extending-from sea surface level to approximately 42 km. The extension of the 
different troposphere layers depends essentially on the temperature and the ver-
tical temperature gradient. The troposphere is a non-dispersive medium for radio 
waves, hence the refractive index does not depend on the radiation frequency. The 
propagation of electromagnetic waves through the troposphere is mainly affected 
by the temperature T, the atmospheric pressure p, and the partial pressure of water 
vapor e. An empirical expression for radio frequencies below 300 GHz relates these 
parameters to the dry component 

=77.624V  p[hPa]/ TM] 	 (6.53) 

and the wet component 

12.92 
e[hPa] 

N2 = 371900 	
e[hPa] 	

(6.54) 

	

(T[K]) 2 	T[K] 

of the refractivity N = N1+ N2 (Goad & Goodman 1974). Since the tropospheric 
refractivity is positive, the tropospheric refractive index is always greater than one. 
Following GroBkopf (1970) the partial pressure of water vapor, which is required 

ngr  = nph+ f (6.52) 
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in the above equations, can be expressed as a function of the relative humidity of 
the air fh (0 < fh < 1) and the temperature Tc: 

(  17.15   
e[hPa] = 6.10 fh exp 	

Tcrq 	
(6.55) 

The above expression for the radio refractive index is accurate to better than 1%. 
At sea surface level the refractivity for radio waves is about 320-380, whereas it 
is 282 for optical frequencies (A = 0.69 ,um) and standard atmospheric conditions 
(Jeske 1988). The tropospheric refractivity decreases with increasing altitude and 
approaches zero at the upper tropospheric boundary. 

As shown above, the tropospheric refraction is composed of the refraction due 
to dry air and a contribution due to water vapor, which is denoted as wet term. Dry air 
contributions are dominant and can be modeled reasonably well. The contribution 
from water vapor amounts to about 10% and can be modeled only poorly due to 
the high temporal, horizontal, and altitude variations. In principle, two different 
approaches can be adopted to determine the wet troposphere refraction 

• Modeling of the wet refraction contribution 
The water vapor contributions may be modeled using theoretical considera-
tions and observation data obtained from radio probes launched with sound-
ing rockets. However, as continuous observation data are not available, the 
models have a limited validity and, moreover, imply a considerable expense 
and effort. 

• Measurement of the water vapor 

Water-vapor measurements may be collected either from an infrared hydro- 
meter or a water-vapor radiometer. Both techniques suffer from technical 
problems of calibrating the amount of wet water due to clouds or rain. Fur- 
thermore, considerable expenses are implied in the case of the radiometer. 

A variety of refraction correction models for spacecraft tracking data has been 
established in the past, ranging from simple exponential formulas to sophisticated 
and numerically expensive algorithms that account for the light-path curvature in the 
atmosphere by applying ray-tracing methods. In Table 6.4 the refraction corrections 
for radar range and elevation data are given, as derived from the elaborate Hopfield-
Goad model for representative meteorological conditions. 

Table 6.4. Tropospheric refraction for p = 938 hPa, T = 286 K, and fi, = 0.73 

E(°) 1 3 5 7 10 15 20 30 40 50 70 90 

AE(") 1358 836 589 449 328 222 166 106 73 52 23 0 
Ap(m) 58 34 23 17 13 9 7 5 4 3 2 2 

As shown above a simple model for the tropospheric refraction of radar range 
and elevation measurements is given by 

1 
Z1E = N  10_6 

tan E 
[rad] 	 (6.56) 
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and 

Ap = N 10 -6  h 	1 	 (6.57) 
sin E 

where h denotes the effective scale height of the troposphere. The scale height 
is about 7.5 km at sea level and may be computed from the Hopfield two-quartic 
model 

1 	1 N2 
h = -hd - - — (hd - hw) 5 	5 N 

(6.58) 

(Hopfield 1969). Here the first term denotes the contribution from dry air and the 
second term gives the wet contributions. The top of the dry troposphere may be 
computed from hd = 148.98(T - 4.12) m (Black 1978), while the top of the wet 
troposphere is h w  = 12 km. 

The above model yields an error of less than 10% for elevations above 5°. This 
renders the model attractive for many applications, in particular if no meteorological 
parameters are available that justify the use of more elaborate models. It should be 
noted, however, that errors up to 100% may arise at elevations of 1 0 . 

A general and accurate tropospheric refraction model is the Hopfield model, 
modified by Goad to use, the Saastamoinen zenith range correction (Goad & Good-
man 1974). It is applicable both to radar data as well as to optical observations. In 
the Hopfield model, the dry troposphere height hl is determined from 

5.0 0.002277 
h1[m] 

 
P {hPal  

h2 is given 

- 1255 
0.05 

by 

e[hPa] 	. 

(6.59) 

(6.60) 

Ni • 10-6  

while the wet troposphere height 

, 	5.0 0.002277 
h2[In-1 N2 • 10-6  

+ 
_T [IC] 

The tropospheric range correction for the Hopfield model is given by a ninth-
order polynomial 

Ap = (6.61) 

where the constant 

170.2649 	F78.88281 [173.3 + 1/X' 2 1 
- 	L173.3 - 1/X'2  [ 77.624 j  L173.3 - 1/X'2  

is approximately one for radio frequencies. The dimensionless signal wavelength 
= X/(1,um) and thus the term 1/X'2  can be set to zero for radio frequencies. The 

distance to the top of the dry (j = 1) and wet (j = 2) troposphere is 

r1 = (Re  + 111)2  - (Re  cos E)2  - Re  sin E . 	 (6.63) 
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The  coefficients  of the polynomial are defined as 
= 1 

a2 j = 4c/1 

a31 = 64c/ 	4h1  
J 

a4j = 4a1 (s4 3121) 

a51 = a4: 122b 6b 
J 

a61 = 4a i  b 	+  3h1) 

a71 = 	(62 + 4h1) 
J 	J 

a81 = 4a •b3. J 

a91 = b4. 

with 

b = 
2h i R ee  

The tropospheric correction of average range rate data is obtained from the correc-
tion of range data (Schmid & Lynn 1978). Hence, the range rate correction depends 
on the elevation angle as well as the elevation rate. 

The tropospheric correction of the elevation angles according to the Hopfield 
model is 

—sin E 
a = 	 

hJ  

—cOS2 E 

N • 	f3i •r i.+1  J  

106 1/1 i=i 	(/ + 1) 
i=l 

.AE = C E 
4 cos E 

 

where the constant CE 
[ 170.2649 	[ 78.8828- 

CE = 	 (6.65) 
173.3 — 1/M2 _ L 77.624 

is approximately one for radio frequencies and p is the range to the satellite. The 
elevation correction coefficients are computed from 

= 1  
= 3a1 

2 = 3(ai  bi) 
2 = ai(ai  +6bi) 

= 3b i(a+ bi) 

= 3a 1 b 

= b3. . 

For optical frequencies the above equations can be applied as well, when only the 
dry temi is considered (N2 = 0). The azimuth measurements are not affected by 
refraction. 

181j 

182j 

183j 

I84j 

I85j 

I86j 

,87j 

(6.64) 
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6.3.3 Ionospheric Refraction 

From about 50 km up to a height of 1000 km the ionosphere plays the major role 
for propagating electromagnetic waves. The abundance of ions and free electrons, 
resulting primarily from the absorption of solar ultraviolet radiation, is the cause of 
the ionospheric refraction. Due to small mass ratio of the electron and ion mass, free 
electrons play a more important role than ions. The electron density at 50 km altitude 
is about 108  electrons/m 3  and increases with height due to the increasing intensity of 
the solar radiation. A maximum electron density of 10 12  electrons/m 3  near sunspot 
maxima can be found at about 300 km, decreasing towards higher altitudes due to 
the decreasing atmospheric density. Both photochemistry and transport processes 
contribute to the structure of the ionosphere, which is shown in Fig. 6.13. The 
electron density profile primarily depends on the altitude, the sunspot activity as 
well as day and night variations. Several regions can be identified that are designated 
as D region (60-90 km), E region (105-160 km) and F region (160-1000 km). More 
detailed models distinguish further the Fl region (160-180 km) and the F2 region 
(200-1000 km). The D and Fl regions vanish at night, while the E region becomes 
considerably weaker and the F2 region shows a reduced marking. 

80 100 120 150 200 	300 	500 	750 1000 	1500 2000 
Height [km] 

Fig. 6.13. Electron density profiles at mid-latitudes based on the International Reference Ionosphere 
ERI 1995 (Bilitza et al. 1993, 1995) 

It is extremely difficult to construct global ionospheric models that accurately 
predict the electron density. Neglecting the perturbations due to ions, the contribu-
tion of the Earth's magnetic field, and absorption effects, the ionospheric refractive 
indices are (Jeske 1988) 

fl ph = 
f 2 

and  gr 	2 f 2  
(6.66) 
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where 

   

1 	de  eg 
fP  27r  V me E0 

 

(6.67) 

is the plasma frequency. Here, d, denotes the electron number density, e0 the elec-
tron charge, co the vacuum dielectric constant, and me  the electron mass. The  
plasma frequency varies from 10 MHz (30 m wavelength) by day to 3 MHz (100 m 
wavelength) at night and radio waves with longer wavelengths cannot penetrate the 
ionosphere. Inserting the constants yields the expression 

Nph = —40.3 —
m31 de 
s2 f2 	

(6.68) 

for the ionospheric refractivity. As the refractivity is negative, the ionosphere ex-
hibits a normal dispersion with a frequency dependence that is inverse to the square 
of the frequency. Thus, signals in the S-band frequency regime at 2 GHz are af-
fected sixteen times more by ionospheric refraction than X-b and frequency signals 
at 8 GHz. Furthermore, the described frequency dependence shows that optical 
signals are affected in a negligible manner by ionospheric refraction. 

Table 6.5. Representative values of the ionospheric refraction for  L-b and signals (1.6 GHz) 

E(') 1 3 5 7 10 15 20 30 40 50 70 90 

AE(") 123 117 114 101 88 82 43 23 10 7 2 0 
Ap(m) 38 37 36 35 33 30 27 21 18 15 13 11 

The ionospheric refraction leads to a reduction of the group velocity and an 
increase of the phase velocity. Since range measurements are based on timing 
measurements of wave groups the range correction due to the ionosphere is given 
as 

40.3 [m3  
] 1 = f (ngr 1)ds = +— -- 	. 

f2  s2 (6.69) 

Here the total electron content TEC along the signal path s from the satellite S to 
the observer 0 is defined as 

TEC = f de (s) d s 	 (6.70) 

It provides a measure of the ionospheric perturbation of radio waves and is given in 
units of 1 TECU = 1 • 10 16m-2 . Carrier phase measurements depend on the phase 
velocity and experience a correction 

40.3  [m3  
AO. = f (nph — 1)ds = 	 —1 TEC 	 (6.71) f 2 s2 
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Fig. 6.14. Variation of the TEC with the time of the year and local time for a mid-latitude station 
based on the IR1 1995 model 

which is opposite in sign to the range correction. Thus the measured radar range is 
increased when affected by the ionosphere, while the values of integrated carrier 
phase measurements are reduced. 

Typical ionospheric effects on radar range and elevation data are listed in Table 
6.5 for a transmission frequency of the GPS  Li  carrier at 1.6 GHz. The variation 
of the total electron content in a zenith column for a mid-latitude station with local 
time and the date of the year is shown in Fig. 6.14. 

As global ionospheric models do not, in general, provide the required modeling 
accuracy, _the measurement of the total electron content is an adequate approach 
for determining the ionospheric refraction. Before the advent of the NAVSTAR 
GPS system, the Faraday rotation of linear polarized signals emitted from the user 
satellite or geostationary satellites was applied to determine the electron content 
along the signal path (Llewellyn et al. 1976). This technique, however, requires 
knowledge of the transmission characteristics of the satellite antenna as well as the 
satellite attitude. Another approach was to determine the change in the total electron 
content from building the Differenced Range Versus Integrated Doppler (DRVID). 
Since range measurements are determined by the group velocity and integrated 
Doppler counts by the phase velocity, both data types are affected in the same order 
but different sign (Radomski & Doll 1995). This technique has mainly been applied 
to correct the ionospheric and interplanetary plasma effects of deep-space probes. 

As the ionospheric refraction depends on the signal frequency, the measurement 
of the signal delay or the signal frequency shift in two frequency bands allows the 
determination of the TEC value and the ionospheric measurement correction. This 
technique is applied for the DORIS system (2036 MHz and 401 MHz), the PRARE 
system (2248 MHz and 8489 MHz) as well as for NAVSTAR GPS (1575 MHz and 
1228 MHz). The determination of ionospheric electron-density profiles from the 
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GPS Meteorology (GPS/MET) experiment aboard the MicroLab I satellite has been 
demonstrated by Hajj and Romans (1998). A GPS receiver for l'EC determination 
may be collocated with a conventional single-frequency tracking system to provide 
the ionospheric refraction correction by interpolation of the TEC values along the 
directions to the GPS satellites at the direction to the user satellite. Alternatively, 
GPS-derived TEC observables from a worldwide network may be applied to derive 
global TEC infoimation models, which enable ionospheric corrections for any user 
satellite (Feltens et al. 1997). Considering the GPS system, where pseudorange 
measurements pi at the  Li frequency fi and pseudoranges p2 at the L2 frequency 
f2 are available, the ionosphere-free pseudorange p can be derived from (6.69) as 

P2 — (fl if2) 2  Pl  
P = 	 —1.545,92 -I- 2.545pi . 	 (6.72) 

When precision accuracy requirements force the application of ionospheric cor-
rections but measurements of the total electron content are not available, software 
models have to be applied that predict ionospheric properties either restricted to a 
dedicated ground station (local model) or worldwide (global model). In this case, 
models like the Penn state model (Nisbet 1974) that directly simulate the photo-
chemical ionospheric reactions and processes are available as well as the empirical 
worldwide Bent model (Llewellyn et al. 1973). A recent development is the param-
eterized ionospheric model (PIM), which provides a near-real-time specification of 
the global ionosphere from near-real-time satellite and ground-based data (Daniell 
et al. 1995). 
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Exercises 

Exercise 6.1 (Light-Time Iteration) Solve the light-time equation for two-way 
range measurements of a polar satellite at 960 km altitude (e = 0, i = 970 „Q = 
130.70 ) and a ground station in central Europe (X = +11 0  East, yo = +48°). The 
downleg (satellite to station) and upleg (station to satellite) light-time corrections 
are to be computed at 6 min, 15  mm,  and 24 min past the passage of the ascending 
node, which is assumed to take place at 1997/01/01 011 UTC. The orbit propagation 
is to be based on Keplerian motion, neglecting precession and similar corrections 
in the reference system transformations. 

Solution: The times of the light-time evaluation are close to the pass beginning, 
culmination, and end of the pass. To reach an accuracy level of 1 mm, the downleg 
light-time iteration has to consider two iterations (I-1, I-2), while the upleg light-
time iteration may already be stopped after the first iteration: 

UTC Distance Down I-1 Down I-2 Up I-1 Range 
hh:mm:ss Ern] [111] [min] Ern] [nil 

00:06:00.0 3644878.6 75.8 1.6 1.8 3644956.2 
00:15:00.0 1167049.9 —6.4 0.0 0.5 1167044.0 
00:24:00.0 4110978.7 —87.0 1.8 —0.7 4110891.0 

Since the range and the amplitude of the range rate is largest at the beginning and 
end of the satellite pass, the range correction in the downleg is most pronounced 
near the rising and setting. As the light-time correction varies in proportion to the 
range rate, the correction vanishes near culmination (cf. Fig. 2.13) and changes 
its sign. The light-time corrections in the second iteration of the upleg (note the 
different units) are always positive due to their dependence on the rate of the relative 
velocity. The light-time correction in the upleg is small as compared to the downleg, 
since the inertial motion of the ground station due to the Earth rotation is smaller 
than the relative velocity of the satellite with respect to the station. 

Exercise 6.2 (Range Rate Modeling) Compute the average two-way range rate 
measurements for the scenario described in Exercise 6.1. Assume a Doppler count 
interval t, of 1 s and show that the average range rate measurement can be approxi-
mated by the instantaneous Doppler value at the middle of the count-time interval. 
The average and the instantaneous range rates as well as their differences are to be 
computed in steps of 3 min 

Hint: The modeling of the average range rate measurement is described by (6.37.), 
while the instantaneous range rate follows from 

do(t) = —44 do 

Here, do = r (t) — R(t) denotes the geometric distance of the satellite and the 
station at time t. 

(6.73) 
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Solution: In the limiting case of an infinite speed of light the average range rate 
can be approximated by the expression 

(t) 	-
1 

(do (t) - do (t - te)) , 	 (6.74) 
tc  

which follows from (6.37) by substitution of the geometric distance do for the two-
way range  p.  The right-hand side may further be expanded into a Taylor series 
around the center of the interval [t - tc , t], giving 

1 
-
tc 

(do(t) do(t - te)) = do(t te/2) + 0(tc.2  'fi) . 	 (6.75) 

Combining both approximations then shows the near-identity 

kt) do(t - te /2) 	 (6.76) 

of the measured average two-way range rate at time t and the instantaneous range 
rate at the mid of the count interval. Applied to the example, the following numerical 
results are obtained: 

UTC 
hh:mm:ss  

?)(t) 
[mis] 

c./o(t - tc /2) 
[mis] [mis]  

00:06:00.0 -6385.694 -6385.554 -0.140 
00:09:00.0 -6113.312 -6113.161 -0.151 
00:12:00.0 -4575.872 -4575.720 -0.153 
00:15:00.0 1488.564 1488.732 -0.168 
00:18:00.0 5500.474 5500.635 -0.161 
00:21:00.0 6286.690 6286.839 -0.149 
00:24:00.0 6392.679 6392.813 -0.134 

Here, the Taylor expansion over the count interval contributes an error of less than 
9 mm/s to the overall approximation. The leading wan resulting from the neglect of 
the light-time correction is given by - ( t(5 2 + pi(5)1c. In the present example this term 
is responsible for the dominant errors of 10-20 cm/s. With a range rate measurement 
accuracy of 1 mrn/s it is obvious that both effects have to be modeled rigorously 
and that the instantaneous Doppler computation is inadequate for a precise range 
rate modeling. 

Exercise 6.3 (User Clock Error from GPS Pseudorange) The user clock error 
of the GPS Rogue receiver at Goldstone is to be determined from pseudoranges of 
the PRN 1  UPS  satellite. The PRN 1 position and clock errors at 1998/02/19 are 
taken from a precise ephemeris of the International  UPS  Service (JUS) 

GPS 
hhannEss 

xwGS YWGS 

[In] 
ZWGS St 

[As] 
08:00:00.0 -15504.291797 -21530.763883 -1271.498273 40.018233 
08:15:00.0 -15284.290679 -21684.703684 1573.435406 40.097295 
08:30:00.0 -14871.711829 -21600.510259 4391.350089 40.028697 
08:45:00.0 -14242.843546 -21306.712708 7133.948741 40.154941 
09:00:00.0 -13380.818523 -20837.175663 9754.366309 40.193626 
09:15:00.0 -12276.418004 -20229.688085 12207.953668 40.039288 
09:30:00.0 -10928.585710 -19524.421024 14453.015617 40.012677 
09:45:00.0 -9344.633744 -18762.314034 16451.492281 39.883106 
10:00:00.0 -7540.134384 -17983.451817 18169.574686 40.181357 
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10:15:00.0 —5538.503062 —17225.491970 19578.246580 40.328261 
• 10:30:00.0 —3370.289205 —16522.202377 20653.745961 40.039533 
10:45:00.0 —1072.201838 —15902.162018 21377.940941 40.052642 
11:00:00.0 1314.093678 —15387.672739 21738.615794 40.025493 

To circumvent the effect of Selective Availability, the pseudoranges of PRN 1 are 
evaluated only at epochs where precise SP3 position and GPS clock errors are 
available. The pseudoranges on 1998/02/19 comprise the P code pseudoranges at 
the L2 frequency (P2) and the C/A code pseudoranges at the  Li frequency (C1): 

GPS 
hh:mm:ss 

P2 
[m] 

Cl 
[m] 

08:30:00.0 21096577.475 21096579.501 
09:00:00.0 20519964.850 20519966.875 
09:30:00.0 20282706.954 20282709.233 
10:00:00.0 20375838.496 20375840.613 
10:30:00.0 20751678.769 20751680.997 
11:00:00.0 21340055.129 21340057.362 

The user clock error is to be determined from ionosphere-free pseudoranges derived 
from a suitable combination of P2 and Cl.  The signal travel time is to be determined 
from a rigorous iteration of the light-time equation that makes use of interpolated 
GPS positions. The WGS-84 coordinates of the receiver at Goldstone are 

X = —2353.614128 km, Y = —4641.385447 km, Z = +3676.976501 km . 

Hint: The light-time iteration is usually performed in an inertial system with the 
station position vector R and the satellite position vector r. When U denotes the 
transformation from the inertial to the Earth-fixed WGS84 system, the signal path 
is given by 

dwos(t) = U (t) (R(t) — r(t — r)) , 

where r denotes the signal travel time Making use of the approximation 

U(t) R z (we r)U (t — r) 

the inertial position of the GPS satellite may be substituted by the corresponding 
Earth-fixed position 

rWGS (t — r) = U(t — r)r(t — r) 

This yields the light-time equation 

cr = dwGs(t) = IRz(wer)rwGs(t — — RWGS 
	 (6.77) 

in the Earth-fixed reference frame, which is best suited for use with common tabular 
or analytical ephemerides of GPS satellites. 
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Solution: The residual of the ionosphere-free pseudorange yields the user clock 
bias, converted to meters, of the Goldstone GPS receiver at the time of the measure-
ment. Over a time interval of 2.5 h the clock drift can be neglected and the mean 
value of the residuals gives a clock bias of 17674.77 m. In particular the following 
pseudorange residuals and their deviations from the mean (Delta) are found: 

GPS 	ClockError Delta 
hh:mm:ss 	[m] 

08:30:00.0 17674.52 -0.25 
09:00:00.0 17676.14 1.37 
09:30:00.0 17675.59 0.82 
10:00:00.0 17674.45 -0.33 
10:30:00.0 17673.53 -1.25 
11:00:00.0 17674.41 -0.36 

A maximum variation of the pseudorange residuals of less than 3  mis  found in fair 
accord with the accuracy of the ionosphere-free pseudoranges. 

Exercise 6.4 (Tropospheric Refraction) Compute the daily variation of the 
elevation of a geostationary satellite (a = 42 164 km, e = 0.00296, i = 0.05°, 
S2 = 150.7°) for the ground station given in Exercise 6.1. Assume an epoch of 
1997/01/01 Oh  UTC and compute the elevation at intervals of 3 h. Compare the 
variation in elevation with the amplitude of the tropospheric refraction correction, 
as derived from (6.50) for a partial pressure of dry air of 1024 hPa, and a relative 
humidity of 0.7. Consider two cases with temperatures Ti and T2 of 283 K and 
303 K, respectively. 

Solution: The elevation is E0 = 23.363° at the epoch and varies over a day with 
an amplitude of about 0.06°. The maximum elevation occurs 6 h past the epoch 
and the minimum elevation is reached at 18 h. The daily variation of the elevation 
E from E0 together with the elevation refraction corrections ET' and  \ET2 are 
obtained as 

UTC 
hh:mm:ss 

E - E0 
[deg] 

ET 
[deg] 

ET2 
[deg] 

00:00:00.0 0.000 0.051 0.043 
03:00:00.0 0.021 0.051 0.042 
06:00:00.0 0.031 0.051 0.042 
09:00:00.0 0.024 0.051 0.042 
12:00:00.0 0.004 0.051 0.043 
15:00:00.0 -0.017 0.051 0.043 
18:00:00.0 -0.027 0.051 0.043 
21:00:00.0 -0.020 0.051 0.043 
24:00:00.0 -0.001 0.051 0.043 

For the particular case considered, the refraction correction is of the order of the 
daily elevation variation but stays essentially constant for given meteorological 
conditions. The assumed temperature difference of 20 K changes the observed 
elevation by about 0.008° which may be compared to the 0.060° change resulting 
from the orbital inclination. At the distance of a geostationary satellite 0.001° 
corresponds to an along-track or cross-track position variation of about 700 m. 



7. Linearization 

The trajectory and measurement model developed so far provides a concise and 
detailed description of a satellite's motion with respect to an Earth-bound observer. 
Besides the state variables that define the initial conditions, these models depend on 
a variety of parameters that either affect the dynamical motion or the measurement 
process. Due to the complexity of the applied models it is hardly possible to solve 
directly for any of these parameters from a given set of observations. It is therefore 
customary to linearize the relation between the observables and the independent 
parameters to obtain simplified expressions that can be handled more easily. Within 
a statistical orbit determination one can then determine those state and model pa- t 
rameters that provide the best representation of a large set of measurements using 
a differential correction and parameter estimation algorithm. 

A rigorous linearization of the trajectory and measurement model requires 
a large number of partial derivatives, which may be divided into four different 
categories: 

•  The State Transition Matrix 

The state vector y (to) = (rT  (t0), V T  (tO)) T  at some specified epoch to deter-
mines the form of the orbit and its orientation in space. Any change of these 
initial values results in a change of position and velocity at a later epoch t 

which is described by the state transition matrix 

ay(t) 	
(t, 

 to)  
(7.1) 

y (to)J 66  

e The Sensitivity Matrix 

Aside from the initial state the orbit is also a function of various parameters 
pi  (i =1, ..., np ) that determine the different forces acting on the satellite. 
This dependence is described by the sensitivity matrix, i.e. by the partial 
derivatives 

(4(0)  
= S (t) 	 (7.2) 

)6.n 

with respect to the force model parameters. Depending on the application in 
mind, the parameter vector p may e.g. contain the drag and radiation pressure 
coefficients (CD, CR), the thrust level of a maneuver or the size of certain 
gravity model coefficients. 
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• Partials of the measurements with respect to the state vector 
The linearized dependence of a measurement z (t) on the state vector y (t) = 
(r T  (t) , V T  (t)) T  of the satellite at the time of the measurement is described 
by the partial derivatives 

Y( 1"))1x6 

	 (7.3) 

It may be noted that the partials 8z/0 v(t) with respect to the instanta-
neous velocity vanish for all types of range and angle observations (z = 
p, A, E, X, Y) if one neglects the light time and aberration correction and 
considers only geometrical values. 

• Partials with respect to measurement model parameters 
Last but not least the predicted observations depend on certain measurement 
model parameters qi (i =  1,  .. . ,  n)  like bias values due to an insufficient 
calibration of the zero point for angle readings or the transponder and ground 
station delay for range measurements. More elaborate measurement models 
may take care of further effects like antenna axis displacement and misalign-
ment or ground station coordinate offsets that may be estimated during an 
orbit determination. The corresponding partial derivatives are given by an 
n -dimensional vector 

( a z) 
\q 
	 (7.4) 

Combining these partial derivatives yields the dependence of an individual mea-
surement z on the initial state vector y (to), the vector p of force model parameters 
and the vector q of measurement model parameters: 

0z 	8z 0z  

y(to) Bp aq) ix(6+,,,+no 
(7.5) 

az 
((B.Yaz(t)) ((t, 

to) s(t)) 	. 
aq  

Given the models presented earlier, the analytical computation of the individual 
derivatives is tedious and cumbersome work, which provides little additional in-
sight into the underlying concepts. Nevertheless, it forms an essential part of the 
overall orbit determination process, and may have a notable impact on the achiev-
able performance and speed of convergence. The required relations are therefore 
derived and presented here in an adequate level of detail. Impatient readers may, 
however, skip to Chap. 8 on first reading and content themselves with the fact that 
any desired partial derivative could, in principle, be obtained from a numerical 
difference quotient approximation. 
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7.1 Two-Body State Transition Matrix 

In the simplified case of unperturbed Keplerian orbits the state transition matrix and 
its inverse can be expressed as an analytical function of the Cartesian coordinates 
and the orbital elements. To this end, the state vector transition matrix is commonly 
factorized into the product of the more simple orbital elements transition matrix 
and the partial derivatives of the state vector with respect to the elements, both of 
which are derived in the sequel. 

7.1.1 Orbital-Elements Transition Matrix 

The orbital-elements transition matrix is given by 

ce(t, tO) = ( 	aU(t)  
0e(t0)/6x6 

(7.6) 

where 

a = (a,  e, j, £2, co, M) T 	 (7.7) 

denotes the vector of orbital elements. For an unperturbed orbit the orbital elements 
at time t are the same as those at time to with the exception of the mean anomaly 
that changes by 

M(t) — M(to) = n (t — to) . 	 (7.8) 

Here, the mean motion 

n = (7.9) 

is a function of the semi-major axis a. The orbital elements transition matrix may 
therefore be written as 

tkce(t, to) = 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 
(7.10) 

0 0 0 0 1 0 
DM(t)0 o o 0 1 

a (to) 
where the only non-vanishing off-diagonal element is given by the teini 

am(t) 	3 n 
	 = 	(t — to) 	 (7.11) 
0a(to) 	2 a 

that describes the effect of small changes in the semi-major axis at time to on the 
mean anomaly M(t) at time t. 
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7.1.2 Keplerian-to-Cartesian Partial Derivatives 

According to the results of Chap. 2 the position r and velocity y of an unperturbed 
satellite in the central field of the Earth is given by 

r = 2P+9Q 	y = P 	Q , 	 (7.12) 

where the Gaussian vectors P and Q are functions of the orbital elements i, 
and co that define the orientation of the orbit in space, while the coordinates î and 
9 inside the orbital plane are a function of the semi-major axis a, the eccentricity 
e and the mean anomaly M. The partial derivatives of r and  r with respect to an 
orbital element a may therefore be expressed as 

ar 	afc 	a9 	ay 	p  a9 n  - = 	Q 	 (7.13) 
B a 	B a 	B a 	B a 	Ba  A  ± Ba ' 

for a = a, e, M and as 

Br 	,ap ,aQ 	ay 	• ap ,,aQ — =  x— +y y 	 = x + y 	 (7.14) 
B a 	Ba 	Ba 	B a 	Ba 	Ba  

for a = S2, co, i. 
The partial derivatives of the in-plane coordinates with respect to a, e and M 

follow from the basic equations 

= a (cos E — e) X = • G MEDa 
	sin E 

• GM0a 
V

/
1 —e2  cos E 

(7.15) 

= a-il—e2  sin E 

  

with 

r = a (1 — e cos E) 	 (7.16) 

Since the eccentric anomaly E, which is implicitly defined by Kepler's equation 

E — e sin E = M (7.17) 

as a function of e and M, does not depend on the semi-major axis a, one obtains 
immediately 

— = cos E — e = (7.18) 
Ba 	 a 

For the derivatives with respect to e and M one has to consider the dependence of 
E on both quantities, which is expressed by the total differential 

dE — e cos E dE — de sin E = dM 

of Kepler's equation. The partial derivatives of E are therefore given by 

BE 	sin E 	a sin E 

(7.19) 

(7.20) - = 

    

    

Be 	1 e cos E 
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and 
8 E 	1 	a 
	= — 	 (7.21) 

am 1— e cos E r 
Using these results it follows that 

—a.i = a — sin E aE — 1 = —a 	
92 

(7.22) 
8e 	 0 e 	J 	r (1— e 2) 

and 
a.i 	a E 	.5sc 
— = a (— sin E) —a ill  , 7, 	 (7.23) 
am 

The remaining derivatives are obtained in a completely analogous way yielding 

_( a 	.92  ) —1  \ / î 

	

0(1,9)T 	a 	r (1— e 2) 	n 

a(a, e, M)T = 	9  
\ —a 	r (1— e 2) ) 	n i 

for the dependence of the in-plane position on a, e and M, while the velocity partials 
are given by 

. 	. 
p (1 , .9) 7-  
(a, e, M)T = 

2a .
is, (a) 2  (2  () ± l _e e2  (9 ) 2) 

—n (—
r 

x 

	

a)3  2 	 (7.25) 
,.. x 

2a 

	

 
9 	n 	(a)  2 ( .22 	92 

V1— e2"r r 	a (1— e2) 	
n 	y 

) 
	 —(—

r 

a 3 - 2  

(Broucke 1970, Long et al. 1989). The representation of these partial derivatives as 
a function of .5e, 2, 9 and 9 is convenient from the computational point of view, but 
one may equally well replace these quantities by the basic definitions given above. 
In this case one obtains the derivatives as a function of a, e and E, where E has to 
be obtained by solving Kepler's equation for the given value of the mean anomaly 
M. 

In order to complete the computation of partial derivatives of the state vector 
with respect to the various orbital elements we may now turn to the derivatives of 
the Gaussian vectors with respect to i „f2 and co. Since changes in these angles 
correspond to rotations around the line of nodes vector n = (cos S2, sin  Q,  0) T , 
the unit vector ez  = (0, 0, 1) T  and the vector W=Px Q at right angles to the 
orbital plane, respectively, the partial derivatives of P and Q are given by 

(7.24) 

OP 	 0 Q  
= n x P  	n x Q ai 	 ai 

OP 	 0 Q  
= ez x P 	 ez x Q as2 	 as2 	 

aP 	 Q 
	 = W x P 

a 
—0,„  . W x Q aw 

(7.26) 



—2 
— 
na 
Jl_ e2 
na2  e 

—(1 — e 2) 
na2  e 

1 

 

(7.31) 

      

na2 ../ 1 — e2  sin i 
— cot i 
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Evaluating the cross products finally yields 
O P 	 8 Q  

= sin(w) W 	= cos(co) W ai 	 ai 
a P 

	

±PPxY 	a 2  = +QQ: a S2 — 	 a S2 0 	 0 
O P 	 a Q 

	

+ Q 	 — P , aw 	 aw 
where Px ,  Pi,,  Qx  and Q3, are the x- and y-components of P and Q, respectively. 
The same result may also be obtained by direct differentiation of the definition of 
P and Q given in Chap. 2. 

 (7.27) 

7.1.3 Cartesian-to-Keplerian Partial Derivatives 

The partial derivatives of the orbital elements a with respect to the state vector 
y = (r  T, V T ) T  may be obtained by computing the partial derivatives of the state 
vector with respect to the orbital elements and inverting the resulting 6 x 6-matrix 
using appropriate numerical methods: 

(aY)6x6 = (8a)6x6 	
(7.28) 

aa 	y 

More favorably, however, the inverse is obtained from the analytical relationship 

p(ce, 01)  +(aV) T  — (ar)T  
ar av 	 V a) Vol) 

where P is an anti-symmetric 6 x 6 matrix made up of the Poisson parentheses 

p 	oti)  Cai) .  (0011T  (aaj 	(acyi\ T 

	

ar 	av 	ar ) 	av 
In total, only five independent matrix elements 

P(a,M) = —P(M,a) 

P (e, co) = — P (w, e) 

P (e, M) = —P (M, e) 

P (i, S2) = — P (S2, = 

na2 A/1 —e 2  
exist, while all other Poisson parentheses vanish. For further details and a proof of 
these relations the reader is referred to Broucke (1970). 

(7.29) 

(7.30) 

P (i, co) = — P (o), i) = 



—1 0 6x6 
with 	j ( 0 +1 ) o T Jo  _ j  (7.33) 
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7.1.4 The State Transition Matrix and Its Inverse 

Making use of the results obtained so far, the state transition matrix can be parti-
tioned into the product 

4p(t,to)= ( a 	Y (t)  * Oa (t,  to). 	 
/0y(to) 

 80/ (t) 	 801 (t0) 
(7.32) 

of the orbital elements transition matrix and the state vector partials with respect to 
the orbital elements. In evaluating this expression, care must be taken that the partial 
derivatives of the state vector with respect to the orbital elements need to be evalu-
ated at two different epochs, namely to (right-hand matrix) and t (left-hand matrix). 
As a consequence, only a small number of terms is common to the computation of 
both expressions (e.g. the derivatives of the Gaussian vectors with respect to the 
orientation elements). This problem may partly be overcome by improved formu-
lations for the direct computation of the state transition matrix as given in Sconzo 
(1963), Goodyear (1965), and Shepperd (1985). Furthermore, it is noted that the 
use of orbital elements in the above factorization introduces an artificial singular-
ity at zero eccentricity and inclination into the resulting expressions. To avoid this 
singularity, one may apply equivalent, but less common expressions for equinoctial 
elements (see Sect. 2.2.5) and the associated partial derivatives (Broucke & Cefola 
1972, Dow 1975). 

In computing the inverse of the state transition matrix, one benefits considerably 
from the fact that 0 is a symplectic matrix for Keplerian orbits. As shown in more 
detail in Sect. 7.2.4, 0 obeys the relation 

-1 

(Wintner 1941, Battin 1987) Making use of the identity J2  = —1, the inverse of 
a symplectic matrix 0 is given by 

o -1 	joT 	 (7.34) 

in much the same way as the inverse of a symmetric matrix is equal to its transpose. 
Upon splitting the transition matrix 

(t, tO) = 	
r 

vr 

 Or 

( 	 °I-t)  VI) 

(7.35) 

into its position and velocity related blocks, the result finally takes the form 

rTv  

= 	' vv 
vT r +0 rTr  (7.36) 

The inverse of the state transition matrix is thus obtained by simple rearrangement of 
its elements without a need to refer to general numerical matrix-inversion methods. 



obeys the first-order differential equation 

d 	 v(t) 
—dt .Y(t) = f (t, y) = 

a(t,r,v)) 

then 

a 	d 
y(t) = 

a f (t, y(t)) 	a  f (t , y (t)) 8y(t) 

Y (to) dt 	 8 y (to) 	Y 	8y (to)  

The state transition matrix 

(t, to) = 
By  (to) 

may therefore be obtained from 

d 

—dt °(t ' Aa)  = 
a  f (t y(t)) 

0 (t , to) 
8y(t) 

8y(t) 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

or 
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7.2 Variational Equations 

Even though the state transition matrix of the two-body problem is a reasonable 
approximation of the actual transition matrix, it is sometimes desirable to take into 
account at least the major perturbations in the computation of  I (t, to). As with 
the treatment of the perturbed satellite motion, one may not, however, obtain an 
analytical solution anymore in this case, but has to solve a special set of aiffer-
ential equations – the variational equations – by numerical methods. Aside from 
the increased accuracy that may be obtained by accounting for perturbations, the 
concept of the variational equations offers the advantage that it is not limited to the 
computation of the state transition matrix, but may also be extended to the treatment 
of  partial derivatives with respect to force model parameters. 

7.2.1 The Differential Equation of the State Transition Matrix 

The differential equation, which describes the change of the state transition matrix 
with time, follows from the equation of motion of the satellite. If the state vector 

y (t) = 
(r (t) 

v(t) 
(7.37) 

03x3 13x3  
8a (r, v, 	8a (r, y ,  t) 

 \ 
. 	(t, to) 
	

(7.42) 

8r(t) 	8v(t) 	16x6  

and the initial value 0 (to, to) = 16x6 



, (7.45) 
03x 6  

03x6 

tar(t)\  
ap 

ay(t) 

\  Bp  / 

. 	(7.46) 

aa\ 
ap ) 

(7.47) 

(7.48) 
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7.2.2 The Differential Equation of the Sensitivity Matrix 

The differential equation of the sensitivity matrix that gives the partial derivatives 
of the state vector with respect to the force model parameter vector may be obtained 
in a completely analogous way, yielding 

d a y(t) 	a f(t, y(t), p) 0y(t) 	a f(t, y(t), p) 
(7.43) 

dt  0p 	a y (t) 	0 p 	a p 
or 

d 

Tt S(t)6x 
 n p  

( 03x3 	13x3 	 03xn p  

aa(t, r, y, p) aa(t, r, y, p) 	• S(t)+ aa(t, r, y, p 

8T (t) 	8v(t) 	 

 ) 

6x6 	 0 P 	6xn p  

Since the state vector at to does not depend on any force model parameter, the initial 
value of the sensitivity matrix is given by S(to) = 0. 

7.2.3 Form and Solution of the Variational Equations 

By combining the differential equations for the state transition matrix and the sen-
sitivity matrix one obtains the following form of the variational equations 

(7.44) 

d 
= 

dt 
(

03x3 1-3x3 

aa aa )  

ar 	av 	6x6 

which is adequate for use with numerical integration methods for the solution of 
first-order initial value problems. An alternate representation, which is suitable for 
methods that allow the direct integration of second-order differential equations, 
may be obtained by decomposing 0 and S into 

ar(t) 
r 	 sr  

a (r (to), y (to)) 
av(t) 

\a(r(to), v(t0))/ 	
\Svi 

Since (by changing the order of differentiation) 
d 

dt
(Or, Sr) = (0v, Sv) , 

the variational equations may then be written as 

(L, STr) = PjLir  (0  r Sr) ± PéLiv ( r , r) (03x 6 

0 S 
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If the acceleration does not depend on the velocity, the actiay terni  vanishes, which 
means that the right-hand side of the second-order variational equations does not 
depend on , anymore. This fact may be useful since it allows the use of very 
efficient numerical integration methods for solution of the variational equations (e.g. 
Runge—Kutta—Nystrom or Stoenner—Cowell methods). 

Independent of the preferred foini of the variational equations it is important 
to note that the variational equations have to be integrated simultaneously with 
the state vector. Otherwise the position and velocity of the satellite, which are 
required to evaluate the acceleration partials in the right-hand side of the variational 
equations, would be unknown. The combined integration of the state vector y, the 
state transition matrix 0 and the sensitivity matrix S therefore requires the solution 
of (7 +np) six-dimensional first-order differential equations or, equivalently, the 
same number of three-dimensional second-order differential equations. It should be 
emphasized, however, that the total effort is usually much less than (7  +n)-times  
the effort for integrating the differential equation of the orbit alone. The reason for 
this property lies in the fact that the highest amount of work during the numerical 
integration is generally spent in the evaluation of the variational equations and not 
in the integration routine. The total integration effort is therefore proportional to 
the work required for the computation of the partial derivatives of the acceleration. 
By computing these derivatives along with the acceleration itself one can make use 
of common sub-expressions, which reduces the computing effort considerably. 

Since accuracy requirements for the partial derivatives are generally more re-
laxed than that for the trajectory itself, it is common to apply a simplified force 
model in the solution of the variational equations. While purely Keplerian state 
transition matrices may cause slow convergence of iterated differential correction 
methods for orbit determination, the incorporation of the lowest-order zonal gravity 
field perturbation (C2,0) already provides an acceptable minimum model (see e.g. 
Ballani 1988), 

As pointed out by various authors, considerable care must be taken, however, 
to use consistent models in the simultaneous integration of the state vector and 
variational equations. This is dramatically shown by the analytical solution of the 
combined equations for an equatorial orbiter and a second-order zonal gravity field 
given by Rice (1967). While a purely Keplerian formulation yields a transition 
matrix in fair agreement with the solution of the perturbed problem, a completely 
erroneous solution is obtained after a few orbits upon combining an unperturbed 
gravity field in the differential equation of the transition matrix with a second-order 
gravity field in the state equations!  The problem is further confirmed by numerical 
studies of more elaborate force models (May 1980), giving clear indication for the 
need of a consistent modeling. From a practical point of view, one may thus choose 
to either perfoini a rigorous integration of the variational equations using the same 
sophisticated model as required for the state equations or to treat the variational 
equations as a separate problem. In the latter case, the state equations are once 
integrated individually with the full model and once along with the variational 
equations using a simplified force model (e.g. up to C2, 0). Even though the trajectory 
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of the simplified model diverges notably from the true orbit, the resulting state 
transition matrix will nevertheless be found to closely match the actual value. 

7.2.4 The Inverse of the State Transition Matrix 

Aside from the state transition matrix itself, a variety of applications requires the 
inverse matrix oP (t, to) to map a state vector change at time t back to the initial 
epoch to. While numerical methods are generally available and well suited to per-
forming the inversion, the special properties of the transition matrix offer various 
alternatives. In the case that the inverse state matrix is of primary interest, one may 
e.g. solve the adjoint matrix differential equation 

to) = 	(t to) • (—V ) 	 (7.49) 
dt 	 a y 

(Curkendall 1974), which follows from (7.41) and the identity d (00 -1 )Idt = 0 
(Battin 1987). Like the variational equations described before, this equation is 
integrated along with the state vector using the initial conditions  P  = 1. 

Another approach can be applied whenever the acceleration does not depend 
on the velocity and, at the same time, exhibits a symmetric gradient G = 
In this case, the partial derivatives 

F  = af =( 

 
01 ' 

ay 	°) 6X6  
obey the relation 

JF = —F T  J with J 
(  0 +1 

0 ) 6x6 

(7.50) 

(7.51) 

As a consequence, the state transition matrix can be shown to be a symplectic matrix, 
which is characterized by the relation 

T TO = 	 (7.52) 

Following Battin (1987) the time derivative of (P T  JO vanishes under the given 
conditions, while the relation at epoch to (i.e. (1) = 1) is a trivial identity. The sig-
nificance of this property lies in the ease of determining the inverse of a symplectic 
matrix. Making use of the identity J2  = —1, the inverse is given by 

(7.53) 

in much the same way as the inverse of a symmetric matrix is equal to its transpose. 
The state transition matrix is, in particular, syMplectic for all types of gravita-
tional forces due to the symmetry of the gravity gradient. Its inverse can then be 
found from (7.36) by simple rearrangement of the matrix elements. Care should be 
taken, however, that the symplectic property is evidently violated in the presence of 
aerodynamic drag, in which case reference to numerical matrix inversion methods 
should be made. 
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7.3 Partial Derivatives of the Acceleration 

The variational equations depend on the partial derivatives of the acceleration with 
respect to the state and model parameters, which are discussed in more detail in the 
present section. 

7.3.1 Geopotential 

The most important contribution to the variational equations for the state transition 
matrix arises from the central term 

= 	 
G MED 

r (7.54) 
r3  

of the Earth's gravitational attraction. Using the general relation 

arn 
	

8(x2 + y2 + z2r/2 
 = n rrz-2  rT  

ar 	 ar 

it follows that 

= —GM ED —a  (r —1 ) 
Dr 	Dr \ r 1 

(7.55) 

(7.56) 

Here the factor rrT  in the second tei 	in is a dyadic product, which yields a 3x3-matrix 
and should not be confused with the dot product rT r. Evaluating the individual 
components of a iv ar yields 

ai — = 
Dr 

which shows that the gravity gradient is symmetric with respect to the main diagonal 
and that the sum of the diagonal elements vanishes. 

Both properties follow from the fact that the gravitational attraction may be 
written as the gradient 

— 
. anT 

(7.58) 
ar 

of a potential U, which is given by 

U = GM
1

ED —
r 	

(7.59) 

for the simplified case of a point mass Me  in the center of the Earth. 
The partial derivatives of  r with respect to r are just the second partial deriva-

tives of U, which are clearly symmetric, since the order of differentiation with 
respect to the components of r may be interchanged, i.e. 

GM  / 3x2  — r2  
3yx 
3zx 

3xy 
3y2 	r2  

3zy 

3x z 
3yz 

3z2  — r2  
(7.57) r5 

ai; 	au 	a 2 u 
— = 	= _ ax axay  ay ax ay  etc. 	 (7.60) 
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Since this symmetry is independent of the particular form of  U,  it is not only valid 
for the central term of the Earth's potential but also for all higher order harmonics. 
By considering the Laplacian 

02u 02u 02 u  
A U = 	 (7.61) 

ax2  

which reduces to 

1 82 
AU (r) 	(r U (r)) = 0 	(r > 0) 	 (7.62) 

r a r 2  

in the case of the radially symmetric 1/ r-potential, one may easily verify that 
the sum of the diagonal elements of ai/ar vanishes for the attraction of a point 
like body. For an extended body like the Earth the gravitational potential may be 
represented by a superposition 

U =G
f p (s) d3 s 	

(7.63) 

of the  hr-potentials arising from all mass elements dm = p (s) d3  s and the Lapla-
cian is therefore zero, too, for all points outside the surface of the body. 

The symmetry property of the matrix a iz la r of partial derivatives of the Earth's 
attraction with respect to the position and the condition of a vanishing sum of the 
diagonal elements reduces the number of independent components that have to 
be considered in the computation from nine to five. In an Earth-fixed frame these 
components may conveniently be obtained from 

ay2 	a z2 

ainm (7.64) 0r  

(cf. (3.33)) using expressions for the Willis of degree n and order m derived by 
Cunningham (1970): 

ainm  (m=0) GM 
= 	

e) 
1 f  (+CnOVn+2,2) 

(n+2)! 	
1 (+Gil () Vn+2,0) ax 	R1 . 2 1 	 n! 

(m=1)  GM 1 f 
= 	

R 	4 1 (-f-Cn  1 Vn+2,3 + SnlWn+2,3) I 
(n +1)! 

+ 
(n — 1)! 

( 3 Cn1 17n+2,1 — Sn1 Wn-1-2,1) } 

G  Me)  1 { 

R3  4 
, 

--f - CnmVn-1-2,m-1-2 4-  SnmWn+2,m-1-2) 
e 

+2 	 ( CnmVn+2,m — SnmWn-1-2,m) 
(n — m)! 

(n — m + 4)! 
+ 	

(n—m)! 
(+Cnm Vn+2,m-2 + SnmWn-I-2,m-2)1 

(m> 1) 

(n — m +2)! 

(7.65) 
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aïnm (m.0) 

ay  
GM® 1  
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GMED  1 
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(n+1)! 
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(7.66) 

GM®  1 I (  , --f- UnmWn+2,m-1-2 — SnmVn+2,m-1-2) 
R 3  4 ED 

(n—m +4)! 
+ 	 ( 

(n—m)! 	
C nmWn+2,m-2 + SnmWn-I-2,m-2)} 

(+CnO Vn+2, 1 ) 

(+CnmVn+2,m+1 SnmWn-1-2,m+1) 

( CnmVn-1-2,m-1 — SnmWn-1-2,m-01 

(4- CnO Wn -1-2,1 

(+Cnm Wn+2,m+1 — SnmVn+2,m-1-1) 

(n—m+3)! 

2(n—m)! 
(+CnmWn-1-2,m-1 — SnmVn-1-2,m-1) I 

GM@ { (n—m+2)! 
	 (+CnmVn+2,m SnmWn-I-2,m)} 

R 3 	(n—m)! 

Here Vnm  and Wnm , which follow from the recurrence relations (3.29) and (3.30), 
are the same quantities that are used in the computation of the acceleration. If the 
partial derivatives of the acceleration due to geopotential coefficients up to Cnn  and 
Snn  have to be calculated then Vw, and Ww, are required up to degree and order 
n + 2. 

For a non-rotating Earth the expressions derived so far would directly represent 
the desired partial derivatives. Due the Earth's rotation some additional transfor-
mations are, however, required, since the components of r and  r in (7.65)... (7.69) 
refer to a coordinate system that is aligned with the instantaneous rotation axis of 
the Earth and the direction of the meridian of Greenwich. Using indices "si" and 
"ef' to distinguish between space-fixed and Earth-fixed coordinates the desired 
partial derivatives in the space-fixed reference system are given by 

= U-1  (0 • (Li) • U(t) , 
sf 	 ef 

inm 

az 

(7.67) 

(7.68) 

(7.69) 

(7.70) 
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where U describes the time-dependent transfounation to Earth-fixed coordinates 
according to 

ref = U(t) r sf and isf = U-1 (t) 	 (7.71) 

The temi (a ar)ef  may be computed by evaluating (7.65)... (7.69) with (x, y, z) 
replaced by the Earth-fixed coordinates (Xef, Yef, Zef). It should further be empha-
sized that both (a iz ar)sf  and (a i; a r)ef  are partial derivatives of the acceleration in 
inertial coordinate systems which are rotated against each other by a given rotation 
U. The acceleration in a rotating coordinate system would be different by Coriolis 
and centrifugal  ternis.  

Since the acceleration due to the Earth's attraction does not depend on the 
satellite's velocity, the partial derivatives with respect to the position are all that is 
required to compute the contribution of the geopotential to the variational equations 
for the state transition matrix. In the case of the sensitivity matrix some further 
partials may, however, be of interest. Neglecting the influence of Earth rotation 
parameters on the acceleration the only model parameters of interest are the product 
GM ED  of the gravitational constant and the Earth's mass as well as the gravity model 
coefficients Cmn  and Simi . Since GM@  is a multiplicative factor in the computation 
of the Earth's acceleration, the corresponding partials are simply given by 

a 	1 	. . 
(7.72) 

The corresponding expressions for the x and y-components may easily be derived 
from (3.33). 

Even though the partials with respect to GM,  Cnm  and Snm  may therefore 
be computed at almost no additional cost from known quantities, they are not 
considered in most orbit determination programs. This is due to the fact that the 
estimation of these force model parameters is not possible for individual satellites 
but requires the simultaneous consideration of a large set of observations from 
different types of satellite orbits. An estimation of GM,  Cnm  and S„„, is therefore 
only foreseen in specialized programs for geodetic applications (see e.g. McCarthy 
et al. 1993). 

7.3.2 Point-Mass Perturbations 

According to (3.37) the perturbations of the Sun and the Moon in an Earth-centred 
reference frame are given by 

— 	s 
= —GM .

(r s 

Ir — si3 
+ —

is 13 	
(7.74) 

a Gme, Glue, 
The derivatives with respect to the geopotential coefficients follow in a similar 
manner from the fundamental relations for the acceleration yielding e.g. 

ai 	ai GMED  
	 = (n m-I-1) 	 ( — Vn-Fi,m , — Wn+1,m) 

R2 	
(7.73) 

Cnni  Stun  
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Only the direct gravitational attraction depends on the satellite coordinates and the 
partial derivatives of the acceleration with respect to r are therefore given by 

ar 	GM  ( 	si3 13x3 3(r s) (r s)T  
Ir — sl 5  

(7.75) 

in analogy with (7.56). The derivatives with respect to the solar or lunar mass M 
may easily be computed from 

1 
aGm 
	 (7.76) 

but are again only required in special applications. 

7.3.3 Solar Radiation Pressure 

For the most common solar radiation pressure model (3.75) the resulting accelera-
tion varies with the satellite position in the same way as the gravitational attraction 
of the Sun. The corresponding partial derivatives are therefore given by 

ar 	PeCr 7-7-1 AU 2 	1 
A 	1 

Ir — sl 3  3x3 	
3(r s) (r s)T  

	

Ir — sl 5 
	 (7.77)  

Here r and s are the geocentric coordinates of the satellite and the Sun, respectively. 
Due to the large distance of the Sun this contribution to the variational equations 

is quite small and may therefore safely be neglected in most applications. What is 
more important, however, is the partial derivative 

ai 	1.. 	A r 0 	2 
—r = — Pe — --AU 	 (7.78) 

Cr 	Cr 	m r(3)  

which is required to compute the influence of variations in the radiation pressure 
coefficient on the satellite trajectory. This allows the estimation of Cr  during an 
orbit determination, which cannot usually be predicted accurately enough from 
material constants and the satellite geometry. 

73.4 Drag 

Starting from the basic expression 

1 	A 
=  --2 

CD 
-

m

p  VVr with vr  = v coe  x r 
	

(7.79) 

for the acceleration due to atmospheric drag (cf. Sect. 3.5) one easily obtains the 
derivative with respect to the drag coefficient as 

1 A 
— p V r V r  acp 	2m  (7.80) 
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Furthermore, the dependence on the spacecraft velocity is described by the partial 
derivatives 

— = — — CD 
A 
- p

( VrVT 
 r  ± Vr1) 

ay 	2 m 

1 
Vr 	

(7.81) 
ai 

The partial derivatives with respect to position  involve .a  direct term describing the 
atmospheric density variation as well as a minor contribution resulting from the 
changing atmospheric wind velocity: 

— — CD - VrVr — - - CD - p 	r  + vr 1 
Or 	

1 	A 	Op 1 	A (

vr 

v r v T 	ay r  
i 

	

in 	Or  2 	m 	

) 
= ar 

ai 

Introducing the cross-product matrix 

X (w) 
—wz wy 

0 
±wx  0 

(7.83) 

to rewrite the cross-product teun coED  x r as X (coe) r, one finally obtains the rep-
resentation 

OP 	1 	A 	Op 	OP  
— = 	CD- VrVr — — X( 6)e) • 	 (7.84) 
or 	2 	m 	Or 	ay 

Here  Op/Or describes the dependence of the atmospheric density on the spacecraft 
location. Except for simplistic models like that of Harris—Priester, the complexity 
of representative atmospheric density models renders the analytical computation 
of the density gradient extremely cumbersome. Numerical differentiation therefore 
provides a meaningful alternative, but care must still be taken to avoid singular-
ities caused by a non-smooth or non-differentiable representations of the density 
functions. - 

7.3.5 Thrust 

The thrust model developed in Sect. 3.6 represents the acceleration as a function 
of the total velocity increment .%1 v along a set of coordinate axes defined by the 
transformation matrix E. Considering the boost start and stop times as well as 
the mass profile as known quantities, the acceleration depends in a linear way 
on the ZAv components that may be calibrated within an orbit determination. The 
corresponding derivatives are easily obtained as 

Oa 	Iiiil 	1 
m(t) 

—141 	 
mo 

(7.85) 

throughout the thrust phase and zero otherwise. In case of an inertial reference 
frame (E =1) the acceleration is independent of the actual spacecraft position and 
velocity. A more complicated situation is encountered for the co-moving, orbital 

(7.82) 
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frame, where the reference axes are aligned with the instantaneous radius vector, 
angular momentum vector and orbital plane. Partial derivatives of the unit vectors 
with respect to position and velocity may then be obtained from the basic relation 

	

a f(x) 	iv 	a 	1( f  
+ f 	= 	1 	 (7.86) 

	

Ox  if(x)i 	f ax 	ax f 	f 	f 2  j  ax 

where 1 — f f T  is a rank-2 matrix spanning the plane perpendicular to f. Further-
more the notation of the cross-product matrix (7.83) is used to conveniently express 
partial derivatives of cross-products: 

O(f (x)x g(x)) 
= X (f)

a g(x)  
X(g)

a  f (x) 
(7.87) 

	

Ox 	 ax 	ax 
Making use of these relations, the partial derivatives of the unit vectors 

E(t) = (el, e2, e3) (7.88) 

in radial, along-track and cross-track direction with respect to the spacecraft position 
are given by 

ael 
	 =. —

1 
(1 — eie 1T ) 

Or 	r 
0 e2 	aei 

	
8 e3 

	 = X(e3)—
ar

—  X(ei) —ar Or  
ae31 
— =. 	(1— e34) (—X(v)) 
ar 	ir x vi 

Likewise 

(7.89) 

 

_ae2 	 0e3 
= _X(ei) 	 ay 	 ay 

a e31 
— = 	(1— e34) (+X(r)) 
ay 	ir x vi 

are the partial derivatives with respect to the satellite velocity vector. 

(7.90) 

7.4 Partials of the Measurements with Respect to the State Vector 

In the computation of partial derivatives that describe the dependence of a mea-
surement on the instantaneous position and velocity of the satellite one may — to 
first order — neglect all light-time effects and consider the geometrical measurement 
equations, only. Both angle and distance measurements may then be expressed as 
functions of the topocentric local tangent coordinates s, which are related to the 
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Earth-centered, space-fixed satellite position r and the Earth-fixed station coordi-
nates R by - 

s(t) = E (U (t)r (t) — R) . 	 (7.91) 

Here U is again the matrix describing the transfolination from space-fixed to Earth-
fixed coordinates, while 

E = 
(eETT) — sin 

	

+ cos 'p cos a. + cos ço sin 	+ sin p
— sin cio cos 	— sin ço sin 	-I- cos cp 

+ cos 	0 
(7.92) 

is the orthonormal matrix made up by the east, north and zenith unit vectors. The 
desired partials of a range or angle measurement z may then be expressed as 

a z 	az 
— 	u . 	 (7.93) 

ar 	as 
Neglecting light-time corrections and propagation effects the partial derivative of 
a range measurement with respect to the instantaneous position vector is therefore 
given by 

ap 	as sT 
=- = 7EU 	 (7.94) 

0r 	0r  

with s = Isl, while the partials with respect to velocity vanish completely. In a 
similar manner one obtains the partial derivatives 

81:3 	s  §T 

	EU 	 (7.95) 
ar = 	s2  

and 

=
sT 
—EU 
 s 

of the instantaneous and geometric range rate from the relation 

. 	. 
p =. s =. — 

(7.96) 

(7.97) 

Using the basic expressions for azimuth and elevation one may furthermore verify 
that 

	 0 ) EU 	 (7.98) 
aA 	SN 	— SE 

and 

— SNSZ — SESZ a E 	 si 
	 EU . 	(7.99) 
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The appropriate partials for X and Y-angles are given by 

a XNS Sz 	—SE 

ar 
=. 	

sE2  s 	sz2 	
EU 	 (7.100) 

and 

as well as 

—SzSE 	1s 
+SNSE 	

.2 s2 a YEW 	 N Z 
	 EU . ar 	sN2 sz2 s2 .isN2 sz2 	s2  

(7.103) 

As with the range measurements, the geometric angles do not depend on the velocity 
and the corresponding partials are equal to zero. 

7.5 Partials with Respect to Measurement Model Parameters 

The precise prediction of an observation for a given satellite position  involves  
various measurement model parameters like station coordinates, transponder delay, 
antenna axis displacement and others. In order to assess the influence of small errors 
in these parameters or to estimate their values in an orbit determination, one requires 
the corresponding partial derivatives of the measurements with respect to the model 
parameters. Since many parameters are of interest only in specialized applications, 
the following discussion is restricted to station coordinates and simple bias values, 
which are the most commonly considered measurement model parameters. 

The partial derivatives with respect to the station coordinates, which are e.g. 
required for geodetic purposes, follow from (7.91) and (7.93). They are closely 
related to the measurement partials with respect to the satellite state vector and 
may easily be derived from the expressions given in the previous section. Since 

az az 	 --asE = --
az uT aR 	 ar (7.104) 

it is simply necessary to replace EU in any partial az/ a r by —E to obtain the 
corresponding value of  8z/8 R.  
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For measurement biases q = z — z*, defined as the difference between the 
actual measurement z (affected by the bias) and the corrected (bias-free) value z*, 
the corresponding partial derivatives 

az 	
(7.105) 

are equal to +1 (if qi = qz  is the bias value related to the measurement z) or 0 (if 
qi is the bias value of some other measurement type). 

7.6 Difference Quotient Approximations 

Due to the complex structure of the partial derivatives described in this chapter 
the computer implementation of the corresponding formulas is quite laborious and 
error prone. Since a finite accuracy of the derivates is sufficient for many applica-
tions it may therefore appear preferable to replace the rigorous computation by a 
simple difference quotient approximation. This technique is mainly applied to the 
computation of the state transition and sensitivity matrix and is illustrated here for 
the partial derivative a y(t)/a Cr  of the state vector with respect to the radiation 
pressure coefficient. 

For a given initial state yo  and the nominal coefficient C r,  0 the equation of mo-
tion is first integrated from to to t to obtain the reference state vector y (t, yo, Cr,0)- 
In parallel a varied trajectory is computed with Co replaced by Co+ ACr  and the 
desired partial derivative is then obtained from the first-order difference quotient 

Cr  , 0 

Y(t, yo, Cr,o ACr) — .Y(t, yo, Cr,o)  

Cr  
(7.106) 

  

Since the reference trajectory is usually available from the treatment of the nominal 
orbit, the partial derivatives can be computed at the expense of an additional integra-
tion of the equation of motion with slightly varied initial conditions or parameters. 
The same concept may be applied to obtain the partial derivatives with respect to 
other force model parameters as well as the initial conditions. If multiple partials 
are required, the reference trajectory need only be computed once, yielding a total 
of 7 +np  trajectory integrations for the computation of the state vector, the state 
transition matrix and the sensitivity matrix. 

Despite the obvious algorithmic simplicity, it must be emphasized, however, 
that the difference quotient approximation should only be used deliberately. One 
major drawback of the approach lies in the difficulty of choosing a proper value of 
the parameter increment AG, which is important to minimize the overall error of 
the approximation. If s is the relative global accuracy of the numerical integration, 
the total error of the partial derivative is approximately given by 

  

Dy(t) 	1 
.%1 	AC r  acr 	2 JtCr  

(7.107) 
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Here the first term. describes the discretization error which is proportional to the 
increment A Cr  and the second-order Taylor coefficient in the expansion of y(Cr). 
The second teun results from the numerical integration errors s I y I of both the 
reference trajectory and the varied trajectory. Unless special provision is taken, the 
individual integration errors are uncorrelated and therefore additive as expressed 
by the leading factor of two. AG must thus be sufficiently small to avoid the 
linearization error described by the first tem.', but must be large enough to ensure a 
small contribution from the integration error at the same time Since it is difficult 
to find a general solution to these conflicting requirements, a reasonable value of 
the variation A Cr  must usually be found by experiment for a particular application. 
This is even more a problem for the computation of the state transition matrix, 
which exhibits secularly growing components. Accordingly, the optimal choice of 
the variations LAyi depends on the overall time interval considered. 

The simple procedure outlined above may be replaced by more sophisticated 
approaches to reduce either of the individual error terms. First, a symmetric differ-
ence quotient 

0y(t) 	y(t, yo,  Cr,0  4Cr12) — y(t, yo,Cr,o— ACr/2)  (7.108) a Cr  cr, 0 	 A Cr  

can be used to obtain an approximation of the derivative which is correct up to 
second order in AC r .  Event though the discretization error can thus be reduced 
significantly, a separate reference trajectory is now required for each parameter. 
The computational workload is thus approximately doubled, yielding a total of 
1 + 2(6+ np) trajectory integrations to be carried out. 

The contribution of the numerical integration error may effectively be avoided 
by ensuring that the integration of the reference trajectory and the varied trajectory 
are performed with exactly the same integration steps (Hairer et al. 1987). Aside 
from choosing independent integrations with a fixed-stepsize method, one may 
also combine the individual problems into a single, 6-  (7+n)  dimensional vector 
and integrate all trajectories simultaneously with appropriate setting of the initial 
conditions and force model parameters. While each of the individual state vectors 
still suffers from an integration error of approximately s I y I, the respective errors 
become highly correlated. As as result, their impact on the difference quotient is 
significantly reduced. 

Similar results may further be achieved by integrating the variational equations 
as described earlier (cf. Sect. 7.2.3) but computing the relevant partial derivatives 
of the acceleration at each time steps from a numerical difference quotient. This 
approach provides great flexibility, since it also allows a joint use of analytical 
and numerical derivatives. As an example, one may wish to rigorously compute 
the gravity gradient from the analytical expressions described above, but refer to a 
difference quotient approximation for the atmospheric density gradient due to the 
non-availability of an appropriate analytical formulation. 

Aside from the aforementioned accuracy problems, it has to be emphasized 
that the computation of the state transition and sensitivity matrices using difference 
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quotient approximations is generally computationally less efficient than the rigorous 
treatment of the variational equations. This is due to the fact that the total effort for 
the numerical solution of the variational equations is governed by the evaluation 
of the partial derivatives of the acceleration with respect to position, velocity and 
force model parameters. Due to common sub-expressions that are also required for 
the computation of the acceleration itself, the expense for the additional solution of 
the variational equations is notably smaller than that of the corresponding varied 
trajectories. As a rule of thumb, one may expect a 2-3 times increased performance 
when using variational equations instead of numerical differences. 

The rigorous computation of the state transition and sensitivity matrix is there-
fore clearly preferable to the difference quotient approximation as regards precision 
and efficiency. Nevertheless the partial derivatives are rarely required with full pre-
cision and one may still for a method that yields a reasonable approximation at 
moderate costs. The best way to accomplish this is to neglect small perturbations 
in the computation of the variational equations. Good results may e.g. be obtained 
by restricting the partials a a/a r of the acceleration with respect to the satellite 
position to terms involving the low-order geopotential coefficients (Ballani 1988). 
In this case the computational effort for the evaluation of the variational equations 
and the integration of the transition and sensitivity matrix may be reduced consid-
erably at the expense of a moderate loss in accuracy. Since the choice of the force 
model considered in the variational equations is essentially free, the method may 
individually be adapted to the accuracy and run-time requirements of a particular 
application. For further discussion and relevant caveats the reader is again referred 
to Sect. 7.2.3. 

Exercises 

Exercise 7.1 (State Transition Matrix) Compute the state transition matrix for a 
near-circular orbit with osculating elements a = R ED  +650  km, e = 0.001, i = 51 0  
and Q = co  = M =  00 at the initial epoch J2000 over a time interval of one day, 
considering (a) Keplerian motion, (b) Earth oblateness and (c) a full 10 x 10 gravity 
model. Evaluate the accuracy of approximations (a) and (b) in comparison with the 
rigorous solution (c). 

Hint: Choose a modified time scale r = NIG MED ' a3  t in the representation of 
the state transition matrices to obtain a unifoiin scaling of the position and velocity 
teuns. The accuracy of a simplified transition matrix P can be assessed via the 
noun of the matrix 

11/1 ( ) = 1 — 	 (7.109) 

It describes how well a state error A y at time t can be corrected by an appropriate 
- —1 

change Ay() = 0 dy of the epoch state vector in a differential correction process. 
Ideally, all elements of M are zero if  P matches the rigorous transition matrix 0. 
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Matrix elements up to 0.1 can generally be tolerated, implying that each step of a 
differential correction process yields a 10% reduction of the residuals. Values of 
1.0 or larger in contrast imply that the correction of the epoch state computed with 
the approximate transition matrix is completely in error and ultimately results in 
divergence of the correction process. 

Solution: The integration of the variational equations for the full gravity model 
yields the following state transition matrix at t = 86400 s after normalization of 
the velocity components: 

7-279.76389 -0.61436 -0.77128 -1.97749 -176.76882 -218.58094\ 
5.44482 0.46365 0.46751 0.67732 2.85186 4.76225 

-20.31820 0.40525 0.58659 0.64261 -12.32589 -16.24931 
9.26340 0.69774 0.76639 1.06876 5.85008 7.23464 

-176.39686 0.19895 -0.98557 -1.26867 -111.02555 -137.36300 
\-216.94806 -0.92156 -0.14293 -1.46183 -136.56202 -168.92823/ 

A similar result is obtained for the reduced force model accounting only for the 
second-order zonal gravity coefficient: 

(-279.73142 -0.61300 -0.76831 -1.97488 -176.73944 -218.54595\ 
4.94588 0.46436 0.46459 0.67371 2.53764 4.37347 

-20.94583 0.40252 0.58628 0.63834 -12.72045 -16.73746 
10.08752 0.69945 0.76835 1.07427 6.37036 7.87800 

-176.42392 0.20077 -0.98205 -1.26529 -111.03517 -137.37942 
\ -216.90555 -0.91896 -0.13879 -1.45733 -136.52976 -168.88617/ 

Finally the analytical solution of the Keplerian state transition matrix is given by: 

Kep 

(-279.15804 
15.74647 
19.44527 

-28.38266 
-174.82513 

\ -215.89105 

-0.68758 -0.84909 -2.08471 

	

0.37945 	0.58939 	0.75689 

	

0.58939 	0.63001 	0.93468 

	

0.55643 	0.68713 	0.78578 
0.13049 -1.06908 -1.37290 

-1.06908 -0.32400 -1.69539 

-176.75552 
9.33762 

12.75888 
-17.96557 

-110.35739 
-136.16070 

-218.27488\ 
12.75888 
14.76158 

-22.18563 
-136.16070 
-168.24110/ 

Significant relative errors may here be observed in the third and fourth lines, which 
even exhibit an erroneous sign in the major elements. Upon evaluating the above ma-
trix functional for J2 and -4i Kep one obtains maximum elements m = maxi, (M1 )  
of 0.18 and 1.01, respectively. This quantifies that the accuracy of the h transi-
tion matrix is just about acceptable over the concerned time frame, whereas the 
Keplerian approximation is clearly inadequate. Defining a threshold of m = 0.1, 
the Keplerian state transition matrix is applicable for slightly more than two hours, 
whereas the h model is valid for almost 18 hours. 



8. Orbit Determination and Parameter Estimation 

The equation of motion and the measurement model provide the basic framework for 
describing the motion of a satellite with respect to a ground station. Given an initial 
position and velocity vector and various model parameters the satellite's position 
and the expected observations can be computed at arbitrary times. Even though an 
orbit prediction may require lengthy and time-consuming computations in case of 
high accuracy requirements, it does not pose any algorithmic difficulties, as outlined 
in the previous chapters. The situation becomes more involved, however, if one 
tries to solve the inverse problem, namely the determination of orbital elements 
and model parameters from a given set of observations of the satellite. 

Depending on the application, it is customary to distinguish between prelim-

inary orbit determination used for the direct computation of six orbital elements 
from six observations with no a priori knowledge of the spacecraft orbit and orbit 
estimation (or differential correction) used for the improvement of a priori orbital 
elements from a large set of tracking data. The need for a distinction between both 
approaches arises essentially from two reasons. First of all the, complex mathe-
matical foi inulation of orbit prediction and measurement modeling does not allow 
a direct inversion except for the simplified case of Keplerian orbits and a coarse 
measurement model. Second, the measurements employed for an orbit determina-
tion cannot be expected to be exact quantities due to inevitable measurement (and 
model) errors. Some means for smoothing out these errors by considering a larger 
amount of tracking data than required for an initial orbit determination are therefore 
necessary for a reliable reconstruction of a satellite orbit from actual measurements. 

While preliminary orbit determination is of great importance for solar system 
bodies like comets and minor planets immediately following their detection, its 
significance for satellite orbits is limited by regular tracking campaigns for most 
satellites and orbital-element databases of reasonable accuracy. Nevertheless, a 
preliminary orbit determination may still, for example, be required in the case of 
launcher injection errors or for the identification of an uncatalogued spacecraft. 
Most methods for preliminary orbit determination are based on Gauss' algorithm 
(cf. Chap. 2) for computing orbital elements from two position vectors (i.e. from 
two sets of range and angle measurements) or three direction vectors (i.e from 
three sets of angle measurements). A comprehensive discussion of these and other 
analytical methods is given in Escobal (1965). 

In addition to the above methods a numerical root-finding technique — the 
homotopy continuation method (Allgower & Georg 1990) — has, furthermore, suc- 
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cessfully been applied to the preliminary orbit determination problem. It avoids 
the restrictions of analytical methods as regards the required tracking data types 
by solving a system of six non-linear equations that relates six arbitrary observa-
tions to the unknown orbital elements. In contrast to other root-finding methods 
the homotopy method may even be used with a bad initial guess of the orbital ele-
ments and is able to cope with multiple solutions. The method is e.g. employed at 
the Goddard Space Flight Center to support preliminary orbit determination using 
tracking data from both the Tracking and Data Relay Satellite System (TDRSS) 
and from traditional ground-based tracking stations (Kirschner et al. 1990). 

In view of their importance for practical applications of satellite orbit deter-
mination, the remaining part of the chapter is devoted to the discussion of batch 
and sequential estimation techniques that may be used for the improvement of a 
priori orbit information from an arbitrary set of tracking data (Fallon 1978, Tapley 
1973, Tapley 1989). While the classical batch or least-squares estimator improves 
an epoch state estimate by processing a whole set of observations in each run, 
the sequential estimator or filter processes one measurement at a time and yields 
subsequent estimates of the state vector at the time of each measurement. 

Both batch and sequential estimators are powerful estimation methods that 
have successfully been applied to various types of orbit determination problems in 
the past. While the method of weighted least-squares dates back to the end of the 
18 th  century, where it was developed for the improvement of minor planet orbits by 
Gauss, the Kalman filter was introduced some thirty years ago, only. Nevertheless, it 
was immediately recognized as a fast and efficient method that is particularly suited 
for on-board and real-time applications and provides a unique way of considering 
process noise (Leondes 1970). As an example filters have extensively been applied 
in the Apollo program (Baffin & Levine 1970, Battin 1987) and for interplane-
tary navigation (Moyer 1971, Curkendall 1974, Campbell et al. 1983). The batch 
least-squares method, on the other hand, is traditionally used in many programs 
for operational and scientific orbit determination (e.g. GTDS (Long et al. 1989), 
GEODYN (McCarthy et al. 1993), UTOPIA (Schutz & Tapley 1980), PEPSOC 
(Soop 1983)), where execution time and memory considerations do not pose severe 
restrictions on the ground-based and off-line operation of such programs. 

8.1 Weighted Least-Squares Estimation 

The basic idea of least-squares estimation as applied to orbit determination is to 
find the trajectory and the model parameters for which the square of the difference 
between the modeled observations and the actual measurements becomes as small 
as possible, or, in other words, a trajectory which best fits the observations in 
a least-squares of the residuals sense (cf. Fig. 8.1). In actuality, since different 
measurements have different units and reliability, a weighting factor is applied to 
each residual and it is the square of the weighted residuals which is minimized. In 
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order to arrive at a mathematical formulation of this principle let 

f r (t) 
v (t) 

(t) 	 (8.1) 

q / 

denote a time-dependent, m-dimensional vector comprising the satellite's position 
r and velocity y as well as the free parameters p and q that affect the force and 
measurement model. No distinction need then be made between trajectory and 
parameter estimation, which can both be treated in a unified way. The time-evolution 
of x may always be described by an ordinary differential equation of the form 

f (t, x) 

and an initial value 

X0 = x (to)  

at epoch to. Furthermore, let 

zi 

(8.2) 

(8.3) 

(8.4) 
\ Zn / 

denote an n-dimensional vector of measurements taken at times t1 , 	, tn . The 
observations are described by 

zi (ti ) = gi(ti, x(ti)) 	E  = hi(ti, .r0) 	Ei 	 (8.5) 

or briefly 

z h(x0) + c 	 (8.6) 

Here gi denotes the model value of the ith observation as a function of time ti and 
the instantaneous state x (ti), whereas hi denotes the same value as a function of 
the state xo at the reference epoch to. The quantities ei account for the difference 
between actual and modeled observations due to measurement errors, which are 
usually assumed to be randomly distributed with zero mean value. 

The least-squares orbit determination problem may now be defined as finding 
lsq the state xo  , that minimizes the loss function 

J(x0) = PT  P= (z — h (x 0)) T  (Z h (X 0)) 	 (8.7) 

(i.e. the squared sum of the residuals pi) for a given set of measurements z. It is 
noted that the given formulation of the loss function requires all measurements to be 
of equal type and quality. This assumption simplifies the subsequent presentation 
but will later be dropped to arrive at a completely general formulation (Sect. 8.1.2). 
In order to avoid a non-unique determination of x, it is further assumed that the 
number of observations n is at least equal to the number of unknowns m. 
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Estimated 
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Trajectory 

Xoref  

 

Fig. 8.1. Least-squares orbit determination: the parameters of a reference trajectory are corrected 
to find the trajectory which best fits the observations in a least-squares of the residuals sense. 

8.1.1 Linearization and Normal Equations 

The practical solution of the least-squares orbit determination problem is compli-
cated by the fact that h is a highly non-linear function of the unknown vector x0, 
which makes it difficult or impossible to locate the minimum of the loss function 
without additional infoimation. As mentioned above, an approximate value xr of 
the actual epoch state is, however, often known, which may be used to simplify the 
least-squares problem considerably. 

Linearizing all quantities around a reference state xroef  , which is initially given 
by x0aPr , the residual vector is approximately given by 

p = z — h(xo) 

z — h(xre) ,ah 	(xo —xr) 	 (8.8) 
0x0 

= Az — HAx° . 

Here 

Zlx° = X0 — X roef 
	

(8.9) 

denotes the difference between x0 and the reference state, while 

Az = z — h(x) 
	

(8.10) 

denotes the difference between the actual observations and the observations pre-
dicted from the reference trajectory. Furthermore, the Jacobian 

ah(x 0) 
axo xo  =re 

gives the partial derivatives of the modeled observations with respect to the state 
vector at the reference epoch to. Using the above abbreviations, eqn. (8.8) provides 
a prediction of the measurement residual after applying a correction Ax° to the 
reference state and recomputing the modeled observations h. 

H =  (8.11) 
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The orbit determination problem is now reduced to the linear least-squares 
problem of finding tAx ir such that 

J (4x0) = (Az — H Axo) T  (AZ — H LAX()) 7 	 (8.12) 

i.e., the predicted loss function after applying a correction Lx o becomes a minimum. 
If the Jacobian has full rank m, i.e. if the columns of H are linearly independent, 
this minimum is uniquely determined by the condition that the partial derivatives 
of .1 with respect to tAxo vanish: 

aoz— Hzixo)T(ZAz — Hziro)  
a ,6xo 

Using the relation 
aaT  b 	T  ab , T aa 
	= a — 	— 	 (8.14) 

ac 	ac 	ac 
to compute the derivatives of p T  p, the general solution of the linear least-squares 
problem may be written as 

Zair = (H T H) -1 (H T .6z) 	 (8.15) 

after a proper rearrangement. The matrix HT  H is an m-dimensional symmetric 
square matrix, which is also known as the normal equations matrix. Since H was 
assumed to have full rank, the inverse of HT  H exists, even though it need not 
actually be computed. Instead, ilx iosq  may be obtained by solving the m -dimensional 
normal equations 

(HT H x 	H z  ) 	 (8.16) 

using standard techniques for positive definite linear systems of equations (e.g. 
Cholesky's algorithm). 

Due to the non-linearity of h, the simplified loss function differs slightly from 
the rigorous one and the value of xir= xrcl?f ziodosq (cf. Fig. 8.1) determined so 
far is not yet the exact solution of the orbit determination problem. It may, however, 
be further improved by substituting it for the reference value xroef  and repeating the 
same procedure. Based on this idea the non-linear problem can be solved by an 
iteration 

=0 	 (8.13) 
zix 0=Axoisq 

x '
= _h 

, 	)- 1  H T 	 h (x 0  o 	0 7 (8.17) 

which is started from xg = x aoPr  and continued until the relative change of the loss 
function is smaller than a prescribed tolerance for successive approximations. The 
Jacobian 

h• 
	

a (x0) 
H =  	 (8.18) 

axo xo=x- 

should be updated in each iteration to ensure an optimum convergence, but may 
also be replaced by the constant value H ° . Even though the number of iterations 
increases in this case, the total computational effort can often be reduced, due to 
the high amount of work that is otherwise required for the integration of the state 
transition matrix. 
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8.1.2 Weighting 

The algorithm developed so far suffers from the fact that all observations are treated 
equally, even though the observation vector z is generally composed of different 
measurement types. The accuracy of each measurement type may, however, easily 
be accounted for by weighting all observations with the inverse of the mean mea-
surement error i.e. by replacing the residuals pi with the normalized residuals 

1 	1 
= — Pi = — (Zi hi(x0)) • 

Oj  Cri 
(8.19) 

Here ai should consider the total expected error in the measurement due to both 
random noise and systematic errors (e.g. refraction). As a result the basic least-
squares equation 

,Axolsq  = (fIT fir  1. (fiT sj) 	
(8.20) 

remains essentially unchanged, except that H and Az are replaced by the modified 
values 

il  = SH 	and 	Ai = SzAz . 	 (8.21) 

Here S is a square diagonal matrix 

S = 	 an—i) (8.22) 

which divides the ith row of a matrix or vector by o-i upon multiplication from the 
left. 

Alternatively the solution of the weighted least-squares problem may be written 
as 

Axiosq  = (H T  WH) -1 (H T  WAz) 
	

(8.23) 

using the weighting matrix 

W = S2  = diag(o-172, 	arT2) 	 (8.24) 

Both representations are equally well suited to handling uncorrelated measurement 
errors, which are fully described by the corresponding values cri. The weighting 
matrix may, however, also be used for correlated measurement errors, in which case 
W becomes a non-diagonal matrix. 
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8.1.3 Statistical Interpretation 

According to the definition of the weighted least-squares orbit determination prob- 
hq lem xo  is the state that minimizes the weighted squared sum of the residuals. In 

the absence of measurement and modeling errors it is obvious that x iosq  is equal 
to the actual state, for which all residuals vanish. As soon as the observations are 
affected by measurement errors, the question arises, however, in which way these 
errors influence the least-squares solution. 

For this purpose let xo and c denote the actual state and the measurement errors. 
The observation vector is then given by 

z = h(x0) 	 (8.25) 

which may be linearized to obtain 

Az = H (x 0 — xroef) 	, 	 (8.26) 

where xroef  is a reference state sufficiently close to xo. The solution of the corre-
sponding least-squares problem is given by 

x lsq 	xref (17T wHy l (HT wAz)  
o 	o 	 (8.27) = xo  ± (HT wil) ' (H T ive) 7  

which shows that x losq differs from the actual state in the presence of measurement 
errors. 

Some further results may be derived by neglecting any systematic errors and 
considering c as a random quantity. The statistical properties of the measurement 
errors can then be described by the expected values' of c and EE T  . These are 
assumed as 

E(E) = 0 	 (8.28) 

and 

E(ce T = diag(o-2 	a2 ) n  (8.29) 

which means that the expected value of each component of c is zero, that all com- 
ponents are uncorrelated (E(eici)  = 0 for  j A j) and that the standard deviation 

of the i th component is i/E,(c7) = cri. 
An immediate consequence of the first assumption is that the expected value 

of the least-squares solution, which is also a random variable due to its dependence 
on c, is equal to the actual state: 

- 1sq 
E(x) = Xo + (HT  WH) -1  (HT  WE(E)) = xo 	 (8.30) 

1 The expected value or mean value of a random variable x is defined by E(x) =  i  = f sp(s)ds, 
where p(s)ds is the probability that the value of x lies in the interval [s, s dsi. Furthermore, the 
variance Cov(x) = o-2  = E((x — i) 2) of x is defined as expected value of the squared deviation 
from the mean value. The square root a-  of the variance denotes the standard deviation of x. For two 
random variables the quantity Cov(x, y) = E((x — 37)(y —  53)) is called the covariance of x and y. 
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The second important result concerns the covariance of the least-squares solution, 
i.e. the quantity 

Cov(x 1r, x 1r) = E((x ir — xo)(x ir — xo) T ) 	 (8.31) 

lsq that describes the mean squared deviation of xo  from the actual state. Inserting 

the expression for xiosq  yields 

T (H  w H)-1 T (H  w)E(E. E.T )(w  H)(H T w H)-1 COV(X iosq  , X 1r) = 	 (8.32) 

which may further be simplified, provided that the weighting matrix has been 
choosen in accord with the measurement standard deviation. Then 

W = diag(a 1-2 , .. . , an-2) 	 (8.33) 

is the inverse of E (cc T ) and the covariance matrix is given by 

Cov(xlsq 
x lSq 	(HT WH)- 1 

0 ' 0 (8.34) 

which is just the inverse of the normal equations matrix. The diagonal elements of 
the covariance matrix yield the standard deviation 

CY (X Ok ) 	COV(Xok  , Xok  ) 
lsq 	lsq lsq (8.35) 

of the components of x iosq , while the off-diagonal terms are a measure of the corre-
lation between errors of individual components. 

Even though it is obvious that the expected value and the covariance of xiosq  
define an interval that most likely contains the actual state xo, some care is required 
to use these data for a valuation of the orbit determination accuracy. A rigorous in- 

lsq terpretation has to account for the fact that both É and xo  are considered as random 
variables. The expected value and the covariance therefore describe the distribu- 

lsq tion of values xo  that would be obtained in a random experiment of repeated orbit 
determinations for the same trajectory but with randomly generated measurement 
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errors. If the measurement errors exhibit a normal distribution, it can be shown 
that there is a 67% probability that x ir as derived from the actual measurements 
deviates from xo by less than la and a 99.7% probability that the deviation is less 
than 3a (cf. Fig. 8.2). In the case of systematic errors ir there will further be an 
additional offset of 

lsq  
3x0 	(11

w 	(H T w) (8.36) 

Concerning the use and interpretation of the covariance matrix, it is furthermore 
important to emphasize that its correct computation relies on the a priori knowledge 
of the measurement standard deviation o-  (c), which enters the weighting matrix W. 
Aside from that, the covariance depends only on the partial derivatives H and 
therefore on the type and distribution of measurements. The actual measurement 
errors, in contrast, do not affect the computation of the covariance matrix. It is 
therefore obvious that the covariance is not an a-posteriori measure of the tracking 
data quality and accuracy. This can only be derived from an analysis of the final 
distribution of the measurement residuals and by solving for systematic errors. 

8.1.4 Consider Parameters 

While the covariance matrix clearly provides a measure of the achievable orbit 
determination accuracy, it is often found to be too optimistic in the presence of 
systematic force and measurement model errors. This is particularly true if a large 
number of redundant measurements is processed, since the computed covariance 
is inversely proportional to the number of measurements within a given data arc. 
The impact of systematic errors, on the other hand, does not depend on the num-
ber of data and eventually limits the attainable orbit determination accuracy. It is, 
therefore, worthwhile to consider the effect of unmodeled, systematic errors in the 
covariance computation. With proper assumptions on the expected size of these 
errors, the resulting consider covariance matrix then provides realistic estimates of 
the achievable orbit determination accuracy. 

For the mathematical treatment of systematic errors in the covariance compu-
tation, the observation vector 

z = h(xo, 	 (8.37) 

is expressed as a function of the estimation parameters x0, the consider parameters c 
and the measurement noise E. The vector c comprises those force and measurement 
model parameters that are supposed to be uncertain but are not adjusted as part of 
the least-squares estimation. Without loss of generality, the consider parameters are 
assumed to be small quantities with an expected value of zero. The above expression 
for the observation vector may then be linearized around a reference state xroef  to 
obtain the differential relation 

Az = Hx (xo — x rf  oe ) + Hcc + E , 	 (8.38) 



266 	8. Orbit Determination and Parameter Estimation 

where H , and H c  denote the partial derivatives of the modeled measurements h 
with respect to x0  and c, respectively. The resulting least-squares solution 

1Sq 
X0 

 = 0  ± (HT w Hx  y 1 Hi; W ("lee  (8.39) 

differs from the true values of the estimation parameters by an offset that depends  
on both the consider parameters c and the measurement noise  E.  

In the sequel, the consider parameters are assumed to be random quantities 
with zero mean and covariance C that are uncorrelated with the measurement noise 
(E(cc ) = 0). The expected value 

E(x) = xo ± (HT WHx ) -1  W (H eE(c) E(E)) = xo 
	(8.40) 

of the least-squares solution is then again identical to the true state. The consider 
covariance matrix P c , however, is larger than the noise-only covariance 

P (HTWHx) -1 	 (8.41) 

which is also designated as formal or computed covariance. It is given by 

pC 	(p 7-71; 

= P (P W )(H cE 	(P Hr W ) 7' , 

11  W)(HcCHc E(Ec T ))(PHTW) T 	
(8.42) 

where the weighting matrix W has again been taken as the inverse of the measure-
ment covariance. 

While both the consider parameters c and the measurement noise c are assumed 
to be random quantities in the above formulation, their interpretation is different 
and should be carefully distinguished. Data noise affects the individual measure-
ments processed in a single orbit determination. By adopting a large number of 
measurements, the impact of the data noise is effectively averaged out and the un-
certainty of the estimated parameters is decreased. Consider parameters, in contrast, 
are assumed to be constant throughout a single orbit determination but affected by a 
given uncertainty. This is mapped into a corresponding uncertainty of the estimated 
parameters and expressed by the respective contribution to the consider covariance. 
As may be expected, the additive term in (8.42) does not decrease with increasing 
data rate, but is essentially constant for a given data arc and tracking configuration. 
The consider covariance calculus is therefore well suited to assessing the impact of 
systematic errors in the orbit determination process. Typical examples of consider 
parameters are measurement biases, station location errors or uncertainties in the 
drag and radiation pressure model. 

8.1.5 Estimation with A Priori Information 

Aside from the approximate state xoapr  that is required to start the least-squares orbit 
determination, some information on the accuracy of this value is often available. In 
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order to incorporate the a priori covariance P7r  into the least-squares estimation 
an alternative representation of the loss function 

= PT- so = (Az — H Zixo) T  (AZ — H AXO) 	 (8.43) 

is first considered, which again assumes normalized observations. Using 

Ax losq = (H T H) -1 (HT Az) 	 (8.44) 

the loss function may also be written as 

j(xo) = (LAX° — ZAX iosq) T  (HT  H)C6X0 — x losq  ) 
±(zAz T zAz  _ _lsqT 

0  H-  H Axolsq) 	(8.45) 

lsq, T 	 lsq 
(X0 — X 0  ) ro  (xo — x 0  ) const , 

which is a quadratic form of xo — 4 1  defined by the inverse covariance matrix 
P0-1  = HT  H of xo — x iosq . The loss-function minimum and the covariance matrix 
therefore provide the same information for the least-squares estimation that is oth-
erwise contained in the measurement vector dz and the partial derivative matrix 
H. 

As a consequence, an a priori estimate XaoPr = 
x rod ± Axoapr of  the state xo can 

be considered using a modified loss function 

aPrT 	
apr 	T J = (xo — X 0 )ii(X0— x o  )+ p p (8.46) 

r _ Here A = (P 
) 1 , which is also known as information matrix, is used to penalize 

any deviations from x0apr  by an appropriate contribution to the loss function. 
Since A denotes the inverse of the covariance matrix, it is always required to be 

positive semi-definite. It can therefore be factored into a product A = S T  S, which 
is useful for locating the minimum  of the combined loss function. By writing J as 

J = (Axo — tAx aoPr) T  ACZAX0 — Zir oaPr ) 

+(Az — H Axo) T  (zAz — H Axo) 
(8.47) 

	

((

szirr) 	S) ,6x0) ((StAzxxoaPr) 

	

) 	

(HS ) Ax0) 

it may be seen that the information matrix can be treated like additional observations 
and the minimum is therefore obtained as 

—1 
S zix ir 	S) T  S) 	S) T  Ax7) 

VT-1 VH) 	! ) 	Az ) 

which simplifies to 

Axiosq  = (A ± H T  H) -1 (Alir aoPr  HT ZAZ) 	 (8.49) 

(8.48) 
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In the case of weighted observations the least-squares solution with a priori knowl-
edge is given by the corresponding expression 

Axolsq  = (A ± H T  WHY'  (AZAX aoPr  HT WAz) 	 (8.50) 

Here both A and H T WH may be singular matrices and it is only required that the 
sum of both matrices has a non-zero determinant A non-singular information matrix 
is, however, sufficient to ensure that the resulting normal equations can be solved 
independently of H T WH. This feature is often employed to avoid singularities 
in least-squares problems by giving a small a priori weight to each estimation 
parameter and adding the corresponding diagonal matrix A to the normal equations 
matrix. 

The expected value of the estimated state (8.50) is equal to the actual state xo, 
if the a priori information xaoPr  is itself a random variable with mean value xo. The 
covariance Po of the estimate is furthermore related to the a priori covariance and 
the measurement information matrix by 

(Po-  = (Pr) -1  + (H T wH) 	 (8.51) 

8.2 Numerical Solution of Least-Squares Problems 

While the presentation given so far provides a comprehensive conceptual discus-
sion of the least-squares method, it does not specifically address its algorithmic 
implementation. In the sequel, focus is therefore given to the numerical aspects of 
least-squares estimation, which require careful attention in practical work. Readers 
that are mainly interested in orbit determination methodology are advised to skip 
this section on first reading and continue directly with Sect. 8.3. 

8.2.1 QR Factorization 

As is evident from the mathematical formulation of the least-squares problem, the 
number of observations must at least be equal to the number of unknowns, but should 
be considerably larger to reduce the influence of individual measurement errors. 
A large number of observations may still, however, be insufficient, if the tracking 
geometry and distribution do not provide enough information on all estimation 
parameters. The direct solution of the normal equations 2  

(A T A)x = A T b 	 (8.52) 

will then give rise to numerical difficulties, even if the normal equations matrix is 
not exactly singular. 

2 1n accordance with the common notation for linear systems of equations, the symbols A, x and 
b are used instead of H Axolsq  and Az throughout this section. 
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In the case of near-singularity, the solution of the normal equations becomes ex-
tremely sensitive to small errors in the normal equation matrix, which are inevitable 
when forming the product A T  A with a limited machine accuracy. Considering, for 
example, the simple matrix 

/1 	1\  
A= 	8 0 

\0 	8 

it may easily be seen that the computed value 

A T A = 	1  ± 82 	1 	) 
(32<rriach)  

1 	1 + 82  

of 

( 1 
1 

1 
1 
\ 
) 

(8.53) 

(8.54) 

becomes singular, if 3 is smaller than the square root of the machine accuracy Emach 

(cf. Golub & Reinsch 1970). 
A different treatment of the least-squares problem is possible, however, that 

avoids the normal equations and yields the same accuracy with single-precision 
computer arithmetic that otherwise requires a double-precision arithmetic. It is 
based on a QR factorization 

An xm = Qnxn 
(

Rrnxin 

0 (n—m)x 
(8.55) 

of A into an orthonormal matrix Q and an upper triangular matrix R. Since Q T  Q = 
Q 	= 1, the loss function may be written as 

J = (b — Ax) T  (b — Ax) 

QTb QT A x )T (QT b QT A x ) 

= = ((dr) (R0)) T  ((él1 . 	( 0?)) 

(d — Rx) T  (d — Rx) 	r , 

where Q T  b has been partitioned into two vectors d and r of dimension m and n—m, 
respectively. This expression shows that rT  r is the minimum of the loss function, 
which is reached for 

Rx = d . 	 (8.57) 

If A has rank m, the same is also true for R and the linear system of  equations -  

/Ru R1,2 ' • • R1,m-1 R1,m \ X1 \ I dl \ 

0 	R2,1 • - • R2,m-1 R2,m X2 d2 

• • =-7 • (8.58) 
0 	0 	- • - Rm-1,m Xm-1 dm-1 

\ 0 	0 0 Rin , m  xm  dm  

(8.56) 
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has a unique solution. No further decomposition of R is required because of its 
upper triangular structure. The components of x can be obtained directly from the 
back-substitution 

xn, = dm  1 Rm ,,„ 

xi 	(di — i = m — 1, . ,1 , 
(8.59) 

j=i+1 

because all components Rij with j  > j vanish. The normal equations are not re-
quired anymore when using the orthogonal transformation and the corresponding 
numerical problems can therefore be avoided completely. 

The same method of orthogonal transformations may also be applied to weighted 
observations, if A and b are replaced by 

A'  = diag(a—- • - an-1 ) A and b' = diag(a
1' • • •' 
—1 	a-1 ) b . 	(8.60) 

Following (8.47), an a priori information matrix X can further be considered by an 
appropriate extension 

SxaPr) 
A" = s 

A'/
) 	and 	

b„ ( 	
(8.61) 

where S denotes a square root of A (cf. (8.47)). S can easily be computed for 
diagonal matrices, but a Cholesky factorization or similar operation is required to 
obtain a representation of the form A = ST  S for an arbitrary information matrix 
(see e.g. Schwarz 1988, Press et. al. 1992). 

Finally, the QR decomposition may be employed to facilitate the computation 
of the covariance matrix by writing 

Cov(x, x) = (A T  A) -1  = (R T R) -1  = (R-1 )(R -1 ) T  . 	 (8.62) 

Since R is an upper triangular matrix, the same holds for its inverse R-1 , which 
may conveniently be obtained by solving RR -1  = 1 with the back-substitution 
algorithm described above (cf. Lawson & Hanson 1974). 

8.2.2 Householder Transformations 

The most efficient method for performing the QR factorization is due to House-
holder (1958). It involves a total of m orthonormal transformations (cf. Fig. 8.3), 
which subsequently annihilate the sub-diagonal elements of A yielding 

.0 2U 	= Q T A 	(R0) 	

(8.63) 

(U.  ni 	U 2U 1) b = Q T b  _ (dr) 
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Fig. 8.3. Triangularization of a 5 x 3 matrix by a sequence of Householder Transformations 

An individual Householder transformation is defined as 

U = (1 — 2ww T  ) =  U T 	 (8.64) 

where ww T  denotes the outer product of a unit vector w and its transpose. The 
orthonormality of U follows from the fact that 

u T u  ==. U2  = 1 — 4ww T  ± 4w w T  ww T  = 1 	 (8.65) 

for w T  w = I w 1 2  = 1, which also means that U is its own inverse. Since vectors at 
right angles to w are not affected by U, while w is mapped into —w, it may seen 
that U corresponds to a reflection at a hyperplane perpendicular to w (cf. Fig. 8.4). 

Hyperplane  I w 

h 

he 

Fig. 8.4. Householder Transformation 

By a proper choice of w, a vector h of length h can be mapped into a multiple he 
of the unit vector e = (1, 0, , 0) T , which is zero except for the first component. 
For this purpose w must be a unit vector in the direction of the difference vector 
hlh — e and is therefore given by 

hlh—e 	hlh— e 
W

=
(8.66) 

jhlh — el 	,/2(1 — hi/h) 



272 	8. Orbit Determination and Parameter Estimation 

Using the same expression with h replaced by the first column vector of A, one 
obtains the first transformation matrix U1 = 1 — 2w 1w f that eliminates all sub-
diagonal elements in the first column of A. The same principle may then be applied 
to determine the transformations U2, . . . , Un  that convert the remaining columns 
and yield the desired upper triangular matrix R. 

For further details on the algorithm and an efficient computer implementation 
of Householder transfoimations in least-squares problems the reader is referred to 
standard text books like Golub & van Loan (1989) or Schwarz (1988). 

8.2.3 Givens Rotations 

A second type of orthonormal transformations that may be used to perform a QR 
factorization is known as Givens rotations (Givens 1958). A single n-dimensional 
transformation matrix 

1 

U i k 

+c 	+5 

—s 	+c 

(8.67) 

is an identity matrix except for the elements 

( U11 Uik) ( 	
H-

+c +s) (±  cos 0 ± sin 0 
Uki Ukk 	—S 	C 	— sin q5 + cos 0) ' 

which define a rotation by an angle 0 in the (ik)-plane. Since Uliyik =-- 1, the 
matrix is in fact orthonormal and therefore does not change the Euclidean norm of 
a vector. 

When applied to an n xm matrix A = (A11) from the left, U ik affects only lines 
i and k, while the remaining lines are unchanged. The new elements of A' — U ik A 
are given by 

== +c Aii + s • Aki 	(./ =-7 1, • • • , in) 
Alki  = —s • Aii c Akj 

If c and s are chosen as 
	 Ai i ) 

+4 (Aki 

(8.70) 

(8.68) 

(8.69) 

then 

= 
A' 	0 . 

(8.71) 
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Fig. 8.5. Row-wise triangularization of an n x 3 matrix by a sequence of Givens rotations 

In other words, the element A'ki  vanishes. 
While the Householder transformation which eliminates all sub-diagonal el-

ements in a column of A, a Givens rotation reduces only one element to zero at 
a time This gives the freedom to process one row after another as indicated in 
Fig. 8.5. The complete transformation is then given by 

(UnUn-1 ...U3UDA 
	

Q T  A = (Ro ) 	

(8.72) 

(UnUn-1 ...U3U2)b ---= QT  b = (dr) . 

Here 

U1 	i,max(i —1,m) • • U1,2U1,1 
	 (8.73) 

denotes the sequence of rotations required to eliminate the sub-diagonal elements 
in the ith row of A. 

The advantage of a row-by-row transformation is that the QR factorization can 
already be computed with parts of the design matrix A and the vector b. Denoting 
the ith row of A by aT and the ith element of b by bi, the measurement equations 

a• x =bi 	i =1, 	n 	 (8.74) 

can be processed one-by-one with the sequential accumulation algorithm This is 
illustrated in Fig. 8.6. 

A sequence of in Givens rotations for each measurement transforms the  given 
upper triangular system of linear equations Rx = d and a single data equation 
aT  x = b into the upper triangular system 12/  x = d' and the scalar b".  Assuming 
that the sum of the residuals squared before the triangularization was jr 1 2 , its value 
after processing of the new measurement equation is given by 

I r i I 2 	i r  12 ± (b)2 	 (8.75) 
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Fig. 8.6. Accumulation of a data equation by Givens rotations. For each step, boxes indicate the 
values affected by the transformation that annihilates the leading non-zero element of the data 
equation. 

With start values of R =  0 and b = 0 the algorithm can be applied to process all 
data equations recursively. 

The only quantities which have to be stored during the sequential accumulation 
of all measurement equations are the upper triangular m xm matrix R, the vector d, 
and the Euclidean noun of the residual vector In .  The overall storage requirements 
are therefore considerably smaller than for Householder factorization of an n x m 
design matrix A. 

8.2.4 Singular Value Decomposition 

Aside from the QR decomposition discussed so far, a singular value decomposition 
may be used to analyze a given least-squares problem and solve it in a numerically 
stable manner. The method is well suited to detecting and overcoming a possible 
singularity or near singularity of the least-squares equations and is therefore recom-
mended for all ill-conditioned problems despite an increased computational effort 
as compared to other techniques (Lawson 1971). 

The singular value decomposition of the n x m partial derivative matrix A is 
denoted by 

A =-- UDV T 	 (8.76) 

where 

D 	diag(di, 	, din ) 	 (8.77) 

is a diagonal m x m matrix. U and V are orthonormal matrices of dimension nx m 
and m x m, which means that both UT  U and V T  V are equal to the in dimensional 
identity matrix. 

The quantities dl > d2.  > dm  > 0 are known as singular values. There are 
exactly k positive singular values for a matrix of rank k < m, whereas the remaining 
m — k values dk +i, . .. , dm  are zero. Since 

A T  A = V D2 V T  = Vdiag(d?, , 42 )V T  , 	 (8.78) 
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each column vector v i  of V is an eigenvector of the normal equations matrix and 
the singular value di is the non-negative square root of the associated eigenvalue 
Xi = 

In view 6f the effort required for an eigenvalue analysis it is not surprising that 
the computation of the singular value decomposition is also much more involved 
than that of a simple QR factorization. By a sequence of Householder transforma-
tions, which are alternately applied from the left and right, A is first converted into 
a bi-diagonal matrix, in which all elements are zero except those in the diagonal 
and immediately above it. Next an iterative sequence of orthogonal transformations 
is applied, which retains the bi-diagonal form but tends to eliminate the elements 
in the upper diagonal and finally converges to a diagonal matrix containing the sin-
gular values. For a detailed discussion of the algorithm, which is beyond the scope 
of this presentation, the reader is referred to Golub & Reinsch (1970) or Golub & 
van Loan (1989). Useful computer implementations are furthermore described in 
Lawson & Hanson (1974) or Press et al. (1992). 

In order to illustrate the application of singular value decomposition to least-
squares problems, the loss function 

J = (b — Ax) T  (b — Ax) 	 (8.79) 

is considered. Making use of the singular value decomposition of A and of the 
definitions 

s = V T  x 	t = U T  b 	 (8.80) 

the condition 

(A T A)x = A T b 	 (8.81) 

for the loss function minimum can be replaced by the equivalent expression 

D2 s = Dt . 	 (8.82) 

For non-singular normal equations the inverse of D exists and the solution of the 
least-squares problem is then given by s = I:I—I t or 

m  uTb 

i1 
d1 

vi 	 (8.83) 

Here u i  and vi are used to denote the column vectors of U and V, respectively. 
If the rank of A is less than m, however, only the first k components of s can 

be determined from (8.82) according to 

t1 /d1  

tkldk 
o 
	 (8.84) 

0 

x = V D -1 U T  b 
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The remaining components are arbitrary, but can be fixed  by  the additional require-
ment of choosing x in such a way that the norm 1x1 = T  X is as small as possible. 
Since x Tx = s T s, this requirement is equivalent to setting si = 0 for all i > k. 
The solution of the degenerate least-squares problem is therefore given by 

k T 
U. b 

x =>  	, 	 (8.85) 
di 

which is the same as (8.83), except that all terms corresponding to zero singular 
values are discarded. 

The same principle may also be applied in the case that A has full rank but 
is nevertheless near-singular as indicated by a high ratio di /dm  of the largest and 
smallest singular value. This ratio, which is also known as the condition number of 
the normal equations matrix, gives a general indication of the quality with which 
the solution is defined by the given measurements. Since the singular values appear 
in the denominator of (8.83), it is evident that x is particularly sensitive to changes 
in the measurement vector b for small di. In order to avoid a deterioration of the 
solution it may therefore be preferable to neglect contributions associated with small 
singular values. A useful solution (Lawson 1971) of the least-squares problem may 
then be obtained by replacing all singular values below a given limit dmin  by zero 
and proceeding as in the case of degenerate normal equations. As a result the loss 
function is slightly higher than the exact minimum. This is preferable, however, to a 
solution that is far off the correct value due to the strong influence of measurement 
errors. 

As a general means for avoiding singularities one may employ a fixed limit 
dmin /di = a for truncating the singular values, where a is a predefined value some 
orders of magnitude above the machine accuracy Emach.  Improved results for a 
particular least-squares problem may furthermore be obtained from an analysis of 
the sequence of singular values as well as the associated solution and loss function 
value. Considering 

d1 	d2 	• • • 	dm  

u T  b 	141) 	UT b 
1   x 	= 	v1+ 	: v2+...+ m 	vm 	 (8.86) 

d1 	a2 	dm  

J(x) = bT b  _ (u T b)2 _ (4 b)2 _ . .  

one may then select a value for di-nin , which reduces the loss function to an acceptable 
value but does not give rise to a large value of x. 

8.3 Kalman Filtering 

The least-squares or batch estimation method yields an estimate of the epoch state 
vector by processing the complete set of observations in each iteration. Therefore, 
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it requires that all measurements to be considered in an orbit determination are 
available before the a priori information can be improved. This makes least-squares 
estimation less convenient for real-time or near-real-time applications that call 
for a quasi-Continuous update of the state information with each observation. In 
addition, the least-squares method requires the estimate of the epoch state vector 
to fit the entire data span, which makes it suceptible to dynamical model errors and 
the assumption of constant measurement biases. An alternative estimation method 
which copes with these problems, is known as sequential estimation or Kalman filter 
referring to the pioneering work of Kalman (1960) and Kalman & Bucy (1961). 

8.3.1 Recursive Formulation of Least-Squares Estimation 

Despite evident differences between least-squares estimation and the Kalman filter, 
both methods can be related to each other by a variety of intermediate formulations. 
In order to derive the filter equations from the least-squares method, one may con-
sider a situation in which the whole set of observations is partitioned into statistically 
independent batches or subsets and ask how the estimated epoch state changes by 
including successive batches into the estimation. 

Upon processing a single batch of measurements z, an a priori estimate xo—  = 
ref X 0  ± Ax 0—  and its covariance Po—  are assumed to be available either from the pro-

cessing of previous data batches or from initial information. As usual, all quantities 
are linearized about a common reference state xroef  . Based on the solution (8.50) of 
the general least-squares problem, the measurements and the a priori estimate can 
now be combined into an improved estimate 

,Axt, = P (1-  ((.1) (7) -1 ,Ax (7, ± H T  W Az) 	 (8.87) 

Here, the a-posteriori covariance matrix 

(-1)8-) = ((P)_1  ± (H T  W H)) 1 	 (8.88) 

represents the increased knowledge of xo resulting from both the a priori informa-
tion and the latest data batch. 

In order to relate the new estimate 	to the previous estimate x 0—  , one substi- 
tutes the a priori information matrix by the difference 

up0-1 up-01-)-1 (HTwH) 	 (8.89) 

of the a-posteriori information matrix and the measurement information matrix. 
This yields the basic expression 

Axt, =  Lx  ± Pt, HT  W (Liz — Htlx0— ) 	 (8.90) 

for a recursive formulation of least-squares estimation. The matrix 

K = PHTW 	 (8.91) 
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maps the residuals 

p = Az — HAx o—  = z — h(xr) — HAx o— 	 (8.92) 

into an appropriate correction of the estimate x o—  and is known as Kalman gain. The 
vector p represents residuals with respect to reference values defined by the estimate 
xo— . It is computed from the measurements z, the reference-model observations 
h (x roef  ) and a linear correction H (x — x roef  ) that accounts for the difference between 
xo—  and the reference state. 

A recursive formulation of the orbit determination problem as given above 
has already been suggested by Swerling (1959) but could not gain widespread 
acceptance. For practical applications (8.90) suffers from the fact that the direct 
computation of the covariance matrix .138-  from (8.88) requires the inversion of an 
m x m-matrix in each step with m denoting the dimension of the estimation vector 
xo. To remove this deficiency the product K = PHT  W can be replaced by the 
equivalent expression 

K  p o— HT ( w - 1 Hp o— HT) 1 	 (8.93) 

Even though this expression seems to be more involved at first sight, it turns out to 
be more efficient, if the size of each data set is small compared to the dimension 
m. In particular, this is the case when each batch consists of a single observation 
only. The matrix is then reduced to a scalar quantity and the inverse is obtained by 
a simple division. 

The validity of substitution (8.93) follows from the relation 

HT HTw H p H T 	____=. HT H T wH p H T 

H T  4 (1 4 —1  H P HT  ) = (p-1 ± HT w p H T 

(p-1 ± H T w H)-1 H T w = p H T (ur-1 ffv 	H P H T  ) -1  , 
(8.94) 

which is based on a matrix inversion lemma attributed to A. S. Householder see 
Bierman 1977). Considering, furthemiore, the identities 

= 13 8 (P8- ) -1  
= 1) 8-  ((PD -1  + HT W H ) 
=  P  ± (Pt, H T  W)H P (7, 
= 	K H 13 (7, , 

(8.95) 

the Kalman gain K may also be employed to compute the updated covariance 
matrix 

= (1 — K H)P (1, 	 (8.96) 

without the need to invert the normal equations matrix. 
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Recursive Estimation Algorithm 

Combining the results obtained so far, the recursive least-squares estimation al-
gorithm proceeds  in the following way. Given the a priori and reference state xg, 
the associated covariance P2, and the measurement batches zi (I = 1, , N) 
recursive estimates x6 of the epoch state xo as well as the associated covariance 
matrices  P6 are computed for each batch (I =1, N) via the steps Kalman-gain 
computation, epoch state vector update and epoch covariance update 

K1 	 H  poi—i HD-1 

I-1 X = X0 	KI - 111(4) — H1(4' — Ax)) 
1

6 	(1— ICI-111) 13 01-1  

(8.97) 

While the above expressions are general enough to handle an arbitrary number of 
measurements per batch, the Kalman-gain computation is optimized for processing 
only a small number of measurements per step. Thus each batch will usually com-
prise a vector of measurement taken at a common epoch with possible correlations 
or a single, scalar observation. Uncorrelated measurements can always be processed 
one at a time3 , in which case the vector zi is replaced by the scalar measurement 
zi , the weighting matrix W1 is replaced by the scalar weighting factor wi = 
and the Kalman gain matrix K1 becomes a vector IQ with the same dimension (m) 
as the state vector x0. Similarly, the Jacobian H1 = 8Z1 /8x0  reduces to a 1 x m 
matrix (i.e. a row vector), which means that products of the foini HPHT  or Hx 
are scalar quantities, too. The resulting set of equations may then be written as 

p 	(0,12 ± Hi p io—i HT ) -1 

x io-1  ki(zi — hi (4) — H 	— xg)) 
	

(8.98) 

= (1— kiHi) Pio-1  

In the expression for the covariance update care should be taken that kiHi denotes 
the dyadic product of the Kalman gain (a column vector) and the measurement 
partials (a row vector). Unlike the dot product that results in a scalar value, the 
dyadic product yields an m x m matrix. 

Independent of the subdivision of the measurement vector into individual 
batches the state estimate and covariance obtained after processing the last ob-
servation is identical to the one that would have been obtained in the first iteration 
of the standard least-squares method. The recursive formulation may be used, how-
ever, to obtain state estimates and covariances after each measurement without the 
need to collect all observations before inverting the normal equations. 

3 Appropriate transformations for the treatment of vector observations with correlated measure-
ment errors are discussed in Andrews (1968). 
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8.3.2 Sequential Estimation 

Even though the recursive least-squares estimation allows an on-line monitoring of 
the way in which each observation improves the epoch state estimate, the method 
cannot readily be used to obtain estimates of the state vector at the measurement 
times. This requires a propagation of both the state vector and its covariance between 
the times of successive observations and yields the classical sequential estimation 
or Kalman filter algorithm 

In the sequel it is assumed that a single data set zi contains only observations 
taken at the same time ti . As an example a batch of measurements may consist 
of a pair of azimuth/elevation values that have been obtained simultaneously from 
the antenna or it may consist of a single range measurement taken independently. 
Starting from the state and covariance at a previous epoch ti_i the measurement 
vector zi can then be used to obtain an improved state vector at the measurement 
epoch ti together with the associated covariance. For that purpose let 

ref 	 ref X i = X (ti ; X (to) = X \ 
 0 = X (ti X (4-1) X ef i ) 	 (8.99) 

denote the state vector that is obtained by propagating the epoch reference state 
xoref  from to to ti or, alternatively, by propagating xr. d  from ti_i to ti . Furthermore, / —1 
let 

aX r. ef  
(Pi = 0(t, ti-1) = ref 	 = (ti, t0) 0 (ti-1, t0) -1 	 (8.100) 

A, 
 

denote the state transition matrix from epoch ti _i to epoch ti, which follows from 
the solution of the appropriate variational equations. 

Using these quantities, the state vector 4-  (obtained from data up to and 
including time t1 _1) may be employed to predict an a priori state vector 

X: 	X ref 	(xi /-1 	/ —1 
	 (8.101) 

at epoch ti . The corresponding a priori covariance at that epoch follows from 

= 

E (0i(xt 	1 ))(xt —E(xt i )) T OT) 

-13-  1 4'T 

where P+—  is the covariance of x . t Since the observations zi have not yet been /1  
taken into account, the information contained in x ï and PT is exactly the same as 
that in  x 	and P» except for the epoch to which these values refer. 

In order to incorporate the new measurements and update the a priori informa-
tion, the residual vector pi  is expressed as a function of quantities referring to ti 

instead of to: 

(8.102) 

pi  = zi — hi(xroef ) — i(x (7, — xroef) 

= zi — g(x) — Gi(xT — xrief ) . 
(8.103) 
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Here hi, which models the observations at time ti in terms of the state at epoch to, 
has been replaced by the equivalent function 

gi (ti, x(4)) = hi(ti,x(to)) 
	

(8.104) 

which models the observations in terms of the state vector at the measurement time 
(cf. (8.5)). Accordingly, the Jacobian H i has been factored into 

azi  

Hi 	
azi  axiref 

axroef = axef axroef 
Gig) (ti, to) (8.105) 

to obtain the desired expression for the residual vector. Similarly, the Kalman gain 
is formulated as 

Ki = PT GT (Wï l  GiPÏGT) -1  , 	 (8.106) 

which maps the residuals into a state vector correction at the measurement epoch 
ti. 

Linearized Kalman Filter 

Combining the results obtained so far, the sequential estimation algorithm or Kalman 
filter proceeds by computing estimates  xt  of the state vector at the measurement 
times ti (i = 1, .. . , n) as well as the associated covariance matrices Pt via se-
quential time and measurement update steps (Fig. 8.7). 

The time update phase starts with the integration of the equation of motion and 
the variational equations from  ti_i  to ti in order to obtain the reference state xii-ef  
and the transition matrix Oi . Using these quantities the previous 

Estimated 
Trajectory 

Reference 
Trajectory 

xoref po  

 

Fig. 8.7. The linearized Kalman filter (LKF) refers all measurements and state corrections to a 
common reference trajectory. Initially, when the covariance is still small, the filter output closely 
matches the observations (shaded circles). Later on, the filter approaches the true trajectory and 
becomes less sensitive to new data. Due to the increasing difference between the reference state and 
the estimated trajectory the filter output may become erroneous in case of non-linearities. 
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estimate xt and the associated covariance matrix Pt may then be propagated / —1 	 —1 
to the time ti of the most recent measurement: 

x7 	ref — x i  ± ip i  (x+ _ 
X1 

ref \ 
— 1 	i — ) 

P7 P t (PT • 

(8.107) 

The subsequent measurement update phase comprises the computation of the 
Kalman gain as well the state and covariance update: 

K  =Pï GT (Wï l  Gi PT GT) -1  

= x7 Ki (zi g 	) Gi (xi  xr.e f )) 
	

(8.108) 

Pt = (1— K iGi ) Pï 

The filter starts with x0+  = xroef  and Po+  = Proef . 

8.3.3 Extended Kalman Filter 

The sequential processing of a given set of measurements corresponds essentially 
to a single iteration of the least-squares estimation method. For a successful appli-
cation of the basic Kalman filter the deviations between the reference state and the 
estimated state must therefore be small enough to neglect any non-linearities in the 
system dynamics  and the measurement modeling. In order to avoid this restriction 
and make full use of the advantages of sequential estimation for orbit determina-
tion purposes the Extended Kalman Filter has been developed (Fig. 8.8). It may 
be derived from the basic Kalman filter by resetting the reference state x 1  to the 
estimate x» 1 at the start of each step. 

The time update phase of the extended filter thus comprises the propagation 
of the previous estimate xt from ti_i to ti and the simultaneous solution of the 

Estimated 
Trajectory 

x1 f,  PI- 

xoref,  po  

 

Fig. 8.8. The extended Kalman filter (EKF) makes use of the latest estimate to propagate the state 
vector and the state transition matrix. This makes the EKF less sensitive to non-linearities than the 
linearized Kalman filter. 
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variational equations for the state transition matrix. As a result one obtains the 
predicted state vector xï and the associated covariance matrix PI:  

P7 

= x (ti x(ti-1) = 41 1) 

= 4̀ i Pt 4)T 
(8.109) 

The measurement update phase remains the same as for the basic Kalman filter, 
except for the simplified state update equation: 

Ki = P i— GT (W i-1  GiPi— GT) -1  

xt = x i—  ± Ki  (zi — gi  (x i— )) 	 (8.110) 

P» = (1— KiGi) P 

The filter starts with xo = x 0aPr  and Po = PoaPr . Due to the regular update of the 
reference state non-linearities are reduced to a minimum and within a few steps the 
filter may arrive at a solution that would otherwise require multiple iterations. 

Some price has to be paid, however, for the improved perfoiniance of the 
extended Kalman filter that results from an increased computational effort for the 
state and covariance propagation. When using the same reference orbit for the 
processing of all measurements in the basic Kalman filter, only one initial value 
problem has to be solved by numerical integration. The reference state and state 
transition matrix at the time of a particular measurement can then be obtained 
by interpolation independent of the stepsize control employed for the integration. 
In case of the extended filter a separate initial value problem has to be solved 
for each measurement to be processed, and the required restart of the integration 
method may then result in a considerable increase in computing time. Typically, 
low-order-single-step integration methods like the 4th-order Runge—Kutta scheme 
are therefore employed in real-time orbit deteimination programs based on extended 
Kalman filters. 

8.3.4 Factorization Methods 

As with the batch least-squares method the perfoimance of a Kalman filter may 
deteriorate considerably under certain conditions unless special care is taken to 
reduce the impact of numerical errors in the computation. The problem is more 
serious, however, in case of the Kalman filter, since it must often be implemented 
in single precision arithmetic to speed up the computation in real-time or on-board 
applications. 

A simple, but efficient method of coping with these difficulties consists of 
using the Joseph algorithm (Bucy & Joseph 1968) for the update of the covariance 
matrix. Since the covariance Pi becomes smaller and smaller as new observations 
are processed, round-off errors in the update foimulas 

= (1— KiGi)P i— 	 (8.111) 
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may ultimately result in a matrix with small  negative or zero eigenvalues, which 
does not represent the true covariance matrix anymore and leads to a failure of the 
filtering algorithm. Rewriting the update foimula as 

Pt = (1— KiGi)P7 

(1— K iGi )P1 — Pt GT KT PI- GT.  KT 	 (8.112) 

= ( 1 — KiGi) PT (1— KiGi)T 	G T K T 
and making use of Ki = Pt GT  W one may, however, obtain an alternative update 
formula 

Pt  = (1— K i Gi) P (1— KiGi) T  KiW KT , 	 (8.113) 

which ensures that t  is always positive definite irrespective of errors in Ki or 
1 — KiGi. With minor modifications the stabilized update, which has here been 
derived for the extended Kalman filter, may equally well be applied to other forms 
of recursive and sequential estimators. 

Further methods, which are more closely related to techniques employed for a 
numerical stable solution of the least-squares problem, make use of an appropriate 
factorization of the covariance matrix (or information matrix). By updating the 
factorization instead of the covariance matrix an annihilation of near-equal numbers 
is avoided and the filter becomes less sensitive to round-off errors. Single precision 
arithmetic may then be used to obtain an accuracy that would otherwise require 
twice the word length. 

The square root factorization method due to Potter and Andrews (see Battin 
1987, Bierman 1977) utilizes a factorization of the foul' 

=  SS T 	 (8.114) 

and replaces the update foimula- for Pi by an update formula for its square root Si. 
An equally stable but computationally more efficient method is the UDU T  -Filter 
developed by Biennan (1977), which makes use of a factorization into an upper 
triangular matrix U and a diagonal matrix D. 

Further details  and reviews of various types of square root filters and factor-
ization methods for sequential estimation are given in Kaminsky et al. (1971) and 
Bierman (1977). As regards the computer performance and resource requirements, 
factorization methods have been shown to be fully compatible with simple for-
mulations of the Kalman filter provided that they are coded in an optimal way (cf. 
Bielinan 1977, Campbell et al. 1983). For practical applications the use of advanced 
Kalman filter implementations is considerably facilitated by appropriate software 
libraries (see e.g. Bieinian & Bieiman 1984, Branyon et al. 1988). 

8.3.5 Process Noise 

A phenomenon that is likely to occur in the practical application of a Kalman filter 
is the filter's divergence from the actual solution after processing a certain amount 
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of .data. Initially, the state uncertainty and the corresponding covariance matrix is 
sufficiently high to allow an appropriate correction of the state vector with each 
new observation. As more and more measurements are processed, however, both the 
covariance Matrix and the Kalman gain approach zero, which may ultimately inhibit 
further improvements of the state vector. Any errors that arise from small non-
linearities, round-off errors or simplifications of the force and measurement model 
will then be propagated without further correction by subsequent measurements 
and result in an erroneous and diverging state estimate. 

A possible way of coping with this problem consists of adding a small noise teiin 
to the covariance matrix in each step that inhibits the matrix from getting smaller 
and smaller. The method arises from the concept of process noise, which affects 
the system dynamics in much the same way as the measurement noise affects the 
observations. The differential equation describing the evolution of the state vector 
is supplemented by a teiin u(t) to represent stochastic modeling errors inherent in 
the description of the dynamical system: 

	

= f (t , x) 	u(t) . 	 (8.115) 

As an approximation of the actual modeling errors, u(t) is assumed to be a random 
variable with mean value 

	

E(u(t)) = 0 	 (8.116) 

and covariance 

E(u(t)u(t I)) = Q(t)8(t — t') 	 (8.117) 

The covariance may be time-dependent, but no time correlation is assumed to exist 
as expressed by the Dirac delta function 8 (t — t'). Frequently, the latter property 
is expressed by the teim white noise in contrast to colored noise which exhibits a 
correlation in time. 

Since the expected value of the process noise is zero, it does not affect the 
orbit on the average. The state estimate may therefore be propagated as usual 
by solving the equation of motion without consideration of the noise teiiii. The 
covariance propagation formula is modified, however, to account for an increased 
state uncertainty due to the presence of process noise. Since each time interval 
[t, t--1-dt] within ti_i and ti gives rise to a contribution Q(t)dt to the covariance at 
time t, the predicted covariance at ti is given by 

	

(1) (ti, 	1 0 T  (ti, ti_i) 	f 	(ti, t)Q(t)O T  (te, t)dt , (8.118) 

tu  

where the integral can be obtained analytically for simple dynamical systems 
(Brown & Hwang 1996). Alternatively, the matrix differential equation 

dP (t)  fa f\ 	 /apT 

dt 	 ) (t) P (t) 	Q(t)  x 
(8.119) 
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with initial conditions P(ti_i ) =  P 1  is integrated along with the state vector in 
the continuous discrete Kalman filter to obtain continuous covariance information 
between the measurement updates (see. e.g. Halain et al. 1998). 

If Q does not depend on t and if the interval between subsequent measurements 
is small enough to neglect deviations of the state transition matrix from unity, the 
covariance propagation may further be simplified yielding .  

' = ck(ti, 	i ck T  (ti, t1 _1) 	Q (ti — t 1 _1) 	 (8.120)  

The Q-matrix thus contributes to an increase of the covariance in each step and can 
be used to balance the subsequent decrease due to the processing of a measurement. 

Taking into account process noise gives the filter a fading memory characteris-
tics, which means that past observations have a gradually decreasing effect on the 
state estimate. By increasing the Q-matrix, both the covariance and the Kalman 
gain increase, thus making the filter more sensitive to new observations. A small 
value of the Q-matrix is necessary, on the other hand, to avoid large state corrections 
in the event of erroneous observations. In practical applications the Q-matrix may 
be deteimined by simulations in order to find a proper balance between process and 
measurement noise and ensure an optimum filter perfoimance. 

An alternative approach has been developed by Wright (1981), which builds 
a covariance based on physical models of error contributions such as drag, grav-
ity, and propulsion system perfoimance as well as measurement characteristics. 
This technique is particularly robust and overcomes problems encountered in the 
traditional modeling of process noise. 

8.4 Comparison of Batch and Sequential Estimation 

As has been pointed out in the introduction, the common estimation techniques 
employed for orbit determination purposes are closely related to each other and a 
smooth transition is possible from the batch least-squares method to the various 
foul's of Kalman filter. Each type of estimator has inherent advantages and disad-
vantages and a trade-off is usually required to select the most suitable estimation 
method for a particular application: 

Measurement processing and state correction: The classic batch least-squares 
method computes the epoch state estimate after processing the full set of ob-
servations. If improved epoch state estimates are required after each measure-
ment, a foimulation involving Givens rotations or the recursive least-squares 
method may be used. The Kalman filter in contrast processes a single scalar 
or vector measurement at a time and yields sequential state estimates at the 
measurement times. 

•  Treatment of non-linearities: Due to the non-linear relation between the epoch 
state vector and the modeled measurements, multiple iterations are required 
in the least-squares method to compute a state estimate that actually mini-
mizes the loss function. Using the extended Kalman filter these iterations may 
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in general be avoided, since the reference solution is changed with each ob-
servation. Problems are more likely, however, in the case of large deviations 
between the a priori state and the actual state as well as poor management of 
the  covariance.  

• Computer implementation: When using a Kalman filter for orbit determi-
nation there is no need for storing measurements from previous time steps. 
Storage requirements are therefore smaller than for the least-squares method, 
in which various data have to be stored for subsequent iterations. 

• Numerical stability: Both filters and least-squares estimators may be sub-
ject to numerical problems in the case of bad observability as indicated by 
an ill-conditioned noinial equations matrix or covariance matrix. Numeri-
cally stable algorithms employing different types of matrix factorizations are 
available, however, for both estimation techniques. The increase in comput-
ing effort and storage requirement is generally negligible and the stabilized 
algorithms can therefore be recommended for most applications. 

• Divergence: A divergence of the least-squares solution from one iteration to 
the next may occur in rare instances of bad observability, a bad initial state 
estimate and high non-linearities. All of these could also cause a Kalman 
filter to diverge. In addition divergence of the state estimate from the true 
solution is likely to occur in a Kalman filter, when the covariance becomes 
small and the filter gets insensitive to new observations. Process noise may 
be incorporated into the filter to avoid divergence but heuristic assumptions 
and simulations are often required to determine the appropriate noise model 
for a particular situation, unless a physical description of the process noise 
density matrix is available. 

• Process noise: A unique feature of Kalman filters as compared to the least-
squares method is the incorporation of process noise into the estimation pro-
cess. Aside from being required to avoid filter divergence problems, it may 
be employed to get more realistic covariance predictions in the presence of 
unmodeled accelerations. Furthermore, it may be used to reduce the influ-
ence of past observations on the state estimate as compared to more recent 
observations. 

• Influence of bad data points: The batch estimator and the recursive least-
squares method process all data points using a common reference trajectory. 
This facilitates the handling of bad data points, which may be recognized by 
residuals that are considerably larger than the average value. In general the 
least-squares technique is therefore more robust and easier to handle than 
the Kalman filter. The latter requires a careful balancing between a priori 
covariance, measurement weighting and process noise to allow a rejection 
of bad data points. For example, a Q-matrix, which is too large, will allow 
larger measurement errors to be accepted. One which is too small may allow 
good measurements to be rejected. 
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Traditional applications in which Kalman filters are preferred to batch least-squares 
techniques include the on-board navigation of manned or unmanned spacecraft 
requiring a real-time state estimate (Battin & Levine 1970). Filtering techniques are, 
furthermore, used in the field of interplanetary orbit determination and navigation. 
By incorporating appropriate process noise, unmodeled statistical accelerations due 
to attitude thruster activities or radiation pressure modeling simplifications may be 
accounted for, which provides more realistic estimates of the injection error near 
the target planet (Campbell et al. 1983). 

The batch least-squares method on the other hand is commonly employed for 
off-line orbit determination of Earth-bound satellites (Long et al. 1989, Soop 1983) 
and for the estimation of geodetic parameters from satellite orbits (McCarthy et al. 
1993). A comparison indicating a good agreement of orbit determination results 
from precision batch least-squares and sequential estimation programs (GTDS, 
RTOD/E) for satellites tracked by the Tracking Data and Relay Satellite System 
(TDRSS) has recently been established by a study conducted on behalf of the God-
dard Space Flight Center (Oza et al. 1992) Similar conclusions have been obtained 
by Halain et al. (1998) for single and multi-station tracking of geostationary satel-
lites. 
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Exercises 

Exercise 8.1 (Givens Rotations) The following sequence of measurements zi 
of a physical quantity z(t) has been collected at non-equidistant times ti : 

i 0 1 2 3 4 5 6 
ti 0.04 0.32 0.51 0.73 1.03 1.42 1.60 
zi 2.63 1.18 1.16 1.54 2.65 5.41 7.67 

From a graphical representation of the measurements a quadratic relation between 
z and t may be suspected. Employ a least-squares estimation with Givens rotations 
to adjust a second-order polynomial 

z(t) = co + ci -t + c2.t 2 	 (8.121) 

to the data points (adopted from Schwarz 1988). 

Solution: Inserting the measurement zi and times ti into (8.121) yields an overde-
termined linear system of equations Ax = b with 

A = 

(1.0 
1.0 
1.0 
1.0 
1 .0 
1.0 

\1.0 

0.04 
0.32 
0.51 
0.73 
1.03 
1.42 
1.60 

0.0016\ 
 0.1024 

0.2601 
0.5329 
1.0609 
2.0164 
2.5600/ 

co) 
x = (ci 

c2 
b = 

12.63\ 
1.18 
1.16 
1.54 
2.65 
5.41 

\7.67/ 

Upon processing each individual data equation using Givens rotations, the following 
values for the square-root information matrix R and the transformed measurement 
vector d are obtained: 

Ro  = . 

R1 = 

R2 = 

R3 = 

R6 = 

(+1.0000 
+0.0000 
+0.0000 

(+1.4142 
+0.0000 
+0.0000 

(+1.7321 
+0.0000 
+0.0000 

(+2.0000 
+0.0000 
+0.0000 

(+2.6458 
+0.0000 
+0.0000 

+0.0400 
+0.0000 
+0.0000 

+0.2546 
+0.1980 
+0.0000 

+0.5023 
+0.3344 
+0.0000 

+0.8000 
+0.5070 
+0.0000 

+2.1355 
+1.4050 
+0.0000 

+0.0016 
+0.0000 
+0.0000 

+0.0735 
+0.0713 
+0.0000 

+0.2102 
+0.1791 
+0.0432 

+0.4485 
+0.3860 
+0.1093 

+2.4697 
+2.3719 
+0.6179 

+2.6300 
( +0.0000 

+0.0000 ) 

+2.6941 
dl = 	-1.0253 

( +0.0000 

+2.8694 
d2 = 	-1.0973 

+0.4660 

() 

(+3.2550) 
d3 = 	-0.7997 

+0.8806 

+8.4059 
d6 = 	+4.9335 

+3.4646) 

Using backsubstitution, one finally obtains the solution: 
( co 	 +2.749198 
ci) = 	d6 = (-5.954657 
c2 	 +5.607247 
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Exercise 8.2 (Least-Squares Orbit Determination) The Bangalore ground sta-
tion, located in India at R = (+1344.0, +6069.0, 1429.0) km, has collected six 
sets of range and angle tracking data of a telecommunications satellite in geosta-
tionary transfer orbit: 

Date UTC A [°] E p [km] 
1995/03/30 00:20:00.0 196.280 49.179 6606.330 
1995/03/30 00:40:00.0 148.760 55.273 11459.583 
1995/03/30 01:00:00.0 133.129 53.164 15939.297 
1995/03/30 01:20:00.0 126.894 52.313 19747.028 
1995/03/30 01:40:00.0 124.077 52.575 22978.426 
1995/03/30 02:00:00.0 122.943 53.574 25728.145 

According to the launcher agency, the nominal position and velocity with respect 
to the Earth equator and equinox are given by 

r (to) = (-6335.0, -3728.0, -579.0)km 
v (to) = (+2.1680, -9.2630, -1.0795) km/s 

at the time to = 1995/03/30 00:00 UTC of injection. Determine the achieved injec-
tion state from the above observations using a batch least-squares fit. How many 
iterations are required and how accurate is your result, assuming that the standard 
deviation of the measurements amounts to o-A = 0.01 0  - cos(E), (TE = 0.01° and 
a =  10m?  

Hint: The above observations match a Keplerian orbit with epoch state vector 

r (to) = (-6345 .0 , -3723.0, -580.0)1cm 
v(to) = (+2.1690, -9.2660, -1.0790)1cm/s 

neglecting precession, nutation, UT1-UTC, light time and refraction. The same 
model is recommended for the orbit determination process. 

Solution: The following residuals are obtained in the first and second iteration: 

1st Iteration 2nd Iteration 
Date UTC A [°] E [O] 	p [m] A [°] E [3 ] p [m] 

1995/03/30 00:20:00.0 0.100 -0.002 	5479.1 0.001 0.002 -4.5 
1995/03/30 00:40:00.0 0.063 0.044 	14250.5 -0.001 0.001 0.8 
1995/03/30 01:00:00.0 0.055 0.063 	28320.9 -0.001 0.001 10.0 
1995/03/30 01:20:00.0 0.065 0.081 	45272.4 -0.001 0.000 24.7 
1995/03/30 01:40:00.0 0.083 0.100 	64708.7 -0.001 0.000 43.7 
1995/03/30 02:00:00.0 0.108 0.120 	86542.9 -0.000 0.000 66.1 

Thereafter, all residuals vanish to the given number of digits. Likewise, the a priori 
state vector is corrected to the final value within two iterations: 

Parameter A priori A1 A2 Final 
x [m] -6335000.0 -9946.9 -53.1 -6345000.0 276.9 
Y -3728000.0 5188.3 -188.3 -3723000.0 737.0 
z [m] -579000.0 -1124.8 124.8 -580000.0 829.8 

[m/s] 2168.0000 0.8918 0.1082 2169.0000 0.6520 
[m/s] -9263.0000 -3.0983 0.0983 -9266.0000 0.5226 
[m/s] -1079.5000 0.3216 0.1784 -1079.0000 0.3695 

The standard deviation of the achieved estimate amounts to roughly 1 km in position 
and 1 m/s in velocity. 
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Exercise 8.3 (Orbit Determination by Extended Kalman Filter) Process the 
measurements and auxiliary data given in Exercise 8.2 in an extended Kalman 
filter to determine the spacecraft state vector at the time of each measurement. To 
initialize the filter, assume an a priori standard deviation of 10 km viz. 10 m/s in 
each axis. Compute the position and velocity error with respect to the true Keplerian 
orbit after each time and measurement update and compare your results with the 
standard deviation obtained from the diagonal elements of the covariance matrix. 

Hint: Instead of processing the simultaneous azimuth, elevation and range mea-
surements in a three-dimensional vector update of the Kalman filter, three consec-
utive scalar updates can be employed. This saves the need for a three-dimensional 
matrix inversion in the computation of the Kalman gain. 

Solution: The uncertainty of the epoch state vector propagates into a 30 km and 
24 m/s standard deviation of position and velocity at the time of the first measure-
ment. Because the combination of two angle measurements and a range measure-
ment provides a three-dimensional position fix, the position uncertainty is decreased 
to less than 2 km after processing the first set of observations. The velocity knowl-
edge, on the other hand, is only improved after processing the next data set. Due 
to the absence of measurement and model errors in the given example, the filter 
finally achieves an actual accuracy in the range of  100m  and 1-10 cm/s, which may 
be compared to the statistical uncertainties of 3 km and 0.5 m/s. 

Date UTC Update 
Alrl 
[m]  

a(Id )  
[mis] 

Alvl 
[m]  

0- (1 13 1) 
[mis] 

1995/03/30 00:20:00.0 t 9321.4 29905.8 10.2672 24.0682 
A 1113.8 22177.0 8.3429 19.8879 

498,8 18155.2 8.6497 18.8681 
44.2 1623.6 8.5132 12.2137 

1995/03/30 00:40:00.0 t 10320.2 14727.9 8.9699 12.1528 
A 6599.9 12044.8 5.9084 10.1173 

5786.9 8548.2 5.3129 7.7209 
237.5 2713.7 0.3564 2.5002 

1995/03/30 01:00:00.0 t 646.0 5338.6 0.3368 2.2941 
A 292.4 4435.5 0.1985 1.9658 

275.6 3256.8 0.1939 1.5474 
66.7 2767.3 0.0318 1.1352 

1995/03/30 01:20:00.0 t 98.3 3924.7 0.0297 1.0344 
A 100.2 3642.8 0.0315 0.9723 

62.6 2979.8 0.0201 0.8003 
61.1 2969.9 0.0191 0.7867 

1995/03/30 01:40:00.0 t 80.1 3779.6 0.0178 0.7179 
A 80.7 3556.2 0.0186 0.6812 

57.2 3094.4 0.0135 0.5955 
56.1 3087.9 0.0125 0.5862 

1995/03/30 02:00:00.0 t 68.7 3696.8 0.0117 0.5349 
A 68.8 3513.9 0.0121 0.5113 

52.2 3159.3 0.0093 0.4608 
52.3 3153.0 0.0089 0.4571 





9. Applications 

The presentation of statistical estimation methods given in the previous chapter 
forms the final building block in the derivation of fundamental models and methods 
for satellite orbit prediction and determination. Focus is now given to the practical 
aspects by discussing selected applications, each of which emphasizes certain key 
elements: 

• an Orbit Determination Error Analysis illustrates the use of consider covari-
ance studies in the design of tracking systems for geostationary communica-
tions satellites, 

• a section on Real-Time Orbit Determination discusses the design and ap-
plication of a dynamical Kalman filter for autonomous orbit determination 
based on on-board navigation measurements and, finally, 

• concepts of satellite-satellite tracking and multi-satellite orbit adjustment are 
demonstrated in the section on Relay Satellite Orbit Determination. 

Each section comprises a dedicated computer program, which deepens the under-
standing of the interaction of numerical trajectory models, measurement processing, 
and estimation methods in related software systems. Upon performing realistic case 
studies and processing real-life data, the reader should be able to collect hands-on 
experience and gain a better understanding of the underlying models and methods. 

9.1 Orbit Determination Error Analysis 

In the mission design of geostationary satellite projects, certain requirements on 
the orbit determination accuracy are commonly imposed to ensure safe and fuel-
optimal spacecraft control. Each satellite must be maintained within given limits 
of the sub-satellite longitude and latitude that have been assigned by international 
agreement. A minimum position knowledge is required e.g. to avoid violations of 
the specified deadband and to avoid proximities with other satellites. A consider 
covariance analysis is helpful to answer the following questions: 

• Can a given knowledge of the orbital elements be achieved with the planned 
tracking configuration? 

• What is the impact of the systematic errors in the station location or the 
ranging calibration onto the resulting orbit determination accuracy? 

• How quickly, and to what accuracy can the orbit be recovered after a maneuver 
and how does the maneuver calibration uncertainty affect the evolution of the 
predicted spacecraft orbit? 
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While answers to the above questions might also be obtained from a Monte-Carlo 
simulation, a large number of cases would be required to obtain the desired statistical 
information. Using the type of orbit determination error analysis described below, 
results can generally be obtained much faster and with less computational effort. 

Fig. 9.1. Motion of a satellite in the vicinity of a geostationary point 

9.1.1 A Linearized Orbit Model 

As their name implies, geostationary satellites maintain an essentially fixed position 
with respect to the surface of the Earth. This is made possible by inserting the 
spacecraft into a circular, equatorial orbit at an altitude of roughly 36 000 km Here 
its mean motion matches the Earth's rotation rate of one revolution per 23 1i56m and 
the spacecraft thus remains fixed with respect to the surface of the Earth. While an 
ideal geostationary motion is prevented by the perturbations of the Earth's aspherical 
gravity field, the lunisolar gravity and the solar radiation pressure, it is common 
practice to actively control a satellite in a box of 100-150 km width around a 
nominal geostationary longitude. 

Due to its special nature the actual motion of a (near-)geostationary satellite 
may conveniently be described in a co-rotating equatorial reference frame, which 
is centered at the ideal geostationary position (Fig. 9.1). The coordinates r = 
(x, y,  z) T  in this frame are related to the inertial coordinates (as referred to the 
true equator and equinox) by the relation 

r = Rz (G1  + X0) "i; — (ao, 0, 0) T  . 	 (9.1) 

Here À0 and a() = 42 164 0 km denote the geographic longitude and the radius of 
the geostationary reference point. 

The transformation into the rotating reference frame gives rise to Coriolis terms 
and centripetal accelerations, which may, however, be simplified by linearization 
around the circular reference orbit. The resulting equations of motion 

— 2n5) — 3n2x = ax  
j+2n 	= ay 	 (9.2) 

n2z = az 
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relate the coordinates x (radial direction), y (along-track direction), and z (cross-
track direction) to the perturbing accelerations (ax , ay , az ) and are known as Hill's 
equations or Clohessy—Wiltshire equations (Clohessy & Wiltshire 1960). The quan-
tity n  denotes  the mean motion of the reference orbit and is equal to the Earth's 
rotation rate when considering the motion near a geostationary point. 

In the simplifying case of unperturbed, Keplerian motion the equations can 
be integrated in closed form (cf. Vallado 1997). For given initial conditions  Yo  = 
(xo, yo, zo, .0) 7' the position at time t after the initial epoch is given by 

x(t) = —(3x0+40/n)cos(nt) + (io/n)sin(nt) + (4x0+2k)/n) 

At) = -F(6xo+4570/n)sin(nt) + (2.io/n)cos(nt) 
—(6x0+3.Yo/n) (nt) + (yo—Zio/n) (9.3)  

z(t) = 	(zo)cos(nt) + (io/n)sin(nt) . 

As may already be recognized from the Clohessy—Wiltshire equations, the mo-
tion along the z-axis (i.e. in north-south direction) is a harmonic oscillation that 
is completely decoupled from the motion in the x-y-plane. The motion within the 
equatorial plane is more complex and comprises a constant offset from the geo-
stationary reference point, a linear drift in the along-track direction (y-axis) and a 
superimposed oscillation. The latter results in an ellipse which is twice as large in 
the along-track direction as in the radial direction. The constant offset 

Aa =4x0 40/n 	 (9.4) 

in radial direction corresponds to a difference between the actual semi-major axis 
and the geostationary radius. It is responsible for the observed drift of 

aAn = --
3

nAa = —(6nx0 3.5 10) 2 
(9.5) 

in the +y-direction (see (9.3)). 
The above equations may be supplemented by the corresponding expressions 

for the velocity vector and rearranged to obtain a linear relation 

y(t) = 	Yo 	 (9.6) 

between the instantaneous state vector y and the epoch state vector y o . The state 
transition matrix clo, which maps the initial state to the state at time t, does not 
depend on the actual orbit and involves time-dependent terms only. It is given by 
the expression 

	

4 — 3c 0 0 	sIn 	2(1 — c)/n 0 
6(s — nt) 1 0 2(c —  1)/n  4s In — 3t 	0 

0 	0 c 	0 	0 	s / n 
3ns 	0 0 	c 	2s 	0 

	

6n(c — 1) 0 0 	—2s 	4c — 3 	0 
0 	0 —ns 	0 	0 

, 	(9.7) of) (t) = 
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where s and c denote the sine and cosine of phase angle nt, respectively. Within the 
linearized orbit model, the motion of a (near-)geostationary satellite may conve-
niently be described in terms of the epoch state vector using elementary linear and 
harmonic functions of time. Even more, the partial derivatives with respect to the 
initial values are obtained at no extra cost along with the prediction of the trajectory 
itself. 

Based on the description of the spacecraft orbit in the geostationary reference 
frame, one may compute the modeled observations (azimuth A, elevation E, and 
range p) using suitably adapted relations for the topocentric position of the satellite. 
For a station at longitude X = X0 + AX, latitude yo and Greenwich coordinates R, 
the spacecraft position s measured in the local east, north, and zenith direction is 
given by 

s = so + Er 

with 

(9.8) 

so = E ((ao, 0, 0) T  — 

and 
f 	— sin AX 

R(X0)R) 

+ cos AX 	0 

(9.9) 

E = — sin (p cos AX — sin (p sin AX + cos (p 
) 

(9.10) 
+ cos (p cos AX + cos go sin AX + sin go 

Here AX is the ground station longitude relative to the direction of geostationary 
point, which is offset from the Greenwich meridian by the angle Xo. Azimuth, 
elevation, and range as well as the associated partial derivatives with respect to 
the spacecraft position in the geostationary frame are then obtained using relations 
presented earlier (cf. Chaps. 6 & 7). 

Due to the near-constant observation geometry, the partial derivatives can be 
evaluated at the nominal geostationary point (i.e. r = 0) without sacrificing accu-
racy. As a consequence the partial derivatives 

a (A, E, p) 	a (A, E, p) 

ayo 

	

ar 	- a (A, E, p) 
		= 	E 4'1...3,1_6 	(9.11) 

	

r.o °Y0 	8 s 

may be factored into the product of a term that depends only on the station geom-
etry and a second term that depends only on the measurement time with respect 
to initial epoch. This factorization unveils a fundamental degeneracy of the geo-
stationary orbit determination problem, which is discussed in more detail in Soop 
(1983, 1994). Each component of the spacecraft position vector (9.3) and the state 
transition matrix (9.7) exhibits a time dependence, which is fully described by the 
superposition 

f (t) = fo + fit +  f  cos(nt) Is  sin(nt) 	 (9.12) 

of a sinusoidal and a linear motion with corresponding parameters f. Based on 
the above assumption of a constant observation geometry, the variation of the mea- 
surements with time is a linear combination of state transition matrix elements. 
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Therefore, the general time dependence of each measurement type is also fully 
described by a four-parameter model comprising e.g. a sine and cosine amplitude, 
a drift and an offset. This is illustrated by a sample set of azimuth and elevation 
measurements shown in Fig. 9.2. 

Time [h] 

Fig. 9.2. Sample azimuth and elevation measurements of a geostationary satellite. 

Evidently, it is impossible to uniquely determine six orbital elements or state 
vector components from a single set of measurements that depends on four param-
eters only, irrespective of the length of the data arc. To cope with this problem, it is 
mandatory to combine different measurement types (e.g. range and angles) or to use 
more than one tracking station (e.g. dual station ranging) in the orbit determination 
of geostationary satellites. Even though the degeneracy described above is strictly 
valid only for the linearized orbit model, the conclusions are likewise applicable to 
the practice. Both perturbations and non-linearities in the true orbit model are gen-
erally insufficient to allow a well-conditioned adjustment of all orbital parameters 
from a single measurement type. 

9.1.2 Consider Covariance Analysis 

The orbit and measurement model derived in the previous section provides the basis 
for a consider covariance analysis of geostationary satellite orbit determination. 
In accordance with common practice, range and angle tracking from up to two 
ground stations is discussed in the sequel. Among the possible set of consider 
parameters, focus is given to measurement biases, i.e. systematic offsets of the 
range and angle measurements from their true values. Besides having a major 
impact on the achievable orbit determination accuracy, these parameters are easily 
treated in the error analysis due to the simple structure of the associated partial 
derivatives. They are thus well suited to illustrating and understanding the concepts 
behind more sophisticated consider covariance studies. 
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In total, the problem formulation comprises up to twelve parameters, including 
the epoch state vector yo  as well as the biases A A i , A Ei  , Api  and A A2, AE2,  402 

of the range and angle measurements from the first and second ground stations. The 
whole set may be partitioned into a vector x of estimation parameters and a vector 
c of consider parameters. As an example one might study tracking from a single 
station, in which the estimation parameter vector x r  = (y1; , AA ,  L E) comprises 
the epoch state vector and the azimuth and elevation biases of the tracking station, 
whereas the range bias Ap is the only consider parameter vector. 

Partial derivatives Hy0  = azlay o  of the measurements with respect to the 
epoch state vector are computed as outlined in the previous section. Biases constitute 
additive terms in the respective measurement equation, which e.g. takes the form 

z = h p (y o , t) Ap (9.13) 

for a range measurement. The partial derivatives HA = 8z/8 A  with respect to a 
bias parameter are thus equal to one if the station and type of the bias matches 
that of the respective measurement (e.g. aA i /aAA i  = 1) but zero otherwise (e.g. 
0A1/8Api = 0, 8A2/8AA I  = 0). 

For an assumed tracking schedule, as defined by the time and type of each 
measurement as well as the applied ground station, one can thus form the partial 
derivatives 

H = 	H) 	 (9.14) 

of the full measurement vector z with respect to the selected estimation vector x and 
the consider parameters c. Using these, the noise-only covariance and the consider 
covariance as defined in (8.41) and (8.42) can be computed for given values of the 
measurements weights o-i and the consider parameter covariance C = Cov(c, c). 
In the practical implementation a QR decomposition is preferred, however, which 
is based on a sequential processing of the partial derivatives using Givens rotations 
(Fig. 8.6). Subject to proper ordering of the various parameters (estimation param-
eters first, consider parameters last), the transformation yields an upper triangular 
matrix 

xx Rxc Q T  (diag(a.-1 ) • H) = R = (R 	 (9.15) 
0 Rcc  

which, as a sub-block, contains the upper triangular square-root information matrix 
R x, of the estimation parameters. Together with the rectangular sub-block R,, it 
may be used to form both the noise-only covariance 

P = Rx—x1 R x—I 	 (9.16) 

and the consider covariance 

P c  = P (Rx—x1Rxc)C(Rx—xi Rxc.)T 	 (9.17) 

In view of its shape, the required inversion of Rxx  may again be performed by the 
back-substitution algorithm for triangular matrices. 
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For further analysis it is useful to compute the variance of the semi-major a 
axis from the state vector covariance. Making use of (9.4) the partial derivatives of 
a with respect to the epoch state vector are given by 

8a/8y 0  = (4, 0, 0, 0, 2/n, 0) . 	S 	 (9.18) 

This, finally, yields the desired variance 

Cov(a, a).  (0a/8y0) Cov(yo , y o)(aalayo) T  , 	 (9.19) 

as a function of the 6 x 6 covariance matrix of the state vector components. In 
contrast to other orbital elements, errors in the semi-major axis affect the mean 
motion and thus give rise to secularly increasing errors in the predicted spacecraft 
orbit. Based on Kepler's third law, a semi-major axis error Aa results in an along-
track position offset of 37r  La  per day for a geostationary satellite. The semi-major 
axis variance is thus particularly important to assess the accuracy with which an 
orbit can be propagated based on the estimated epoch state vector. 

In a similar fashion, pre- and post-multiplication with the state transition matrix 
yields the covariance 

Cov(y(t), Y(t)) = (t)Cov(y o , Yo)'P T (t) 	 (9.20) 

of the state vector at an arbitrary epoch t. Concerning the interpretation of the 
velocity covariance, care has to be taken of the fact that the results refer to the 
rotating reference system used to describe the geostationary satellite motion. In 
order to obtain the covariance of the inertial velocity vector i) in the radial, along-
track and cross-track direction, the above results have to be properly mapped using 
the differential relation 

between the state vector in the inertial system and the rotating system, which is a 
direct consequence of (9.1). 

9.1.3 The GEODA Program 

The algorithms discussed so far are implemented in the GEODA program for orbit 
determination error analysis of geostationary satellites. The user may choose a 
combination of range and angle tracking data from up to two stations at a specified 
data rate. In addition to the measurement standard deviation, the standard deviation 
of a systematic bias may be specified for each data type. Depending on the choice of 
the user, biases are either treated as estimation parameters or consider parameters. 
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GEODA can thus be used to assess a wide range of tracking configurations and orbit 
determination concepts. 

All input parameters are collated in the GEODA inp file, a sample of which is 
reproduced below: 

Subsatellite longitude [deg] -72.0 
Station 1 (ion [deg] , lat [deg] , alt  [tu]) -58.7 -34.4 o . o 
Angles (noise & bias [deg] , step [h],  est bias) 0.02 0.05 0.1 1 
Range (noise & bias  [tu],  step [h] , est bias) 2.0 20.0 3.0 0 
Station 2 (ion [deg] , lat [deg] , alt  [tu]) -64.6 +31.6 1000.0 
Angles (noise & bias [deg] , step [L], est.bias) 0.02 0.05 0.0 0 
Range (noise & bias 	[tu],  step [h] est.bias) 2.0 20.0 0.0 0 
Tracking interval [h] 24.0 
Prediction interval [h] 336.0 

Each line starts with a 50 character comment field describing the contents of the sub-
sequent data. The actual input starts in column 51 and blanks are used to separate 
individual items. Following the input of the subsatellite longitude of the geosta-
tionary satellite, the user has to specify the geodetic coordinates and the applicable 
tracking types for up to two stations. Aside from the standard deviations of the mea-
surement noise  (c -A,  cri, cri,)  and bias (aziA,o -AE,0 -zip ) the time between subsequent 
measurements and an estimation flag are given independently for angle tracking 
(azimuth and elevation) and ranging. The estimation flag is set to 1, if the respec-
tive measurement bias shall be adjusted along with the state vector component. A 
value of 0 indicates that the bias is treated as consider parameter with the specified 
uncertainty. Finally the total tracking interval and a prediction interval have to be 
entered. The latter one specifies the time over which predicted position and velocity 
uncertainties are generated by the program at discrete three-hour steps. 

9.1.4 Case Studies 

The following case studies illustrate the analysis of the achievable orbit determi-
nation performance for an Argentinian communications satellite near 72° West 
longitude. Two ground stations at Buenos Aires and Cordoba are considered with 
geodetic coordinates and assumed tracking parameters as given in Table 9.1. Vari-
ous configurations are analyzed, which are based on single-station range and angle 
tracking as well as dual-station ranging. Special consideration is, furthermore, given 
to short-arc orbit determination. The full set of test cases is summarized in Table 
9.2. 

Table 9.1. Station parameters for GEODA case studies 

Mune À V h a A , E OELIA,dE up azIp  

BUN. 
CaB 

-58.7° 
-64.6°  

-34.4° 
-31.6° 

0 rn 
1000m 

0.02° 
0.02° 

0.05° 
0.05°  

2 rn 
2m 

20 rn 
20m 
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Table 9.2. Tracking configuration for individual GEODA study cases 

Case Description 

Al 

A2 
A3 

One -day of angle measurements (1/6') and ranging (1/3 h) from BUA station; bias 
parameters considered 
Same as Al, but azimuth & elevation biases estimated 
Same as A2, but for CDB station 

B1 
B2 

One day ranging (1/3h ) from BUA and CDB stations; range biases considered 
Same as Bl, but CDB range bias estimated 

Cl 

C2 

12 hours angle measurements (1/6') and ranging (1/30) from BUA station; angle 
biases estimated, range bias considered 
6 hours ranging (1/30') from BUA and CDB stations; range biases considered 

Table 9.3. Epoch state vector accuracies for individual GEODA study cases 

Case Type 
Grx 

[m] [111]  Em]  [mis] 
(Ty  

[mis] [mis]  [m] 

Al Noise 104.0 347.0 1073.9 0.0215 0.0076 0.0785 7.8 
Consider 170.5 4463.3 1088.4 0.3234 0.0093 0.0792 123.6 

A2 Noise 104.1 368.9 1073.9 0.0234 0.0076 0.0785 8.5 
Consider 104.1 716.6 1073.9 0.0505 0.0076 0.0785 8.5 

A3 Noise 99.5 863.7 1087.4 0.0616 0.0072 0.0795 14.6 
Consider 99.5 1363.0 1087.4 0.0985 0.0072 0.0795 14.6 

Bl Noise 1.9 76.7 6.9 0.0056 0.0001 0.0006 1.8 
Consider 52.5 2207.8 7.0 0.1607 0.0019 0.0010 52.3 

B2 Noise 7.4 262.3 6.9 0.0191 0.0003 0.0006  7.4  
Consider 7.4 668.0 6.9 0.0487 0.0003 0.0006 7.4 

Cl  Noise 168.8 2208.8 1553.1 0.1579 0.0115 0.2233 65.7 
Consider 168.8 2292.7 1553.1 0.1641 0.0115 0.2233 65.7 

C2 Noise 13.4 519.0 31.0 0.0379 0.0005 0.0021 13.5 
Consider 58.7 2199.6 31.3 0.1605 0.0022 0.0021 57.2 

The use of single-station range and angle measurements (cases Al to A3) allows 
the orbit to be determined with an accuracy of roughly 100 m in radial direction 
(x) as well as 1 km in along-track (y) and nomial (z) direction. A comparison of 
cases Al and A2 (Table 9.3) shows that the estimation of angle biases is essential 
to reduce the impact of systematic measurement errors on the resulting orbit. The 
range bias cannot, however, be estimated together with the angle biases in a single 
station configuration, since the resulting least squares equations would be close to 
singular. It mainly affects the accuracy by which the along-track position and the 
radial velocity component can be determined. As may be recognized from cases 
A2 and A3, use of the Buenos Aires station promises better orbit determination 
results than that of Cordoba despite an equal tracking performance. This fact may 
be attributed to a more favorable tracking geometry of the Buenos Aires station 
caused by the larger longitude and latitude offset with respect to the sub-satellite 
point. 
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Fig. 9.3. Evolution of the predicted position accuracy for single station range and angle tracking 
(Case A2) 

The evolution of the radial, along-track, cross-track and total position accuracy 
for case A2 is illustrated in Fig. 9.3. The individual errors exhibit little to no orbital 
periodicity due to the continuous coverage of the tracking arc. While the uncertainty 
in the radial and normal component remains essentially constant, the tangential 
component varies in a quadratic way as a consequence of the semi-major axis error. 

Dual-station ranging (cases B1 and B2) allows for a notable improvement of 
the radial and cross-track position vector component as well as the tangential and 
cross-track velocity over the single-station scenario. The along-track position and 
the radial velocity, however, remain sensitive to the range bias and are 1-2 orders 
of magnitude less accurate than the other components. The estimation of one range 
bias (Case B2) is possible in the dual-station configuration and recommended to 
minimize the impact of systematic errors on the solution. 

While one or two-day tracking is generally considered as a standard for the 
determination of a geostationary satellite orbit, shorter data arcs may be desirable 
e.g. after maneuvers or in contingency situations.  As shown by cases Cl and C2 a 
reasonable accuracy can already be achieved with half a day of single-station range 
and angle measurements or even six hours of dual-station ranging. In the latter case 
care should be taken, not to a estimate any bias at all, since the resulting nolinal 
equations would be ill-conditioned and result in a large founal covariance. For even 
shorter data arcs, it is difficult to separate the periodic and linear part in the daily 
variation of each measurement, which severely reduces the overall condition of the 
estimation problem. 



9.2 Real-Time Orbit Determination 	303 

9.2 Real-Time Orbit Determination 

The increasing number of GPS receivers for spaceborne applications has revitalized 
the interest in real-time and on-board orbit determination to increase the space-
craft autonomy and reduce the required amount of ground operations. Aside from 
high-precision applications that require a direct processing of raw code and phase 
measurements, the orbit determination can be based on the navigation solution gen-
erated by most of the GPS receivers. In general position values are provided with 
a spherical la accuracy of about  100m  (cf. Table 6.2), whereas velocity is only' 
accurate to 1 m/s in representative spacebome receivers. Using a Kalman filter and 
an appropriate dynamical model, the inherent measurement noise may be reduced 
considerably and much more accurate state vectors be obtained. 

The filtering of the SPS (Standard Positioning Service) data provides various 
benefits for on-board navigation. These are mainly related to the fact that the result-
ing trajectory is constrained by the dynamical laws of motion, whereas subsequent 
GPS position solutions are essentially uncorrelated. As such, the adjusted orbit 
infonnation is less sensitive to the intentional deterioration of the GPS measure-
ments (Selective Availability) than the navigation solution itself. In addition, the 
dynamical modeling allows a smooth interpolation of the trajectory, a bridging of 
data gaps and a detection of erroneous measurements. Finally, the Kalman filter 
provides precise velocity infonnation as part of the estimated state vector, which 
results from the accumulation of position knowledge over extended data arcs. 

9.2.1 Model and Filter Design 

For on-board applications, computer resources are generally much more constrained 
than for ground operations due to limitations of processor speed and memory. A 
careful selection of dynamical models, reference systems, integration methods, 
and estimation methods is therefore required in the design of onboard navigation 
systems. 

Force Model: The  UPS  navigation data to be processed in the present application 
have been collected as part of the UPS/MET experiment (Hajj et al. 1995) on-board 
the MicroLab-1 satellite. The spacecraft was launched in 1995 and orbits the Earth 
at an altitude of roughly 740 km At this altitude, the acceleration is dominated by 
the gravity field of the Earth including higher-order tenias in the spherical harmonics 
expansion. Lunisolar gravity on the other hand provides only minor perturbations 
for satellites in low-Earth orbits as does the solar radiation pressure for satellites with 
representative area-to-mass ratios (cf. Fig. 3.1). From the Harris—Priester density 
tables (Table 3.8) it may further be concluded that atmospheric drag does not impose 
major perturbationi s n the relevant altitude range. To illustrate these considerations, 

Considering a typical low-Earth orbit a position knowledge of  100m represents the same relative 
accuracy as a velocity knowledge of 0.1 m/s. 
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Table 9.4. Maximum impact of perturbative forces onto the MicroLab-1 trajectory for orbit pre-
dictions up to 6 hours: (a) Earth oblateness (J2), (b) difference of 4 x 4 gravity field and h, (c) 
difference of 10 x 10 and 4 x 4 gravity field, (d) difference of 15 x 15 and 10 x 10 gravity field, (e) 
difference of 20 x 20 and 15 x 15 gravity field, (f) solar gravity, (g) lunar gravity, (h) solar radiation 
pressure, (i) drag. All values in [m] 

t [h] (a) (b) (c) (d) (e) (f) (g) (h) (i) 

In
 c
. I

n
 c::!
 o

 
c:3  --4  .--;  cr) .0 

8700 210 91 11 3 0 1 0 0 
10000 680 240 22 6 1 2 0 0 
21000 750 240 22 6 3 4 0 1 
33000 1600 340 69 6 5 7 1 4 
71000 1800 570 130 18 9 14 2 14 

the orbit of MicroLab-1 has been integrated over a period of 6 hours, taking into 
account various force models of increasing complexity. 

Based on the results collected in Table 9.4, the lunisolar gravitational perturba-
tions (f, g) are certainly smaller than the measurement accuracy of about 100 m over 
the times of interest and the same holds for the effect of solar radiation pressure (h) 
as well as aerodynamic drag (i). Measurable effects on the spacecraft trajectory are 
caused by harmonic terms up to degree and order 15 in the Earth's gravity field (a-d), 
if one considers propagation times of up to 6 hours. Restricting oneself to half-hour 
intervals or tolerating errors up to 1 km, it is possible, however, to apply a reduced 
model of degree and order 10. Considering, furthermore, that the computational 
workload for evaluating the acceleration is essentially proportional to the square of 
the maximum order, the reduced model offers a factor-of-two performance gain at 
a tolerable loss in accuracy. A 10 x 10 gravity model is, therefore, considered as a 
baseline for the implementation of a real-time orbit determination process. 

Reference System: Since GPS based position measurements refer to an Earth-
fixed (WGS84) reference an appropriate transformation to (or from) the inertial 
frame must be applied in the data processing. The same holds for the computation 
of the acceleration vector, which is most easily formulated in the Earth-fixed frame 
but must be expressed in the inertial frame for integrating the equation of motion. 
A proper choice of the reference system is therefore advisable to minimize the 
overall computational effort. For the present purpose an almost inertial coordinate 
system is suggested, which is aligned with the instantaneous Earth equator and the 
mean equinox. Taking into account that polar motion introduces offsets of about 
ten meters only, at the surface of the Earth, the transformation from Earth-fixed 
WGS84 positions rwGs to inertial coordinates r may then be established as 

r = RT1  (GMST (t))rwGs • 	 (9.22) 

Here GMST denotes the Greenwich Mean Sidereal Time at a given instant t. Devi-
ations from a truly inertial coordinate system arise from the neglect of precession 
and nutation that slightly alter the orientation of the equator and equinox. The time 
scale of these changes is much longer, however, than the typical data span of several 
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revolutions required for a reliable orbit adjustment. As such, the associated changes 
of the reference system have no practical impact on the performance of the orbit 
determination process. 

Estimation and Integration: Before discussing the choice of a suitable numerical 
integration method for the equation of motion, a brief consideration of the overall 
estimation concept is required. While a least-squares method would ensure a high 
degree of robustness in the handling of non-linearities or the rejection of erroneous 
measurements, it would necessitate an on-board storage of a large measurement 
batch to allow multiple iterations. A Kalman filter is therefore preferable, which 
processes each measurement exactly once as soon as it is collected. In this case, 
however, an extended Kalman filter must be selected to cope with the non-linearity 
of the orbit determination problem. The associated change of the reference trajec-
tory in each update step does, however, imply a frequent restart of the numerical 
integration. Even for a data rate of only one value per five minutes, a high-order in-
tegration method would be forced to work at a non-optimal stepsize. Considering in 
addition the complexity and storage requirements of elaborate single-step methods, 
low-order Runge—Kutta methods turn out to be best suited for the envisaged usage. 
Furthermore, no stepsize control is required for near-circular orbits. In the sequel 
the well-known 4th-order Runge—Kutta method will be applied, which provides a 
particularly simple set of coefficients. As a baseline, a 30 s step size is adequate to 
integrate the orbit to the desired accuracy. 

State Transition Matrix: Another issue that has to be addressed in the design 
of the orbit determination process concerns the modeling of the state transition 
matrix between consecutive steps. While a rigorous integration of the variational 
equations would ensure full consistency between the trajectory model and the asso-
ciated partial derivatives, it is generally too cumbersome to be applied in real-time 
systems. Simple Taylor expansions may, on the other hand, cause problems if the 
time between consecutive data points covers a notable fraction of the orbit. As 
a compromise, a Keplerian founulation of the state transition matrix is therefore 
applied in the RTOD program. 

Process Noise: Last but not least, a suitable process noise model has to be consid-
ered in the design of the extended Kalman filter. For the present purpose a simple 
model is adequate, since measurements are provided at almost equidistant time steps 
throughout the whole data arc. It is therefore sufficient to add a constant process-
noise matrix Q = diag(wiios ,  Wv2e)  to  the predicted covariance in each time update 
step. Position and velocity variances as given by the diagonal elements of Q are 
selected in accordance with the expected trajectory modeling errors arising in the 
propagation from one measurement to the next. All off-diagonal elements of Q are 
set to zero. Suitable values of wpos  and wvei are best found by experiment and de-
pend on the data interval, the assumed measurement accuracy, and the accuracy of 
the dynamical model. In the present application nominal process-noise parameters 
of 0.5 m and  05 minis are applied for a five-minute data interval, which helps to 
avoid a filter divergence without sacrificing the achievable accuracy. 
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9.2.2 The RTOD Program 

The RTOD program processes a sequence of GPS navigation data and auxiliary 
information provided in the RTOD . dat file. Aside from a single header line that 
may be skipped on reading, the file contains one record per time with a structure 
as described in Table 9.5. Following the date and GPS time tag, the position and 
velocity vector in the WGS84 system as determined by the GPS receiver are given 
in the initial columns To evaluate the filter performance, the actual spacecraft 
position and velocity in the rotating, Earth-fixed system is furthermore provided as 
determined from a least-squares orbit determination with an elaborate force model. 
Both position and velocity measurements from the first data record are used to derive 
the inertial state vector of the spacecraft, which is required to initialize the filter 
and to start the trajectory integration. Subsequent measurement updates make use 
of the position measurements only, which provide a much better relative accuracy 
than the velocity data. 

Table 9.5. Structure of the RTOD data file 

Cols. Description 

1— 10 Date (yyyy/mm/dd) 
13— 24 GPS time (hh:mm:ss.sss) 
28— 37 Measured position x (WGS84 system, in [m]) 
39— 48 Measured position y (WGS84 system, in [m]) 
50— 59 Measured position z (WGS84 system, in Ern]) 
63— 72 Measured velocity •i (WGS84 system, in [mis])  
74— 83 Measured velocity .):, (WGS84 system, in [mis])  
85— 94 Measured velocity 	(WGS84 system, in  [mis])  
98-107 True position x (WGS84 system, in [m]) 

109-118 True position y (WGS84 system, in  Em])  
120-129 True position z (WGS84 system, in [m]) 
133-142 True velocity •i (WGS84 system, in [mis])  
144-153 True velocity 57 (WGS84 system, in [mis])  
155-164 True velocity i (WGS84 system, in [mis])  

A supplementary setup file RTOD . inp is used to control and modify the filter 
performance. The individual parameters comprise the gravity-field order and the 
step size applied in the numerical trajectory integration as well as the measure-
ment standard deviation, the a priori statevector uncertainty and two state-noise 
parameters for controlling the addition of process noise. An edit (or culling) level 
is, furthermore, specified, to allow the rejection of bad measurements. It serves as 
a threshold for the identification of outliers and is specified in units of the mea-
surement standard deviation o-  . Assuming a Gaussian error distribution, more than 
99% of all measurements should exhibit errors of less than 3o- . Measurements, for 
which the ratio of the residual and the standard deviation exceeds an edit level of 
about three should therefore be considered as erroneous data points and discarded. 

Each line of the input file provides a single parameter following a 30-character 
comment. Representative parameter values are given in the subsequent listing: 
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Gravity model order (<=20) 	. 	10 
Integration step size [s] 	- 

	

. 	30 
Measurement Sigma  [ni] 	- . 100 
A priori sigma position [m] : 1000 
A priori sigma velocity  [mis]:  10 
State noise position [ni] 	. 	0.5 
State noise velocity  [mis] 	• 

	

. 	0.0005 
Edit level (sigma) 	 3.0 

The output of the RTOD program comprises a copy of the setup parameters and 
a table of filter outputs at each step. The table is made up of 13 blank separated 
columns, giving the time t since epoch (Col. 1, in [s]), the filtered Earth-fixed 
position r (Col. 2-4, in [nil) and the measurement and solution errors. The latter 
parameters comprise the difference IrGps — rref I between the measured position 
and the reference orbit (Col. 5), the standard deviation o-, of the estimated position 
(Col. 6) and the error Ir — rref I of the estimated position (Col. 7). Corresponding 
quantities are provided for the errors of the velocity (Col. 8-10) and the semi-major 
axis (Col. 11-13). For information, measurements rejected by the filter are marked 
by an asterisk immediately following the measurement error. 

9.2.3 Case Studies 

The following case studies are based on a 24-hour data arc of GPS measurements 
collected by a TurboStar receiver as part of the GPS/MET experiment on October 
1, 1996. The measurements are sampled at a rate of one point per five minutes, 
yielding an average of 20 measurements per orbit. The data noise as derived from 
the root-mean-square deviation from the reference trajectory amounts to roughly 
110 m in position and 2.5 m/s in velocity. 

Table 9.6. Filter parameters for selected case studies 

Parameter Case A Case B Case C 

Gravity model order n 10 10 4 
Integration step size dt [s] 30 60 30 
Measurement standard deviation axyz [1111 100 100 100 
A priori std.  dey, position Crpos [In] 1000 1000 1000 
A priori std. dev ,  velocity avei  [nus]  10 10 10 
State noise position Wpos Ern] 0.5 0.0 10.0 
State noise velocity wvel [rnis] 0.0005 0.0000 0.0100 
Edit level 3.0 3.0 3.0 

To start with, the nominal filter performance is illustrated in case A (cf. Table 
9.6). The equation of motion is integrated in 30 s steps and includes perturbations 
due to the harmonic gravity field of the Earth up to degree and order 10. The a priori 
standard deviation of the initial state taken from the first data point is assumed to be 
1 km and 10 m/s, respectively, for the position and velocity coordinates. While this 
is about a factor of 10 worse than the actual measurement standard deviation, the 
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adopted values ensure that the filter starts properly, even if the initial measurement 
is affected by larger than average errors. 

300 

250 - 
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150 - 

• • 
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2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Time [h] 

Fig. 9.4. Nominal filter performance for GPS/MET orbit determination (case A): error of the esti- 
mated position (bold line), standard deviation of the estimate (narrow line) and GPS measurement 
errors (dots). 

Results of the corresponding RTOD run are summarized in Fig. 9.4, which shows 
the measurement residuals, the error of the estimated position and the standard 
deviation computed by the filter. The filter takes about three hours (two revolutions) 
before it converges to a steady-state behavior. During the initial phase the filter 
is affected by pronounced errors of two consecutive measurements that amount 
to 250m  and 500 m, respectively. The latter value exceeds the 3a (.300 m) data 
editing criterion, which results in a rejection of the corresponding measurement and 
an associated increase in the propagated position covariance. During the steady-
state phase the filter approaches a constant position standard deviation of roughly 
50m.  This equilibrium value results from a balance between the information gain 
due to the processing of new measurements and the covariance increase caused by 
the addition of process noise in the state update phase. The deviation between the 
estimated position and the reference trajectory is generally less than the computed 
standard deviation and amounts to 25 m on average (r.m.s.) after the initial two 
hours. Thus, the filtered positions are more accurate than the measured positions 
by a factor of four to five, which clearly illustrates the advantage of a dynamical orbit 
determination over the purely kinematic GPS position solutions. The benefit is even 
more pronounced for the velocity determined by the filter, which is approximately 
100 times more accurate (2.5 cm/s r.m.s.) than the velocity values provided by the 



0.6 

:17  
0.4 

• • • 

0.2 - * • • e* • • 

1.0 

• 

0.8 - • • 
• 

• 

• 

00 

0 0 • • 0 	• 
0 	 • 0  • 

• 
• 

• 

• 

• • 
• • 

• 
• 

• 
• 

0 0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Time [h] 

"v7M11 

80 - 

60 

40 

• • 

0 • 

• op 

• • • 

• * 
• 
• • 	0 

• 

• 

• 

• 0 

• • 

y 

* 

9.2 Real-Time Orbit Determination 	309 

Fig. 9.5. Nominal filter performance for GPS/MET orbit determination (case A): error of the esti-
mated velocity (bold line), standard deviation of the estimate (narrow line) and GPS measurement 
errors (dots). 

0 	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Time [h] 

Fig. 9.6. Nominal filter performance for GPS/MET orbit determination (case A): error of the esti-
mated semi-major axis (bold line), standard deviation of the estimate (narrow line) and error of the 
semi-major axis computed from the GPS position/velocity measurements (dots). 
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Fig. 9.7. Filter divergence due to numerical integration errors in the absence of process noise (case 
B): error of the estimated position (bold line), standard deviation of the estimate (narrow line) and 
measurement errors (dots). 
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Fig. 9.8. Compensation of low-order gravity model errors by increased process noise (case C): 
error of the estimated position (bold line), standard deviation of the estimate (narrow line) and 
measurement errors (dots). 
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0 1 2 	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Time [h] 

Fig. 9.9. Compensation of low order gravity model errors by increased process noise (case C): error 
of the estimated semi-major  axis (bold line), standard deviation of the estimate (narrow line) and 
error of the semi-major axis computed from the position/velocity measurements (dots). 

GPS receiver itself (Fig. 9.5). The semi-major axis derived from the estimated state 
vector is accurate to about 3 m r.m.s. (cf. Fig. 9.6). 

An example of moderate filter divergence is given by case B, in which slight 
propagation errors have been introduced by selecting a larger than nominal inte-
gration step size. At the same time, no process noise is added, which makes the 
filter continuously less receptive to new measurements. For up to seven hours (4-5 
revolutions) the filter output closely matches that of case A. Thereafter, however, 
the position error starts to increase past the formal standard deviation and the so-
lution differs from the true position by up to 100m  (Fig. 9.7). Case B obviously 
lacks a sufficient amount of process noise to compensate the inherent model errors, 
whereas both factors are properly balanced in case A. 

An extreme case of model error compensation is, furthermore, presented in 
case C, where the degree and order of the gravity field have been reduced from ten 
to four. At the same time the process noise has been increased by a factor of 20 over 
case A, which results in a steady-state position uncertainty of about  100m. While 
the root-mean-square position and velocity errors are approximately doubled during 
the steady-state phase in comparison to case A, the filtered solution and its variance 
become sensitive to erroneous data and data gaps (Fig. 9.8). More importantly one 
may note a ten-fold increase of the semi-major axis error and standard deviation in 
comparison to case A (Figs. 9.6 and 9.9). As a rule of thumb, the observed peak 
error of  La  =  50m would result in a  500m along-track error after one - orbit or 
about 7 km after one day. 
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9.3 Relay Satellite Orbit Determination 

The United States' Tracking and Data Relay Satellite System (TDRSS) provides 
tracking services for all major US space observatories and research satellites as 
well as the manned Space Shuttle. Even though the system is essentially unique, 
it provides a representative example of satellite-satellite tracking techniques and is 
discussed here to illustrate the modeling of signal paths across multiple transponders 
as well as the adjustment of multiple spacecraft trajectories. 

Fig. 9.10. Principle of TDRS four-way ranging measurements. 

9.3.1 Mathematical Models 

As illustrated in Fig. 9.10, TDRS ranging measurements are initiated by sending a 
ranging signal to one of the geostationary relay satellites. From here it is forwarded 
to the desired user spacecraft, retransmitted and linked back to the ground station 
after passing the relay satellite a second time. Designating the time of signal recep-
tion at the ground station by t and by rs/c, rTDRs, and rG/s the inertial position 
vectors of the user satellite, the TDRS satellite, and the ground station, respectively, 
one obtains the implicit equations 

ri  =  1/c I rTDRS (t r1) rGis 

1'2 =- 1/c irsic(t — — 1-2) — rTDRS (t —1-1)1 

1-3 = 1 /c • I rTDRS(t — r1 — t2 —  r3) — rs/c(t — r1 — r2)1 

r4 	1/c • lrG/s (t — 	— T3 — r4) rTDRS (t 	"r2 r3) 

(9.23) 
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for the individual light times. Starting from initial values of zero, the light times are 
consecutively determined from these relations using a simple fixed-point iteration. 
The resulting values then yield the modeled four-way range 

P = —2 • (ri r2 + r3 + ) • 
	 (9.24) 

Neglecting the relative motion of the station and the two satellites, the 4-way range 
is equal to the sum of the distances from the ground station to the relay satellite and 
from the relay satellite to the user satellite. 

The measurement noise and the systematic errors of the TDRS ranging system 
are generally less than 10m, which implies that the motion of the user spacecraft, the 
relay satellite, and the ground station must be modeled to a similar level of accuracy. 
Since most of the user satellites tracked by the TDRS system orbit the Earth at 
altitudes of several hundreds of kilometers, the force model must as a minimum, 
comprise the harmonic gravity field of the Earth as well as the acceleration due to 
atmospheric drag. The geostationary relay satellite, on the other hand, is notably 
affected by lunisolar gravitational perturbations and solar radiation pressure. In 
order to avoid different models for the various satellites concerned, a common 
model comprising all of the above-mentioned perturbations should be considered. 
A gravity field model up to degree and order 20 is recommended to describe the 
motion of user satellites at altitudes of 500-1000 km with the desired accuracy. 

For a compatible modeling of the ground station position, polar motion and 
true sidereal time must be considered to describe the Earth's rotation. In addition, 
nutation and precession need to be accounted in the transformation to a common 
inertial reference frame (e.g. the mean equator and equinox of J2000). For an 
adequate modeling of the Greenwich hour angle, knowledge of Universal Time 
UT1 is required to better than 0.01 s. 

In  accordance with Sect. 7.2.3, the variational equations for the state transition 
matrix may be based on a simplified force model comprising only the second-order 
zonal harmonics in the gravity field. Along with the state transition matrix, the 
sensitivity matrix describing the state vector partials with respect to the drag and 
solar radiation pressure coefficients is integrated to allow an adjustment of these 
parameters within the orbit determination. 

9.3.2 The TDRSOD Program 

The TDRSOD program performs a least-squares orbit determination using TDRS 
four-way range measurements. Based on an appropriate set of measurements the 
orbital parameters of a single user spacecraft and up to two relay satellites can be 
adjusted simultaneously. Tracking data are provided in the TDRSOD dat file, which 
contains one record per time with a structure as described in Table 9.7. A single 
header line serves to label each column and is skipped upon reading. Following the 
epoch of the measurement the ground station and spacecraft identification numbers 
as well as the four-way relay range are given in each line. 
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Table 9.7. Structure of the TDRSOD tracking data file 

Cols. Description 

1-10 Date (yyyy/mm/dd) 
13-24 UTC time (hh:mm:ss.sss) of signal reception 
26-30 Station number 
32-34 'MRS identification number (ID) 
36 16 Range measurement (in [m]) corrected for refraction 

A supplementary setup file TDRSOD . inp provides a priori state vectors and 
spacecraft-related parameters for the user and TDRS satellites as well as relevant 
auxiliary information. The individual parameters comprise the total number (< 2) 
and IDs of the TDRS satellites, the total number (< 2) and IDs of the employed 
ground stations, the desired number of iterations, the UT1 -UTC and UTC-TAI 
time differences, as well as the current pole coordinates, all of which are given at 
the beginning of the input file. Following the initial epoch, the state vectors of the 
user spacecraft and the specified number of TDRS satellites are provided together 
with the associated a priori standard deviations. The spacecraft-related information 
is complemented by the specification of each satellite's mass, area, drag coefficient, 
and radiation pressure coefficient, as well as the related a priori uncertainties of the 
latter parameters. The file closes with a section providing the coordinates of the 
specified number of ground stations. 

Each line provides a single parameter starting at column 26. The initial char-
acters are ignored on input and serve to describe the meaning of the respective 
quantities. Representative parameter values are given in the subsequent listing: 

TDRS 	 2 	 4 	 5 
Stations 	 2 	161 	162 
Iterations 	 4 
UT1-UTC, UTC-TAI [s] 	 +0.49 	-32.00 
x-pole,y-pole ["] 	 -0.00651 	+0.36588 
Epoch (UTC) 	 1999/09/01 00:00:00.000 
x UARS 	[m] 	 1476200.0 	1000.0 
y UARS 	[m] 	 5996200.0 	1000.0 
z UARS 	[m] 	 -3209000.0 	1000.0 
vx UARS 	[m/s] 	 -3854.0000 	1.0 
vy UARS 	[m/s] 	 3778.5000 	1.0 
vz UARS 	[m/s] 	 5302.2000 	1.0 
in  [kg] , A [m- 2] 	 5968.3 	27.22 
CD, sigma(CD) 	 2.3 	1.0 
CR, sigma(CR) 	 1.3 	0.1 
x TDRS-4 [m] 	 • 

	

. +20174293.6 	1.0 
y TDRS-4 [m] 	 • 

	

. -37024903.8 	1.0 
z TDRS-4 [m] 	 -982925.2 	1.0 
vx TDRS-4 [m/s] 	 +2696.9634 	0.001 
vy TDRS-4 [m/s] 	 +1471.5074 	0.001 
vz TDRS-4 [m/s] 	 -100.5261 	0.001 
in  [kg], A [m- 2] 	 1668.9 	40.0 
CD, sigma(CD) 	 2.3 	0.001 



CR, sigma(CR) 
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1.3915 	0.001 
x *  TDRS-5 [m] -40783913.5 100.0 
y 	TDRS-5 [m] 10622599.3 100.0 
z 	TDRS-5 Em] 992633.1 100.0 
vx TDRS-5 [m/s] -774.3896 0.1 
vy TDRS-5 [m/s] -2976.0955 0.1 
vz TDRS-5 [m/s] 18.8994 0.1 
m [kg], A [m- 2] 1718.4 40.0 
CD, sigma(CD) 2.3 0.1 
CR, sigma(CR) 1.4062 0.1 
Sta WHSK/161 (xyz) Ern] -1539385.74 -5160953.12 +3408202.16 
Sta WH2K/162 (xyz) [m] -1539390.43 -5160968.83 +3408176.45 

The TDRSOD program uses the DE multistep method to integrate the state vector 
as well as the state transition and sensitivity matrix for each individual satellite 
from specified initial conditions. Considering the widely different orbital periods 
of the low-Earth user satellite and the geostationary relay satellites, the respective 
trajectories are integrated independently of each other using the most appropri-
ate integration stepsize for each orbit. Interpolation over multiple steps is used to 
interpolate the solution during the light time iteration. 

The least-squares adjustment is performed over the specified number of itera-
tions, during each of which the observation residuals and the computed parameter 
corrections are output. No data editing or convergence check is performed to main-
tain a simple overall program structure. A priori standard deviations are expected for 
all estimation parameters, which should be selected in accordance with the expected 
uncertainty of the respective state vector component or force model parameter. 

9.3.3 Case Study 

In the subsequent application TDRS range measurements of NASA's Upper Atmo-
sphere Research Satellite (UARS) are processed, which were collected on Septem-
ber 1, 1999. The data set comprises 14 batches of 10-15 minutes duration each, 
which are evenly distributed over the entire day. Out of these, three batches have 
been obtained via the TDRS-4 satellite, located at 41.0' West longitude, while the 
remaining Measurements were performed with TORS-5 at 174.3° West longitude. 
All data have previously been corrected for refraction. 

Orbits of the two TORS satellites have independently been derived from ground-
based tracking and serve as a priori information for the UARS orbit determination. 
The corresponding state vectors, as referred to the Earth's mean equator and equinox 
(EME2000), are collated in Table 9.8 together with relevant spacecraft parameters. 
In addition, Table 9.9 provides the coordinates of the WHSK and WH2K antennas 
of the White Sands ground station complex, which were employed in the four-way 
ranging measurements via TDRS-4 and TDRS-5, respectively. 

For a proper performance of the least-squares orbit determination, a priori 
standard deviations need to be specified for the state vector components as well 
as the drag and solar radiation pressure coefficients. In the absence of actual a 
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Table 9.8. A priori orbit and spacecraft parameters of UARS, 1DRS-4, and TDRS-5 for the epoch 
1999/09/01 00:00 UTC 

UARS 1 DRS-4 '1 DRS-5 

x [m] +1476200.0 +20174293.6 +40783913.5 
y [m] +5996200.0 -37024903.8 +10622599.3 
z [m] -3209000.0 -982925.2 +992633.1 
±  [mis]  -3854.0000 +2696.9634 -774.3896 
57 [rn/s] +3778.5000 +1471.5074 -2976.0955 
i [m/s] +5302.2000 -100.5261 +18.8994 

m [kg] 5968.3 1668.9 1718.4 
A [m2] 27.22 40.0 40.0 
CD 2.3 2.3 2.3 
CR 1.3 1.3915 1.4062 

Table 9.9. White Sands antenna locations 

Station No. x [m] Y [m] z [m] 

WHSK 
WH2K 

161 
162 

-1539385.74 
-1539390.43 

-5160953.12 
-5160968.83 

+3408202.16 
+3408176.45 

priori statistics, appropriate values may be obtained from a consideration of the 
orbital characteristics, the tracking geometry, and the data distribution. In the case 
of the user satellite, which is tracked over roughly 15 revolutions with a sufficient 
coverage during each orbit, one may expect a reliable determination of its orbital 
elements from the given measurements. In accord with the given number of digits, 
an uncertainty of 1 km and 1 m/s in each axis is therefore assumed for the initial 
position and velocity of the UARS satellite. Neither of these values puts a stringent 
constraint on the resulting least-squares solution, as does the assumed standard 
deviation of 1.0 for the drag coefficient. For the solar radiation pressure coefficient, 
on the other hand, the a priori standard deviation is set to 0.1, in accordance with 
the uncertainty in the knowledge of relevant material properties. 

For the Tracking and Data Relay Satellites, which orbit the Earth at geosta-
tionary altitude, drag does not impose any orbit perturbations and thus cannot be 
calibrated during the orbit determination. An a priori standard deviation of 0.1 for 
the respective CD coefficients therefore merely serves to avoid a singularity of the 
resulting normal equations. In fact, the a priori value (2.3) will not be changed at all 
within the least-squares adjustment. Concerning the other parameters, it is recalled 
that 'IDRS-4 tracking data are only available for a limited number of data arcs, 
while TDRS-5 tracking essentially covers the whole day. In view of the even sam-
pling of the IDRS-5 orbit, the four-way range measurements performed via this 
satellite can therefore be employed to improve its orbit along with that of the user 
satellite. This is accomplished by assuming a priori standard deviations of  100m  
and 0.1 m/s for position and velocity as well as 0.1 for the CR coefficient. These 
figures take care of the fact that the 'IDRS-5 orbit has already been determined 
with good accuracy from independent tracking data and, at the same time, avoid 
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unrealistic parameter corrections in case of potential correlations between orbital 
parameters of the user satellite and the 'IDRS satellite. Finally, a priori standard 
deviations of 1 m (position), 1 mm/s (velocity), and 0.001 (CD, CR) are adopted 
for the TDRS-4 satellite, which essentially constrains its orbit to the given a priori 
trajectory. Due to the inadequate coverage of thiS satellite's 24-hour orbital period 
with tracking data, it would not be possible to independently determine or improve 
its trajectory from the given UARS ranging measurements. 

Table 9.10. Adjusted orbit and spacecraft parameters of UARS, TDRS-4 and TDRS-5 for epoch 
1999/09/01 00:00 UTC 

UARS TDRS-4 I DRS-5 

x [m] +1476163.0+ 	12.9 +20174293.6+ 	1.0 +40783910.4+ 	13.5 
y [m] +5996245.6+ 	11.5 —37024903.8+ 	1.0 +10622602.5+ 	43.5 
z [m] —3208799.5+ 	17.2 —982925.2+ 	1.0 +992611.7+ 	55.1 
.i [m/s] —3854.0030+0.0071 +2696.9636+0.0003 —774.3906+0.0031 
5/ [rn/s] +3778.3897+0.0163 +1471.5076+0.0004 —2976.0954+0.0007 

+5302.2419+0.0136 i  [mis]  —100.5264+0.0010 +18.8998+0.0050 

CD 2.6125+0.1632 2.3000+0.0010 2.3000+0.1000 
CR 1.3002+0.1000 1.3915+0.0010 1.4538+0.0366 

Fig. 9.11. Residuals of IDRS four-way ranging measurements of the UARS satellite collected on 
Sept. 1, 1999. Triangles indicate measurements taken via TDRS-4, while diamonds refer to the 
TDRS-5 relay satellite. 

Representative values for the adjusted orbital parameters are given in Ta-
ble 9.10, while the corresponding residuals are shown in Fig. 9.11. In total, the 
a priori state vector of the user spacecraft is corrected by about 200 m and 0.1  mis,  
with formal uncertainties being a factor 5 to 10 smaller. The initial state vectors of 
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the 1DRS satellites remain essentially unchanged, except for the z-component of 
the TDRS-5 satellite that is modified by 25 m. As expected, the drag coefficients of 
the geostationary relay satellites are completely unaffected, while the user satellite's 
solar radiation pressure coefficient is virtually the same as before the adjustment. 
On the other hand, the drag coefficient of the user satellite and the solar radiation 
pressure coefficient of TDRS-5 can be adjusted with good confidence and improved 
significantly over the default a priori values. 

The residuals obtained during the final iteration exhibit an overall measurement 
and modeling accuracy of  5-10m. Obviously, the distribution of residuals does not 
comply with the assumption of random noise but indicates the presence of system-
atic errors. In the absence of independent tracking data for either the user satellite 
or the TDRS satellites, it is not, however, possible to uniquely attribute these errors 
to either an incomplete modeling of perturbative forces, an incomplete account of 
media corrections in the preprocessing, or systematic errors in the measurement 
process. 



Appendix A 

A.1 Calendrical Calculations 

The civilian calendar which measures time in terms of years, months, and days 
provides a convenient and well-established time scale for our daily life. It is not, 
however, well suited to finding the time difference between two dates or advancing 
a date by a certain time increment. To cope with this difficulty, a continuous day 
count is often used in astronomical computations, which is known as the Julian 
Date. It is attributed to Joseph Justus Scaliger, who introduced a "Julian Period" of 
7 980 Julian years for chronological purposes (see Derwshowitz & Reingold 1997, 
Moyer 1981). 

The Julian Date (JD) is the number of days since noon January 1, 4 713 BC 
including the fraction of day. It thus provides a continuous time scale which, for all 
practical purposes, is always positive. Counting starts at noon for historical reasons, 
to avoid a change of date in the middle of astronomical observations. Presently, the 
Julian Day numbers are already quite large (well over two millions) and it is also 
desirable to start counting at midnight. Therefore, a Modified Julian Date (MJD) 
is defined as: 	 1-1‘qW.6- W (.1  

MJD = JD — 2 400 000.5 	 (A.1) 

A table of Modified Julian Dates for the beginning of each month between 1975 
and 2020 is given in Table A.1. 

Interconversion to civil calendar date and time is often done by tables, however, 
there also exist a number of numerical algorithms. The method described here is 
based upon Meeus (1978, 1991) and requires several points to be considered: 

• Civil time is expressed in year (Y), month (M), and day (D). Both D and 
Julian Day may include fraction of days: 

o The years BC are counted astronomically in all folinulas. E.g. 1 BC would 
be the year Y = 0 and 10 BC corresponds to the year Y = —9. 

• The Julian Day begins at 12h  o'clock midday. 
• The Julian calendar is used until 4th  October 1582 AD, which corresponds 

to JD < 2 299 160.5. The average length of the year in the Julian calendar 
was taken as 365.25 days which implied one extra day every fourth year. The 
true length of the mean solar year, however, is about eleven minutes less. By 
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Table A.1. Modified Julian Date at day 0.0 of each month. To obtain the  MID  of a given date, add 
the day and fractions of day to the tabulated value for the respective month and year. Example: 
MJD(2000 Jan. 1, 12h) = 51543 + 1.5 = 51544.5. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1975 42412 42443 42471 42502 42532 42563 42593 42624 42655 42685 42716 42746 
1976 42777 42808 42837 42868 42898 42929 42959 42990 43021 43051 43082 43112 
1977 43143 43174 43202 43233 43263 43294 43324 43355 43386 43416 43447 43477 
1978 43508 43539 43567 43598 43628 43659 43689 43720 43751 43781 43812 43842 
1979 43873 43904 43932 43963 43993 44024 44054 44085 44116 44146 44177 44207 
1980 44238 44269 44298 44329 44359 44390 44420 44451 44482 44512 44543 44573 
1981 44604 44635 44663 44694 44724 44755 44785 44816 44847 44877 44908 44938 
1982 44969 45000 45028 45059 45089 45120 45150 45181 45212 45242 45273 45303 
1983 45334 45365 45393 45424 45454 45485 45515 45546 45577 45607 45638 45668 
1984 45699 45730 45759 45790 45820 45851 45881 45912 45943 45973 46004 46034 
1985 46065 46096 46124 46155 46185 46216 46246 46277 46308 46338 46369 46399 
1986 46430 46461 46489 46520 46550 46581 46611 46642 46673 46703 46734 46764 
1987 46795 46826 46854 46885 46915 46946 46976 47007 47038 47068 47099 47129 
1988 47160 47191 47220 47251 47281 47312 47342 47373 47404 47434 47465 47495 
1989 47526 47557 47585 47616 47646 47677 47707 47738 47769 47799 47830 47860 
1990 47891 47922 47950 47981 48011 48042 48072 48103 48134 48164 48195 48225 
1991 48256 48287 48315 48346 48376 48407 48437 48468 48499 48529 48560 48590 
1992 48621 48652 48681 48712 48742 48773 48803 48834 48865 48895 48926 48956 
1993 48987 49018 49046 49077 49107 49138 49168 49199 49230 49260 49291 49321 
1994 49352 49383 49411 49442 49472 49503 49533 49564 49595 49625 49656 49686 
1995 49717 49748 49776 49807 49837 49868 49898 49929 49960 49990 50021 50051 
1996 50082 50113 50142 50173 50203 50234 50264 50295 50326 50356 50387 50417 
1997 50448 50479 50507 50538 50568 50599 50629 50660 50691 50721 50752 50782 
1998 50813 50844 50872 50903 50933 50964 50994 51025 51056 51086 51117 51147 
1999 51178 51209 51237 51268 51298 51329 51359 51390 51421 51451 51482 51512 
2000 51543 51574 51603 51634 51664 51695 51725 51756 51787 51817 51848 51878 
2001 51909 51940 51968 51999 52029 52060 52090 52121 52152 52182 52213 52243 
2002 52274 52305 52333 52364 52394 52425 52455 52486 52517 52547 52578 52608 
2003 52639 52670 52698 52729 52759 52790 52820 52851 52882 52912 52943 52973 
2004 53004 53035 53064 53095 53125 53156 53186 53217 53248 53278 53309 53339 
2005 53370 53401 53429 53460 53490 53521 53551 53582 53613 53643 53674 53704 
2006 53735 53766 53794 53825 53855 53886 53916 53947 53978 54008 54039 54069 
2007 54100 54131 54159 54190 54220 54251 54281 54312 54343 54373 54404 54434 
2008 54465 54496 54525 54556 54586 54617 54647 54678 54709 54739 54770 54800 
2009 54831 54862 54890 54921 54951 54982 55012 55043 55074 55104 55135 55165 
2010 55196 55227 55255 55286 55316 55347 55377 55408 55439 55469 55500 55530 
2011 55561 55592 55620 55651 55681 55712 55742 55773 55804 55834 55865 55895 
2012 55926 55957 55986 56017 56047 56078 56108 56139 56170 56200 56231 56261 
2013 56292 56323 56351 56382 56412 56443 56473 56504 56535 56565 56596 56626 
2014 56657 56688 56716 56747 56777 56808 56838 56869 56900 56930 56961 56991 
2015 57022 57053 57081 57112 57142 57173 57203 57234 57265 57295 57326 57356 
2016 57387 57418 57447 57478 57508 57539 57569 57600 57631 57661 57692 57722 
2017 57753 57784 57812 57843 57873 57904 57934 57965 57996 58026 58057 58087 
2018 58118 58149 58177 58208 58238 58269 58299 58330 58361 58391 58422 58452 
2019 58483 58514 58542 58573 58603 58634 58664 58695 58726 58756 58787 58817 
2020 58848 58879 58908 58939 58969 59000 59030 59061 59092 59122 59153 59183 



and 

Y — 1 if M < 2 

I.  
Y=  I Y 	otherwise (A.3) 
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1582 AD the error in the Julian calendar, which was introduced in 45 BC, 
had accumulated to more than ten days. This led to the calendar reform under 
Pope Gregory XIII. 

4, The Gregorian calendar is used from 15 th  October 1582 AD onwards corre-
sponding to JD > 2 299 160.5. The average length of the year in this calendar 
is 365.2425 days which deviates by less than half a minute from the mean 
solar year of 365.2422 days. In practice this is accomplished by inserting one 
extra day every fourth year, but omitting this three times per four hundred 
years. By convention, every year whose number can be divided by four is 
a leap year except when it is also divisible by one hundred. However, those 
years where the year number is divisible by four hundred are again leap years. 
In leap years the intercalary day 29th  February is inserted. 

The function entier(x) or, briefly, [x] will be used extensively in the subsequent 
algorithms. It is defined as the smallest integer which is smaller than or equal to x, 
i.e. 

[x] < x < [x]+1 . 	 (A.2) 

For positive numbers [x] is equal to the integral part int(x) of x. For negative (non-
integer) numbers, however, it is the integral part of x minus one. Negative arguments 
have been carefully avoided in the expressions given below. The entier(x) function 
can therefore also be written as int(x) for all permitted dates. 

A.1.1 Modified Julian Date from the Calendar Date 

The handling of leap years in the computation of the Modified Julian Date is facil-
itated by letting the year run from March 1 until the end of February. To this end Y 
and M are replaced by the quantities 

m = I  M + 12 if M < 2 

1 M 	otherwise (A.4) 

The number of days since March 1 at the beginning of a month M can then be 
expressed as [30.6(m +1)] — 122 as illustrated in Table A.2. 

Leap days in the Julian and Gregorian Calendar are taken into account by the 
auxiliary quantity 

{ 
 B = 
—2 + [(Y + 4716)/4] — 1179 until 4 Oct. 1582 	

(A.5) +[Y/400] — [Y/100] + [Y/4] from 10 Oct. 1582 . 

The Modified Julian Date including the fraction of day, is then given by: 

MJD = 365y — 679004 + B [30.6001(m +1)] + D 	 (A.6) 
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Table A.2. Annual day count 

Month Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb 

M 
Days 
[30.6(m +1)] — 122 

3 
31 
0 

4 
30 
31 

5 
31 
61 

6 
30 
92 

7 
31 
122 

8 
31 
153 

9 
30 
184 

10 
31 

214 

11 
30 

245 

12 
31 

275 

1 
31 

306 

2 

337 

Here, the multiplication factor of m + 1 is taken as 30.6001 rather than 30.6 in 
order to avoid numerical errors in case of limited floating-point accuracy. 

Some simplifications are possible, if only a limited time interval is considered. 
E.g. B can be replaced by a fixed value of —15 + [Y/4] between 1 March 1900 and 
28 February 2100, because the year 2000 is a regular leap year, 

A.1.2 Calendar Date from the Modified Julian Date 

The computation of the calendar date from the Modified Julian Date requires a 
number of intermediate steps. First, the integer Julian Day (i.e. the Julian Date at 
noon) is determined: 

a = [MJD] + 2400001 . 	 (A.7) 

At the same time the fraction of day, q,  is given by the decimal part of the Modified 
Julian Date: 

q = MJD —  [MID]  . 	 (A.8) 

Two auxiliary quantities b and c are defined as 

and 

b = 10 	 if a  < 2299161 (Julian calendar) 
(A.9) [(a — 1867216.25)/36524.25] 	otherwise (Gregorian calendar) 

la + 1524 	 if a  < 2299161 (Julian calendar) 	
(A.10) C  =  

a + b — [b / 4] + 1525 	otherwise (Gregorian calendar) 	. 

The next step is to calculate the auxiliary quantities 

d = [(c —121.1)/365.25] 	, 	 (A.11) 

and 

e . [365.25d] 	 (A.12) 

f = [(c — e) / 30 .6001 ] 	. 	 (A.13) 

Finally, the calendar date is obtained from the following three steps: the day of the 
month (D) is given by 

D = c — e — [30.6001f] 4- q , 	 (A.14) 
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the month of the year (M) follows from 

M = f — 1 — 12[f/14] 
	

(A.15) 

and the year (Y) in astronomical reckoning is determined by 

Y = d — 4715 — [(7+M)/10] . 	 (A.16) 

It is again possible to simplify the computation somewhat if only a limited time 
interval is considered. E.g. the computation of the auxiliary quantities a, b, and c 
can be focussed into c = [(JD + 0.5)] + 1537 if only the interval March 1900 until 
2100 is taken into account. 
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A.2 GPS Orbit Models 

The Global Positioning System (UPS) makes use of two dedicated representations 
of the GPS satellite orbits, which are known as almanac and (broadcast) ephemeris'. 
Both parameter sets are transmitted as part of the GPS navigation message and en-
able a  UPS receiver to compute positions of the  UPS  satellites with different levels 
of accuracy. Almanac data are mainly used to deteimine the constellation of visible 
satellites above the horizon, to select the best satellites for navigation, and to deter-
mine approximate Doppler shifts for improved signal acquisition. The ephemeris 
parameters, on the other hand, provide a much more accurate description of the 
spacecraft trajectory that is essential for the computation of precise user-position 
fixes. In accord with the envisaged usage, the low-accuracy almanac parameters are 
always provided for the full constellation of active satellites, whereas each satellite 
transmits ephemeris parameters for itself, only. 

Conceptionally, both the almanac and the ephemeris model are based on a Ke-
plerian elements representation of the orbit with a suitably chosen set of correction 
tenus  modeling any deviation from an unperturbed ellipse. This enables a particu-
larly compact parameter set at the price of a moderate computational burden. For 
further details the reader is referred to the respective Navstar  UPS  Interface Control 
Document (ICD-GPS-200 1997) as well as van Dierendonck et al. (1978). The latter 
reference addresses the rational behind the design of the  UPS navigation message 
and the recommended computational algorithms. 

Table A.3. Conventional values of specific constants employed in GPS almanac and ephemeris 
models (ICD-GPS-200, 1997) 

Parameter Value Description 

G Me 398600.5-1 	m3  /s2  WGS84 Gravitational coefficient 
coe  7.2921151467-10-5 s-1  WGS84 Earth rotation rate 
7t 3.1415926535898 

By convention a specific set of constants based on the (old) WGS84 system 
is to be applied in both the almanac and ephemeris models that is reproduced in 
Table A.3. Readers should be aware that the latest refinement of WGS84- constants 
(NEVIA 1997) has not resulted in an update of the above standard. 

Times are referred to the  UPS system time, which differs from TAI by a constant 
offset of 19s  and matched UTC when it was introduced in January 1980. The 
standard epoch 6.0 January 1980  UPS Time (JD(GPS) 2 444 244.5) serves as origin 
for the  UPS specific week count. A  UPS week starts on Sunday 0.00  UPS Time 
and the first week, starting at the standard epoch, is assigned the week count 0. 

The terminology "broadcast ephemeris" (see Hofmann-Wellenhoff et al. 1997) is used to ex-
plicitly distinguish the orbit information transmitted as part of the GPS navigation messsage from 
high-precision GPS ephemerides distributed in tabular form by e.g. the IGS and NIMA. 
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Accordingly, the week number for arbitrary dates is given by 

JD(GPS) — 2444244.5 1   
WN = 	

7 	j 	 (A.17) 

where brackets denote the entier function introduced in (A.2). Vice versa, GPS 
week WN starts at Julian Date 

JD(GPS) 2 444 244.5 + 7 -WN . 	 (A.18) 

Within a  UPS  week, times are typically specified in seconds past the start of week, 
yielding a count of at most 604 800 s. 

A.2.1 Almanac Model 

Aside from the reference epoch, the almanac message of each satellite comprises 
a total of seven orbit-related parameters (Table A.4). These resemble the classical 
Keplerian elements but differ in various GPS-specific details. Instead of the semi-
major axis, its square root is given in the almanac to simplify computation of the 
mean motion. The inclination is specified relative to a reference value of iref  = 
540 , which is about one degree smaller than the nominal inclination of the GPS 
constellation. All angular elements are given in units of semi-circles equivalent 
to rc radians or 180°. Special care is required in the interpretation of Q0 which 
must not be confused with the inertial right ascension. S2 of the ascending node as 
used with classical Keplerian elements. To be precise, Q0 defines the orientation 
of the orbital plane at the almanac reference epoch, but referred to the Greenwich 
meridian at the start of the respective  UPS  week. The parameter is thus related to 
the right ascension of the ascending node 2 and the Greenwich Sidereal Time e 
by the expression 

00 =  Q  (ta) e (to) 	 (A.19) 

where to denotes the start of the  UPS week and ta  is the almanac reference epoch (as 
defined by the WN0a  and toa  counts). Due to the Earth's oblateness the inertial right 
ascension of the ascending node experiences a secular change of S2 —0.04°/d, 
which is also specified as part of the almanac message. This allows the instantaneous 
Greenwich longitude kQ of the ascending node to be computed from 

?Q(t) = S2(t) - e(t) 

   

S2 (ta) 	(t — ta) — e (t0) — (as (t tO) 

= 00 + (t ta) WED (t tO) 

for arbitrary times t. After solving Kepler's equation 

(A.20) 

    

GM@  
E — esin(E) M Mo + 	(t — ta) 

a3  
(A.21) 



326 	Appendix A 

Table A.4. GPS almanac parameters 

Parameter Description Units 

WN0a 

toe 

Almanac reference epoch (part 1): 
GPS week number (mod 256) 
Almanac reference epoch (part 2): 
fraction of current GPS week 

[s] 

e 

81 

S20 

,6 

co 

Mo 

Square root of semi-major axis 
Eccentricity 
Inclination offset from reference value of 
iref = 0.3 semi-circles 
Longitude of the ascending node at the 
weekly epoch 
Rate of change of the right ascension of the 

 ascending node 
Argument of perigee 
Mean anomaly at reference epoch 

[,/in] 

[semi-circles] 

[semi-circles] 

[semi-circles/si 

[semi-circles] 
[semi-circles] 

ao 
at 

Spacecraft clock offset from GPS time 
Clock frequency offset  

[s] 
[s/si 

for the eccentric anomaly at the time of interest, the position of the  UPS satellite in 
the Earth-fixed WGS84 system can be computed from the common expressions 

a (cos E — e) \ 

TwGS84 = Rz ( — )*.f2)Rx ( — iref — 3i)Rz ( — CO) a/1 —e2  sin E 
0 
	

/ 

(A.22) 

of the two-body problem (cf. Chap. 2). An alternative, but mathematically equiva-
lent computational scheme is specified in ICD-UPS-200 (1997) for use within UPS 
receivers. It takes care of the  UPS specific data representation and should be used 
instead of the generalized foimulation introduced above whenever full consistency 
with the ICD is desired. 

A.2.2 Broadcast Ephemeris Model 

The model associated with the GPS ephemeris parameters is essentially similar to 
the almanac model introduced above, but provides for a better representation of the 
UPS orbits by additional secular and periodic perturbations. For reference, the full 
parameters set is reproduced in Table A.5. 

The ephemeris model first applies a correction An to the computed mean mo-
tion. Accordingly, Kepler's equation for the eccentric anomaly is solved with a 
value 

(11 	 GMED  + An) (t — te) M = MO + a3  
(A.23) 
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Table A.5. GPS broadcast ephemeris parameters 

Parameter Description Units 

WNoe 

toe 

Ephemeris reference epoch (part 1): 
GPS week number (mod 1024) 
Ephemeris reference epoch (part 2): 
fraction of current GPS week 

[s] 

Id 
Lin 

e 

io 
dildt 
S20 

Q 

w 
Mo 
Crc , Crs  

Cuc , Cu., 

Cic , Cis 

Square root of semi-major axis 
Correction to mean motion 
Eccentricity 
Inclination at reference epoch 
Rate of change of inclination 
Longitude of the ascending node at the 
weekly epoch 
Rate of change of the right ascension of the 
ascending node 
Argument of perigee 
Mean anomaly at reference epoch 
Amplitude of (co)sine harmonic correction 
term to the orbital radius 
Amplitude of (co)sine harmonic correction 
term to the argument of latitude 
Amplitude of (co)sine harmonic correction 
term to the inclination 

k/Fri] 
[semi-circles/s] 

[semi-circles] 
[semi-circles/s] 
[semi-circles] 

[semi-circles/s] 

[semi-circles] 
[semi-circles] 
[m] 

[rad]  

[rad] 

a10 
a f I 
a12 

Spacecraft clock offset from GPS time 
Clock frequency offset  
Clock frequency drift 

[s] 
[s/si 
[s/s2 ] 

of the mean anomaly. Here te  is the ephemeris reference epoch as defined by the 
counters WNoe  and toe. Based on the perifocal coordinates 

=- a (cos E — e) 

= aA/1— e2  sin E 

one obtains the (uncorrected) argument of latitude 

= w arctan(9/2) 	 (A.25) 

from which the periodic corrections 

(A.26) 

to the argument of latitude (u), the radius (r), and the inclination (i) can be computed. 
Making use of the appropriately corrected elements 

= a (1— e cos E) 3r 

F 3 u 
(A.27)

 jo + di Idt (t — te ) + 6i 

S20 + (t te) We(t tO) 

(A.24) 

Sr = Crs  sin(21-1) Cr, cos(2ü) 
Su = C„, sin(2ü) Citc  cos(2ù) 
Si = Cis  sin(2i,i) C1c cos(2a) 
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one finally obtains the desired position 

(r cos u 
rWGS84 =  R( -))R( -i) r sin u 

	
(A.28) 

0 

Again, a slightly different, but mathematically equivalent foimulation is specified 
in ICD-GPS-200 (1997). It should be applied whenever full consistency with the 
ICD is desired. 
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Appendix B 

B.1 Internet Resources 

A wealth of data as well as software that could not be provided within this book or the 
enclosed CD-ROM is available via the Internet and the World Wide Web. We have, 
therefore, compiled a set of useful URL resources with a focus on data that require 
frequent updates. All addresses may conveniently be accessed via the hyperlink file 
SAT. html given on the CD. Links are ordered by topics and accompanied by brief 
textual descriptions (cf. Fig. B.1). It is emphasized, however, that the given list is 
in no way comprehensive and that server names and files are subject to changes 
without further notice. 

Fig. B.1. Useful internet links provided in SSAT . html 
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B.2 The Enclosed CD-ROM 

B.2.1 Contents 

The enclosed CD-ROM provides a comprehensive library  of C++ modules as well 
as programs to solve the exercises given at the end of each chapter. A summary of 
the individual directories and files is given in the subsequent table. The CD  drive  
name (here E:) may, however, vary depending on the particular PC configuration. 

Directory 	Description 
E:  \ Sat \ Source \ Source codes of library modules (header and implementation 

files) 
GNILiomanip . h SAT_Const . h, SAT_DE . h, SAT_DE. cpp, 

SAT_Filter .h, SAT_Filter cpp, SAT_Force .h, SAT_Force . cpp, 

SAT_Kepler.  . h, SAT_Kepler. cpp, SAT_Ref Sys .h, SAT_Ref Sys . cpp, 

SAT_Time . h, SAT_Time . cpp, SAT_VecMat . h, SAT_VecMat . cpp 

Source codes for solutions to exercises 
Exercise_2_1.cpp,...,Exercise_2_6.cpp, 
Exercise_3_1.cpp,...,Exercise_3_4.cpp, 
Exercise_4_1.cpp,...,Exercise_4_3.cpp, 

Exercise_5_1.cpp,...,Exercise_5_3.cpp, 
Exercise_6_1.cpp,...,Exercise_6_4.cpp, 

Exercise_7_1.cpp, 

Exercise_8_1.cpp,...,Exercise_8_3 cpp 

Application programs 
GEODA. cpp, RTOD. cpp, TDRSOD. cpp 

\ InOut \ Output of exercise programs 
Exercise_2_1.out,...,Exercise_8_3.out 

Input data for application programs 
GEODA_A1 .inp, 	GEODA_C2.  tap,  RTOD_A.  tap, 	RTOD_C.inp, 
RTOD.dat, TDRSOD.  tap,  TDRSOD .dat 

Output of application programs 
GEODA_Al . out, ..., GEODA_C2. out, RTOD_A. out, ..., RTOD_C . out 
TDRSOD. out 

\W1n32 \ Executable programs (Windows 32-bit Version) 
GEODA. exe, RTOD. exe, TDRSOD. exe 

\ Linux \ Executable programs (Linux Version) 
GEODA, RTOD, TDRSOD 

Unix archives of input/output files, executable programs (Linux 
only) and source code (incl. makefile) 
satio .tar, satexe . tar, satsrc . tar 

The SAT_Lib library comprises elementary operators, functions, and classes, which 
are common to the various exercises but may also be applied by the reader to develop 
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his/her own applications. In total the library comprises nine modules, each covering 
a specific and well defined scope: 

SAT_Const.h 	Mathematical and astronomical constants 
SAT_DE . h 	Numerical integration of differential equations 
SAT_Filter . h 	Kalman filtering and least-squares estimation 
SAT_Force .h 	Satellite force model 
SAT_Kepler . h 	Keplerian orbit computation 
SAT_Ref Sys . h 	Reference system transfolinations 
SAT_Time . h 	Calendrical computations 
SAT_VecMat 3D . h Vector and matrix arithmetics 

Making use of the header files SAT_* . h, the required modules can be included 
into the application programs in an easy way. The associated implementations are 
provided in the corresponding files SAT_* . cpp , which can be compiled separately 
and linked in the  foi ni  of object or library files. Excluded from this is the SAT_Const 
module, which requires no implementation part and consists of a header file only. 

B.2.2 System Requirements 

For a painless application of the programs we recommend the installation on a 
personal computer with the following characteristics: 

• Intel Pentium processor 133 MHz or equivalent, 
• 32 MB memory, 
• 100 MB free hard disk space, 
• CD drive, 
• Windows 95/98/NT or SuSE Linux 7.2 operating system, 
• Microsoft Visual C++ 6.0 or GNU C++ 2.95. 

B.2.3 Executing the Programs 

The CD-ROM contains pre-compiled versions of the application programs de-
scribed in Chap. 9. To run these programs on a PC with the Windows operating 
system, the files in the E : \ Sat \Win32 folder on the CD-ROM should be copied 
to an appropriate folder (e.g., C: \Sat \Exe) on the hard disk. The input data files 
from the folder E:  \ Sat \ InOut should then be copied to the same folder. After 
the command interpreter has been started (by switching to DOS mode or running 
command exe under Windows 95, cmd . exe under Windows NT) and switching to 
the chosen program folder, the individual programs may be run as in the following 
example: 

C:\Sat\Exe>TDRSOD TDRSOD.inp TDRSOD.dat 
TDRS Orbit Determination 
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341 measurements read from tracking data file 

Iteration 1 

Date 	UTC 
	

Sta TDRS obs [m] 	comp [m] 	o-c [m] 

1999/09/01 00:22:01.000 	162 	5 	79010.2586 79010.2408 	17.78 

For all programs the input files may be specified in the command line (see Table 
B.1). Using the redirection operator (>), the default screen output may, furthennore, 
be written to an arbitrary output file. 
Table B.1. Executing the application programs with optional command-line arguments 

Name Arguments Default setup Default data 

GEODA 

RTOD 

TDRSOD 

[setup-file] [>output-file] 
[setup-file [data-file]] [>output-file] 

[setup-file [data-file]] [>output-file] 

GEODA . inp 

RTOD. inp 

TDRSOD . inp 

RTOD .dat 

TDRSOD . dat 

The advice just given applies in a similar manner to running the programs 
under Linux. After creating a suitable directory and copying the files from the CD-
ROM, the programs may be started by entering the corresponding program names, 
provided the working directory is contained in the path. As under Windows, input 
and output files may be specified in the command line under Linux. 

If the names of the input data files are not correctly reproduced under Linux 
upon reading the CD, there is a Unix tar archive available. This may be unpacked 
with the commands 

tar -xvf /cdrom/Sat/Linux/satio.tar 

and copied into the current working directory. 

B.2.4 Compilation and Linking 

In the sequel, the basic steps for generating executable programs under the Windows 
and Linux operating systems are described. 

For use with Microsoft Visual C++ 6.0 under Windows, a new subdirec-
tory C: \ Sat \ Source \ is first created (using the Windows Explorer or equiva-
lent) into which all files from the corresponding CD directory are copied. After 
starting the MS Developer Studio a new workspace is first created, which serves 
for the administration of all programs and projects. Upon opening the menu entry 
File.New.Workspaces, the workspace name (suggestion: Prj) and the working 
directory (suggestion: C: \ Sat \ Pr j ) have to be specified. 

As a first project within the workspace, a library is built from the generic mod-
ules, which may later be linked to the individual programs. Using the menu entry 
File.New.Projects a project of type Win32 Static Library and name SAT_Lib is cre-
ated. Choose option Add to current workspace and conflua  by OK to complete the 
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allocation of this project. Subsequently the source files of the library modules are 
added to the project SAT_Lib by calling the menu Project.Add To Project.Files... 
and selecting all files within the C: \Sat \Source\ folder, which adhere to the 
naming scheme SAT_* . cpp. Optionaly, the header files (* . h) may also be incorpo-
rated. This is not, however, mandatory, since the compiler automatically searches 
the source directory for header files. Now, the library can be completed by selecting 
the Build.Build menu. To this end, the development environment compiles all source 
texts and then links the resulting object files into a static library SAT_Lib . lib. 

The Exercises Exerc s e_2_1 to Exerc is e_8_3 and the application programs 
(GEODA, RTOD, TDRSOD) are treated as independent projects within the Sat \Prj 

workspace. In the sequel this is illustrated for the RTOD program. Within the menu 
File.New.Projects a project of type Win32 Console Application is selected and 
the project name RTOD is entered into the appropriate field. As in the case of the 
SAT_Lib project choose the option Add to current workspace and conflua  with 
the OK button to generate the project sceleton. Now add the RTOD . cpp file from 
the C: \Sat \Sour ce folder to the project using the Project.Add To Project.Files... 
menu. Then activate Project.Dependencies... and mark the option SAT_Lib for 
the current project, to inform the builder that this library is required for linking 
the RTOD program The executable module RTOD . exe is finally built by selecting 
Build.Build and can subsequently be started from the DOS command window. For 
further hints we refer to the comprehensive documentation of the Microsoft C++ 
compilers and the Developer Studio environment. 

Using Linux and the GNU C++ compiler, a set of minor modifications of the 
source codes are required. Unfortunately, the current version .2.95 of the GNU 
C++ compiler does not support all iostream-manipulators of the C++ standard 
library. This affects all programs and modules that make use of the left, right, 
fixed, scientific,  showpos, and noshowpos manipulators. As a substitute the 
definitions 

#include <iomanip> 
#include <iostream> 
namespace X 
°stream& left (ostream& o){o.setf(ios::left ,ios::adjustfield);return o; } ; 
°stream& right(ostream& o){o.setf(ios::right,ios::adjustfield);return o; } ; 
°stream& fixed(ostream& o){o.setf(ios::fixed,ios::floatfield); return o; } ; 
°stream& scientific(ostream& o) 

{ o.setf(ios::scientific,ios::floatfield); return o; } ; 
°stream& showpos (ostream& o){o.setf(los::showpos); return o; } ; 
°stream& noshowpos(ostream& o){o.unsetf(ios;:showpos); return o; } ; 

are provided in the GNU_iomanip . h file, which may be included into all relevant 
source files by the statements 

#ifdef 	 // GNU C++ adaptations 
#include "GNU_iomanip.h" 
#endif 
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Another incompatibility concerns the determination of the machine accuracy by 
<limits> module of the standard library, which is not currently implemented for 
GNU C++. This affects the module SAT_DE cpp as well as SAT_Kepler.  . cpp, 
which should be modified as indicated below: • 

#ifdef __GNUC__ // GNU C++ adaptation 
#include <float.h> 
#else 	 // Standard C++ version 
#include <limits> 
#endif 

#ifdef __GNUC__ // GNU C++ adaptation 
const double umach = DBL_EPSILON; 
#else 	 // Standard C++ version 
const double umach = numeric_limits<double>::epsilon(); 
#endif 

For compilation and linking of the individual programs, it is advisable to combine 
all modules SAT_* in a library libSAT . a using the shell commands: 

> g++ -c SAT*.cpp 	# Compilation of library modules 
> ar rc libSAT.a SAT*.o # Generation of library from object files 

Assuming that all relevant files are contained in the same directory, the main pro-
grams can subsequently be built by the commands 

Exercise_2_1.cpp -o Exercise_2_1 -1SAT -L. 
Exercise_2_2.cpp -o Exercise_2_2 -1SAT -L. 

TDRSOD.cpp 	-o TDRSOD 	-1SAT -L. 

For ease of use, a make file is provided as part of the satsrc . tar archive, which 
perfoinis all steps in a single run. 
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B.2.5 Index of Library Functions 

The following compilation summarizes all identifiers of public types, constants, 
functions, and classes provided by the individual modules. 

<< 	 Output operator for dates, vectors, and matrices 
Access to vector and matrix components 
Assignment of vectors and matrices 
Addition of vectors and matrices 

+= 	 Vector addition 
Subtraction of vectors and matrices 
Unary minus (vector, matrix) 

-= 	 Vector subtraction 
Multiplication (scalar, vector, matrix) 
Division by a scalar 

abs err 	Public element of DE class specifying the absolute accuracy 
requirement 

AccelDrag 	Acceleration due to atmospheric drag 
AccelHarmonic Acceleration due to harmonic gravity field of central body 
AccelMain 	Total acceleration of an Earth-orbiting satellite 
AccelPointMass Acceleration due to point-mass perturbation 
AccelSolrad 	Acceleration due to solar radiation pressure 
Accumulate 	Method of class LSQ for accumulation of data equations 
Arcs 	 Arcseconds per radian 
AU 	 Astronomical unit [m] 
AzEl 	 Azimuth, elevation and, optionally, partials from local tangen- 

tial coordinates [m] 
CalDat 	 Calendar date and time 
c_light 	Velocity of light  [mis]  
Col 	 Column vector of a matrix 
Coy 	 Method of class EKF returning the current covariance 
Coy 	 Method of class LSQ for covariance computation 
Cross 	 Cross product of 3-dimensional vectors 
Date 	Auxiliary class for output of dates 
Data 	Method of class LSQ returning the transfouned right-hand side 

of the data equations 
DE 	 Class for numerical solution of differential equations 
DE_BADACC 	Enumerator of type DE_STATE (Flag for too stringent accuracy 

requirements) 
DE_DONE 	Enumerator of type DE_STATE (Flag for successful integration 

step) 
Define 	Method of DE class defining the differential equation 
DEf unct 	Function prototype for differential equations 
Deg 	 180°/7 
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DE_INIT 
DE_INVPARAM 
Density_HP 
DE_NUMSTEPS 

DE_STATE 
DE_STIFF 
Diag 
Diag 

Dot 
Dyadic 
EccAnom 
EclMatrix 
EKF 
Elements 
Elements 
EgnEquinox 
f_Earth 
FindEta 
GAST 
Geodetic 
GHAMatrix 
GM_Earth 
GM_Moon 
GM_Sun 
GMST 
GPS_TAI 
GPS_UTC 
Gray 
GravModel 
Id 
IERS 
Illumination 
mit  

mit  
mit  

Integ 
Intrp 
Inv 
InvUpper 
LSQ 

Enumerator of type DE_STATE (Integrator restart) 
Enumerator of type DE_STATE (invalid input parameters) 
Atmospheric density based on Harris—Priester model 
Enumerator of type DE_STATE (Permitted number of steps ex-
ceeded) 
Enumeration type for status codes of class DE inegrator 
Enumerator of type DE_STATE (Suspect of stiff problem) 
Diagonal matrix from vector of diagonal elements 
Method of Matrix class returning the vector of diagonal ele-
ments 
Dot product of two vectors 
Dyadic vector product 
Eccentric anomaly for elliptic orbits 
Transfounation matrix from equator to ecliptic 
Extended Kalman filter class 
Orbital elements from position and velocity 
Orbital elements from two positions 
Equation of the equinoxes [rad] 
Flattening of the Earth 
Sector—triangle ratio 
Greenwich Apparent Sidereal Time 
Class for handling geodetic coordinates 
Earth rotation matrix 
Product of gravitational constant x mass of Earth [m3/s2] 
Product of gravitational constant x lunar mass [m3/s2 ] 
Product of gravitational constant x solar mass [m31s2] 
Greenwich Mean Sidereal Time 
Method of IERS returning GPS—TAI time difference [s] 
Method of IERS returning GPS—UTC time difference [s] 
Earth gravity model 
Data structure for gravity model parameters 
Identity matrix 
Class for handling of Earth rotation parameters 
Fractional illumination of a spacecraft near the Earth 
Method of DE class for initialization of a new initial value prob-
lem 
Method of class EKF for initialization of a Kalman filter 
Method of class LSQ for initialization of a least-squares problem 
(with or without a priori infounation) 
Method of class DE for performing an integration step 
Method of class DE for interpolation of solution 
Inversion of general square matrix 
Inversion of upper triangular matrix 
Least-squares estimation class 
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Transformation from Greenwich coordinates to local tangential 
coordinates 
Method of class geodetic returning the transformation to local 
tangential coordinates 
Matrix class 
Mean obliquity of the ecliptic 
Method of class EKF performing the measurement update of 
Kalman filter parameters 
Modified Julian Date 
Modified Julian Date at epoch J2000 
Low-precision lunar coordinates 
Euclidean norm of a vector 
Nutation matrix 
Earth rotation rate [rad/s] 
Public element of DE class controlling integration past the spec-
ified output point 

27r 
Polar motion matrix 
Method of class Geodetic computing Cartesian from geodetic 
coordinates 
Precession matrix 
Solar radiation pressure at 1 AU [N/m2] 
Earth radius [m] 
Lunar radius [m] 
Solar radius [m] 
Matrix describing elementary x-axis rotation 
Matrix describing elementary y-axis rotation 
Matrix describing elementary z-axis rotation 
7/180° 
Public element of DE class specifying the relative accuracy re-
quirement 
Class for 4th-order Runge—Kutta integration 
Function prototype for differential equations 
Row vector of a matrix 
Method of class IERS for initialization of Earth orientation pa-
rameters 
Method of Matrix class for assignment of a column vector. 
Method of Matrix class for assignment of a row vector 
Method of Vector class returning the number of vector ele-
ments 
Method of Matrix class returning the first dimension (number 
of rows) 

LTCMatrix 

LTC_Matrix 

Matrix 
MeanObliquity 
Mea  sUpdate 

Mjd 
MJD_J2000 
Moon 
Norm 
NutMatrix 
omega_Earth 
PermitTOUT 

Pi 
pi2 
PoleMatrix 
Position 

PrecMatrix 
P_Sol 
R_Earth 
R_Moon 
R_Sun 
R_x 
R_y 
R_z 
Rad 
relerr 

RK4 
RK4funct 
Row 
Set 

SetCol 
SetRow 
size 

sizel 
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Method of Matrix class returning the second dimension (num-
ber of columns) 
Method of Vector class for extraction of a sub-vector 
Method of  Matrix class for extraction of a sub-matrix 
Method of class LSQ for solution of a least-squares problem by 
backsubstitution 
Method of Vector class returning the square-roots of all vector 
elements 
Method of class LSQ returning the square-root information ma-
trix 
Method of class EKF returning the current state vector 
Position and velocity from Keplerian elements 
Public element of DE class specifying the current integrator 
status 
Partial derivatives of state vector w.r.t. Keplerian elements 
Method of class EKF returning the current standard deviation 
Method of class LSQ for computing the standard deviation of 
the solution 
Method of RK4 class performing a single integration step 
Low-precision solar coordinates 
Method of class EKF returning the current time 
Method of class EKF performing the time update of Kalman 
filter parameters 
Epoch J2000 (in Julian centuries since J2000) 
Matrix transposition 
Method of IERS class returning TT—TM time difference [s] 
Method of IERS class returning TT—UTC time difference [s] 
State vector propagation and transition matrix for Keplerian 
orbits 
Method of IERS returning UTC—TAI time difference [s] 
Method of MRS returning UT1—UTC time difference [s] 
Three-dimensional vector from polar coordinates 
Vector class 
Matrix of class IERS returning the x-coordinate of the Earth's 
pole [rad] 
Matrix of class IERS returning the y-coordinate of the Earth's 
pole [rad] 
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size2 

slice 
slice 
Solve 

Sqrt 

SRIM 

State 
State 
State 

StatePartials 
StdDev 
StdDev 

Step 
Sun 
Time 
TimeUpdate 

T_J2000 
Transp 
TT_TAI 
TT_UTC 
TwoBody 

UTC_TAI 
UTl_UTC 
VecPolar 
Vector 
x_pole 

y_pole 
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A 	Runge—Lenz vector 
A 	Cross-section (surface area) 
A 	Avogadro number 
A 	Moment of inertia with respect to the x-/y-axes 
A 	Azimuth 

Moment of inertia with respect to the z-axis 
CD 	Drag coefficient 
CR 	Radiation pressure coefficient 
Cnm 	Potential coefficient 
D Torque vector 
D Diagonal matrix 
Do 	Solar torque vector 

Mean solar torque vector 
D Mean elongation of the Moon from the Sun 

Earth-fixed to local-tangent transfounation matrix 
Expectation value 
Eccentric anomaly 
Elevation 
Energy 

ET 	Ephemeris Time 
Force vector 
Mean distance of the Moon from the ascending node of its orbit 

F10.7 	Index measuring solar UV radiation at 10.7 cm 
G Jacobian matrix (partial derivatives of measurement vector 

with respect to the state vector) 
G Gravitational constant 
GMST 	Greenwich Mean Sidereal Time 
H Jacobian matrix (partial derivatives of measurement vector 

with respect to the epoch state) 
Ho 	Atmospheric density scale height 
H Sun-satellite hour angle 
H Macro step size 

Moment of inertia 
Loss function 
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n 	 Zonal potential coefficient of degree n 
Julian Date 
Kalman gain 
Knudsen number 

Kp 	Three-hourly planetary geomagnetic index 
L0 	Mean longitude of the Moon 

Mean anomaly 
Mass 

Mo 	Mean anomaly at reference epoch 
MID 	Modified Julian Date 

Nutation matrix 
N. 	Particles per unit volume 

Auxiliary quantity for transformation of geodetic coordinates 
Accumulated Doppler counts 
Integer cycle ambiguity 
Gaussian vector (in direction of perigee) 
Precession matrix 
Covariance matrix 
Period 

Pn 	Legendre polynomial of degree n 
Pnm 	Associated Legendre polynomial of degree n and order m 
P0 	Solar radiation pressure at 1 AU 

Gaussian vector (perpendicular to perigee) 
Orthonormal matrix 
Process-noise covariance matrix 
Upper triangular matrix 
Station position vector 

Ry , Rz  Matrices describing rotations around the x, y, z-axes 
liZ 	Universal gas constant 

Radius of a celestial body 
Upper triangular matrix 

R 0 	Equatorial radius of the Earth 
Sensitivity matrix 
Square root of the weighting matrix 

SA 	Square root of the information matrix 
Area of sector bounded by two position vectors 

Snm 	Potential coefficient 
Time in Julian centuries since J2000 
Absolute temperature 

T1,2 	Satellite transponder turn-around ratio 
Teqx 	Epoch of reference equinox in Julian centuries since J2000 
Tn 	Chebyshev polynomial of order n 
To9 	Exospheric temperature 
TM 	International Atomic Time 
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TCB 	Barycentric Coordinate Time 
TCG 	Geocentric Coordinate Time 
'11JB 	Barycentric Dynamic Time 
1DT 	Terrestrial Dynamic Time 
TT 	Terrestrial Time 

Transformation matrix (inertial to Earth-fixed) 
Orthonounal matrix 

U 	Elementary Householder transfolination matrix 
U ik 	Elementary Givens rotation matrix 

Potential 
U2 	Potential due to tides 
UT 	Potential of tide-induced gravity 
UT 	Universal Time 
UTC 	Coordinated Universal Time 
V 	Orthonoillial matrix 
Vnm 	Potential function 

Gaussian vector perpendicular to the orbital plane 
Weighting matrix 

Wnm Potential function 
XEW, YEW XJY-angles using antenna with East/West mount 
XNS, YNS X/Y-angles using antenna with North/South mount 

Height 
Height of inflection point 

a 	Acceleration vector 
a 	Semi-major axis 
a 	Ambiguity 
a 	Albedo of the Earth 
ai 	Coefficient of Chebyshev expansion 

Runge—Kutta(—Nystrom) coefficients 
a 	Three-hourly planetary amplitude index 

Chebyshev coefficient for derivative of a function 
Ecliptic latitude 

bi 	 Runge—Kutta(—Nystrom) coefficients 
Aerial velocity or specific angular momentum vector 
Velocity of light ( c =  299 792 458 m/s) 
Element of Givens rotation matrix 

ci 	Runge—Kutta coefficients 
di 	 Singular value 

Unit vector 
Orbital eccentricity 
Local truncation error 
Eccentricity of reference ellipsoid 
Vector function 
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Orbital-plane unit vector 
Flattening of the Earth (f P•e,  1/298.257) 
Frequency 
Modeled measurement vector 
Orbital-plane unit vector 
Gravitational acceleration 

g (i) 	Coefficient of variable stepsize multistep method 
h 	Aerial velocity (specific angular momentum) vector 
h 	Modeled measurement vector 
h 	Equinoctial element (eccentricity vector component) 
h 	Altitude (height above reference ellipsoid) 
h 	Step size 

Orbital inclination 
ki 	Function values for use in Runge—Kutta methods 

Equinoctial element (eccentricity vector component) 
1 	Angular momentum vector 
1 	Mean longitude 
1 	Typical satellite dimension 
1 	Mean anomaly of the Moon 
1 	Ecliptic longitude 

Mean anomaly of the Sun 
Satellite mass 
Surface normal unit vector 
Mean motion 
Particle number density 
Elements of nutation matrix 
Polynomial approximation of vector-valued function 
Force model parameter vector 
Semi-latus rectum 
Equinoctial element (inclination vector component) 
Order of numerical integration method 
Precession in longitude 

Pif 	Elements of precession matrix 
Pv 	Impulse of a photon 

Measurement model parameter vector 
Equinoctial element (inclination vector component) 

go 

	

	Fraction by volume of atmospheric constituents 
Geocentric satellite position vector 
Geocentric satellite velocity vector 
Geocentric satellite acceleration vector 

ro 

	

	Geocentric position vector of the Sun 
Geocentric satellite distance 
Position vector 
Satellite position in local tangent coordinates 
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Tide constituent 
Time 

to 	Reference epoch 
Process noise 

ui 	Mid-point rule approximation in extrapolation method 
Argument of latitude 
Geocentric satellite velocity vector 
Geocentric satellite velocity 
Householder transformation vector 

x, y, z 	Geocentric satellite coordinates 
Y',  j 	Geocentric satellite acceleration 

X, 0 	Satellite coordinates with respect to the orbital plane 
xp , yp 	Pole coordinates 
X0 	 Reference epoch state 
x 0 	Least-squares estimate of reference epoch state 
y 	State vector 
Yo 	State vector (initial value) 

Measurement vector 
Auxiliary angle in description of precession 
Height in km 
Measurement 

zx 	Height of inflection point in km 

Area of triangle formed by two position vectors 
AE 	Transfered photon energy 
AT 	Ephemeris Time — Universal Time difference 
AT00 	Exospheric temperature correction 
Am 	Mass element 
.6p 	Transfered photon impulse 
At 	Time interval 
.6X0 	Reference state correction 
Az 	Measurement residuals relative to reference orbit 
As 	Nutation in ecliptic latitude 

Nutation in ecliptic longitude 
Earth rotation matrix 
Greenwich sidereal time 

A 	Infoimation matrix 
A 	Auxiliary angle in description of-precession 
H Polar motion transfoimation matrix 
17 	Auxiliary angle for description of precession 
O GPS code phase 

Increment function 
O State transition matrix 
O Solar radiation flux 
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tif 	Geocentric angle between satellite and apex of density bulge 
Right ascension (or longitude) of the ascending node 

a 	Orbital elements vector 
a 	Right ascension 
ai 	 Thelma' diffusion coefficient 
0/0 	 Right ascension of the Sun 

Ecliptic latitude 
Pnif 	Adams—Bashforth coefficient 
An*  j 	Adams—Moulton coefficient 
y 	Angle 
yj 	Adams—Bashforth coefficient 

Adams—Moulton coefficient 
8 	 Declination 
8 	 Dirac delta function 

Coefficient of Stoeimer method 
St 	Coefficient of Cowell method 

8rzm 	Kronecker symbol (S rim  = 101  I for f  nn ;int n  1) 

Measurement noise vector 
Emissivity of the Earth 
Reflectivity 
Mean obliquity of the ecliptic 
Coefficient of reflectivity 
True obliquity of the ecliptic 

E • 	Error coefficient of mid-point rule approximation 
Auxiliary angle in description of precession 
Numerical approximation of initial value problem 
Ratio of sector to triangle 

O 	Angle between incoming radiation and surface normal 
Os 	Angle of the weighted sum of Doodson variables 

Auxiliary angle in description of precession 
ic 	Love number 
K rz 	Ocean-load deformation coefficient 

Geocentric longitude (positive towards the East) 
Mean free path length 
Error constant of Runge—Kutta—NystrOm method 
Wavelength 
Ecliptic longitude 
Ratio of the Earth's and the Moon's mass CO 81.3) 
True anomaly 

y 	Shadow function 
7r 	3.1415926... 

Angle between ecliptic of epoch and fixed reference ecliptic 
Residual vector 
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Density 
Range (topocentric distance) 

po 	GPS code pseudorange 
GPS carrier pseudorange 
Range rate (topocentric velocity) 
Average range rate 
Fraction of integration step size 
Measurement weight 
Phase noise 

crp- 	 Range rate noise 
Time within unit interval 
Signal travel time 
Rotation angle 
Geocentric latitude 
GPS carrier phase 

(i) 	Backward difference of variable stepsize multistep method 
ço 	Geodetic/geographic latitude 

Geocentric latitude 
Lunisolar precession 

coEe 	Angular velocity vector of the Earth 
Argument of perigee (or perihelion) 
Angular velocity 
Inclination of mean equator with respect to reference ecliptic 

Vfl 	Backwards difference of order n 
On xm 	Null matrix of dimension n x m 

xn 	n-dimensional identity matrix 
Earth 

O 	Sun 
0 	Degree 
a - b 	Dot product of two vectors 
a T  b 	Dot product of two vectors 
A T 	Transposed matrix 
A -1 	Inverse matrix 
A — T 	Inverse of transposed matrix 

The elementary rotation matrices are defined as 

( 
1 0 	0 ) 	±cos0 0 —sin0 	 ±cos4) -Fsin4) 0) 

R1 ()  = 0 +cos4) -Fsin4) 	R y  (4)) = 	0 1 0 1 	R()=z = —sin l) +coal) 0 
0  —sin 0 +cos0 	 +sit* 0 +cos0 	 0 	0 1 
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