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PREFACE 

THE FIRST PURPOSE of this text is to . demonstrate the application and develop-
ment of familiar physics—Newtonian gravitation—and familiar mathe-
matics—Euclidean geometry—in a particular environment: the earth. The 
second is to collect and explain some orate mathematical techniques developed 
in recent years in order to utilize artificial satellites for geodesy. 

To make (his book as useful as possible for the first purpose, it is assumed 
that the reader has completed only the pertinent parts of a first-year course 
in physics and a first-year course in calculus. Thus, although it is assumed 
that the reader is familiar with the fundamentals of potential fields and 
'analytic geometry, full explanations are given of certain mathematical 
techniques, such as spherical harmonics and matrices, that are necessary to 
apply these fundamentals in the context with which the book deals. 

The second purpose may interfere with the first in that it introduces more 
complications than are necessary for an understanding of the physical 
principles involved. However, the fact that such complications occur in 
applying simple physics and the fact that certain mathematical techniques 
are valuable because they cope most effectively with complications are 
perhaps the most important lessons for the student. 

In writing this book lam indebted to the following persons; for comments 
on earlier drafts, to Robert G. Wilson and Bernard F. Cohlan at the Uni-
versity of California in Los Angeles and to C. A. Whitten, Martin Hahne, 
and others at the United States Coast and Geodetic Survey in Washington, 
D.C.; to Robert H. Gersten of Aerospace  Corporation, Los Angeles, who 
contributed greatly by carefully reading the final draft; and to Elizabeth 
Doty for her diligence and patience in preparing the typescript and its 
.multifarious corrections. 

-"( W. M. KAMA 
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THE EARTH'S GRAVITATIONAL FIELD 

Potential Theory 

The most pervasive fact of the familiar physical environment is the earth's 
gravitational attraction. According to Newton's universal law of gravitation, 
the force of attraction between two particles or masses n ?  and Al at a distance 
r from each other will be 

ni AI 
F= k 	, 

r- 

where k is the gravitational constant. 1f we combine Equation (1.1) with 
Newton's second law, which is 

F = ma, 

we obtain the acceleration of the particle of mass in with respect to the center 
of m ass or the two particles, 

k M 
= (1.2) 

This acceleration is the magnitude of a vector directed along the line between 
the two particles. A vector a equivalent to  Equation (1.2) will be obtained 
by expressing the acceleration as the gradient of a scalar, called a potential. 
Thus 

a = VV, 	 (1.3) 
where 

(1:4) 
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In (1.4),  V is  shown as a positive quantity, which is consistent with the sign 
convention of astronomy and geodesy. In physics V is conventionally taken 
to be negative. 

For 111 negligibly small compared to M, Equations (1.3) and (1.4) are 
consistent with a coordinate system whose origin is at the center of mass of 
the particle of mass M. For the effect of several particles of masses Mi  at 
distances r„ the combined acceleration can be expressed as the gradient of a 

•potential, which is a sum of potentials V, expressed by Equation (1.4). 
If these particles are conglomerated to form a continuous body of variable 
density p, this summation can be replaced by an integration over the volume 
of the body. Thus 

V=  k iff P(x ' 	z)  dx dy clz. 	 (1.5) 
• r(x, y, z) 

For a particular component di, of a derived from the point mass potential 
of Equation (1.4), we have 

V 	7 7 4  x 
=-- — = — ax 

and  for (he second derivative, we have 

	

a2v 	„, 	3x 2  
— = KIVI (— 

1 — a x 2 
r5 ) 

Adding together the second derivatives for the other two coordinates, we 
get Laplace's equation, 

V 2  V 	 a2v 	= kM a'y 	( — 3 	3(x 2  + Y 2  + Z 2)) — O. (1.8) 

	

ax 2 	ay  2 	az 2 	1-3 	r5 

We would get this same result for  any element of mass p dx dy dz in the 
potential of Equation (1.5) and hence for the summation thereof.. 

The coordinate system, rectangular or otherwise, that is most convenient 
in a physical problem usually depends on the geometry of the boundaries. 
The earth is rather round, which suggests spherical coordinates. Thus, 

x = r cos cos 2, 

y --- r cos (I) sin A, 	 (1.9) 

z = r sin 4), 

(1.6) 

(1.7) 
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where r is the radial  distance from the origin, 0 is latitude, and A is longitude 
measured eastward (that is, counterclockwise looking toward the origin 
from the positive end of the. z-axis). The notation used in Equation (1.9) 
is consistent with geodetic practice; usually in mathematics there are used 
0 for colatitude and 0 for longitude. 

In order to convert the Laplace equation, (1.8), to spherical coordinates, 
we need partial derivatives of the spherical coordinates with respect to the 
rectangular coordinates. These can be obtained by differentiating Equation 
(1.9) with respect to r, ck, and A in turn and then by solving the simultaneous 
differential equations for dr, (10, dA. Thus we have 

dr = cos 9S cos A dx -I- cos 0 sin A dy + sin dz, 

1.  
dO = — - sin 0 cos A dx — -

1.
n 0 sin A dy + -

1 

cos 0 dz, 

	1  
1  

dA = 	sin A. dx 	cos  A  dy. 
r cos 	 r cos (/) 

(1.10) 

Then 

av av ar av ao av a2 

	

ax 	a •  D.v + 	DX +  DA ax 

	

av 	av 1 	sin A  av = — cos cos — — - sin q!) cos A 

	

Dr 	 D r 	 r cos aA 
and 

a2v 	La2v. 	av t 	a2v   

	

— 	 . = 	cos qb cos 	( 	• — 	sin 0 cos A 
ax 2 	ar2 	 .aqS r 	ao Dr/ r 

	

+  sin A  (Dy  I 	a2v  )1ar. 	 a 	aA — + similar factors x 	and — . (1.12) 

	

r cos (1)\DA r 	a2ar. ax 	 ax 	ax 

Carrying out these differentiations for 

a2v D2V 	a2v -a72  , 	, and az2  

in turn and adding them together, we obtain for the Laplace Equation 
in spherical coordinates, 

r2V 2 V = —a 2  a_11 ) 	-_(cos  
ar 	ar 	cos oao 

1  	at'  _ 
cos' o aA2 

(1.13) 
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1.2 Spherical Harmonics 

To express the variations of the potential V in the spherical coordinate 
system, it would be convenient if V had the form 

V = R(r) (NO) .A(2). 	 (1.14) 

By substituting Equation (1.14) in (1.13) and dividing by /2(1)A, we get 

1 d 
 — — 	

dR 	1 	d / cos (1) (1(.1) ) 	d'A 
= 0. (1.15) 

R  (Ir 	d r 	(I) cos (kdO 	(Ici)! 	A cos' (I) dit' 

Because the first term of N q uation (1.15) is the only term that is a function 
of r, it must be constant say, as later turns out to be convenient-A(1 1). 
Carrying ou( the differentiation and multiplying by R, we have 

„ 	dR 
1(1 -I- 1)R 	0, 

dr" 	dr 

The form of Equation (1.16), in which R and each of its derivatives is 
multiplied by the equivalent power of r, suggests that R is of the form rk. 
Substituting this value in Equation (1.16) and solving the resulting equation 
for k, we get land —1 — 1 as the two admissible solutions, or 

R = Ar' 	 (1.17) 

where A and B are arbitrary constants. In the case of interest to us, a poten-
tial in free space vanishing at intinity,,A must equal zero. 

Substituting from Equation (1.16) into (1.15) and multiplying by cos 2 (/), 
we obtain a separation of the A term. Thus 

cos 0 	 o a(p) i(i + 1) cos 	
d 

2 + — — cos  
(1) d(k 	D(ki 	A d;1.' 

(1.18) 

The last term of Equation (1.18), s),nce it is the only one that is a function 
of 2, must be constant. On making this constant equal to -171 2 , we have 

A = C cos 	S sin rn2, 	 (1.19) 

(1.16) 

where C and S are arbitrary constants. Substituting —//7 2  for A term of 
Equation (1.18) and multiplying by (1)/cos 2  , we get an equation that is 
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solely a function of (/). Thus 

cl 
cos (I) d") ) + [1(1 + 1) —  1712 	

— COS (b(l(k 	C/Gb 	 COS 2  0_1  

or, substituting it for sin (/), 

d t/(1) 
—[(1 — /12) —1 + [1(1 + 1) — 

/122  I 
== O. 

	

ditt 	 — /G 2  

The form of Eq uation 0.20 wit  i  in  = 0, known as Legendre's equation, 
is solved by assuming that (I) is represented by a power series in ,a (Apostol, 
1962, pp. 359-364). In the case of m 0, the 1 — c 2  in the denominator 
makes the simple power series representation inconvenient, and the equation 
must be solved by eut-and-try. The try that succeeds is to assume that (1) 
has the Corm 

	

(I)  = ( I — it 2)'"i2 v((), 	 (1.22) 

- which leads to an equation for v. Therefore, 

, (Pr 

	

(I  —) 	— 2(m -I- 1),u — +  (1—  ni)(1 	1)3,  =  0. 	(1.23) 
d,te 	 tip 

Assuming 

= 
i=o 

(1.24) 

substituting in Equation (1.23), and requiring the coefficient of  each power 
of ,u to be separately zero, we obtain a recurrence relationship between 
alternate coefficients of the  power series. From the coefficients of Ilk we get 

k(k + 2m + 1.) — (/ — m)(/ + m + 1) 
0k±2 ak. 	(1.25) 

(k 	1)(k ± 2) 

In order to obtain the maximum possible value of k, we set the numerator 
of Equation (1.25) equal to zero and solve for k. The result is 

krna  x 	 — (1.26) 

Hence 111 :5  Z ,  and if v is to be represented by a finite power series in ,u, the 
allowable powers will be / —  in  -7 2f, where t is any non-negative integer 
(/ — m)/2. Let us substitute (/ —  in  — 2t) for k and the' notation T1 ,„ 1  
for ak . Then, on taking advantage of the cancellation between some terms 

(1.20) 

(1.21) 
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in the numerator to obtain a more compact expression, Equation (1.25) 
becomes 

T 

	

(1 — 	2t 	1)(/ — m 	2t + 2)  

21(21 — 2/ + 1) 	
lm(1—.1)• 	( 1 . 27) 

This solution still leaves T,„„, to he defined. Because the whole expression 
is multiplied by the arbitrary constants BC and BS from Equations (1.17) 
and (1.19), T,„,, is also arbitrary; any change in the value adopted for T„.„, 
would merely result in an inversely proportionate change in BC and BS. 
As a result of the most common manner of derivation, T1.,„, is usually defined 
as (see, for example, :Hobson, 1961, p. 91) 

(21)!  
T10 - • 

2 1 1! (1 — In)! 

Applying Equation (1.27) successively to (1.28), we then get 

(-1) 1 (2/  
T,,,,, = 	 (1.29)  

2`t!  (1— /)! (/ 	20! 

The solution (1) of Equation (1.20) or (1.21) corresponding to a particular 
pair of subscripts 1, in is called a Legendre associated function, P tm (sin 4s) 
or P,„„(p); thus we have 

	

P 1„,0111 	= cos "  Y T • 1,nt 

where k is the integer part of (1 — m)/2. 
The complete real solution of the Laplace equation, (1.13). from (1.17) 

(setting A  =  0, B = 1), (1.19), and (1.30) is then 

	

I 	1 
V .—. 	— , . ...- P (sin ()[C, cos 1112. 	S„„ sin m2.1, (1.31) 

where the i subscript in the first terni denotes the cos m2 or sin n'O. term. 
In addition to these.real solutions, there are imaginary solutions that are 

not applicable to the potential problem in which we are interested. 
An important property of the surface spherical harmonics S 1 ,„, is that they 

are orthogonal; namely, 

J SbniS,, k;  do = 0 

sphere 

if / 5A h or 	m k or 	•I 	j 	(1.32) 

for integration over the surfaCe of a sphere. This property makes the spherical 
harmonics the natural means for general representation of a function over 
a spherical surface, analogous to Fourier series for 'a function in a rectilinear 

(1.28) 

(1.30) 

1 mi 	1 	1-0 m=0 1' 



liii = 30 

hn = 22 

lin  = 41 
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space. The integral of the square of Simi  is, for unit Cim  or  

(1 + in)!  si  = [ 

	

	 147 , 	 (1.33) 
in)! (21 + 1)(2 — 0 ,„) 

sphere 

where the Kronecker'delta 6 om  is equal to I for in = 0 and 0 for in / 0. 
The factor (1 + m)!/(1 — m)! indicates that the magnitude of the functions 

lin = 64 

FIGURE 1.  Examples of spherical harmonics. 

(and hence of the coefficients) will vary greatly with the subscript M. In 
order to make coefficients more readily comparable  in numerical work, it is 
generally convenient to use normalized functions, for example, 

g 	[(1 — in)! (2 1  + 1)(2 — (5 0m )1 1 /' 
S im i.  

(/ 	in)! 
(1.34) 

Spherical harmonics are most conveniently remembered in terms of their 
zeros. A. Surface harmonic will have (1 — m) zeros in a distance n 
along :a meridian and in zeros in the same distance along a piftallel. Some 
examples are shown in. Figure 1. 
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1.3 Potential of the Ellipsoid 

The shape of the earth, as defined very closely by the geoid, or mean sea 
level (less meteorological effects), is determined not only by the gravitational 
potential V but also by the potential or rotation. These two potentials 
combine to make what is called the potential of gravity, 

= V + ;!,(02r2 c0 5 2 (/), 	 (1.35) 

where to is the rate of rotation. 
It is an observed fact that the geoid is approximated within about 10 -5  

of the radius vector by an ellipsoid of' revolution. The shape of this ellipsoid 
is conventionally expressed by the flattening', 

J'  = (a — b)/a, 	 (1.3 6) 

where a is the equatorial radius and b is the polar radius, The value of' 
f is about 3.353 x 10 ". I knee, to explore the 10 departures of the earth's 
gravitational field from a reference potential V„ of an ellipsoid, it is necessary 
to carry the expression of I/0  in terms of the mass AI, radius a, rotation (0, 
and flattening f to terms of order f 2 . Furthermore, in order to connect 
results of systems affected by gravitation (satellite orbits) 'with those affected 
by gravity (gravimetry), it is desirable to connect the parameters of the 
ellipsoid convenient to the former (kM and C20) to those convenient to the 
latter (the equatorial acceleration of gravity g,, and f). The algebra involved 
in making this connection is considerable, so we shall write out only the 
terms to 0(f) in the solution outlined here. 

The symmetries of an ellipsoid of revolution indicate that its radius vector 
can be expressed as a sum of even degree zonal harmonics. Thus, we have 

= ro0 	«2P2o 	a4P40 	.), 
	 (1.37) 

where P20 , P40  arc defined by (1.29) and (1.30). 
The customary manner of representing the potential of gravity of a refer-

ence figure; or "normal" potential, is 

a 	 1 0  m 

	

U = — [1 — J 	P 	J (-14P — • • .1+ — 	r 2̀(1 — P„), (1.38) 

	

2 	20 	4 	40 
3 a 

where 

In -= 
W

2
0 
	

(1.39) 
g„ 

in which ge  is the acceleration of gravity at the equator. 
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Expanding (1.37) by the binomial theorem gives 

1 ,11 = is { 1 + n ± 1)  o 
cx,:t 	[ 	

n(  
Imo ± 	ad P20 

1 0 	 7 

9il( 1  35 — 1)  cid P40  
(1.40) 

when use has been made of 

(1.41) 

	

Substituting (1.40) into (1.38), using (1.41), and neglecting 	and 
P:fo  terms, we get a form for the potential U on the surface of the ellipsoid. 
Thus 

U = U„(ge ,  in,  i',  Œ2 ,  a, kM, .1 2 ) 

C,(g,,,  in,  r„, o.„, a, kM, 

+ 	r„, a„,  o, a, kil4„1„, J4 )1', 1 11 , 	(1.42) 
where 

kM 	, 
y o 	+ — ± ), 

1.0 	3a 

= 	0(f 2), 
ro 	ro  

C4  = 0(f). 

T the ellipsoidal surface is an equipotential, then U must be constant and 
equal to U0  thereon. The coefficients C, and C4 must therefore be separately 
equal to zero, which yields two equations for kM, Jo, and .14  in terms of the 
other parameters. A third equation is obtained by the condition that the 
negative of the radial derivative of U must be equal to ge  at the equator. Thus, 

	

—kM 	3 
(1+ —Jo — —

15 
J4) + 
	

(1.43) 

The three equations then can be solved simultaneously for kM, j,, and J-4 . 
We have 

k/1/1 = a2g0 [1 + 3m/2 + 3a2/2 	0(f 2)], 

—m/3 — +  0(f '), 

J, = 0(f2). 
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In order to obtain r 0 , a..„ and CI.,1 in terms of the conventional parameters 
for an ellipsoid, a and f, we have the equation 

+ + = a - 	 a - 	1.) -  
(1.44) 

Converting from rectangular to spherical coordinates by Equation (1.9), 
using (1.36) to eliminate b, solving for r2 , and then applying the binomial 
theorem to obtain r, we get 

r =(1[1  — (f 	+ • • •) sin sh -1- '2 /' sin 4  (I) — • .1. 	(1.45) 

Integrating (1.45) from 0 to 1 with respect to sin qt), we get r0 , 

ro  = a[l  —f13 ± 0(f 2)], 

and then a, and al , 

a, 	 0(f2), 

C/. 1  -= 0(12). 

Substitution in the equatCons for ki11,12 , and  J4  gives the 'final solution, 

r  , 3 	15 	r  
a 2 g e (1 	- 771  

2 	14 

2 	1 

	

 , 	 .)  J-= -3  j(1  

4 

	

J 	— — f(7f — 5m) + • • • • 
35 

To summarize, for the.purposes of celestial geodesy, we can consider the 
earth's gravity field as represented by a normal potential of an ellipsoid 
of revolution, Equation (1.38), plus small irregular variations expressed by 
a sum of spherical harmonics, as in (1.31). 
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2 

MATRICES AND ORBITAL GEOMETRY 

2.1. General 

The purpose of this chapter is to describe the 12,eometry of an idealized 
situation: a vacuum with an earth rotating uniformly with respect to fixed 
inertial coordinates. This idealized situation will constitute both the reference 
frame for the development of close satellite orbit dynamics in Chapter 3, 
and for the description of observations of satellites and variations in the 
coordinate system in Chapter 4. As a preliminary to describing the geometry, 
as Well as to some techniques of data analysis in Chapters 5 and 6, we 
summarize the rules of matrix algebra. 

2.2. Matrix Notation 

A vector x, or {x1 , x2, x,} T , can be changed into another vector y by a 
linear transformation given by 

Y 	=  a1I X I + a 1 2X2 

== anxi 

(1 13X3, 

a23x3, (2.1) 

Y3 = "31X1 	632X2 C1 33X3° 

Equation (2.1) can be abbreviated as 

Yi 	E 	i,/ =  

or as 
y == Ax. 

1 , 	2, 	3, (2.2) 

(2.3) 

A rectangular array A of numbers at;  is called a matrix. Matrix algebra 
is the expression of algebraic operations on arrays of quantities, such as the 

12 
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transformation in (2.1), in compressed notation such as (2.3). In this text 
we shall be interested both in expressing transformations from one coordinate 
system to another and in the formation and solution of generalized least-
squares problems. The principal rules of matrix algebra are: 

The numbers a„ that comprise a matrix are called elements. 

The first subscript i denotes the row, and the second subscript j denotes 
the column, in  accordance with the customary method of displaying matrices. 
For example, we have 

A  = [do ] = 

a1, 

a2, 

• 	• 	• 

" 

am „ 

a21, 

(2.4) 

' 

The number of rows,  ni ,  and the  ,n umber of columns n are called its 
diniensions. Pa rticukir types of matrices are: 

I. A vector, or column matrix, is a matrix that has only one column. 
We denote vectors by lower-case boldface letters, such as 

al  

a 2 

(2.5) a ---- [ad 

am  

2. A square matrix, or quadratic matrix, has the same number of rows and 
columns. 

3. An orthogonal matrix is a square matrix whose determinant Ca" is ±1, 
and whose inverse is equal to  its transpose [see (2.11) and (2.20)1 

4. A rotation matrix is an orthogonal matrix whose determinant is +1. 
In this book we are interested mainly in rotation matrices of dimension 
3 x 3. For those rotation matrices whose elements r, satisfy the following 
rules, we adopt the notation R 1(0): 

j i (modulo 3) + 1, 	k j (modulo .  3) + 1, 

r" = 1, 	r.0  = ra =  r1  = rki  = 0, 	 (2.6) 

Ta  = rkk  = +cos 0, 	rik  = +sin 0, 	r„)  = —sin O. 
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These rules are consistent with .a right-handed coordinate system and positive 
signs for counterclockwise rotation, as viewed looking toward the origin 
from the positive axis. For example, we have 

cos 0 sin 0 

001 

	

R 3 (0) = —sin 0 cos 0 	 (2.7) 

0 	0 	1] 

Rotation matrices are also called direction cosine matrices. 
5. A diagonal matrix is a matrix whose elements (215  satisfy the rule 

= 0 	if i j. 	 (2.8) 

6. An identity matrix, or unit matrix, is a diagonal rotation matrix; that 
is, all a51  are 1. It is generally denoted by I. 

7. A null matrix, or zero matrix, is one all of whose elements arc O. It is 
generally denoted by 0. 

8. A symmetric matrix is one whose elements aii  satisfy the rule 

(2.9) 

9. An antisyrnmetric matrix, or skew-symmetric matrix, is one whose 
elements a 1  satisfy the rule 

ai5  =-- —a 51 . (2.10) 

The transpose B of a matrix A is a matrix whose elements b 5 5  satisfy the 
rule 

b15  = (2.11) 

The transpose of a matrix A is generally denoted by AT. 

Operations in matrix algebra are given as follows: 

1. The sum C of two matrices A and B of equal dimension has elements 
(.15  that satisfy the rule 

C 11  -= ai;  ±  b51 . 

The operation of  summing is denoted by 

C = X + B. 

2. The difference D of A and B is similarly defined and denoted by 

— 1) 55 , 

D = A — B. 

(2.12) 

(2.13) 

(2.14) 
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3. The product P of A and B has elements pi„ that satisfy the rule 

Pik = 
	 (2.15) 

Hence the number of columns of A must equal the number of rows of B. 
In matrix notation, multiplication is denoted by 

	

P = AB. 	 (2.16) 

Equations (2.1)—(2.3) express a multiplication in which the matrices B and 
P are vectors. Matrix multiplication satisfies the associative rule 

A(BC) = (AB)C 	 (2.17) 

but, in general, does not satisfy the commutative rule 

All 	BA, 	 (2.18) 
also written 

(All) 1' = B TAT . 	 (2.19) 

if the determinant  Ou i  of a square matrix A is nonzero, then there exists 
one and only one matrix, which is called the inverse, or reciprocal, matrix 
of A and is denoted by A-1 , for which 

AA-1  = A-1A = I. 	 (2.20) 

The elements of A-1  are given by 

(2.21) 

where X is the cofactor of the element ail  in the determinant laj, namely, 

(—  l)+times the minor obtained from 1(4; 1 by taking away the ith row and 
thefth column. 

The operations of differentiation and integration of a matrix are applied 
to each element separately; that is, 

aan/ax aai,/ax 	aaidax - 

aa,i/ax aa,/ax 	aa2„iax aA _ 
.ax 

 

(2.22) 

   

Lact,„,/ax aah.,,/ax  

and similarly for integration. 
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A facobian is a matrix of partial derivatives of the elements of one vector 
with respect to those of another and is given by 

ahiax2 41/ 0-vii- 

ay,/ax, ay.jax, 42 /.3x 3  

_a)' 3/x, ay,/ax, 

If the elements of A in (2.3) arc not functions of the elements of x, then A 
is the Jacobian of y with respect to x.  lithe determinant of A in (2.3) is 1, 
then it is a rotation matrix, and (2.3) expresses a rotation of coordinate 
axes. 

2.3. Orbital Geometry 

For reasons that will become apparent in Chapter 3, it is convenient to 
refer the position of a satellite to rectangular coordinates q fixed in an 

OY 	a(vt.V.1)  ' 	' 
a(x 1 ,  X0, x 3 ) 

. 	(2.23) 

Apogee 

FIGURE 2. Orbital ellipse. 

ellipse inclined to the equatorial plane, as shown in Figures 2 and 3. Geod-
esists are interested in earth-fixed coordinates; we need to connect earth-
fixed positions to positions referred to this tilted ellipse. 

Let earth-fixed positions be represented by a rectangular-coordinate 
system u, with the ul  (or u) axis toward latitude 00 ,  longitude  00 ; the 
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(or y) axis toward latitude 00 , longitude 90 °E; and the u, (or w) axis toward 
latitude 90° N, the north pole. The connection is through an  menially  
fixed-coordinate system x, with the x, axis toward the vernal equinox, the 
point where the sun's orbit intersects the equator; the x2  axis 90°E eastward 
in the equator; and the x3  axis toward the north pole. The angle between 
the equinox and the Greenwich meridian-0 0  longitude—is known as the 
Greenwich Sidereal Time. 

Hence, for an earth rotating counterclockwise uniformly about an axis 
fixed with respect to inertial space, the shift from the earth-fixed coordinate 

 

to- y 

 

'FIGURE 3. Orbital orientation: 

system u to the inertially fixed system x will be a simple clockwise rotation 
about. the W, or Z, axis through 0, the Greenwich Sidereal Time. On 
following the notation of (2.7), 

	

cos 0 —sin 0 	0-  

x = R3(-6)0 = sin 0 	cos 0 	0 u. 	(2.24) 

0 	0 	1 

Performing the multiplication of (2.24), we have 

= u cos 0 — y sin 0, 

	

y = u sin 0 + y cos 0 ; 	 (2.25) 
•-• 

W. 	• 
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Using the alternative notation of subscripts to the rotation matrix, denoting 
the vectors transformed by the rotation, we get 

	

Rs„ = R 3(-0), 	 (2.26) 

and inversely, 

	

R„s  = R3(0). 	 (2.27) 

For rotation from the x coordinates to the  q coordinates—with th toward 
the point of the ellipse closest to the origin (called perigee), q3  in the orbital 
plane (as defined by Figure 2), and a, normal to the orbital plane—we 
require first a counterclockwise rotation about the x 3-axis (3-axis) from 
the vernal  equinox to the intersection of the inclined plane with the equator, 
called the nodes (see Figure 3). This rotation is denoted by 

R3 (Q) 	 (2.28) 

Next, a  counterclockwise  rotation about the 1-axis from the equatorial 
plane to the orbital plane is given by 

	

R 1 (i) R 1 (1.2). 	 (2.29) 

And finally a counterblockwise rotation about the 3-axis from the node 
to perigee is given by 

Rgs  = R3(u) Ri(i) R,(Q). 	 (2.30) 

f, and  co are identical with the Euler angles relating the ci and x coordinate 
axes. Conversely, we have 

	

R3(-0,) R3 (—i) 	 (2.31) 

Applying (2.6) and multiplying the matrices together, we get 

	

–cos S-2 cos co — sin cos i sin co, —cos sin co 	— sin n cos i cos co, 	sin Qsin i 

Kra  -- sin SI cos (0 + cos n cos  I sin co, —sin K)  sin co + cos o. cos  ICOS  co, —cos  û Sill i 

sin i sin co, 	 sin i cos co, 	 cos  I 	_ 

(2.32) 

which is required for use in Section 3.2. An alternative notation often used 
is P, Q, Pr for the unit vectors along the q axes referred to the x axes: 

Rx,=  {P, Q, W}. 	 (2.33) 
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SATELLITE ORBIT DYNAMICS 

Elliptic Motion 

1.,et us assume that we have a particle 	negligible mass attracted by another 
point mass M in accordance with I.quation (1.2). Let us assume l'initier (liai 
the origin  01 coordinates is at the mass M. Equation (1.2) for the acceleration 
or the  particle can then be expressed in vectorial borin, using /./, for k  41. as 

= —kMrlr"= 	 (3.1) 

The acceleration vector  i  is therefore colinear with the position vector r. 
If we define the equatorial plane as the plane determined by the position 
vector and the velocity vector il., the particle will never depart from the 
equatorial plane because there is no component of acceleration out of the 
plane . Hence, in converting from rectangular to spherical coordinates by 
Equation (1.9), we can set equal to zero the latitude (k and its derivatives 
with respect to time (i) and (./;. Differentiating Equation (1.9) twice with 
respect to time, we obtain Equations (3.1) in polar coordinates, 

r cos 2, 

= r sin A, 

cos A — rA sin A, 

= r sin A -I-  rA  cos A, 

= cos A — 21.2 sin A — r2' sin A — r() ) 2  cos A = —y cos Alr 2 , 

sin A + 2iA cos A + l'A cos A — r(A) 2  sin A  = —,u sin Alr". 

The point from which the longitude A is measured is arbitrary, so we can 

20 
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also set A  =  zero, but not A or A. The equations of motion thus become 

— r(A) 2  = 	 (3.2) 

• rA + 2,1;A=  0. 	 (3.3) 

lf we multiply (3.3) bY r, it is evident that the equation is immediately 
integrable to 

r2). = h, 	 (3.4) 

where h is constant. Equation (3.4) states that angular momentum, OA, 
is conserved. We integrate (3.2), replacing 1/r by u, Then 

From (3.4), 

whence 

Also 

du 	du (Ir 	 I .1. 2  

dr di ((2 r2  h 	h 

Or 

—h  2u 2 
 d2u 	 (3.5) 

Substituting from (3.4) for ) , and from (3.5) for F in (3.2), and replacing 
r by 1/u everywhere, we get 

tl 2u 	,u 
— + u = —„ . 
112 2  

Equation (3.6) is readily integrated as 

- = u = A cos (2 — 2 0) 	. 
h" 

If  in the equation for an ellipse (see Figure 2), with origin at the center, 

(3.6) 

(3.7) 

-(3.8) 
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we substitute ce 	r cos f for e, r sin f for n , and a2(1 — e2) for h 2, and 
solve the resulting quadratic equation for r, we get for the positive root 

 

r 
n(1 — e 2 ) 

or 
(1 	e cos f) 

1 	1 
„ 	„ cos f. 

r 	a(I — 	a(1 — el 
(3.9) 

Comparing (3.7) and (3.9), we see that (3.7) is the equation of an ellipse 
with origin at the focus and that 

A 	Ao = f, 
	 (3.10) 

A—  
a(I 
	 (3.11) 

Ii  = p 1 (1 — 	 (3.12) 

The size of the orbit of the particle can thus be expressed by the semimajor 
axis a of the ellipse; the shape, by the eccentricity e; and the location of the 
particle in the ellipse by f, called the true anomaly. Position in the orbital 
plane can also be expressed by the q-coordinate system, described in Section 
2.3 and shown in Figure 2. In order to specify completely the location of the 
particle, we need the three Euler angles shown in Figure 3 and described as 
rotations in (2.28) , -(2.30): the longitude of the node .0, the inclination i, 
and the argument of perigee (o. 

Another way of locating the particle in the ellipse, which is sometimes 
more convenient, is the eccentric anomaly E. The eccentric anomaly, as 
shown in Figure 2, is the angle subtended at the center of a circle of radius a 
tangent to the ellipse by the point on the circle whose e coordinate is the same 
as that of the point on the ellipse. From Figure 2 we get 

q1 =  — ae = a(cos E — e). 	 (3.13) 

Using (3.8), we then obtain 

= = 	1 — .0 sin E, 	 (3.14) 

r = 	-17 	— e cos E). 	 (3.15) 

For the rate of motion of the particle in its orbit, we can use (3.4), changing 
to f. Equation (3.4) is more readily integrated if the true anomaly is 

replaced by the eccentric anomaly. Differentiating (3.9) with respect to f, 



sin J'. 
df 	d f 	a(1 — 
dr= _ 1-2 	r) 	r2e 
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we get 

If we substitute q, for r sin f from Figure 2, 

r,  

	

de 	
eq 
 , cif.  

ci(1 	e - ) 

From differentiating (3.15) and (3.14), we obtain 

	

dr = 	
e  
	q 2 dE. 
1 -- e 2  

On using (3.16) and (3.17) to eliminate df, (3.15) for r, and (3.12) for h, 
(3.4) becomes 

(1 2 \11 — e 2  (1 — e cos E) dE = 11(1(1 	e2) 
	

(3.18) 

Equation (3.18) integrates to 

(3.16) 

(3.17) 

where 

and 

E — e sin E = M, 

M n(t 	t o) 

= 14 1/2a-3/2, 

(3.19) 

(3.20) 

The time t o  is the time of' passing perigee. The quantity M is known as the 
mean anomaly, and the quantity n as the mean motion. Equation (3.19) is 
known as Kepler's equation and (3.20) as Kepler's third law. 

The angular momentum per unit mass h, whose magnitude is given by 
(3.4) or (3.12), can also be expressed as the vector cross product of the 
position and velocity, 

h = x x  k. 	 (3.21) 

On using the rotation matrix Rx, defined by (2.32), the inertial rectangular 
coordinates can be expressed in terms of the Keplerian elements, 

x 	R o{S-2, i, co} q{a, e, M } , 

i.R„a{p,  j , w} 4(a, e, M), 
(3.22) 
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where, from (3.13), (3.14) and Figure 2, 

a(cos E — e) 

— e2  sin E 

0 

and from (3.13)-(3.18), 

—sin E 

= 	cos E 
1 — e cos E, 

- 0 

For the velocity t), using (3.9) 

na 

r cos f 

= r sin f 
	

(3.23) 

0 

—sin f 

- e + cos f 
	na 	

(3.24) 
— e 2  

- 0 

with (3.20) and (3.24), we have 

n2a2 
(s i nf 
 „ + 0 2  + 2e cosi cos 2 f) 

	 [(2 + 2e eosf) — ( 1 — e2)] 
a(1. — e") 

r 	a 

 

= 	- . 

Then for the total energy per unit mass, following the sign convention 
of physics, we have 

2 	r 	2a 
(3.25) 

In order to perform the reverse of (3.22), that is, to go from rectangular 
components to Keplerian elements, the fact that the angular momentum 
vector .h of (3.21)  is normal to  the orbital plane can be used to determine 
the longitude of the node Q and the inclination j. Referring to Figure 3, 
we see that 

Q = tan'  

i= tan' [(/4. 	/4)112/h 3 ], 

where h 1 , h 2 , h 3  are the components of h. Then in the orbital plane let 

p 	Ri(i) R3 (Q)x, 

(1 — e2) 
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whence 

From (3.4), we have 

from (3.25), 

from (3.12), 

f 	(p,Ip i). 

[ 1 ,2 	/1 21 1 .9 112 ;  

a = r, 41(2,“ — 11) 2); 

e = (1 — h 21,tta)". 

Then from (3.15), (3.17), and (3.18), we have 

cos E = (a — 

sin E = rile(ua) 112 , 

and finally from (3.23), 

f = tan-1  [-\/1 	e2  sin E/(cos E — e)]. 

3.2. Perturbed Equations of Motion 

The foregoing developments apply solely to motion in a purely central 
field, but our interest in satellite geodesy is mainly due to the fact that the 
earth's gravitational field is noncentral; that is, Equation (3.1) should be 
replaced by 

V V, 

where V has a noncentral form such as (1.31) or (1.38). However, even 
for this noncentral field the Keplerian ellipse and its orientation can be 
regarded as a coordinate system, alternative to rectangular or polar .coordi-
nates, analogous to the use of geodetic latitude and longitude and altitude 
for position in an earth-fixed system. At any instant the situation of a 
satellite  in earth-centered, inertially fixed coordinates can be described by 
the rectangular components of position {x, y, z} and velocity {X, j), 21. 
In place of these six numbers the six numbers of the Keplerian ellipse 
{a, e, 1, M, w , E.2}  may be used. The relationship between the two systems 
can be expressed by the rotation from a coordinate system in the orbital 
plane referred to perigee to the  menially fixed system, as given 6y (3.22). 

The Keplerian ellipse  {a, e, j , M, w , ,Q1 corresponding to ihe position 
r and velocity t of a particle at a particular time is known as the instantaneous, 
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or osculating, orbit. If the potential field V differs from a central field, this 
ellipse will be continually Changing. However, if the field differs very slightly 
from a central field—as is the case for the earth—we should expect that the 
parameters of the ellipse would change slowly, and hence that the ellipse 
would constitute a coordinate system convenient for representing the position 
and velocity of the particle. The problem is to convert the equations of 
motion from rectangular coordinates to Keplerian ellipse coordinates, or 
Clements, as they are more conventionally called. First we convert from 
vectorial to subscript notation, and second we change the equations of 
motion from three second-order equations to six first-order equations 
by treating the velocity components as variables the same as the position 
components. Accordingly, 

— x - = 	i = 1, 2, 3, 
cif 

av 
ax,' 

i=  1, 2,  3, 
(3.26) 

where x„ 	denote inertially fixed rectangular components of position 
and velocity, respectively. The rates of change dxildt and Adds in (3.26) 
can be expressed as functions of the rates of change ds„Idt of the six Keplerian 
elements, where s k  represents any of a, e,  i ,  M, w, or  L.  Thus 

6 axi dsk 	ax, dsk _ 
—Las„ • di  = ask  dt 

= s „ dt 	ax, 

i = 1, 2, 3, 	(3.27) 

I  = 1, 2, 3, 	(3.28) 

where axdask  is obtained by differentiating (3.22) and (3.23) and aki/ask  by 
differentiating (3.22) and (3.24). In the central formulas of (3.27) and (3.28) 
we have followed the convention that summationtakes place over subscripts 
repeated in a product. The summation symbol will be omitted hereafter. 
I n order to complete the conversion, for each element s., in turn : (1) multiply 
(3.27) by —/as 1 , (2) multiply (3.28) by axi/as„ and (3) add the resulting 
equations together. Thus 

ax, 	tak: 	 ax • a v . 	. 	_ 	. 	(129) 
• as, ask  di 	as, ask 	dt 	as, 	as, ax„ 

or 

,ds,. 	aF 
[s„ ski 	— 

dt 
(3.30) 
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if we sum over k. Here 

, 	ax, 	ax, [.s„ sk, = 	— , as, as„ 	as, as, 

which is known as Lagrange's brackets, and 

F=  V — T. 	 (3.32) 

F is known as the force function; it is the negative of the total energy as 
used in physics. V is the negative of the potential energy, and T is the 
kinetic energy. Thus, summing over i, 

T 	 (3.33) 

The foregoing treatment was essentially first carried out by Lagrange. In 
celestial mechanics this treatment is customarily applied to the expression 
of the xi , ±i  in terms of the time t and the set of Keplerian elements at 
another time t, called the epoch. In this situation the kinetic energy T and 
the central term plr of V do not appear on the right. There are now two 
principal problems: (1) the formulation of the Lagrangian brackets [s e , 41, 
and (2) the transformation of the potential V from rectangular or polar 
coordinates, such as (1.31), to Keplerian elements. 

The form of (3.31) indicates that [s„ sk ] is the negative of [4, sd and 
that [sic , sic] vanishes, so there are fifteen different Lagrangian brackets to be 
determined by differentiating (3.22). A property of the Lagrangian brackets 
that facilitates their evaluation is their time invariance. Thus, 

a ,. 	a2x,  ax, _L ax, a2).c, 	a2.,„ ax, 	a±, a2x, 

	

S 1 , 1 , sk  — 	  — i ] 	 • 	 — 
at 	as, at ask  '. as, as, at 	as, at  as„ 	as, ask at  

a [ ax,.a.k.,_axi. a.k, _ a axi. a±, 	ax, a±,  

	

. 	 i 
as, at ask 	ask  at] 	ask  at as, 	as, at 
P,a±, 	ax, ..... 	a 	. ak, 	ax, [ _ ___ ..___ xii — _Hi_ — ___ xi as i 	.,

xi 
ask 	as„ 	as„ . as, 	as, . 

a 1- 1 acv2) ax, ao,tioi 	a ri a(v2) 	ax, ktio  

	

— 	
i _ 	 _ 	_ 

as i L2 as, 	as, 	ax, 	ask L.2 as, 	as, 	ax, ] 
1 av 2) 	a2 (-ito.) 	1 a2(v 2) 	a2 (1,,,,-)  

	

_   	+ 	/ _ O. 
2 as, ask 	as, as,, 	2 as, ask 	as, ask  

(3.34) 

(3.31) 

Hence the q and 4 that appear in the expression (3.22) for'sx and 	and 
their derivatives, can be evaluated at a convenient point, such as 'perigee, 
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where E is zero. Evaluating q and ti at perigee, we get from (3.22)–(3.24) in 
(3.31) 

al.„  al.,„ 	ar.o ar., 	9 	 
(a) [so sil =--- 	• — — ---2-,' • --L- na-N/1. — e2  

as, as„ 	as, as„ 

if s, = D, i, or w 	and 	if s„ = Q, i, or w; 

(b) [s,, sd = a(1. — ri , — -1-• ri ,
2) 

— 
ar„( 	acy, . 	a(i 
as, 	as„ 	as„ 

_VI — -e 2  na ari2 i aqi -+ ri2 ____ 
as, — e 	 as, 	a k 

aq2 
1  a 

s ) 1. 	 (3.35) 

if s i = n, j, or w 	and 	s i„---. a, e, M; 

agok, agoalo) 

	

(aq2a()1 	aqa4i. 
as/ as„ 	as„ as, 

	

as,  as, 	as„  as, ! 

= a, e, or M. and if s, = a, e, or M 

In (3.35), r„ and r„ are elements of 12„; see (2.32). We have, for example, 
for [0, i] from (a) of (3.35) and (2.32), 

ar• ars 	ari2 arii 	2 	 [Q,  
a(-2 	ai 	a.Q 	ai 

Q cos w — cos Q cos i sin w) sin Q sin i cos w 

—(cos Q cos w — sin Q cos i sin w) cos Q sin i cos w 

— (sin Q sin w — cos Q cos i cos w) sin Q sin i sin w 

—(cos Q sin w + sin Q cos f cos w) cos Q sin i sin colna 2-\11 — 

= —na 2\11 — e' sin i. 	 (3.36) 

The complete set of nonzero results is 

[-Q, i] = —[i, Q] = —na 2(1 — 0) 1 / 2  sin i, 

[Q, a] = —[a, 	r  (1  - e2) 112  cos i naI2, 

[0, e] = —[e, Q] = —na 2e cos i/(1 — 0)", 	(3.37) 

[co, a] = —[a, co] = (1 — e2) 1 / 2/1a/2, 

[a), e] = —[e, w] = —na2é1(1 

[a, M]= —[M, a] = —na/2. 

(e) 	[st, sk] = ri 
' (agi  a:1, 	achat), 	iacliadi 	aqi (12) 

	

--) 	r iirt2k —  

	

'as,  ask 	ask  asti 	‘asi ask 	as,, as, 
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The substitution of expressions (3.37) in (3.30) and the solution of the six 
simultaneous equations for the (kW/ yield 

da  =  2 a F 
dt na am' 

de 1  — e 2  a F (1 — e')" aF 
— dt 	na2e am 	na 2 e 	ao,' 

do) 	cos i 	a F. 	(1 — e  )h/2  aF __ 	  _ 
dt 	na2(1 — e 2)112  sin i a i + 	na2 e 	ae' 

di 	cos i 	aF 	I 	aF 

	

_ 	 ...._ 	  
. dt 	na2 (I — e2)112  sin i aw 	na'(  

c112 	1  aF 
dt = na2(1. — e) 112  sin  j  ai' 

dM 	1 —  aF 2 aF 
dt 	na2e ae 	na an 

It is customary to express the force function as 

F = 11 + R T 

	

.----- 	 R, 
2a 

from (3.25). The function R, comprising all terms of V except the central 
term, is known as the disturbing function. Hence in all equations of (3.38) 
F can be replaced by R except in the last, which becomes, using (3.20), 

dM 	1— e 2  aR 	2 aR — n — 
dt 

= 	
na2 e ae 	na  au 

(3.40) 

The symmetries and similarities of the brackets in (3.37) suggest that further 
simplifications may be made by change of variables from Keplerian. Let us 
try to find a set L, G, H such that 

[M, L] = 1, 

[ro, L] =  0, 

[K-2, L] = 0, 

[M, G] = 0, 

[co, G] = 1, 

[S2, G] = 0, 

(3.41) 

1 — e2)"2 sin i 

(3.38) 

(3.39 ) 
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The only nonzero bracket in (3.37) involving the inclination i is the first. 
From (3.31) we must have 

aH 
H] 	= [Q, 	= — na 2(1 — e 2)112  sin i, 

ai 
whence 

H 	na2(1 	e2)112 cos j. 

	

As a check, we find (remembering n 	-31 ') 

[Q, H] — = 	e], 	[Q, H
all = [Q, a]. 

De 	 Da 

Similarly from [w, G]  DC/Dc and [M, L] ariaa, we have 

	

G =  , 1 , 1 2(1 	e2)1/2 

and 

L 	1U1 /'2(j1'2 	 (3.46) 

We thus obtain (3.47), the somewhat simpler Delaunay equations, 

DL ar 	dAl 	a —  	= 
di 	DM  ' 	(11 

(1G 	aF 	do) 	aF 
_ — — 

di 	aw 	di 	ac' 

ai7 	(10 	aF 
di 	DQ ' 	 at 	au - 

In using Delaunay variables time notation M, a), Q is usually replaced by 
the notation  f, g, h [not to be confused with the h defined by (3.4) and 
(3.12)]. 

3.3. Conversion of Spherical Harmonic Disturbing Function 

In order to convert the spherical Itarmonic potential (1.31) to Keplerian 
elements, we require some trigonometric identities, such as 

cos nix =-- Re exp  (mix)  = Re (cos x 	j sin x)"' 

177 
= Re E ( 
	cos— x sin' x, 

s=o 3  

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.47) 

(3.48) 
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where Re denotes the real part, j is — 1, and (7) is the binomial coefficient: 

in!  

( risl ) 	s! 	— s)! 

sin mx = Re [—j exp (mjx)] = Re [—j(cos x j sin x)m] 

= Re 	
n,t ) 

js-i  cos' x sin' x, 
s 

sin" x cos' x = [ — 	 — e,--1111-1  (cf"' + 

	

2 	 2 

(-1)ajai  (a) e („_ ( _ 1)0e_ ci„, , 	±  

(-1)'gja 	(a) (h) e (ii-Fc-28-20ix ( _ oc 
2" -k) 	C 

_ 

	

( j 8 	h ,  ( a )(b 

	

" 	 )(— I)" 

	

kc 	rt , 	c 

X [cos (a + b 	2e — 2c1)x 

+ J sin (a -I- b 	2e — 210x], 	 (3.51) 

cos a cos b = cos (a + b) + cos (a — b), 

sin a sin b = 	cos (a + b) + .1 cos (a — b), 	(3.52) 

sin a cos b = sin (a + b) + 1- sin (a — b), 

cos a sin b = 1 sin (a + b) — sin (a — b). 

Let a particular term of (1.31) be 

/ta el  
= 	Pi,„(sin 0)(C„,,, cos m2 + S en, sin m2). 

r 
(3.53) 

We have made the C 1 11,, S e .„, nondimensional by applying the factor 
itate , where a, is the equatorial radius of the earth. We then substitute 
[m(a — + m(0 — 0)] for mA, where a is right ascension and 0 is Green-
wich Sidereal Time: 

cos mA = cos m(a 0) cos ni(0 — 0) — sin m(ce. — .0) sin m(Q. — 0), 

sin m2 = sin m(a. — S-1) cos m(0 — 0) + cos m(a — 0) sin m(0 — 0). 

(3.54) 

(3.49) 

(3.50) 
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In the spherical triangle formed by the orbit, the equator, and the satellite 
meridian (see Figure 4) we have 

cos (w  +f)  = cos (a — Q) cos 0 + sin (a — 0) sin 0 cos 42, 

cos 0 = cos (w  + f)  cos (a — Q) + sin (w  + f)  sin (a — Q) cos i, 

Whence 

cos (a — Q) ---- cos (0) +f)/cos 0, 	 (3.55) 

sin (ci — O.) = sin (a)  + f)  cos i/cos 0, 

and 

sin 0 = sin i sin (o) + f). 	 (3.56) 

FIGUIZE 4. Orbit-equator-meridian triangle. 

If we apply (3.48) and (3.50) to the (a — Q) functions in (3.54) and 
substitute (3.55) therein, we get 

cos mA = Re I
mm)

js 
cos's(co f) sin' (a) + f) cos'  i 

s=o s 	 cos m0 

x [cos m(0 — 0) + j sin in(Q — 0)], 

m 	cos 	co m-A 	f) in  (w + f) cos' i  
sin in2 = Re 	

s 
j' 

s=0 	 COSm  

x [sin m(Q — 0) — j cos m(Q — 0)]. 

(3.57) 

If we substitute (3.56) for sin 4) in (1.30), which is the definition of r im , and 
then substitute both (1.30) and (3.57) in (3.53), by cancelling out the 



X 
ni—s (1 m  —21 + 	— s) (  

c= 0 	d=0 d 
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cosm O's, we have 

1 k 

Vi nt = —
1+1 

E T int sin 	i Re [(C„„ — jS„„) cos m(f2 — 0) 
r 	t-o 

m 

(S 1 1„ + IC„„) sin m(E2 — 0)] 	sin 
s 

X cos"' (w -1- .1) cos' i, (3.58) 

where k is the integer part of (I — m)/2. 
On applying (3.51) to (3.58), with a = I — In — 21  + s, and b =  ni  — s, 

„1 k 

Vim  = 	i Re [(Ctn., — jS„„) cos m(f2 — 0) 
I l 

 

+ jC„„) sin m(S2 — 0)]i( in )j' cos' i 	 
r  

11-2t 

1-- 01-21-i s vi 
(1 — »1 — 2/ 	s)(in — s

)( -1 Yci 
 x 

c-0 	ft=o 

x [cos (1 — 21 — 2c — 2(/)(co + f) + j sin (1 — 21 — 2c — 2(/)(to + J. )]. 

(3.59) 

By applying (3.52) to the products of (f2 — 0) and (a) +f) trigonometric 
functions in (3.59), and dropping any term with an odd power of j as a 
coefficient (since V„„ is real, such a term has another term cancelling it out), 
we have 

k 	 . 1,1” 	COS '  I 
Vi m  = 	T1 S111 1— in— 2 t  i( —  1)1+1 

	n'I 

1' 1+1  t=o 	 3 	'11-21 s=0 

— 0 S 

X { 	rm  even  COS — 2t — 2c — 2d)(a) + f) + m(5) — 0)] 
l—m odd 

[ 
lm 	

.it—m even 
+ 	 [(/ — 2 — 2c — 2d)(co + f) + m(f2 — OA). 

C lrnj i- in odd 

(3.60) 

It is desirable to transform (3.60) so that terms of the saine argument 
[(I — 2p)(w  +f)  + in(Q — 0)] are collected together. By suntituting p for 

+ e + d) necessitates, in turn, the elimination of one subscript from  the 
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factors. Putting p — t — e in place of ci seems most convenient. The limits 
of the (1 summation place limits on the possible values of e, which turn out 
to be simply those making the binomial coefficients nonzero. In addition, 
t < p. 

The expression for V 10(  thus becomes 

r 	 °veil 
Vt. = Ftml,( 1 ) 	 cos [(I — 2p)(0) 	f) 	In(S.1 — 

J, 	 othl 

[sou] 	evcil 
sin [(I — 2p)(c) -1- J') + in(S2 — OA} , 	(3.61) 

where, substituting from (1.29), 

11(1  — 1 )! 	-- in  — -->ot 	
SI  

(m 	
i 

) 	(1 — III -- 2t 	s) 	in 	s ) 	 y 
(.1 . 	 S 	 p 	- 

(3.62) 

Here k is the integer part of' (/ — m)/2, t is summed from 0 to the lesser of 
p or k, and e is summ&d over all values making the binomial coefficients 
nonzero. A formula such as (3.62) is convenient only for computer use. 
For hand calculations, a table is. better; expressions for Fin,(i) up to 
Imp = 444 are given in Table 1. 

Inclination 

TABLE 1 

Functions F,„,„(i) from Equation (3.62) 

FtHiv(i) 

2 0 0 —3 sin2  118 
2 0 1 3 sin 2  04 — 1/2 
2 0 ? —3 sin2 i/8 
2 1 0 3 sin i(1 + cos i)/4 
2 1 1 —3 sin i cos i/2 
2 1 2 —3 sin i(1 ,F7- cos i)/4 
2 2 0 3(1 + cos 02/4 
2 / 1 3 sin2  i/2 
2 2 2 3(1 — cos 0 2/4 
3 0 0 —5 sin3  016 
3 0 1 15 sin3 1/16 — 3 sin 1/4 
3 0 2 —15 sin3  016 + 3 sin i/4 
3 0 3 5 sin2 016 
3 1 0 —15 sin2  i(1 	+ cos i)/16 

Ci »t 	0(1(1 
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TABLE 1 (Continued) 

FImp(i) 

3 1 1 15 sin2  i(1 + 3 cos i)/16  —3(1  + cos i)/4 
3 1 2 15 sin2  i(1 — 3 cos  i)/ 16  — 3(1 — cos  1)I4 
3 1 3 —15 sin2  /(1 — cos i)/16 
3 2 0 15 sin i(1 4- cos 0 2/8 
3 2 1 15 sin.  /(1 	— 2 cos i — 3 cos2 1 1/8 
3 2 2 —15 sin 1 (1 	-I- 2 cos i — 3 cos2  i)/8 
3 '') 3 —15 sin 1(1 	— cos 1) 2 /8 
3 3 0 15(1 + cos 1) 7 8 
3 3 1 45 sin' /(1 + cos i)/8 
3 3 2 45 sin 2  1(1 — cos i)/8 
3 3 3 15(1 — cos 0218 
4 0 0 35 sin' i/128 
4 0 1 —35  sin'  1/32 + 15 sin 2  //16 
4 0 2 (105/64) sin "  i — (15/8) sin2  i + 3/8 
4 0 3 —(35/32)  sin'  I -I- (15/16) sin 2  i 
4 0 4 (35/128) sin .' i 
4 1 0 —(35/32) sin 2  1 (1 	+ cos i) 
4 1 1 (35/16) sin' i(1 	+. 2 cos i) — (15/8)(1 	-I- cos i) sin i 
4 1 2 cos  1(I5 sin i/4 — 105 sin 3  //16) 
4 1 3 —(35/16) sina /(1 — 2 cos i) + (15/8) sin 1(1 — cos i) 
4 1 4 (35/32) sin"  1(1 — cos i) 
4 2 0 —(105/32) sin 1(1 + cos i) 2  
4 2 1 (105/8) sin 2  i cos /(1 + cos i) — (15/8)(1 + cos ir 
4 2 2 (105/16) sin2  1(1 — 3 cbs2  i) + (15/4) sin2  i 
4 2 3 —(105/8) sin 2  i cos 1(1 — cos i) — (15/8)(1 — cos 1) 2  
4 2 4 —(105/32) sin'  1(1 — cos i) 2  
4 3. • 0 (105/16) sin  1(1 + cos i) 3  
4 3 1 (105/8) sin 1(1 — 3 cos2  i — 2 cos2  i) 
4 3 2 —(315/8 sin" i cos i 
4 3 3 —(105/8) sin  1(1 — 3 cos 2  i + 2 cosa i) .  
4 3 4 —(105/16) sin  1(1 — cos ir 
4 4 0 (105/16)(1 + cos i)4  
4 4 1 (105/4) sin 2 1(1 + cos i) 2  
4 4 2 (315/8) sin4  i 
4 4 3 (105/4) sin 2  1(1 — cos i) 2  
4 4 4 (105/16)(1. — cos i) 4  

The final transformation necessary to obtain a disturbing function con-

sistent with (3.38) is to replace r andf in (3.61) by a, M, and e, that is, to 

make the replacement 

1 [cos 
[(1  — 2P)(a) + f) +  ni(  — 0 )] . 1+1- sin 

= 
cos 

-- 	Gh
,,) 

	

(e 	[(1 — 2p)co + (1 — 2p + q)A4 + m(0. — 0)1 
(4 1+1 g 	[

] 
sin 
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In order to obtain long period terms—those terms from which M is absent—
we can average (3.61) with respect to M, that is, we can integrate with respect 
to M from 0 to 27r and then divide by 27r. We then have from (3.4), (3.12), 
and (3.20), 

1. 2  df  
dM — 

0 2(1 — e 2)112 ' 

and from (3.9), 

1. 2 1). 14-1  -=. [(1 	e cos f)la(1 — e 2)]1-1 . 

Binomially expanding (1 	e cosf) 1-1 , applying (3.51) and (3.52), and 
omitting imaginary terms, we. get  

1 	o 1. [cs 
— 	— . ifti 	0.) 
2,7r 	

— 2p)( +1) + 	— o)] clPvI  
r i-hi sin 

- J 
 27r 	 1 	

(1-1)(4 2- 7./. 	a(1 _ e 2 ) ,_(„2) 0 _ ) 	b 	2  

x 

+ 

1 
a 

where 

G12,(213-1)(e) 

a-0  ±( b ) 1 { [cl [(I — 2p)o., + (1 + b — 2p 
d 2 	sin 

S 
. 

CO
1[( 1 — 2p)o) + (1 — h — 2p + 2d)f 

cos 
Gt2)(21)-z)(e)[ sin] [( 1  — 20,0  + In(Q — 

	

1 	 1 — 1 

— 	± m(0 — 

m(fl — OA} (If  

(2d + 1 — 2p , \ 

d 	) 2) 

(3.65) 

(3.66) 

= 
(1 — e 2) 1-(1/2) ?:0(2d + I — 2 1)' 

in which 

p' = p  foi  4' p < 112, 

p' = I — p for p > 1/2. 

The ";" factor inside the d summation or (3,65) has disappeared because the 
Iwo terms that satisfy the condition for long period variation (/ — 2p) ± 

— 2d) = 0, are symmetrically placed coefficients in the binomial expansion, 

(3.63) 

(3.64) 
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and hence can be combined by making the one substitution (2(1 	/ — 2p') 
for b in (3.66). 

For the short period terms, / — 2p 4- q 	0, the development of G,.,,,(e) 
is much more complicated; we merely quote the result of one solution 
(Tisserand, 1889, p. 256): 

7) 

Gipv(e) = ( -1 ) 1 " 1 ( 1 	fi2.)1i31"11312,qh,Q11,07fi2", 	(3.67) 
7c= 0 

fl 
I + \/1 - e 2  

\'!-, (2p' — 21)(-1) 1*((/  — 2p' + a')e)r,  
P = 

r—o 	 r! 	213 

h 	k q', 	q' > 0; 	h = k, 	< 0; 

= i( .-2p'\1 ((I — 2p' + qt)e)r 

7—o \h — 1'1 \ 	213 

= k, 	q' > 0; 	h = k — q', 	q' <0; 

= p, 	q for p <  1/2; 	= 1 — p, 	q' = —q for p > //2. 

Expressions for  G, 2)0(e) up to Ipq = 442 are given in Table 2, which is 
based on the more extensive tables of Cayley (1861). 

The final result for the transformation of V,,, in spherical coordinates, 
(3.53), to orbital coordinates can thus be expressed by 

tw e' 
VI„,= 	 Gi„(e)S,„,„(co, M, f2, 0), 

a p=o 	q—co 

where 

c,. i l_m even 

L S  1 — m odd cos 
[(I — 2p)co + (1 — 2p + q)M m(f2 — 0)] 

[r, 

L'lni 

even 

1—in  odd 
sin [(1 — 2p)co + (1 — 2p + q)M m(S -1 — 0)]. 

(3.71) 

3.4. Linear Perturbations 

where 

and 

(3.68) 

(3.69) 

(3.70) 

As discussed in Chapter 1, the term of'  the gravitational field which will 
dominate the disturbing function R is 1/2„ since C., (or —J 2 ) is- at least 
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TABLE 2 

Eccentricity Functions G i de) from Equations (3.66)—(3.69) 
or the Tables of Cayley (1861) 

q  I P q G,„„(e) 

2 0 —2 2 2 2 0 

2 0 —1 2 2 1 —e/2 + e3/16 + • • • 

2 0 0 2 2 0 1 — 5e2/2 + 130/16 + • • • 

2 0 1 2 2 —1 7e/2 — 123e3/16 + • • • 

2 0 2 2 2  —2 17e2/2 — 115e4/6 + • • • 

2 1 —2 2 1 2 9e2/4 + 7e4/4 + • • • 

2  1 —1 2 1 1 3e/2 + 27e3/16 + • • • 

2 1 0 0 _ 

3 0 —2 3 3 2 e2/8 -I- e4 /48 + • • 

3 0 —1 3 3 1 —e -I- 5e3/4 + • • • 

3 0 0 3 3 0 1 — 6e 2  + 423e4/64 + • • • 

3 0 1 3 3 —1 5e — 22e3  + - • • 

3 0 2 3 3 —2 1270/8 — 3065e 4/48 + • • • 

3 1 —2 3 2 2 11018 + 49e4 /16 + • • • 

3 1 —1 3 2 1 e(1 — e 2)-3/2  

3 1 0 3 2 0 1 + 2e2  + 239e4/64 + • • • 

3 1 1 3 2 —1 3e + 110/4 + • • • 

3 1 2 3 2 —2 53e2 /8 + 390/16 + • • • 

4 0 —2 4 4 2 e2/2 — 0/3 + - • • 

4 0 —1 4 4 1 —3e/2 + 75e3/16 + • • • 

4 0 0 4 4 0 1 — 110 + 1996,4/8 + • • • 

4 0 1 4 4 —1 13e/2 — 765e 3/16 + • • • 

4 0 2 4 4 —2 510/2 — 32162 + • • • 

4 1 —2 4 3 2 (30/4)(1 — 0) -7/ 2  

4 1 —1 4 3 1 e/2 + 330/16 + • • • 

4 1 0 4 3 0 1 + e2  -I- 650/16 + • • • 

4 1 1 4 3 —?1 9e/2 — 3e3/16 + • • • 

4 1 1  4 3 —2 530/4 — 1790124 + • • - 

4 2 	. —2 4 2 2 50 + 1550/12 + • • • 

4 2 —1 4 2 1 5e/2 + 1356,3/16 + • • • 

4 2 0 (1 + 30/2)(1 — 
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100 times as great as any other C11 . Thus 

,t1C 20  (a 1 
V2o 	2, F20p(i)G21,(e) cos [(2 — 2p)o) + (2 — 2p + OM]. (3.72) 

a 	a 	a 

Assuming that the Coefficients in V20 are of about the same magnitude, 
we should expect the terms in (3.72) that do not contain M—(2 — 2p + q) 
is zero—to be of appreciably greater effect after integration than those 
which do contain M, since the latter will go through a full cycle in the rela-
tively brief time it takes the satellite to complete a revolution. The summation 
limit in (3.66) indicates that terms with subscripts (p, q) of (0, —2) and 
(2, 2) do not exist, so the only term of V20 from which lvi is absent is 

pC0 0 (ac y , 	. 
17.2010 = 	2010)G210(4 

a a 
(3.73) 

Evaluating F201  by (3.62) and G210 by (3.66), and using 	V2010 for F in 2a the Lagrangian equations (3.38), we get 

cla 
tit 

= 
 

de — =  0, 
dt 

do) = 	tuC2oa 	aF2 . 	(1 — e2)  
cot i 	°` G. ± 	p 	 

dt 	n(1 — e") "2a5[ 	ai 	. 201 ae 
2 

3 nC20a  •  
[1 — 5 COS2  i], 

- 4(1 — e2) 2a 2  

di 	,., — = U, 

dt 

dn 	pc20ae2G210 	oF201 _ 
di 	n(1 — e2)112a 5  sin i 	ai 

3nC 20a!  
—  

 2(1 — e2)2e 
cos i, 

dill 	,t1C,,a 2e'F203. 	1 —  e 2  aGno 
 + 6G210] 	 — 	 

dt 5  na 	e 	ae 

3nC.,de4
2a 2 (3 cos' i — 1). = n 

4(1 — e2) 31  

(3.74) 
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The value of C.,„ is about —0,0010827; on using typical geodetic satellite 
orbit specifications such as e ---- 0.01 and a  = .12ae , the above formulas 
yield 

- +3.55(5 cos 2  i — I) degrees/day, 
tit 

—
c/L2 	

—6.70 cos i degrees/day, 	 (3.75) 

14.37 4- 0.0093(3 cos 2  i — 1) revolutions/day. 
dt 

It is an observed fact that the secular motions such as in (3.75) are the 
dominant perturbation of geodetically useful satellites—that is, those high 
enough not to suffer excessive drag, but low enough to be perceptibly per-
turbed by the variations of the earth's gravitational field. Hence the first 
approximation to an integration of' the equations of motion (3.38) for the 
effect of a particular disturbing function R, such as a potential field terni t „„ 
will be one that assumes that the only variations with time or the elements 
on the right side of the  equations are the secular rates plus any 
other rates of change from outside the orbit, such as the rotation rate of the 
earth Ô.  Under this assumption, the integration of (3.38) with one terni 
of (3.70), V,„, as the disturbing function will be 

— 2p -1- OS 

na l ''[(1 — 2p)(;) 	(1 — 2p -1- 0;1 	al(D. — 6)]' 

Fi „,„G1 „„(1 —  e2P2 [(1 — e2)"(/ — 2p +  q) — (1— 2p)]Si„,,,  
nal+3e[(1 — 2p)ci) + (1 — 2p + Oft ± 174 — 

[(1 — e 2) 112C1 F,„,p(aG,„lae) 
— cot i(1 —  

na'[(1 — 2p)cb +  (1— 2p -I- OR m(.0 

L-\0 1  1 m = 

= Pate 

Aco,.„,„ Q  

F„„,,G,„[(1 — 2p) cos i — 

nal+3(1 — e 2)'/ 2  sin i[(/ — 2p)(;) 4- (1 — 2p + q)1V1 m(n — 6)]' 

=Pao'  na , 
3(1 — e 2)1-12  sin i[(/ — 2p)d) (1 — 2p + 	m(n — 0)] 

z [ — ( 1 	e2)e-1(aGr1) 0/ae) + 2 (1 + 1 )Gt2aT1mi9:-Slim7,q 
AiVihnpq = /lac na id-fst(1 _ 2p)d) + (1 — 2p + q)./Vi + in(-- — 0)] 

where g 	is the integral of Sim „ with respect to its argument. 

(3.76) 
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Specific examples of the perturbations (3.76), using (3.62), (3.66) and (3.71), 
are 

I. The long period perturbation of the eccentricity by C 30, the "pear-
shaped" term is 

fitct,(1  — e 2 ) 1/2 	, 

	

Aeinu-i.) 	Ae3021 	 30pG31)12D-3)S30 p(2j)-3) 
na'ed) 

3,ac4C20(1 —  sin2  i) 

	

sin co; 	 (3.77) 
2na6(1 	e2)2 c,i) 

2. The semidaily perturbation of the mean anomaly by C22 and S„, the 
"equatorial ellipticity," is 

	

[ (I 	e2)e-1 (aG210/ae) 	6 G21011164F221- 2210 
AM2210 

na 52(n — 6) 

9/24 sin` i 

0) 4nci 5(1 — e 2 )312(0. 
	  [ C2 2  sin 2(.(11 — 0)-k S22 cos 2(S2 — 0)]. 

	

— 	- 
(3.78) 

3.5. Nonlinear Perturbations 

Since C,„ is about 1000 times as big as the other gravitational field coeffi-
cients C,,0 , 5',,,,,  we should expect that a solution of the problem of a close 
satellite motion in which the effects of the C,„„ St ,„'s are described as 
linear perturbations in accordance with (3.76) would require that the effects 
of C„ should be described as nonlinear perturbations to order (C20) 2 . That 
is, linear perturbations of the elements on the right of the equations of motion 
(3,38) due to C20 should be taken into account. If the problem is solved by 
numerical integration of (3.38) with a suitable integration interval—or, for 
that matter, by numerical integration of the rectilinear equations (3.26), 
—then such higher-order effects will be automatically taken care of. For 
example, writing the equations (3,38) as 

= 	t] 	ji{a, e,  1, M,  w, 0, 

_where s i  is any one of the Keplerian elements, the integration for a time-step 
At can be done by the standard fourth-order Runge-Kutta technique: 

14) 0  = O (t), t] At, 

x, = .,[s(t) 	4'i/2, t 	At/2] At, 

yi = . 0 [s(t) ± 42, t 	At/2] At, 	 (3.79) 

zi  = . 1 {s(t) 	y ilt + At] At, 

	

,s i(t + At) = s1 (1) 	w0/6 + x0/3 + yi/3 	7,0/6. 
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An excellent summary of numerical integration techniques applied to satellite 
orbits is given by Conte (1962). A solution more in keeping with the develop-
ment thus far, however, would be one analytically developing (3.38). There-
fore, 

as. 
= (s0)  + 

• 	as, 

d 	d 
= —

dt
(Alsi) —

dt
(A2s), 

where s;  is any of the Keplerian elements. 
Subtracting out the first approximation, d(A isi)Idt, leaves 

d r  A 	as, A  
2 S0 	"Op 	 (3.80) 

dt 	as;  

where Ais;  is found by (3.76). However, it would require considerable 
tedious algebra to apply (3.80) directly in this manner. It would be laborious 
even to get the one most important second-order perturbation—the (C20) 2  
contribution to the secular motion—because the interactions of all periodic 
terms with themselves must be taken into account. Thus for the secular 
part of A9s„ we have 

A 2Si  — 	' 2' Als palpry - periodic terms), 	 (3.81) 
as;  

where summation is over], p, and q. In order to apply (3.81) to the evaluation 
of  ,{n,  th,  11} to the power e21c in the eccentricity, 10 x 3 x 2k terms 
must be evaluated using (3.72) in (3.38) to obtain . " i20„ and A 1si200 . Then 
(1/20  not being a function of S)), 5 x 6 x 2k x 3 differentiations must be 
made to obtain the aS,20 ,0/as;  ; and finally, a like number of multiplications 
must be performed. 

Some saving of effort is possible if we express V20 in the closed form of 
(3.61), evaluating  F20 (i) by (3.62), 

= 
,u(ae)2[(

4 	2

3 	9 
V20 	20 	 sin -  i — - 1) — -3 sin 2 

i cos 22(w f)1, 
r r 	 4 

(182) 

using the partial derivatives of elliptic motion derivable from (3.9)-(3.19), 
and postponing the averaging with respect to time until the end. This method 
has been used in developing some theories. However, the more satisfying 
analyses of the close satellite problem have gone back to a considerably 
earlier point than the Lagrangian equations (3.38) in an attempt to obtain 
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a clearer insight or a more accurate or more efficient solution. Some of the 
best solutions have expressed the potential in ellipsoidal harmonics; other 
solutions have used elements differing appreciably from the Keplerian in 
order to attain a formulation suitable for numerical iteration. 

The solution we shall outline is that developed from the Delaunay equations 
(3.47). To abbreviate the equations, we express L, G, H as pi , pa, pa  and 
M, co, .0 as g1 , q2 , q, (not to be confused with the vector q in the orbital 
plane). Equation (3.47) then becomes 

13,= 	(b = —aFtapi . 	 (3.83) 

Since, from (3.83), 

aF dpi  aF da• 
— • — — • = 0, 
api  dt 	agi  dt 

we have 

dF aF _ 	. 
di' 	at 

Here the explicit derivative anat signifies, in the problem posed by the 
disturbing potential (3.70), 

aF aF 6  
—at = —ao - 
	 (3.86) 

aFiat is thus purely periodic. Hence, if the solution is known for the 
motion expressed by the canonical set (p', q') with a constant force function 
F' close to F, the solution for (p, q) can be found as that for (p', q') plus a 
Taylor series over the difference (p — p', q — q'). Several such transforma-
tions could be made in succession; the most general such succession for a 
close earth satellite would be 

	

F(L, G, II, 1, g, h, t)--)- F'(L', G', H', 	g', h', —) 

	

F"(L", G", II", 	h", 

-÷FAL'll,—). (3.87) 

The last transformation is obviously solvable as 

= const 

q!i'! = 	const i (t — to). 
	 (3.88) 

(3.84) 

(3.85) 
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In the Case of the disturbing potential V„ of (3.72) or (3.82), the CO  
transformation in (3.87) is unnecessary since the potential does not  cou Lu  
the nodal longitude II. 

The fact tha i  the motions (p, q) and (p' , . g') are derived from sinittc 
scalars, F and F',  respectively, suggests that the Taylor series transformatitql 
could also be expressed in terms of a single scalar. We start with iv,' 
scalars, 

= 	+.. F, 

= 	F', 	 - (3.s» 

We wish to prove that between fixed points (p, q) at times  i  and i 2 , variation, 
of the integrals of x and y' will be zero for small variations (bp, (5q)  ni the 
path. Thus we have 

6  I 
 • r2 

 (E 	F)  (It   = 0, 

F') di = 0, 	 (3.901 

known as Hamilton's principle. 
Because the variable x is a function of pi , q„, and (h, we can write the hr,t 

integral as 

r"( ax 	ax 	ax \a—pi 6p, — ôq i  — (51i) cit. 
aq, 

(3.91) 

From (3.89) and (3:83) we have 

aF 
—=qi +—ap, =°' aA  

which eliminates the first term of the integrand in (3.91). For the second 

term, from (3.89) we have 

ax _ aF 0.93) 

In the third term, we replace (51, by d(6q,)Idt, and apply integration 
parts. Thus 

	

" ax d 	(ax 	f" d (ax — — (6q,) = — t5q i)12  — 	— — 	cit.
dt 	 t, dt 

)Sq i 	(3,94 t 
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Hie first term vanishes because the variations 6q 1  are zero at the end 
points, From (3.89), ax/a(), is pi ; thus between (3.93) and (3.94) we have, 
r,ramining as the integrand, 

rï.  — p i)(5qi = 0, 	 (3.95) 

hich is zero by (3.83). The second equation in (3.90) can be proved similarly. 
Hamilton's principle (3.90) indicates that the indefinite integrals are 

omtintious, and hence that their difference is expressible by a single function 
S. Therefore the integrands differ at most by the total time derivative of S: 

f
t2 ds  

ti  7

1,  tit = so,) — s(10. 

S is a function or both the (p, q) and (p', q') variables; however, if (p, q) 
h to be expressed as (p', q') plus a Taylor series development over the differ-
:race, then only one halfa the twelve variables (p, q, p', q') are independent, 
And S can be expressed in terms or any two or the four sets. The expression 
most commonly used is 

S = S(q, p'). 	 (3.97) 

I hen from (3.90), (3.96), and (3.97), summing over repeated subscripts, 

ds as 	as ., S L 
dt 	

S 
'1); 	at 

+ F 	
F,. 

(3.98) 

Because q, and pi' are independent, for both values of dS/d/ in (3.98) the 
coefficients of and  p ,  respectively, must be equal. Thus 

as 
pi  = — aqi  

, 	as 
(3.99) 

v.hich leaves 

as F' = F — — • 
at 

(3.100) 

S is called a determining function or generating function, and its use to 
effect a transformation (p, q) —›- (p', q') in accordance with (3.87), is known 
as Von Zeipel's method, In applying this method, S, F', and-,F are all 
developed in series in accordance with the magnitude of the terms involVed. 

(3.96) 



r- 

Ft; 

(3.105) 
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Thus 

S 	S o  + 	+ S2 + • • • , 	 (3.101) 

F;(p', q') 	q') + • • 

aF 
= Fo(p) 	F,(p, q) 	F,(p, q) + • • • 	— di.  

at (3.102) 

S, must have a form such that pi  = p:,  q1  =-- (I:, in the unperturbed case; 
that is, 

S o  = q1p. 	 (3.103) 

Substituting (3.103) in (3.101), differentiating (3.101) with respect to 
qi , p:, and substituting the result in (3.99), we have 

as, as, 
aqi  

as, 	as, 
ap 

(3.104) 

Developing F in (3.100) in Taylor series of (pi  — p) and (q 1 — q'i) and 
substituting for (p i  — p:) and (qi  — q:) from (3.104), we get 

as 
F — — = F 0 (p') 

aF„ as 
+ — • —1  + F , q' — 

apt; aq , 	 t  

+ a 	+ F, as, 	1  a2F0   (as„}(as,\ 
ap aqi 	2 apii  ap';  &it ) aq;) 

aF,as, 	, 	, as, + — + r2u) , q') — — " a/4 aqi 	at 

We then equate terms of equal magnitude in F and F'. These equations 
determine the terms in S, because F' will generally contain one less variable 
than F and hence any terms in F dependent on this omitted variable must be 
accounted for by S. 

For the problem of interest to geodesy [using (3.39) and (3.46)1, 

Fo  = 1u 212L 2 , 

Fi 	V20, 	 (3.106) 

F2 == Vatin500,20. 
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Let us consider the problem in which V20  is expressed by (3.72) and F, 
is zero. Then from the first line of (3.105), 

= 1212E2 . 	 (3.107) 

On the second line of (3.105), we choose F to absorb all terms not functions 
of M, or  q1 . Thus 

pC„(Cleyb,  (i ,v;  
F  — 	 201k. /-210.e ' . = 

a' 	a' 
(3.108) 

since from (3.66), G20(_ 2)  and G222 are zero. Then the remainder of the second 
line can be used to solve for aSdag,, since F, [from (3.106) ] is a function of 
p,  only:  

as, 	as, 	(Eal itc 2„(ac y  _ 
am 	aqi 	■ ,u21 	\ a ! 

E 14.20 G 2 , cos [(2 — 2p)w + (2 — 2p + OM], (3.109) 
24#10 

and 

(:(2.) /1/C20(ael2 	FL,DG„ 
	 sin [(2 — 2p)cu + (2 — 2p + 

\,11 2 / a' \a'l DQ010 (2 — 2p + 9) 
(3.110) 

Derivatives of S, are then used in (3.104) to obtain the short period 
variations in the elements that will agree with those given by (3.76). In 
taking derivatives with respect to L', G', and H', it is convenient to use 
the partial derivatives of the Keplerian elements with respect to the Delaunay 
elements, The derivatives that are nonzero are 

aaiaL = 2L/,u, 

aelaL = G 2IL3e, 	aelaG = 

aiiaG = HIG2  sin i, 	ai/aH = —1IG sin i. 

Proceeding to the third and fourth lines of (3.105), we are principally 
interested in the terms on the left arising from (aSjagi) 2  and (aFilapi) • 
(aSi/agi) that will not have a sinusoidal factor because each of the cosine 
terms in F, and 0,51 /aq i  has been multiplied by itself. As a consequence, 
there are contributions to the secular motions  AI,  6, 1.2 through 172  of 
coefficient 
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On the next transformation from F' to F", ternis containing the argument 
of perigee w' are removed. In this transformation, the first two lines of 
(3.105) merely yield that and Fi" are equal to /7,', and  F , respectively, since 
there are no periodic terms involved. On the third line both terms are zero, 
since S' does not contain M;  but on the fourth line, there are two nonzero . 

 terms: 

aF; as;  
+ r = 

OG" Om' 	" 
(3.112) 

aF;laG" is,. from (3.83), equal to 6), which by (3.74), contains a factor 
(1 — 5 cos 2  i). Hence in solving for as;law/ we obtain a factor (1 — 5 cos 2  i)- ', 

and the solution is not valid in the vicinity of an inclination cos -1  V1/5, 
which must be treated as a case of resonance. 

A clear and detailed exposition of the application of the Von Zeipel 
method with ri  as in (3.106) is given by Brouwer (1959); sec also Brouwer 
and Clemence (1961, pp. 562-573). The final secular and long-period terms • 
to order are 

M = .M; . 	10{ 1 	':10( —  I -I-  3 02 ) 	.J 121 1 221 / [ 	15 -1- 16n + 251/ 2  

+ (30 — 96n — 90q 2 )0 2  + (105 -1- 144n -I- 257) 2 )0 1 ]} 

-81-)4n3 [1 — 110 2  — 400"(1 — 50 2)-1 sin 2w", 

w' = a4; + n o t{iy( —1 + 50 2) + 	+ 24n +  25 2  

+ (90 — -192n — 126n 2)0 2  + (385 + 360n + 4517 2)04 ]} 

—-2.-oryj(2 + e" 2) — 11(2 + 3e" 2)0 2  — 40(2 + 5e104(1 — 50 2)-1  

— 40e" 20 2(1 — 50 2)-1 sin 2w", 

-1- n 0 t{-3y 2 0 	-;11):2[(-5 + 12n + 9n2)0 + (-35 — 3617 — 5ri2)0 3 ]} 

— T13-)4e1120[11 + 800 2(1 — 50 2)-1  + 2000 1 (1 — .50 2)-2] sin 2w", 

= e" 	-fl .)4"n 2 [1 — 110 2  — 4004 (1 — 50 2)-1 cos 2w", 

= i" — 1+ye" 2 cot i"[1 — 110 2  — 400(1 — 50 2)-1 ] cos 2w", 	(3.113) 

where n -= (1 — e" 2)I/ 2 , 0 =  cos i",)) /2  = a.121(2a"2114), and n o  =  
The constants of integration defined by Brouwer's theory are the mean 
elements:. namely the constant parts a", e", i" and, the secularly changing 
parts at epoch Mg, o)g, S2g, that are consistent with (3.88). 

In addition to the .4 terms, there are two other types of second-order 
terms that may be of significance: 

I.  If short period variations of the mean anomaly M are being taken 
into account, then variations in M resulting from changes in the mean 
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motion n arising from perturbations of the semimajor axis should.  be  included. 
From (3.80), 

an 
A,M =I — A,a di. aa 

Using (3.76) for A,a and —3n/2a for  an/pa, 

3Itta il,F11117) G ivqg,( / 	2 /' 	//) 	
, 

A2 M1 " 1 " 	a t-I- 1(1 — p)(b + (1 — 2p 0 ;1 + in( 0  — u)] 2  

(3.114) 

(3.115) 

2. if/is  odd and in is zero, the interactions between the period perturba-
tions A,e,, A1i1,„(22,-,),  and the secular motions S.12O) „ and 62010 can 
have perceptible effect on the periodic perturbations A 1 /02)(21,--i), Aw107.,(22,-- ) I ,  
and AM )0(2)) . Using (3.80) again and abbreviating lop(2p — 1)as r, we get 

a.2 	f . . 
A.S2, 	f 	di -I- -- A,1 (11 

" 	 ae 

3C 20 _(4e cos i 
[A t e r 	— sin i 	. 	(3.116) 

2(1 — 	a 	(I — e 2) 

In (3.116), (3.74) has been applied. Similar expressions can be obtained for 
A,wi. and  2Mr . 

3.6. Resonance 

The methods described thus far in this chapter fail for two categories of 
orbits: 

1. Orbits for which the eccentricity e, or inclination i, is so close to zero 
that nodal longitude S-2, perigee argument w, or anomaly M, may lose their 
definition and  have absurdly large perturbations that virtually cancel each 
other in calculation of position or velocity. 

2. Orbits for which the secular rates of the arguments in some terms of 
the disturbing function, (3.70), may be so close to zero that their periodic 
variation is more significant; that is, we have a resonant situation in which 
there may be libration rather than secular motion: 

(1 —  2p)6 +  (1—  2p + qr).ft 	m(n — 6) R.-, 0. 	(3.117) 

The difficulties in category (1)—near-zero eccentricity or inclination—are 
somewhat artificial, in that they do not involve any physical phenomenon, 
but are a matter of definition of coordinates, solvable by changing the abital 
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elements. Two types of changes made to canonical elements (g, q) such as 
the Delaunay elements (3.43), (3.45), and (3.46) are 
for any two pairs i, j, 

and for any i, 

= 

= 

= 

= 
(3.118) 

= ,I2pi  cos q„ 	\12p, sing,. 

Such transformations can be applied to any pair, or any two pairs,  in 
succession. 

The difficulties in category (2) are quite real; there is an actual change 
in the behavior of the orbit. The case that has been treated most extensively 
is that of the "critical inclination" cos–L\/1/5, for which, as mentioned in 
connection with (3.112); 

thi0. 	 (3.119) 

A case of greater interest, both because it has actually occurred in connection 
with satellite communication projects and because it can yield information 
about the gravitational field, is 

(3.120) 

A satellite with the mean secular rate (3.120) will resonate with any spherical 
harmonic C,„„  S that gives rise to terms with an integral multiple of 
(co M f2 — 0) as an argument. A rough calculation setting 6 for n 
and using Kepler's law (3.20) indicates that the semimajor axis for the case 
(3.120) to occur is about 6.6 earth radii. Hence, because of the (aela)' term 
in the disturbing function (3.70), the dominant effect will be by those terms 
for which I is small—in particular, C22, 

Since / — 2p must equal m to obtain an integral multiple of (co M 
— 0) as an argument in the disturbing function (3.70), / — m must be 

even, and p must be (/ — m)/2. Also q must be zero. Let 

and 

	 2  a, , 
Q 	\IC' im -f-  S1,1 —  al r  irn,( 1— n1 )1 2( 0G1 ,( 1— M)/ 2 , 0(e)  

a 
(3.121) 

1 	(S I  2,,„ = 	tan–' 
Cl ,,,In  

(1122) 
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From (3.70) the resonating disturbing function can be written 

R = E Q tm  cos m(w M 	— A tm  — 0). 	(3.123) 
tr—mieven 

Since the mean anomaly.M appears in this disturbing function, there will 
be a perturbation of the semimajor axis, from the first of the equations of 
motion (3.38): 

= — —
2 	

E mQ„„ sin m(w M 	— A t,„ — 0). (3.124) 
na o—m)even 

This change in the semimajor axis in turn causes an acceleration in the 
earth-referred longitude of the satellite. Let 

(3.125) 

where we have added the subscript A to indicate that this is the "broken-
legged" astronomical longitude, not the conventional geodetic longitude 
measured along the equator. Using Kepler's law (3.20), we get 

/IA  = m = — = —2 E inQini sin mpA  — Atm). 	(3.126) 
aa 	a (/—m)even 

The double integration of (3.126) in a manner similar to (3.115) would 
lead to a large A2A  because of the small divisor (n — 6) 2 . In addition, there 
would be terms with divisor (n — 6) obtained by using the disturbing function 
(3.123) in an integration of the equations of motion (3.38) in the manner of 
(3.76). However, both (3.76) and (3.115) are derived under the assumption 
that a valid first approximation of the orbit is a secularly precessing ellipse. 
Such approximations usually break down in the vicinity of a resonance, 
so (3.126) must be examined directly. 

By multiplying (3.126) by 2A A  we obtain, as a first integral with constant 
of integration K, 

(A A ) 2 = K — —67 	Q„„ cos m(A A  — A tm). 	(3.127) 
az 

(2—m)even 

Let us define the constant K as a combination of the initial longitude 40 

and rate  2A0: 

K — (A_40) 2  + —
6
, 	Q„„ cos In(AA0  — A im ). 

a-  (1—m)even 
(3.128) 
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Since (A A ) 2  must be positive, from (3.127) we have the condition 

K > 
6 	

Q t „, cos m(2._:1  — 
a-  u-naeven 

(3.129) 

If the constant K is small enough, the condition (3.129) will prevent the 
longitude )..A.  from going through a full cycle from 0 to 2.  A small K is 
most likely to result if AA0 in (3.128) is such as to make the dominant term 
Q22 cos 2(AA0 — A 2„) near —Q 22 : that is, if 2, 0  is near 2 0 2  ± 7r/2, which is 
the minor axis of the equatorial ellipse._ On referring longitudes to this 
minor axis by making the substitution 

v =  2  — 2 2 0  — 7r/2 

and taking only the 1m = 22 term of (3.127), we get 

6 

	

(0 2  = K 	Q„ cos 2.1p 

6 

	

K 	Q„[1 — 2 sin -  v]. 
a -  

(3.130) 

(3.131) 

The maximum departure y„, from the minor axis will thus correspond 
to zero (02 , 

[ Ka' 	11 1/ 2  
Sin v,r, 

12 ■222 	2  
From (3.131) we have 

6 Q.22 	12Q22  • 2 sin v 
2 a' 	a 

112 
12Q" (sin' v — sin 2  )1)) 
a' 

On defining  defining 

(3.132) 

(3.133) 

	

k 2  = 	 (3.134) 

shifting di and functions of v to opposite sides of the equation, and integrating, 
(3.133) becomes 

ak 	fç' 	dip 	 ak  
t „ 

(12Q 22)1/ 2  Jo  [1 — k2  sin 2  ip]1/2 	(12Q22)
2 F(k, v). 	(3.135) 

 

F is the elliptic integral of the first kind, which for cases where k < 1 are 
discussed at length in textbooks such as Hancock (1917), For the interesting 
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cases in the present problem that involve libration, k >  I. In order to 
evaluate the resulting integral, we use the transformation 

1 	1  

	

 17(k, y) = - FH 	•, 	(k sin 01. 	 (3.136) 
k k 

Therefore a complete cycle of the elliptic integral Fin (3.135) is (4/k)F(11k, 7r/2), 
and the time T for a complete period will be 

T— 2a 
 F 	Lr) 

(3.137) 
(3Q22p2 	k ' 2  

lf k is greater than unity, and the initial longitude A, is close enough to 
the stable point A22 ± 7/2, sin v must -  vary between the limits ±(1/k); 
thus, the satellite will librate about the minimum longitude A22 + 7/2. If 
k is less than unity or if the initial longitude A, is outside the limits of libration, 
7p may have any value: that is, the satellite will drift all the way around the 
•earth. Considering that the satellite mean motion n' must be greater than 
the earth's rotation rate 	inside the zone of possible resonance, and less 
outside this zone, we can draw a schematic picture of the areas of libration 
in an earth-fixed reference frame, as shown in Figure 5. 

An analysis of resonance can also be made similar to the Von Zeipel 
method of Equations (3.83)-(3.105). In order to remove the explicit appear-
ance of time through the angle 0 in the disturbing function (3.123), the third 
angle variable q, can be made: 

h = Q — 0. 	 (3.138) 

Then in order for the equations of motion (3.83) to apply, OH must be added 
to the force function F. By taking only the lin  = 22 term from the disturbing 
function (3.123), replacing cos 2(co + Q + h — A22) by 2 cos 2  (co + û + 

h — 222) - 1, and breaking down F by magnitude in accordance with (3.102), 
we get 

F, /22/2L2  + OH, 

F, = 2 Q22 COS2  (CO M + h — 42), 
F2 = Q22. 

If we develop the Von Zeipel transformation as in (3.105), we get 

Fo  
+ aF0 as, + aFo as, + 1a2F0 (as,) 

aE am air ah 2 aE2 

a

• F

0 as2  aF0 as2  
aE  am H'  ah 

(3.139) 

(3.140) 
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Here F, does not appear on the right of (3.140) since the corresponding part 
of F is entirely periodic, and hence must be absorbed by sir . asiiam and 
asilah are equal, since M and h appear only as a sum (M + h). The phe-
nomenon of resonance thus appears in the form of a very small coefficient 
to this derivative since, from (3.139), (3.46), and (3.20), aFolaz: is the negative 

FIGURE 5, Near 24-hour orbit paths in an earth-fixed reference frame. 

of the mean motion, —n'. It is for this reason that the change from (3.105) 
was made in (3.140) of shifting the (as1lam)2 term to the second line. On 
substituting tp as defined by (3.130) and (3.125), the second line becomes 

(6 	n , )  as, + 3rii(aSiy+ 2.222 sin , ip 	0.  
(3,141) av  2E\avl 

Solving the quadratic equation (3.141) for aS,/av and integrating, we get 

S, = —(6 — n')(v ± E)L'1311', 	 (3.142) 
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where 

E = E(k, y) f (1 — l< 2  sin 2 y) 1/2 4, 	(3.143) 

the elliptic integral of the second kind, in which the modulus is 

k 2 	12Q2211/  
- n')2E 

(3.144) 

For the longitude AA with respect to an earth-fixed point, (3.104) can be 
applied, taking derivatives of the determining function with respect to 
L', G', H'. After considerable algebra and eliminating minor terms, a result 
similar to (3.137) is obtained. 

The method developed in (3.121)-(3.137) is most similar to that of Allan 
(1963). Morando (1963) has applied the Von Zeipel transformation to the 
problem, as outlined by (3.138)-(3.144). 

Another case of possibly significant approach to resonance in accordance 
with (3.117) that has been suggested is 

(b 	./11 	m(S..1 — 	() 	 (3,145) 

For moderate eccentricities (/ — 2p), and hence 1, must be odd. The semi-
major axis must satisfy the condition 

, 113 	[ 	ilm 	[1 	
a, > a,. 	(3.146) 

1213 
a = [ LI] — ki  -,...,, — 

n 2 	(n76) 2 	tn. 

Since 1 > m, and since a-(1+312)  appears in the perturbation equations (3.76), 
higher values of  in would appear to be more effective, despite the drop off 
in magnitude of the coefficients with increase in  I.  Then, for a particular 

3/2 Ea  , 
k".• 17[--] , 

a 

the disturbing function after (3.70) will be 

R = 

, te 	( a eyi 

o 
ani+2_k 	Fimp(OGIDo(e)Simpo ,  

where 

(3.147) 

(3.148) 

k = m(mod 2), 

/ =  in  +  2] + 1 — k, 

p = (in k)I2 1. 

(3.149) 
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For example, for a 	1.196a„ we have in  =  13; / = 13, 15, 17, • • • ; and 
p •----- 6, 7, 8 

Since 6 is one cycle per day, for any satellite there will be at least one term 
of a period of two days or more. Hence, the second-order term in the anomaly 
A,M from (3.115) becomes dominant because the rate is squared in the 
denominator. Then for the perturbation along track, from (3.115) and 
(3.76), 

= AO cos i 	AIM LM  

 	(a Vi 
a ni+4-7c- 	 • 	 3) F1 	o 

+ 	m(.'1  — 0)] i=0 a 	mv mv  

x 
 1 [H(e) 
	

+ 2(1 + 1.)G 1„d - 
	3G1,0  

•}, (3.150) 
L 	ae 	 [th ./V/ 	m(L .2 — 6)] 

where 

11(0 =
—  e 	(I — e 2 ) 	e 	3e3 	5e5  

- — — — — • • • • 

2 	8 	16 
(3.151) 

Since they have opposite signs within the brackets, a rate [61) +  11;1 + 
m(0. — having the opposite sign from the mean motion n would yield 
the greatest effect. 

3.7. Miscellaneous Effects 

In addition to the perturbations caused by the variations of the earth's 
gravitational field, close satellite orbits will also be perturbed by the gravita-
tional attractions of the sun and moon ; the radiation pressure of the sun; 
and the drag of the atmosphere. These effects may be particularly significant 
in analyzing long period and secular variations to determine zonal harmonics. 
The gravitational perturbations resulting from the sun and moon can be 
developed analytically in a manner very similar to (3.76). Because the effect 
of the earth's shadow is most important in the radiation pressure perturbations 
and makes their analytical solution rather awkward, numerical integration 
or numerical harmonic analysis is normally applied. 

It is even more complicated to calculate the orbital perturbations resulting 
from drag using a model of the upper atmosphere; therefore numerical meth-
ods are also indicated. However, in this case there is an additional difficulty 
in that even the best of atmospheric models  are inadequate to account for 
much of the significant variation in density; thus it becomes pointless to 
make elaborate calculations of perturbations by the model. Instead, a few 
parameters expressing the principal drag perturbations are usually deter-
mined from the orbital tracking data itself, and some second-order effects 
calculated from these parameters. 
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At the altitudes of geodetically useful satellites, the force of drag can be 
expressed by 

CD 	2 Fd = — ApV , 
2 

(3.152) 

where CD, about 2.4, depends on the shape of the satellite and the manner 
of reflection of the air molecules; A is the cross-sectional area; p is the 
atmospheric density; and  e is the velocity of the satellite relative to the 
atmosphere. The drag force vector is always directed contrary to the velocity 
vector, and hence its effect is not "averaged out" by the rotation of the earth 
or of the orbit, as are the gravitational effects. Consequently, there is an 
energy loss which results in a contraction of the orbit and a .speeding up of 
the satellite to counteract the increased gravitational pull, in accordance 
with iKcpler's law, (3.20). This speeding up causes the drag perturbations 
to appear in the mean anomaly much more than in any other of the Keplerian 
elements, and hence the arbitrary parameters approximating the drag (plus, 
usually, radiation pressure) effects are usually coefficients Mi  of a power 
series with respect to time of the mean anomaly, 

max 
Am a  = 	m i(t — to)i . 	 (3.153) 

i=2 

The series starts with M2 because Mo  is one of the constants of integration 
and M, is indistinguishable from a, because of Kepler's law, (3.20). Equation 
(3.20) also gives the drag perturbations of the semimajor axis consequent 
to (3.153), 

2a572 jmax  

Aci d = — i(t — 
3/2/2 .1=2  (3.154) 

The atmospheric density decreases rapidly with altitude; so much so, that 
even for rather moderate eccentricities the drag can be considered almost as 
an impulse at perigee. Hence the energy loss can be related directly to 
the perigee radius r„; from (3.25) 

Av2  = 2A71, = 	
_ 	du r  + e)] .  

(3.155) 
Lr, 	aJ 	La(1 — e)] 

Since An  < 0 and Aa < 0, necessarily Le < 0. To the first approximation 
r, is constant, since there will not be change at right angles to an imPosed 
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force. On assuming r, to be constant, we get 

0 = Act,(1 — e) — a Ae a , 

ACI 
Z\e„= 	(1 — e 

— 
	

- I./A4  — (0)" 
311. 1 " 

(3.156) 

The rate of motion of the node and perigee caused by the °Haleness 
or J 2 , depends on the set ni major axis a and eccentricity e. I I ence, there will 
be an acceleration or the node and perigee due to a change in a, e: 

acw, 	) 	ao.(c.,„) 
Ao  

=J 	di 	 Ad d 	 L\e ‘i  di. 	(3.157) 
ati 	 ae 

Evaluating 1'1(C., 1 ), (i)(C,„) by (3.74), substituting front (3.154) and 
0. 150  l'or  Aad. Ae.1 ,  and integrating,  we get 

— 
cos i 	— 	(a y 

'..„ 
2(1 — e ) L  •  e 	a 

4 — 5  sin' ir7 — el  C9, (a  A' 
Awa 	 Ma . 

4(1 — e2) 2  Li + e 	a!  

(3.158) 

In addition to the variations caused by atmospheric density expressed by 
(3,153), (3.154), (3.156); and (3.158), there are variations in the motion of the 
atmosphere that affect the orbit, since the velocity e in (3.145) is relative to 
the atmosphere. Such variations of motion appear most clearly in the 
inclination, which is unaffected by density variations. In particular, most 
orbits show secular decrease in the inclination, as would be expected if the 
atmosphere rotated with the earth, but at a rate fluctuating appreciably 
from that indicating a uniform rotation. Hence a treatment for the effects 
of variations in atmospheric motion starting from a polynomial for the 
inclination similar to (3. I 54-(3.158) could bc developed. 

The treatment of drag is the most unsatisfactory part of satellite orbit 
dynamics. Short-term variations  which are of significance in determining 
tesseral harmonics and station position shifts must be treated as 'a statistical 
problem, as discussed in Chapter 5. Long-term variations in the seminnajor 
axis, eccentricity, and inclination must either be taken into account along 
the lines of (3.154) or averaged out carefully in using the changes in node 
A.Q and perigee coA to determine zonal harmonics. For a detailed description 



Rderences 	 59 

of the dynamical theory of drag perturbations mainly to determine atmos-
pheric properties, see the text by King-Hele (1964) and the review by 
Jacchia (1963). 

3.8. Summary 

The purpose of this chapter has been to develop the theory of close-
satellite orbits as par i of the geodetic environment—that is, to describe a 
particular phenomenon connected with Lite  earth's gravity field. Hence 
the discussion has not been a complete overall treatment of the subject of 
close satellite orbits, but rather has emphasized those aspects of peculiar 
interest to geodesy, such as the development of the disturbing function for 
spherical harmonic variations in the gravitational field, and has neglected 
other aspects or lesser interest. It also has gone further into basic theory 
than is .perhaps necessary for practical application, in order to improve 
understanding a nd  to furnish a basis for more effective treatment of special 
problems such as 24-hour orbits. 
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4 

GEOMETRY OF SATELLITE OBSERVATIONS 

4.1. General 

Thus far, there has been developed the theory of the motion of a particle 
in the earth's gravitational field, without reference to any observer. The 
only geometry introduced has been that necessary to the transformations of 
the potential and to the dynamics of the orbit. In this chapter we discuss 
the geometry pertaining to observation of the satellite; develop differential 
relationships for all quantities affecting observations; and consider variations 
in the reference frame, the medium through which observations are made, 
and so on. 

4.2. Coordinate Transformations 

In Chapter 2, we used a rectangular-coordinate system {u, 7), w) fixed in 
the earth. In geodesy, however, the ellipsoidal coordinates (latitude), 
A (longitude), and h (altitude) are more commonly used. We are therefore 
interested in relating these ellipsoidal coordinates to the rectangular co-
ordinates. Figure 6 shows a meridional section through the rotation ellipsoid. 
Substituting p2  for u 2  y2 , we have from (1.44) or (3.8) 

2 

b 2 
	 (4.1) 

where a is the equatorial and b is the polar semiaxis of the ellipsoid. Then 
from the figure and (4.1), 

tan = 	dP  — (12 w   
dw b 2  p 	pa — e2)' 

61 

(4.2) 



2 

	

V 2  COS 2  = 	— 
a 2 
 w 	a 2. 

b 2  
Then, from (4.4) and (4.6), 

v 2(1 	sinz 0) 	1  	v 2(1 	e2) 2 sin ?. 0 

	

1 	e 2  

whence 
a 

— 	e2 sin 	' 

(4.6) 

a2 , 	 (4.7) 

(4.8) 
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IV 

FIGURE 6. Meridian ellipse. 

where e is the eccentricity (termed in Figure 2. Also from Figure 6, 

cos -= p/v, 
whence 

sin 0 — 
v(1 — e 2) .  

Returning to the ellipsoid, and allowing for the altitude h, we have 

u = (y 	h) cos (IS cos A, 

It) cos (/) sin A, 

. w =-' [v(1 — e2) + Id sin 0. 

In order to define y, use (4.3) and (4.1)  again to get 

W 

(4.3) 

(4.4) 

(4.5) 
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Finally, to relate the eccentricity and the flattening, we have 

e 2 — "  
,2 b2 

(a  1+  2 at) —  b 2  
a2 	a 	a 2  

=f 2  + 2( 1  — ,nf 
= 2f — f 2. 	 (4.9) 

In all the relationships developed so far, a coordinate origin at the center 
of the earth has been used. However, for use with observations from a 
station at geodetic location u, = (t/0 ,  e0 ,  w0), a translation from the center 
of the earth to the location is required. Using the subscript T to denote 
"topocentric" coordinates referred to such a point, we have 

x i, = 	12,,,„(n — u„) 	 (4.10) 

Or 

	

xi, = R 0q — 	 (4.11) 

where R;,,, is defined by (2.32) and 12 3 ( —0) by (2.24). 
ln order to obtain relative velocities, or rate-of-change of topocentric 

coordinates, the rotation of the earth, which causes the station to move 
With respect to inertial axes, must be taken into account as well as the motion 
of the satellite: 

aR.. 
XT  = RA —u 0 Ô , 	 (4.12) a o 

where 4 is given by (3.24). Equation (4.12) applies regardless of whether or 
not the orbit is perturbed. Even though the Keplerian elements may all 
have nonzero rates of change, only the acceleration is affected, since the total 
velocity is represented by the ±, in (3.26), which is completely accounted 
for by the osculating Keplerian elements in a transformation such as that 
at end of Section 3.1. Alternatively, velocity can he referred to earth-fixed 
coordinates: 

aR.„„ • 

	

= Ru04 + 	q0, 	 (4.13) ao 
For the range r from a station to a satellite, by using the sum of squares 

of the rectangular coordinates, x + .4 -1- x .32 , we have 

r = [4x2 ] t ' 2 . 	 (4.14) 

Then for range rate, if we differentiate (4.14), and use (4.12) we get 

ar . 
xi  

= [RA _ 	
(4.15) 

ao 	r 
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For different types of observations, rotations to other coordinate systems 
shown in Figures 7 and 8 are convenient. The appropriate rotations can 
be deduced from Figures 7 and 8 by making one-at-a-time rotations in the 
same manner as was applied in deriving (2.24)-(2.30) and using the rules 
in (2.6) to write the rotation matrices. For coordinate p, with the 3-axis 
toward an inertially-fixed point of right ascension a and of declination c5 
(as would be appropriate for a photograph of a satellite against the stellar 
background), we have 

P T  = firsxT  =  
2 - 2 

 

COSa., 	0 - —sin a, 

  

	

—sin (5 cos a, —sin (5 sin a, cos (5 
	

(4.16) 

	

_ cos (5 cos a, 	cos 6 sin a, 	sin (5_ 

For coordinates 1 with the 3-axis toward the local zenith (0, 2), we have 

IT = R i „nT  = ,3 ( -71 ) 112 (5-  — )R3(2)tIT. 
2 	2 
	 (4.17) 

If we are not concerned with orbital dynamics, the satellite can be treated 
merely as an elevated point, and the photograph itself can be used to obtain 
the orientation; a purely local coordinate system can be used rather than the 
externally referred UT  or X T. For a photograph .  of the satellite from the 
ground, the coordinate convention of terrestrial photogrammetry, shown in 
Figure 9, can be written as 

	

bT  =12,(% — 	Ro(-71  — z)IZ,( —A — -71. )1Z 2 (— 	I 2„ 	 (4.18) 
2 	2 	 2 	2 

where x is the swing, or roll, angle; z is the zenith distance; and A is the 
azimuth, measured clockwise from north. The coordinates of the image 
on a photograph taken by a camera of focal length f will then be fb 111) 3  
and fb,lb,. For a photograph taken from the  satellite of the ground, the 
convention of aerial photogrammetry, shown in Figure 10, can be written as 

	

= 11,(72: 	,$)R2 (2: 	t)12 1 (7-  — P1) 112(— 1111T, 

	

2 	2 	2 	 2 
	(4.19) 

where s, 1, and A are known, respectively, as the swing, tilt, and azimuth. 
In the next section, in deriving differential relationships for use in observation 
equations, we shall refer back to Equations (4.14)-(4.19). 



X3 

FIGURE 7. Rotations from menially-fixed to 
camera-axis coordinate systems. 
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111 

FIGURE 8. Rotations from earth-fixed to local coordinate systems. 
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12 

FIGURE 9. Terrestrial photogrannnetric coordinate rotations. 

1712 

ni  

FIGURE 10. Aerial photograninietric coordinate rotations. 
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4.3. Differential Relationships and Observation Equations 

In order to apply the effects of known corrections to calculated directions, 
ranges, range-rates, and so on, that are to be compared to observations, or to 
determine these corrections from observations, we need to know the differen-
tial relationships of the directions, etc., to the parameters to be corrected. 

In cases in which the satellite orbit dynamics are used, the intermediary 
coordinates used for all types of observations are the position and velocity 
in inertially referred rectangular coordinates x and Hence we require 
the partial derivatives of these coordinates with respect to the parameters 
determining the orbit: the six constants of integration; kM, J2 , and the 
smaller coefficients C 1 ,1„ S 1 91,  of the gravitational field; and any parameters 
used to define a model of atmospheric drag or radiation pressure. In Chapter 
3 all variations of the satellite position were expressed through the osculating 
Keplerian elements {a, e,  j, M,  w, 0}, hence we first require the partial 
derivatives x and with respect to these variables. For ax/as, by differenti-
ating (4.11) we have 

  

d.(2 

di 

da) 

da 

de 

dM — — 

 

_ 	aR.rq  
La(O, i, (0) 

q 
aq 

R x 	 
a(a, e, M)] 

(4.20) 

 

   

The derivatives of Rrg  can be obtained by straightforward differentiation 
of (2.32), or by differentiating the appropriate components in turn of the 
matrix product, (2.31). For example, we have 

aR„ aRa (—S1) 
at 	aû  

- -sin f2 —cos SI 0—  

= 	cos 1-1 	—sin SZ 0 12 1(—i)R,(—w) 	 (4.21) 

	

_ 0 	0 	0_ 

	

(—sin  i2 cos w — cos il cos i sin w, 	sin L2 sin w — cos i/ cos i cos w, 	cos SI sin i 

	

cos L2 cos co — sin L-2 cos i sin c.), 	—cos SI sin w — sin 1-2 cos i cos o.), sin 1-.2 sin i . 

0 	 0 	 0 

In getting derivatives of g, care must be exercised that the depenknce on the 
eccentricity through the eccentric anomaly E or the true anomaly f and 
range r are taken into account. On differentiating (3,13) and (3,14), and 
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using aElae from (3.19), we obtain 

cos E — e, —41 -I 
	E 

1 — cos 

a sin E 

e cos E 

— e 2  sin E, a\ 	e' sin 	eus  
e cos E 	I 	e' 

0 

g i la, —a — - 
)11 — e- 

(I 1(1.3 	si  

qzlat 	 I --- e 2 (q 1 	eel 
r(I 

0 

[ 	

0 

a A/ I  — e4  cos If  
— e cos E 

aq2  

1 . \'
, 
 I -- 

(4.22) 

For the differential of the velocity A, in ternis of the osculating elements, 
dilferentiate (4.12): 

   

OR 
(ik = 

rii 

Ni 

a(a, e, 
(4.23) 

  

    

of which the only new component is, from (3.24), 

ai 
aa(0,  e, NI) 

n sin E 	 lia  sin E[e 	2 cos E 	e cos' El 
2(1 — e cos E)' 	 (1 — e cos Er 	

na(e — cos E) 

(I — e  ces E)" 

0  

— 10/1 — e 2  cos E aaRcos E e) 2  — (1 — e cos E)  sin El — na V 1 — e' sin E 

2(1 — e cos E) -y1 — e 2 (1  — e cos Er (1 — e cos E)" 

	

df_/yr2(D.) 	e   (q2)21, 

	

\ri L \al 	1— e 2  \a! 	
—n( 7.  q, 

	

(ay 9, 	p n 	 1 	 a\ 

	

V1 — e 2  r) r 	(1(1 — e 2) 	—n 	(I*  

	

[ 	 a (4.24) 

0 

As discussed in Chapter 3, the osculating elements {a, e,  I, M, co, .0} are 
functions of the constants of integration, the parameters of the gravitational 
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fi eld, kilif and the coefficients C„„ and S,„„ and other parameters expressing 
the effects of the atmosphere, radiation pressure, and so on. To obtain 
the partial derivatives with respect to constants of integration that are "mean" 
Keplerian elements--namely, having no periodic perturbations, such as the 
parameters (4, e;, of the final intermediary defined by 
the canonical transformation process of (3.105)-(3.113)--we may use the 
simplest possible expression of the orbit: the ellipse with constant a, •e, i 
and node and perigee preeessing due to the effect of the oblateness (7, as 
given by (3.74). Thus, 

aca, e, i) _ 

and 

at AI, (,), K2) 

= 0 	
(,) 

	

' 	= I 
0( A/n, 	L2) 3ovn, 	' 

[in 	21/14C5 0(3 sin 	— 
 2

11 	si0 — 2)C2,,' At 9/10,C,,, sill 21 At 
At' 

ktiMu 	--ey/, j 	
, 	

4,1(0(1 — e")R 12 	,Iner"(1 — e 2 ) 812  

2 1,1,,&'...m(  I 	5 Ws' 	A/ 

nati(1 — e 2 ) 2  

—  S cos'. i) 	I 51taFiC,,, sill 2i At 
11,0(1 — ea)" 	 4,t(00 — e2 ) 2  

2 ludC,,  cos i At 	 6110C2 „e Cos f Ar 
4nti"(1 — 08 ) 2 	 na 5(1 — e2) 2  

3110, C2 0 sin i At 

2110(1 — e2) 2  

(4.25) 

Equation (4.25) is obtained by differentiating (3.74), and the an/aa,'; of 
—342a by differentiating Kepler's third law, (3.20). At in (4.25) is the time 
difference between the instant of observation and the epoch to which the 
elements a,  e,  i  refer. If this time difference At is such that the elements 
in (4.25) other than —3/1/2a are small compared to unity—less than 10 days 
or so--these elements may be neglected. 

For the partial derivatives with respect to constants of integration which 
are osculating Keplerian elements at epoch aa, e„, i„, Ma, 0o ,S-2,,  an addi-
tional Jacobian a(4,  e ,  i,  .A/4,  w,  Do")/a(ao , ea, 10 , M„, coo  Q„) must be 
applied to the right of (4.25). The off-diagonal elements of this array will 
be derivatives of periodic perturbations, and hence will contain C20  as a 
factor. Therefore they will be significant only where their multiplier (4.25) 
may be large compared to unity: namely, aMiaa. So for the partial 
derivative of the mean anomaly M with respect to any osculating element 
so  at epoch there must be added 

— 3n At a Aa20 

2e 	asio 



	  —11< i,„,„„( a, e, i) 
or S h„) 

[(/ — 2p)(w o 	,a) At) 
as, cos 

Or 
sin 
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where, from (3.76), assuming only ./C/ significant in the denominator, 

Aa 

 

20 —  
	

F20 » G0 1, 0  cos {(2 — 2p)co 0  + (2 — 2p + 
a 	poi.o 

For the partial derivatives of the osculating elements with respect to the 
coefficients of the gravitational field, (3.76) would be used. For example, 
substituting from (3.71) for S,,,, obtain 

aa 	 —  2p +  q)  	 _ 	b 	'1 	2 	)/14 	— 0)] p,Q, 	[(/ — 2P)( 	— P + ac i ,„ 
(i—m) even 

[COS Ri — 2p)CO +  (I—  2p + 	+ ni(S2 — 0)]. (4.26) 
sin] a-no odd 

Because the magnitude of the effects of the coefficients C,„„ S,„, on the 
elements and the variations in a, e,  I arc both small, we can write the 
partial derivatives such as (4.26) as a sum of sinusoidal functions with constant 
coefficients and arguments having a constant rate of change with respect to 
time: 

+ (I — 2p + q)(114 0  + A:1 At) + 	+ 0. At — 0 0 — 0  AO], (4.27) 

where, for example, for s, .-=-• a, 

2F,,n ,G,,„(1—  2p + q)  „n t 
Kii ""4  = tv-e  na'+21(1 — 2p)cb + (1 — 2p + q)f + In(0  — 

Equation (3.76), on which (4.27) is 'based, was derived on the assumption 
that the perturbations by the gravity •field  are forced oscillations superim-
posed on a secularly moving ellipse. Hence (4.27) is valid in cases in which 
the constants of integration do not include perturbations, that is, "mean" 

k 	• 
 elements such as the parameters of the .final intermediary defined by the 

canonical transformation process of (3.105)-(3.113); 
lf,  however, • the manner of calculating the orbit uses constants of integra-

tion that include the effects of perturbations, as would be the case in a numer-
ical integration starting from osculating elements or position and velocity 
at epoch, then the effect of the perturbation at epoch must be subtracted 
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out; that is, (4.27) must be replaced by 

cos 
• 

	

e, i) or  I  [(I — 2p)(co 0 	«J At) 
or Sim ) 	,p,q 	 sin 

+ (I-2p +q)(Mo + Il%1 At) + tn(Q„ .(2  At — 0„ — 0AI)] 

cos- 
. as, 

— 	---- e, i) or [(I — 2p)io„ 
as», 	 .sin_ 

+ (I — 2p + 	 — 0 0)]}. 	 (4.28) 

Combining (4.20), (4.23), (4.25), and (4.27) or (4.28), we can write 

   

d  rx-1 = 	a{x, Sc.}  	r afa,  e, j, 114 	S)) 

x j DO, e, 	(o, S21 _a{(1', e, i, 11/1,, (o, 

a„ 

11/1; 

 

   

   

_ fa a, e,  j,  m, (1), S).} ( (IC „„ 

I.") 	atchn, son} 	
kelS,„,) 

afa, + 	
e,  I, M, (o, 

atother parameters) 
d{other  parameters)] . (4.29) 

For each type of observation, we require the appropriate modification 
of one of the range, range rate, or position vectors (4.14)-(4.19) to obtain 
the calculated equivalent of the quantities observed. In general, for any 
observation designated by subscript i, 

Obs, 	Cale,. 	 (4.30) 

The procedure of differential correction is to determine corrections to 
observations d Obs and corrections to parameters d Par designated by 
subscript j such that 

Obs, 	d Obs, 	Calc, 	
Cale, 

d hr J• a Parj  
(4.31) 
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On abbreviating the expressions in (4.31) and writing it in its more usual 
form of residuals "O–C", (4.31) becomes 

aC;  

	

(0 — C) ;  = 	dP;  — d0,. 	 (4.32) 
DP I  

Some of the parameters P ;  are, as we have discussed, those that affect 
the orbit. The effect of these parameters on the calculated value C;  for a 
particular observation can he represented entirely by the position . x or 
velocity k at the instant the signal that is measured leaves the satellite; that 
is, we can write 

	

aci 	ax,. • 
,. 

ac• 
al);  

Nvhere the k subscript is summed from I to 3 and (he derivatives dx,,./d/), 
and fire those . f,iven by ( , 1,29). With one exception, these derivatives 
are about all that can readily be considered as common to all types of 
observations. This one exception is the effect of a timing correction or 
error E(/). Since the effect of such an error is to cause the calculated position 
of the satellite to be too far, or not far enough, along the orbit, it can be 
calculated as- the effect of' a variation in the mean anomaly dM multiplied 
by the rate of change of M with respect to time; that is, the mean motion n 
as calculated by Kepler's law (3.20). Thus, 

	

ac• 	aci  ax7 . 

	

.  	 (4.34) 

	

ac(t1 ) 	Ldx A.  M a±„ am 

where ardatll Or a.;-lam-  are calculated by (4.20) or (4.23), respectively. 
acilafo.„) as calculated by (4.34) is also used to make the correction for the 
travel time of the signal, or ''planetary  aberration" effect. On calculating 
the range r by (4.14), this correction will be 

ac.• 	r 
— 	 , 

04Q e 
(4.35) 

where c is the velocity of light. 
In cases where simultaneous observations are made of the satellite and 

the orbit is not used, the position 4. or velocity 4 coordinates themselves 
become parameters; that is, ax,„/aP, and a.ivap, in (4.33) are identity 
matrices.. 

(4.33) 
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It remains therefore to consider separately for each type of observation, 
proceeding from left to right in (4.32): 

I. The nature of the observation 0, as it enters the mathematical formula-
tion of the problem: in what manner, if at all, the pure physically measured 
quantities are modified or transformed  or combined before actually being 
used in the calculations, 

2. The computation of the quantity C„ to be compared with the observa-
tion 0,, In the computation of C 1 , various corrections may be applied that, 
from (4.32), obviously could just as well be applied with reversed sign to 0„, 
and vice versit. In this category are usually corrections that are caused by 
environmental effects such as refraction, and so forth. Since one series of 
observations 0, will normally be used in the determination or several alterna-
tive sets or model parameters Pj , it is computationally most convenient 
(a) to apply as corrections to the observations 0, those corrections that do not 
vary by any likely change in parameters Pj , and (b) to apply as corrections 
to the calculated quantities C, those effects that may vary perceptibly with 
the likely change in the parainclers Pj . 

3, The selection of a mathematical model by selection  nia  set of parameters 
PH() he corrected,  :ind the calculation or flic partial derivativcs 

1. 'Hie "correction to observation" (JO ;  obviously must, from (4.32), 
account for all or the discrepancy — that cannot be accounted for 
by the corrections to parameters Hence it must absorb' all of the dis-
crepancy that is caused by the incompleteness of the mathematical model 
represented by parameters _Pp  Thus dO, can be very much affected by things 
that are not at all errors in . observation in the usual sense. In the case of 
interest here, close satellite orbits, this situation will very likely exist, because 
of  the inadequacy  of our model of drag effects on the orbit. Given the state 
of our knowledge, it is inevitable that such situations will occur. Since such 
errors arise from the environment, over which we have much less control 
than over instrumentation, they are much more likely to have a correlated 
character: that is, the closer together errors are in time, the more Similar 
they usually will be in sign and magnitude. The statistical implications or 
such correlation we shall take up in the next chapter;  in this chapter in 
discussing the differential corrections of observations resulting from different 
effects, we still want to consider the order of magnitude and degree of correla-
tion of  these  e ffects in order to decide where and how certain corrections 
should be applied as well as to decide the appropriate statistical treatment. 

4.4. Observation Equations: Directional 

The principal directional method of tracking satellites is to photograph 
the satellite against the background of stars. The actual measurements made 
are the rectangular coordinates of the images of the satellite and the stars on 
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the photograph, and the instants of time at which the film was exposed, as 
determined from standard time signals. The geometry of the camera is 
shown in Figure 11. The coordinates (x„, y 0) measured on the photograph 
can thus be seen to be the projection at the focal distance f from the focus 
of the camera of the rectangular coordinates of the satellite referred to a 
system with the 3-axis coinciding with the camera axis. If the axis of' the 
camera points toward right ascension and declination (a., (5), as determined 
from the catalogued coordinates of  the stars on the photograph, then the 
computed coordinates (x„, y„) can be obtained from (4.16). Therefore 

= [xe 

Ye_ 

-Iflp3  
0 

0 

flp, 

01 

0 
R„xx,r , 	 (4.36) 

in which the coordinate p„ coincides with the range r. The coordinates 
(x„, y,.) are often called standard coordinates, and symbolized by (4, , .)/). 

[X(I 2 	Y0 2 1 1/2  
Pa 2  

Quantities; that may be applied as known corrections are: 
1. The changes in right ascension and declination (a, (5) of the stars 

caused by precession and nutation from the time to which the star catalogue 
refers to the time to which the calculation in (4.36) is referred. This shift 
is large, but precisely known, as described later in Section 4.6. The time to 
which the calculations are referred is the epoch of the constants of integration 
of the orbit, which is normally central in time to the set of observations 
analyzed, for the reason that we want to keep the dynamical calculations as 
simple as possible by using an inertial frame in which the principal perturba-
tion—the earth's oblateness—will be symmetric about the equator. This 
time is peculiar to the orbital model, rather than to the observations, and 
hence the shift is considered as a correction to the calculated quantities Ci, 
or {x„ y,}, rather than the observed crantities 0,, or {x0, y0 }. A major 
part of the shift—from the catalogue epOch to the instant of observation—is 
sometimes, however, applied to the observed quantities 0„, but since it is a 
known correction the saving in thus reducing the correction to C„ is of little 
significance. 

2. Time signal corrections, as issued some time subsequent to the observa-
tion by standard time services. See Section 4.6. 



§4.41 	 Observation Equations: Directional 	 75 

Quantities that must be considered as unknown errors include, roughly 
in sequence of magnitude: 

1. Errors in orbital parameters, as expressed through the right side of 
(4.29). 

2. Error in coordinates of the camera, either relative to the earth's center 
of mass or to another station on the earth's surface (as would be of interest 
in simultaneous observations of the satellite not using the orbit). 

The differential expression dC, combining these two categories of error 
can be obtained by substituting for x 7, in (4.36) from (4.11) and differentiating. 
Thus 

= [flp, 0 0- 
 dCi   

0 flp, 0_ 
R,x [dx — R3(-0)du 0 ] (4.37) 

In (4.37) du„ is the correction to station position; the satellite position 
shill (ix would be expressed by (4.29) when the orbit was used, or would be 
considered a set of 3 corrections to parameters itself in a system of simultane-
ous observations; and third-column terms —fp i lp32 , --fp,IA have been set 
zero, being negligible. 

3. Error in timing, resulting either from anomalies in travel of the time 
signal or to imperfect synchronization of a camera shutter or satellite light 
flash with the time reference. Such errors should not be more than ±0.001' 
or ±0.002s; if significant, they can be considered  as equivalent to error.s in 
the direction of motion of the satellite image, with partial derivatives as 
calculated by (4.34). 

4. Error in the measured coordinates of the satellite on the photo plate, 
resulting either from anomalies in atmospheric refraction ("shimmer") or to 
irregularities in motion by a tracking telescope, or to the plate measurement 
itself. Regardless of the source of the error, the. significance of the error 
is a purely differential one. That is, the satellite image is affected differently 
from the star images. Since the atmospheric shimmer and tracking irregu-
larities are rapidly time varying, these sources of error will be more important 
when the satellite image is impressed at a time different from the star images. 
These sources of error will be most important when it is imposed in a very 
'short time, that is, when the light source is a  flash. Errors of this sort appear 
to have a magnitude of ±2" or 3", the shimmer error being to some 
extent inversely correlated with camera aperture. On the other hand, plate 
measurement error will be most significant when the character of the satellite 
image differs the most from the star images, as, for example, in a sidereally 
mounted camera where the star images are points and the satellite,images are 
breaks in a trail. Errors of this sort Vary from ±2 to 5 micron, or from 
±0.5" to 2.0". If there are several images of each class—satellite -and 
star—on the same plate, then it may be desirable to include as additional 
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unknowns in the reduction of plate measurements differential biases Ax, At) 
between the classes of images. 

5. Frror in the catalogue position of' stars may be +0.5", or in some 
eases it may be desirable to use multiple images of an uncatalogued star, 
in which case the star position constitutes two additional unknowns. 

6. .F.xterior orientation of the camera. In order to establish the orientation 
of the camera axes with respect to an external system, three angles are 
required. If the observations are made with an cquatorially mounted camera 
(designed to keep the camera axes fixed with respect to inertial space), then 
they are appropriately defined in terms of lie PT  vector, (4.16). In this case, 
the orientation angles are the right ascension a and declination -6 of the camera 
axis, and the discrepancy 	in roll, or swing, about the p  axis between the 
assumed direction of the p, axis and the actual direction of north from (OE, (5). 
It' the observations are made with a ground-fixed camera (designed to keep 
the camera axes fixed with respect to the earth), then they are appropriately 
defined in terms of the b 7 , vector, (4.18). In this case, the orientation angles 
are the swing x, the zenith distance 	and the azimuth A, as shown in 
Figure 9. 

1 n either case, to obtain the orientation angles for a particular photo plate 
by comparison of calculated and measured plate coordinates of several 
stars, each star of' right ascension and declination (a, 6) can be assumed to 
be on the unit sphere. Thus 

cos (5 cos a, 

x s  .=---- 	cos 6 sin cf., 

sin (5, 

and the computed plate coordinates (x„ y,) 
modification of (4.36) are 

(4.38) 

obtained by appropriate 

for equatorially mounted 

_Ye_ 

c 

[flp3 

)7P3 

cameras, and 

[flp, 	0 
= 

0 	flp, 

o-
o 

0-  

0 
RbiR i „R„xx„ 

(4.39) 

(4.40) 

for ground-fixed cameras, where Ro, 12 1 „, and R,,„ arc obtained from (4.18), 
(4.17), and (2.27), respectively. 

7. Interior orientation of the camera, or centering and scale... The center 
of the photographic plate as  established by fiducial marks used as. a reference 
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in comparator measurements may not coincide with the axis of the camera. 
Hence it is necessary to determine the coordinates x r , y, of the camera 
axis, called the principal point, relative to the plate coordinates. Also the 
focal lengthfmust be known to obtain the correct scale relationship between 
location of the photo image (x„, y„) and the exterior location of the object, 
P T  or 1.). Both the centering (x,„ y„) and scale factorf are relatively constant 
and hence determined only at occasional calibrations. 

8. Camera distortion. In a properly designed camera, distortion by the 
lens should amount to less than 10 microns, and be purely radial from 
the principal point. Hence it can be expressed by a polynomial in odd powers 
of the radial coordinate r (even powers being eliminated by symmetry and 
continuity considerations). Thus 

= ice 	k1r3  + 1( 21. 5  + k 3 •7  + • • • . 	 (4.41) 

The leading coefficient k, is indistinguishable in effect from the scale factor f. 
"The distortion is constant, so the other coefficients k k 2 ,  k. 1 , • • • can be 
determined at occasional calibrations with the interior orientation and scale 
parameters. Then to correct measured coordinates (x„, y„), 

[Ax.1 	(_51: 

Y. r 
(4.42) 

9. Differential atmospheric refraction. Near the horizon, the vertical 
component of atmospheric refraction may vary significantly between the 
satellite image and the star images. In this case, the atmospheric refraction 
may be represented by a power series in the tangent of the zenith distance, 
and the coefficients of the power series may be considered  as additional 
unknown parameters. Being a function of zenith distance, refraction param-
eters require a locally referred coordinate system. 

In observations of a satellite, the errors (3) through (9) are all peculiar 
to a particular camera or to a particular pass. These errors enter into an 
equation, (4.37), with corrections to parameters external to the particular 
observation only through the independent quantities {x„, y o }. The two 
rotations {a, 61 used in the matrix R„,, that are also determined from the 
photograph are coupled with {x„, y 0 } . Because tracking cameras have 
narrow fields of view, in publication of.camera data it is in fact customary 
to consider the camera satellite line ct, c) as the camera axis, in which case • 
the fx„, y„) are zero. It would be manifestly undesirable to complicate an 
adjustment involving shifts to the satellite position; dx and to the station 
position du, by combining it with corrections for camera orientation, refrac-
tion, and so forth, Hence distortion and internal :orientation parameters 
are generally determined in occasional calibrations.; external orientation, 
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differential bias, and refraction are determined in a preliminary adjustment 
for each photographic plate, and the results expressed as a final {x 0 , y o) 
and {a, 61 for use in (4.36) and (4.37). See Brown (1964) for full details. 

There are two types of directional observations of lesser accuracy than 
cameras: 

First there are theodolites that measure zenith distance and azimuth. The 
computed value is most conveniently obtained from the I T  vector components, 
where 1 T  is calculated by (4.17): 

ci  = [Az:1 = (4.43) 

—;)R 1(—z)R 3(—A)R,„ 

x [12 3(0)dx — (IN] — d0,. (4.44) 

Second, there arc interferometers that determine the direction cosine with 
respect to an axis established by two radio antennas that measure the phase 
difference of a radio signal received from the satellite. The calculated 
direction cosine is 

[sin A 	cos A  
5  011 1, 	 (4.45) 

where A is . the azimuth of the axis, calculated from /,, /, as in (4.39), and 
1 »  is calculated by (4.17). The observation equation is 

(0 — C), = N'R,[R3(0) dx — du„] — dO,, 	(4.46) 

in which 

N' 
sin A 	sin A + 11 1 2  cos A 	cos A 

— 
r

3 

11 / 2  sin A + 11, cos A ;, 	13(11  sin A + 12  cos  A)1 	(4.47) a 1- 3  

4.5. Observation Equations: Range Rate and Range 

The range rate of a satellite is determined by the Doppler technique, in 
which the shift in frequency of a radio signal caused by motion of the source 

whence 

0 
(0 — C), = Pir 

L o cse z/r o]  
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is measured. The actual measurements made are the counts of Doppler 
cycles over a certain standard interval, such as one second. Division of the 
count by the length of the interval thus yields the mean Doppler frequency 
for the interval. Given the reference frequency fi  and the velocity of light e, 
the Doppler frequency Af. can be related to the range rate  i  by 

(4.48) 

The second term in (4.48) expresses ionospheric refraction effect; it is 
inversely proportional to fi  because the effect of an ionized medium on the 
velocity of a radio signal is inversely proportional to fi2. The ion density 
at any instant is sufficiently unsure that the parameter a must be considered 
an unknown. Hence two frequencies i =  1, 2, are commonly employed 
and two equations such as (4.48) solved simultaneously to obtain the observed 
range rate  

o i  _ _ fi 	— f.,Af2  c (4.49) 

The calculated range rate Ci  is given by. (4.15).  In addition to time signal 
error, a quantity which is applied as a known correction to the observed 
range rate i  is tropospheric refraction. The effect of this refraction on a 
range is the integral of the refractive index p over the ray path; hence the 
effect on the range rate will be the time rate of change of this integral: 

d (' r 	 r (41  
hr  = — — 	ds = — j  — 	ds 

di JO 	 Jo It 

'rill', 	tilt 	tiz , 
= — j — • — — as. 

J o  clh dz dt 

Here ds is an increment along the ray path (negligibly different for this 
purpose from the station-satellite line); z is zenith distance, calculated from 
1 2, as in (4.39); and h is height above the earth, calculated by (see Figure 12) 

h = 110 	2Rs cos z — R. 	 (4.51) 

The time differentiation in (4.50) can be moved inside the integral because 
all change in the upper limit to s takes place at the satellite, where there is no 
tropospheric refraction. The refractive effect (a — 1) is generally expressed 
as an exponential function of h. The rate of change dz/(// is computed from 
the orbital motion. All these complications make it more practicable to 
calculate 61'' by numerical integration. 61 is less than 10 .cm/sec for satellites 

(4.50) 
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FiGuRi. 12. Altitude-distance relationship. 

more than about 15" above the horizon, but increases sharply below this 
altitude. Since the uncertainty in — I) is about 10 per cent of  ils  magnitude, 
it is thus desirable to reject. observations less than about 15 0  above the 
horizon. 

For the differential correction of the computed range raté caused by 
satellite velocity and station position, differentiate (4.15): 

( 	 dC — dii — 
r 

xr  [ = 	dx. 	aR,(—o) 	.] 
ao 	

• dti o 0 

dx 	R.„(— 0) rlui, 	x T .(dx— R„( — 0) (lu„) 
(4.52) 

Other quantities that must be considered as unknown errors, but are 
normally adjusted at a preliminary stage include: .  

I. Error in the reference frequency generated in the satellite constant 
throughout the pass; 

2. Sometimes, • error in the reference frequency that drifts throughout 
the pass; 

3. Higher-order ionospheric refraction effect, not accounted for by the 
parameter of (4.48); 

4. Variations of the tropospheric refraction from that calculated by the 
model of dy/dh used in (4.50); 

5. "Noisy" or irregular data points, caused by failure to "lock" onto 
the signal and other instrumental effects. 
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The correction of these observational errors is usually combined with 
the process of aggregation. A typical pass of Doppler data may include as 

many as 4.00 data points. However, the significant geodetic information 
can generally be expressed by less than six numbers per pass—probably 
on the order of three. Since the range rate varies sharply within a pass, it 
is not practicable to determine arbitrary parameters from the range-rate 

itself, but rather to determine the arbitrary parameters from the residuals 

of the observed range rates i ,  with respect to calculated range rates t'„ based 

on a nominal reference orbit. For example, for n points and in + 1 param-

eters, the least-squares condition 

1 
 It [

(r 

 . 

,i 

m 

— 1, aft  i  — to) l  
J-0 

2 
= min, (4.53) 

where t u , the time of the midpoint of the pass, can be used to determine the 

polynomial coefficients ai . Then at a few selected times tk  the aggregated 

range rate  i  be 

= te(lk) + 	ai(tk —  to) • 
	 (4.54) 

The polynomial fitting will also eliminate some error by smoothing. The 

aggregated range rates can then be used as the observations O i  in the observa-

tion equation (4.32), in which the computed partial derivatives acjap, are 

calculated by a combination of (4.29) and (4.52). It is not necessary that the 

pass be finally expressed  in terms of aggregated range rates i•„; other param-

eters could be used, such as along- and across-track apparent station position 

errors and the mean frequency discrepancy. See Guier (1963a,b) and 

Hopfield (1963) for details on the reduction of Doppler tracking data. 

For range measurements, the actual measurements are either time delays 

between transmitted and received radar pulses or the phase shifts in the 

modulation ol' a received signal with respect to a coherent transmitted 

signal. Range measurements will either be at frequencies in excess of 10 3  
Mc/sec or else overcome ionospheric refraction by use of dual frequencies 

similar to (4.48)–(4.49). They will also require tropospheric, refraction 

corrections and aggregation similar to (4.47) and (4.50)–(4.51). The cal-

culated range is obtained from (4.14), whence the correction thereto becomes .  

1 
dr = ;Icg• • [dx — R 2 ( -0) duo]. (4.55) 

4.6. Time and Precise Definition of Coordinates 

Time is measured by Counting some type of repeated phenomenon. The 

ideal time to use as a reference for observations of satellite orbits would be 
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a "gravitational" time: that is, one which exactly coincides with the time used 
as the independent variable in the dynamical developments of Chapter 3. 
If all orbital motions are consistent with the laws on which the dynamical 
developments are based—as they have so far been observed to be, taking 
into account relativistic effects where necessary—then the ideal repeated 
phenomenon to count for a time standard would be the most accurately 
known orbital period. This most accurately known period is that of the 
moon's revolution around the earth. The time measured by the . moon's 
motion is known as Ephemeris Time (ET). (Though best measured by the 
moon's motion, ET is formally defined by the period of the earth's motion 
around the sun for the year 1900.0) Ephemeris Time is not immediately 
available for timing artificial satellite observations, however. Instead, the 
time services provide Atomic Time Al, measured by the resonant frequency 
of oscillation of the cesium atom. Al time has thus far been found to be 
indistinguishable from ET and serves as an entirely satisfactory substitute 
for geodetic satellite purposes. 

The equations written thus far assume that the coordinate system x 
defined by the x, axis toward the vernal equinox and the ,v„ axis along the 
earth's rotation axis is fixed with respect to inertial space. In fact, the direc-
tions of the rotation axis  and the vernal equinox are continually changing, 
as a result of the precession and nutation of the earth due to the attraction 
of the moon for the earth's bulge. At any time / the equator-equinox referred 
coordinates x (called true Coordinates) of a point fixed with respect to the 
earth's center and  an inertial frame can be represented by a differential 
rotation  R r  applied to coordinates 5: (called mean coordinates) that have 
purely secular change (namely, a polynomial of /) only.  R r  being a differ-
ential rotation, we can take cosines to be I, sines to be equal to the angles, 
and products of sines to be 0. Under these conditions, a rotation can be 
expressed as a product of rotations about each of the three coordinate 
axes in any order. It is convention to apply a counterclockwise rotation 
about the 2-axis; Av (called the nutation in declination) and clockwise 
rotations about the 1-axis and the 3-axis: —Ac (called the nutation in 
obliquity) and —Ay (called the nutation in right ascension), respectively. 
See Figure 13. Then 

--= Rif — AE)R2(Ar)R3( -641) 

1 

Ay 

Av 

—Ala 

1 

Ac 

—Ac 

1 

(4.56) 

The mean coordinates R(/) are conventionally expressed in terms of the 
mean coordinates at an epoch /„, R(/„) through a clockwise rotation about 
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the 3-axis, —(x 	w), called precession in right ascension, and a counter- 
clockwise rotation about the 2-axis, 1 , , called precession in declination. The 
precession in right ascension is split into two equal parts, half-x along the 
mean equator of t„ and half-w along the mean equator at t. See Figure 14. 
Then 

(4.57) 

We have expressed the effects of precession and nutation as being applied 
to rectangular coordinates referred to equator and equinox. In practice 

XI 

FIGURE 13. Nutation angles. 

such rotations would not be applied to any satellite positions. They should 
always be referred, from the start to the end of the computation, to a fixed-
coordinate system such that the principal perturbation, the earth's oblateness, 
is most nearly symmetric with respect to the adopted equator. The equator 
of this coordinate system should thus be the true equator at an epoch central 
to the orbital arc being calculated. The equinox can be anything convenient. 
Some investigators use the equinox defined by the meridian of the equinox 
at 1950.0; others the true equinox of the orbital epoch. Rotations to coincide 
with the coordinates used for the orbital arc Nvould have to, be applied, 
however, in two other cases. - 

. The right ascension and declination (a, (5) of camera observations are 
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X0 3  

FlcjuRu  14. Precession 

normally referred to the coordinate system. or the star catalogue or some 
other standard. system, such as the mean equator and equinox or 1950.0. 
The rotations (4.57) and (4.56) should thus be applied to the unit vector 
representing the direction (a„, S„): 

  

-cos 8„ cos Ec„-  

cos 50  sin a, 

sin j„ 

 

cos (5 cos OE  

  

COS (5 sin GC 

 

(4.58) 

sin (5 

  

   

    

The right ascension a and declination (5 equivalent to the direction cosines 
given by (4.58) can also be obtained directly by (Smart, 1944, pp: 243-244): 

	

a -= 	(x 	co) 	(y 	4v) sin a tan (5 — i_1€ cos a tan (5, (4.59) 

	

= 	(v 	4v) cos a 	AE Sin CC. 

lithe orbital positions x are referred t9, the true equator and true equinox, 
(4.59) should be applied as it stands; if the arc is referred fo the true equator 
and some mean equinox, then Ay should be omitted and the precession 
(x (0) should be for the time from the epoch to which a°  is referred and 
the epoch of the mean equinox to which x is referred. 

A convenient way of counting time for satellite orbit calculations is the 
Modified Julian Day, or MJD, in which 1950 Jan 1.0 is 33282.0 and 1960 



§4.6] 	Time aml Precise Definition of Coordinates 	 85 

Jan 0,0 is 36933.0. For time t in MJD, we have the following 

T .=(t — 33282.925)/365.242, 

S20  = —0.338(T — 0.61), 

A® = 27r(T — 0.219), 

x = 0.0001117T+ 0(10-y), 

w = 0.0001117T+ 0(10-7), 	 (4.60) 

0.0000969T— 0(10-y), 

Ap =  —[76.48  sin .2()  + 5.64 sin 22.(9 + 0(1.0)] x 
=  —[33.3  sin S.1„ + 2.5 sin 2).(o + 0(0.4) 1 x 10 - ", 

AE = [44.7 cos Q o  + 2.7 sin 21(.) + 0(0.4)] x 10 - ". 

is the longitude of the 'noon's node and  Am is the longitude of the sun. 
The mm of 33282.925 is the 13esselian year 1950.0 to which mean stellar 
pI aces are referred, 

2. The Greenwich Sidereal  'Finie  0 used in the observation equations 
(4.37)-0.55) should be the angle between. Ow Greenwich Meridian at the 
instant of observation and the equinox selected as reference for the orbital 
positions x. This 0 should thus include the same terms resulting from motion 
of the equinox as would any right ascension on the equator in the same 
orbital computation. Given a mean sidereal time 6„, at an epoch t„, 
mean rate of rotation 6 with respect to inertial space, and .x coordinates 
referred to the true equinox at an epoch t o , we therefore have for time t 

- 6) 00 	6(t - too) + 	+ ())(to — too) 	A1o(10). 
	(4.61) 

If the x coordinates are referred to a mean equinox, then the Ay term 
should be omitted. 

The time is generally given in days ;  hours, minutes, and seconds, 

t =  cl + h/24 + m/1440 + s/86400. 	 (4.62) 

Thus, for practical computation a more convenient formula is (taking 
6 modulo 277) 

0 000  + (6 -I- X +  th  — 27)(1 — IN) + 270/24 + m/14z10 +s/86400) 

+ (.< 	6)(t0 — t) ± AP(to). 	 (4.63) 
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Some numerical values are 

too = 36933.0, 

joo= 1.72218613, 

(6 -I- +  th — 27r) =  0.0172027913, 	 (4.64) 

X -I-  th = 0.611 x 

The overbar on the sidereal time 6 in (4.61) and (4.63) signifies that these 
equations are based on the assumption that the • earth rotates uniformly 
about an axis fixed with respect to the crust to which the tracking stations 
of coordinates u, in the observation equations (4.37)-(4.55) are also fixed. 
This assumption is incorrect: 'shifts of mass in the earth's atmosphere cause 
variations in the polar axis of about 5 meters in position and in the time of 
about 0.03'. The displacement along the equator of 0.03s6a, is about 14 
meters so if we are interested in accuracies of this sort, the Greenwich 
sidereal time must be further corrected beyond (4.63) for use in (4.37) 7 (4.55). 

Connected with the shifts in the earth's axis and the changes in rotation 
rate are three types of time defined by the earth's rotation, called Universal 
time (UT): 

1. UTO refers to the instantaneous rotation about the instantaneous axis: 
it is what would be derived from observations of transits of stars across the 
meridian of an earth-fixed observatory. 

2. UTI refers to the instantaneous rotation about the mean axis, as defined 
by averaging over 6 years' observations by the International Latitude Service. 
(Six years is chosen as being about the lowest common multiple of the forced 
annual and the free '14-month variation in latitude.) . 

3. UT2 refers to an approximation of the mean rotation about the mean 
axis: it differs from UT I by an estimated seasonal variation of about 
0 8 .03. 

In correcting the Greenwich Sidereal Time we are concerned only with 
a rotation about the 3-axis. Hence, UT! is the appropriate time to use with 
satellite observations. If the orbit is being calculated in Atomic Time Al, 
we therefore have a final correction AO to apply to the mean 6 from (4.63). 
Thus, 

O = 0 + AO = 0 6(UT1 — Al). 	 (4.65) 

Since UT1 is an observationally determined quantity, a formula cannot 
be given for the difference (UTI-A1). Time signal bulletins giving the differ-
ences between UT2, UTI, UTO, Al and emitted signals are issued quarterly by 
the Royal Greenwich Observatory and the United States Naval Observatory. 
The magnitude of  UT 1-Al is about 21', 
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4.7. Observability Conditions 

There are several situations in which it is necessary to determine whether, 
for a given combination of tracking station and satellite position, the satellite 
is observable. The most obvious condition is that the satellite is above the 
horizon of the tracking station: 

1,> 0, 	 (4.66) 

where 13  is the vertical coordinate of the I T  system defined by (4.17). From 
(4.17) 

13  = kR 11 [R3(0)Rs1g — th] > 0, 	 (4.67) 

where k is the transpose {0, 0, 1} of the unit vector along the 3-axis. kR i „u o  
is approximately the radial distance of the station from the earth's center. 
12 1 . 1  is constant with time and  R, defined by (2.32), varies slowly with motion 
of perigee and node. Thus, for a given day we can write (4.67) rather accu-
rately as 

[r31, 	r32, r33] 

cos 0 

—sin 0 

o  

s in 0 

cos 0 

0 

0 

0 

1 

—8 11 

S21 

• 53, 

— 

812 

S 2 2 

S32_ 

E a(cos E — e) 

LaN/1 — e2  sin 
E — RE > 0, 

(4.68) 

where the . rii 's are elements of 11. 1 1 ,  113 (0) has been defined by (2.7), the sil 's 
are elements of Rx„, q has been defined by (3.23), and RE is the radius of the 
earth. Multiplying out (4.68), we get for horizon intersection 

J(0)  cos E g(0) sin E — h(0) = 0, 	 (4.69) 

where 

f(0) = a[(r,, cos 0 — r„ sin 0)s ii 	(r31  sin 0 +  r32  cos 0)s21 	r „s„1, 

g(0) = 	e2  [0.31  cos 0 I sin .1.s. 4- (r sin  4- r cos ls + 	s — '32 	0, /2 , 	i 	, 	32 	0, 22 , '33 321, 

h(0) = 	ef(0). 	 (4.70) 

If we substitute V1 — cos2 E for sin E, solve the resulting quadratic 
equation for cos E; and make a similar substitution for cos E and solution 
for sin E, in order to obtain the eccentric anomaly E without quadrant 
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ambiguity, we gel 

cos E — 	 g2 h2  
g" 

E = gh 	fN/-1.2 	g2 	h  2  
+ g2  

The condition for observability will be that the solutions arc real, that is, 

t2 	g2 > /1 2 .  (4.72) 

For any particular revolution 0 < 41  <27r of a satellite, we can write 
for the Greenwich Sidereal Time 0 

(4.71) 

(4.73) 

w h ere  no  i s  the s id erea l ti me  at perigee and /1'1 is calculated by (3.20) plus 
(3.74). For the combination of a particular station, defining 12,„; a particular 
day, defining 12„.„; and a particular revolution, delining 0 0 , we can iteratively 
determine whether observability will occur by starting with the approximation 

(1) 0 = 00  + 	71"; 
	 (4.74) 

then we 
(2) calculate'', g, h by (4.70); 
(3) apply the test (4.72); 
(4) if (4.72) test passed, solve (4.71) for the two roots E1 , E2 ; 
(5) recalculate 0, from (3.19), by 

0 = 00  +  .6 

 [E, 	e(sin  I, -IT  sin E 2 )il; 	(4.75) 

and (6) return to step (2), until the changes in E, and E, become insignificant. 
For the intersection of the earth's shadow by the satellite orbit, a similar 

sort of iterative scheme can be set up. Let the s coordinate, system have a 
geocentric origin with the s, axis toward the sun. Then the condition of 
shadow intersection can be written a;s (see Figure 15) 

<0, 

s 32  = R1] , 
or 

S i 	1" 2  - R 2  • L• 

(4.76) 

(4.77) 
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The sun-referred coordinates s can be related to the equator-equinox 
referred coordinates x by the elements of the sun's orbit referred to the earth. 
Since this orbit defines the equinox, its nodal longitude 1 2 is always zero. 
Then, from Figure 3 

=  1130) + DR1( 6) = R 3 (À®)R,(€), 	 (4.78) 

S3 

FIGURE 15. Orbit and shadow relationship. 

where 1(,) is the longitude of the sun, from (4.60), and c is the obliquity, 
23'27'. Then (4.77) can be written entirely in terms of the sun's and the 
satOlite's orbits. Thus 

SI = I Rs.v 1Z ( 1 	--\// .2 
— 
	 (4.79) 

where j is the transpose {I, 0, 0} of the unit vector along the 1-axis, or 

riia(cos E — e) 	— e2  sin E = 	a2(1 — e cos E) 2  —  R., (4:80) 

where ril , /. 32  are elements of R s„Rx,, q has been defined by (3.23), and r 
has been defined by (3.15). (4.80) can be arranged in a manner similar to 
(4.69): • 

f cos E g sin E — h(E) = , 	 (4.81) 
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where we have 

f=  

g = rv a 	—  e2 , 	 (4.82) 

Ii(E) = r„ae -7- a2(1 — e cos E)2  —  R. 

The differences from (4.69)–(4.70) are that now f,  g  vary much more 
slowly—being functions of h(E)  has  a rapid but moderate 
variation because it is a function of the anomaly E, or M, through a term 
with a small multiplier, the eccentricity e. Hence an iterative solution. using 
(4.71) and (4.72) can again be applied. To be sure to pass the test (4.72), the 
initial value of h(E) should be one to give a minimum value of h 2 ; namely, 
we should 

(1) assume cos E is 1; 
(2) calculate f, g, h by (4.82); 
(3) apply the test (4.72); 
(4) if (4.72) test passed, solve (4.71)  L'or the two roots E1 , El ; 
(5) for each root,  recalculate  h(Ei), h(E2) by (4:82); and 
(6) return to step (2), iterating separately for E, and E, until the changes 

become insignificant. 
Horizon and shadow intersection can.also be solved by graphical means; 

see Veis (1961, 1963b). -  
The term "observability" must, in addition to the geometrical conditions 

we have discussed so far,. also include the problems of signal strength and 
atmospheric attenuation, the latter of which becomes prohibitively severe, 
of course, if we try to use a camera in cloudy weather. 
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5 

STATISTICAL IMPLICATIONS 

5.1. General 

In Chapter 3 we discussed the variation of the close satellite orbit with 
respect to time t as expressed by the six quantities x, .k; or e,  j , AI, (4., S2{. 
These variations can be expressed as periodic oscillations superimposed on a 
secularly changing model : namely, a 6-dimensional vector time series. The 
subject of the statistical study of time series has received considerable 
attention in recent years, so we should be able to apply some of the results 
of this study to the geodetic satellite problem. In the last section of Chapter 4, 
however, it was suggested that there might be a special difficulty 'treating 
the satellite as a time series in that there are definite geometrical limitations 
on when observations can be made. 

In Chapter 4 we discussed the formation of observation equations which 
included two types of corrections: corrections to parameters d.P.;  and cor-
rections to observations d0„. The solution of sets  of such equations by the 
method of least squares and. its generalization is  also a subject that has 
received considerable attention. There was also indicated, however, a special 
difficulty. The so-called corrections to observations dO i  necessarily absorb 
a lot of the discrepancy between the mathematical model and actuality which 
does not have the character of randomness of errors expected of well-
programmed instrumental observations. We hope these two statistical ways 
of viewing a satellite orbit and observations thereof can be combined. 
effectively.  

5.2. Time Series 

Let y(t)  be a continuous function of time that may be a. vector of any 
number of dimensions. For any duration of time T it can evidently be 
represented to any desired degree of accuracy as a sum of sinusoidal terms. 

92 
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Thus we have 

YO) --- ,1 [a n  cos — t + b„ sm - 	 t], 	0 < t < T, 	(5.1) 
' 	27rn 	. 27/-n  

n ,-0 	 T 	 T 

(5.2) 

Since (5.2) is a consequence of the orthogonality property, 

	

27rn 	2i-in  
1 or 	 t di .---- 0, 	ni 	n. 	(5.3) 

	

T 	T 

1f y(t) is a normal, "well-behaved" function, staying within certain bounds, 
the coefficients b,, will, in general, decrease in magnitude as n increases; 
na mely, 

liM [an] = 0. 
72 -0  Ci) b 7I 

(5.4) 

As the duration T is lengthened, if y stays within the same bounds, the 
Fourier representation (5.1) remains feasible, and if the quadratic sum of 
coefficients a„, b„ representing the amount of variability within a certain 
frequency band Af approaches a constant value, then 

lim C(f, Af, T) = const, 	 (5.5) 
T-■ 

where for each element C of C corresponding to elements a,„, b in  of a n , b„, 

T) = I (aL + 	[f — 	< n < Trf 	(5.6) 
2 	 2 

Hence, in this case, we can express y(t) in the limit as 

y(t) 	[c„ 'cos '2T-fa + d„ sin 27rfic t]  +J  [g(f) cos 27rft + KO sin 27ift] 
k=1 

where, given y(t) for 0 < I < T, 

a„ — 2 
— .•  i"' 

y(t) cos 	i di 
27rn 

	

7' 	0 

2 

	

b.„ = 
S T 	2m  

— 	y(t) sin 
71  

t (It.
T 0 

,eus_ 

sin 

- (5.7) 
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where the subscript p denotes periodic, and where the summation is over a 
finite set  of discrete frequencies (called a line spectrum) and the integration 
is over a continuous variation of density g(f ), h(f) with respect to frequency 
(called a continuous spectrum). Evidently, for Af small enough, an element 
C, of C(/,,,  J cc)  is (c.`L d,!=k). 

However, it may be the case that the condition (5.5) does not hold true 
for a representation of y(i) by the Fourier series (5.1) because y(t) does not 
remain within certain bounds, but instead increases or decreases or oscillates 
mbre and more widely with time. In this case, y(t) has to be expressed as 

y( 1 )  = Ys(/) Y„(/), (5.8) 

where  y(t) is gotten from (5.7) and where 

ys(t) 	zX — 	 (5.9) 

The subscript s denotes secular. In this case, for a sufficiently long duration 
T.  the dominant change in y will always be expressed by the secular part y,. 
In a particular application, the lower z, z, and z, may be appreciably 
smaller than the lower a„, b„, and the may go to zero rapidly with increase 
in j, so that over short and moderate durations 7-  it will still be feasible to 
study y as the periodic function y„ . If the z;  are known, this is very simply 
done by just subtracting out y s . However, if the z i  are not known, then there 
will always be some distortion of the a„, b„ because of the lack of orthogo-
nality, such as (5.3), with the z 1 . 

y„ is known as a stationary .function, because its statistical properties are 
constant with time. The leading statistical property of y„  is its mean square. 
Since y„ is not necessarily a position vector and since its different components 
may even have different dimensions, it is appropriate to consider this mean 
square as a vector itself (rather than a dot product), of which each component 
yl is 

1{ 
= E[A] = 1[4, + 	+ 	[e(f) [(f)] df (Ill. (5.10) 

2 k=i 	• 	o 	o 

Equation (5.10) is a consequence of the orthogonality property (5.3) with T 
extended to approach infinity. (5.10) can b. ' e generalized in two ways. ,First, 
there will in general be a nonzero mean product E{y,yi} (called 'cross-
variance), second, and a nonzero mean product Efy,(t)y i(t 7-)1 (called 
covariance). The cross-variance will generally be a known function of the 
variance—given the (1,,  a1 , g,  /4 for one component, they can be cal-
culated for the others—but this is not in general true of the covariance. 
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Multiplying y(t) by y i „(/ 	T) from (5.7), converting products of sines and 
cosines to sums, and applying (5.3), we get 

Covi  (T) = E[yi(t))),(t 

= – 1[(cT„ 	cl,k ) cos 277-f„T 
2 k=1 

Ct) 	co 	• 
f [ei(f) + 171( 	cos Infr cif cif}. 	(5.11) 

o 	o 

The osculating Keplerian elements ta, e,  I, M, (1), .0.1 of a close satellite 
orbit can be expressed by an appropriate combination of (3.113), (3.76), 
and (3.153)--(3.158). Most--say more than 99 %--of the variation with time 
can be regarded as known, including the dominant secular terms ./1 ,f, 

arising from the central term k M and J, and a, (;,, di/di, /14. 	63 arising 
from simple models of the atmosphere and radiation pressure. The residuals 
of the actual motion with respect to the known part are what we are interested 
in examining as a vector time series y(t). This time series will still contain 

significant a, 	di/dt, iif,  ill, 6 as a result of inadequacies of the atmospheric 
model. However, these six terms can be reduced to two by expressing the 
others as functions of the acceleration in the mean anomaly and the rate of 
rotation of the atmosphere. For durations of record T  of satellites of interest 
to geodesy, the irregular balance of drag effects can be represented by the 
continuous spectrum in (5.7). To compare this drag spectrum to that 
arising from the variations of the gravitational field, we need to calculate 
the order-of-magnitude of the accelerations involved. For drag, take as 
typical CD= 2.4, AN = 0.05 cm 2/gm, e = 7.5 km/sec, and as pessimistic 
p < 10-14  gm/cm 3 .. (See the table of numerical values). Using these values 
in the Equation (3.152) for the drag force obtains for an estimate of the drag 
acceleration: 

crfa„} < ±2.4 x 0.05 x 10 –'4  x (7.5 x 105) 2/2 	±3 x 10-4  cm/sec'. 

For an estimate of the acceleration due to a variation of the gravitational 
field, take the radial derivative of the potential term V22  as given by (3.53) 
for a semimajor axis of 8 x 103  km and a magnitude 1.5 x 10 -6  for J„: 

a(agl Re +3.986 x 10" x (6.378 x 10 8 ) 2  x 1.5 x 10-6/(8 x 108)4 

 +6 x 10-4  cm/sec 2 . 

Thus even for a satellite orbit far from ideal—atmospheric densities of 
10-14  gm/cm3  would exist only at altitudes below 600 km on the sunlit side 
near the peak of the solar cycle—the acceleration due to the  variations  in 
the gravitational field would be - comparable to that due to drag. Further-
more, the drag  acceleration is • spread out into a continuous spectrum, 
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whereas, according to the transformation (3.70), the spectrum of 1/1 ,, is, 
for a small eccentricity, comprised almost entirely by only (1 -1- 1) lines: 
for 1/2 0, three lines, one near a frequency of two cycles/day and two near 
two cycles/revolution. 

For a length of record 7', a continuous spectrum of amplitude density 
g(f,.,.) will obscure a discrete terni of amplitude less than c k  = g(L)/7', as 
indicated by (5.1)-(5.2). If we assume that the mean square drag acceleration 

is distributed uniformly from one cycle per revolution, I//', downward 
in frequency, then the density e(,/.) will be For a length of record 'I' 
the effective number ()I frequency bands will be 7//' and the variability 

in a particular band will be Pa2 -1a,,ltr. Hence the record 7' would 
not have to be very long for the gravitational acceleration at a particular 
frequency to stand out above the drag. Therefore 

(rta„1/0 	• 0- fadhIPIT. 

Since accelerations are not observed, to compare variability at different 
frequencies it is better to integrate to obtain the spectrum of position vari-
ation: 

= 1 let11(27rf) 2 , 

To compare the implications of the numerical estimates of ±3 x 10 
cm/sec 2  for gravitational acceleration cria„}, assuming the equipartition below 
1/P for efa,,), we take a period P of 96 Minutes and a record T of 3 .months. 
Then 

(Mkt} = alia„)./P/ (27rf) 2  

= +3 x 	x 90/(27f/86,400) 2  =  ±15/f2  meters 

for frequency f in cycles per day. For a frequency of 2 cycles per day, the 
perturbation is thus about ±4 meters, compared to ±165 meters obtained 
from a gravitational acceleration of ±6 x 10-4/13-  cm/sec 2  at the same 
frequency. However, for a lower frequency the drag perturbation will 
obviously become much greater—for example, for one cycle/month, the 
above estimate gives ±13.5 kilometers. The situation is shown schematically 
in Figure 16, which would be characteristic of a perigee height around 
600 km for a length of record of about 3 months. For any type of erect, 
the spectrum rises steeply toward the  lower frequency end, due to the longer 
integration time. Even though they may have considerably less amplitude 
than drag effects of lower frequency, the orthogonality condition (5.3) still 
enables accurate determination of the discrete high frequency perturbations 
caused by tesseral harmonics—the V i .m.  for which in  0 0—provided that 
y(/) is completely and continuously observed. However, as indicated in 
Chapter 4, observations are incomplete in the sense that only one  or two 
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components out of the six comprising y are measured: a range or range-rate 
or photo plate coordinates. They are also discontinuous because of the 
geometrical limitations on observability discussed in Section 4.7. Conse-
quently, the time series we are forced to consider is not y(t), but instead a 
linear transformation thereof multiplied by a "window" function. In 
addition, this time series will have a part arising from other Sources than y, 

  

  

  

0.001 	0.01 	0.1 10 

Frequency in cycles per day 

FIGURE 16. Spectrum of satellite orbit variations. 

due to errors in station position, and so forth: 

Ow 	aw 
w(t) = — y/(t) — u. 	 (5.12) 

ay 	au 

The Jacobian aw/ay is constituted by the partial derivatives of the observa-
tions with respect to the osculating elements, as developed in (4.37)-(4.51), 
and is itself a function of time. The window function 1(1) is unity during 
observation and zero at other times. The station error function u will he 
equal to the error of the station position during observation and zero at 
other times. 

aw/ay, 1(1),. and Ow/au all have complicated . spectrums, predominantly 
of high frequency, .comparable to that of  the satellite orbit itself. Conse-
quently contributions to w(t) from the discrete gravitationally caused 
spectrum will be difficult to distinguish from those from the continuous 
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drag spectrum. Simple harmonic analysis will not suffice; instead, some 
sort of least-squares or quadratic sum minimization is necessary. Since 
such a procedure involves squares and products, we are still interested in the 
statistical properties of the orbital time series, expressed by the variances 
(5.10) and covariances (5.11). 

The discrete variances {(1, 	dt1 1/2 arising from variations in the earth's 
gravitational field can be calculated from estimates of the variances of the 
spherical harmonic coefficients C,„„• S„„ of the gravitational field. These 
estimates are best obtained from autocovariance analysis of gravimetry, 
which estimates the degree variances ol defined by 

cr = E,„(Ci'm 	 (5.13) 

where C i „„ g,,„ are the coefficients of the normalized spherical harmonics 
defined by (1.34). A rough rule for the al determined from autocovariance 
analysis of gravimetry is 

160 x 10-12/P. 	 (5.14) 

From (5.13) and (5.14), 

= 	
/ 	* 

	 (5.15) 

A given frequency fic  in (5.7) will, from (3.71), correspond to a set of 
particular combinations of the indices  I , in,  p, q in the orbitally referred 
expression of the spherical harmonics. Thus 

fk  = [(I — 2p)o') 4- (/ — 

The lowest degree term giving rise 
for which 

I =  in 	unless 

Others in the set will have 

I = ni 

P = Pi 

	

where] is any integer. 	Consequently, 

1 	" 	- 

	

E 	(c --a + c1:1„) 
[ 2 

2p + 	mn(  n — 6)1/277-. 

to a particular frequencyf, will 

in is 0 or 1. 

+  2,  

= Po +1,  
from (5.15) and (4.27), 

. 	a, 	0.21 	. 
N' 

(5.16) 

be that 

(5.17) 

(5.18) 

(5.19) = 	4.,,,„ 
• iti'(i 21 + 1 

where / and p are obtained.  from (5.18) and Kii,„„ is the coefficient of the 
partial derivative of the Keplerian element with respect to Cim, as given by 
(4.28). 

For estimates of the spectral representation of the drag effects l[g2(f) + 
112 (f)], analysis must be made of orbital residuals. Here the dominant effect 
will be in the mean anomaly, so much so that the inexactness of the present 
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data makes it not worthwhile to consider the errors in other elements caused 
by drag. The results of analysis of orbits for drag effects are usually expressed 
in terms of the rate of change of period P. AutocoVariance analyses of P 
generally obtain an exponential drop-off with increasing frequency for its 
power spectrum : 

cr;{1)} = D(P) 2 exp 	 (5.20) 

where (P) is the mean value of the rate-of-change of period. 
The relationship between sinusoidal oscillations in P and in /1:;f will be 

ri 2 , AM = — 	= — — cos 27rft. 	 (5.21) 

	

27r 	27r 

Solving for af2 {M} by integrating twice and squaring, we get 

„4 
a2f {M} 	, 

64f 
 D(15 ) 2  exp (—gf). 	 (5.22) 

7r(1  

For f in cycles per day, numerical estimates arc 0.6 for D and 19.2 for q. 
The practical implication of the frequencyf in the denominator is that some 
device must always be applied to absorb low frequency drag effect—usually 
both arbitrary polynomials in the mean anomaly and limiting the duration 
of an orbital arc. If h polynomials are used for an arc or duration W, the 
lower limit of the unabsorbed frequencies will be about h/211/. 

As previously pointed out, the correction to observation dOi of the observa-
tion equation (4.32) must absorb all discrepancy between the mathematical 
model and actuality. Hence the contribution to the variance of dO„ a2 {0 1 } 
from neglected coefficient C i, S„ will, from (5.19), be 

	

ao, 	a2 
(5.23) 

	

Ain,a 2 { 0.} = 	 2" Khl,n1.2 21 ± 1 —" USh  

where (s1„ sk) are either both (a, e, or i) or both (M, w, or n); con-
tributions from cross products are zero. The corresponding contribution 
to the covariance Of dO, and c10;  is 

ao, 	CT
2 	 ao 

L\ 	{o i o,} 2,[— K,,,, 	 Kktmva — 
p,q aSh 	)I  2 1 + 1 	as„i 

	

x  cas  [(I — 2 p)(o.) — w 1) + (I — 2p ± ci)(A 	M 1)  

m(Q i  — 0 1  — O i  + s)]. (5.24) 

Similarly, for the drag effect, we have 

Aacr 2 {0, }  =  [2i] 2 1 	cif, 	 (5.25) 
am .1q2JV 

ao. ao.. 

	

A t  Coy {0 1 , Oil 	
71 	

a;,{/v1} cos  2f (i — t 1) df. (5.26) 
- 	am am /2iF 
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5.3. Quadratic Sum Minimization 

We have set up in (4.32) a standard form For an observation equation, 
which states that the discrepancy between an observed quantity and a 
calculated quantity based on a mathematical model must be accounted For 
by a combination or corrections to the parameters on which the mathematical 
!node! is based and a  correction to the  observation. Normally, we must 
deal with a set or such observation equations that is much larger than the 
number of model parameters that are to be corrected. Let us write a set of 
observation equations (4:32) in matrix form. Thus 

where in < n, and 

(l0 

—x M 

acap, 
acdap, 

z=  f 

n >( 

ac, ap, 

(5.27) 

X = dO, M =  
aciiap, 

acdap„,_ 
^- 

0, Cs  

• 02 — C2 

(5.28) z = 
01  -- Ci  

(IP 0 — C n 	n_ 

The derivation of (4.32), and of the other equations in Chapter 4 pertaining 
to observation equations, are based on the  assumption that the corrections 
were differentials. This assumption is equivalent to assuming that the 

1 =  
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dPidP,,  term in a Taylor series development for (0 + el0 	C1)  is negligible: 

.. aci  ac, 
± • • • , (5.29) 

pp, 	2 

which in turn implies that acjap, in (5.29), and hence NI in (5.27), can be 
considered constant. (5.27) is thus a set of linear equations. The vector 
f can be considered as the coordinates or a point in n-dimensional space, 
and the vector x as corrections to these coordinates. Hence 

A4z = 0 	 (5.30) 

is a set of equations that together represent a linear form in the n-dimensional 
space, since we obviously can express the in  elements of z in terms or the 
ii  elements or f ± x by selecting and solving a set or ni equations from 
(5.27), l'or example, it'  n is equal to 3 and in is equal to I, (5.27) would be 

(5.31) 

which could be reduced to 

m s , 
(fi + xi) = 	+ 

mn. 	 (5.32) 

ni,, (fi + Xi) = (f3 + x3). 

Two linear equations in 3 unknowns (II + x1 ), (A 	x..), and (f3  + x3) 
is the expression of a straight line in 3-dimensional space. In general, the 
point (fi, .0 defined by the observations will not lie on this line. The 
desired correction (x,, x 2, x3) is obviously the one which is the shortest 
distance from the point to the line, since this implies the minimum correction 
to the observations. If the coordinate axes are rectangular and the scale 
is the same in all directions, then this minimum will be • 

	

4 = Min. 	 (5.33) 

However; the 'equations (5.27) can just as well refer to oblique axes with a 
different scale along each coordinate axis, in which case we must rewrite 
(5.33) as 

	

g, 5x1x ;  = Min 	 (5.34) 
i 
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or, in matrix form, 
xTGx = Min. 	 (5.35) 

The next problem is to determine, given a set of observations 0, with 
associated variances o-;2.. and covariances  Coy Oil, the appropri a te 
quantities g 11  to use in (5.34), (535). If the observations are uncorrelated - 
that is, all covariances zero—then the obvious choice is 

(5.36) 
gi;  = 0, 	i 	j, 

since the square of the correction applied would thus be weighted so as to 
be proportionate to its expected mean square magnitude. If we have a sut 
of n correlated observations x, we can always find a linear transformation 
thereof [see (2.3)] to another set of n observations y that are uncorrelated, 
because in order to determine the n 2  numbers in the transformation matrix A. 

	

y = Ax, 	 (5.37 

there are n' condition equations to be satisfied in the relationship beNecn 
the covariance matrices of y and x, W„ and Wa.: 

= AW„Ar ; 
that is, 

=-- 	Coy {xk , 

0 = a11 . Coy {x„, 

Then the inverse variance weighting (5.36) applied to the quadratic sum 
minimization of y implies 

Min = yTW,Vy = (Ax) T [AWxAT ]-1(Ax) 

	

A TRTr wvA-1Ax 	 (5.401 

= xTW;lx = Min. 

The weight matrix G used in (535) sh6uld thus be the inverse of the 

covariance matrix W. 
As stated, the matrix form of the observation equations, (5.27), appears 

adequate for the problems in geodetic use of satellites. However, for other 
possible uses  it 'is  instructive to solve, subject to (5.40), a more general case, 

I 	j. 

Cx 	Mz 	f, 	 (5.41) 
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in which there is at least one nonzero element per row in C. Combining 
(5.40) and (5.41), we can write 

2(Cx NU, — f) TX = Min, 	 (5.42) 

where A is a vector of parameters called Lagrangian multipliers. We differ-
entiate (5.42) with respect to x, and then set the result equal to zero in order 
to obtain the minimum 

— CPA = 0. 	 (5.43) 

If we now solve (5.43) for x and substitute the result in (5.41), we get 

10. + 	— f = 0, 	 (5.44) 
'where 

K = CWC T . 	 (5.45) 

On differentiating (5.42) with respect to z, and setting the result equal to 
zero, 

MTX = 0. 	 (5.46) 
If we solve (5.44) for A, 

(5.47) 

By substituting from (5.47) for  A in (5.46) and solving for z, 

z = [MTK-1M]-11VI TK--i f. 	 (5.48) 

The matrix MTK-IM is called the normal equation coefficients, and the 
vector MTK-4, the normal equation constants. 

By substituting from (5.48) for z in (5.47), solving (5.43) for x, and then 
substituting from (5.47) for  A in the result, we have 

x = WC TICT1I — M(M TK-1114)-1MIK1f. 	(5.49) 

Given W is the covariance matrix of the observations before correction 
by x, we find that the covariance matrix of the residuals f will be, from (5.41), 
CWCT, K, by (5.45). To obtain the covariance matrix V of z, we pre- and 
post-multiply K by the coefficient  off  in (5.48): 

V, = [(M TK-1M)-11V1 11-1]K[(M2'K-11W10-1MTK-IT  

= (MTIC1M)-1 . 	 (5.50) 

Similarly, for the covariance matrix U of the corrections x, pre- and 
post-multiply K by the coefficient off  in (5.49). After sorting out the algebra, 
we have 

= WCTK-1[I — M(MTK-1M)-1MTK-i]CW. 	(5.51) 
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The covariance matrix V,. of the improved observations then will be 

Vx  = W — U. 	 (5.52) 

All the results (5.48)-(5.52) are applicable to (5.27) by setting —I in place 
of C. 

The Only assumption we have made in Equations (5.33)-(5,52) is that in 
the uncorrelated case the weighting factor is inversely proportional to the 
variance. Quadratic sum minimization under this assumption is known as 
nil)n11111111 Variance alld is less restrictive than maximum likelihood!, where 
the saine result requires assuming that the corrections have a normal distribu-
tion about a zero mean: that is, a frequency for a correction of magnitude x 
proportionate to exp (—x2/a2). However, any improvement over this normal 
law would require higher degree terms than quadratic in the minimized sum 
(5.34) or (5.35), which in turn would imply that nonlinear effects from 
sources unaccounted for by the model are significant. This implication in a 
way contradicts the assumption that nonlinear Taylor series terms in the 
:node! effects (5.29) arc negligible. While there are physical situations where 
there are limitations on (0, + JO), such as that it cannot be negative, which 
might make a skew distribution of JO, appropriate, usually a non-normal 
distribution of corrections JO, is an indicator of sonic condition that can 
be removed in a determinate manner by improving the model rather than 
by complicating the statistics. 

The normal equation coefficient matrix M TIC-1M that is inverted in the 
solution (5.48) for corrections to parameters z may be of considerable 
dimension because of the large number of independent parameters that 
have perceptible effects on satellite orbits, and because it may be desirable 
to combine several different orbits in order to get a well-conditioned solution 
for parameters common to all orbits, such as the gravitational field coefficients 
and station position shifts. However, if the normal equation coefficient 
matrix WI TK-'M has a particular form, an appreciable reduction can be 
obtained in the size of the matrix which must be stored and inverted by the 
computer. Let 

N= 	 s = MTICTlf, 	 (5.53) 
and let 

      

   

[ s1  = s)„  

s2  

 

N12 
N 

N22
-= 

 1 

 

  

= Z, 
N21 

(5.54) 

    

     

       

Equation (5.48) can now be written 

NAZI + N12Z2 == s1, 	 (5.55) 

N21Z1 + N22; S2. 
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Solving the second equation of (5.55) for z 2 , we get 

z2  =-- NV(s, — N0 1z 1 ), (5.56) 

and substituting the result in the first equation of (5.55), we have 

= s t  (5.57) 

If N has the form 

N11 • • 	N12,1 N12 . 2 	N1 2 , 2 

N2,1 , 1 N22,11 	0 	 0 

N 
N21,2 0 	N2 , 22  

(5.58) 

namely, 
.1 N22, 

N22, 	 i 	j, (5.59) 

then the terms involving inversions in 	5.57) can be written 

N12N;IN21 = E 
(5.60) 

N121\1 21S2 = 	N12 iN-221iiS2,i• 
i=1 

If  in the matrix of observation Equations (5.27) M has the form 

M11 M12,1 	0 	0 	— 

M21 0 	M12,2 

M= (5.61) 

M11 0 	 1V112,1_ 

N will have the form (5.58) since, from (5.53), 

N22, i j = 	Mil' , iK7T7e1M/t2, (5.62) 
/I.=1 



106 	 Statistical Implications 	 [Ch. 5] 

which is 0 for i j. The matrix M will have the form (5.61) if several 
different satellite orbits, each with its own constants of integration, are 
combined in a single least squares solution, because the set of observation 
equations peculiar to a particular orbital arc It will contain partial derivatives 
Mo  with respect to gravitational coefficients, and so on, common to all 
orbits, but have nonzero partial derivatives with respect to only its own 
orbital constants, Hence, a solution for n parameters common to 
any number of orbits each with p constants of integration can be made in 
accordance with (5.48) without storing any matrix of dimension larger than 

p) or inverting any matrix of dimension larger than n. 
The vectors x and z may be corrections to "observations" or "parameters" 

that occur in a staged or evolutionary process. If the vectors of the actual 
errors at the ith stage are e i (x), €,(z), and their nonlinear effects at the 
(i + 1)th stage are insignificant, then the errors e i. o(x), can be 
expressed as a linear transform of e(x), c i (z) through propagation matrices 

P. 
c„ 1 (x)  

= 11 ,ES:0. 

the cc% ar..2..nce 	 at 	151.11 
be expreitd 

(5.63) 

W, = 	
(5.64) 

W. = P,V yT. 

	

If these variables are to be further corrected at the (i 	1)th stage by being 
combined with new observations with covariance matrix W, in new condition 
equations, the equations can be written as . 

	

Csxs  Crxy  Csxz  Mz = f 
	

(5.65) 

and the quadratic sum to be minimized as 

x,TW;lx, = Min. 	(5.66) 

Particular cases to which (5.64)—(5.66) might be applied are: 
1. An evolutionary process, such4ts an orbit, in which the carried-forward 

estimate of the state of the process, with covariance matrix Ws, is combined 
with new observations with covariance matrix W.  In this case, C, is O, 
M is Q, and  the solution by (5.49) becomes 

 [ 
	[xf x, _ wc 

w cyd {c.wœcf cuywucvTrif. 
y 

	 (5.67) 
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2. Corrections to parameters may be determined from several sets of 
observations each of which is ill-conditioned alone, but which are inconvenient 
to combine. In order to express the effect of the corrections and associated 
covariance matrix V, from one set in analyzing another set, we can put 
W„ and  Ç as 0; 1.), : as I, and C.„, C z , M, and f as 

c, 	[--
o
-"1 , 	C=Iz 	- 9-- = 

my  
f —1. 	(5.68) 

_0 

The solution by (5.48) becomes 

z = [MTIC 27 1 M 	V; 1 ]-11‘4,TK; ify . 	 (5.69) 

To summarize, for the geodetic satellite problem the observational data 
can be transformed or combined so that there is one "observation" per 
equation as in (5.27); it is the corrections a to model parameters in which 
we are interested ; and the inadequacies of the model resulting from drag, 
higher gravitational harmonics, and so on, are such that in an ideal solution 
there should be appreciable correlation between observations at different 
times, as expressed by the covariances (5.24), (5.25) that appear as off-diagonal 
elements in the covariance matrix W. 
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DATA ANALYSIS 

6.1. Simultaneous Observations 

If sufficient simultaneous observations are made from the saine set of 
stations, then the corrections to the satellite positions (Ix in Equations (4.37) 
and (4.52) can be regarded as unknowns. Also appearing as unknowns 
\vill be the corrections to station positions fti o  with the exception of one 
station, since without using the orbit there is no other way of fixing the 
system with respect to the origin. Hence if there are ni stations and n simul-
taneous sets of observations, there will be [3(m — 1) + 3e] unknowns and 
qrun observations, where q is 2 for cdmera observations and 1 for range 
observations. Hence it is necessary that 

grim > 3(m — 1) + 3n 	 (6.1) 
o r  

n> 
gin — 3 

3/fl — 3 	
(6.2) 

(except for gin 2 or 3) . For camera observations, let the 2m observations of 
the jth satellite point be numbered P , P2j P,_; ; and the satellite 
coordinates be numbered x„., x2i, :Cap Then for the matrix set up of the 
observations (5.27), we have for each simultaneous set from the kth station: 

r 	(27;-1)JI X1j) 	Or (2k--1):11 ax2j, 	OP(21e-1)ji aX3i 
Mxik = 

a-P27cil QX1 Y , 	aP27cil a  X2.1) 	aP27cjMX3  

aP(2k_1),lau2k, aP(21c-1)jlail3k- 
Mtlik = 

aP2kila"170 	aP21Jiali2k, 	aPakjiauu 
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M 1  

0 	NI, j2 

MaJja 

= M,.  = 

o 

M 

• 0 

M,,,„ is the coefficient 

K en 

111), 0 0 

_ 0 	l/p :, 0 

0 

, 	(6.3) 

M rui(m-1) 

0 

f 

f 

, f 

MXi la 

0 

0 

of dx in (4.37), and Mok is the coefficient 

flp, 0 0-  

0 	jell), 0 
R,R3( — 0) 

of du, in (4.37). 
If the observations are considered to be uncorrelated, then the matrix 

W-1  (the same as K-1  if C = I) in (5.48) will be diagonal. Letting a be the 
2 x 2 diagonal matrix of variances for each photograph, then in the quantities 
M'W- IM and M T W-- 4 can be incremented at each observation by 

where 
and T 

I "' :de' À 51c3 

M = [C) 	Mxik •••  O O  ••' M VIk' • ' 0]. 

Since no reference is made to the center of mass of the earth, the x, u 
coordinate systems need not be used; instead, some locally referred system, 
such as the I coordinates of  the fixed station, can be used, applying rotations 
as described by (4.17). 

Simultaneous observations have been made by fixed cameras Of both 
balloon-type and flashing light satellites. 
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6.2. Orbital Observations: Short-Term 

If observations are nonsimultaneo us, then, of course, the orbital constants 
of integration must be added to the parameters in place of satellite positions. 
In addition, there may be other orbital parameters, including those of par-
ticular interest to geodesy:the coefficients of the gravitational field. All 
station positions may be considered free, since the absence of first-degree 
harmonics from the gravitational field is equivalent to assuming the geo-
metrical center of the earth, to which station positions refer, coincides with 
the dynamical center of mass, to which the orbit refers. 

Hence, ideally, in (5.27), the M matrix should now include partial deriva-
tives of  the calculated quantities C i  with respect to the orbital parameters 
and the gravitational coefficients as obtained by combining (4.29) and (4.37) 
or (4.48), and the part C, of the f vector should be calculated from the 
orbital theory by (3.76) and (3.113) plus the appropriate transformation to 
observational form: (4.15) or (4.36). In (5.48), the covariance matrix NV 
should now ideally include off diagonal elements expressing covariance, as 
well as increments to the variances on the main diagonal, due to the 
effects of neglected higher gravitational coefficients by (5.24) and of drag by 
(5.26). 

The accuracy of the principal types of observation is such that it should 
be hoped to determine orbital oscillations on the order of ±10 meters. 
For typical orbit specifications, the order of magnitude of spherical harmonics 
suggested by (5.14) used in (3.76) indicates that tesseral harmonics (m 0) 
as high as the 8th degree and most up to the 6th degree will be determinable, 
namely, up to 60 coefficients. However, the accuracy of location of tracking 
stations with respect to each other is poor enough that the ±10 meters 
criterion indicates that their coordinates should also be treated as unknown, 
namely, about 36 more parameters. Furthermore, the principal effects of 
some sets of terms with the same order subscript in  are all exactly in phase, 
since they all have the same argument, m(S2 — 0), in the partial derivative 
(4.27): for example, (I, in) of (2, 2), (4, 2), (6, 2), and (8, 2). To distinguish 
such terms from each other, the coefficients Ki , of (4.28) must differ. 
Varying the semimajor axis a, or eccentricity e, appreciably will vary the 
drag characteristics by a considerable amount; hence, it is desirable to 
obtain the variety of orbital specifications to separate terms of the same 
argument by varying the inclination. We thus must add to the total param-
eters the elements of enough orbits to make this separation—say four orbits, 
or 28 elements, including in each set a parameter to absorb acceleration in 
the mean anomaly. 

For a fairly firm determination of this total of more than 120 parameters, 
several hundred observations are required. The covariance matrix W of 
these observations will be a series of nonzero blocks down the principal 
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diagonal, one block for each orbit, with off-diagonal elements due to drag 
effect according to (5,26). This rigorous treatment has not yet been applied; 
in practice, the covariance matrix W of such large dimensions with nonzero 
off-diagonal elements duc to drag effect according to (5.26) is beyond 
reasonable computer capacity. Hence, in practice, the rigorous treatment 
has not yet been applied; the covariance matrix W is either taken as a 
diagonal matrix, or, at best, covariance is taken into account only between 
observations in the same pass. Furthermore, the lack of a sufficient variety 
in inclination of orbits at a good altitude has degraded the accuracy to be 
reasonably hoped for to about ±20 meters, which reduces the number of 
low degree gravitational coefficients accurately determinable to about 35: 
all up to an (1, m) of (4, 4); plus (5, 0), (5, 1); (6, 0) through (6, 4); and 
(7, 0). In addition to these low degree coefficients, one pair of coefficients 
in the range of about (9, 9) to (15, 15) should be added for each satellite 
to absorb the small-divisor effect described by (3.150). 

The various aforestated difficulties have the result that progress in orbit 
analysis for tesseral harmonics and station position has been by computer 
experimentation: the testing out in actual computation of various alternative 
procedures selected by empirical rules. Some of these procedures and rules 
are given as follows: 

I. The length of the orbital arc represented by a single set of constants 
of integration may be selected either on the basis that there is a considerable 
surplus of observations over parameters to be -  determined—for example, 
80 or more observations—or that the orbital residuals are not more than a 
small multiple of the  amplitudes of the perturbations caused by the tesseral 
harmonics—for example, 10 to 1. Rules of this sort generally result in 
arcs for Doppler tracking, which can observe in all conditions, of one to 
seven days, but for camera tracking, which requires a combination of 
satellite in sun and station in darkness and clear weather, of ten to thirty 
days. 

2. The residuals can usually be reduced by using arbitrary polynomials 
in time to represent some of the variation of the elements, However, to 
avoid absorbing some of the effects of the gravitational variations, such 
polynomials are usually confined to a t 2, or a t 2  and a t 3  term in the mean 
anomaly, where the maximum drag effect occurs. 

3. To further minimize drag effect, the across track component may be 
given higher weight (or lower variance) than the along track component. 
This may most conveniently be done using the partial derivative of the 
observation with respect to time, (4.34). For example, for camera observa-
tions with components p i. , p 2  we have 

Vo  bs = 
Fa 

0  
01 ± 
a i  

rapi/a6(01,2(0 aP2 -1 
p2lac(t) 	L €(t) 	af(t) 

(6.4) 
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Along-track residuals generally are about twice as large as  across--track; 
however, some experience has indicated that weighting such as (6.4) does 
not make much difference in results. 

4. Since nonuniform distribution of observations destroys the orthogo-
nality of the low-frequency drag variations in Figure 16 to the higher fre-
quency gravitational variations, presumably some of the separation can 
be restored by weighting observations inversely as their density with respect 
to phase angles important in determining the gravitaiional coefficients, such 
as (12 — 0). Also, if tracking stations are nonuniformly distributed geo-
graphically, observations that are from those stations clustered closely 
together may be accorded lower weight than those from remote stations. 
Again, the device of weighting to overcome nonuniform distribution is one 
whose benefits have been difficult to discern in application. 

5. The number and distribution of observations will often be such as to 
cause ill-conditioning; that is, the effects of different parameters are so 
similar as to make them difficult to distinguish. One technique to reduce 
i Il -conditioning is to use a preassigned covariance matrix for the parameters, 
as in (5.69), using statistical estimates such as (5.14). This technique probably 
tends to reduce the magnitude of the results below that of the actual values. 

The ideal method of removing ill-conditioning is to include data from 
orbits of several different inclinations. In order to avoid having too large 
matrices to invert, the calculation has sometimes been done by the partitioned 
solution of the normals described by (5.53)–(5.62), and sometimes in two 
separate steps. In the first step, the orbital constants of integration are 
determined separately for each arc. Subtracting out the effects of these 
constants leaves residuals which are then analyzed jointly for all orbits to 
determine the gravitational coefficients and station coordinate shifts. This 
technique probably tends to cause some effects of the gravitational variations 
to be absorbed at the earlier step by the orbital constants of integration. 

6. Tests that can be applied in the analysis include (a) the solution for the 
gravitational coefficients C 21 ,  S21  that are known to be virtually zero from 
the smallness of the variations in the position of the earth's rotation axis; 
and (b) comparing the geoid height calculated geometrically from the station 
coordinates—that is, determining the altitude h in (4.5) from given u,  a, w 
and subtracting the height above sea level therefrom—with that determined 
from the gravitational coefficients. Thus 

N =  RE y P,m(cos 0)[C im  cos m2 	sin m2]. 	(6.5) 
1, in 

The results that have been obtained thus far from satellite orbits for the 
variations of the gravity field have plainly been influenced by the method of 
analysis as much as by the orbital characteristics and the type of tracking. 
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In general, however, results obtained from Doppler tracking yield larger 
mean square coefficients than those from optical tracking. Perhaps this 
happens because there is more systematic observational error in the Doppler 
tracking; or perhaps because the much scantier and less uniform distribution 
or camera observations results in a greater part of the effects of the variations 
of the gravitational field being absorbed by the orbital constants of' integra-
tion; or perhaps because the Doppler data included more high inclination 
orbits, which are more sensitive to the tesseral harmonics, particularly the 
sectoral (in = I) terms. Investigations of statistical interaction between 
different par•ameters show that the highest correlation is, as expected, between 
coefficients of subscript (/, (n, — n even; that the correlation is 
rather low between station coordinates and gravitational coefficients, or 
between different station coordinates; and that there is a moderate amount 
of correlation between gravitational coefficients and orbital constants of 
integration. The present rate of improvement in results is rapid, partly 
because of more tracking data under better conditions and partly because or 
better methods of analysis. The results given in Table 3 were all obtained 
in the fall of 1964. Figure 17 is the geoid computed by using the coe ffi cients 
of Anderle (1966) from Table 3, plus zonal harmonics C„ through C„,, in 
(6.5). All solutions since 1963 show a strong resemblance in the locations 
of the principal extrema or the gravitational field. There are always four 
maxima: (1) near New Guinea (0 0 , 150°E), (2) near Great Britain (50'N, 
10°W), (3) off the Cape of Good Hope (50 ° S, 40° E), and (4) near Peru (10 ° S, 
80° W); and four or five minima: (1) off India (0 ° , 70° E), (2) near the South 
Pole (90°S), (3) in the western Atlantic (20°N, 60°W), (4) in the eastern 
Pacific (20 ° N, 120° W), and sometimes (5) in the northwestern Pacific 
(40°N, 180 °). 

A compromise between simultaneous observations and one-to-thirty day 
arcs which has been occasionally proposed is an intensively observed short 
arc of about 30 minutes duration to relate the positions of two geodetic 
datums. Although the minimum of six orbital elements must still be included 
as unknown parameters, at least one datum must be considered fixed because 
the arc is too short to establish location with respect to the center of mass. 
The shortness of the arc, the number of observations, and the accuracy 
requirements make numerical integration of the orbit appropriate. The 
convenient statistical treatment is then that of the evolutionary process 
given by (5.64) and (5.67). The advantage of the short arc is that imperfectly 
known perturbations by gravitational variations, drag, and so on, have had 
relatively little time to build up.. However, these environmental factors are 
still of sufficient influence that parameters to express their effects must be 
added to the dynamically necessary six orbital elements, as part Of the estimate 
of the state of the process. Since the parameters at one stage do not have a 
deterministic relationship to those at another stage, the covariance cannot 



FIGURE 17. Geoid heights, in meters, based on the spherical harmonic coe cients through the sixth degree of Anderle (1966). 
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TABLE 3 

Tesseral Harmonic Coefficients of the Gravitational Field 

Coefficient 

From Camera Data 

Izsak 

(1966b) 

From Doppler Data 

Guier and Newton 	Amicler le  

(1965) 	 (1966) 

C22 X 10" 2.08 2.38 2.45 
S0 2  x 106  -1.25 -1.20 -1.52 
C„ x 106  1.60 1.84 2.15 
S3 1  X 106  -0.04 0.21 0.27 
C32 X 106  0.38 1.22 0.98 
S32  x 106  -0.80 -0.68 -0.91 
C„ X 106  -0,17 0.66 0.58 
S„ 3  X 10 6  1.40 0.98 1.62 
C,, i 	x 106  -0.38 -0.56 -0.49 
su  x 10" -0.40 -0.44 -0.57 
C„ x 10" 0.20 0.42 0.27 
S,„ x 10" 0.58 0.44 0.67 

; 	x 	106  L
,-

43 0.69 0.84 1,03 
34 3 X 106  - 0.10 0.00 -0.25  
C„ X 106  -0.1 1  -0, 2 1 -0.41 
S44 X 106  0.43 0.19 0.34 
C„ x 10" -0.14 0.14 0.03 
g„ x 106  -0.04 -0.17 -0.12 

C52 X 106  0.24 0.27 0.64 
36 2 X 106  -0.27 -0.34 -0,33 
C„ X 10 6  -0.67 0.09 -0.39 
g„ x 106  0.05 0.10 -0.12 
C„ x 10 6  -0.13 -0.49 -0.55 
5 5 4 X 106  0.16 -0.26 0.15 
C„ x 106  0.08 -0.03 0.21 
S„ x 106  -0.41 -0.67 -0.59 
Co.  X 106  -0.02 0.00 -0.08 
S„ x 106  0.12 0.10 0.19 
C62  X 106  0.05 -p.16 0.13 
552 X 106  -0.23 -0.16 -0.46 
C63 X 106  0.05 0.53 . 0 .02 
S63 X 106  0.00 0,05 -0.13 
C6 4 X 106  0.07 -0.31 -0.19 
g„ x 106  -0.39 -0.51 -0.32 
C55 X 106  -0.28 -0.18 -0.09 

x 106  -0.38 -0.50 -0.79 
C6 5  X 106  -0.12 0.01 -0.32 
,366 X 106  -0.59 -0.23 -0.36 
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be simply propagated as in (5.64), but must be supplemented by a statistical 
increment expressing the uncorrelated part of the variance at the two sta-cs. 

6.3 Orbital Observations: 1,ong-Term 

If the orbital elements have secular change (that is, proportionate to 
or ta), or have sinusoidal variation of much larger period than the arc lengths, 
then if' these effects are not calculated in the determination of an orbit and 
other parameters as described in Section 6.2 the orbital constants of intepra-
tion will reflect the long-term secular and periodic changes. A differential 
correction determination of orbital elements for an arc of a week or two is, 
in fact, a very effective means of smoothing or filtering short period variations, 
so that the long-term changes stand out in the constants of integration. As 
is shown by the linear perturbation formula (3.76), the zonal harmonics 
C0  of the gravitational field will give rise either to purely secular effects 
for I even, or to long period effects of argument co for / odd. Hence deter-
mination of' these zonal coefficients C,„ is best done by analyzing the change 
in the mean orbital elements of short arcs over several months. 

Determination of the even zonal harmonics is made from the motion of 
the node and sometimes from the motion of the perigee. From (3.76) and 
(3.113) we have 

— 
(aE,„„lai)G2 .„ 0(e) 2 

	

O(J) 	lunisolar terms, (6.6) 

	

na 	(1  — e2) 1 / 2  sin i 

	

05 21,  0. 	2p2raG2,pcoe  
6 	— J2v  !tut /  y    	

	

F2,0„(i) 	
cot 	aF

2""Go»),„(c)] 
(1— e 2) 	ai- 	- 

+ 0(4) + lunisolar terms, (6.7) 

Precautions that have to be observed in the analysis are 
1. The set of satellite orbits used should have a variety of inclinations 

sufficient to separate the different harmonies. 
2. The orbital constants of integration determined by differential correction 

for the short arcs must be consistent with the algebraic form of the terms 
containing J.  

3. The mean value of the elements a, e, for the entire duration used 
to determine 1' , di must be accurately determined, to be valid for use in 
(6.6) and (6.7). Correct averaging Sf the elements a and 'e is particularly 
important to remove secular drag effects. 

4. if lunisolar attraction, radiation pressure, and other perturbations 
are not removed in determining the mean values of the constants of integra-
tion, they can distort determination of the rates n and th  not only through 
purely secular effects but also through periodic perturbations. A periodic 
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perturbation A(S2, w) sin {xt - A} will a ffect the apparent secular rate from 
observations lasting from i i  to t 2  by an amount (5(0., cb), 

A(.0, wilsin {xi,  -  AI  - sin  {xt,  - /1.1] 
6(.0, (;)) - 	 . 	(6.8) 

i., -  It 

5. If the -perturbations arc removed in determining the constants of 
integration, in addition to direct effects A i(1 2, w), the interaction of perturba-
tion Av., Ai with the secular effect of may cause an indirect effect A 2( 2, w) 
large enough that it should be taken into account, as given by (3.1 I 6). 

TABLE 4 

Zonal Harmonic Coefficients of the Gravitational Field 

Coefficient 
Smith 

(1963, 1965) 
Kozai 

(1964) 
King-Hele et al. 

(1965ab) 
Cider & Newton 

(1965ab) 

J2 X 106  1082.64 1082.65 1082.64 
X 10"  -2.44 -2.55 -2.56 -2.68 
X 106  -1.70 -1.65 -1.52 

J, X 106  -0.18 -0.21 -0.15 -0.02 
Jr  X 106  0,73 0.65 0.57 
J, X 10"  -0.30 -0.33 -0.44 -0.59 
J8 X 10" -0.46 -0.27 0.44 

x 106  -0.05 0.12 0.1.8 

J10 x 106  -0.17 -0.05 

J11 x 106  0.30 

J12 x 106  -0.22 -0.36 

.113 x 106  -0.11 

'114 X  106  0.19 0.18 

Current analyses of secular motions use seVeral months of data each of 
seven or more satellites. The principal differences in treatment are in the 
relative weighting: whether according to accuracy or to representation of 
variety in inclination, and in whether or not perigee motion, which may be 
more affected by drag, should be used as well as nodal motion. The principal 
recent determinations are given in Table 4. 

The odd degree zonal harmonics are somewhat easier to determine, since 
more orbital elements are affected and no other orbital perturbations have 
as argument the perigee angle w. The Most influential perturbation is 
perigee height. From (3.76) we have 

„2-0./2 
Fo-,--1).0,(0Ge,y-noi.(e)(r -  Ae = -2 E./.  - 2p-1 	-1 	 Sln (1). 	(6.9) 

D=2 	 n  a2p+26 
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Also in the category of'  long-terra orbital observations would be observa-
tions of the motion in longitude of a 24-hour satellite, for the purpose of 
determining {C,,„ S22 }  through its resonant effect as expressed by (3.136). 
The length of the expected period T, from (3.137), makes it appropriate to 
use mean orbital elements determined for epochs on the order of a week 
apart. From the mean semimajor axis a, eccentricity e, and inclination i, 
the coefficients Q 1 „, could be calculated by (3.121). Then using these Q„,, 
with observed longitudes  2.A.  the accelerations A  could be calculated by 
(3.126). These calculated would then be compared with the observed L 
obtained by fitting a curve to the observed AA. 

Wagner (1965) calculated the elements of the first near 24-hour orbit 
being tracked, SYNCOM II. The mean elements are 

a = 42,170 km = 6.61a„ 

e = 0.0002, 

i = 33 0 . 

Calculating the F1 . 	by Table I, and taking the Go,, as unity, we get in 
"planetary" units (k = 1, M = 1, a,=1) 

Q22 = 1.206 x 10-V22  =- 0.778 x 10-3122, 

Q„= —0.014 x 10-3./31  = —0.016 x 10-341 , 	(6.10) 

Q„= 1.258 x 10-933  = 0.175 x 10-3,733 , 

where the  J,,, differ from the  J,,, z ,„ by the normalization factor given in (1.34). 
Satellite SYN.COM  II was permitted to drift first from longitude 54.9°W 
to 57.6 ° W, then restarted and allowed to drift again from 59.2 ° W to 63.5 ° W. 
Taking the mean longitudes of —56.25° and —61.33° for these two periods, 
and making the replacement 

jz m  sin m(A — 21m) = C in, sin in). — in, cos inA, 	(6.11) 

we can write expressions for the accelerations in terms of the coefficients and 
the mean longitudes for each of the two periods, 

Ai X 10 3  =-0.719033 	0.298S22 	0.013C31  

0.009g31  — 0.034C33  + 0.172 33, 

A2 X 103  = -0.654C22 0.42 0022 + 0.014C31  

	

0.007g31 	0.012C33 	0.175g33 . 	(6.12) 
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Wagner (1965) gives as observed accelerations 

= —1.27 ± 0.02 x 10-3  degrees/day 2  

=-- —1.93 ± 0.03 x 10 -9  planetary units, 

=  — 1.32 ± 0.02 x 10 -3  degrees/day 2  

= —2.01 ± 0.03 x 10-9  planetary units. 

The sets of coefficients from Table 3 used in (6.12) yield: 

Coefficients of lIzsak (1966): 	 A„ = -1.59 x 10-9  pl units, 

= 	1.61 x 10-9  pl units, 

Coefficients of Guier & Newton (1965): 	;11, =-- —1.86 x 10-9  pl units, 

')2 c 	1.83 x 10-9  pl units, 

Coefficients of Anderle (1966): 	 --- -1.92 x 10-9  pl units, 

=  -1.92 x 10-9  pl units. 

In addition, there is a small contribution to the acceleration by the sun an d. 
moon of about —0.02 x 10-9  pl units. 

The approach to resonance expressed by (3.150) was first noted in the 
orbit of a satellite which had a nodal period of 107.13m and an inclination 
of 89.8 ° . Hence û was negligible, and, for in =-- 13, 

27r x 806.8137 
6 + M — 	 — 0.78866, 

107.13 x 60 

in(.0 — 0) = —13 x 0.058834 = —0.76484, 

6 + itif +  m(û  - 6) = 0.02382, 

or a period of 27/1(107.088 x 0.02382) = 2.47 days. The eccentricity was 
0.003, so the H(e)aG,„lae term may be neglected and G ip, set as unity. 
The semimajor axis was 1.1706a e . Evaluating F,,,, by (3.62). and setting 

Nimi„„ sin [co + 1t4-  + in(Q — 0 
	

(6.13) 

where Nin, is the normalization factor from (1.34), we get for (3.150) 

AA = —187.3 J„. „ sin [co + M + 13(D -  O  - A13,13)] 

—79.3 J15,13 Sin [0) 	M 	13(Q, — 0 — 215,13)] 

+173.2:117., sin 1:6 + M + 13(S) —  O — 	(6.14) 

+38.6 J19 , 13  sin [co + M + 13(f2 	0 — 
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Ftom (5.15), the expected order of magnitude of .1 	is about \,/2 x 
and hence 0.07 x 10- " is a likely value for Egi. .„,1 for a degree / in the range 

1310 19. Taking the root-square-sum of the coefficients in (6.15) and multi-

plying by 0.07 x 10 - ", we get ±18.5 x 10 - ' for E{A2.}, or about ± . 140 
meters. The observed value reported was about ±100 meters, yielding a 

plausible 0.05 x 10-- " for the root-mean-square average of the J„,„ through 

The contribution from /11 . 13, and so on should also be perceptible. 
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Aggregation, 81 
Angular momentum, 21, 23 
Anomaly 

eccentric, 22 
mean, 23 
true, 22 

Argument of perigee, 18, 22 

Camera observations, 64, 73-78 
Coordinate 

forms 
ellipsoidal, 61-63 
Keplerian, 16-18, 21-26 
rectangular, 16-18, 20, 25-26, 61-66, 

82-84 
spherical, 21-22, 82-84 

orientations 
camera, 64-65 
earth-fixed, 16-18, 25, 61-66, 82-86 
inertial, 16-18, 63-65, 82-86 
local, 64-65 
orbital, 16-18, 21-25, 63 
photogrammetric, 64, 66 

origins 
geocentric, 16-18, 25-26, 61-64, 82-86 
topocentric, 63-64 

Delaunay equations, 30 
Determining function, 45-47 
Differential relationships, 67-71 

Drag, atmospheric, 56-59, 95-99, 111-12, 
116 

Eccentricity 
ellipsoidal, 61-63 
factors in disturbing function, 4, 37-38 
orbital, 22 

Elements, Kepler or orbital, 22-25 
Ellipse, Kepler or orbital, 16-18, 20-27 
Ellipsoid 

geometrical, 61-63 
potential, 8-10 

Energy, orbital, 24, 29 
Euler angles, 18, 63-64 

Flattening, 8-10, 63 
Force function, 29, 43-47 

Geoid, 8, 112-14 
Greenwich Sidereal Time, 17, 31, 63, 85-86 

Hamilton's principle, 44-45 

Inclination, 18, 23-24 
critical, 48-50 
factor in disturbing function, 34-36 

Kepler's equation, 23 
Kepler's third law, 23, 69 
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Lagrangian brackets, 27 
Lagrangian planetary equations, 29 
Laplace's equation, 2-3 
Least squares, 100-107 
Legendre functions, 6 
Longitude of node, 18, 23-24 

Matrix algebra, 12-16 
Minimum variance, 100-107 

Node, longitude of, 18, 23-24 
Normal equations, 103-106 
Normalization of spherical harmonics, 6-7 

Observability conditions, 87-90 
Observation equations, 71-81, 100, 105 

Perigee, argument of, 18, 22 
Perturbations 

linear, 39-41 
nonlinear, 41-56 

Potential, 1-10 
Precession 

close satellite orbit, 39-40 
earth, 82-85 

Prediction theory, least squares, 106-107 

Range observations, 63, 81 
Range-rate observations, 63, 78-81 
Refraction, 75, 77, 79-81 
Resonance, 49-56, 118-20 
Rotation, earth's, 17-18, 63, 82-88 
Rotation matrices, 13-14, 18-19 
Runge-Kutta integration, 41 

Semimajor axis 
ellipsoidal, 8, 61-62 
orbital, 22 

Simultaneous observations, 108-109 
Spherical harmonics, 4-7 
Star catalogue, 76, 82-85 
Synchronous satellites, 50-55, 118-19 

Tesseral harmonic determination, 110-16, 
118 -20 

Time, 72, 74-75, 81-76 
Times series, 92-99, 1 I 1-12, 116 -17 
Twenty-four-hour satellites, 50-55, 118-19 

Von Zeipel's method, 44-47, 53-55 

Zonal harmonic determination, 116-18 
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