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PREFACE

TuE FIRST PURPOSE of this text is to demonstrate the application and develop-
ment of familiar physics—Newtonian gravitation—and familiar mathe-
matics—Euclidean geometry—in a particular environment: the earth. The
second is to collect and explain some of the mathematical techniques developed
in reccent years in order to ulilize artificial satellites for geodesy.

To make this book as uscful as possible for the first purpose, it is assumed
that the reader has completed only the pertinent parts of o fizst-year course
in physics and a first-year course in calculus. Thus, although it is assumed
that the reader is familiar with the fundamentals of potential fields and
analytic geometry, full cxplanations are given of certain mathematical
techniques, such as spherical harmonics and matrices, that are necessary to
apply these fundamentals in the context with which the book deals.

The second purpose may interfere with the first in that it introduces more
complications than are necessary for an understanding of the physical
principles involved,  owever, the fact that such complications occur in
applying simple physics and the fact that certain mathematical techniques
are valuable because they cope most effectively with complications are
perhaps the most important lessons for the student. '

In writing this book I am indebted to the following persons: for comments

n earlier drafts, to Robert G. Wilson and Bernard F. Cohlan at the Uni-
versity of California in Los Angeles and to C. A. Whitten, Martin Hotine,
and others at the United States Coast and Geodetic Suryey in Washington,
D.C.; to Robert H. Gersten of Aerospace Corporation, Las Angeles, who
contributed greatly by carcfully reading the final draft; and to Elizabeth
Doty for her diligence and patience in preparing the typescript and its
-multifarious corrections. *

= W. M. Kaura
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THE EARTH’S GRAVITATIONAL FIELD

1.1. Potential Theory

The most pervasive fact of the familiar physical environment is the carth’s
pravitational attruction. According to Newtons universal law of gravitation,
the force of attraction belween two particles of masses nrand M at a distance
rfrom cach other will be

P MM (1.1)

P2
where k is the gravitational constant. If we combine Equation (I.1) with
Newton’s second law, which 1s

F = ma,

we obtain the acceleration of the particle of mass m with respect to the center
of muss ol the two particles,

kM

a4 =-—, (1.2)

P
This acceleration is the magnitude of a vector directed along the line between
the two particles. A vector & cquivalent to Equation (1.2) will be obtained
by expressing the acceleration as the gradient of a scalar, called a potential.
Thus

a="VV, (1.3)
where .
=M S e
p



2 The Earth’s Gravitational Field [Ch. 1

In (1.4), V'is shown as a positive quantity, which is consistent with the sign
convention of astronomy and geodesy. In physics V' is conventionally taken
to be negative.

For m negligibly small compared to M, Equations (1.3) and (1.4) are
consistent with a coordinate system whose origin is at the center of mass of
the particle of mass M. For the effect of several particles of masses M, at
distances r,, the combined acceleration can be expressed as the gradient of a

- potential, which is a sum of potentials ¥, expressed by Equation (1.4).
If these particles are conglomerated to form a continuous body of variable
density p, this summation can be replaced by an integration over the volume
of the body. Thus

Y= /cmﬂ(—"ii’—z—)dx dy dz. (1.5)

(x, ¥, 2)

For a particular component a, of a derived from the point mass potential
of Equation (1.4), we have

a,= == -/<M%, (1.6)

and for the sccond derivative, we have

. /CM(— Ly 3"2). (1.7

Adding together the second derivatives for the other two coordinates, we
get Laplace’s equation,

T A Y (N W CXS LS
VY = YO + 5 + 5 kM 3 + - =0. (1.8)
We would get this same result for any element of mass p dx dy dz in the
potential of Equation (1.5) and hence for the summation thereof.
The coordinate system, rectangular or-otherwise, that is most convenient
in a physical problem usually depends on the geomeiry of the boundaries.
The earth is rather round, which suggests spherical coordinates. Thus,

X = rcos ¢ cos A,

y =rcos ¢ sinl, (1.9)

N
il

rsin ¢,
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where r is the radial distance from the origin, ¢ is latitude, and 4 is longitude
measured eastward (that is, counterclockwise looking toward the origin
from the positive end of the z-axis). The notation used in Equation (1.9)
is consistent with geodetic practice; usually in mathematics there are used
0 for colatitude and ¢ for longitude.

In order to convert the Laplace equation, (1.8), to spherical coordinates,
we need partial derivatives of the spherical coordinates with respect to the
rectangular coordinates. These can be obtained by dillerentiating Equation
(1.9) with respect to r, ¢, and 4 in turn and then by solving the simultancous
differential equations for dr, dp, dA. Thus we have

dr = cos ¢ cos A dx + cos ¢sin A dy + sin ¢ dz,

d¢ = — ! sin ¢ cos A dx — lsin ésin Ady + lcos ¢ dz, (1.10)
r r r

di = -- -sin A dx + cos A dy.
Feos ¢ I COS
Then
ov _ovar ovas  av oz
dx  drdx  0hdx 04 dx
oV ovi1 . sini oV
= — A—"—-5 A= 1.11
o cos ¢ oS 24 r in ¢ cos cos § 07 (1.11)
and
>’V [aW (aV 1 v )1 .
— = = — ——]~sin ¢ cos A
ox* 0 dd d¢ or
+ sin 4 (8_111 - ﬂ or. 4+ similar factors X Qf and _8_/1 (1.12)
rcos p\IA r  dAor/1ox ox ox
Carrying out these differentiations for
oV oV oV

oy

in turn and adding them together, we obtain for the Laplace Equation
in spherical coordinates,

o afLev\ . 1@ VLY
Ry = —-( ~2——) ——-—~—~( ad ¥ 0. (113
’ o\ 5] T cos g a4 cos $ a¢ t st g on (L13)
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1.2 Spherical Harmenics
To express the vartations of the potential V in the spherical coordinate
system, it would be convenient if 7 had the form

V = R(r) D) A(2). (1.14)

By substituting Equation (1.14) in (1.13) and dividing by RDA, we pet

1____( ,dR) + ~—~l~~—i((,)g(l'(m)) lr—*“lw('[——j—\" — 0. (1.15)
Rdr\ dr Beos ¢ dep d¢ A cos® ¢ da®

Because the first term ol Equation (1.15) is the only term that is o Funclion
ol 7, it must be constant say, as fater turns out to be convenient- i/ - ).
Carrying out the differentiation and multiplying by R, we have

I»l\ -+ 2 I["-—I(l + R =0, (1.16)

i dr

!

The form of Equation (1.16), in which 8 and cach ol its derivatives is
multiplied by the cquivalent power of », suggests that R is of the form s,
Substituting this value in Equation (1.16) and solving the resulting equation
for k, we get l and —/ — | as the two admissible solutions, or

R = Ar' + Br 1, (1.17)

where 4 and B are arbitrary constants. In the case of interest to us, a poten-
tial in free space vanishing at infinity, 4 must cqual zero.

Substituting from Equation (1.16) into (I.15) and multiplying by cos? ¢,
we obtain a separation of the A term. Thus

. cos ¢ d ( oD 1 d*A
l+1 - - = = 0. 1.18
(+ Deos'é+ O dé os ¢ a(p) + A dR (1.18)

The last term of Equation (1.18), sjnce it is the only one that is a function
of 1, must be constant. On making this constant equal to —m?, we have

A = C-cos mA + Ssinma, (1.19)

where C and S are arbitrary constants. Substituting —m?® for A term of
Equation (1.18) and muliiplying by ®/cos® ¢, we get an equation that is
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solely a function of ¢, Thus

1 d ( ) [ m* 1
A .
cos ¢ d¢ °°s¢’(¢ S R ey

or, substituting u for sin ¢,

O =0 (1.20)

th1~/)iq-+P0+1y—l_l]¢=o (1.21)

The form of Equation (1.21) with m = 0, known as Legendre’s equation,
is solved by assuming that ® is represented by a power series in u (Apostol,
1962, pp. 359--364). In the case of m # 0, the | — 2 in the denominator
nukes the simple power series representation inconvenient, and the equation
must be solved by cut-nnd-try. The try that succeeds is (o assume that @

has the Torm
D == (0 - ™2 ), (1.22)

which leads (o an equation Tor . 'Therefore,

(1 —u )——- — 2(m + l)‘uﬁl—' + (T =mI+m+ =0 (1.23)
du*

Assuming
v = aud, (1.24)
i=0
substituting in Equation (1.23), and requEHng the coeflicient of each power

of u to be separately zero, we obtain a recurrence relationship between
alternate coeflicients of the power serics. From the coeflicients of u* we get

gy = Rl 2m A+ ) = (=)l +m £ 1) (1.25)
2 (k + Dk +2)

In order to obtain the maximum possible value of k, we set the numerator
of Equation (1.25) equal to zero and solve for k. The result is

kmax = 1 — m. (1.26)

Hence m =</, and if »is to be represented by a finite power series in g, the
allowable powers will be / — m — 2, where ¢ is any non-ncgalive inleger <
(! — m)[2. Let us substitute (/ — m — 2¢t) for k and th¢' notation 77,,,
for a,. Then, on taking advantage of the eancellation between some terms
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in the numerator to obtain a more compact expression, Equation (1.25)
becomes
(1—-111—2t+1)(1——m—2t+1), 497
n{t-1)+ (""’ )
2021 =2t + 1)

This solution still leaves 77,4 to be defined. Because the whole expression

s muitiplied by the arbitrary constants BC and BS from Equations (1.17)

and (1.19), T, is also arbitrary; any change in the value adopted for 7,

would merely result in an inversely proportionate change in BC and 3S.

As a result of the most common manner of derivation, T),,, 15 usually defined
as (see, for example, Hobson, 1961, p. 91)

Flmi -

D1
Ty = ool (1.28)
2N (I — m)!
Applying Equation ([.27) successively to (1.28), we then get
- (=121 = 20!

il = ] N s ; :
MRt (= 0 — m = 20!

(1.29)

The solution ® of Equation (1.20) or {{.21) corre%ponding to a particuia
pair of subscripts 7, w2 is called a Legendre associaied function, P, (sin ¢)
or P, (u3; thus we have

Lint

P {sin ¢) == cos™ ¢ > ‘» T,
Tl

psin TR D, (1.30)

where k is the integer part of ({ — m)/2.
The complete real solution of the Laplace equation, (1.13). from (1.17)
(setting 4 = 0, B = 1), (1.19), and (1.30) is then

- 1 A | . L e .
V= 2’.,;7}”1 Sy “—“l}b EU e P, (sin ¢)[C;,, cos mA + S, sin mi], (1.31)
Lini =0 m= .

where the i subscript in the first term denotes the cos ml or sin m4 term,

In addition to these.real solutions, there are imaginary solutions that are
not applicable to the potential problem in which we are interested.

An important property of the surface spherical harmornics S,,,; is that they
are orthogonal; nameiy,

' >

f SimiSu; do =0 iflsh or m sk or 1j (132
sphere
for integration over the surface of a sphere. This properly makes the spherical

harmonics the natural means for general representation of a function over
a spherical surface, analogous to Fouricr series for a function in a rectilinear
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space. The integral of the square of S,,,; is, for unit Cy, or S,

m)!
S?mi do = l_ (Z + ”1). - j|47T, (133)
- LU — m)! 21 4+ 1)(2 — b4)
sphere
where the Kronecker delta 4, is cqual to 1 for m = 0 and 0 for m 7 0.
The factor (/ 4 m)![{(/ — m)! indicates that the magnitude of the functions

I = 22

Ficure 1. Examples of spherical harmonics.

(and hence of the coefficients) will vary greatly with the subscript m. In
order to make coeflicients more readily comparable in numerical work, it is
generally convenient to use normalized functions, for example,

4 /2
S = [(1 — ’”)!((17‘:_"' 1))'(2 — ‘S“"")]l S i (1.34)
’ nj.

Spherical harmonics are most conveniently remembered in terms of their
zeros. A surfacé harmonic S,,,; will have (/ — m) zeros in a distance =
aiong a meridian and m zeros in the same distance along a patallel. Some
examples are shown in Figure 1. )
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1.3 Potential of the Lliipsoid

The shape of the carth, as defined very closely by the geoid, or mean sea
level (less meteorological cffeets), is determined not only by the gravitational
potential ¥ but also by the potential of rotation. These (wo potentials
combine to make what is called the potential of gravity,

W=V 4 o¥?cos? ¢, (1.35)

where o is the rate of rotation,

It is an observed lact that the geoid is approximaled within about 1079
of the radius vector by an cellipsoid of revolution, The shape of this ellipsoid
is conventionally expressed by the fattening f,

/= (0 —b)a, (1.36)

where ¢ is the equatorial radius and 6 is the polar radius, The value of
Sisabout 3353 x 10 % Tence, to explore the 10 * departures of the carth’s
eravitational lield from a reference potential ¥y of an eflipsoid, it is nceessary
to carry the expression of ¥, in terms of the mass M, radius ¢, rotation o,
and flatiening f to terms of order f2. Furthermore, in order to conncct
results of systems affected by gravilation (satellite orbits) with thosc allected
by gravity (gravimetry), it is desirable to connect the parameters of the
cllipsoid convenient to the former (kM and C,) to those convenient to the
latter (the equatorial acccleration of gravity g, and f). The algebra involved
in making this connection is considerable, so we shall write out only the
terms to O(f) in the solution outlined here,

The symmetries of an ellipsoid of revolution indicate that its radius vector
can be expressed as a sum of even degree zonal harmonies. Thus, we have

1= rg(U A oy Pog A oy Py + 00, (1.37)

where Py, Py arc defined by (1.29) and (1.30).
The cuﬂomary manner of representing the potenlxal of gravity of a refer-
ence figure, or “normal” potential, is

4 o N
kM[l o ( )Pm 3 J4( )“Pm . ] yLledm e py (1.38)
r r 3 a

where

m = ﬂ, (1.39)
g

in which g, is the acceleration of gravity at the equator.
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Expanding (1.37) by the binomial theorem gives

e {l +n(nm )(7 n [MZ_}_”_('!_%_I_)Q?JP%
+ l:”o‘q + M{g:_]) ':]i w '}v (1.40)

when use has been made of

Phy= 3Py + Py + . (1.41)

Substituting (1.40) into (1.38), using (1.41), and neglecling PPy, and
P3 terms, we get a form for the potential U on the surface of the ellipsoid.
Thus

U= Uyg,, m, ry, oy, a, kM, J,)
4+ Colg,, 1y g, a, KM, T3Py

- Colg,, My Py 0wy oy, Gy KM Js, S Py, (1.42)
where

Uuzk_M_ 8N 3+()U)

o 3a

o
c2=—1‘“—4[ao+1( )} £ 13 + o(f?),
o ry 3a

€= O(f).

If the ellipsoidal surface is an equipotential, then U must be constant and
cqual to U, thercon. The coeflicients C, and Cy must therefore be separately
equal to zero, which yields two equations for kM, Jy, and J; in terms of the
other parameters. A third cquation is obtained by the condition that the
negative of the radial derivative of U must be equal to g, at the equator. Thus,

- kM

15
8

—g, = (1 +=J, — ) + g.m. (1.43)

(l

The three equations then can be solved simultaneously for kM, J,, and J,.
We have

kM = ag,[1 + 3mf2 + 30,2 + O(f))],
Jo = —mf3 — o, + O(f?), ‘
Jy = O(f?.

%
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In order to obtain ry, , and 2, in terms of the conventional parameters
for an ellipsoid, ¢ and f, we have the equation

oyl (1.44)
a> a*  b*

Converting from rectangular to spherical coordinates by Equation (1.9),
using (1.30) (o climinate b, solving for /%, and then applying the binomial
thcorem to obtain r, we gel

F=u [l - (f -+ %_/"" + ) sin® ¢ + %_/'” sint p — - - ‘I (1.45)

Integrating (1.45) from O to | with respect to sin ¢, we get r,

ry = all — f]3 + O(f»],

and then ¢, and oy,

&

=213 + O(f*),
vy = O(f*).

Substitution in the equatibns for kM, J,, and J, gives the final solution,

0 3 15 \
kM = ~p(1—~-—-—— 1.46
a'g f{—zm 14mf—l- ) (1.46)
2, . 13 2,
4’]2”51(1“2])_#3”]\]_2’11_;])—*" , (1.47)

1
Jy= = O =S (1.48)
33

To summarize, for the purposes of celestial geodesy, we can consider the
carth’s gravity field as represented by a normal poteitial of an ellipsoid
of revolution, Equation (1.38), plus small irregular variations expressed by
a sum of spherical harmonics, as in (1.31).

¥
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2

MATRICES AND ORBITAL GEOMETRY

2.1. General

The purpose of this chapter is to deseribe the peometry ol an idealized
siluation: a vacuum with an carth rotading uniformly with respeet to lixed
inertial coordinates. This idealized situation will constitute both the reference
frame for the development ef close satellite orbit dynantics in Chapter 3,
and for the deseription of observations of satellites and variations in the
coordinate system in Chapter 4. Asa preliminary to describing the geometry,
as well as to some techniques of data analysis in Chapters 5 and 6, we
summarize the rules of matrix algebra.

2.2. Matrix Notation

A vector x, or {x;, Xs, X,}”, can be changed into another vector y by a
linear transformation given by

Vo= apXy b oapXs 4 gy,

Yo = Xyt AoaXy + QuyXy, 2.1
Ya = Uy1Xy + UgeXs + AaaXs.
Equation (2.1) can be abbreviated as
#
Vi = 2 A%, ihj=1,23, (2.2)
or as ’
y = AX. (2.3)

A rectangular array A of numbers g, is called a matrix. Matrix algebra
is the expression of algebraic operations on arrays of quantities, such as the

2



[§2.2] Matrix Notation 13

transformation in (2.1), in compressed notation such as (2.3). In this text
we shall be interested both in expressing transformations from one coordinate
system to ancther and in the formation and solution of generalized lcast-
squares problems. The principal rules of matrix algebra are:

The numbers a;; that comprise a matrix are called efements.

The first subscript ¢ denotes the row, and the second subscript j denotes
the column, in accordance with the customary method of displaying matrices.
For cxample, we have

ayy Gyt dyy,

Iy [ v 1y

20 2n

A=la]=] " . (2.4)

_aml Uy 77 amu_

The number of rows, as, and ‘the number of volumns # are called its
dimensions. Particular lypes ol matriees arc:

I. A vector, or column matrix, is a matrix that has only one column.
We denote vectors by lower-case boldlace letters, such as

a,

ay

2

a=la]=| " |. (2.5

am

2. A square matrix, or quadratic matrix, has the same number of rows and
columns. .

3. An orthogonal matrix is a square matrix whose determinant |a;| is £1,
and whose inverse is equal to its transpose [sec (2.11) and (2.20)]. '

4. A rotation matrix is an orthogonal matrix whose determinant is +-1.
In this book we are interested mainly in rotation matrices of dimension
3 x 3. For those rotation matrices whose elements r,,, satisfy the following
rules, we adopt the notation Ry(6):

j = i(module 3) 4 1, k = j(modulo 3) + 1,
=]

F,; =g = +cosl, ry=4sinG,  ry= —sinl.

) Py ==ty =ry =0, - (2.6)
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These rules are consistent with a right-handed coerdinate system and positive
signs for counterclockwise rotation, as viewed looking toward the origin
from the positive axis. For example, we have

cosf) sinf 0"

Ry(0) = | —sin@ cos0 O 2.7
0 0 1_|
Rotaiion matrices are also called direction cosine matrices.
5. A diagonal matrix is a matrix whose elements a;; satisfy the rule
a; =0 if i) (2.8)

6. An identity matrix, or unit matrix, is a diagonal rotation matrix; that
is, all a;; are 1. It is generally denoted by L

7. A null inatrix, or zero matrix, is onc all of whose clements are 0. It is
generally denoted by 0.

8. A symmetric matrix is one whose elements a;; satisfy the rule

Uy = Q. (2.9

5]

9. An antisymmetric mairix, ot skew-symmetric matrix, is on¢ whose
elements a,; satisfy the rule

Ay = —ay. (2.10)

The transpose B of a matrix A is a matrix whose elements b,; satisfy the
rule

by = aj;. (2.11)
The transpose of a matrix A is generally denoted by AT.

Cperations in matrix algebra arc given as follows:

1. The sum C of two matrices A and B of equal dimension has elements
cy; that satisfy the rule

Ci; = ay + by (2.12)
The operation of summing is denoted by
c=4+B. (2.13)
2. The difference D of A and B is similarly defined and denoted by

di] =d;; — bH’

(2.14)
D=A—B.
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3. The product P of A and B has elements p;; that satisfy the rule
D = E y3b e (2.15)
J

Hence the number of columns of A must equal the number of rows of B.
Tn matrix notation, multiplication is denoted by

P = AB. (2.16)

Equations (2.1)—(2.3) express a multiplication in which the matrices B and
P are vectors. Matrix multiplication satisfies the associative rule

A(BC) = (AB)C RY))
but, in general, does not satisfy the commutative ruie
AB # BA, (2.18)
also written
(ABY' = BTA”. (2.19)
If the determinant |a,| of a square matrix A is nonzero, then there exists

onc and only one matrix, which is called the inverse, or reciprocal, matrix
of A and is denoted by A%, for which

AAT = AA = 1. (2.20)

The elements of A~ are given by

a;; = Koy , (2.21)
a1

where K;; is the cofactor of the element a,; in the determinant |a,,|, namely,
(—1)" times the minor obtained from |a,,| by taking away the ith row and
the jth column.

The operations of differentiation and iategration of a matrix are applied
to each element separately; that is,

[ 0ay/0x Qap/dx -+ day,)ox |
Oayy [0x a_a%/ax cer o 0a,,[0x
oA _ - Cr (2.22)

__aa-ml/a"c aam‘-’/ax T aamn/ax'_.

*y

and similarly for integration,
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A Jacobian is a matrix of partial derivatives ol the elements of one vector
with respect to those of another and is given by
[0y,)0x, Dp,/Oxs Op,[0xy
= | 0yy/0x; 0y,[0x, Oyy[0xs|. (2.23)
0yafdxy Oyy0x, 0yyl0x,

I the elements of A in (2.3) arc not functions of the clements of x, then A
is the Jacobian of y with respect to x. If the determinant of A in (2.3) is I,
then it is a rotation matrix, and (2.3) cxpresses a rotation of coordinate
axes.

9 _ 0 Ya )
Ox T 0(xy, X, Xy)

2.3. Orbital Geometry

For reasons that will become apparent in Chapter 3, it is convenicnt to
refer the position of a sutellite to reciangular coordinates ¢ fixed in an

Focus Perigee.
e .

—p

Apogee —

FIGURE 2. Orbital ellipse.

ellipse inclined to the equatorial plane, as shown in Figures 2 and 3. Geod-
¢sists are interested in earth-fixed coordinaies; we need to connect earth-
fixed positions to positions referred to this tilted ellipse.

Let carth-fixed positions be represented by a rectangular-coordinate
system u, with the u; (or u) axis toward latitude 0°, Iongitude 0°; the u,
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(or v) axis toward latitude 0°, longitude 90°E; and the uy (or w) axis toward
jatitude 90°N, the north pole. The connection is through an inertially
fixed-coordinate system x, with the x; axis toward the vernal equinox, the
point where the sun’s orbit intersects the equator; the x, axis 90°E eastward
in the equator; and the x, axis toward the north pole. The angle between
the equinox and the Greenwich meridian—0° longitude—is known as the
Greenwich Sidereal Time.

Hence, for an earth rotating counterclockwise uniformly about an axis
fixed with respect to inertial space, the shift from the earth-fixed coordinate

z

| Focus
A
SN\
\

VRN

P Qe

FIiGURE 3.  Orbital orientation.

system u to the inertially fixed system x will be a simple clockwise rotation
about the W, or Z, axis through 0, the Greenwich Sidercal Time. On
following the notation of (2.7),
cos —sin 0
x = Ry(—O0n=|sinl cosf 0] u (2.249)
0 0 1

Performing the multiplication of (2.24), we have

=y cosf — vsin b,

X
y=usin0 + vcosl, ~ (2.25)

N
i

W,
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Using the alternative notation of subscripts to the rotation matrix, denoting
the vectors transformed by the rotation, we get

R, = Ry(—0), (2.26)
and inversely,

R, = Ry(0). (2.27)

For rotation from the x coordinates to the ¢ coordinates—with ¢, toward
the point of the ellipse closest to the origin (called perigee), g5 in the orbital
plane (as defined by Figure 2), and g; normal to the orbital plane—we
require first a counterclockwise rotation about the xj-axis (3-axis) from
the vernal equinox to the intersection of the inclined plane with the equator,
called the nodes (see Figure 3). This rotation is denoted by

Ry(Q) (2.28)

Next, a counterclockwisc rotation about the I-axis, from the equatorial
plane to the orbital plane is given by

Ry(1) Ry(0Y). (2.29)

And finally a counterclockwise rotation about the 3-axis from the node
to perigee is given by

R,, = Ry(w) R,(i) Ry(Q). (2.30)

Q, i,-and w are identical with the Euler angles relating the q and x coordinate
axes. Conversely, we have

R,, = Ry(—Q) Ry(—i) Ry(—w). (2.31)
Applying (2.6) and multiplying the matrices together, we get

cosQcosw —sinQcosisinw, —cos Qsinw —sinQcosicosw, sinQsini

R,, = | sinQcosw + cos Qcosisinw, —sinQsinw + cos Qcosicosw, —cosdsini
sin { sin w, N sin / cos w, cos ¥
(2.32)

‘which is rcqtﬁred for use in Section 3.2. An alternative notation often used
is P, Q, W for the unit vectors along the q axes referred to the x axes:

qu_= {P, O, W} (2.33)
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3

SATELLITE ORBIT DYNAMICS

3.1, Elliptic Motion

Letus assume thal we have a particle of negligible mass attracted by another
point mass M in accordance with Lguation (1.2). Let us asswine further that
the origin of coordinates is at the mass M. Equation (1.2) for the aceeleration
of the particie can then be expressed in vectoriol form, using g For kM, as

P — kMl = —purjrs, 3.0

The acceleration vector ¥ is therefore colinear with the position vector r.
If we define the equatorial plane as the plane determined by the position
vector and the velocity vector ¥, the particle will never depart from the
equatorial plane because there is no component of acceleration out of the
plane. Hence, in converting from rectangular to spherical coordinates by
Equation (1.9), we can set equal to zero the latitude ¢ and its derivatives
with respect to time ¢ and ¢. Differentiating Equation (1.9) twice with
respect to time, we obtain Equations (3.1) in polar coordinates,

X = rcos i,

y =rsink,

X = jcos A — rlsin A,

¥ = Fsin A + ridcos A, ’

% =FcosA— 2fdsin A — risin A — r(A)2cos A = —u cos A/r?,

= Fsin A+ 2fAcos A + rhcos A — r(A)?sin A = —u sin A/r%.

The point from which the longitude A is measured is arbitrary, so we can

20



i§3.1] Elliptic Motion 21

also set A = zero, but not A or . The equations of motion thus become
F—r(l)? = —plr? 3.2)
JA 4+ 27 =0, (3.3)

If we multiply (3.3) by r, it is evident that the equation is immediately
integrable to

rih o=, (3.4)

where /i is constant.  Equation (3.4) states that angular momentum, 1A,
is conserved. We integrate (3.2), replacing 1/r by u. Then

du 1
dr *
From (3.4),
de _ 1t
di
whgncc
du _dw deodt 1ot 7
dA o dr o dtoda *h h
Also
fﬂ_i(_i')d_t_ i ¥
dx®  dt\  h/dA hh u%h®
or
. o AU
F= —h%®—. 3.5
e (3.5)

Substituting from (3.4) for 4, and from (3.5) for # in (3.2), and replacing
r by 1/u everywhere, we get

d’u u
— = . 3.6
T (3.8

=u=Acos(d— 4 + ﬁ . (3.7)

2 2 ~

Sy, 3.8)
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we substitute ae -+ r cos f for &, rsinf for %, and a*(1 — ¢* for 6% and
solve the resulting quadratic equation for r, we get for the positive root

pom A=)
(I +ecosf)
or

4 /
= cos f. 3.9
T T g 3:9)

1 1
;

Comparing (3.7) and (3.9), we see that (3.7) is the equation of an cllipse
with origin at the focus and that

A=A =], (3.10)
A=t 311

a(l — €% G
h = Jpa(l — ¢ (3.12)

The size of the orbit of the particle can thus be expresscd by the semimajor
axis ¢ of the eltipse; the shape, by the eccentricity e; and the location ol the
particle in the ellipse by f, called the true anomaly. Position in the orbital
plane can also be expressed by the g-coordinate system, described in Section
2.3 and shown in Figure 2. In order to specify completely the location of the
particle, we nced the three Euler angles shown in Figurc 3 and described as
rotations in (2.28)-(2.30): the longitude of the node (2, the inclination i,
and the argument of perigee w.

Another way of locating the particle in the cllipse, which is sometimes
more convenient, js the eccentric anomaly £, The eceentric anomaly, as
shown in Figure 2, is the angle subtended at the center of a circle of radius a
tangent to the ellipse by the point on the circle whose & coordinate is the same
as that of the point on the ellipse. From Figure 2 we get

q, = & — ae = a(cos E — e). (3.13)
Using (3.8), we then obtain
4o =17 = a1 — ¥?sin E, (3.14)
=g + g% = a(l — e cos E). (3.15)
For the rate of motion of the particle in its orbit, we can use (3.4), changing

A to f. Equation (3.4) is more readily integrated if the true anomaly is
replaced by the eccentric anomaly. Differentiating (3.9) with respect to f,
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we get

dr __ _rddfn) ___ re _ginf.

df df a(l — &%)

If we substitute g, for r sin f from Figure 2,

reqs N o
lr = —"""—df. 3.16
‘ a(l - ¢%) af (3.16)

From differentiating (3.15) and (3.14), we obtain

- g, dE. (3.17)

L~ ¢

dr =

On using (3.16) and (3.17) to climinate df, (3.15) for r, and (3.12) for 4,
(3.4) becomes

o1 = e (1 — e cos E) dE = </ pa(l — e?) dt. (3.18)

Equation (3.18) integrates to

E—esinE= M, (3.19)
where
M = n(t — 1)
and
n = a3 (3.20)

The time ¢, is the time of passing perigee. The quantity M is known as the
mean anomaly, and tlie quantity n as the mean motion. Equation (3.19) is
known as Keplet’s equation and (3.20) as Kepler’s third law.

The angular momentum per unit mass #, whose magnitude is given by
(3.4) or (3.12), can also be expressed as the vector cross product of the
position and velocity,

h=xxx%. (3.21)

On using the rotation matrix R,, defined by (2.32), the inertial rectangular
coordinates can be expressed in terms of the Keplerian elements,

x =R {Q, i, }q{a, e, M},

N (3.2
% = R, 1{Q, i, o}ifa, e, M},
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where, from (3.13), (3.14) and Figure 2,

a(cos £ — e) rcosf ]

4= a\/r— ersin [ = | rsinf|; (3.23)

0 0

and from (3.13)-(3.18),
—sin K —sin f
. s ' ‘
q= \/1 — efcos It l——ﬁ;— = ¢+ cosf 71:“1 x (3:4)
—_— S L ] — eu
0 , 0

For the velocity v, using (3.9) with (3.20) and (3.24), we have

2 ) ]
07 =y + ¢

- (1””‘%) (sin®f 4 ¥ -+ 2¢ cos [+ cos /)
—e

i N e £ (1 2
= ;('l — (2 4 2ecosf) — (1L — ¢%)]

(-2
=ul-—-}
r o a

Then for the total energy per unit mass, following the sign convention
of physics, we have

T—v=2_#__ £ (3.25)
2 " 2a

In order to perform the reverse of (3.22), that is, to go from rectangular
components to Keplerian elements, the fact that the angular momentum
vector-h of (3.21) is normal to the orbital plane can be used to determine
the Jongitude of the node  and the inclination 7. Referring to Figure 3,
we see that

.
Q = tan™ [hy/(—h,)],
i = tan™ [(h? + hDYYhy],

L ]
where Ay, hy, hy are the components of h. Then in the orbital plane let

P = Ry()) Ry()x,
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whence
o 4 = tan=t (pa/p)).

From (3.4), we have

P [0r — B3R

from (3.25),

~
=

= rpf(2pe — ro¥);
from (3.12),

[0

= (1 — I*lua)'/?,
Then from (3.15), (3.17), and (3.18), we have

cos E = (a — r)/(ae),
sin E = rife(ua)t’?,

and finally from (3.23),
J=tan"! [\/] — e¥sin Ef(cos £ — ¢)].

3.2. Perturbed Equations of Motion

The foregoing developments apply solely to motion in a purely eentral
field, but our interest in satellite geodesy is mainly due to the faet that the
earth’s gravitational field is noncentral; that is, Equation (3.1) should be
replaeed by

F=VY,

where ¥ has a noncentral form sueh as (1.31) or (1.38). However, even
for this noneentral field the Keplerian ellipse and its orientation ean be
regarded as a eoordinate system, alternative to reetangular or polar ecoordi-
nates, analogous to the use of geodetie latitude and longitude and altitude
for position in an carth-fixed system. At any instant the situation of a
satellite in earth-eentered, inertially fixed eoordinates ean be deseribed by
the reetangular components of position {x, y, z} and veloeity {x, y, Z}.
In plaee of these six numbers the six numbers of the Keplerian ellipse
{a, e, i, M, v, £} may be used. The relationship between the two systems
can be expressed by the rotation from a eoordinate system in the orbital
plane referred to perigee to the inertially fixed system, as given by (3.22).
The Keplerian cllipse {a, e, {, M, , Q} corresponding to the pasition
r and veloeity f of a partiele at a partieular time is known as the instantaneous,
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or osculating, orbit. If the potential field V differs from a central field, this
ellipse will be continually changing. However, if the field differs very slightly
from a central ficld—as is the case for the earth—we should expect that the
parameters of the ellipse would chunge slowly, and hence that the ellipse
would constitute a coordinate system convenient for representing the position
and velocity of the particle. The problem is to convert the equations of
motion from rectangular coordinates to Keplerian ellipse coordinates, or
elements, as they are more conventionally called. First we convert from
vectorial to subscript notation, and second we change the equations of
motion from three second-order equations to six first-order equations
by treating the velocity components as variables the same as the position
components. Accordingly,

d

X; = X i=1, 2, 3,
dt
_ (3.26)
i,\":i:a—K, i=1, 2,3,
di ox,

(3

where x;, %; denote inertially fixed rectangular components of position
and velocity, respectively. The rates of change dx,/dr and d%;/dt in (3.26)
can be expressed as functions of the rates of change ds,/dt of the six Keplerian
elements, where s, represents any of a, e, i, M, w, or &. Thus

i=1,2,3 (3.27)
PO Pl e i=1,2 3, (3.28)

where 0x,/0s, is obtained by differentiating (3.22) and (3.23) and 0x,/0s, by
differentiating (3.22) and (3.24). In the central formulas of (3.27) and (3.28)
we have followed the convention that summation takes place over subscripts
repeated in a product. The summation symbol will be omitied hereafter.
In order to complete the conversion, for each element s; in turn: (1) multiply
(3.27) by —0x,/0s,, (2) multiply (3.28) by ox ;/0s,, and (3) add the resulting
equations together. Thus

"r
Bk Ox d B Dip ds Bk Bn OV oo
© 0s, Os, dit 0s, Os, dt 9s, = s, Ox
or
ds, OF

, 8] — = — 3.30
b s 5 =5 - 6o
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if we sum over k. Here
[ sl = — = (3.31)

whieh is known as Lagrange’s braekets, and
F=V~T. (3.32)

F is known as the foree funetion; it is the negative of the total energy as
used in physies. V is the negative of the potential energy, and T is the
kinetie energy. Thus, summing over /,

i

T = ds, 7" (3.33)

The foregoing treatment was essentially first earried out by Lagrange. In
celestial meehanics this treatment is eustomarily applied to the expression
of the x;, X, in terms of the time ¢ and the set of Keplerian elements at
another time ¢, ealled the epoeh. [n this situation the kinetie energy T and
the eentral term u/r of V' do not appear on the right. There are now two
prineipal problems: (1) the formulation of the Lagrangian braekets [s,, s,],
and (2) the transformation of the potential V' from reetangular or polar
eoordinates, sueh as (1.31), to Keplerian elements.

The form of (3.31) indieates that [s,, s,] is the negative of [s,, 5] and
that [s,. 5,] vanishes, so there are fifteen different Lagrangian braekets to be
determined by differentiating (3.22). A property of the Lagrangian braekets
that faeilitates their evaluation is their time invarianee. Thus,

azxt . % axi a?')'(i a?')ii axi aX

— —— s —— e D L — L

— s sl =

ot Os, Ot as,,+as, 0s,0t 0s,0t Os, 0s, 0s,0t
- 2.2 o 06] 2705 05 % 25)

"~ s,Lot 8s, 0, o o s, 0s, ot

o1, ox ax,,--.,:] ] [ ox;  0x; :l
=TT M — oM T oM T T X
os,L  0s, Os, os L. " ds, Os,

o1o0® ox; a(u/r)] 0 [1 o(v?  ox; a(/.t/f‘):l

05y,

=—5};_2 ds,  Os; Ox Os,L2 as, 0s, Ox

_136Y) Pl _190Y) , ) _
20s,0s, 0s,0s, 20s,0s, 05,05,

0. (3.34)

\

Henee the q and { that appear in the expression (3.22) for>x and X, and
their derivatives, ean be evaluated at a eonvenient point, sueh as perigee,
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where £ is zero. Evaluating q and ¢ at perigee, we get from (3.22)—(3.24) in
(3.31) '

Oryn Or;,  Orp 8:,1) P —
a Sp Sp] = [ =2 =2 — =2 gt 1 e2
(a) [s5, si] (aSL 2s, 35, s, na \/l e
ifs,=Q, i,orw and if s, = Q, i, or w;
alil( 9, 8(/0)
b Sy, 8] = a(l — Tt T
() Isp sl =a(l — ) 5, i 3 s,
\/l —-€*na 81’12 aql 4 aqz)
yrzTe e : .
| —e avlk Yos, | Tos/  (3.3%)
ifs,=Q, i,orw and sp=a, e, M;
0¢, 09, 0q, 9 0q,0G;  0q, 0q,
(C) [Slﬁ glc} = 11’11( 11 IL - (h Il) 411 1,2(__/1'_l2 - _ﬁ—/-)
.05, 0s, 05, 0s, \J5, 05, 05, 05,

*Wﬂaa"m% s, 85, 35, 05,

ifs,=a, e,or M and S = a, e, or M.

94, 94, aiz?ﬁ]}) + rr (a‘Iza‘]z 8498‘7")

In (3.35), ryy and ryy aré elements of R,,; sce (2.32). We have, for example,
for [€, i] from (a) of (3.35) and (2.32),

o a’u . ahz a"iz aril Y a—
0, i) = (Za. P e Ol s
0Q  di 0Q  9i
= [(—sin Q cos w — cos ) cos i sin w)sin L2 sini cos w
— (cos Q cos w — sinQ cos i sin w)cos Q sin i cos w
— (sin Q sin w — cosQ cosi cos w)sin Q sin i sin w
— (cos Q sin @ 4 sin Q cos i cos w) cos Q sin i sin w]na®/1 — €
= —na®J1 — e*sin i, (3.36)

The complete set of nonzero results is

[Q, i] = —[i, Q) = —na?(l — e?)2sin |,

[Q, a] = —[a, Q] = (1 — e®)2cos i naf2,

[Q, e] = —[e, Q] = —na?e cos il(1 — e}/ (3.37)
[w5 (l] = _[a9 0.)] = (1 - 82)1/2’70/2:
[w, e] = —le, w] = —na®e/(1 — )12,

[a, M] = —[M, a] = —na/2.
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The substitution of expressions (3.37) in (3.30) and the solution of the six
simultaneous equations for the ds,/dt yicld

da_ 208
dt  naoM’
de_1-¢ 08 (Lo or
dt nae oM na’e o’
do cos i aF+(1—é)“2_Q£
dt na*(1 — )Y sin i i na‘e de’
di cos i oF 1 oF (3.38)
dt o ona®(l — Y3 sin i 9w na¥(l — €)Y sin i 9Q°
w___ 1 or
dt  na*l —e)?sini 9i’
dM_ _1—&0F _ 20F
d na*e de na da
It is customary to express the forec function as
F=E4R-T
-
=£ 4R (3.39)
2a

from (3.25). The function R, comprising all terms of ¥ except the central
term, is known as the disturbing function. Hence in all cquations of (3.38)
F can be replaced by R except in the last, which becomes, using (3.20),

2
dM 1 —e* OR 2 0R (3.40)

aMm_ ,_L1—€¢ oR __Z %
t na*¢e 0Oe na Oa

The symmetries and similarities of the brackets in (3.37) suggest that further
simplifications may be made by change of variables from Keplerian, Let us
try to find a set L, G, H such that

M, Ll=1, [M, G]l=0, [M, H]=0,
[0, L1 =0, [0, Gl=1, [0, H=Q, (3.41)
[Q, L]=0, [Q, G1=0, [Q, A= 1.
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The only nonzero bracket in (3.37) involving the inclination i is the first.
From (3.31) we must have

[Q, H] B?H ={Q, i] = —na*(1l — )Y sin i, (3.42)
i

whence
H = na*(1 — %)% cos i. (3.43)

As a check, we find (remembering u is pt/203/%)

o m o @ m o aq (3.44)
e da

Similarly from [w, G] 0G/de and {M, L] dL/9a, we have

G = na¥(] — e?)\/2 (3.45)
and
= nut = pllgl2, (3.406)

We thus obtain (3.47), the somewhat simpler Delaunay equatians,

dL _9F  dM _._oF
dt oM’ dt oL’

LGZE, dg:)-:——ai?w (3'47)
dt ow dt oG

di_8r 4@ __ OF

dit 907 di ol

In using Delaunay variables the notation M, w, Q is usually replaced by
the notation /, g, i [not to be confused with the # defined by (3.4) and
(3.12)].

3.3. Conversion of Spherical Harmonic Disturbing I'unction

In order to convert the spherical Rarmonic potential (1.31) to Keplerian
elements, we require some trigonometric identities, such as

cos mx = Reexp (injx) = Re (cos x + j sin x)™

m
= Re 3 (T)js cos™ ™ x sin® x, (348)
§=0
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where Re denotes the real part, j is J=1,and () is the binomial coeflicient :

m m!
= ——— 3.49
(5‘) st(m — s)! (3.49)
sin mx = Re [—j exp (mjx)] = Re [—j(cos x + j sin x)™]
=Re Y (T) 7 cos™ ™ x sin’ x, (3.50)
g0

. ' @ b
sin® x cos® x = [— é(c“’ — e“’"’)j] B(e“’ + e‘”‘“)]
_ (_I)U‘j” < Sla—e)iwr 1\ ,—ciw , _1_ u“ b . plo—=d) iz —djz
= » 2 o) (=1 > )] e e

2% =0\

_(—1)"](! Lo&fa)(b platb—2e=2) g ¢
= GRES B(0) (oo

-8 (0w

X [cos (¢ + b — 2¢ — 2d)x
+ jsin(a 4+ b — 2¢ — 2d)x], (3.51)

cosacosb =1 cos(a+ b) 4+ §cos(a— D),
sinasinb = —}cos (a + b) + Ycos(a — b), (3.52)
sina@cos b = }sin (@ + b) + %sin(a — b),

cosasinb = §sin(a + b) — §sin (0 — b).

Let a particular term of (1.31) be

Ha, :

Vlm - l+1

P, (sin ¢)}(C,,, cosmd + S, sin ml) (3.53)

We have made the C;,, S;, nondimensional by applying the factor
pal, where a, is the equatorial radius of the earth. We then substitute
[m(e — Q) + m(Q — 0)] for mA, where « is right ascension and 8 is Green-
wich Sidereal Time:

cos ml = cos m{oe — ) cos m(£2 — 0) — sin m(&, — Q) sin m(Q — 0),
sin mA = sin m(a — Q) cos m(Q — 0) + cos m(o. — Q) sin m(2 — 0).
(3.54)
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In the spherical triangle formed by the orbit, the cquator, and the satellite
meridian (see Figure 4) we have
cos (@ + f) = cos (¢ — Q) cos ¢ + sin (o — Q) sin ¢ cos 7/2,
cos ¢ = cos (w + f) cos (o — Q) + sin (w + f) sin (@ — Q) cos 7,

whence
cos (@ — Q) = cos (w + f)/cos ¢, (3.55)
sin (¢. — Q) = sin (w + f) cos ifcos ¢,

and

sin ¢ = sin i sin (w + f). (3.56)

FIGURE 4.  Orbit-equator-meridian friangle.

If we apply (3.48) and (3.50) to the (x — Q) functions in (3.54) and
substitute (3.55) therein, we get

cos mi = Re % (m)},s cos™ *(w + f)sin® (w + f) cos® i
s=0\ 5 cos "¢
x [cos m(Q — 0) + j sin m(Q — 0)),
m m—s [- ( s )+ s ,( ) (3.57)
sinml = Re > (m) j cos”*(w + f)¥in® (w + f) cos’ i
§=0 cos™ ¢

% [sin m(Q — 0) — jcos m(Q2 — 0)].

If we substitute (3.56) for sin ¢ in (1.30), which is the definition of P,,,, and
then substitute both (1.30) and (3.57) in (3.53), by cancelling out the



§3.3] Conversion of Spherical Harmonic Disturbing Function 33

cos™ ¢’s, we have

al k 2
Vlm - ‘ul_H Z Tlmt Slnl " tl RC [(Clm jSlm) €os I?’I(Q - 0)

+ (Spn + JCr) sin m(QQ — 0)] 2 (m)j sin S (0 - f)
X ¢cos” ™ (w 4 f)cos®i, (3.58)

where k is the integer part of (/ — m)/2.
Onapplying (3.51) to (3.58), witha =/ —m — 2t + 5, and b=m —s,

l k

Vlm = 2 E It sin”~ "} Re [(Clm - jSlm) Cos m(Q - 0)

. o . 1{}‘ m - — -2
+ (blm + j(’lm) Sin I”(gl - ())]Z( ).}V COSS ! [ jf)t—‘.!t—_

-0\ §

l-—-m»::.!Hs mesfy m — 21 4_ s m—s .
(N il (Y
=0 d=0

X [cos(l — 2t — 2¢ — 2d)(w + ) + jsin (] — 2t — 2¢ — 2d)(w + )]
(3.59)

By applying (3.52) to the products of (2 — 0) and (w + f) trigonometric
functions in (3.59), and dropping any term with an odd power of j as a
coefficient (since V/,,, is real, such a term has another term cancelling it out),
we have '

k s ¢
Ha, l—m—2t Tt mjcos i
Vlm = + g ImtSln l( 1) 2, 21 2¢

1—-m—2{-Fs m—s _ _— —
xS (l m—2t+ s) (md S)(_])c

c=0  d=0 4

X {[ iy }’“"‘ - cos [(I — 2t — 2¢ — 2d)(w + f) + m(Q — 6)]

- Slm I—m odd

S l—m even
+ [ ”"] sin [(I — 2t — 2¢ — 2d)(w + f) + m(Q — )]} .
Clm I—m odd
(3.60)
It is desirable to transform (3.60) so that terms of the same argument

[( — 2p)( + f) + m(Q — 0)] are collected together. By substituting p for
(r + ¢ + d) necessitates, in turn, the elimination of onc subscript from the



34 Sutellite Orbit Dynamics [Ch. 3

factors. Putting p — ¢ — ¢ in place of  scems most convenient. The limits
of the d summation place limits on the possible values of ¢, which turn out
to be simply those making the binomial coeflicients nonzero. In addition,
< p.

The expression for V), thus becomes

’ ! C l=m oven
vy, = Ly m,.,-,.("){[ . ] cos [(1 = 20} -+ f) + m(Q = 0]

.
" = - blm» [—-m old

CY L= Qv
+ [SCM] sin [(! — 2p) (@ + f) + m(Q — O)], (3.61)
i

L—mn old

where, substituting {rom (1.29),

Silll 'm---‘ZII-

. - (20 — 20!
I' Mwp ‘{ = - A ) 0
ol 1) ‘?‘I!(I—-I)!(l e 1 2pyi R

% )('i’) cost iy (’ s 2k ‘)( e )(—1)“ E(3.62)

90 ¢ ¢ P = l—c

Here k is the integer part of (/ — m)[2, 1 is summed from 0 to the lesser of
p or k, and ¢ is summed over all values making the binomial coeflicients
nonzero. A formula such as (3.62) is convenient only for computer use.
For hand calculations, a table is better; expressions for Fy, (i) up to
Imp = 444 are given in Table 1.

TABLE 1
Inclination Functions F,,, (i) from Equation (3.62)

—

m I') F‘l m?)("‘)

~3sin?i/8

Isin®i/4d — 1]2

—~3 sin? /8

Isin i(1 + cos i)/4
—3sinicos if2

—3sin i(1 g~ cosi)f4
3(1 + cos i)%/4

3 sin®4/2

3(1 — cos )4

-5 sin® j/16

15sin® i/16 — 3 sin i/4
—15sin® §/16 + 3 sin i/4
5sin® (/16

—15sin® i(1 4 cos i)/16

W W WL DN
- O OO ORNNRN MM -= OO
O WM — O L O —0ON—O
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TaBLe 1 (Continued)

~

-~
>

~

1"[ m ]J(i)

BB D DR WLWWWWWWWWW LW

™,
E-N

I O N e I T T i S SN S S S e T ol

APAEEDD LR WUWLWMWRNNENRRNN - = —— =2 0CCOWWWWINNNN———

P LUN—OPLWUN—~OPWNRNFODWLN—C

N~ C W = O WN —C W —

-

15 sin%j(1 + 3 cos i)/16 — 3(1 + cos i)/4

15 sin®i(1 — 3 cosi)/16 — 3(1 — cos i)/4
—15sin?® i1 — cos /16

15 sini(l -+ cosi)?/8

15 sini(l —2cosi — 3 cos®i)/8

—15sini(1 4 2cosi — 3cos®i)/8

—15sini(l — cosi)*/8

15(1 + cos i)*/8

45 sin%i(1 + cos)/8

45 sin* i(1 — cosi)/8

15(1 — cos i)*/8

35 sin? §/128

~35sin? 32 - 15sin*ifl6

(105/64) sin i — (15/8) sin® i + 3/8

~(35/32) sin® 7 -+ (15/16) sin®

(35/128) sin* §

~(35/32) sin® i(1 - cos i)

(35/16) sin® (1 4 2 cosi) — (15/8)1 - cosi)sini
cos i(15 sin i/4 — 105 sin® i/16)

—~(35/16) sin® /(1 — 2 cos i) + (15/8) sini(l — cos i)
(35/32) sin® i(1 — cos i)

—(105/32) sin i (1 + cos i)?

(105/8) sin? i cos i(l + cos i) — (15/8)(1 + cos i)?
(105/16) sin® i(1 — 3 cos?i) + (15/4) sin®
—(105/8) sin® i cos i(1 — cos i) — (15/8)(1 — cos i)
—(105/32) sin® i(1 — cos i)*

(105/16) sin i(1 + cos i)®

(105/8) sin i (I — 3 cos®i — 2cos®y)

—(315/8 sin® i cos /

—(105/8) sin i(1 — 3 cos®i + 2 cos® i)

—(105/16) sin i(1 — cos i)

(105/16)(1 + cos i)t

(105/4) sin2 i(1 + cos i)*

(315/8) sint i

(105/4) sin% (1 — cos i)®

(105/16)(1- — cos i)

The final transformation necessary to obtain a disturbing function con-
sistent with (3.38) is to replace r and f'in (3.61) by a, M, and e, that is, to

make the replacement

|

1

rl+1

ces
sin

][(l — ) +f) + m(Q — 0)]

= L33 6@ 10 = 2900+ (1 = 20+ M+ @ = 0
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In order to obtain long period terms—those terms from which M is absent—
we can average (3.61) with respect {o M, that is, we can integrate with respecet
to M from 0 to 27 and then divide by 27. We then have from (3.4), (3.12),
and (3.20),

a(l —e -

and from (3.9),
r2frett = [(1 + e cosf)fa(l — e} (3.64)

Binomially expanding (1 -+ e cosf)'=7, applying (3.51) and (3.52), and
omitting imaginary terms, we. pet

L1 [eos
2 Jo 7L sin

-+ e ()6
2w de a1 = 2R S b S\

X ﬁ:(s)%{ [Cosil [(I=2pyo + (I + b —2p —=2d)f + m(Q — 0)]
d=0

sin

:l[(l — 2o 4+ ) + m(Q — O dM

4 [cos} [(1—2p)w 4+ (L — b — 2p + 2d)f + m(Q — 0)]} df

sin
1 cos ] ' Q—0 365
= (FGlp(Zp—l)(e) sin [( - 2p)w + m( - )]’ ( . )
where

_ Y RS 2 41—~ 2p'> (5)2““_2”'
qlw(?p—[)(e) - (1 . ez)l—(l/‘&)d%'0 (2d 4+ 1 — 21)1)( d 2 >
(3.66)

in which

pi=p for p<ip,
pr=101—p for p>1ip2
The “§” fuclor inside the o summation of (3.65) has disappeured because the

two terms that satisly the condition for long period variztion (/ — 2p) 4
(b — 2d) = 0, are symmetrically placed coeflicients in the binomial expansion,
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and hence can be combined by making the one substitution (2d 4 / — 2p”)
for b in (3.06).

For the short period terms, [ — 2p + ¢ # 0, the development of G, (e)
is much more complicated; we merely quote the result of one solution
(Tisserand, 1889, p. 256):

Glﬂa(e) = (_1)[(”(1 + ﬁa.)zﬂ[qllz Plnul«Ql-quﬂgk’ (367)
Je=0
where
e
ﬁ—]+\/]"‘(’-2, L
Lof2p = 20\(=1) ({1 — 2p" + ¢)eY
Pru= (20 =)D (U=20 )
=0 rl 2/} . (368)
h=k+yq, ¢>0, h=k ¢ <0
and

Quyr = E ( h —2pr); 1((1——2]2)—/3+q—k> (3.69)

I =k, g >0; h=k—¢q, g <0;
p=p ¢ =qlorpLl2; p=I-p ¢ =—gforp>I2

Expressions for G, (¢) up to [pq = 442 are given in Table 2, which is
based on the more extensive tables of Cayley (1861).

The final result for the transformation of ¥, in spherical coordinates,
(3.53), to orbital coordinates can thus be expressed by

,ual !

Vlm = attl, zFlmp(l) z Glm(e)slnmq(w M, Q 0)’ (370)

where

l—meven ’
Sumsa= | o 7" o 10— 2000+ (1 = 2 + M + m(@ ~ )

—Slm 1-m odd

I—m eVGIl
+ [Slm} sin [(1 — 2p)w + (I = 2p + M + m(Q — O)].

Cl'm 1—m odd
(3.71)
3.4. Linear Perturbations

As discussed in Chapter I, the term of the gravitational fjeld which will
dominate the disturbing function R is Vi, since Cy, (or —J,) is-at least
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TABLE 2
Eccentricity Functions Gy,(e) from Equations (3.66)~(3.69)
or the Tables of Cayley (1861)
Lp g I q Granle)
2 0 -2 2 2 2 0
2 0 —1 2 2 1 —ef2 + 16 + - - -
2 0 o 2 2 0 1 — 5¢%2 + 13116 + -
2 0 1 2 2 -1 Tef2 — 1236816 + - - -
2 0 2 2 2 -2 17¢%/2 — 11546 + - -
2 1 -2 2 1 2 9e*/4 + 144 + - - -
21 -1 21 1 3¢/2 + 276316 + - - -
2 { 0 (1 — ¢¥)—3/2
30 -2 3 3 2 28 + V48 + - -
30 —1 33 1 — + 54 e
3 0 0 3 3 0 1 - 6e® + 4236464 + - - -
30 1 3003 —1 Se —22¢% 4 -+
30 2 33 —2 127628 — 3065448 + - - -
3 1 -2 3 2 2 1128 + 49¢1/16 + - -+
3 1 -1 3 2 1 “e(1 — e?y5
3 1 0 3 2 0 1 + 2 + 239464 + - -+
3 1 1 3 2 -1 3¢ + 1134 + -+
3 1 2 3 2 -2 53¢%/8 + 39416 + -+ -
4 0 -2 4 4 2 B2 — M3 4 e
4 0 -1 4 4 1 —3e[2 + T5eY16 + - -«
4 0 0 4 4 0 1 — 1le® + 199¢4/8 + -
4 0 1 4 4 ~1 13¢/2 — 76563/16 + + - -
4 0 2 4 4 -2 51e2/2 — 3212 + - - -
4 1 -2 4 3 2 Befa)(1 — 2y
4 1 -1 4 3 1 ef2 + 33e2/16 + - -
4 1 o 4 3 0 1 4 ¢ + 65416 + - - -
4 1 1 4 3 - Sef2 — 3¢316 + - -
4 1 2 4 3 -2 53e2/4 — 179¢*)24 + - - -
4 2. =2 4 2 2 5¢? + 155¢4/12 +- - -
4 2 -1 4 2 1 5¢/2 + 1356316 + - - -
4 2 0 (1 4 3e2/2)(1 — &)~ 7/2
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100 times as great as any other C,,,. Thus

Vir #iZO(a)ERW@)GE,,,,(e)cos (2 —2p)o + 2~ 2p +M]. (3.72)

»q

Assuming that the cocflicients in V,, are of about the same magnitude,
we should expect the terms in (3.72) that do not contain M—(2 — 2p + q)
is zero—to be of appreciably greater effect after integration than those
which do contain M, since the latter will go through a full cycle in the rela-
tively brief time it takes the satellite to complete a revolution. The summation
limit in (3.66) indicates that terms with subscripts (p, ¢) of (0, —2) and
(2, 2) do not exist, so the only term of ¥y, from which M is absent is

uCofa,\ -
Vaoro = La O(a )I 201(D)Gypa(e). (3.73)

Evaluating Fyy by (3.62) and Gy, by (3.66), and usm;, — + Vaoto for Fin
the Lagrangian equations (3.38), we get

da _,
dt
de _
dt ’
do _ pCya [ OFyy, (1—¢) acm]
— ———1 —cot | —= G, F,
dt  n(l — )b oi M + e M e
InCypat
= Lm—-—ze"T)z-a—Z [1 — 5 cos®i],
z_g =0, (3.74)
‘l@ — #Capt5Gayo . 0Fy01
dt  n(l — e 2absini  0i
3nCyya’ _
o — eyt
2 e
aMm =n+ /‘Czoa:onll:_ 1—e ,anm + 6G2m:'
dt na e Oe )
—71——?1@———(3005;—1) A

4(1 — &b)¥*q*
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The value of Cyy is aboult —0.0010827; on using typical geodetic satellite
orbit specilications such as ¢ = 0.01 and « = 1.12q,, the above formulas
yicld

2~ #3.55(5 cos i — 1) degrees/day,
LY —6.70 cos i degrees/day, (3.75)

~ 14,37 4 0.0093(3 cos? i — 1) revolutions/day.
¢

It is an observed fact that the secular motions such as in (3.75) are the
dominant perturbation of geodetically useful satellites—that is, those high
enough not to suffer excessive drag, but low enough to be perceptibly per-
turbed by the variations of the carth’s gravitational field. Hence the first
approximation to an integration of the equations of motion (3.38) for the
cflect of a particular disturbing function R, such as a potential ficld term ¥,
will be one that assumes that the only variations with time ol~ the elements
on the right side of the equations are the secular rates ), L2, M, plus any
other rates of change from outside the orbi(, such as the rotation rate of the
carth 0. Under this assumption, the integration of (3.38) with one term
ol (3.70), Vw28 the disturbing function will be

2 lm'nGllw(I 7’) -{— (I)S[mpq
nat (= 2pYi 4+ (= 2p + )M + m(d — )]’
AB =/J,c'll Flnmcl-);q(1 _ ed)lla[(l - eu)l/u(l _ 21) + Q) - (l _ 2p)]Slmm
fmpa T e na (i — 2p)o + (1 — 2p 4+ Q)M + m(Q — 6)]
[(1 — &) F,,,(0Gyy/9e)
— cot i(1 — &)™ YHDF,,,/0)C1palSimpa
na* 3l — 2p)>o + (I — 2p + @M + m(Q — 0)]
FlmpGlpa[(l '-' 2])) cosi— r”]Slm-pq
na" (1 — )2 sini[(I — 2p)i + (1 — 2p + Q)M + m(Q — )]’
,Ll (thu;a/ai)GlﬂJaS-lmm .
e e al+3(1 — A sinif(] — 2p)i> + (I — 2p + )M + m(Q — 6)}]
AM — ILL(TZ [_(J _ 82)6’_1(60”,,,/68) + 2(] + 1)Gl‘pq]Fl1n'pS-T'm7Jq
e C a1 = 2p)> + (I = 2p + @M + m(Q — 0)] ’

Aulm py = /‘l a

b

3

Awln:pq /’m

N 1
Allmam = luaa

AQ

(3.76)

where S,,,,, is the integral of S,,,,, With respect to its argument.
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Specific cxamples of the perturbations (3.76), using (3.62), (3.66) and (3.71),
are

{. The long period perturbation of the cccentricity by Cyy, the “pear-
shaped” (erm is

3 ENTER
pa(l — e . .
6 . ZF30p(’3p(2p—3)530p(‘.’.u«'d)
ha ew =1

_ 3uajCy(l — $sin®i) |
2na%(1 — %

Aeaou—x) + Aeyyy = —

nw; (3.77)

2. The semidaily perturbation of the mean anomaly by Cy, and S,,, the
“equatorial ellipticity,” is
[—(L — €)e"(3Gu10/0€) + 6GoiJasF 20180010
na®2(Q — 0)
Qual sin® i
T dna®(1 — eXYHQ — 0)

AM 2210 =

[—C,ysin 2(Q — 0) + S, 08 2(Q — 0)].
(3.78)

3.5. Nonlinear Perturbations

Since Cyy is about 1000 times as big as the other gravitational ficld coefli-
cients C,,,, Sy, wWe should expect that a solution of the problem of a close
satellite motion in which the eflects of the C,,,, S,,’s are described as
linear perturbations in accordance with (3.76) would require that the effects
of Cyy should be described as nonlinear perturbations to order (Cyy)®. That
is, lincar perturbations of the elements on the right of the equations of motion
(3.38) due to C,, should be taken into account. If the problem is solved by
numerical integration of (3.38) with a suitable integration interval—or, for
that matter, by numerical integration of the rectilinear equations (3.26),
—then such higher-order effects will be automatically taken care of. For
example, writing the equations (3.38) as

S'i = ‘S.‘i[sw ’] = ji{a’ 6, i) M; w, Q’ Z},

where s, is any one of the Keplerian elements, the integration for a time-step
At can be done by the standard fourth-order Runge-Kutta technique:

w, = §;[s,(1), 1] A,

xp = §s,(0) + wyf2, 1 + Atf2] As,
vy = $:Is;(1) + x5/2, t + Atf2] A, . (3.79)
z, = §0s;(t) + yift + At} A, -

5t + A) = 5;(t) + wi/6 + x,[3 4 v./3 + z,/6.



42 _ Satellite Orbit Dynamics [Ch. 3

An excellent summary of numerical integration techniques applied to satellite
orbits is given by Conte (1962). A solution more in keeping with the develop-
ment thus far, however, would be one analytically developing (3.38). There-
fore,

0s;
8; = $§,(s0) + = Ass;

ds;

d d
=—(Ass) + — (A,sy),
dt dt

where s; is any of the Keplerian elements.
Subtracting out the first approximation, d(A;s,)/dt, leaves

‘(‘I‘ (Ays;) = a_,s Ass

3.80
dt Os (3.80)

s
2
where As; is found by (3.76). However, it would require considerable
tedious algebra to apply (3.80) dircctly in this manner. 1t would be laborious
even to get the one most important second-order perturbation—the (Cy)?
contribution to the secular motion—because the interactions of all periodic
terms with themselves must be taken into account. Thus for the secular
part of A,s;, we have

NS, = (%’ A, 800, — periodic ferms), (3.81)

J

where summation is over j, p, and g. In order to apply (3.81) to the evaluation
of Ay{Q), &, M} to the power €% in the eccentricity, 10 X 3 x 2k terms
must be evaluated using (3.72) in (3.38) to obtain $;59,, and Aysjeg,,. Then
(Vy not being a function of ), 5 x 6 x 2k x 3 differentiations must be
made to obtain the 05;9,,/0s;; and finally, a like number of multiplications
must be performed.

Some saving of effort is possible if we express Vy, in the closed form of
(3.61), evaluating F,,,(7) by (3.62),

2 .
Voo = CZOE(&) [(E sin®i — l) _ 2 sin? i cos 2(w +f)], (3.82)
S\ 4 » 2 4

using the partial derivatives of elliptic motion derivable from (3.9)-(3.19),.
and postponing the averaging with respect to time until the end. This method
has been used in developing some theories. However, the more satisfying
analyses of the close satellite problem have gone back to a considerably
earlier point than the Lagrangian equations (3.38) in an aftempt to obtain
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a clearer insight or a more accurate or more efficient solution. Some of the
best solutions have expressed the potential in ellipsoidal harmonics; other
solutions have used elements differing appreciably from the Keplerian in
order to attain a formulation suitable for numerical iteration.

The solution we shall outline is that developed from the Delaunay equations
(3.47). To abbreviate the equations, we express L, G, H as py, ps, ps and
M, w, Q as q,, ¢, q3 (not to be confused with the vector q in the orbital
plane). Equation (3.47) then becomes

pi = OF3q;, §; = —0F|dp,. (3.83)
Since, from (3.83),

OF dp, , OF da

=0, (3.84)
op, dt = 0gq; dt

we have

- = (3.85)

Here the explicit derivative 0F/0t signifies, in the problem posed by the
disturbing potential (3.70),

oF _ ?ff) (3.86)

o0 a0
dF|ot is thus purely periodic. Hence, if the solution is known for the
motion expressed by the canonical set (p’, q’) with a constant force function
F' close to F, the solution for (p, q) can be found as that for (p’, q') plus a
Taylor series over the difference (p — p’, ¢ — q). Several such transforma-
tions could be made in succession; the most general such succession for a
close earth satellite would be -

KL, G H lLLg, h y~>~FUL,G, H, —, g, I, —)
'—_>F”([‘”, G”, H”, — -, h”, _)
'_>FW(L1”, G/I/’ HIII’ N — _). (3.87)

The last transformation is obviously solvable as

p;’ = const %
3.88
qi’ = qio + const (1 — ), (3.88)
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In the case of the disturbing potential ¥y of (3.72) or (3.82), the law
transformaltion in (3.87) is unnccessary since the potential docs not contann
the nodal longitude 4.

The fact that the motions (p, @) and (p', ¢') are derived from single
scalars, /7and F', respectively, suggests that the Taylor series (ransformativn
could also be expressed in terms of a single scalur. We start with two
scalars,

X = X;pg; + F,

e , (38U
y = _Lf[)l(Ii + F 5 (

We wish to prove that between fixed points (p, q) at times 7, and 7,, variation,
of the integrals of v and y" will be zero for small variations (dp, dq) of the
path. Thus we have

‘3’ (S ++ T ddt =0,

AJ (—=Xplgi + FYdi =0, (3.9

known as Hamifton's principle.
Because the variable x is a function of p,, ¢;, and ¢;, we can write the firu
integral as

Ox ox )
-— dp, )] dq, | dt. R
fn <8p +6q7(q1+8' %) ¢ ( ‘

%

From (3.89) and (3:83) we have

Ox =g, + oF =0, (3.9
0p; ap;
which eliminates the first term of the integrand in (3.91). For the sccond
term, from (3.89) we have

ox _OF

— = RICAY]
04, —}18‘11‘

bie

In the third term, we replace 8¢, by d(dg;)/dt, and apply integration !

parts. Thus
ta i2 2
ali{(aq)dt— (Q éqi) f (av)é dr. (3.8
n Og; dt dg;, /n Ju dt\dg,
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I'he first term vanishes because the variations dg; are zero at the end
points. From (3.89), 0x/0¢, is p;; thus between (3.93) and (3.94) we have,
remaining as the integrand,

(% — /},;) dg; = 0, (3.95)

which is zero by (3.83). The second equation in(3.90) can be proved similarly,

ftamilton’s principle (3.90) indicates that the indefinite integrals are
continuous, and hence that their difference is expressible by a single function
. Therefore the integrands differ at most by the total time derivative of S:

2
f 95 4 = (1) — S(1y). (3.96)
I3

Lot
5 15 a function of both the (p, q) and (p’, q') variables; however, if (p, q)
i+ 1o be expressed as (p’, q') plus a Taylor series development over the dilfer-
snce, then only one hall"of the twelve variables (p, q, p’, ¢') arcindependent,
and S can be expressed in terms of any two of the lour sets. The expression
most commonly used is

S = S(q, p). (3.97)
Then from (3.90), (3.96), and (3.97), summing over repeated subscripts,

ds_as. , 3s. @S
dr aq,.q"' + op; it ot

= pd: + F + pigi — F". (3.98)

Because ¢; and p; are independent, for both values of dS/dr in (3.98) the
cocllicients of ¢; and p;, respectively, must be equal. Thus

s _ 08

. = , [ = , 3.99
d 0q; 1 ap.;- ( )
which leaves
F’=F—-?—b—. (3.100)
ot

S is called a determining function or generating function, and its use to
efiect a transformation (p, ¢) — (p’, q) in accordance with (3.87).is known
a5 Von Zeipel’'s method. In applying this method, S, F’, and~F are all
developed in series in accordance with the magnitude of the terms involved.
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Thus
S=S8y4+S +S 4+, (3.101)
Fi0) + Fi(0s @) + Fip', a) + -
= A+ R0 + Fo.0+ o = [Sd @0

So must have a form such that p; = pz, q; = ¢, in the unperturbed case;
that is,
So = 4.} (3.103)

Substitﬁting (3.103) in (3.101), differentiating (3.101) with respect to
qg:» p;, and substituting the result in (3.99), we have

9S; , 0Ss

4 TR
% 94, (3.104)
go=q 95 05
S app op

Developing F in (3.100) in Taylor series of (p, — p)) and (g, — ¢;) and
substituting for (p; — p;) and (¢; — ¢;) from (3.104), we get

s o,
F ——= = Fyp") | F,
ot
+aF‘,’ aSl+11(’ q)——g +F;
dp, 0, ot
°Fy (8S)) (3S)) | (109
9F,9S; 1 0 0( 1)( 1) ,
b B P e | +F!
dp; 0g, 2 0p;p;\dq,/ \0g, *
aF]_ aSl OSz aF{ aS]_
Al el F ’ n o222 —2 =1
* dp; 0q; R + J L 9q; op;

We then equate terms of equal magnitude in F and F'. These equations
determine the terms in S, because F’ will generally contain one less variable
than F and hence any terms in F dependent on this omitted variable must be
accounted for by S.

For the problem of interest to geodesy [using (3.39) and (3.46)],

212,
1«1 = Vy, (3.106)

Fy = Vtm-feoo,zo-
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Let us consider the problem in which Vy, is expressed by (3.72) and F,
is zero. Then from the first line of (3.105),

Fy = p?2L> (3.107)

On the second line of\(3.105), we choose F) to absorb all terms not functions
of M, or q;. Thus

7 C a(‘/ 2 ot 7 7
Fy = /ja_’ﬂ_)(;) Fo(iGyyo(e) = Vagror (3.108)

since from (3.66), Gag_g) and Gy, are zero. Then the remainder of the second
line can be used to solve for 85,/dq,, since Fy [from (3.106)] is a function of

p; only:

98, _ 98 _ (J:j) 1Cao ((2 )2
a’

M o, wooa
X 3 FagGuygc0s [(2 — 2p)0 + (2 = 2p + )M], (3.109)
PpeF 10
and
L’3 R 2 "G
s, = (__2) /&(‘L) 05O G110 — 2y + (2 — 2p +gIM].
p*la’ \a'/ 710 (2 — 2p +¢)

(3.110)

Derivatives of S, are then used in (3.104) to obtain the short period
variations in the elements that will agree with those given by (3.76). In
taking derivatives with respect to L', G', and H’, it is convenient to use
the partial derivatives of the Keplerian elements with respect to the Delaunay
elements. The derivatives that are nonzero are

dajoL = 2LJu,
de/0L = G*[L%,  2e|0G = —G/L?, (3.111)
2i/0G = H|G?sini,  0i/0H = —1/G sin .

Proceeding to the third and fourth lines of (3.105), we are principally
interested in the terms on the left arising from (95,/0q,)* and.(0Fy/0p;) -
(05,/9q,) that will not have a sinusoidal factor because each of the cosine
terms in F; and 05,/0g; has been multiplied by itself. As d consequence,
therc are contributions to the secular motions M, &, Q through F, of
coefficient C3,
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On the next transformation from /' to F”, terms containing the argument
of perigee w’ are removed. In this transformation, the first two lines of
(3.105) merely yield that Fy and Fy are equal to Ffj and /], respectively, since
there are no periodic terms involved. On the third linc both terms are zero,
since 8* does not contain M; but on the lourth line, there are two nonzero
terms:

ory 08 . » :
3G T + FL= T, (3.112)
01 10G" 1s; from (3.83), cqual to e, which by (3.74), contains a factor
(I — 5cos?i). Henceinsolving for .5]/0w’ weobtaina factor (I — 5 cos?i)~1,
and the solution is not valid in the vicinity of an inclination cos™ -\/1/5,
which must be treated as a case of resonance.

A clear and detailed exposition of the apptication of the Von Zeipel
method with /7 as in (3.106) is given by Brouwer (1959); sce also Brouwer
and Clemence (1961, pp. 562-573). The final sccular and long-period terms
to order J3 are

M’ = My gt 4 Spip(— 1 4 30%) 4 Syl —15 -+ 16y 4 25
+ (30 — 961 — Y01 )0* - (105 + 1ddy -+ 250" 1}
+ dymP[l — 110 — 400%(1 — 50*™*] sin 20",
"= g + net{fys(—1 + 50%) + Ffey’[—35 + 247 + 254
+ (90 — 19279 — 1260*)0% 4 (385 + 3601 + 451%)0'7}
— Teyal(2 + ") — 11(2 4 3e"%)0% — 40(2 + 5”041 — 50%)7*
— 40e"%0°(1 — 56%)%] sin 20",
Q8 = Qf 4 nyt{=3pi0 + Sy2l(—5 + 125 4 9520 + (=35 — 365 — 52)0°]}
— $p5e0[11 4 800°(1 — 560%™ 4 2000%(1 — 50%)~*]sin 2",
e = ¢ + Tyiem’[l — 1160° — 400°(1 — 50%7"] cos 20",
i = 1" — §yse”cot i"[1 — 110% — 406"(1 — 56%)7"] cos 20", (3.113)

S
i

where 7 = (I — ¢"™)2, = cos i, y"* = allo/(2a"n"), and ny = p22a"3/2,
The constants of integration definegd by Brouwer’s theory are the mean
elements:. namely the constant parts a”, ¢”, i and the secularly changing
parts at epoch M{, wf, Q, that are consistent with (3.88).

In addition to the Jj terms, there are two other types of second-order
terms that may be of significance:

1. If short period variations of the mean anomaly M are being taken
into account, then variations in M resulting from changes in the mean
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motion # arising from perturbations of the semimajor axis should be included.
From (3.80),

A,M =f é)ﬁAla di. (3.114)
oa
Using (3.76) for Aya and —3n/2a for dn/0a,

_ 3/““131"1-)11 wchmgl)mm([ _ 2[’ + ‘/)
a (= 2p)ir A+ (I — 2p + M + m(Q — O

A:ZMHMJU = (31 15)

2. If lis odd and m is zero, the interactions between the period perturba-
tions Ay, mp-1ys Mafiopep_ry, and the secular motions Qypp and dagye can
have pgl'ceptible effect on the periodic perturbations AQ,, wp1y AWy epays
and AM,,, 0,_y. Using (3.80) again and abbreviating lop(2p — [) as r, we get

AQ, = a—g%fAlc, dt - afs-%fAli,. dt
0 di

¢

= ;‘iﬂﬂ(l—”-g(ﬂﬂ)'(ﬂﬁi’—i-,}- J Age, dt — sin i f Ali,.d!). (3.116)
200 — ey Na/ \(L — ¢)

In (3.116), (3.74) has been applied. Similar expressions can be obtained for
Ay, and A,M,.

3.6. Resonance

The methods described thus far in this chapter fail for two categories of
orbits:

1. Orbits for which the eccentricity e, or inclination 7, is so close to zero
that nodal longitude Q, perigee argument w, or anomaly M, may lose their
definition and have absurdly large perturbations that virtually cancel each
other in calculalion of position or velocity. -

2. Orbits for which the secular rates of the arguments in some terms of
the disturbing function, (3.70), may be so close to zero that their periodic
variation is more significant; that is, we have a resonant situation in which
there may be libration rather than secular motion;

(I = 2pyi> + (I — 2p + @M + m(Q — 0) ~ 0. (3.117)
The difficulties in category (I)—near-zero eccentricity or inclination—are

somewhat artificial, in that they do not involve any physical phenomenon,
but are a matter of definition of coordinates, solvable by changing the orbital
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clements. Two types of changes made to canonical clements (p, q) such as
the Delaunay elements (3.43), (3.45), and (3.46) are
for any two pairs i, j,

Pi = Di q;:=4q; £4;

(3.118)
P;=1p;F po q; =4,

and for any i,

P =</2picosq,  q! =./3p;sing,

Such transformations can be applied to any pair, or any two pairs, in
succession.

The difficulties in category (2) are quite real; there is an actual change
in the behavior of the orbit. The case that has been treated most extensively
is that of the “critical inclination” cos‘l-\/l/S, for which, as mentioned in
connection with (3.112),

@ ~ 0. (3.119)

A case of greater interest, both because it has actually occurred in connection
with satellite communication projects and because it can yield information
about the gravitational field, is

O+ M+Q—0~0. (3.120)

A sateliite with the mean secular rate (3.120) will resonate with any spherical
harmonic Cy,, S,, that gives rise to terms with an integral multiple of
(w + M+ Q — 6) as an argument. A rough calculation setting 0 for n
and using Kepler’s law (3.20) indicates that the semimajor axis for the case
(3.120) to occur is about 6.6 earth radii. Hence, because of the (a,/a)t term
in the disturbing function (3.70), the dominant effect will be by those terms
for which / is small—in particular, Cyg, Sp.

Since I — 2p must equal m to obtain an integral multiple of (w + M +
Q — 0) as an argument in the disturbing function (3.70), / — m must be
even, and p must be (/ — m)/2. Also g must be zero. Let

]
1 !
— | a .
le = /';L\/Clzm -+ Si,l[j} Flm.(l—m)ﬂ(’)Gl,(l—m)/2,0(e) (3]21)

and

hop = — tan? (i) (3.122)
: m

tm
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From (3.70) the resonating disturbing function can be written

R = z Quncosm(w + M+ Q — 4, — 0. (3.123)

(I—m)even

Since the mean anomaly-M appears in this disturbing function, there will
be a perturbation of the semimajor axis, from the first of the equations of
motion (3.38):

di=— 2 S mQ,sinm@+M+Q—1, —0). (3.124)

na (i—m)even

This change in the semimajor axis in turn causes an acceleration in the
earth-referred longitude of the satellite. Let

=0+ M+ Q—06, (3.125)
where we have added the subscript A to indicate that this is the “broken-

legged” astronomical longitude, not the conventional geodetic longitude
measured along the equator. Using Kepler’s law (3.20), we get

L= =Lu=2 S mo,sinm@,—1,)  (3.126)
a

2
(1—m)even

Q

The double integration of (3.126) in a manner similar to (3.115) would
lead to a large Al because of the small divisor (n — 6)2. In addition, there
would be terms with divisor (n — 6) obtained by using the disturbing function
(3.123) in an integration of the equations of motion (3.38) in the manner of
(3.76). However, both (3.76) and (3.115) are derived under the assumption
that a valid first approximation of the orbit is a secularly precessing ellipse.
Such approximations usually break down in the vicinity of a resonance,
s0 (3.126) must be examined directly.

By multiplying (3.126) by 21, we obtain, as a first integral w1th constant
of integration X,

G)=K—S S oncosmy—1,).  (3127)

a® (I—-m)even
Let us define the constant K as a combination of the initial longitude 2,4

and rate A,,:

K = (140) + E Ql'm cos ’n(/‘LAO - /‘le)' (3128)

([—m)tvcn
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Since (4,4)? must be positive, from (3.127) we have the condition

K > — 3 Qu.cosm(Ay — Ay (3.129)
(( (I—myeven

If the constant K is small enough, the condition (3.129) will prevent the
longitude A, from going through a full cycle from 0 to 27. A small X is
most likely to result if 1,, in (3.128) is such as to make the dominant term
Qs €08 2(A g — Ags) near — Q,y: that is, if A,, is near Ay, &£ 7/2, which is
the minor axis of the equatorial ellipse. . On referring longitudes to this

minor axis by making the substitution

W= Ay — Ay — /2 (3.130)

and taking only the /m = 22 term of (3.127), we gel
e 6
(p)° = K ++ = Q. cos 2y
a”

= K 4 —()* Qufl — 2sin® y]. (3.131)

o”

The maximum departure
to zero ()%,

rom the minor axis will thus correspond

m

2 1/2
sin v, = L’z\é’ + 1} . (3.132)

From (3.131) we have

1/2
di/) l:K + 6len 12Q20 Sm" 1/):]
dt a® a®

1/2
= [EQT—“ (sin® y,, — sin® 1/)):] . (3.133)
at
On defining
k* = 1/sin®y,),, (3.134)

shifting dr and functions of g to opposite sides of the equation, and integrating,

(3.133) becomes .

ak v dy ak
N (,12Q22)1/2J; [1- k? sin® 1/)]1/2 (] 20, )1/2 (k 1/’) (3-135)

F is the elliptic integral of the first kihd, which for cases where k < 1 are
discussed at length in textbooks such as Hancock (1917). For the interesting
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cases in the present problem that involve libration, £ > 1. In order to
evaluate the resulting integral, we use the transformation

Flle, ) = FF , sin (k sin 1,))]. (3.136)
k Lk

Therefore a complete cycle of the ellipticintegral Fin (3.135) is (4/k)F(1 /k, 7[2),

and the time 7 for a complete period will be

. 2a 1 =
= (302" F(E’ E)' (3.137)

If k& is greater than unity, and the initial longitude 4, is close enough to
the stable point A, 4 7/2, sin y must vary between the limits +(1/k);
thus, the satellite will librate about the minimum longitude A, + /2. If
k is less than unity or if the initial longitude 4, is outside the limits of libration,
p may have any value: that is, the satellite will drift all the way around the
earth. Considering that the satellite mean motion n” must be greater than
the earth’s rotation rate  inside the zone ol possible resonance, and less
oulside this zone, we can draw a schematic picture of the areas ol libration
in an carth-fixed reference frame, as shawn in Figure 5.

An analysis of resonance can also be made similar to the Von Zeipel
method of Equations (3.83)-(3.105). In order to remove the explicit appear-
ance of lime through the angle 0 in the disturbing function (3.123), the third
angle variable g4 can be made:

h=Q-—0. (3.138)

Then in order for the equations of motion (3.83) to apply, 0 H must be added
to the force function K. By taking only the /m = 22 term from the disturbing
function (3.123), replacing cos 2(w + Q + h — Ay) by 2cos? (w + Q +
h — Ay) — 1, and breaking down F by magnitude in accordance with (3.102),
we get

Fy = p¥2L% + 0H,

Fi=2Qcos?(w+ M+ h— Ay), - (3.139)
Fy = —Qss.

If we develop the Von Zeipel transformation as in (3.105), we get

F, | F

21,35, | 0R3S, | 1TRy(35)',
oL oM ~ OH' oh  20L \oM '

= (3.140)

0F,0S, | 0F,0S, ; ’
T - ]111 F-).
oL oM ~ OH' Oh b Ty

..|..
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Here F; does not appear on the right of (3.140) since the corresponding part
of F is entirely periodic, and hence must be absorbed by S;. 0S,/0M and
0.S,/0h are equal, since M and / appear only as a sum (M + h). The phe-
nomenon of resonance thus appears in the form of a very small coeflicient
to this derivative since, from (3.139), (3.46), and (3.20), 0F,/dL’ is the negative

FiGure 5. Near 24-hour orbit paths in an carth-fixed reference frame,

of the mean motion, —n’. [tis for this reason that the change from (3.105)
was made in (3.140) of shifting the (35;/0M)? term to the second line. On
substituting v as defined by (3.130) and (3.125), the second line beconies

b

1 2
(6 — n") aa—i)l + -32%(%%) + 20, sin®*p = 0, (3.141)

Solving the quadratic equation (3.141) for 95,/0y and integrating, we get

Sy = —(0 — 1) £ E)L'|3n’, _ (3.142)
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where

w
E = E(k, v) =f (1 — k*sin® )% dy, (3.143)
o
the elliptic integral of the second kind, in which the modulus is

2 = 120 (3.144)
0 —nyL
For the longitude 4, with respect to an earth-fixed point, (3.104) can be
applied, taking derivatives of the determining function with respect to
L', G', H'. After considerable algebra and eliminating minor terms, a result

similar to (3.137) is obtained.

The method developed in (3.121)—~(3.137) is most similar to that of Allan
(1963). Morando (1963) has applied the Von Zeipel transformation to the
problem, as outlined by (3.138)-(3.144).

Another case of possibly significant approach to resonance in accordance
witly (3.117) that has been supgested is

i 4+ M+ m() — 0) ~ 0. (3.145)

For moderate eccentricities (/ — 2p), and hence /, must be odd. The scmi-
major axis must satisfy the condition

1/3 1/3 2/3
N —“—} m[l—q > 3.146
¢ [an [(m())2 m e = e ( )

Since / > m, and since a~("+3/% appears in the perturbation equations (3.70),
higher values of m would appear to be more effective, despite the drop oflf
in magnitude of the coefficients with increase in /. Then, for a particular

3/2
ma 17[&"]‘ , (3.147)
a
the disturbing function after (3.70) will be
('),u{-l—k %) a, 23 .
R = &T 2N =) Frnn()G100(e)S 1m0 (3.148)
aml- 3 ~o\a

where
k = m(mod 2),

I=m+2j+1—k . (3.149)
p=(m—K2+]
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For example, for a ~ 1.196a,, we have m = 13; /=13, 15, 17,---; and
p=26,1738,

Since 0 is one cycle per day, for any satellite there will be at least one term
of a period of two days or more. Hence, the second-order term in the anomaly
A,M from (3.115) becomes dominant because the rate is squared in the
denominator. Then for the perturbation along track, from (3.115) and
(3.76),

AV =AQcosi 4+ Aw + AM + AM

m+1-k

e 5 (055
am™t Mo 4+ M 4+ m(Q — 0)] i< fmam o0

oG 3G, .
H “"’+71+1G)]— B (3,150
[[() (I DG [+ M + m(Q — 0)) (3150
where
Tt (1 — &t 3 o
H@):J] e-(-d)_e 3¢ 3 _ .. G5y

¢ 2 8 16

Since they have opposite signs within the brackets, a rate [& + M +
m(€2 — 0)] having the opposite sign from the mean motion n would yield
the greatest effect.

3.7. Miscellancous Effects

In addition to the perturbations caused by the variations of the earth’s
gravitational field, close satellite orbits will also be perturbed by the gravita-
tional attractions of the sun and moon; the radiation pressure of the sun;
and the drag of the atmosphere. These effects may be particularly significant
in analyzing long period and secular variations to determine zonal harmonics.
The gravitational perturbations resulting from the sun and moon can be
developed analytically in a manner very similar to (3.76). Becausc the effect
of the earth’s shadow is most importantin the radiation pressure perturbations
and makes their analytical solution rather awkward, numerical integration
or numerical harmonic analysis is normally applied.

It is even more complicated to calculate the orbital perturbations resulting
from drag using a model of the upper atmosphere; therefore numerical meth-
ods are also indicated. However, in this case there is an additional difficulty
in that even the best of atmospheric mbdels are inadequate to account for
much of the significant variation in density; thus it becomes pointless to
make elaborate calculations of perturbations by the model. Instead, a few
parameters expressing the. principal drag perturbations are usually deter-
mined from the orbital tracking data itself, and some second- 01der effects
calculated from these parameters.
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At the altitudes of geodetically useful satellites, the force of drag can be
expressed by

F, = %” Apv®, (3.152)

where Cp, about 2.4, depends on the shape of the satellite and the manner
of reflection of the air molecules; A is the cross-sectional arca; p is the
atmospheric density; and v is the velocity of the satellite rclative to the
atmosphere. The drag force vector is always directed contrary to the velocity
vector, and hence its effect is not “averaged out” by the rotation of the earth
or of the orbit, as are the gravitational effects. Consequently, there is an
energy loss which results in a contraction of the orbit and a specding up of
the satellite to counteract the increased gravitational pull, in accordance
with Kepler’s law, (3.20). This speeding up causcs the drag perturbalions
to appear in the mean anomaly much more than in any other of the Keplerian
clements, and hence the arbitrary parameters approximating the drag (plus,
usually, radiation pressure) cffects are usually coeflicients M, of a power
series with respect to time of the mean anomaly,

AM, = ’ > Mt — to). (3.153)

L §=2

The series starts with A/, because M, is one of the constants of integration
and M, is indistinguishable from a, because of Kepler’slaw, (3.20). Equation
(3.20) also gives the drag perturbations of the semimajor axis consequent
to (3.153),

205/2 jmax

ax -
3 M= 0 (3.154)

Aq, = —

The atmospheric density decreases rapidly with altitude; so much so, that

even for rather moderate eccentricities the drag can be considered almost as

an impulse at perigee. Hence the energy loss can be related directly to
the perigee radius r,; from (3.25)

Ad? = 2AT? = yA[i — 1] —u A[—(ii—"l]. (3.155)
r, a a(l — e)
Since AT? < 0 and Aa < 0, necessarily Ae < 0. To the first approximation

Iy is constant since there will not be change at right angles to an imposed
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force. On assuming r, to be constant, we get

0 = Ag,(1 — &) — ale,
Ae, = Aa,l (1 -
=_——(1 _e)\//w (f— 1,77 (3.156)

The rate of motion ol the node and perigee caused by the oblateness Cyy,
or Jy, depends on the semimajor axis « and cceentricity e, Tenee, there will
be an acceleratian of the node and perigee duc to a change in «, e:

" O(Cyy C
AQ,I=JA£2‘,(M - f [a“((“")Aad + é'“’)A Jm. (3.157)
()

o

Evaluating, Cyp), (o) by (3.74), substituting from (3.154) and
(3.1506) for Au,, Ae,oand integrating, we pet

AL, = - cost. [7 — ‘}( .(,( : )_\/\I
A0 — Ll e a

0, = 4—5 51?'11[7 — CJCO[,(a )AM
41— Ll e a

(3.158)

In addition to the variations caused by atmospheric density expressed by
(3.153), (3.154), (3.156); and (3.158), there are variations in the motion of the
atmosphere that affect the orbit, since the velocity v in (3.145) is rclative to
thc atmosphcre. Such variations of motion appear most clcarly in the
inclination, which is unaffected by density variations. In particular, most
orbits show sccular decrcase in the inclination, as would be expected if the
atmosphere rotated with the earth, but at a rate fluctuating appreciably
from that indicating a uniform rotation. Hence a treatment for the cffects
of variations in atmospheric motion starting from a polynomial for the
inclination similar to (3.153)-(3.158) could be devetoped.

The treatment of drag is the most unsatisfactory part of satellite orbit
dynamics. Short-term variations which are of significance in determining
tesseral harmonics and station position shifts must be treated as-a statistical
problem, as discussed in Chapter 5. Long-term variations in the semimajor
axis, eccentricity, and inclination must either be taken into account along
the lines of (3.154) or averaged out carclulty in using the changes in node
AL and perigee Aw to determine zonal harmonics. For a detailed description
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of the dynamical theory of drag perturbations mainly to determine atmos-
pheric propertics, see the text by King-Hele (1964) and the review by
Jacchia (1963).

3.8. Summary

The purpose of this chapter has been to develop the theory of close-
satellite orbits as part of the geodetic environment—that is, to describe a
particutar phenomenon connected with the carth’s gravity ficld.  Hence
the discussion has not been a complete overall treatment of the subject of
close satellite orbits, but rather has emphasized those aspects of peculiar
interest to geodesy, such as the development of the disturbing function for
spherical harmonie variations in the gravitational ficld, and has neglected
other aspects of lesser inferest. It also has gone further into basic theory
than is .perhaps necessary for practical application, in order to improve
understanding and to furnish a basis for more effective treatment of special
problems such as 24-hour orbits.
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4

GEOMETRY OF SATELLITE OBSERVATIONS

4.1. General

Thus far, there has been developed the theory of the motion of a particle
in the earth’s gravitational ficld, without reference to any observer. The
only geometry introduced has been that necessary to the trunsformations of
the potential and to the dynamics of the orbit. In this chapter we discuss
the geometry pertaining to observation of the satellite; develop differential
relationships for all quantities affecting observations; and consider variations
in the reference frame, the medium through which observations are made,
and so on,

4.2. Coordinate Transformations

In Chapter 2, we used a rectangular-coordinate system {u, v, w} fixed in
the earth. In geodesy, however, the ellipsoidal coordinates ¢ (latitude),
4 (longitude), and £ (altitude) are more commonly used. We are therefore
interested in relating these ellipsoidal coordinates to the rectangular co-
ordinates. Figure 6 shows a meridional section through therotation ellipsoid.
Substituting p? for u® + v?, we have from (1.44) or (3.8)

2 2
5"2 + % =1, (4.1)

where a is the equatorial and & is the polar semiaxis of the ellipsoid. Then
from the figure and (4.1),

tang=—L=L. M _¥ _ C @)
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4

FiGurE 6. Meridian ellipse.

where ¢ is the cecentricity defined in Figure 2. Also from Figure 6,
cos ¢ = pfr, (4.3)
whence
MY

Sln(ﬁ—‘?—’*(l_e).

Returning to the elli_psoid, and allowing for the altitude /1, we have
(= (v 4 l)cos¢cos 4,
= (0= (r-+ h)cos¢sin i, (4.5)
w = [1(1 — e?) 4 h]sin ¢.
In order to define », use (4.3) and (4.1) again-to get

2

vzcos'zd):pz:——;—j}w + a® (4.6)
Then, from (4.4) and (4.6), y
P(1 — sin® ) = — —— 41 — ¢MPsin® § + o, 4.7)
—e
whence
a . (4.8)

(1 — ¢®sin® $)M?
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S

Finally, to relate the eccentricity and the flattening, we have
2 2 o\ o ne
2 d «,b =(a b)+2ab Ob
a” a a”

=+ 20 = N
=2f — f2 (4.9)
In alf the relationships developed so far, a coordinate origin at the center
of the earth has been used. However, for use with observations from a
station at geodetic location w, = (g, vg, Wo), a translation from the center

of the carth to the location is rcquired. Using the subscript 7" to denote
“topocentric” coordinates referred to such a point, we have

aully = R.xeu’(" - “l)) (410)

Xp =R

or
Xq = Ry q — Ry(=0)u,, 4.11)
where R,

= is defined by (2.32) und Ry(—0) by (2.24).

In order to obtain refative velocities, or rate-of-change of lopocentric
coordinates, the rotation of the carth, which causes the siation o move
with respect to incrital axes, must be taken into account us well as the motion
of the satellite:

Xp = R, § — Ry u,0, (4.12)

00
where ¢ is given by (3.24). Equation (4.12) applies regardless of whether or
not the orbit is perturbed. Even though the Kcplerian clements may all
have nonzero rates of change, only the accelcration is affected, since the total
velocity is represented by the X; in (3.26), which is completely accounted
for by the osculating Keplerian elements in a transformation such as that
at end of Section 3.1. Alternatively, velocity can be referred to carth-fixed

coordinates:

g = Rl + e g, @)

00

For the range r from a station to a satellite, by using the sum of squares
of the rectangular coordinates, x} + x5 + xZ, we have

r = [xZxp]2 (4.14)
Then for range rate, if we differentiate (4.14), and use (4.12) we get
p=fry
ox; "

N
= X% [Rx,,q _ Ry 1100]*1- . (4.15)
: a0 r
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For different types of observations, rotations to other coordinate systems
shown in Figures 7 and 8 are convenient. The appropriate rotations can
be deduced from Figures 7 and 8 by making one-at-a-time rotations in the
same manner as was applied in deriving (2.24)-(2.30) and using the rules
in (2.6) to write the rotation matrices. For coordinate p, with the 3-axis
toward an inertially-fixed point of right ascension o and of declination ¢
(as would be appropriate for a photograph of a satellite agaxnst the stellar
background), we have

Pr = RyXp = Ra(z) Rz(z\" ‘5)Ru(°")x1‘
2 2
—sin o, cos o, 0
= | —sindcos«, —sindsina, cosd|{Xp.. (4.16)

cos 6 cos o, cos dsine, sind

For coordinates 1 with the 3-axis toward the local zenith (¢, A), we have

I = Rup =Ry (7—;)112(% - ¢)R3(/1)uT. (4.17)

If we are not concerned with orbital dynamics, the satellite can be treated
merely as an elevated point, and the photograph itself can be used to obtain
the orientation; a purely local coordinate system can be used rather than the
externally referred up or x,. For a photograph of the satellite from the
ground, the coordinate convention of terrestrial photogrammetry, shown in
Figure 9, can be written as

by = R3(x - 7—27)12(% - z')n,(-A - 172-)1{2(— g)ll,, (4.18)

where % is the swing, or roll, angle; z is the zenith distance; and A is the
azimuth, measured clockwise from north., The coordinates of the image
on a photograph taken by a camera of focal length f will then be fb,/b;
and fby/b,. For a photograph taken from the satellite of the ground, the
convention of aerial photogrammetry, shown in Figure 10, can be written as

N L E L LGS

where s, t, and 4 are known, respectively, as the swing, tilt, and azimuth.
In the next section, in deriving differential relationships for use in observation
equations, we shall refer back to Equations (4,14)-(4.19).
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4.3. DifTerential Relationships and Observation Equations

In order to apply the effects of known corrections to calculated directions,
ranges, range-rates, and so on, that are to be compared to observations, or to
determine these corrections from observations, we need to know the differen-
tial relationships of the directions, etc., to the parameters to be corrected.

In cases in which the satellite orbit dynamics are used, the intermediary
coordinates used for all types of observations are the position and velocity
in inertially referred rectangular coordinates x and %. Hence we require
the partial derivatives of these coordinates with respect to the parameters
determining the orbit: the six constants of integration; kM, J,, and the
smaller coefficients C,,,, S,,, of the gravitational field; and any parameters
used to define a model of atmospheric drag or radiation pressure. 1n Chapter
3 all variations of the satellite position werce expressed through the osculating
Keplerian elements {a, ¢, i, M, o, Q}, hence we first require the partial
derivatives x and % with respect to these variables. For 9x/ds, by differenti-
ating (4.11) we have

a0 |
di

__89___} do | (4.20)
(a, e, M)1| da

£q

a
"
Il
1
Q
=~
o
g

Q0 o)
de
_dMe

The derivatives of R,, can be obtained by straightforward differentiation
of (2.32), or by differentiating the appropriate components in turn of the
matrix product, (2.31). For example, we have

aRa:q _ BRG(—'Q)

R,(—DRa(—w)

19 E19)
—sinQ) —cosQ 0
=] cosQ —sinQ 0|R,(—)Ry(~w) (4.21)
0 0 0

—sin Qcosw —cos cosisinw, sinfdsinw — coscosicosw, cosfdsini
= { cosQcosw —sin Qcosisinw, —cosQsinw —sin{cosicosw, sinQsini).
0 0 0
In getting derivatives of q, care must be exercised that the dependgnce on the

eccentricity through the eccentric anomaly E or the true anomaly /- and
range r are taken into account, On differentiating (3.13) and (3.14), and
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using 0L/de from (3.19), we obtain

r sin® [ asin I2
08 IY — ¢, —af ] 4 e ) — e
o ‘ ”( § I —¢cos I;) 1 —e¢cos il
dge -
Seowe s SE ] e " < cos 1 ¢ aN ] — ¥ eos [0
o VIS Bgin fn ay | Zdgin o 8085 6} uYioeeesth
o, ¢, M) L — e sin s, a\ [ — ¢dsin (! pepwal Ml Bt (T e
0 0 0
r 4 agy
qula,  —a — e T e
h r(l — %) P R
= ’ o . )
Galuy """{I"!“Ll‘..‘ ) A gy - ae) | (422)
r(l — ¢ I
0 0 0

For the differentiat of the velocity d%, in terms of the osculating clements,
diflerentiate (4.12):

L)
di
di = [‘7 Roo g o 0§ || do , (4.23)
08, 0, w)y N a, e, MYI| du
de
L dM |
of which the only new component is, from (3.24),
9q
Ma, ¢, M)
nsin £ nasin Ele = 2 cos £ - ¢ cos® L] na(e — cos L)
21 —ecos £)° (= ccos B ’ (1 — ¢cos E)
={ —nV1 —¢icos E nal(cos 12 = e)* — (I — ecos E)sin* | —naV'l — atsin £
2l —ecosE) Vi— el —ecos E) T (L~ ecos EY
0 0 0

. 2 "y 2
o 38 2o 2]

e , e q% 1 ;q' _ (a 3 . (424)
i/2a, T ez(;) [,—. ‘.m 43} ﬂ(}) s

0 0 0

As discussed in Chapter 3, the osculating elements {a, e, i, M, o, Q} are
functions of the constants of integration, the parameters of the gravitational
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ficld, kM and the cocfficients C;,, and S,,,, and other parameters expressing
the clfects of the atmosphere, radiation pressure, and so on. To obtain
the partial derivatives with respect to constants of integration that are “mean”
Keplerian elements-—namely, h:xvinb no periodic perturbations, such as the
paramcters {ag, eg, ig, My, wg, QfF of the final intermediary defined by
the canonical transformation process of (3.105)~(3.113)-—we may use the
simplest possible expression of the orbit: the ellipse with constant a, e, i
and node and perigee precessing due to the effect of the oblateness Cyy s
given by (3.74). Thus,

Ha, e, i) -1 da, e, 1) ~ oM, w, Q)
Ay, o iny O AMY wp ) AMY, il )

)

and

0(/\/ , U)

‘)(”u' ‘u-'ﬂ)

_ “"_’.’ . "l/m,, m(l sin® I—— )'J A _‘)/m"('s sin? /= DCye Mt Y1a3Cyy sih 20\

24 T R (S A1 = (Eyhss ’ Ilm“(i — o
. "If{:l Cy u([__:i o ..\I I Cype(l — 5 cos® i) Y] 15paiCyy sin 2§ Ar
- Snal(t = ¢*)? nut(l — ety YodnaS(1l — )3
21 j1a3Coy o8 § A1 6103 Cage cos T At 3jadChy sin i At
4nat(l — et 7 nad(l — et 2nab(l — e?)?
(4.25)

Equation (4.25) is obtained by differentiating (3.74), and the 0n/da; of
—3n/2a by differentiating Kepler’s third law, (3.20). Ar in (4.25) is the time
difference between the instant of observation and the epoch to which the
elements aj, ey, iy refer. 1f this time difference Af is such that the clements
in (4.25) other than —3n/2q are small compared to unity—Iess than 10 days
or so-—these clements may be neglected.

For the partial derivatives with respect to constants of integration which
are osculating Keplerian elements at epoch ay, ey, #,, My, w,, £y, an addi-
tional Jacobian 0(ay, eg, if, My, i, Qp)[0(ay, ey, iy, My, wy, £2y) must be
applied to the right of (4.25). The off-diagonal elements of this array will
be derivatives of periodic perturbations, and hence will contain Cyy as a
factor. Therefore they will be significant only where their muitiplicr (4.25)
may be large compared to unity: namely, dM/da;. So for the partial
derivative of the mean anomaly M with respect to any osculating element
$;0 at epoch there must be added

¥
~

_ —A 9 Aay,
2a 03,9

2
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where, from (3.76), assuming only M significant in the denominator,

2a%C,
2 z F20))G?.)1q Cos {(2 - 2[))0)0 + (2 - 2P + Q)M()}

a  poa#l0

Aayy =

For the partial derivatives of the osculating elements with respect to the
cocflicients of the gravitational field, (3.76) would be used. For example,
substituting from (3.71) for S;,,,,,» we obtain

all 1 "1 it u(’/m)(l ’)l/ + (1)

Pl A

oC,,, e p%na M —2p)o + (I —2p + OM + m(L) — ())]

(I—m) even
x. [C‘.’S] l [( = 2p) + (I — 2p + Q)M + m(Q — 0)]. (4.26)

SIN | (1—m) odd

Because the magnitude of the effects of the coefficients C,,,, Sy, on the
clements and the variations in a, e, i arc both smull, we can write the
partial derivatives such as (4.26) as a sum of sinusoidal functions with constant
coeflicients and arguments having a constant rate of change with respect to
time:

o5, ‘cos
— = }4 Kinala, e, D)l or |[(1 = 2p)(w, + w Al)
a(Clm or ‘Slm) na sin

+ (I =2p + )My + MAD + m(Qy + QAL — 0, — 0AD], (4.27)
where, for example, for s, = a,

2Flm nG(m(l 2P + (I)
na“"{(! —2p)b + (I = 2p + @M + m(Q — )}

K

ilmpg — /'

Equation (3.76), on which (4.27) is based, was derived on the assumption
that the perturbations by the gravity field are forced oscillations superim-
posed on a secularly moving ellipse. Hence (4.27) is valid in cases in which
the constants of integration do not include perturbations, that is, “mean”
elements such as the parameters of the final intermediary defined by the
canonical transformation process of (3.105)-(3.113).

If, however, the manner of calculating the orbit uses constants of integra-
tion that include the eflecets of perturbations, as would be the case in a numer-
ical integration starting from osculating elements or position and velocity
at epoch, then the cffect of the perturbation at epoch must be sublracted
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out; that is, (4.27) must be replaced by

a cos
— Kimoa(a, e, D or [[(I = 2p)(wy + o At
a(C?m or Slm) ma { ! Dl( ) Sin [( p)( ° ’ )

+ (= 2p +q)(My + MAL 4+ m(Qy + Q At — 0y — 0AL)]

as. cos
— 2;»--'5“ K jpupala, ¢y D] or ([ = 2p)o,

050 _sin.
+ (I = 2p + )My + m(£y — ()0)]}. (4.28)

Combining (4.20), (4.23), (4.25), and (4.27) or (4.28), we can write

”

iy

"
€y

dl'x} _ o{x, x} [ o{a, e, i, M, w, Q} J io
_ Ha, e, i, M, w, Q}Lo{ay, ¢, iy, My, oy, Qo) | My
wy
Q5

4+ Ea{u, e, i, M, w, .Q}(/I(‘,,,,)
Lo a{Clmi Slm} ds
{a, e, i, M, 0, Q}

d{other parameters}

tm

d{other parumcl’crs}i’ . (4.29)

For each type of observation, we require the appropriate modification
of one of the range, range rate, or position vectors (4.14)-(4.19) to obtain
the calculated equivalent of the quantities observed. In general, for any
observation designated by subscript i,

Obs; # Calc,. (4.30)

The procedure of differential correction is to defermine corrections to
observations « Obs and corrections to. parameters « Par designated by
subscript j such that .

-

0 C‘”C' d Par, (4.31)

Obs; + d Obs; = Calc; + z
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On abbreviating the expressions in (4.31) and writing it in its more usual
form of residuals “O-C”, (4.31) becomes

(0 — (), = %ij-} dP; — do,. (4.32)

Some of the parameters 5 are, as we have discussed, those that aflect

the orbit. The effect of these parameters on the caleulated value C; for a

particular observation can he represented entirely by the position x or

velocity % at the instant the signal that is measured leaves the satellite; that
is, we can wrile

or,  dx, o,
TN

- , 4,33
ToN, dr, ( )

where the & subseripl is stmmed from T to 3 and the derivatives dy,/ar,
and X /AP are those piven by ((1.29). With one exception, these derivatives
are about all that can veadily be considered as common o all types ol
observations,  This one exeeption is the effeet ol a timing correction or
error (7). Since the elfect of such an error is to cause the calculated position
of the satellite to be too far, or not far enough, along the orbit, it can be
calculated as the effect of a variation in the mean anomaly dM multiplied
by the rate of change of M with respect to time; that is, the mean motion n
as calculated by Kepler’s law (3.20). Thus,

aC; P_Q_L . ﬂ:’_ + a_C_l . ﬁ} n, (4.34)

() Lox, oM | ox, oM

where dx,/OM or 0%,/0M arc caleulated by (4.20) or (4.23), respectively,
9C,[0e(1;) as caleufated by (4.34) is also used to make the correction for the
travel time of the signal, or-“planetary aberration” effect. On calculating
the range r by (4.14), this correction will be

_0C r
Be(r) ¢

AC, , = (4.35)

where ¢ is the velocity of light.

In cases where simultaneous observations are made of the satellite and
the orbit is not used, the position x, or velocity X, coordinates themselves
become parameters; that is, 0x,/0P; and 0x,/0P; in (4.33) are identity
matrices. '
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It remains therefore to consider separately for each type of observation,
plOCCCdll‘l" from left to right in (4.32):

. The nature of the observation O, as it enters the mathematical formula-
lion of the problem: in what manner, il at all, the pure physically measured
quantitics arc modilied or transformed or-combined before actually being,
used in the caleulations.

The eomputation ol the quantity C; to be compured with the observa-
tion Q. In the computation of C,, various corrections may be applied that,
[rom (4.32), obviously could just as well be applicd with reversed sign to O,
and vice versi, In this category are usually corrections that are caused by
environmental efleets such as refraction, and so forth., Sinee one serics of
observations O; will normally be used in the determination of several alterna-
tive sets of model parameters P, it is computationally most convenicnt
() to apply as corrections (o the observations O, those corrections that do not
viry by any likely change in paramneters P, and (b) to apply as corrections
to the caleulated quantities ¢ those elleets that may vary pereeptibly with
the likely chanpe in the parameters P

The selection of a panthemntical model by selection ol asel of parameters
Pt he corrected, ad (he ealentation ol the partial derivatives 0C;/0P;.

The “correction (o observation™ oO; obviously must, {rom (4.32),
account for all of (he diserepancy (O — C); thal cannot be accounted for
by the corrections to parameters ;; Hence it must absorb all of the dis-
crepancy that is caused by the incompleteness of the mathematical model
represented by parameters P, Thus dO, can be very much affected by things
that are not at all errors in observation in the usual sense. In the case of
interest here, close satellite orbits, this situation will very likely exist, because
of theinadequacy of our model of drag effects on the orbit. Given the state
of our knowledge, it is inevitable that such situations will oeeur. Sinee such
errors arise from the environment, over which we have mueh less control
than over instrumentation, they are much more likely (o have a correlated
charaeter: that is, the eloser together errors arc in time, the move similar
they usually will be in sign and magnitude. The statistical implications of
such eorrelation we shall take wp in the next chapter; in this chapler in
diseussing the diflerential corrections of observations resulting [rom different
effects, we still want to consider the order of magnitude and degree ol correla-
tion ol these ellects in order to decide where and how certain corrections
should be applied us well as to decide the appropriate statistical treatment.

4.4. Obscrvation Equations: Directional

The principal direetional method of tracking satellites is to photograph
the satellite against the background of stars. The actual measurements nade
are the rectangular coordinates of the images of the satellite and the stars on
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the photograph, and the instants of time at which the film was exposed, as
determined from standard time signals. The geometry of the camera is
shown in Figure 11, The coordinates (x,, y,) measured on the photograph
can thus be seen to be the projection at the focal distance f [rom the focus
of the camera of the rectangular coordinates of the satellite referred to a
system with the 3-axis coinciding with the camera axis. If the axis of the
camera points toward right ascension and declination (e, d), as determined
from the catalogued coordinates of the stars on the photograph, then the
computed coordinates (x,, y,) can be obtained from (4.16). Therefore

X, flps 0 O .
;= =’ R Xy .
“ H [ 0 fips o} i (439

in which the coordinate p; coincides with the range r. The coordinates
(x. p,) are often called standard coordinates, and symbolized by (£, ).

1
[ ey |
P

172 | ,{_T—

[vo?- yo2]

|
FiGure 1. Camera geometry.

Quantities that may be applied as known corrections are:

1. The changes in right ascension and declination (e, d) of the stars
caused by precession and nutation from the time to which the star cataloguc
refers to the time to which the caleulation in (4.36) is referred. This shiflt
is large, but precisely known, as deseribed later in Scetion 4.6, The time to
which the calculations are referred is the epoch of the constants of integration
of the orbit, which is normally central in time to the set of observations
analyzed, for the reason that we want to keep the dynamical calculations as
simple as possible by using an inertial frame in which the principal perturba-
tion—the earth’s oblateness—will be symmetric about the equator. This
time is peculiar to the orbital model, rather than to the observations, and
hence the shift is considered as a correction to the calculated quantities C;,
or {x., .}, rather than the observed %uantities 0;, or {x,, ¥, A major
part of the shift—from the catalogue epoch to.the instant of observation—is
sometimes, however, applied to the observed quantities O;, but since it is a
known correction the saving in thus reducing the correction to C; is of little
significance.

2. Time signal corrections, as issued some time subsequent to the observa-
tion by standard time services. See Séction 4.6.
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Quantities that must be considered as unknown errors include, roughly
in sequence of magnitude:

1. Errors in orbital parameters, as expressed through the right side of
(4.29).

2. Error in coordinates of the camera, either relative to the earth’s center
of mass or to another station on the earth’s surface (as would be of interest
in simultaneous observations of the satellite not using the orbit).

The differential expression dC; combining these two categories of error
can be obtained by substituting for x; in (4.36) from (4.11) and differentiating.
Thus

dc; = [ﬂ > 0

0 flps

In (4.37) du, is the correction (o station position; the satellite position
shilt dx would be expressed by (4.29) when the orbit was used, or would be
considered a set of 3 corrections to parameters itsell in a system of simultanc-
ous observations; and third-column terms —fp,/p2, —fpu/p? have been sct
zero, being negligible.

3. Error in timing, resulting either from anomalies in travel of the time
signal or to imperfect synchronization of a camera shutter or sateflite light
flash with the time reference. Such errors should not be more than 4:0.001¢
or 4:0.0025; if significant, they can be considered as equivalent to errors in
the direction of motion of the satellite image, with partial derivatives as
calculated by (4.34).

4. Error in the measured coordinates of the satellite on the photo plate,
resulting either from anomalics in atmospheric refraction (“‘shimmer”) or to
irregularitics in motion by a tracking telescope, or to the plale measurement
itsell.  Regardiess of the source of the error, the significance of the crror
is a purely diflerential one. That is, the satellite image is affected differently
from the star images. Since the atmospheric shimmer and tracking irregu-
larities are rapidly time varying, these sources of error will be more important
when the satellite image is impressed at a time different from the star images.
These sources of error will be most important when it is imposed in a very
short time, that is, when the light source is a flash. Errors of this sort appear
to have a magnitude of 42" or 3", the shimmer error being to some
extent inversely correlated with camera aperture. On the other hand, plate
measurement error will be most significant when the character of the satellite
image differs the most from the star images, as, for example, in a sidereally
mounted camera where the star images are points and the satellite images are
breaks in a trail. Errors of this sort vary from 42 to 5 microng, or [rom
+0.5" to 2.0”, If there are several images of each class—satellite -and
star—on the same plate, then it may be desirable to include as additional

0
OJRM[dx — Ry(—0)dlu,] (4.37)
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unknowns in the reduction of plate measurements differential biases Ay, Ayp
between the classes of images.

5. Lirror in the catalogue position of stars may be £0.5%, or in some
cases it may be desivable to use multiple images of an uncatalogued star,
in which case the star position constitutes two additional unknowns.

0. Exlerior orientittion of the camera. In order to establish the orientation
of the camera axes with respect o an external system, three angles are
required. 11 the observations are made with an equatorially mounted camera
(designed to keep the camera axes fixed with respect to inertial space), then
they are appropriately defined in terms ol the'py vector, (4.16). 1n this case,
the orientation angles are the right ascension ¢ and dectination d of the camera
axis, and the diserepancy dx in roll, or swing, about the p, axis between the
assumed dircetion of the p; axis and the actual direetion of north from («, 9).
If the observations are made with a ground-fixed camera (designed to keep
the camera axes fixed with respect to the carth), then they are appropriately
defined in terms of the Iy, vector, (4.18). In this case, the orientation angles
are the swing x, the zenith distance z, and the azimuth A, as shown in
Figure 9,

fn cither cage, to obtain the orientation angles for a particutar photo plate
by comparison of caleulated and measured plate coordinates ol several
stars, cach star of right ascension and declination (e, 0) can be assumed to
be on the unit sphere. Thus

cos § cos o,
X, = { cos J sin g, (4.38)
sin 0,
and the computed plate coordinates (x,, y,) obtained by appropriate
modification of (4.36) are

Xe] [flps 00

Ry(d)R X, (4.39)
Ve 0 fips
for equatorially mounted cameras, and
X, Ips 0 O
R (4.40)

yc 0 f//).!

for ground-fixed cameras, where R, R,,, and R, are obtained from (4.18),
(4.17), and (2.27), respectively.

7. Interior orientation of the camera, or centering and seale, The center
of the phatographic plate as established by fiducial marks used as.a reference

e
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in comparator measurements may not coincide with the axis of the camera,
Hence it s necessary Lo determine the coordinates x,, p, of the camera
axis, called the principal point, relalive to the plale coordinatés. Also the
focal length fmust be known to obtain the correct scule relutionship between
focation of the photo image (x,, p,) and the exterior location of the object,
py or by, Both the centering (v, p,) and scale factor farc relatively constant
and henee determined only at occasional calibrations.

8. Camera distortion. In a properly designed camera, distortion by the
lens should amount to less than 10 microns, and be purely radial from
the principal point. Hence it can be expressed by a polynomial in odd powers
of the radial coordinate r (even powers being eliminated by symmetry and
continuity considcrations). Thus

8, = ko + k3 + kog® 4 kg™ 401, (4.41)

The leading coeflicient &, is indistinguishable in effect from the scale factor f.
The distortion is constant, so the other coclficients &y, ks, Ay, <+ can be
determined al occasional calibrations with the interior orientation and scale
parameters. Then to correct measured coordinates (v, ¥,).

[A"V’] — ["'"Ji’ﬁ. (4.42)
Ay, Yo 1

9. Diffcrential atmospheric rcfraction. Near the horizon, the vertical
component of atmospheric refraction may vary significantly bctween the
satellite image and the star images. In this case, the atmospheric refraction
may be represented by a power scrics in the tangent of the zenith distance,
and the coefficients of the power scrics.may be considered as additional
unknown parametcrs. Being a function of zcnith distance, refraction param-
cters requirc a focally referred coordinate system.

In obscrvations of a satellitc, the errors (3) through (9) are all peculiar
to a particular camera or to a particular pass. Thesc crrors cnter into an
equation, (4.37), with corrections to paramcters cxternal to the particular
observation only through the indcpendent quantitics {x,, y,}. The two
rotations {e, 6} used in the matrix R, that arc also determined from the
photograph are coupled with {x, y,}. Because {racking camcras have
narrow ficlds of view, in publication of camera data it is in fact customary
to consider the camera satellite linc «, & as the camera axis, in which case -
the {x,, y,} are zero. It would be manifestly undesiruble to complicate an
adjustment involving shifts to the sateflite position: dx and to the station
position du, by combining it with corrections for camera orientation, refrac-
tion, and so forth, Hence distartion and internal orientation paramctérs
arc generally determined in occasional calibrations; external orientation,
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differential bias, and refraction are determined in a preliminary adjustment
for each photographic plate, and the results expressed as a final {x,, y}
and {«, 0} for use in (4.36) and (4.37). See Brown (1964) for full details.

There are two types of directional observations of lesser accuracy than
cumeras: ’

First there are theodolites that measure zenith distance and azimuth. The
computed value is most conveniently obtained from the I, vector components,
where 1 is calculated by (4.17):

tan~! _“/ﬂT‘j

l
C = [ j] = o (4.43)
‘ tan™t 2
whence
I/r 0 o] ( 77)
0—-0),= Ryl — ZR(—2)Ry(— AR,
©-o.=" I L ) ENCR L

X [Ry(D) dx — duy] — dO;. (4.44)

Second, therc arc interferometcers that determine the direction cosine with
respect to an axis established by two radio antennas that measurc the phase
difference of a radio signal received from the satellite. The calculated
direction cosine is

C. = Lsm A | cos A ’ O:l'fl’: (4.45)

t
r P

where 4 is.the azimuth of the axis, calculated from /, /, as in (4.39), and
I, is caleulated by (4.17). The observation cquation is

(0 — C); = N'R,,[Ry(0) dx — duy] — Oy, (4.46)

in which

N' = [éin A ILisin A+ llcosA cosA

r e 12

_hlysin A 4 I3cos A, Iyl sin A + 1, cos A)
- 3 ) - 3 ,

r F

] (4.47)

4.5. Observation Equations: Range Rate and Range

The range rate of a satellite is determined by the Doppler technique, in
which the shift in frequency of a radio signal caused by motion of the source
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is measured. The actual measurements made are the counts of Doppler
cycles over a certain standard interval, such as one second. Division of the
count by the length of the interval thus yields the mean Doppler frequency
for the interval. Given the reference frequency f; and the velocity of light ¢,
the Doppler frequency Af; can be related to the range rate 7 by

. fi o

Af; = Ly =, (4.48)
¢ j[

The sccond term in (4.48) cxpresscs ionospheric refraction effect; it is

inversely proportional to f; because the effect of an ionized medium on the

velocity of a radio signal is inversely proportional to f*. The ion density

at any instant is sufficiently unsure that the parameter oo must be considered

an unknown. Hence two frequencies f;, i = I, 2, are commonly employed

and two cquations such as (4.48) solved simultancously to obtain the observed

rangc rale 7 :

S~ £,

fi- 13

The calculated range rate C; is given by (4.15). In addition to time signal
error, a quantity which is applied as a known corrcction to the obscrved
range rate #, is tropospheric refraction. - The effect of this refraction on a
range is the integral of the refractive index u over the ray path; hence the
effect on the range rate will be the time rate of change of this integral:

0, =/¢,=

i

(4.49)

1" !
F = — = pds = —f a ds
dt Jo 0t
- _J di dh dz (4.50)
o dh dz di

Here ds is an increment along the ray path (negligibly different for this
purpose from the station-satellite line); z is zenith distance, calculated from
1, asin (4.39); and 4 is height above the earth, calculated by (see Figure 12)

h=+R+s*+ 2Rscosz — R. (4.51)

The time differentiation in (4.50) can be moved inside the integral because
all change in the upper limit to s takes place at the satellite, wherc there is no
tropospheric refraction. The refractive eflect (u — ) is generally expressed
as an cxponcntial function of f. The rate of change dz/dr is computed from
the orbital motion. All these complications make it more practicable to
calculate &7 by numerical integration. &7 is less than 10 cm/sec for satellites
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Froure 120 Altitnde~distance refationship.

more than about 157 above the horizon, but increases sharply below this
altitude. Since the uncertainty in (g — 1) isabout 10 per cent of its magnitude,
it is thus desirable to reject observations less than about 15° above the
horizon. '

For the differential correction of the computed range rate caused by
satellite velocity and station position, differentiate (4.15):

dC; = di; = d(m)
-

—= le . [(15{ R_’i(_O) du ()J
r , o0

N [d\' — Ry(=0) duy x5+ (dx — Ry(—0) du,)

e X/,} CXgn (4.52)

r I

Other quantities that must be considered us unknown errors, but are
normally ad]usted at a preliminary stage include:

{. Error in the reference frequency generated in the satellite constant
throughout the pass;

2. Sometimes, -error in the reference frequency that drifts throughout
the pass;

3. Higher-order ionospheric refractxon effect, not accounted for by the

paramctcr o of (4.48);

4. Variations of the tropospheric refraction from that calculated by the
model of du/dh used in (4.50);

5. “Noisy” or irregular data points, caused by failure to “lock™ onto
the signal and other instrumental effects. '
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The correction of these observational errors is usually combined with
the process of aggregation. A typical pass of Doppler data may include as
many as 400 data points. However, the significant geodelic information
can generally be expressed by less than six numbers per pass—probably
on the order of three. Since the range rate varies sharply within a pass, it
is not practicable to determine arbitrary parameters from the range-rate
itself, but rather to determine the arbitrary parameters {from the residuals
of the observed range rates 7, with respect to caleulated range rates 7, based
on a nominal reference orbit. For example, for # points and m + | param-
eters, the least-squares condition '

IEL [(;‘Oi — Fo) — gaj(t ~ fy) ] = min, (4.53)

where 7,, the time of the midpoint of the pass, can be used to determine the
polynomial coellicients ;. Then at a few selected times /£, the aggregated
range rate r, will be )

K

Fo= F ) + Zaj(’/: — 1) (4.54)
i=0

The polynomial fitting will also eliminate some error by smoothing. The
aggrepated range rates can then be used as the observations O, in the observa-
tion equation (4.32), in which the computed partial derivatives dC,/dP; are
calculated by a combination of (4.29) and (4.52). It is not necessary that the
pass be finally expressed in terms of aggregated range rates #,; other param-
eters could be used, such as along- and across-track apparent station position
errors and the mean frequency discrepancy. See Guier (1963a,b) and
Hopfield (1963) for details on the reduction of Doppler tracking data.

For range measurements, the actual measurements arc either time delays
between transmitted and received radar pulses or the phase shifts in the
modulation of a received signal with respect to a coherent transmitted
signal. Range measurements will either be at frequencies in excess of 10°
Mc/sec or else overcome ionospheric refraction by use of dual frequencies
similar to (4.48)-(4.49). They will also require tropospheric relraction
corrections and aggregation similar to (4.47) and (4.50)-(4.51). The cal-
culated range is obtained from (4.14), whence the correction thereto becomes

dr =L xg - [dx — Ry(—0) duy]. (4.55)
N

4.6. Time and Precise Definition of Coordinates

K3

Time is measured by ¢ounting some type of repeated phénomenon. The
ideal time to use as a reference for observations of satellite orbits would be
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a “gravitational” time: that is, one which exactly coincides with the time used
as the independent variable in the dynamical developments of Chapter 3.
If all orbital motions are consistent with the laws on which the dynamical
developments are based—uas they have so far been obscrved to be, taking
into account relativistic effects where necessary—then the ideal repeated
phenomenon to count for a time standard would be the most accurately
known orbital period. This most accurately known period is that of the
moon’s revolution around the carth. The time measured by the moon’s
motion is known as Ephemeris Time (ET). (Though best measured by the
moon’s motion, ET is formally defined by the period of the earth’s motion
around the sun for the year 1900.0) Ephemeris Time 1s not immediately
available for timing artificial satellite obscrvations, however. Instead, the
time services provide Atomic Time A1, measured by the resonant frequency
of oscillation of the cesium atom. Al time has thus far been found to be
indistinguishable from ET and serves as an entirely satisfactory substitute
for geodetic satellite purposes.

The cquations written thus far assume that the coordinate system x
defined by the vy axis toward the vernad equinox and the xy axis along the
earth’s rotation axis is fixed with respect to inertial space. In fact, the dirce-
tions of the rotation axis and the vernal equinox are continually changing,
as a result of the precession and nutation of the earth due to the attraction
of the moon for the earth’s bulge. At any time 7 the equator-equinox referred
coordinates x (called true coordinates) of a point fixed with respect to the
earth’s center and an inertial frame can be represented by a differential
rotation R,; applied to coordinates X (called mean coordinates) that have
purely secular change (namely, a polynomial of 7) only. R; being a differ-
ential rotation, we can take cosines to be 1, sines to be equal to the angles,
and products of sines to be 0. Under these conditions, a rolation can be
expressed as a product of rotations about each al the three coordinate
axes in any order, It is convention to apply a counterclockwise rotation
about the 2-axis: Aw (called the nutation in declination) and clockwise
rotations about the l-axis and the 3-axis: —Ae (called the nutation in
obliquity) and —Ag (called the nutation in right ascension), respectively,
See Figure 13. Then

R, = R(—AeR,(An)Ry(—Aw)
I —Au —Av]
={Ax 1 —Ae. (4.56)
Av  Ae 1 |

The mecan coordinates X(¢) are conventionally cxpressed in terms of the
mean coordinates at an epoch 7,, X(/,) through a clockwise rotation abaut
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the 3-axis, —(x -+ ), called precession in right ascension, and a counter-
clockwise rotation about the 2-axis, », called precession in declination. The
precession in right ascension is split into two equal parts, half-x along the
mean equator of 7, and half-w along the mean equator at r. See Figure 14.
Then
Ry, = Ry(—0)Ry(7)Ry(—0). (4.57)
We have expressed the effects of precession and nutation as being applied
to rectangular coordinates referred to equator and equinox. In practice
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FIGURE 13.  Nutation angles.

such rotations would not be applied to any satellite positions. They should
always be referred, from the start to the end of the computation, to a fixed-
coordinate system such that the principal perturbation, the earth’s oblateness,
is most nearly symmetric with respect to the adopted equator. The equator
of this coordinate system should thus be the true equator at an epoch central
to the orbital arc being calculated. The equinox can be anything convenient.
Some investigators use the equinox defined by the meridian of the equinox
at 1950.0; others the true equinox of the orbital epoch. Rotations to coincide
with the coordinates used for lln orbital arc would have lo be ‘lpl)llbd
however, in two other cases.

[. The right ascension and declination («, &) of camera observutlons arc
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FiGure 14, Precession angles.

normally referred to the coordimate systeme of the star catalogue or some
other standard.system, such as the mean equator and cequinox ol 1950.0.
The rotations (4.57) and (4.50) should thus be applied to the unit vector
representing the dircction (&, )

cos & cos o "Cos 0, cos &,
cos 0 sin a | = R Ry, | cos dy sin ity |. (4.58)
sin & sin §,

The right ascension o and declination d cquivalent to the direction cosines
given by (4.58) can also be obtained directly by (Smart, 1944, pp. 243-244):

=&+ (x + @) + Ap + (v + Av) sin o tan § — Aecosotand, (4.59)
6 = 8+ (v + Av) cos « + Aesin o.

If the orbital positions x are referred tg the true equator and true equinox,
(4.59) should be applied as it stands; if the arc is referred to the true equator
and some mean equinox, then Ax should be omitted and the precession
(* + w) should be for the time from the epoch to which &, is referred and
the epoch of the mean equinox to which x is referred.

A convenient way of counting time for satellite orbit calculutions is the
Modified Julian Day, or MJD, in which 1950 Jan 1.0 is 33282.0 and 1960
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Jan 0.0 is 36933.0. For time 7 in MJD, we have the following

T = (t — 33282.925)/365.242,
Q, = —0.338(T — 0.61),
Ao = 2m(T — 0.219),
% = 0.00011177 + 0(1077),
= 0.00011177 + O(107"), (4.60)
» = 0.00009697 — O(10-7),
Ap = —[76.48 sin O + 5.64 sin 240 + O(1.0)] x 1074,
Ay = —[33.3 sin Q, 4 2.5 sin 24e + 0(0.4)] x 1075,
Ae = [44.7 cos Q, -+ 2.7 sin 246 + 0(0.4)] x 10,

€2y is the Tongitude of the moon’s node and 4w is the longitude of the sun,
The MID of 33282.925 is the Besselian year 1950.0 to which mean stelfar
places are referred. _ '

2. The Greenwich . Sidereal "Time 0 used in the observation equations
(4.37)-(4.55) should be the anple between the Greenwich Meridian at the
instant of observation and the equinox selected as reference (or the orbital
positions x. This 0 should thus include the same terms resulting from motion
of the cquinox as would any right ascension on the equator in the same
orbital computation. Given a meun sidereal time 0y, at an epoch £y, a
mean rate of rolation 0 with respect to inertial space, and x coordinates
referred to the true equinox at an epoch #,, we therefore have for time ¢

0= Oy + 00t = to) + G + @)1y — too) + Duety). (4.61)
If the x coordinates are referred to a mean equinox, then the Ag term
should be omitted. _
The time is gencrally given in days, hours, minutes, and seconds,

t=d + hf24 + m[1440 + 5/86400. (4.62)

Thus, for practical computation a more convenient formula is (taking
0 modulo 27)

0 =100 4 0+ %+ @ = 27)( — fy) + 27(11/24 + m]1440 4 3/86400)
+ (¢ + D)ty — 1) + Au(ty). (4.63)
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Some numerical values are

fy = 36933.0,
Oy = 172218613,
(0 + 3 + & — 27) = 0.0172027913, (4.64)
%+ o= 0.6l1x 100,

The overbar on the sidereal time 0 in (4.61) and (4.63) signifies that these
equations are based on the assumption that the -earth rotates uniformly
about an axis fixed with respect to the crust to which the tracking stations
of coordinates u, in the observation equations (4.37)-(4.55) are also fixed.
This assumption is incorrect: shifts of mass in the earth’s atmosphere cause
variations in the polar axis of about 5 meters in position and in the time of
about 0.03%. The displacement along the equator of 0.03%0a, is about 14
meters so if we are interested in accuracics of this sort, the Greenwich
sidercal time must be further correeted beyond (4.63) for use in (4.37)-(4.55).

Connected with the shifts in the earth’s axis and the changes in rotation
rate are three types of time defined by the earth’s rotation, called Universal
time (UT):

1. UTO refers to the instantancous rotation about the instuntaneous axis:
it is what would be derived from observations of transits of stars across the
meridian of an earth-fixed observatory.

2. UTI refers to the instantaneous rotation about the mean axis, as defined
by averaging over 6 years® observations by the International Latitude Service.
(Six years is chosen as being about the lowest common multiple of the forced
annual and the free [4-month variation in latitude.) .

3. UT2 refers to an approximation of the mean rotation about the mean
axis: it differs from UTI by an estimated scasonal variation of about
0%.03.

In correcting the Greenwich Sidereal Time we are concerned only with
a rotation about the 3-axis. Hence, UTI is the appropriate time to use with
satellite observations. If the orbit is being caleulated in Atomic Time Al,
we therefore have a final correction A0 to apply to the mean 0 from (4.63).
Thus,

0 =0+ A0 =0 +,0(UTL — Al). (4.65)

Since UT1 is an observationally determined quantity, a formula cannot
be given for the difference (UT1-Al). Time signal bulletins giving the differ-
ences between UT2, UTI, UTO, Al and emitted signals are issued quarterly by
the Royal Gréenwich Observatory and the United States Naval Observatory.
The magnitude of UTI-A1 is about 2}°,
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4.7. Observability Conditions

There are several situations in which it is necessary to determine whether,
for a given combination of tracking station and satellite position, the satellite
is observable. The most obvious condition is that the satellite is above the
horizon of the tracking station:

I3 >0, (4.66)

where /5 is the vertical coordinate of the 1, system defined by (4'17); From
(4.17)
I3 = leu[Rﬂ(O)quq - u()] > 07 (467)

where k is the transpose {0, 0, 1} of the unit vector along the 3-axis. kR,,u,

is approximately the radial distance of the station from the earth’s center.

R, is constant with time and R, defined by (2.32), varies slowly with motion

of perigee and node. Thus, for a given day we can write (4. 67) rather accu-
rately as

cos  sin0 O[5y S

[rs1> Faos Fasll —sin @ cos 0 0|8y Su

alcos E—e¢) 7
—— - ‘RE > O,
a\/l —e¥sinE
0 0 T[] 831 Ss
(4.68)

where the r;;’s are elements of Ry, Ry(0) has been defined by (2.7), the s;’s
are clements of R,,, q has been defined by (3.23), and Ry, is the radius of the
carth. Multiplying out (4.68), we get for horizon intersection

f(0) cos E + g(0) sin E — h(0) = 0, (4.69)

where

J(0) = a[(ry; cos 0 — rgy sin 0)sy; 4 (rgy sin 0 + rgy cos 0)sy; + Faasyl,

g(0) = a\/l- — 2 [(rgy €08 0 — rypsin 0)sy5 + (rg; Sin 0 + rg5 CO8 0)555 + FagSusl,

h(0) = Ry, + ef(0). (4.70)
If we substitute /1'— cos? £ for sin E, solvé the resulting quadratic

equatnon for cos E; and make a similar substitution for cos E and solution
for sin E,in order to obtain the eccentric anomaly E without quadrant
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ambiguity, we gel

S+ g+ g —

cos £ = s

JJ'” (4.71)
sin b — & F FINS gt =0

[+ g

The condition for observability will be that the solutions are real, that is,
I et > R (4.72)

For any particular revolution 0 < M < 27 of a satellite, we can write
for the Greenwich Sidercal Time 0

0
0=0,+ —/I/; M, (4.73)

where 0 is the sidereal time al perigee and AT is ¢alculated by (3.20) plus
(3.74). Forthe combination ol a particular station, defining R,,.; a particular
day, defining R,,,; and a pm'litulur revolution, délining 0y, we can iteratively
determine whether observability will occur by starting with the approximation

0
I 0= 00+ﬁ”; (4.74)

then we
(2) calculate f, g, h by (4.70);
(3) apply the test (4.72);
(4) if (4.72) test passed, solve (4.71) for the two roots Ll, L,
(5) recalculate 0, from (3.19), by

0=10,-+ ;—(/)\_I [E, 4 s — e(sin I, + sin L)} (4.75)

and (6) return to step (2), until the changes in Iy and E, become insignificant.

For the intersection of the carth’s shadow by the satellite orbit, a similar
sort of iterative scheme can be set up. Let the s coordinate system have o
geocentric origin with the s; axis toward the sun. Then the condition of
shadow intersection can be written as (see Figure 15)

<0, (4.76)

s? + st = R},
or
5, = —Vr* — RY,. (4.77)
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The sun-referred coordinates s can be related to the equator-equinox
referred coordinates x by the clements of the sun’s orbit referred to the carth.
Since this orbit defines the equinox, its nodal longitude €2 is always zero.
Then, {from Figure 3

R, = Ry( + [IRy(e) = Ry(Ae)Ry(e), (4.78)

S3

R R B R I T SR - ORI (R — .,_x. -

7 /Xy: A AT ARSI ST AT

§2
FIGURE 15.  Orbit and shadow relationship.
where o is the longitude of the sun, from (4.60), and e is the obliquity,

23°27". Then (4.77) can be written entirely in terms of the sun’s and the
satellite’s orbits, "Thus

$ = IRGRq = —V % — RY, (4.79)

‘where i is the transpose {I, 0, 0} of the unit vector along the [-axis, or

raa(cos E — ¢) + rav/l — e*sin E = —\/a"'(l — ecos E)* — RY, (4.80)

where ryy, 1y, are elements of R,R,,, q has been defined by (3.23), and r
has been defined by (3.15). (4.80) can be arranged in a manner similar to
(4.69):- )

%

feosE + gsin E — h(E) =0, T 48D
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where we have
f=rna,
g =rpa1— & (4.82)

IE) = rjae — \/c12(1 — ecos E)* — R;-;’,;.

The differences from (4.69)-(4.70) are that now f, g vary much more
slow being functions of A, w, Q—while /(L) has a rapid but moderate
variation because it is a function of the anomaly I, or M, through a term
with a small multiplier, the eccentricity e. Hence an iterative solution using
(4.71) and (4.72) can again be applied. To be sure to pass the test (4.72), the
initial value of #(E) should be one to give a minimum value of /%; namely,
we should

(1) assume cos L is 1;

(2) calculate 1, g, /1 by (4.82);

(3) apply the test (4.72);

(4) if (4.72) test passed, solve (4.71) lor the two roots Fy, £;

(5) for each root, recalculate /i(£y), 7(E,) by (4:82); and

(6) return to step (2), iterating separately for £, and Z, until the changes

become insignificant.

Horizon and shadow intersection can.also be solved by graphical means;
see Veis (1961, 1963b). _

The term “obscrvability” must, in addition to the geomectrical conditions
we have discussed so far, also include the problems of signal strength and
atmospheric attenuation, the latter of which becomes prohibitively severe,
of course, if we try to use a camera in eloudy weather.

REFERENCES

1. Brown, D. C. “An Advanced Reduction and Calibration for Photogrammetric
Cameras.”” AF Cambridge Res. Lab. Tech. Rep. 64~40 (1964), 113 pp.

2. Gaposchkin, E. M. “Differential Orbit Improvement (DOI-3).”" Smithsonian
Inst. Astr. Obs. Spec. Rep. 161, 1964,

3. Guier, W. H. “Studies on Doppler Residuals—I: Dependence on Satellite
Orbit Error and Station Position Error.”” Johns Hopkins Univ. Appl. Phys. Lab.
Rep TG-503 (1963a), 72 pp.

4. Guier, W. H. “Ionospheric Contrlbutlons to the Doppler Shift at VHF from
Near Earth Satellites.” Johns Hopkins Univ. Appl. Phys. Lab. Rep. CM-1040
(1963b), 53 pp.

5. Hopfield, H. S. “The Effect of Tropospheric Refraction on the Doppler Shift
of a Satellite Signal.” J. Geophys. Res., 68 (1963), pp. 5157-5168.

6. Kaula, W. M. “Analysis of Gravitational and Geom.tric Aspects of Geodetic
Utilization of Satellites.”” Geophys. 7., 5 (1961), pp. 104-133,



References 91

@ Kaula, W. M. “Celestial Geodesy.” Advan. Geoplys., 9 (1962), pp. 191-293.
@ Mueller, 1. 1. Introduction to Satellite Geodesy. New York: Frederick
Ungar Publishing Company Inc., 1964. v
9. Nautical Almanac Offices of the United Kingdom and the United States of
America. Explanatory Supplement to the American Epheneris and Nautical Almanac,
London: H. M. Stationary Office, 1961.
(0> Smart, W. M. Spherical Astronomty. 4th ed. London: Cambridge Uni-
vc;ii}y Press, 1944,
{11) Veis, G. **Geodetic Uses of Satellites.”” Swmithsonian Contrib. to Astrophys.;
3 (1960), pp. 95-161.
12. Veis, G. (Ed.). The Use of Artificial Satellites for Geodesy. Amsterdam:
North-Holland Publishing Company, 1963a.
13. Veis, G. “Optical Tracking of Artificial Satellites,” Space Sci. Rev., 2 (1963b),
pp. 250-296. ‘



5

STATISTICAL IMPLICATIONS

5.1. General

In Chapter 3 we discussed the variation of the close satelfite orbit with
respect Lo time £ as expressed by the six quantities {x, x}oriq, ¢, i, M, o, L},
These varrations can be expressed as periodic oscillations superimposed on a
secularly changing model: namely, a 6-dimensional vector time scries, The
subject of the statistical study of time serics has received considerable
attention in recent years, so we should be able to apply some of the results
of this study to the geodetic satellite problem. In the last section of Chapter 4,
however, it was suggested that there might be a special difficulty treating
the satellite as a time series in that there are definite gcometrical limitations
on when observations can be made.

In Chapter 4 we discussed the formation of observation equations which
included two types of corrections: corrections to parameters P, and cor-
rections to observations ¢O,. The solution of scts of such equations by the
method of least squares and its generalization is also a subject that has
received considerable attention. There was also indicated, however, a special
difficulty. The so-called corrections to observations dO, necessarily absorb
a lot of the discrepancy between the mathematical model and actuality which
does not have the character of randomness of errors expected of well-
programmed instrumental observations. We hope these two statistical ways
of viewing a satellite orbit and observations thereof can be combined
eflectively. 4

5.2, Time Series

Let y(t) be-a continuous function of time that may be a vector of any
number of dimensions. For any duration of time 7 it can evidently be
represented to any desired degree of accuracy as a sum of sinusoidal terms.

92
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Thus we have
w2

y(t):Z[n,, cos%t%—busin%;—ﬂ'—lt}, 01T, (5.1

ne=0

where, given y(/) for 0 <1 < 7,

2—34, f”’ 27n
a, = —— 1y cos — tdi
T 0 Y T
” 5.2)
2 (7 2mn (
b, == f 1) sin — ¢t dt.
TJo y() T

Since (5.2) is a consequence of the orthogonality property,

plsin sin _
f or ?_71'_1, or Zmin tdi =0, " ¥ n. (5.3)
0 4T cos T

.COS_

Hy(r) is a normal, “well-behaved™ function, staying within certain bounds,

the cocflicients a,, b, will, in gencral, decrease in magnitude as » increases;
namely,
. |a,
lim b= 0. (5.4)
n— o n.

As the duration T is lengthened, if y stays within the same bounds, the
Fourier representation (5.1) remains feasible, and if the quadratic sum of
coefficients a,, b, representing the amount of variability within a certain
frequency band Af approaches a constant value, then

lim C(f, Af, T) = const, (5.5)

I'— e

where for each element C; of C corresponding to elements a;,, b;, of a,, b,,

co =3+ - <<+ 2] 6

‘Hence, in this case, we can express y(7) in the limit as

y,(1) = é [e, cos 2nfit + d,, sin 27ft] +fw[g(f) cos 27ft + h(f) sin 27f1] df,
k=1 0 '
CNA)
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where the subscript p denotes pertodic, and where the summation is over a
{inite sct of discrete frequencies (called a line spectrum) and the integration
1s over a continuous variation of density g( /), h(f) with respect to frequency
(called a continuous spectrum). Evidently, for Af small enough, an element
C; of C(fy, Af, o) is (¢, + d}).

~ However, it may be the case that the condition (5.5) does not hold true
for a representation of y(t) by the Fourier series (5.1) because y(r) does not
remain within certain bounds, but instead increases or decreases or oscillates
more and more widely with tinte. In this case, y(r) has to be expressed as

y(1) = y,(1) 4+ y,(0), (5.8)

where y, (1) is gotten from (5.7) and where

500 = 2t = 1), (5.9)

The subscript s denotes secular. In this case, for a sulliciently long duration
T, the dominant change in y will always be expressed by the secular part y,.
In o particular application, the lower z;, z; and z, may be appreciably
smaller than the lower a,, b, and the z; may go to zero rapidly with increase
in /, so that over short and moderate durations 7 it will still be feasible to
study y as the periodic function y,. If the z; are known, this is very simply
done by just subtracting out y,. However, if the z; are not known, then there
will always be some distortion of the a,, b, becausc of the lack of orthogo-
nality, such as (5.3), with the z,.

¥, is known as a stationary function, because its statistical properties are
constant with time. The leading statistical property of y,, is its mean square.
Since y, is not necessarily a position vector and since its diflerent components
may cven have different dimensions, it is appropriate (o consider this mean
square as a vector itself (rather than a dot product), of which each component
yiis

n

1

o) = Bl = 3| Sl 1+ f [T + wmarar) 510

Equation (5.10) is a consequence of the orthogonality property (5.3) with T
extended to approach infinity. (5.10) can be generalized in two ways. JFirst,
there will in general be a nonzero mean product I{y,);} (called cross-
variance), second, and a nonzero mean product E{y(0)y,(r + 7)} (called
covariance). The cross-varizmcc will generally be a known function of the
variance—given the ¢, d%, g%, I for one component, they can be cal-
culated for the others—but this is not in general true of the covariance.
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Io
w

Multiplying y,,(t) by y.,(f + 7) from (5.7), converting products of sines and
cosines to sums, and applying (5.3), we get

Cov, (v) = E[y(Oy(t + 7)]
1
= U3 + ) cos 2

771600 + 0 cos 2nfr iy czf}. (5.11)
1] 0

The osculating Keplerian clements {a, e, i, M, o, £} of a close satellite
orbil can be expressed by an appropriate combination of (3.113), (3.70),
and (3.153)~(3.158). Most—say more than 99 );—-of the variation.with time
can be regarded as known, ineluding the dominant secular terms M, Q, o
arising from the central term kM and J, and 4, ¢é, difd, M, 0O, & arising
from simple models of the atmosphere and radiation pressure. The residuals
of the actual motion with respect to the known part are what we are interested
in examining as a vector time series y(f). This time scries will still contain
significanta, ¢, difdt, /i»}, Q, wasa result of inadequacies of the atmospheric
model. However, these six terms can be reduced to two by expressing the
others as functions of the acceleration in the mean anomaly and the rate of
rotation of the atmosphere. For durations of record 7 of satcellites of interest
to geodesy, the irregular balance of drag eflects can be represented by the
continuous spectrum in (5.7). To compare this drag spectrum to that
arising from the variations of the gravitational field, we need to calculate
the order-of-magnitude of the accelerations involved. For drag, take as
typical Cj = 2.4, A/m = 0.05 cm?*/gm, v = 7.5 km/scc, and as pessimistic
p < 1074 gm/cm?® (Sce the table of numerical values). Using these values
in the Equation (3.152) {or the drag force obtains for an estimate of the drag
acceleration:

ofa} < £2.4 x 0.05 x 107 x (7.5 x 10%?%/2 ~ 43 x 107% cm/sec?

For an estimate of the acceleration due to a variation of tlie gravitational
field, take the radial derivative of the potential term V;, as given by (3.53)
for 2 semimajor axis of 8 x 10% km and a magnitude 1.5 X 107 for Jy,:

ola,} ~ £3.986 x 102 x (6.378 x 108)> x 1.5 x 107%/(8 x 10%)*
~ 6 x 107 cm/sec?.

Thus even for a satellite orbit far from ideal—atmospheric densitics of
10-1 gm/ecm® would exist only at altitudes below 600 km on the sunlit side
near the peak of the sol: acceleration due to the leld[lOllb in
the gravitational field would be compdrable to that due to drag. Further-
more, the drag acceleration is-spread out into a continuous speetrum,
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whereas, according to the transformation (3.70), the spectrum of V,, is,
for a small cecentricity, comprised almost entirely by only (/ 4 1) lines:
for ¥y, three lines, one near a frequency of two cycles/day and two near
two cycles/revolution.

For a length of record 7, a continuous spectrum of amplitude density
g(f,) will obscure a discrete term of amplitude less than ¢, = g(f)/ 7T, as
mdicated by (5.1)-(5.2). 1f we assume that the mean square drag aceeleration
oHa,is distributed uniformly from one cycle per revolution, 1P, downward
in frequency, then the density ¢*( /) will be Po*{a,). Fora leapth of cecord 7
the effective number of frequency binds will be 770 and the variability
oHags inoa particular band will be Po{a, /1. Tlence the record T would
not have to be very long for the gravitatonal aeceleration at o particular
frequency to stand out above the drag. Therelore

e~ ofa\NTH T (I{(I(,}\//)/'l".

Since accelerations are not observed, to compare varability at different
frequencies it s betler (o integrate (o obtain the spectrwm ol position vari-
ation:

o AN} == o lad [/ )

To compure the nuplications of the numerical estimates ol 43 x 10 !
em/sec® for gravitational acecleration ota, }, assuming the equipartition below
1/P for o%*{a,}, we take a period P of 96 minutes and a record 7" of 3 months.
Then

o,{Asg) = ola W PIT] (2nf )2
+3 % 107 1/15 x 90/ (27//86,400)2 = +15/f* meters

for frequency f in cycles per day. For a frequency of 2 cycles per day, the
perturbation is thus about 44 meters, compared to 4165 mcters obtained
from a gravitational accelcration of +6 X 10—“/\/3 cm/sec? at the same
frequency. However, for a lower frequency the drag perturbation will
obviously become much greater—for example, for onc cycle/month, the
above estimale gives 4= 13.5 kilometers. The situation is shown schematically
in Figure 16, which would be characteristic of a perigee height around
600 lm for a length of record of about 3 months. For any type of effect,
the spectrum rises steeply toward the lower frequency end, due to the longer
integration time. Even though they may have considerably less amplitude
than drag effects of lower frequency, the orthogonality condition (5.3) still
enables accurate determination of the discrete high frequency perturbations
caused by tesseral harmonics—the V7, for which m # O—provided that
y(1) is completely and continuously observed. However, as indicated in
Chapter 4, observations are incomplete in the sense that only one or two
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components out of the six comprising y are measured: a range or range-rate
or photo plate coordinates. They are also discontinuous because of the
geometrical limitations on observability discussed in Section 4.7. Conse-
quently, the time series we are forced to consider is not y(/), but instead a
lincar transformation thereof multiplied by a “window” function. In
addition, this time scries will have a part arising from other sources than y,
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FIGURE 16.  Spectrum of satellite orbit variations.

due to errors in station position, and so forth:

w(t) = w yI(1) + ow . (5.12)
oy ou

The Jacobian dw/dy is constituted by the partial derivatives of the observa-
tions with respect to the osculating elements, as developed in (4.37)-(4.51),
and is itself a function of time. The window function (r) is unity during
observation and zero at other times. The station crror function u will be
equal to the error of the station position during observation and zero at
other times.

dw/dy, (1), and dw/du all have complicated spectrums, predominantly
of high frequency, comparable to that of the satellite orbit itself. Conse-
quently contributions to w(r) from the discrete gravitationally caused
spectrum will be difficult to distinguish from those from the continuous
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drag spectrum. Simple harmonic analysis will not suffice; instead, some
sort of least-squares or quadratic sum minimization is necessary. Since
such a procedure involves squares and products, we are still interested in the
statistical properties of the orbital time series, expressed by the variances
(5.10) and covariances (5.11).

The discrete variances {c%, + d};.}/2 arising from variations in the earth’s
gravitational field can be calculated from estimates of the variances of the
spherical harmonic cocfficients C,,,,- S}, of the gravitational field. These
estimates are best obtained from autocovariance analysis of gravimetry,
which estimates the degree variances of defined by

O‘? = Em(éin + g?’llb)’ (5'13)

where €y, S,,, are the coefficients of the normalized spherical harmonics
defined by (1.34). A rough rule for the o} determined from autocovariance
analysis of gravimetry is
0¥~ 160 x 1071, (5.14)
From (5.13) and (5.14), _
— oM ~ + ]_0__) (5.15)
NS E

A given frequency f, in (5.7) will, from (3.71), correspond to a sct of
particular combinations of the indices /, m, p, ¢ in the orbitally referred
expression of the spherical harmonics. Thus

fi=lU0—=2po + (—2p+ M+ m(€ — 0)]/2. (5.16)

-The lowest degree term giving rise to a particular frequency f; will be that
for which '

¢ .
Gll( Lun ‘glm}

[=m unless m s 0 or 1. (5.17)
Others in the set will have

l=m+ 2j,
b (5.18)
P=pi=pot]s
where j is any integer. Consequently, from (5.15) and (4.27),
i ] v o T 5 ()'21 i
E{~(ci, d.;.)J = Ko 5.19
[2( & ik ':‘;302[ + 1 ilwnpy ( )
where / and p are obtained from (5.18) and Xj,,,,, is the coeflicient of the

partial derivative of the Keplerian element with respect to C,,, as given by
(4.28). ' '

For estimates of the spectral representation of the drag effects {[g*( /) +
h%( /)], analysis must be made of orbital residuals. Here the dominant effect
will be in the mean anomaly, so much so that the inexactness of the present
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data makes it not worthwhile to consider the errors in other elements caused
by drag. The results of analysis of orbits for drag cffects are usually expressed
in terms of the rate of change of period P. Autocovariance analyses of £
generally obtain an exponential drop-off with increasing frequency for its
power spectrum:

oy P} = D(P)exp (—qf). (5.20)
where (P) is the mean value of the rate-of-change of penod
The relationship between sinusoidal oscillations in P and in M will be

AR = — o pp = — 5”_ cos 2mft. (5.21)
s

2

Solving for ¢%{M} by intcgrating twice and squaring, we get

M) =

> —

64 “j D(P)*exp (—qf). (5.22)
For f in cycles per day, numerical estimates are 0.6 for D and 19.2 for ¢.
The practical implication of the frequency fin the denominator is that some
device must always be applied to absorb low frequency drag cffect—usually
both arbitrary polynomials in the mean anomaly and limiting the duration
of an orbital arc. If 4 polynomials are used for an arc of duration ¥, the
lower limit of the unabsorbed frequencies will be about fif21.

As previously pointed out, the correction to observation 40; of the observa-
tion equation (4.32) must absorb all discrepancy between the mathematical
model and actuality. Hence the contribution to the variance of d0;, ¢?{0,}
from neglected coefficient C,,,, S, will, from (5.19), be

lmo>

2 20; a 20;
A”0'~ Oi = [:_JKL7 P — K mn _—_{]) 5'23
im { } ”Z,q ash llqul + 1 kimng ask ( )

where (s;, s,) are cither both (a, e, or i) or both (M, w, or Q); con-
tributions from cross products are zero. The corresponding contribution
to the covariance of dO; and d0; is

: 90, | o) 90,
Alm Cov {Oioj} = 1)2,11 [:ash Khlnmaﬁ K imna 5—]‘]
x cos [(I — 2p)w; — w)) + (I = 2p + )M, — M)

+ m(Q; — Q; — 0, + 0,)]. (5.24)

Simiiarly, for the drag effect, we have

\ 20,12 (*
Ay {0} = [—J fmw a*{M} df, ©(5.25)

oM
20,20,
oM oM

~y

A, Cov {Oi, 0} = me oM} cos 27f (t; — t;) df. (5.26)
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5.3, Quadratic Sum Mimimization

We have set up in (4.32) a standard form for an obscrvation cquation,
which states that the discrepancy between an observed quantity and a
caleutated quantity based on a mathematical model maust be accounted for
by a combination of corrections to the parameters on which the mathematical
model is based and a correction to the observalion. Normally, we must
deal with a set of such observation cquations that is much farger than the
number of model paramelers that are to be corrected. Let us write a set of
observation equations (4.32) in matrix form. Thus

—xt+M oz =1 (5.27)
oL noxom e XL n X1
where me << i, and
acjor, acfar, acfor,,
(If)‘ 9¢,Jor,
x=| do; |, = ,
. CfoP;
_acn/a_Pl o acn/aPm_
apr, | 0, —C]
(/Pg . 02 -_ Cg
2= |, f= ' . (5.28)
‘/PJ 07: - C{
_dP m_| _On - C'n_

The derivation of (4.32), and of the other equations in Chapter 4 pertaining
to observation equations, are based on the assumption that the corrections
were differentials. This assumpticn is equivalent to assuming that the
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dPd Py term in a Taylor series development for (O -+ (O, — C)) is negligible:

. ac, I 3¢, A€,
Os +d0, — C) =S = up, +-L—-—v— IP,dPy + -+, (529
(O: ¢ ) >7an aor, or, (5.29)

which in turn implies that dC/dP; in (5.29), and henee Moin (5.27), can be
considered constant. (5.27) is thus a set ol linear equations. The vector
f can be considered as the coordinates of  point in s-dimensional space,
and the vector x as corrections Lo these coordinates, Hence

Mz = 0 (5.30)

is a set of cquations that together represent a lincar form in the n-dimensional
space, since we obviously can express the m clements of z in terms of the
u clements of -+ x by selecting and solving a set of mr equations {rom
(5.27). For example, if 0 is cqual to 3 and nris equal to 1, (5.27) would be

Ny bz =
=Xy I = [, (5.3
— Xy -+ gz = [

which could be reduced to

May

(fl + x;) = (f2 + x2),
(5.32)
Myy
(fi + %) = (/5 + x3).
My
Two linear equations in 3 unknowns (/; + xq), (fe + xu), and (fz + xy)
is the expression of a straight line in 3-dimensional space. In general, the
point (fi, fu, f3) defined by the observations will not lie on this line. The
desired correction (x;, x,, X3) is obviously the one which is the shortest
distance from the point to the line, since this implies the minimum correction
to the observations. If the coordinate axes are rectangular and the scale
is the same in all directions, then this minimum will be-

2, x; = Min. (5.33)

K]

However, the equations (5.27) can just as well refer to oblique axes with a
different scale along each coordinate axis, in which case we must rewrite
(533) as i)

> gixx; = Min (5.34)
i :
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or, in matrix form,
xTGx = Min. (

n

35

The next problem is to determine, given a sct of observations O; with
associated variances of and covariances Cov {0, O}, the appropriute
quantities g,; to use in (5.34), (5.35). If the observations are uncorrelated -
that is, all covariances zero~—then the obvious choice is

L = 1/(7?? (5.3,

gij:O, l7é.]3

since the square of the correction applied would thus be weighted so as (o
be proportionate to its expected mean square magnitude. If we have a st
of n correlated observations x, we can always find a linear transformution
thercof [see (2.3)] to another set of # observations y that are uncorrelated,
because in order to determine the 72 numbers in the transformation matrix A.

y = Ax, (5.3

there are #% condition cquations to be satisfied in the relationship between
the covariance matrices of y and x, W, and W,:

W, = AW AT, (5.3%)
ihat is,
o*{y;} = Z g Cov {x, x}ay,
ot i (5.39)
0= 2 an Cov {x, x}ay,
I

Then the inverse variance weighting (5.36) applied to the quadratic sum
minimization of y implies
Min = yTW;y = (Ax)T[AW,AT]}(Ax)
= xTAT(ATY'Wr A Ax (5.401
= xTW;x = Min.
The weight matrix G used in (5.85) should thus be the inverse of ihe
covariance matrix W.
As stated, the matrix form of the observation equations, (5.27), appeirs

adequate for the problems in geodetic use of satellites. However, for other
possible uses it'is instructive to solve, subject to (5.40), a more general case,

Cx + Mz = f, (5.41)
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.in which there is at least one nonzero element per row in C. Combining
(5.40) and (5.41), we can write

xPW™x — 2(Cx + Mz — §)"A = Min, (5.42)

where A is a vector of parameters called Lagrangian multipliers. We differ-
entiate (5.42) with respect to x, and then set the result equal to zero in order
to obtain the minimum

Wlx — C"A = 0. (5.43)
If we now solve (5.43) for x and substitute the result in (5.41), we get

KN+ Mz —1=0, (5.44)
‘where
K = CwcT, (5.45)

On diflerentiating (5.42) with respect to z, and setting the result cqual to
7ero,
M\ = 0. (5.46)
ff we solve (5.44) for A,
A=K — Mu). (5.47)

By substituting from (5.47) for X in (5.46) and solving for z,

z = [MTK M "MK, (5.48)

The matrix MTK-M is called the normal equation coefficients, and the
vector MPKH, the normal equation constants.

By substituting from (5.48) for z in (5.47), solving (5.43) for x, and then
substituting from (5.47) for A in the result, we have

x = WCTK[I — M(M”7K~*M)""MTK 1. (5.49)

Given W is the covariance matrix of the observations before correction
by x, we find that the covariance matrix of the residuals f will be, from (5.41),
CWC?, K, by (5.45). To obtain the covariance matrix V of z, we pre- and
post-multiply K by the coefficient of f in (5.48):

V, = [(M7K M) M7K KM K M) "MK )*
= (MTK M) (5.50)

Similarly, for the covariance matrix U of the corrections x, pre- and
post-multiply K by the coefficient of f in (5.49). After sorting out the algebra,
we have

U = WCTK'[I — M(MTK M) 'M7K]CW. (5.51)
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The covariance matrix V, of the improved observations then will be
V,=W—=U. (5.52)

All the results (5.48)-(5.52) arc applicable to (5.27) by setting —1I in place
of C.

The only assumption we have made in Bquations (5.33)-(5.52) is that in
the uncorrelated case the weighting factor is inversely proportional to the
variance. Quadratic sum minimization under this assumption is known as
mininmm varianee and s less restrictive than maximum likelilood, where
the same result requires assuming that the corrections have a normal distribu-
tion about a zero mean: thatis,a frequency for a correction of muagnitude x
proportionate to exp (—x%o?). However, any improvement over this normal
faw would require higher degree terms than quadratic in the minimized sum
(5.34) or (5.35), which in turn would imply that nonlinear effects from
sources unaccounted for by the model are significant. This implication in a
way contradicts the assumption that nonlincar Taylor series terms in the
model effeets (5.29) are negligible. While there are physical situations where
there are limitations on (O, -+ d0)), such as that it cannot be negative, which
might make a skew distribution of 40, appropriate, usnally a non-normal
distribution of corrections J0; is an indicator ol some condition that can
be removed in a detenminate manner by improving the model rather than
by complicating the statistics.

The normal equation coefficient matrix M7K-1M that is inverted in the
solution (5.48) for corrections to parameters z may be of considerable
dimension because of the large number of independent parameters that
have perceptible effects on satellite orbits, and because it may be desirable
to combine several different orbits in order to get a well-conditioned solution
for parameters common to all orbits, such as the gravitational field coeflicients
and -station position shifts. However, if the normal cquation coeflicient
matrix M?K~'M has a particular form, an appreciable reduction can be
obtained in the size of the matrix which must be stored and inverted by the
computer. Let

N = MTKM, s = MTK, (5.53)
and let
z s N, | N
A 2 e § 11 2] N, (5.54)
Zy © LSs Ny | Noo -

Equation (5.48) can now be written
Nyzy + Nz = s, (5.55)
Nglzl + Nggzz == So.
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Solving the second equation of (5.55) for z,, we get
z, = Ng(s; — Nuzy), (5.56)
and substituting the result in the first equation of (5.55), we have
(Nyy — NppNg'No)zg = 5 — NpuNgise, (5.57)
If N has the form
B Nll .: Nl‘&,l Nl.’. 9 Nl‘l )L_
Nogp i Nagqg 0 0
Noe | 0 N
N = S ' ) , (5.58)
»__AN'.U.'H. § 0 ot N'.Z‘.!,nn_
humcly,
Ny sy =0, i, (5.59)
then the terms involving inversions in (5.57) can be written
NmNEleﬂ = Z N),i’,iN;;iiNQI,ia
=l (5.60)
N1oNpy's, = 21 Nyo, NaslsiSo,i-
i=
If in the matrix of observation Equations (5.27) M has the form
My | Mg, O 0
Mo, 0 Mm,a
M = : , (5.61)
_Mn 0 M12,z__
N will have the form (5.58) since, from (5.53),
~
.
Ny i3 = ElMi?z,iKzThl M, 5 (5.62)
h=
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which is 0 for /3¢ j. The matrix M will have the form (5.61) if several
different satellite orbits, each with its own constants of integration, are
combined in a single least squares solution, because the set of observation
cquations peculiar to a particular orbital arc /r will contain partial derivatives
M,, with respect to gravitational coellicients, and so on, common to all
orbits, but have nonzero parttal derivatives with respect to only its own
orbital constants, M,, ,. Hence, a solution for » parameters common to
‘any number of orbits each with p constants of integration can be made in
accordance with (5.48) without storing any matrix of dimension larger than
(n + p) or inverting any matrix of dimension larger than n.

The vectors x and z may be corrections to “cbservations” or “parameters”
that occur in a staged or evolutionary process. If the vectors of the actual
errors at the ith stage are €,(x), €,(z), and their nonlinear effects at the
(i + Dth stage are insignificant, then the errors e€,,,(x), €,,(z) can be
expressed as a lincar transform of €,(x), €,(z) through propagation matrices
P, P

i

(5.6%)

W, =P,V prr

If these variables are to be further corrected at the (i + 1)th stage by being
combined with new observations with covariance matrix W, in new condition
equations, the equations can be written as .

Cx, +Cx, +Cx, + Mz =1 (5.65)
and the quadratic sum to be minimized as

xIW ', 4+ xIW,'x, + xFW,x, = Min. (5.06)

Particular cases to which (5.64)—(5.66) might be applied are:

L. An evolutionary process, such s an orbit, in which the carried-lorward
estimatc of the state of the process, with covariance matrix W,, is combined
with new observations with covariance matrix W,. In this case, C, is 0,
M is 0, and the solution by (5.49) becomes

: w,CZ o o
Eﬂ = [w CI‘J{C W.Co + CW,C 1L (5.67)
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2. Corrections to parameters may be detcrmined from several scts of
observationseach of which is ill-conditioned alone, but which arcinconvenient
to combine. In order to express the cffect of the corrections and associated
covariance maltrix V, from one set in analyzing another sct, we can put
W, and C,as 0; P, asl, and C,, C,, M, and f as '

S ETREE C
C, =", Co=|-1{ M=|-1 1= (568
0 ~1I I 0

The solution by (5.48) becomes
z = [MIK;'M, + V' 17"M7K ', (5.69)

To summarize, for the geodetic satellite problem the obscrvational data
can be transformed or combined so that therc is onc “observation” per
equation as in (5.27); it is the corrections z (o model parameters in which
we are interested; and the nmduquauus ol -the model n,sullmgD from drag,
higher gravitational harmonics, and so on, are such that in an ideal solution
there should be appreciable corrclation between observations at different
times, as expresscd by the covariances (5.24), (5.25) that appear as off-diagonal
elements in the covariance matrix W,
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DATA ANALYSIS

6.1, Simultancous Observations

If suflicient simultancous observations are made {rom the same set of
stations, then the corrections to the satellite positions x in Equations (4.37)
and (4.52) can be reparded as unknowns. Also appearing as unknowns
will be the corrections to station positions du, with the exception of onc
station, since without using the orbit there is no other way of fixing the
system with respect to the origin. Hence if there are sz stations and » simul-
taneous sets of observations, there will be [3(m — 1) + 3n] unknowns and
gnm observations, where g is 2 for camera observations and 1 for range
observations, Hence it is necessary that

gnm > 3(m — 1) 4 3n (6.1)
or
1> 3m—3 , (6.2)
qgm — 3

(except for gm 2 or 3). For camera observations, let the 2m observations of
the jth satellite point be numbered Py, Py; ... Py_;; and the satellite
coordinates be numbered xy;, Xy;, X3 Then for the matrix set up of the
observations (5.27), we have for each simultaneous set from the kth station:

M raP(_z,..Hl,,./ax”, OP 951/ 0%z, aP(ZIc—I)J'/ax3i
M, = .
" 0Py 015, 0Py, 0y, 0P g/ 03,
opP (2};—1)1‘/ Ouyy, OP (2k—1)o Ollags 0P 3jp-1);/ Outs,
OPos/ Mtyyes 0Py 5 Ottgg, 0Py, Oy,
108

M

wile =
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— - _.M wijl () G
Nl.‘cy’t o M
M,z
M = > My = , (6.3)
O Mh.’i(-m—l)
’_Mwim___
L O o |
—.Matl O O Mul_ —fl—
O MT‘-" M'u2 f2
M = ] f = E)
1___ () Ml”l’l M ll‘ll_;_ N‘f')t,‘ i

M, is the cocllicient

l:ﬂ/’:x 0 O:I R,
0 Jlpa 0]

of dx in (4.37), and M, is the coeflicient

j 0

. [f/]’a :|RmR3(—0)
0 Jflps 0O

of dug in (4.37).

If the observations are considered to be uncorrelated, then the matrix
W (the same as K1 if C = I) in (5.48) will be diagonal. Letting ¢ be the
2 x 2diagonal matrix of variances for each photograph, then in the quantitjes
MPW-M and M*Wf can be incremented at cach observation by

Mic7M,; and  Mie'fy,
where
My, =[0 My - 0:0 - My - 0}

Since no reference is made to the center of mass of the earth, the x, u
coordinate systems need not be used; instead, some locally referred system,
such as the | coordinates.of the fixed station, can be used, applying rotations
as described by (4.17). h

Simultaneous observations have been made by fixed cameras of both
balloon-type and flashing light satellites.
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.2, Orbital Observations: Short-Term

If observations are nonsimultaneous, then, of course, the orbital constants
of integration must be added to the parameters in place of satellite positions.
In addition, there may be other orbital parameters, including those of par-
ticular interest to geodesy:the coefficients of the gravitational field. All
station positions may be considered free, since the absence of first-degree
harmonics from the gravitational field is equivalent to assuming the geo-
metrical center of the earth, to which station positions refer, coincides with
the dynamical center of mass, to which the orbit refers.

Hence, ideally, in (5.27), the M matrix should now include partial deriva-
tives of the calculated quantities C; with respect to the orbital parameters
and the gravitational coefficients as obtained by combining (4.29) and (4.37)
or (4.48), and the part C; of the f vector should be calculated from the
orbital theory by (3.76) and (3.113) plus the appropriate transformation to
observational form: (4.15) or (4.36). In (5.48), the covariance matrix W
should now ideally include ofl diagonal elements expressing covariance, as
well as incremenis to the variances on the main-diagonal, due to the
effects of neglected higher gravitational coefficicnts by (5.24) and of drag by
(5.26).

The accuracy of the principal types of observation is such that it should
be hoped to determine orbital oscillations on the order of +10 meters.
For typical orbit specifications, the order of magnitude of spherical harmonics
suggested by (5.14) used in (3.76) indicates that tesseral harmonics (m 5 0)
as high as the 8th degree and most up to the 6th degree will be determinable,
namely, up to 60 coefficients. However, the accuracy of location of tracking
stations with respect to each other is poor enough that the 410 meters
criterion indicates that their coordinates should also be treated as unknown,
namely, about 36 more parameters. Furthermore, the principal effects of
some sets of terms with the same order subscript m are all exactly in phase,
since they all have the same argument, m(Q — 0), in the partial derivative
(4.27): forexample, (/, m) of (2, 2}, (4, 2), (6, 2), and (8, 2). To distinguish
such terms from each other, the coefficients X,,,,, of (4.28) must differ.
Varying the semimajor axis a, or eccentricity e, appreciably will vary the
drag characteristics by a considerable amount; hence, it is desirable to
obtain the variety of orbital specifications to separate terms of the same
argument by varying the inclination. We thus must add to the total param-
eters the elements of enough orbits to make this secparation—say four orbits,
or 28 elements, including in each set a parameter to absorb acceleration in
the mean anomaly.

For a fairly firm determination of this total of more than 120 parameters,
several hundred observations are required. The covariance matrix W of
these observations will be a series of nonzero blocks down the principal
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diagonal, one block for each orbit, with off-diagonal elements due to drag
effect according to (5.26). This rigorous treatment has not yet been applied;
in practice, the covariance matrix W of such large dimensions with nonzero
off-diagonal elements due to drag effect according to (5.26) is beyond
reasonable computcr capacity. Hence, in practice, the rigorous treatment
has not yet been applied; the covariance matrix W is either taken as a
diagonal matrix, or, at best, covariance is taken into account only between
observations in the same pass. Furthermore, the lack of a sufficient varicty
in inclination of orbits at a good altitude has degraded the accuracy to be
reasonably hoped for to about 420 meters, which reduces the number of
low degree gravitational coefficients accurately determinable to about 35:
all up to an (/, m) of (4, 4); plus (5, 0), (5, 1); (6, 0) through (6, 4); and
(7, 0). In addition to these low degree coefficients, onc pair of cocflicients
in the range of about (9, 9) to (15, 15) should be added for each satellite
to absorb the small-divisor effect described by (3.150).

The various aforestated difliculties have the result that progress in orbit
analysis for tesseral harmonics and station position has been by computer
experimentation: the testing out in actual computation of various alternative
procedures selected by empirical rules. Some of these procedures and rules
arc given as follows:

I. The length of the orbital arc represented by a single set of constants
of integration may be selected either on the basis that there is a considerable
surplus of observations over parameters to be determined—for example,
80 or more observations—or that the orbital residuals are not more than a
small multiple of the amplitudes of the perturbations caused by the tesseral
harmonics—for example, 10 to 1. Rules of this sort gencrally result in
arcs for Doppler tracking, which can observe in all conditions, of one to
seven days, but for camera tracking, which requires a combination of
satellite in sun and station in darkness and clear weather, of ten to thirty
days.

2. The residuals can usually be reduced by using arbitrary polynomials
in time to represent some of the variation of the elements. However, to
avoid absorbing some of the effects of the gravitational variations, such
polynomials are usually confined to a 7% or a ¢> and a ¢* term in the mcan
anomaly, where the maximum drag effect occurs.

3. To further minimize drag effect, the across track component may be
given higher weight (or lower variance) than the along track component.
This may most conveniently be done using the partial derivative of the
observation with respect to time, (4.34). For example, for camera observa-

tions with components p,, p; we have
“

el T, B
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Along-track residuals generally are about twice as large as across-track;
however, some experience has indicated that weighting such as (0.4) docs
not make much difference in results.

4. Since nonuniform distribution of observations destroys the orthogo-
nality of the low-lrequencey drag variations in ffigure 16 to the higher [re-
quency gravilational variations, presumably some of the separation can
be restored by weighting obscervations inversely as their density with respect
to phasc angles important in determining the gravitational cocflicients, such
as (§2 —0). Also, if tracking stations are nonuniformly distributed geo-
graphically, observations that arc from those stations clustered closely
together may be accorded lower weight than those from remotce stations.
Again, the device of weighting to overcome nonuniform distribution is one
whose benefits have been difficult to discern in application.

5. The number and distribution of observations will often be such as to
causc ill-conditioning: that is, the cffects of different parameters are so
similar as to make them difficult to distinguish. Onc technique to reduce
ill-conditioning is to usc a preassigned covariance matrix for the parameters,
as in (5.69), using statistical estimates such as (5.14). This technique probably
tends to reduce the magnitude of the results below that of the actual values.

The ideal method of removing ill-conditioning is to include data from
orbits of several different inclinations. In order to avoid having too large
matrices to invert, the calculation has sometimes been done by the partitioned
sclution of the normals described by (5.53)-(5.62), and sometimes in two
separate steps. In the first step, the orbital constants of integration are
determined separately for each arc. Subtracting out the effects of thesc
constants Icaves residuals which arc then analyzed jointly for all orbits to
dctermine the gravitational coefficients and station coordinate shifts. This
technique probably tends to cause some effects of the gravitational variations
to be absorbed at the carlier step by the orbital constants of integration.

6. Tests that can be applied in the analysis include (a) the solution for the
gravitational coeflicients Cyy, Sy, that are known to be virtually zero from
the smallness of the variations in the position of the earth’s rotation axis;
and (b) comparing the geoid height calculated geometrically from the station
coordinates—that is, determining the altitude /1 in (4.5) from given «, v, w
and subtracting the height above sea level therefrom—with that determined
from the gravitational coefficients. Thus

N = Ryp % P, (cos ¢)[C,, cos mA - Sy, sin ma]. (6.5)

L

The results that have been obtained thus far from satellite orbits for tic
variations of the gravity field have plainly been influenced by the method of
analysis as much as by the orbital characteristics and the type of tracking.
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In generai, however, results obtained from Doppler tracking yield larper
mean square cocflicients than those from aptical tracking. Perhaps this
happens because there is more systematic observational ervor in the Doppler
tracking; or perhaps because the much scantier and less uniform distribution
of camera obscrvations results in a greater part of the effects of the variations
of the gravitational ficld being absorbed by the orbilal constants of integra-
tion; or perhaps because the Doppler data included more high inclination
orbits, which arc more sensitive to the tesseral harmonics, particularly the
sectoral (m =1} terms. lInvestigations of statistical interaction between
different parameters show that the highest correlation is, as expected, between
cocflicients of subscript (/, m), (1, m), | — n even; that the corrclation is
rather low between station coordinates and gravitational coefficients, or
between different station coordinates; and that there is 2 moderate amount
of correlation between gravitational coeflicients and orbital constants of
integration. The present rate of improvement in results is rapid, partly
because of more tracking data under better conditions and partly because of
better methods of analysis. The results given in Table 3 were all obtained
in the fall of 1964. Figure 17 is the geoid computed by using the coellicients
of Anderle (1966) from Table 3, plus zonal harmonics Cyy through Cy, in
(6.5). All solutions since 1963 show a strong resemblance in the locations
of the principal extrema of the gravitational field. There are always four
maxima: (1) near New Guinea (0°, 150°E), (2) near Great Britain (50°N,
10°W), (3) off the Cape of Good Hope (50°S, 40°E), and (4) near Peru (10°S,
80°W); and four or five minima: (1) off India (0°, 70°E), (2) near the South
Pole (90°S), (3) in the western Atlantic (20°N, 60°W), (4) in the eastern
Pacific (20°N, 120°W), and sometimes (5) in the northwestern Pacific
(40°N, 180°).

A compromise between simultaneous observations and one-to-thirty day
arcs which has been occasionally proposed is an intensively observed short
arc of about 30 minutes duration to relate the positions of two geodetic
datums. Although the minimum of six orbital elements must still be included
as unknown parameters, at least one datum must be considered fixed because
the arc is too short to establish location with respect to the center of mass.
The shortness of the arc, the number of observations, and the accuracy
requirements make numerical integration of the orbit appropriate. The
convenient statistical treatment is then that of the evolutionary process
given by (5.64) and (5.67). The advantage of the short arc is that imperfectly
known perturbations by gravitational variations, drag, and so on, have had
relatively little time to build up. However, these environmental factors arce
still of sufficient influence .that parameters to express their effects must be
added to the dynamically necessary six orbital elements as part of the estimate
of the state of the process. Since the parameters at one stage do not have a
deterministic relationship to those at another stage, the covariance cannot



FIGURE 17. Geoid heights, in meters, based on the spherical harmonic cocfficients through the sixth degree of Anderle (1966).
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TABLE 3
Tesseral Harmonic Coefficients of the Gravitational Field
From Camera Data From Doppler Data

Izsalk Guier and Newton Anderle
Coeflicient (1966b) (1965) (1966)
C'm x 108 2.08 2.38 2.45
5'22 x 108 —1.25 —1.20 —1.52
Cyy % 108 1.60 1.84 2.15
Saq % 10 —0.04 0.21 0.27
C—'32 X 108 0.38 1.22 0.98
Sap % 108 —-0.80 —0.68 —0.91
(,_‘33‘>< 108 —-0.17 0.66 0.58
5'33 x 108 1.40 0.98 1.62
Cyy % 10° —-0.38 —0.56 —0.49
S X 10¢ —0.40 —0.44 —0.57
Cyy % 10° 0.20 0.42 0.27
Sy % 10 0.58 0.44 0.67
Cpg x 10 0.69 0.84 1.03
Sy5 % 108 —0.10 0.00 —~0.25
Chy X 108 —0.11 -0.21 —0.41
Sis X 100 0.43 0.19 0.34
C_m X 10% —-0.14 0.14 0.03
Sy x 108 —0.04 —0.17 —0.12
Cpo % 10° 0.24 0.27 0.64
Sgp X 108 —0.27 —0.34 —0.33
Cyy % 10 ~0.67 0.09 —0.39
S5 x 10° 0.05 0.10 —0.12
Ty X 10° —-0.13 —0.49 —0.55
Sgy % 108 0.16 —0.26 0.15
Cys % 10° 0.08 —0.03 0.21
Sgs % 10° —0.41 —0.67 —0.59
C‘M x 108 —-0.02 0.00 —0.08
Sg1 % 10 0.12 0.10 '0.19
Ceo X 108 0.05 —0.16 0.13
Sgs X 108 —0.23 -0.16 —0.46
Cya % 10° 0.05 0.53 —0.02
Sgg % 108 0.00 0.05 —0.13
Cyq X 10° 0.07 —-0.31 —0.19
Sge % 108 -0.39 —0.51 —-0.32
Cas % 108 ~0.28 —0.18 —0.09
Sis X 108 —0.38 -0.50 t =079
Cog % 10° —0.12 0.0} s —032
Seq X 108 —0.59 —0.23 —0.36




Lo Data Analysis [Choo

(.

be simply propagated as in (5.64), but must be supplemented by a statistica
increment expressing the uncorrelated part of the variance at the two stagcs,

6.3 Orbital Observations: Long-Term

If the orbital elements have secular change (that is, proportionate to ¢
or 1%), or have sinusoidul variation of much larger period than the arc lengths,
then if these effects are not calculated in the determination of an orbit and
other parameters as described in Scction 6.2 the orbital constants of intepra-
tion will reflect the fong-term secular and periodic changes. A differential
correction determination of orbitaf elements for an arc of a week or (wo is,
in fact, a very effective means of smoothing or filtering short period variations,
so that the long-term changes stand out in the constants of integration. As
is shown by the lincar perturbation formula (3.76), the zonal harmonics
Cyy of the gravitational field will give rise cither to purely sccular effects
for [ even, or to long period eflects of argument w for / odd. Hence deler-
mination of these zanal cocllicients Cy, is best done by analyzing the change
i the mean orbital elements of shorl dres over several months.

Determination of the even zonal harmonies is made [rom the mation of
the node and sometinmes {rom the motion ol the perigee. From (3.76) and
(3.113) we have

gl.). . g J“D ._1: (a[:Z',)Oyl/ai)G2-;)vp0(e)

= a .,_ —— -0 Ji <+ Junisolar terms, (6.6)
=1 He na*3(1 — )2 sin i + 0Ua)
. e (1 — &)'?*10G,,, /ae _coti OFy,, i
w = ‘S JD?"LLU ? no2rtd L T;IO pOaJ(l) (1 — e()) ai]_)G?.np[)(")J

+ O(J3) + lunisolar terms.  (6.7)

Precautions that have to be observed in the analysis are

1. The set of satellite orbits used should have a variety of inclinations
sufficient to separate the different harmonics.

2. The orbital constants of integration determined by differentiat correction
for the short arcs must be consistent with the algebraic form of the terms
containing J3.

3. The mean value of the elements «, e, i for the entire duration used
to determine Q, & must be accumtely determined, to be valid for usc in
(6.6) and (6.7). Correct averaging 8t the clements a and ¢ is particularly
important to remove secular drag effects.

4. If lunisolar attraction, radiation pressure, and other perturbations
are not removed in determining the mean values of the constants of integra-
tion, they can distort determination of the rates £ and & not only through
purely secular effects but also through periodic perturbations. A periodic



§6.3] Orbital Observations: Long-Term 17

perturbation A(Q, w) sin {xt — A} will affect the apparent secular rate from
observations lasting from f; to #, by an amount 3(2, &),

i § __ —sin {xt. — 11
50 ) = A(Q, w)[sin {xt, /1}( sin {xt; — 1}] ' 6.8)
Ty — 1y

5. 1f the perturbations arc removed in determining the constants of
integration, in addition to dircct cffects A (€2, w), the interaction of perturba-
tion Ae, Aiwith the secular effect of /, may cause an indirect effect Ay(€2, )
large enough that it should be taken into account, as given by (3.116).

TABLE 4
Zonal Harmonic Coefficients of the Gravitational Field

Coefficient Smith Kozai King-Hele et al.  Guier & Newton
(1963, 1965)  (1964) (1965ab) (1965ab)
Jy x 10%  -1082.64 1082.65 1082.64
Jy X 108 —2.44 —2.55 ~2.56 —~2.68
Jy x 10° ~1.70 - 1.65 —~1.52
Jg x 108 -0.18 ~0.21 —0.15 —0.02
Jo x 10 0.73 0.65 0.57
Jy x 100 —0.30 —0.33 —0.44 —0.59
Jg x 108 —0.46 —-0.27 0.44
Jy x 108 -0.05 0.12 0.18
Jip % 108 —~0.17 —0.05
Jyp x 10° 0.20
Jyg % 108 —~0.22 —0.36
Jyg X 108 -0.11
Jyg x 106 0.19 0.18

Current analyses of secular motions use several months of data each of
seven or more satellites. The principal differences in treatment are in the
relative weighting: whether according to accuracy or to representation of
variety in inclination, and in whether or not perigee motion, which may be
more affected by drag, should be used as well as nodal motion. The principal
recent determinations are given in Table 4.

The odd degree zonal harmonics are somewhat easier to determine, since
more orbital elements are affected and no other orbital perturbations have
as argument the perigee angle w. The most influential perturbation is
perigee height. From (3.76) we have

F(2;)—1).077(i)G(21;—1)01(e)(1 - 92)1/2

2p+ 2((')

Ae=—2%J5,

sin w. (6.9)
p=2 na
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Also in the category of long-term orbital observations would be observa-
tions of the motion in longitude of a 24-hour satellite, for the purpose of
determining {Cp, Sa} through its resonant effect as expressed by (3.136).
The length of the expected period T, from (3.137), makes it appropriate to
use mean orbital clements determined for epochs on the order of a week
apart. From the mean semimajor axis «, eccentricity e, and inclination i,
the coefficients (,,, could be calculated by (3.121). Then using these 0,
with observed longitudes 4, the accelerations A, could be calculated by
(3.126). These calculated 4, would then be compared with the observed 4,
cbtained by fitting a curve to the observed 4.

Wagner (1965) calculated the elements of the first near 24-hour orbit
being tracked, SYNCOM II. The mean clements are

a = 42,170 km = 6.61¢«,,
e = 0.0002,
= 33"
Calculating the 7,,,, by Table 1, and taking the G, as unity, we get in
“planetary” units (k =1, M =1, a, = 1)
D2 = 1.206 X 10735, = 0.778 X 1073,
Qg = —0.014 x 107%y = —0.016 x 1073y, (6.10)
Qg3 = 1.258 X 107y = 0.175 X 1077y,
where the J,,,, differ from the J;,, by the normalization factor given in (1.34).
Satellite SYNCOM II was permitted to drift first from longitude 54.9°W
to 57.6°W, then restarted and allowed to drift again from 59.2°W to 63.5°W.

Taking the mean longitudes of —56.25° and —61.33° for these two periods,
and making the replacement

Jim sin m(A — 4,,,) = Cy,, sin md — S, cos ml, (6.11)

we can write expressions for the accelerations in terms of the coefficients and
the mean longitudes for each of the two periods,
A % 108 = —0.719C,, J: 0.29885,, - 0.013C,;
+ 0.0095y; — 0.034Cy; + 0.1728,;,
Ay % 108 = —0.654C,, + 0.4208,, + 0.014Cy,
+ 0.0078;; + 0.012C35 + 0.1755;,.  (6.12)
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Wagner (1965) gives as observed accelerations

A, = —1.27 £ 0.02 x 1073 degrees/day?
= —1.93 4 0.03 x 10~ planctary units,
Aoy = —1.32 £ 0.02 x 1073 degrees/day?

= —2.01 £ 0.03 x 10~ planetary units.
The sets of coefficients from Table 3 used in (6.12) yield:

Coeflicients of Izsak (1966): Ay, = —1.59 x 107° pl units,
—1.61 x 107° pl units,
—1.86 x 107 pl units,

Coeflicients of Guier & Newton (1965): A

Il

Jpe = —1.83 x 107° pl units,
Coeflicients of Anderle (1966): Ao = —1.92 x 107? pl units,
Ay, = —1.92 x 107 pl units,

In addition, there is a small contribution to the acceleration by the sun and
moon of about —0.02 x 10~ pl units.

The approach to resonance expressed by (3.150) was first noted in the
orbit of a satellite which had a nodal period of 107.13” and an inclination
of 89.8°. Hence Q was negligible, and, for m = 13, '

2m x 806.8137

107.13 x 60
m(Q — 0) = —13 x 0.058834 = —0.76484,
b+ M+ m(Q —0)=0.02382,

or a period of 2m/(107.088 x 0.02382) = 2.47 days. The eccentricity was
0.003, so the H(e) 9G,,,/0e term may be neglected and Gy, set as unity.
The semimajor axis was 1.1706a,. Evaluating F,,,, by (3.62) and setting

M+ M= 0.78866,

S-I-mpo = Nlmjlm sin [U.) + M + ln(Q — 06— }‘lm)]’ (6'13)
where N,,, is the normalization factor from (1.34), we get for (3.150)
Al = —187.3 Jyg g sin [0 + M + 13(Q — 0 — 443 15)]
—79.3 Ji5 ga8in [0 + M + 13(Q — 0 — Ay515)]
+173.2Jp; gy sin [w + M + 13(Q — 0 — 13 1)) (6.14)
+38.6 g sin [w + M + 13(Q — 0 — 2, )]
4o h -
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From (5.15), the expected ordér of magnitude of J, ,, is about V2 x 107312,
and hence 0.07 X 107 s a likely value for £{J, .} lor a degree / in the range
13 to 19. Taking the root-square-sum of the coeflicients in (6.15) and multi-
plying by 0.07 x 10-%, we get £18.5 X 107¢ for L{A4}, or about 4140
melers. The observed value reported was about 4: 100 meters, yiclding a
plausible 0.05 X 107% for the root-mean-square average ol the Jyy 44 through
Jip.15- The contribution from Jyy,15, and so on should also be pereeptible.
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