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Preface

On May 5, 2011 Professor Edvard Chubaryan, a world-known Armenian
scientist in the area of theoretical physics and astrophysics, celebrated his
75" birthday. This volume consists of the contributions to the conference
“Astrophysics, Gravitation and Quantum Physics” in honour of Professor
Edvard Chubaryan on his 75" birthday hosted by the Department of Physics
of the Yerevan State University (20 — 21 May, 2011). The research activity
by Edvard Chubaryan is very wide and covers various topics of gravity,
astrophysics and quantum physics. The volume includes the papers in all
these directions and will be interesting for physicists working in these
topics. The contributors present this book to Professor Edvard Chubaryan as
a gift on his 75" anniversary. All of them, together with researchers of the
Department of Physics of the Yerevan State University wish him excellent
health for many years and even more brilliant scientific achievements.

Editor Professor A. A. Saharian (Yerevan State University)






Edvard Chubaryan

R. M. Avagyan
Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

Edvard Chubaryan, theoretical physicist, one of the founders of the Armenian
school of physics of superdense celestial bodies, Honored Scientist, Academician
of NAS of Armenia, Doctor of Physical and Mathematical Sciences, Professor,
Head of the Theoretical Physics Department of Yerevan State University,
celebrated his 75" anniversary.

Professor Edvard Chubaryan was born on May 5, 1936. In 1953 he left school
Ne 20 named after Dzerzhinsky with honors and gold medal. In the same year he
entered the Department of Physics of Faculty of Physics and Mathematics of
Yerevan State University. Still a student he was actively engaged in research work.
His first scientific paper, which became his thesis was devoted to the question of
parity violation in the processes of [ -decay - a very topical issue in the 1950s.

After graduating from the University, in 1958-1961 E. Chubaryan continued his
postgraduate studies at the Department of Theoretical Physics. After defending his
PhD dissertation in 1964 he began working at the same department, first as a senior
lecturer, from 1967 - as an Associate professor and since the defense of his
doctorial dissertation in 1972 he is a professor of the Department of Theoretical
Physics.

Edvard Chubaryan’s scientific research is devoted to thermodynamics of
degenerate superdense matter and the theory of superdense celestial bodies, whose
bases in the early 1960s were laid by academicians Victor Hambartsumyan and
Gurgen Sahakian. For his research work in this field in 1970 Edvard Chubaryan
together with Davit Sedrakyan and Vladimir Papoyan was awarded the Prize of
Lenin Komsomol.

In subsequent years Edvard Chubaryan together with the staff members of the
Department of Theoretical Physics carried out a series of works devoted to the
theory of pulsars, rotating magnetized neutron stars.

There is every reason to believe that in the case of extremely strong
gravitational fields, Einstein's general theory of relativity needs substantial
clarification. On this basis there have been a number of attempts at the Department
of Theoretical Physics to study alternative theories of gravitation. In this respect
Edvard Chubaryan’s input into the development of bimetric gravitational theory,
Kaluza-Klein’s projective theory and others is very important.

A number of significant problems were solved within the framework of
bimetric theory of gravitation. In particular, it has been shown how to self-
consistently determine the background and a curved metrics. With prof.
Chubaryan’s direct participation models of static spherical as well as those of
stationary rotating stellar configurations were built, their integral parameters —
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weight, size, quadrupole moments, etc. — were calculated in the framework of
bimetric gravitational theory. The analytic vacuum solution of the field equations
of the bimetric gravitational theory has been found, which is unique in scientific
literature.

Edvard. Chubaryan is the author of over 140 scientific papers published in
national and international journals. They were presented at many conferences,
symposia, and received recognition of the scientific community.

E. Chubaryan is one of the authors (with G. Sahakian) of the textbook
"Quantum Mechanics" in Russian and Armenian languages, co-author of Collected
Problems in Theoretical Physics, as well as of the Collected Problems in Physics
for University entrants.

E.Chubaryan plays a major role in the education of qualified physicists. He
teaches a course in "Quantum Mechanics", as well as special courses in theoretical
physics at the Faculty of Physics. Six PhD theses were defended under his
supervision. From 1991 to 2006, Professor E. Chubaryan, being the vice-rector of
Yerevan State University for Natural Sciences, devoted much attention to the
organization of educational process and actively participated in the reform of
university education.

One cannot but mention his significant role in the formation and development
of the Ijevan branch of Yerevan State University. The school education has not
been left unattended either. E. Chubaryan was chairman of the educational-
methodical council in physics of the USSR Ministry of Education, the chairman of
the jury of Republican school Olympiads in physics, and in 1984 the chairman of
All-Union School Olympiad jury. On his initiative in secondary schools,
particularly in schools with physical and mathematical bias, extensive work was
carried out to identify the gifted students.

Professor Chubaryan’s role in building up and strengthening the scientific
links between the Joint Institute for Nuclear Research (Dubna, Russia) and the
Physics Department of Yerevan State University is also noteworthy. Up to now
graduates of the Faculty of Physics, Yerevan State University, specialists in
Nuclear and Theoretical Physics, work at this Institute.

In addition to the fruitful scientific and pedagogical activity E. Chubaryan takes
an active part in public activities. He is a board member of the Problem-solving
Council in Physics of NAS of Armenia, a member of specialized councils for
defense of doctoral dissertations, a member of the Academic Councils of Yerevan
State University and of the Faculty of Physics.

Edvard Chubaryan, an honest, direct and humble scientific worker, enjoys the
confidence and affection of his students and colleagues. The hero of the day is full
of strength, vigour and willingness to work actively. This is evidenced by the fact
that during the last two years he substantially revised and republished the textbook
"Quantum Mechanics" and "Problems in quantum mechanics."

Our congratulations to Professor Chubaryan. We wish him health, longevity
and success in all his future endeavors.



Gravity and cosmology in arbitrary dimensions
and fundamental constants

V. N. Melnikov
Center for Gravitation and Fundamental Metrology, VNIIMS
and
Institute of Gravitation and Cosmology
Peoples’” Friendship University of Russia
46 Ozernaya Str., Moscow, 119361, Russia

Abstract

Integrable multidimensional models of gravitation and cosmology make up
one of the proper approaches to study basic issues and strong field objects, the
Early and present Universe and black hole physics in particular [1, 2, 3]. Our
main results within this approach are described both for cosmology and for BH
physics. Problems of the absolute G measurements and its possible time and
range variations are reflections of the unification problem.

The choice, nature, classification and precision of determination of funda-
mental physical constants and also their role in expected transfer to new def-
initions of main units of SI , supposed to be based on fundamental physical
constants and stable quantum phenomena are described. The problem of tem-
poral variations of constants is also discussed, temporal and range variations of
G in particular. A need for further absolute measurements of G, its possible
range and time variations is pointed out. The multipurpose space project SEE
is shortly described, aimed for measuring G and its stability in space and time
3-4 orders better than at present. It may answer many important questions
posed by gravitation, cosmology and unified theories. Laboratory experiment
project to test possible deviations from the Newton Law is presented also.

1. Introduction

Gravitation as a fundamental interaction that governs all phenomena at large
and very small scales, but still not well understood at a quantum level, is a missing
cardinal link to unification of all physical interactions.Discovery of present accel-
eration of the Universe, dark matter and dark energy problems are also a great
challenge to modern physics, which may bring to a new revolution in it. Studies in
the previous century in the field of gravitation were devoted mainly to theoretical
investigations and experimental verification of general relativity and alternative the-
ories of gravitation with a strong stress on relations between macro and microworld
phenomena or, in other words, between classical gravitation and quantum physics.



As a motivation there were: singularities in cosmology and black hole physics, role
of gravity at large and very small (planckian) scales, attempts to create a quantum
theory of gravity as for other physical fields, problem of possible variations of fun-
damental physical constants etc. A lot of work was done in our group [4] along such
topics as :

- exact solutions with different fields as sources in GR,

- particle-like solutions with a gravitational field,

- quantum theory of fields in a classical gravitational background,

- quantum cosmology with fields like a scalar one, with the cosmological constant
etc.,

- self-consistent treatment of quantum effects in cosmology,

- development of alternative theories of gravitation: scalar-tensor, with extra
dimensions etc.,

- possible variations of fundamental physical constants [5, 6, 7, 8, 9].

As our main results of this period one may mention [4] the first quantum cos-
mological model with a cosmological constant (creation from nothing) (1972); first
classical models for conformal scalar field (1968) and quantum cosmological mod-
els with minimal and conformal scalar fields (1971), first nonsingular cosmological
model with spontaneous symmetry breaking (1978-79) of the nonlinear conformal
scalar field, exact solutions for nonlinear electrodynamics, including Born-Infeld one,
first exact solution for dilaton-type interaction with electro-magnetic field in GR.
First non-singular field particle-like solution with gravitational field (1979). Also,
the conclusion that only G may vary with respect to atomic system of measurements
in Brans-Dicke frame (1978).

As all attempts to quantize general relativity in a usual manner failed and it was
proved that it is not renormalizable, it became clear that the promising trend is along
the lines of unification of all physical interactions which started in the 70’s. About
this time the experimental investigation of gravity in strong fields and gravitational
waves started giving a powerful speed up in theoretical studies of such objects as
pulsars, black holes, QSO’s, AGN’s, early Universe etc., which continues now.

In experimental activities some crucial next generation gravitational experiments
verifying predictions of unified schemes will be important. Among them are: STEP
- testing the corner stone Equivalence Principle, SEE - testing the inverse square
law (or new non-Newtonian interactions), EP, possible variations of the newtonian
constant G with time, measurements of the absolute value of G with unprecedented
accuracy [10, 11]. Of course, gravitational waves problem, verification of torsional,
rotational, 2nd order and strong field effects remain important also.

Other very important feature, which may be envisaged, is an increasing role of
fundamental physics studies, gravitation, cosmology and astrophysics in particular,
in space experiments [12]. Unique microgravity environments and modern technol-
ogy outbreak give nearly ideal place for gravitational experiments which suffer a
lot on Earth from its relatively strong gravitational field and gravitational fields of
nearby objects due to the fact that there is no ways of screening gravity.

In the development of relativistic gravitation and dynamical cosmology we may
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notice three distinct stages: first, investigation of models with matter sources in the
form of a perfect fluid, as was originally done by Einstein and Friedmann. Second,
studies of models with sources as different physical fields, starting from electromag-
netic and scalar ones, both in classical and quantum cases (see [4]). And third, which
is really topical now, application of ideas and results of unified models for treating
fundamental problems of cosmology, black hole and wormholes physics, especially in
high energy regimes and for explanation of the present acceleration of the Universe,
dark matter and dark energy problems. Multidimensional gravitational models play
an essential role in the latter approach.

The necessity of studying multidimensional models of gravitation and cosmology
[1, 2] is motivated by several reasons. First, the main trend of modern physics
is the unification of all known fundamental physical interactions: electromagnetic,
weak, strong and gravitational ones. During the recent decades there has been a
significant progress in unifying weak and electromagnetic interactions, some more
modest achievements in GUT, supersymmetric, string and superstring theories.

Now, theories with membranes, p-branes and M-theory are being created and
studied. Having no definite successful theory of unification now, it is desirable to
study the common features of these theories and their applications to solving basic
problems of modern gravity and cosmology. Second, multidimensional gravitational
models, as well as scalar-tensor theories of gravity, are theoretical frameworks for
describing possible temporal and range variations of fundamental physical constants
[4, 5, 6, 7]. The possible discovery of the fine structure constant variations and its
anisotropy is now at a critical further investigation.

Lastly, applying multidimensional gravitational models to basic problems of mod-
ern cosmology and black hole physics, we hope to find answers to such long-standing
problems as singular or nonsingular initial states, creation of the Universe, cre-
ation of matter and its entropy,cosmological constant, coincidence problem, origin
of inflation and specific scalar fields which may be necessary for its realization,
isotropization and graceful exit problems, stability and nature of fundamental con-
stants [5, 12, 13|, possible number of extra dimensions, their stable compactification,
new data on present acceleration of the Universe, dark matter and dark energy etc.

Multidimensional gravitational models are certain generalizations of GR which
is tested reliably for weak fields up to 0.0001 and partially in strong fields (binary
pulsars), so it is quite natural to inquire about their possible observational or ex-
perimental windows. From what we already know, among these windows are:

— possible deviations from the Newton and Coulomb laws, or new interactions,

— possible variations of the effective gravitational constant with a time rate
smaller than the Hubble one,

— possible existence of monopole modes in gravitational waves,

— different behaviour of strong field objects, such as multidimensional black holes,
wormholes and AGN,

— standard cosmological tests,

— possible non-conservation of energy in strong field objects and accelerators, if
braneworld or similar ideas about gravity in the bulk turn out to be true, etc.
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Since modern cosmology has already become a unique laboratory for testing
standard unified models of physical interactions at energies that are far beyond
the level of existing and future man-made accelerators, there exists a possibility of
using cosmological and astrophysical data for discriminating between future unified
schemes. Data on possible time variations or possible deviations from the Newton
law should also contribute to the unified theory choice.

As no accepted unified model exists, in our approach [1, 2, 14, 15] we adopted
models, based on multidimensional Einstein equations with or without sources of
different nature as: cosmological constant, perfect and viscous fluids, scalar and
electromagnetic fields and their possible interactions, dilaton and moduli fields, fields
of antisymmetric forms (related to p-branes) etc.

Our program’s main objective was and is to obtain exact self-consistent solu-
tions (integrable models) for these models and then to analyze them in cosmologi-
cal, spherically and axially symmetric cases. It is done mainly within Riemannian
geometry. In many cases we tried to single out models, which do not contradict
available experimental or observational data on variations of G.

As our model [1, 2] we use n Einstein spaces of constant curvature with sources
as (m+1)-component perfect fluid, (or fields or form-fields,), cosmological or spher-
ically symmetric metric, manifold as a direct product of factor-spaces of arbitrary
dimensions. Then in harmonic time gauge we show that Einstein multidimensional
equations are equivalent to Lagrange equations with non-diagonal in general min-
isuperspace metric and some exponential potential. After diagonalization of this
metric we perform reduction to sigma-model and Toda-like systems, further to Li-
ouville, Abel, generalized Emden-Fowler Eqgs. etc. and try to find exact solutions.
We suppose that behavior of extra spaces is the following: they are constant, or
dynamically compactified, or like torus, or large, but with barriers, walls etc.

So, we realized the program in arbitrary dimensions (from 1988) [1, 2, 3, 14, 15]

in cosmology obtaining exact general solutions of multidimensional Einstein
equations with sources:

- A, A + scalar field (singled out nonsingular, dynamically compactified, infla-
tionary, 1994);

- perfect fluid, PF + scalar field (e.g. nonsingular, inflationary solutions);

- viscous fluid (e.g. nonsingular, generation of mass and entropy, quintessence
and coincidence in 2-component model);

- stochastic behavior near the singularity, billiards in Lobachevsky space, D=11
is critical, ¢ destroys billiards (1994);

- for all above cases Ricci-flat solutions above were obtained for any n, also with
curvature in one factor-space; with curvatures in 2 factor-spaces only for total N=10,
11;

- fields: scalar, dilatons, forms of arbitrary rank (1998) - inflationary, A genera-
tion by forms (p-branes) [16];

- first billiards for dilaton-forms (p-branes) interaction (1999);

- quantum variants (solutions of WDW-equation [17]) for all above cases where
classical solutions were obtained;
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- dilatonic fields with potentials [18, 19], billiard behavior for them also.

For many of these integrable models we calculated also the variation with time
of the effective gravitational constant and comparison with present experimental
bounds allowed to choose particular models or single out some classes of solutions.

Solutions depending on r in any dimensions:

- generalized Schwarzchild, generalized Tangerlini (BH’s are singled out), also
with minimal scalar field (no BH’s);

- generalized Reissner-Nordstrom (BH’s also are singled out), the same plus ¢
(no BH’s);

- multi-temporal;

- for dilaton-like interaction of ¢ and e.-m. fields (BH’s exist only for a special
case);

- stability studies (stable solutions only for BH case above);

- the same for dilaton-forms (p-branes) interaction, stability found only in some
cases, e.g. for one form in particular.

PPN parameters for most of the models were calculated.

2. Multidimensional Models

The history of the multidimensional approach begins with the well-known papers
of T.K. Kaluza and O. Klein on 5-dimensional theories which opened an interest to
investigations in multidimensional gravity. A revival of ideas of many dimensions
started in the 70’s and continues now. Now, it is heated by expectations connected
with the overall M-theory. In all these theories, 4-dimensional gravitational models
with extra fields were obtained from some multidimensional model by dimensional
reduction based on the decomposition of the manifold

M = M* x My, (1)

where M* is our 4-dimensional manifold and M, is some internal manifold (mostly
considered to be compact).

The earlier papers on multidimensional gravity and cosmology dealt with multi-
dimensional Einstein equations and with a block-diagonal cosmological or spherically
symmetric metric defined on the manifold M = R x My x --- x M, of the form

g=—dt@dt+> al(t)g" (2)
r=0

where (M,,g") are Einstein spaces, r = 0,...,n. In some of them a cosmological
constant and simple scalar fields were also used [17].

Such models are usually reduced to pseudo-Euclidean Toda-like systems with the
Lagrangian

1 i “ ki
L= iGijSL'Zl'J - ;Akeuzx (3)
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and the zero-energy constraint £ = 0.

It should be noted that pseudo-Euclidean Toda-like systems are not well-studied
yet. There exists a special class of equations of state that gives rise to Euclidean
Toda models [20].

Cosmological solutions are closely related to solutions with spherical symmetry
[21]. Moreover, the scheme of obtaining the latter is very similar to the cosmological
approach [1, 22]. In [23] the Schwarzschild solution was generalized to the case of
n internal Ricci-flat spaces and it was shown that a black hole configuration takes
place when the scale factors of internal spaces are constants. It was shown there
also that a minimally coupled scalar field is incompatible with the existence of black
holes. In [24] an analogous generalization of the Tangherlini solution was obtained,
and an investigation of singularities was performed in [25]. These solutions were
also generalized to the electrovacuum case with and without a scalar field [26, 27,
28]. Here, it was also proved that BH’s exist only when a scalar field is switched
off. Deviations from the Newton and Coulomb laws were obtained depending on
mass, charge and number of dimensions. In [28] spherically symmetric solutions
were obtained for a system of scalar and electromagnetic fields with a dilaton-type
interaction and also deviations from the Coulomb law were calculated depending
on charge, mass, number of dimensions and dilaton coupling. Multidimensional
dilatonic black holes were singled out. A theorem was proved in [28] that “cuts” all
non-black-hole configurations as being unstable under even monopole perturbations.
In [29] the extremely charged dilatonic black hole solution was generalized to a multi-
center (Majumdar-Papapetrou) case when the cosmological constant is non-zero.

We note that for D = 4 the pioneering Majumdar-Papapetrou solutions with a
conformal scalar field and an electromagnetic field were considered in [30].

At present there exists a special interest to the so-called M- and F-theories
etc. These theories are “super-membrane” analogues of the superstring models in
D = 11,12 etc. The low-energy limit of these theories leads to multidimensional
models with p-branes.

Exact solutions with ”branes”

In our papers several classes of the exact solutions for the multidimensional
gravitational model governed by the Lagrangian

1
£ = Rlg) = 28 = hasg" N 0rrg®0ne” = 3 exp(haas™) (FY)2 (4)

were considered. Here g is metric, F'* = dA® are forms of ranks n, and ¢® are scalar
fields and A is a cosmological constant (the matrix hqgp is invertible).

It was proposed earlier that I1B string may have its origin in a 12-dimensional
theory, known as F-theory (Vafa). A low energy effective (bosonic) Lagrangian for
F-theory was also suggested. The field content of this 12-dimensional field model is
the following one: metric, one scalar field (with negative kinetic term), 4-form and
5-form. In our work [31] a chain of so-called Bp-models in dimensions D = 11,12, ...
was suggested. Bp-model contains [ = D — 11 scalar fields with negative kinetic
terms (i.e. scalar fields are so-called ”phantom” fields) coupled to (I + 1) different
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forms of ranks 4, . ..,44[. These models were constructed using p-brane intersection
rules that will be discussed below. For D = 11 (I = 0) Bp-model coincides with
the truncated bosonic sector of D = 11 supergravity. For D = 12 (I = 1) it
coincides with truncated D = 12 model. It was conjectured by us in [31] that
these Bp-models for D > 12 may correspond to low energy limits of some unknown
Fp-theories (analogues of M — and F-theories).

Description of the models.

In [15] certain classes of p-brane solutions to field equations corresponding to the
Lagrangian (4), obtained by us earlier, were presented.

These solutions have a block-diagonal metrics defined on D-dimensional product
manifold, i.e.

n
g=e2¢" + Zewgi, My x My X ... x My, (5)
=1

where ¢° is a metric on My (our space) and g’ are fixed Ricci-flat (or Einstein)
metrics on M; (internal space, i > 0). The moduli v, ¢’ and scalar fields p* are
functions on My and fields of forms are also governed by several scalar functions
on My. Any F% is supposed to be a sum of monoms, corresponding to electric
or magnetic p-branes (p-dimensional analogues of membranes), i.e. the so-called
composite p-brane ansatz is considered [32, 33].

(In non-composite case we have no more than one monom for each F¢.) p =0
corresponds to a particle, p = 1 to a string, p = 2 to a membrane etc. The p-brane
world-volume (world-line for p = 0, world-surface for p = 1 etc.) is isomorphic to
some product of internal manifolds: M; = M;, x ... x M;, where 1 <11 < ... <
ir. < n and has dimension p+1 = d;, +... + d;, = d(I), where I = {i1,...,ix}
is a multi-index describing the location of p-brane and d; = dimM;. Any p-brane
is described by the triplet (p-brane index) s = (a, v, ), where a is the color index
labelling the form F®, v = e(lectric), m(agnetic). For the electric and magnetic
branes corresponding to form F® the world-volume dimensions are d(I) = n, — 1
and d(I) = D—ng—1, respectively. The sum of this dimensions is D —2. For D = 11
supergravity we get d(I) = 3 and d(I) = 6, corresponding to electric M2-brane and
magnetic M5-brane.

Sigma model representation.

In [34] the model under consideration was reduced to gravitating self-interacting
sigma-model with certain constraints imposed. The sigma-model representation for
non-composite electric case was obtained earlier in [32, 33], for electric composite
case see also [35]).

The o-model Lagrangian, obtained from (2.4), has the form [34]

Ly = R[¢°] — GABQO’UVGMO'A(?VO'B — Z&“S exp(—2U%)g"" 9,90, ®° — 2V, (6)

s

where (04) = (¢, ), V is a potential, (G p) are components of (truncated) target
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space metric, e = +1,

U° = UflUA = Z diﬁbi — XsAasaP”
i€l

are linear functions, ®* are scalar functions on My (corresponding to forms), and
s = (as,vs, Is). Here parameter x, = +1 for the electric brane (vs = e) and xs = —1
for the magnetic one (vs = m).

A pure gravitational sector of the sigma-model was considered earlier in our
paper [21]. For p-brane applications ¢° is Euclidean, (G’AB) is positive definite
(for dy > 2) and e, = —1, if pseudo-Euclidean (electric and magnetic) p-branes in
a pseudo-Euclidean space-time are considered. The sigma-model (6) may be also
considered for the pseudo-Euclidean metric g¥ of signature (—,+,...,+) (e.g. in
investigations of gravitational waves). In this case for a positive definite matrix
(Gap) and g5 = 1 we get a non-negative kinetic energy terms.

The co-vectors U? play a key role in studying the integrability of the field equa-
tions [34, 37] and possible existence of stochastic behavior near the singularity, see
our paper [36]. An important mathematical characteristic here is the matrix of scalar
products (U*,U*") = GABUS U, where (GAP) = (Gap)~". The scalar products for
co-vectors U*® were calculated in [34] (for electric case see [32, 33, 35] )

d(Is)d(Is’)
2—-D

where (h*F) = (hop)™1; s = (as,vs,1s), 8 = (ay,vy,Iy). They depend upon
brane intersections (first term), dimensions of brane world-volumes and total di-
mension D (second term), scalar products of dilatonic coupling vectors and electro-
magnetic types of branes (third term). As will be shown below the so-called “in-
tersections rules” (i.e. relations for d(Is N Iy)) are defined by scalar products of
U?-vectors.

Cosmological and spherically symmetric solutions.

A family of general cosmological type p-brane solutions with n Ricci-flat internal
spaces was considered, where also a generalization to the case of n — 1 Ricci-flat
spaces and one Einstein space of non-zero curvature (say M;) was obtained. These
solutions are defined up to solutions to Toda-type equations and may be obtained
using the Lagrange dynamics following from our sigma-model approach [31]. The
solutions contain a subclass of spherically symmetric solutions (for M; = S%). Spe-
cial solutions with orthogonal and block-orthogonal sets of U-vectors were considered
earlier in our works [31] and [14], respectively. (For non-composite case, see [39, 40])
and references therein.)

Toda solutions.

In [31] the reduction of p-brane cosmological type solutions to Toda-like sys-
tems was first performed. General classes of p-brane solutions (cosmological and
spherically symmetric ones) related to Euclidean Toda lattices associated with Lie
algebras (mainly Ay,, Cy, ones) were obtained in [41, 43, 44, 46, 47].

(Us’ US/) = d(-[s N Is’) + + XSXS’)‘aSa)\aS/Bhaﬁv
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A class of space-like brane (S-brane) solutions (related to Toda-type systems)
with product of Ricci-flat internal spaces and S-brane solutions with special orthog-
onal intersection rules were considered in [55, 56] and solutions with accelerated
expansion (e.g. with power-law and exponential behavior of scale factors) were sin-
gled out.

Black brane solutions.

In [46, 47] a family of spherically-symmetric solutions was investigated and a
subclass of black-hole configurations related to Toda-type equations with certain
asymptotical conditions imposed was singled out. These black hole solutions are
governed by functions H(z) > 0, defined on the interval (0, (2u)~!), where u > 0
is the extremality parameter, and obey a set of differential equations (equivalent to

Toda-type ones)
d ((1—=2uz)d = —Ay
— | ————H; | =B; || H., *,
dz < H, dz 1;[ 5

with the following boundary conditions imposed: (i) Hg((2u)™! —0) = Hy €
(0, +00); (ii) Hs(+0) = 1, s € S. Here By # 0 and (A,y) is a quasi-Cartan
matrix.

In refs. [45, 46, 47] the following hypothesis was suggested: the functions H; are
polynomials when intersection rules

d(Is)d(Is’)

L12d(L N 1y) = =55

1 / /
- XSXS’)‘asa)‘asxﬁhaﬂ + §(US aUS )Ass’a S 7& s’ (7)

correspond to semi-simple Lie algebras, i.e. when (A4,y) is a Cartan matrix.

Here
2U°,U*)
(Us/’ Us/) )
s,s' € S, is a quasi-Cartan matrix.

This hypothesis was verified for Lie algebras: Am, Cmt1, m = 1,2,..., in
[46, 47]. It was also confirmed by special black-hole ”block orthogonal” solutions
considered earlier in [14, 42].

In [45, 46, 47] explicit formulas for the solution corresponding to the algebra Ag
are presented. These formulas are illustrated by two examples of Aa-dyon solutions:
a dyon in D = 11 supergravity (with M2 and M5 branes intersecting at a point) and
Kaluza-Klein dyon. Extremal configurations (e.g. with multi-black-hole extension)
were also obtained.

We note, that special black hole solutions with orthogonal U-vectors were con-
sidered in [38] (for non-composite case) and [31]. These solutions have analogous in
models with multicomponent perfect fluid [49, 51, 52].

The black brane solution, corresponding to Lie algebras Co and Ag where ob-
tained in [50].

(ASS’)
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In [38] some propositions related to i) interconnection between the Hawking
temperature and the singularity behavior, and ii) multitemporal configurations were
proved.

It should be noted that polynomial structure was found also for the so-called flux
brane solutions, that occur as generalizations of the well-known Melvin solution.

Cosmological models in diverse dimensions

Scalar fields play an essential role in modern cosmology. They are attributed to
inflation models of the hypothetical early universe and the models describing the
present stage of the accelerated expansion as well. There is no unique candidate for
the potential of the minimally coupled scalar field. Typically a potential is a sum
of exponents. Such potentials appear quite generically in a large class of theories:
multidimensional, Kaluza-Klein models, supergravity and string/M - theories.

Single exponential potential was extensively studied within Friedmann-Robertson-
Walker (FRW) 4D-model containing both a minimally coupled scalar field and a
perfect fluid with the linear barotropic equation of state . The attention was mainly
focussed on the qualitative behavior of solutions, stability of the exceptional solu-
tions to curvature and shear perturbations and their possible applications within the
known cosmological scenario such as inflation and scaling (”tracking”) . In particu-
lar, it was found by a phase plane analysis that for "flat” positive potentials there
exists an unique late-time attractor in the form of the scalar dominated solution. It
is stable within homogeneous and isotropic models with non-zero spatial curvature
with respect to spatial curvature perturbations and provides the power-law inflation.
For ”intermediate” positive potentials an unique late-time attractor is the scaling
solution, where the scalar field ”mimics” the perfect fluid, adopting its equation of
state. The energy-density of the scalar field scales with that of the perfect fluid.
Using our methods for multidimensional cosmology the problem of integrability by
quadratures of the model in 4-dimensions was also studied. Four classes of general
solutions, when the parameter characterizing the steepness of the potential and the
barotropic parameter obey some relations, were found [60]. For the case of multi-
ple exponential potential of the scalar field and dust integrable model in 4D was
obtained in [61].

As to scalar fields with the multiple exponential potential in any dimensions,
a wide class of exact solutions was obtained in [18, 19]. In [54] a behavior of this
system near the singularity was studied using a billiard approach suggested earlier
in [53, 36]. A number of S-brane solutions may be found in [55, 56].

Details for 2-component D-dimensional integrable models see in [63, 58, 59].
Quite different model with dilaton, branes and cosmological constant and static
internal spaces was investigated in [16], where possible generation of the effective
cosmological constant by branes was demonstrated. Model with variable equations
of state see in [62] with acceleration of our space and compactification of internal
spaces.

Cosmological models with time variations of G.

As we mentioned before cosmological models in scalar-tensor and multidimen-
sional theories are the framework for describing possible variations of fundamental
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physical constants with time due to scalar fields present explicitly in STT or gener-
ated by extra dimensions in multidimensional approach. In [66] we obtained solu-
tions for the system of conformal scalar and gravitational fields in 4D and calculated
the present possible relative variation of G at the level of less than 5 x 10~ 3year—!.
Later, in the frames of a multidimensional model with a perfect fluid and 2 factor
spaces (our 3D space of Friedmann open, closed and flat models) and internal 6D
Ricci-flat one, we obtained the same limit for such variation of G [9].

We estimated also the possible variations of the gravitational constant G in the
framework of a generalized (Bergmann-Wagoner-Nordtvedt) scalar-tensor theory of
gravity on the basis of the field equations, without using their special solutions.
Specific estimates were essentially related to the values of other cosmological pa-
rameters (the Hubble and acceleration parameters, the dark matter density etc.),
but the values of G-dot/G compatible with modern observations do not exceeded 5
x 10713 per year [74].

In [73] we continued the studies of models in arbitrary dimensions and obtained
the relations for G-dot in multidimensional model with Ricci-flat internal space and
multicomponent perfect fluid. A two-component example: dust + 5-brane, was
considered. It was shown that G-dot/G is less than 5 10~ 3year—!. Expressions for
G-dot were considered also in a multidimensional model with an Einstein internal
space and a multicomponent perfect fluid [76]. In the case of two factor-spaces with
non-zero curvatures without matter, a mechanism for prediction of small G-dot was
suggested. The result was compared with exact (1+3+6)-dimensional solutions,
obtained by us earlier [75, 76].

Multidimensional cosmological model describing the dynamics of n + 1 Ricci-flat
factor-spaces M; in the presence of a one-component anisotropic fluid was considered
in [82]. The pressures in all spaces were supposed to be proportional to the density:
p; = w;p, 1 = 0,....n. Solutions with accelerated power-law expansion of our 3-space
My and small enough variation of the gravitational constant G were found. These
solutions exist for two branches of the parameter wg. The first branch describes the
super-stiff matter with wg > 1, the second one may contain a phantom matter with
wo < —1, e.g., when G grows with time, so this branch may describe not present,
but earlier stages only.

Similar exact solutions, but nonsingular and with an exponential behaviour of
the scale factors were considered in [83] for the same multidimensional cosmological
model describing the dynamics of n + 1 Ricci-flat factor spaces M; in the presence
of a one-component perfect fluid. Solutions with accelerated exponential expansion
of our 3-space My and small variation of the gravitational constant G were found
also.

Exact S-brane solutions with 2 electric branes and 2 phantom scalar fields in the
manifold

M = (0,400) x R x My x M3 x My x Ms. (8)

were obtained and studied in [84]. We got the asymptotic accelerated expansion
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of our 3-dimensional factor space and variations obeying the present experimental
constraints of G-dot/G equal or less than 5 10~ Byear—1.

Spherically-symmetric solutions, black holes and PPN parameters.

In [34] it was shown that, after dimensional reduction on the manifold Mg x M; X
-+ X M, and when the composite p-brane ansatz is considered, the problem is reduced
to the gravitating self-interacting o-model with certain constraints. For electric p-
branes see also [33, 35] (in [35] the composite electric case was considered). This
representation may be considered as a powerful tool for obtaining different solutions
with intersecting p-branes. In [34, 37| Majumdar-Papapetrou type solutions were
obtained (for the non-composite electric case see [33] and for the composite electric
case see [35]). These solutions correspond to Ricci-flat (M;, g*), i = 1,...,n and were
generalized to the case of Einstein internal spaces [34]. The obtained solutions take
place when certain orthogonality relations (on couplings parameters, dimensions of
“branes”, total dimension) are imposed. In this situation a class of cosmological and
spherically symmetric solutions was obtained [31]. Solutions with a horizon (black
branes) were considered in detail in [38, 31].

It should be noted that multidimensional and multitemporal generalizations of
the Schwarzschild and Tangherlini solutions were considered in [27, 64], where the
generalized Newton formulas in a multitemporal case were obtained.

We also calculated the Post-Newtonian Parameters 3 and v (Eddington param-
eters) for general spherically symmetric solutions and black holes in particular [14].
These parameters depending on p-brane charges, their worldvolume dimensions,
dilaton couplings and number of dimensions may be useful for possible physical
applications.

Some specific models in classical and quantum multidimensional cases with p-
branes were analysed. Exact solutions for the system of scalar fields and fields of
forms with a dilatinic type interactions for generalized intersection rules were studied
in [46], where the PPN parameters were also calculated. Other problems connected
with observations and general properties of BH’s were studied in a braneworld in
[57].

Also, a stability analysis for solutions with p-branes was carried out [48, 71].
It was shown there that for some simple p-brane systems multidimensional black
branes are stable under monopole perturbations while other (non-BH) sperically
symmetric solutions turned out to be unstable.

Below we dwell mainly upon some problems of fundamental physical constants,
the gravitational constant in particular, upon the SEE and laboratory projects to
measure GG and its possible variations shortly and on some theoretical models with
variations of the effective gravitational constant.

3. Fundamental physical constants

In any physical theory we meet with constants which characterize the stability
properties of different types of matter: of objects, processes, classes of processes and
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so on. These constants are important because they arise independently in different
situations and have the same value, at any rate within accuracies we have gained
nowadays. That is why they are called fundamental physical constants (FPC) [4, 12].
It is impossible to define strictly this notion. It is because the constants, mainly
dimensional, are present in definite physical theories. In the process of scientific
progress some theories are replaced by more general ones with their own constants,
some relations between old and new constants arise. So, we may talk not about an
absolute choice of FPC, but only about a choice corresponding to the present state
of physical sciences.

Really, before the creation of the electroweak interaction theory and some Grand
Unification Models, this choice was considered as follows:

c, h7 «, GF7 Gs, mp (OI' me)? G7 H7 P, A7 ka -[7 (9)

where o, G, gs and G are constants of electromagnetic, weak, strong and gravita-
tional interactions, H, p and A are cosmological parameters (the Hubble constant,
mean density of the Universe and cosmological constant), k and I are the Boltzmann
constant and the mechanical equivalent of heat which play the role of conversion
factors between temperature on the one hand, energy and mechanical units on the
other. After adoption in 1983 of a new definition of the meter (A = ct or £ = ct) this
role is partially played also by the speed of light c. It is now also a conversion factor
between units of time (frequency) and length, it is defined with the absolute (null)
accuracy. With the new suggested definitions of basic units of the International
System of Units (SI) such a role may play also & and N4, where N4 is the Avogadro
number.

Now, when the theory of electroweak interactions has a firm experimental basis
and we have some good models of strong interactions, a more prefarable choice is as
follows:

h, (¢), e, me, Oy, Gp, O, Agep, G, H, p, A, k, 1 (10)

and, possibly, three angles of Kobayashi-Maskawa — 65, 03 and 6. Here 6, is
the Weinberg angle, 0. is the Cabibbo angle and Agcp is a cut-off parameter of
quantum chromodynamics. Of course, if a theory of four known now interactions
will be created (M-, F-or other), then we will probably have another choice. As
we see, the macro constants remain the same, though in some unified models, i.e.
in multidimensional ones, they may be related in some manner (see below). From
the point of view of these unified models the above mentioned ones are low energy
constants.

All these constants are known with different accuracies. The most precisely
defined constant was and remain the speed of light c: its accuracy was 10719 and
now it is defined with the null accuracy. Atomic constants, e, i, m and others are
determined with errors 1076 + 1078, G up to 10~* or even worse, 6, — up to 1073;
the accuracy of H is about several percents. Other cosmological parameters (FPC):
mean density estimations vary also within 2 percent; for A we have now data that
its corresponding energy density exceeds the matter density (0.7 and 0.3 of the total
universe mass correspondingly).
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As to the nature of the FPC, we may mention several approaches. One of the
first hypotheses belongs to J.A. Wheeler: in each cycle of the Universe evolution
the FPC arise anew along with physical laws which govern this evolution. Thus, the
nature of the FPC and physical laws are connected with the origin and evolution of
our Universe.

A less global approach to the nature of dimensional constants suggests that
they are needed to make physical relations dimensionless or they are measures of
asymptotic states. Really, the speed of light appears in relativistic theories in factors
like v/c, at the same time velocities of usual bodies are smaller than ¢, so it plays
also the role of an asymptotic limit. The same sense have some other FPC: & is the
minimal quantum of action, e is the minimal observable charge (if we do not take
into account quarks which are not observable in a free state) etc.

Finally, FPC or their combinations may be considered as natural scales determin-
ing the basic units. While the earlier basic units were chosen more or less arbitrarily,
i.e., the second, meter and kilogram, now the first two are based on stable (quantum)
phenomena. Their stability is believed to be ensured by the physical laws which in-
clude FPC. There appeared similar suggestions for a new reproducible realization
of a kg, fixing values of N4 or other constants, e.g. h [91].

An exact knowledge of FPC and precision measurements are necessary for testing
main physical theories, extension of our knowledge of nature and, in the long run,
for practical applications of fundamental theories. Within this, such theoretical
problems arise:

1) development of models for confrontation of theory with experiment in critical
situations (i.e. for verification of GR, QED, QCD, GUT or other unified models);

2) setting limits for spacial and temporal variations of FPC. It is becoming
especially important now with the idea to introduce new basic units of International
System of Units (SI), based completely on FPC.

As to a classification of FPC, we may set them now into four groups according
to their generality:

1) Universal constants such as h, which divides all phenomena into quantum
and non-quantum ones (micro- and macro-worlds) and to a certain extent ¢, which
divides all motions into relativistic and non-relativistic ones;

2) constants of interactions like «, 6,,, Agcp and G;

3) constants of elementary constituencies of matter like me, my,, my, etc., and

4) transformation multipliers such as k, I and partially ¢ (conversion from the
second to the meter). Soon there may be more after modernization of SI - values of
h, e, k and N4 may be fixed with zero uncertainty.

Of course, this division into classes is not absolute. Many constants move from
one class to another. Some of the constants ceased to be fundamental (i.e. densities,
magnetic moments, etc.) as they are calculated via other FPC.

As to the number of FPC, there are two opposite tendencies: the number of
“old” FPC is usually diminishing when a new, more general theory is created, but
at the same time new fields of science arise, new processes are discovered in which
new constants appear. So, in the long run we may come to some minimal choice
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which is characterized by one or several FPC, maybe connected with the so-called
Planck parameters — combinations of ¢, i and G' (natural, or Planck system of units
[12, 13]):

B 1/2
L= <§) ~ 1073 cm,
C
myp = (ch/2G)Y?~ 1070 g,
L, =L/c~ 1078 s, (11)

The role of these parameters is important since mj, characterizes the energy of
unification of four known fundamental interactions: strong, weak, electromagnetic
and gravitational ones, and L is a scale where the classical notions of space-time
loose their meaning. There are other ideas about the final number of FPC (2, 1, or
none). Of course, all will depend on a future unified theory.

The problem of the gravitational constant G measurement and its stability is a
part of a rapidly developing field, called gravitational-relativistic metrology (GRM).
It has appeared due to the growth of measurement technology precision, spread of
measurements over large scales and a tendency to the unification of fundamental
physical interaction [7], where main problems arise and are concentrated on the
gravitational interaction.

The main subjects of GRM are:

- general relativistic models for different astronomical scales: Earth, Solar Sys-
tem, galaxes, cluster of galaxies, cosmology;

- time transfer, VLBI, space dynamics, relativistic astrometry etc.(pioneering
works were done in Russia by Arifov and Kadyev, Brumberg in 60’s);

- development of generalized gravitational theories and unified models for testing
their effects in experiments;

- fundamental physical constants, G in particular, and their stability in space
and time; projects uSCOPE, STEP, SEE...

- fundamental cosmological parameters as FPC: cosmological models studies
(quintessence, k-essence, phantom, multidimensional ones), measurements and ob-
servations; WMAP, PLANCK, ...

- gravitational waves (3d generations of detectors, study of sources...); LIGO,
VIRGO, TAMA, LISA, RADIOASTRON,...

- basic standards (clocks) and other modern precision devices (atomic and neu-
tron interferometry, atomic force spectroscopy etc.) in fundamental gravitational
experiments, especially in space for testing GR and other theories : rotational, tor-
sional and second order effects (need uncertainty 107°%), e.g. LAGEOS, Gravity
Probe B, ASTROD, LATOR etc.

We are now on the level 2.3 - 107° in measuring PPN-parameter v and 5 - 1074
- for 3, Brans-Dicke parameter w > 40000. Proposed several future missions aimed

to increase the accuracy of ~.
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There are three problems related to G, which origin lies mainly in unified models
predictions: 1) absolute G measurements, 2) possible time variations of G, 3) possible
range variations of G — non-Newtonian, or new interactions.

Absolute measurements of G. There are many laboratory determinations of G
with errors of the order 1073 and some are on the level of 1074 .

The most recent and precise G measurements do not agree with each other and
some differ from the CODATA value of 2010:

G = 6.67384(80) - 10~ - m?3 - kg~ - 72 (12)

with relative standard uncertainty 1.2 - 1074,

So, we see that we are not too far (about two orders) from Cavendish, who
obtained value of G 2 centuries ago at the level 1072, The situation with the mea-
surement of the absolute value of G is really different from atomic constants values
and their uncertainties (1078). This means that either the limit of terrestrial ac-
curacies of defining G' has been reached or we have some new physics entering the
measurement procedure [7]. The first means that, maybe we should turn to space
experiments to measure G [12, 11], and the second means that a more thorough
study of theories, generalizing GR, or unified theories is necessary.

There exist also some satellite determinations of G (namely G - Mga4n) on the
level of 107 (so, should we know G much better, our knowledge of masses of the
Earth and other planets will be much better and consequently their models).

The precise knowledge of G is necessary, first of all, as it is a FPC; next, for the
evaluation of mass of the Earth, planets, their mean density and, finally, for con-
struction of Earth models; for transition from mechanical to electromagnetic units
and back; for evaluation of other constants through relations between them given
by unified theories; for finding new possible types of interactions and geophysical
effects; for some practical applications like increasing of gradiometers precision, as
they demand a calibration by a gravitational field of a standard body depending on
G: high accuracy of their calibration (107> - 107%) requires the same accuracy of G.

The knowledge of constants values has not only a fundamental meaning but also a
metrological one. The modern system of standards is based mainly on stable physical
phenomena. So, the stability of constants plays a crucial role. As all physical laws
were established and tested during the last 2-3 centuries in experiments on the Earth
and in the near space, i.e. at a rather short space and time intervals in comparison
with the radius and age of the Universe, the possibility of slow variations of constants
(i.e. with the rate of the evolution of the Universe or slower) cannot be excluded a
priori.

So, the assumption of absolute stability of constants is an extrapolation and each
time we must test it.

Time Variations of G. The problem of FPC variations arose with the attempts
to explain the relations between micro- and macro-world phenomena. Dirac was the
first to introduce (1937) the so-called “Large Numbers Hypothesis” which relates
some known very big (or very small) numbers with the dimensionless age of the
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Universe T ~ 10%0 (age of the Universe is 10'7 s, divided by the characteristic
elementary particle time 10723 s). He suggested that the ratio of the gravitational
to strong interaction strengths, Gmf, /hc ~ 10740 is inversely proportional to the
age of the Universe: Gmg /hic ~ T~!. Then, as the age varies, some constants or
their combinations must vary as well. Atomic constants seemed to Dirac to be more
stable, so he chose the variation of G as T~ !.

After the original Dirac hypothesis some new ones appeared (Gamov, Teller,
Landau, Terazawa, Staniukovich etc., see [4, 12]) and also some generalized theories
of gravitation admitting the variations of an effective gravitational coupling. We
may single out three stages in the development of this field:

1. Study of theories and hypotheses with variations of FPC, their predictions
and confrontation with experiments (1937-1977).

2. Creation of theories admitting variations of an effective gravitational constant
in a particular system of units, analyses of experimental and observational data
within these theories [65, 4] (1977-present).

3. Analyses of FPC variations within unified models [7, 5, 1] (present).

Within the development of the first stage from the analysis of the whole set of
existed astronomical, astrophysical, geophysical and laboratory data, a conclusion
was made [65, 66] that variations of atomic constants are excluded, but variation of
the effective gravitational constant in the atomic system of units does not contradict
the available experimental data on the level 1072 + 10~ !3year—!. Moreover, in
[65, 66] the conception was worked out that variations of constants are not absolute
but depend on the system of measurements (choice of standards, units and devices
using this or that fundamental interaction). Each fundamental interaction through
dynamics, described by the corresponding theory, defines the system of units and the
corresponding system of basic standards, e.g. atomic and gravitational (ephemeris)
seconds.

There are different astronomical, geophysical and laboratory data on possible
variations of FPC [12].

But the most strict present data on variations of strong, electromagnetic, gravi-
tational and week interaction constants are the following:

|G, /Gy < 5-1071 year™!,
la/al < 10717 year!, (13)

|G/G| < 5-10713 year™!,

|Gr/Gr| <2-10712 year 1.

Some studies of strong interaction constant and its dependance on transferred
momenta may be found in [81]. The recent review on variations of « see in [90].

There appeared some data on a possible variation of a on the level of 10716
at some z [79]. Other groups do not support these results. Also appeared data
on possible violation of m./m, (Varshalovich et al.) The problem may be that
even if they are correct, all these results are mean values of variations at some
epoch of the evolution of the Universe (certain z interval ). In essence variations
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may be different at different epochs (if they exist at all) and at the next stage
observational data should be analyzed with the account of evolution of corresponding
("true” )cosmological models.

Now we still have no unified theory of all four interactions. So it is possible to
construct systems of measurements based on any of these four interactions. But
practically it is done now on the basis of the mostly worked out theory — on elec-
trodynamics (more precisely on QED). Of course, it may be done also on the basis
of the gravitational interaction (as it was partially earlier). Then, different units of
basic physical quantities arise based on dynamics of the given interaction, i.e. the
atomic (electromagnetic) second, defined via frequency of atomic transitions or the
gravitational second defined by the mean Earth motion around the Sun (ephemeris
time).

It does not follow from anything that these two seconds are always synchronized
in time and space. So, in principal they may evolve relative to each other, for
example at the rate of the evolution of the Universe or at some slower rate.

That is why, in general, variations of the gravitational constant are possible
in the atomic system of units (¢, h, m are constant, Jordan frame) and masses
of all particles — in the gravitational system of units (G, h, ¢ are constant by
definition, Einstein frame). Practically we can test only the first variant since the
modern basic standards are defined in the atomic system of measurements. Possible
variations of FPC must be tested experimentally but for this it is necessary to have
the corresponding theories admitting such variations and their certain effects.

Mathematically these systems of measurement may be realized as conformally
related metric forms. Arbitrary conformal transformations give us a transition to
an arbitrary system of measurements.

We know that scalar-tensor and multidimensional theories are corresponding
frameworks for these variations. So, one of the ways to describe variable gravita-
tional coupling is the introduction of a scalar field as an additional variable of the
gravitational interaction. It may be done by different means (e.g. Jordan, Brans-
Dicke, Canuto and others). We have suggested a variant of gravitational theory with
a conformal scalar field (Higgs-type field [67, 4]) where Einstein’s general relativ-
ity may be considered as a result of spontaneous symmetry breaking of conformal
symmetry (Domokos, 1976) [4]. In our variant spontaneous symmetry breaking of
the global gauge invariance leads to a nonsingular cosmology [68]. Besides, we may
get variations of the effective gravitational constant in the atomic system of units
when m, ¢, h are constant and variations of all masses in the gravitational system
of units (G, ¢, h are constant). It is done on the basis of approximate [69] and exact
cosmological solutions with local inhomogeneity [70].

As to other experimental or observational data, the results are of different quality.
The most reliable ones are based on lunar laser ranging (Nordtvedt, 2003; Turyshev,
2008) and Pitjeva’s result (2006, 2010) on radar ranging and optical observations.
They are less than 5 10~! per year. Here, once more we see that there is a need for
corresponding theoretical and experimental studies. Probably, future space missions
like Earth SEE-satellite [10, 11, 12, 13] or missions to other planets and lunar laser
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ranging will be a decisive step in solving the problem of temporal variations of G and
determining the fates of different theories which predict them, since the greater is
the time interval between successive measurements and, of course, the more precise
they are, the more stringent results will be obtained.

As was shown in [5, 72, 1] temporal variations of FPC are connected with each
other in multidimensional models of unification of interactions. So, experimental
tests on ¢/a may at the same time be used for estimation of G'//G and vice versa.
Moreover, variations of G are related also to the cosmological parameters p, {2 and
q which gives opportunities of raising the precision of their determination.

As variations of FPC are closely connected with the behavior of internal scale
factors [8], it is a direct probe of properties of extra dimensions and the corresponding
unified theories [8, 9, 1]. From this point of view it is an additional test of not only
gravity and cosmology, but unified theories of physical interactions as well.

Non-Newtonian interactions, or range variations of G. Nearly all modified theories
of gravity and unified theories predict also some deviations from the Newton law
(inverse square law, ISL) or composition-dependent violations of the Equivalence
Principle (EP) due to appearance of new possible massive particles (partners) [5].
Experimental data exclude the existence of these particles on a very good level at
nearly all ranges except less than micrometer and also at meters and hundreds of
meters ranges. Our recent analysis of experimental bounds and new limits on possi-
ble ISL violation using the new method and modern precession data from satellites,
planets, binary pulsar and LLR data were obtained in [77].

In the Einstein theory G is a true constant. But, if we think that G may vary
with time, then, from a relativistic point of view, it may vary with distance as well.
In GR massless gravitons are mediators of the gravitational interaction, they obey
second-order differential equations and interact with matter with a constant strength
G. If any of these requirements is violated, we come in general to deviations from
the Newton law with range (or to generalization of GR).

In [6] we analyzed several classes of such theories:

1. Theories with massive gravitons like bimetric ones or theories with a A-term.

2. Theories with an effective gravitational constant like the general scalar-tensor
ones.

3. Theories with torsion.

4. Theories with higher derivatives (4th-order equations etc.), where massive
modes appear leading to short-range additional forces.

5. More elaborated theories with other mediators besides gravitons (partners),
like supergravity, superstrings, M-theory etc.

6. Theories with nonlinearities induced by any known physical interactions
(Born-Infeld etc.)

7. Phenomenological models where the detailed mechanism of deviation is not
known (fifth or other force).

8. Modifications of the Newton law at large ranges (MOND etc.), small acceler-
ation at a > ag (Pioneer anomaly, etc.)
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In all these theories some effective or real masses appear leading to Yukawa-type
(or power-law) deviations from the Newton law, characterized by strength « and
range .

There exist some model-dependant estimations of these forces.

Some p-brane models (ADD, branewolds) also predict non-Newtonian additional
interactions of both Yukawa or power-law, in particular in the less than 10nm range,
what is intensively discussed nowadays [13, 78]. About PPN parameters for multi-
dimensional models with p-branes see above, section 2.

More serious evidence on a possible violation of Newton’s Law has come to us
from space, namely, from data processing on the motion of the spacecrafts Pioneer
10 and 11, referring to length ranges of the order of or exceeding the size of the Solar
system. The discovered anomalous (additional) acceleration is (8.60 + 1.34) -1078
cm/s?. Tt acts on the spacecrafts and is directed towards the Sun. This acceleration
is not explained yet completely by known effects, bodies or influences related to the
design of the spacecrafts themselves (leakage etc.), as was confirmed by independent
calculations.

Many different approaches have been analyzed both in the framework of standard
theories and invoking new physics, but none of them now seems to be sufficiently
convincing and generally accepted.

This Pioneer anomaly has caused new proposals of space missions with more
precise experiments and a wide spectrum of research at the Solar system length
range and beyond:

— Cosmic Vision 2015-2025, suggested by the European Space Agency, and

— Pioneer Anomaly Explorer, suggested by NASA. So, we hope they contribute a
lot to our knowledge of gravity and unified models.

SEE - Project. We saw that there are three problems connected with G. There is
a promising new multi-purpose space experiment SEE - Satellite Energy Exchange
[10, 11], which addresses all these problems and may be more effective in solving
them than other laboratory or space experiments.

This experiment is based on a limited 3-body problem of celestial mechanics:
small and large masses in a drag-free satellite and the Earth. Unique horse-shoe
orbits, which are effectively one-dimensional, are used in it.

The aims of the SEE-project are to measure: Inverse Square law (ISL) and
Equivalence Principle (EP) at ranges of meters and the Earth radius, G-dot and the
absolute value of G with unprecedented accuracies.

We studied many aspects of the SEE-project [11, 12] and the general conclusion
is that realization of the SEE-project may improve our knowledge of G, G-dot and
G(r) by 3-4 orders.

Another laboratory variant was suggested in our paper [80] to test possible range
variations of GG. It is the experiment on possible detection of new forces, or test
of the inverse square law, parameterized by Yukawa-type potential with strength
a and range A. The installation comprises a ball with a spherical cavity whose
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center is shifted with respect to the ball center. The ball is placed on a turn-table
being rotated uniformly. Torsion balance as a sensitive element is inside the cavity.
Uniform gravitational field created inside the ball do not influence the balance,
but any non-gravitational forces create a torque, which acts periodically during
the rotation of the ball. The spectrum of harmonics was calculated. It is shown
that preferable to use the first harmonic in the measurements. Sensitivity of the
method was evaluated, which is limited by uncertainties due to manufacturing of
elements and temperature fluctuations of the sensitive element. It was shown that
the sensitivity of the method suggested may be on the level of o - 10719 in the range
of A - (0.1 —10")m in the space of Yukawa parameters (a, \).

Our recent results on theoretical models with variations of G, FPC, billiards,
solutions with branes and black branes as well as transition to new SI units see also
in [85, 87], [86], [88], [89, 92] and [91, 93] correspondingly.
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Tensor-scalar theories of gravitation in the context of
modern cosmology

E. Chubaryan, R. Avagyan, G.Harutunyan, A. Piloyan
Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

Recently discovered accelerated expansion of the Universe is of
current interest in theoretical research on the evolution of the Universe. The
cause of this behavior is presumably the presence of dark energy, which has
been estimated to form up to 70% of the universe and generates a “repulsive
gravitational force”. In this paper we present the approach based on tensor-
scalar theories. After the discussion of the action for Tensor-scalar (TS)
theories, we will describe conformal correspondence between JBD and
Einstein theories. Cosmological models are considered in the framework of the
Jordan-Brans-Dicke (JBD) theory in the Finstein frame. The cases of scalar
field, the cosmological constant and the matter, being described by the
equation of state P=ae (P is the pressure, € is the energy density), are
separately discussed. The analysis of obtained results is carried out in the light
of modern observational data. It is shown that, in the case of q=-1/2 (q is the
“deceleration” parameter), the contributions of the scalar field and the
cosmological constant A (A>0) compensate each other, thus leading to
Einstein’s theory.

1. Introduction

In the present paper, first we will briefly speak about the problems of the
modern cosmology raised after new observational data, and then we will mention
approaches and theories created to solve these problems, and finally we will pick
up from these theories tensor-scalar one and discuss it in detail.

What are the most exiting points in cosmology? Of course, we can point out at
least 4 problems related with the words Dark Matter, Dark Energy, Large scale
structure, and Inflation[1-7]. In the Fig. 1 the universe evolution is shown as a
result of recent cosmological observational data and theory. One can see in the first
stage of the universe evolution the inflation, exponential expansion of the universe,
the existence of which is demanded by observations and theory, then another
accelerating expanding stage of the universe evolution in the late epoch takes
place. These both stages need to be explained by new theories, introducing a new
type of field or by changing the action of General Relativity (GR).
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From Fig. 2, we can see how the observed rotational curves for stars far from
the Galaxy center differ from those predicted by Newtonian gravity. The dark
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matter or alternative theories of gravity are coming to help somehow explain this
behavior [8-13].

Figure 1: Schematic view of the Universe evolution.
observed
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Figure 2: Rotational Curve of M33 Galaxy.

36




Modern cosmological observations of the large scale structure (LSS), Ia type
supernova and cosmic microwave background (CMB) voted about current
acceleration of the Universe expansion. As an illustration, in the Fig. 3 we present
the data coming from Ia type supernova observations. One of the most popular
theoretical explanations of the accelerated expansion is related with the
consideration of a non-gravitational source (dark energy) for which &+3P<0 (¢ is
the energy density and P is the pressure). The positive cosmological constant is the
simplest source of this type.

An alternative approach for the explanation of the accelerated expansion is
based on the use of theories of gravity different from GR. Among the most popular
alternatives are tensor-scalar (TS) theories. There are several motivations for this.
In particular, superstring theories lead to TS theories in the low-energy limit. TS
theories also provide a solution for the graceful exit problem from the inflationary
stage to the radiation dominated phase.

In the first part of the present paper we will give a general introduction to TS
theories. The conformal relation between GR and Jordan-Brans-Dicke (JBD)
theory is discussed. The remained part of the paper is devoted to the investigation
of cosmological models considered in the Einstein frame of JBD theory, in the
phase dominated by a scalar field, and also in the presence of the cosmological
constant and the matter described by the barotropic equation of state P=ae. The
analysis of the obtained results is done by comparing with the modern
observational data. It is shown that for q=1/2 (q is the deceleration parameter) the
contributions of the scalar field and the A-term (A>0) compensate each other and
the situation becomes similar to that for the GR.
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Figure 3: Ia Type Supernova observational data showing the late time
acceleration of the Universe expansion.
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2. Conformal correspondence of the JBD and GR theories

Let suppose that in the same manyfold two conformally related Reimann
structures are given:
ds’ =ds’c’(x)=0"(x)- g, dxtdx",g,, = o’ (x)- 88y = o (x)- g, 2.1)
Besides the mathematical content we try to give a physical interpretation to
conformal transformation (2.1) by relating it with the scale transformation of units
of measurements.

The idea of relationship between different systems of units for physical
quantities and the local conformal transformations goes back to Weil [14],
Eddington [15], Dicke [16]. It is natural to assume that the universal constants such
as the speed of light and the Planck constant are invariant under conformal
transformations:

T =c,h =h - (2.2)
We also assume that those 1-forms in the definition of which does not appear the
metric tensor are unchanged under the transformations (2.1), for example Aﬂ = Aﬂ

for the potential of the electromagnetic field. On the other hand, the components of
the 4-velocity are transformed according to

M o_dx" _ dx* _ MU _ R
ut =< ——_lf—ou , U, =8, U =0 U,
(relation u, =1 in the space conserves its form: u* =1, as it should be).

It is easy to establish the relationship between physical quantltles of different units
on the base of (2.2). For example, for distance [ = -I, for time t =0 -t, for
mass m=0 -m, for energy density £=0"'-£ and so on.

It is pertinent to note that if we postulate the conformal invariance of
electrodynamics, then such a requirement would be the conservation of the speed

of light, the size of the elementary charge ¢ =€ and the vector potential A, for

the electromagnetic field with respect to the conformal transformation.
Let us suppose that the metric tensor obeys the equations of TS theory of
gravity, which are obtained as a result of the variations of the action

W= j J-g|-F [ SR +— : <I>(¢)g”v¢ﬂ¢v + Lm}dx“ 2.3)

with respect to g, and ¢.In (2.3), L, is the Lagrangian for the matter and non-

gravitational fields, ¢ is the gravitational scalar, and f , = of /9x% . We consider

the conformal transformation

_ _F@
8uv = F,
The action takes the form

“Buv > F, = const .
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_ — — 1_, _
w :.|-1/—g|:— F,R +§g” .Y, +Lm}dx4 (24)
where
F”? d , OF
= 3F, —+F —, F'=—.
l//a ¢OI\/ 0 F2 0 F a¢

The corresponding equations have the form:

—~ 1 m s — s 1 - =
Gaﬁ = F(Taﬁ + Taﬁ)a gaﬁval//ﬁ =0, Taﬂ = l//al//ﬁ - Egaﬁgﬂvl//,ul//v.
0
If we take F,=1/2k,= c3/ 167G, then the conformally transformed action
corresponds to the GR action with minimally coupled scalar field ¥ . The latter

satisfies the homogenous wave equation.
3. Cosmological Scalar in the Jordan-Brans-Dicke theory

In this section the cosmological problem in the proper representation of the
JBD theory is considered in presence of a non-minimally coupled scalar field. As it
will be shown the introduction of the cosmological scalar provides a possibility for
the transition from the decelerated expansion of the Universe to the accelerated
one. It was noted in [17-23] that the modern conceptions of the Universe give rise
to the introduction of the cosmological constant in the GR, therefore it is worth to
introduce a similar quantity in the JBD theory. Having assumed that the field
corresponding to this quantity should be scalar but cannot be dynamical (its

changes should be controlled by the gravitational scalar y = y\Xx 1), we introduce

the cosmological scalar ¢=¢(y) in the JBD theory action similar to the
introduction of the cosmological constant in the GR action:

n
w=L{lo L Raop(y) -2 |y g L gatn, =52
c 2y y ¢

Here, ¢ is a dimensionless coupling constant of the JBD theory. The presence of

the cosmological scalar means that in addition to the kinetic term the potential one
is also considered for the scalar field.
We consider the conformal transformation
y _22+90) .

g/u/ :_.gﬂv’yo -

Yo G3+20)

Va /(3+2§)y0 ,
¢,a__ .
y 2y

The field equations in the conformally transformed frame take the form

(3.2)
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VW ,=0, Gy—AZ,; = (T +7,4). (3.3)

where

. 1. .
T =wawﬁ—5gaﬁg” YW, (3.4)

For the action one finds

j\/i{ R+2A)+%§“ﬁwal/{ﬁ+im}dx4, (3.5)

So we can see how due to the conformal transformation we got the action with a
constant coefficient for the Ricci scalar.

It is well-known that the large scale properties of the Universe are described by
the Friedmann-Robertson-Walker (FRW) metric. Egs. (3.3) for the scale factor
a(t) and the scalar field take the form (units with ¢ = 1 are used)

3
i(‘ba3)=0, d’—cl(aoj, (3.6)
dt a
)
3(“—2+£2j=87zc;(e+lci>2j+/\, (3.7)
a a 2
.. )
2-2+a—2+£2=—87rG(a€+ld>2j+A, (3.8)
a a a 2
g(t)zgo(&j, n=3(1+a), (.9)
a
P(t)=ce(1), a:—l,o,%,l, (3.10)

where the dot denotes the derivative with respect to the time, a, is the scale factor

a(t) in a fixed moment of time 7,, and

2H? 3H>[2 0
=2ty oo {—(1—%)—9,,,}

871G 87G| 3

In GR one has gy =—1/2 and Q;; =1 and ¢; =0.

Egs. (3.6)-(3.10) are written in a more compact form, by using the Hubble
2

. . £
constant H =d/a and the ratio Q(7)=—, where €, =
£, &G
2
0

, 1s introduced by

0
analogy with the critical energy density €. =

in GR. Eq. (3.8) is presented

as:
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k  8xG +87£G<1>2 A €

1+ = £ —t—,
a’H* 3H* 3H* 2 3H?

1 (a,) A 3k
where u =540 ) T 86 T 8nGa

densities for the scalar field, for the A -term and generatd by the spatial curvature.

are respectively the energy

Introducing also the so-called “deceleration” parameter g = da/a’, we get

3e E
2q+1:—3a£——”"+3ﬂ——". (3.12)
£ £ E. £

Finally, we obtain the following set yof equations: | |
Q +Q, +Q, =1+Q ,2g+1=-30Q2 -3Q , +3Q, -Q,, (3.13)
with the notations Q =&/ ,Q,=¢€,/€.,Q,=¢€,/1¢€,Q, =¢ /€. Eq.
(3.13) can also be written in the form:
3 H 1
——+l=—0Q -Q_ +Q, ——Q , (3.14)
2 H? m ck AT

from which it follows that when the contributions of the scalar field, Q , ,
and the cosmological constant, Q, , compensate each other, the dynamics

of the changing of H with time becomes similar to that in GR. As a result
we obtain

g=Q, -2Q  —(1+ 3a)Q—2m, (3.15)

from which it follows that Q =1-2Q. , for g=-1/2. Thus, within the

framework of the considered model during the certain period of time, when
QCk =Q A occurs, the Universe expands with deceleration, similar to that in GR.

Then the situation changes in a way that g becomes positive [24]. It is natural to
assume that at some intermediate moment of time, ¢ becomes zero. According to

our estimations it occurs when €, =0.52 and ©, =0.18, when Q =0.3 as

estimated in the set of works [25].

Let us try to find the dynamical picture for the time variation of the scale factor
a(t). In Ref. [26] exact analytical expressions for a(f) are obtained for some cases
of the equation of state. We rewrite these relations using the above-mentioned
notations. For the function g(?) it is convenient to use the formula

3 1
q:E(QA—QCk)—E. (3.16)

The scale factor a(¢) for the Universe with the dust takes the following forms:
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o

o o 2
a) A >0. If the condition 4Q _, QA > ( Qmj is satisfied, then

o

3
(—J =b"sh[3H, QA(I—IO)+5+]—1&. (3.17)
a 22

0 Qa

o o o 2
In the case of 4Q , Qa < ( Q’"j ;

o
Qn
o
Qa
For both cases, the symbol "o" denotes the values corresponding to the fixed
moment of time 0. The constants have the following forms

2

3
[i] =b"ch[3H, QA(t—t0)+5_]—% (3.18)

a

o

() =22 L] S ) (3.19)
Qa 4 Qa
o 2 o
(b) =1 2] 2 (320)
4 Qa Qx
(o} o 2
1+1%+ 1+l£3’" +b*?
5 2 Qa 2 Qa
e’ = = . (3.21)

b) A <0. General solutions for a(t) follow in this case from the equation

2

3 o o 2 3 o
i[ﬁ] _3H,\ O %J,l % _ {iJ _1% . (3.22)
dt | a, oy Han) [\e) 2,

where the expression under the square root must be positive, i.e. only one of the
possibilities for the Universe expansion can be realized.

( a T 1 Qn  |Qu 1] Qn
—_ >E " + 5 +Z 5
4o Qa Qa Qa

2

(3.23)
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The solution of (3.22) has the form

2

3 0 0 °
(ﬁj = % 41 % sin(3H ;N Qa t)l%. (3.24)
ao QA 4 QA 2 QA

Now we can estimate the age of the Universe. For the light coming from a
stellar object, the redshift is typical, which is due to the expansion of the Universe.
The wavelength increases linearly proportional to the scale factor a(f). This effect
can be described by introducing the redshift z:

A, a,
l+z=00="20 3.25
¢ A a (523)

where the index "o" corresponds to the moment of observation. From Eq. (3.25) it
follows that

i=-H(1+z), (3.26)
which makes it possible to evaluate the age of the Universe
t )
0 dZ
At, = jdt = J'— (3.27)
0 0 H(d+2z)
From Egs. (3.15) and (3.27) we get
15 d
At =—| < . (3.28)

0(1+z)\/Qck(l+z)6 +Qm(+2)° —Qr+2)? +Qa

Introducing a new integration variable y = (1+ z)_3 , this result is presented in the
form
1
1 d
At =——| < . (3.29)
3 H 0 0 o o o 2
Qck+Qm y+QAy

For Q, =0, Q =0, Q =1, Eq. (3.29) gives the Einsteinian estimate for the
age of the Universe

2
Ath =§HO1 ~8+10Gyr, (3.30)
where we used the value of the Hubble constant according to the Hubble Space
Telescope Key Project H.'=9.77-h"' Gyr, 0.64<h<0.8. The obtained

estimate for the age disagrees with the estimates of stellar lifetimes, giving the
lifetimes larger than 11+12 Gyr. Thus in GR there exist the problem of age.
In our case, the integral (3.27) is equal to
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Ar = 1 In 2VOA +2QA+Qm

u
3H0\IQA 2\/QAQCk +Qn;,

(3.31)
Aty | 2VQA 204+ Q0
\V QA 2VQA Qck +Qm
In the case Q,=Q,, the age of the Universe is close to that in GR:
In(1+2VQ
At, = are BAF2VERA). (3.32)

2VQA
The standard cosmological model is investigated within the framework of the
Einstein frame of JBD theory, from the viewpoint of the contribution of different
components’ energy densities. It is shown that for the value q =-1/2 (estimated by
the WMAP experiment [27]) contributions of the energies due to the scalar field
and A-term, compensate each other and the expansion occurs by the scheme similar
to that in GR. In the future, when this condition is violated, the parameter g

becomes zero for the values Q =0.3,Q, =0.52, Q,k =0.18, after which it
becomes positive.

m-M Observation - theory

__J..“.IS-‘. et —

20 —
ﬂ-'J‘
15 f,
10}
5l
. Redshift
D.2 0.4 0.6 0.8

Figure 4: The black points are the observational data from Ia type Supernovae. The
green line is the theoretical curve for the case 5 =0.65. The red is the

theoretical curve for the case Q5 =0.5. The vertical axis corresponds to the

effective stellar magnitude m — M = 5log;o(d; / Mpc)+25.

As a result of this work, it is worthwhile to present the time dependences of a(¢)
and H (?) in order to qualitatively describe the dynamics of the Universe evolution
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in the limited case of minimally-coupled scalar and tensor fields. As can be seen in
Fig. 4, where the dependence of effective stellar magnitude on the redshift is
depicted, the theoretical curve is closer to the observational data in the case of

bigger values of Q.. Here we used the observational data for Ia type supernovae
[28,29]. For a more complete picture of the Universe evolution, in Fig. 3, we also
present the dependence on time for the different contributions. The red curve
represents the Q. (1) the green curve represents the Q (0> and the blue curve

represents the Q, (1) - From this figure, the growth of Q, (1) is obvious. According

to our cosmological model, the transition of the Universe expansion from a
decelerating to an accelerating one can be realized as shown in Fig. 6. One can also
see the behavior of the Hubble rate.

-

“ Contributions
_'|_ -

o)
o
hY

= L
=1 1 2 3

Fig. 5. Red/green/blue curves correspond to Q, /! Qm(;)/ Q, (1) The time on the

horizontal axis is measured in units of 3 Howlé ~(4=5nN Q. Gyr, and the zero point
corresponds to the moment of the observation.

H(t) /Ho 1

14 0.5

12

0 £

=05

o §

=5

T s 0.5 1 1.5 2 U 0 i . 3

Figure 6. Left plot is the theoretical curve for the Hubble rate and the right one is
the theoretical curve for the "deceleration" parameter. For both cases, the time is
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measured in units of 3 Hﬁwlé ~(4=50 Q. Gyr, and the zero point corresponds to the
moment of observation.

4. Conclusion

In the first part of this work the cosmological model with non-minimally
coupled scalar field is considered in the presence of a cosmological scalar p=yAly,
in the proper frame of the JBD theory. The cosmological scalar is chosen similar to
that in the Einstein frame, where it becomes a cosmological constant. It is shown
that in this case, a phase with an accelerated expansion appears in the scale of
cosmological times.

The corresponding action has the form (2.3) and we have considered a special

case of the function @(y)= yA/yq. With this choice the gravitational part of the

JBD action in the Eisntein frame coincides with that in GR and the cosmological
expansion in the Jordan frame is always decelerated. When the cosmological scalar
is present in the case of non-minimally coupled scalar field, the Universe with
transition from the phase of the decelerated expansion to the accelerated expansion
phase is realized. At late stages we have an exponential expansion and the scalar
field tends to a constant value. In the case of minimally coupled scalar field the
situation is basically the same. In the second part, a cosmological model of the
Universe is considered in the Einstein frame of JBD theory in the presence of the
cosmological constant. The obtained analytical results are in agreement with
modern observational data about the expansion of the Universe. From the presented
results we can see the change of the sign for the “deceleration” parameter which
describes the transition from the decelerated expansion to the to accelerated one
near the present time.
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Modified cosmological models
in Jordan-Brans-Dicke theory

R.M. Avagyan, G.H. Harutunyan
Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

This paper is based on the modified Jordan-Brans-Dicke (JBD) tensor-
scalar theory. By taking into account the importance of vacuum effects in recent
cosmology, we consider cosmological models with a scalar field and the vacuum
energy in various conformal frames of the JBD theory.

1. Introduction

Recent observational data on the expansion of the universe raised a number of
problems for cosmological investigations. The observations of supernovae and
cosmic microwave background [1-4] indicate that the universe is accelerating.
Within the framework of General Relativity this requires a special type of the
energy source for this expansion with the equation of state close to the one for
cosmological constant. Other classes of models are based on slowly varying scalar
fields dominating at large scales. In the present paper we consider cosmological
models within the framework of so called Einstein frame for Jordan tensor-scalar
theory [5], when the scalar field is minimally coupled to the tensor field, and in the
proper frame of this theory with self-consistent scalar field [6]. In the first case the
cosmological constant Ais responsible for the effects related to the vacuum
energy. In the second case, in analogy with A, we introduce a cosmological scalar
@(y), which as a result of special conformal transformation goes to A in the

Einstein frame. It is well-known that quantum vacuum effects may be responsible
for the cosmological constant A. In the early de Sitter stage of the cosmological

expansion A ~ H Y with H being the Hubble constant, whereas the vacuum
energy, induced by the QCD condensate at late stages of the evolution, is of the
order ~ H [7-9].

In accordance with the abovementioned, at the first step it makes sense to
ignore a possible contribution from other forms of energy and to consider the role
of A in the Einstein frame and the role of a cosmological scalar in the modified
version of JBD theory.

2. Dominating scalar field in presence of the vacuum energy
We consider the Friedmann-Robertson-Walker line element with flat spatial

sections
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ds> =dr* —a* (1) | dr” +r*(d6’ +sin6dg’) | (1

The field equations of the Jordan theory have the form

d /. ;
—(Pa’ )=0,
(@)
(2)
-2 x 2
34 8262 1A,
a 2
(3)
. 2
24,4 _ gr6Lle? i
a a 2
4)

&> £ 2
with the energy density € =A +787ZG and the pressure P =—-A +787ZG .

Equations (2)-(4) are obtained by the variation of the action [10].
In analogy with the Einsteinian critical energy density,

o _3H
co 87Z_G

2

(H, is the Hubble constant), we may introduce £, = [11]. In terms of the

latter, the field equations (2)-(4) are written in a physically transparent form.
Equation (3) is written as

€ €
1=%a 1820 10, (©6)
£ &
P2 A £ £
where €, =7, £, :ﬁ’ ok = Q, =-A Hence, the sum of the
JT €

contributions from the energy of the scalar field, Qck, and from the energy

generated by A is equal to unity.
In a similar way, (4) takes the form

2g+1=-3Q_, +3Q, , 7
aa : . : .
where g =— is the dimensionless deceleration parameter, or in a more
a

convenient form

2

%£+1: —Q,+Q,. ®)
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From relations (7) (or (8)) it follows that under the compensation of the
contributions from scalar and vacuum fields and also in the absence of them one

1
has g = _E , similar to the case of General Relativity.

Eliminating Q, from (6) u (8), one has
H __®*81G

=— =" 9
3H’ “ 2 3H? ®
from which, making a natural assumption H = H (@), we find
b2 (10)
8rG
and the equation (3) takes the form
, 2H”
3H” = +A. (11)
871G
From (11) we have
dH _ @(3H2—A) (12)
dd 2

and after the integration

(13)

H=,[%Ch{J%87[G(CD—<DO)J, for A>0
A
H=J%Sh£‘/§87rG(q>—Cbo)j, for A<O
(14)
Then, from (10) we get

A>0 = H:\/gcth(\B_A(t—to)), (15)
A<0 = H= mtg |A[+(t—1,)). (16)
3

The deceleration parameter g is determined from (7), by taking into account (6),

q=—3§26k+1=1—3(1—322j. (17)

By taking into account (13) and (14), we have

3
cth®(V3A (1-1,))

A>0 = g=-2+ (18)
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3

18 (\/M(t_to))’

from which it follows that ¢ — 1 for # — oo, and hence the accelerated expansion

A<0 = g=-2- (19)

is possible only in the case A >0.

Therefore, for sufficiently large ¢ (¢ — oo) for the behavior of H = a to
a

A
the leading order one has H = \/; . From here we see that, A, which in the

present problem plays the role of the vacuum energy density, at late stages of the
universe expansion is proportional to H> (A =3H?).

In order to clarify the role of the cosmological scalar in the proper frame of
the Jordan theory, as in the previous problem, we ignore the contribution from all
types of the matter, keeping only the scalar field and the vacuum effects induced by

this field, determined by @ ().

The equations for the traditional cosmological problem, corresponding to
the modified action of the JBD theory [6]

_—j{——[R+2¢() WWV}\/_J‘ (20)

have the form
JL B R 200 )(1—¥2), 1)
y Yy R 2+2g ye

2R R2 ¥ 2R3 >
=2 22X 8 ho(y), (22)

— = ——+ . 23
R 2 yz Ry ¢(y) (23)

As it was noted before, the investigations on the quantum level evidence about the

proportionality of the vacuum energy density to H" with H being the Hubble
parameter and n takes different values at different stages of the cosmological
expansion.

On the base of the results obtained in the case of a minimally coupled

scalar field at late stages of the universe evolution (A =3H?), we may assume
that in an analog problem where the cosmological scalar (0( y) plays the role of

the vacuum energy density one has
p(y)=aH® , 24)
where & is a dimensionless constant.
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R
Introducing the notations l//=l, H :E’ the set of field equations
y

takes the form

20H*(, 2H
y+y’ +3WH = 1- : 25
ey 3+2g{ Hl//j >
2H+3H2:-y}—yxz(1+%)—2wH+aH2, (26)
3H2:%gw?—%mq+aHa. @7)

From (27) it follows that

y 3t9+2(3-a)

H 9

Vs (28)

From which we get or <3+ 2 .
2¢
By taking into account (28) and (26), we obtain

H _7(1-7(1+9))

=-A. 29
H’® 2+y %
From here one finds

HO

H = , 30)
1+ AH,(1—1,)

Lo (1+ AH, (1-1,)) %, G1)
a,

Y
l:(ij =(1+AH0(t—t0))%‘, (32)
Yo a,
0=1-A. (33)

Estimating ¥ and A for large positive values of ¢ (which follow from the
observational data within the framework of solar system [6] ), we have

Yt @ A=(-a)

Negative values for ¥ are excluded from the consideration as H >0 (ﬁ > Oj for
a

the expanding universe. Positive ¢ is obtained for A <1, which corresponds to

a > 72, and from (28) one has the estimate & < 3. From here it follows that within

the framework of the given model the expanding universe is obtained for the
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vacuum energy density @ = aH* orfor 2<a <3.

3. Conclusion

In the present paper we have tried to construct classical cosmological
models by taking into account the vacuum energy. It is based on considerations
related to that at the quantum field-theoretical level the vacuum energy is
responsible for the cosmological constant A in the classical theory of gravity [14]
and A can be taken proportional to the power of the Hubble parameter, H" (the
exponent n depends on the stage of evolution under consideration).

We have considered various variants of cosmological models within the
framework of Jordan’s modified tensor-scalar theory. It is assumed that the

cosmological scalar (D(y) in the Lagrangian is related to vacuum effects. The

cases of dominating scalar field are considered by taking into account the vacuum
energy for FRW models with flat space. First, the problem is presented within the

framework of the Einstein frame for the Jordan theory, in which (p( y) transforms

to the usual cosmological constant A . In this frame, the minimally coupled scalar
field allows to write the field equations through the quantities which play the role
of contributions of densities for various types of energy [15]. As a result, the
interpretation of the obtained results becomes simpler and is reduced to that, first,
the accelerated expansion is possible only for and, second, at late stages of the

{A
evolution the Hubble constant H is related to A in the form H = ? . Further,

the analog problem is considered in the proper frame of the modified variant for
Jordan’s theory. Here, on the base of the relation obtained before for H and A,

we have taken the cosmological scalar in the form (p( y) =qH*. As a result, the

accelerated expansion is realized if 2<a <3.
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Induced self-interactions in the spacetime of a global
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Abstract

In this paper we analyze induced self-interactions for point-like particles with
electric and scalar charges placed at rest in the spacetime of a global monopole
admitting a general spherically symmetric inner structure to it. In order to
develop this analysis we calculate the three-dimensional Green function asso-
ciated with the physical system under consideration. As we shall see for the
charged particle outside the monopole core, the corresponding Green functions
are composed by two distinct contributions, the firsts ones are induced by the
non-trivial topology of the global monopole considered as a point-like defect
and the seconds are corrections induced by the non-vanishing inner structure
attributed to it. For both cases, the self-energies present a similar structure,
having also two distinct contributions as well. For a specific model considered
for region inside the monopole, named flower-pot, we shall see that the particle
with electric charge will be always subject to a repulsive self-force with respect
to the monopole core’s boundary, on the other scalar charged particle exhibits
peculiar behavior. Depending on the curvature coupling the self-force can be
repulsive or attractive with respect to the core’s boundary. Moreover, the con-
tribution due to the point-like global monopole vanishes for massless particle
conformally coupled with three dimensional space section of the manifold, and
the only contribution comes from the core-induced part.

1. Introduction

It is well known that different types of topological objects may have been formed
by the vacuum phase transition in the early Universe after Planck time [1, 2]. These
include domain walls, cosmic strings and monopoles. Global monopoles are heavy
spherically symmetric topological objects which may have been formed by the vac-
uum phase transition in the early Universe after Planck time. Although the global
monopole was first introduced by Sokolov and Starobinsky in [3], its gravitational
effects has been analyzed by Barriola and Vilenkin [4]. In the latter it is shown that

*E-mail: emello@fisica.ufpb.br
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for points far away from the monopole’s center, the geometry of the spacetime can
be given by the line element below:

ds® = —dt* + dr® + o®r?(d6* + sin? 0dp?) . (1)

In (1) the parameter o2, which is smaller than unity, depends on the energy scale 7
where the phase transition spontaneously occur. This spacetime has a non-vanishing
scalar curvature, R = 2%;;? and presents a solid angle deficit 6Q = 472(1 — o?).

Although the geometric properties of the spacetime outside the monopole are
very well understood, there are no explicit expressions for the components of the
metric tensor in the region inside. Consequently many interesting investigations of
physical effects associated with global monopole consider this object as a point-like
defect. Adopting this simplified model, many calculations of vacuum polarization ef-
fects associated with bosonic [5] and fermionic quantum fields [6], in four-dimensional
global monopole spacetime, present divergence on the monopole’s core.

A very well known phenomenon that occur with an electric charged test par-
ticle placed at rest in a curved spacetime, is that it may become subjected to an
electrostatic self-interactions. The origin of this induced self-interaction resides on
the non-local structure of the field caused by the spacetime curvature and/or non-
trivial topology. This phenomenon has been analyzed in an idealized cosmic string
spacetime by Linet [7] and Smith [8], independently, and also in the spacetime of
a global monopole considered as a point-like defect in [9]. In these analysis, the
corresponding self-forces are always repulsive; moreover they present divergences
on the respective defects’ core. A possible way to avoid the divergence problem is
to consider these defects as having a non-vanishing radius, and attributing for the
region inside a structure. For the cosmic string, two different models have been
adopted to describe the geometry inside it: the ballpoint-pen model proposed in-
dependently by Gott and Hiscock [10], replaces the conical singularity at the string
axis by a constant curvature spacetime in the interior region, and flower-pot model
[11], presents the curvature concentrated on a ring with the spacetime inside the
string been flat. Khusnutdinov and Bezerra in [12], revisited the induced electro-
static self-energy problem considering the Hiscock and Gott model for the region
inside the string. As to the global monopole the electrostatic self-energies problem
have been analyzed considering for the region inside, the flower-pot model in [13]
and ballpoint pen in [14]. In both analysis it was observed that the corresponding
self-forces are finite at the monopole’s core center.

In the context of self-interactions the induced self-energy on scalar charged point-
like particles on a curved spacetime reveals peculiarities [15, 16] due to the non-
minimal curvature coupling with the geometry. In the case of of Schwarzschild
spacetime, the self-force on a scalar charged particle at rest vanishes for minimal
coupling [17]. The self-energy on scalar particle on the global monopole spacetime
considering a non-trivial inner structure been developed recently in [18].

In this present paper, mainly supported by two previous publications, [13, 18], we
shall analyze the self-interaction problems associate with electric and scalar charged
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particles placed at rest in the global monopole spacetime, considering a non-trivial
structure for the region inside to it. This paper is organized as follows: In section 2
we present the model to consider the geometry of the global in the whole space and
the relevant field equations associated with the electric and scalar charged particles
placed at rest in this background. We calculate the effective three-dimensional Green
functions for points outside and inside the monopole’s core. As a consequence, we
provide a general expression for the electrostatic and scalar self-energies and their
related self-forces. In section 3 we calculate explicit expressions for the self-energies
considering, as application of previous formalism, the flower-pot model for the region
inside the monopole. Finally in section 4, we present our conclusions and more
relevant remarks.

2. The system

Many investigations concerning physical effects around a global monopole are
developed considering it as idealized point-like defect. In this way the geometry of
the spacetime is described by line element (1) for all values of the radial coordinate.
However, a realistic model for a global monopole should present a non-vanishing
characteristic core radius. For example, considering the model proposed by Barriola
and Vilenkin [4], the line element given by (1) is attained for the radial coordinate
much lager than its characteristic core radius, which depends on the inverse of the
energy scale where the global O(3) symmetry is spontaneously broken to U(1).
Explicit expressions for the components of the metric tensor in whole space have
not yet been found. Here, in this paper we shall not go into the details about this
calculation. Instead, we shall consider a spherically symmetric model for describing
the metric tensor for the region inside the shell of radius a. In the exterior region
corresponding to r > a, the line element is given by (1), while in the interior region,
r < a, the geometry is described by the static spherically symmetric line element

ds® = —dt* + v*(r)dr? + w?(r)(d6? + sin® 6dy?) . (2)

Because the metric tensor must be continuous at the boundary of the core, the
functions v(r) and w(r) must satisfy the conditions

v(a) =1 and w(a) = aa . (3)

2.1. Self-interactions

In this subsection we shall develop a general formalism to analysis self-interactions
associated with electric and scalar charged particles in global monopole spacetime.

2.1.1. Electrostatic self-interaction

Here we investigate the electrostatic self-energy and the self-force for a point-like
charged particle at rest, induced by the spacetime geometry associated with a global
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monopole with the core of finite radius. We shall assume that in the region inside
the monopole core the geometry is described by line element (2), and in the exterior
region we have the standard line element (1). From the Maxwell equations, the
covariant components of the electromagnetic four-vector potential, A,, obey the
equation below,

O |V=99" 9" (0, Ay — 0,A,) | = —4m/—gj*, (4)

where j* is the four-vector electric current density. For a point-like particle at
rest with coordinates 7 = (ro, 6o, o), in the coordinate system corresponding to
the line element (2), the static four-vector current and potential are expressed by:
* = (4°,0,0,0) and A, = (Ap,0,0,0). The only nontrivial equation of (4) is u =0
with 5(3)(“ o)

.0 r—7T

J"(x) =q = (5)
where ¢ is the electric charge of the particle. In the spherically symmetric spacetime
defined by (2), the differential equation obeyed by Ay is:

2
[ar <war) - UL2] A = — A5y (6)
uv u

sin 6

with L being the operator orbital angular momentum. The solution of this equa-
tion can be written in terms of the Green function associated with the differential
operator defined by the left-hand side, as follows:

AO(F) = 47TqG(F7 7?0) ) (7)

with the equation for the Green function

o (L0) - o) et = -5 - dite - .

sin 6
Having the electrostatic self-potential for the charge we can evaluate the corre-
sponding self-force by using the standard formula
‘ ik g* 2 g*
f;l(ﬁ)) = —qu kaum = —qvakAo‘;:FO = —47rq E— Jim [8kG(F, 770)] . (9)

U 7—7o

An alternative way to obtain the self-force is to consider first the electrostatic self-
energy given by [7, 8]

Ua(70) = qAo(70)/2 = 2m¢* lim G(7,7%) , (10)

p
T—TQ

and then to derive the force on the base of the formula

} gik
a(ro) = == ~0Ua(ro) - (11)
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In (9) and (10) the limit provides a divergent result. To obtain a finite and well
defined result for the self-force, we should apply some renormalization procedure
for the Green function. The procedure that we shall adopt is the standard one: we
subtract from the Green function the terms in the corresponding DeWitt-Schwinger
adiabatic expansion which are divergent in the coincidence limit. So, we define the
renormalized Green function as

Gren(7,70) = G(7,70) — Gsing (T, T0) - (12)

In this way the renormalized self-energy, Ueyren(70), and self-force, fi, _ (7)), are
obtained by the formulas (9) and (10) substituting G(7,7) by Gmn(?’, 70). Note
that here the subtraction of the divergent part of the Green function corresponds to
the renormalization of the particle mass.

Taking into account the spherical symmetry of the problem, we may express the
Green function by the ansatz below,

[es) l
G 7o) =D > qilr,r0)Y;™(0,9)Y™ (6o, %0) , (13)

=0 m=—1

with Y;™(6, ) being the ordinary spherical harmonics. Substituting (13) into (8)
and using the well known addition theorem for the spherical harmonics, we arrive
at the differential equation for the unknown radial function:

2
[;T (i}i) - i+ 1)} ar,ro) = —8(r — o) . (14)
As the functions u(r), v(r) and w(r) are continuous at r = a, from (14) it follows that
the function g;(r,79) and its first radial derivative are also continuous at this point.
The function g;(r,7p) is also continuous at r = rg. The discontinuity condition of
the first radial derivative at r = rq is obtained by the integration of (14) about this
point. It reads,

dgi(r,ro) dgi(r,ro) _u(ro)v(ro)

oy — — = 15

dr ’r o+ dr ‘T 0 wz(rg) ( )

Let us denote by Ry;(r) and Rg;(r) the two linearly independent solutions of the

homogeneous equation corresponding to (14) in the region inside the monopole’s

core. We shall assume that the function Ry;(r) is regular at the core center r = r,
and that the solutions are normalized by the Wronskian relation

u(r)v(r
Ru(r) Ry(r) — By (r)Ra(r) = — ) (16)
w?(r)
In the region outside the core the linearly independent solutions to the corresponding
homogeneous equation are the functions r* and 2, where
1

1
e —— N 2
)\1’2 5 + %0 o + 4l(l + 1) . (17)

59



Now, we can write g;(r,79) as a function of the radial coordinate r in the sepa-
rate regions [r., min(rg,a)), (min(rg, a), max(rg,a)), and (max(rg,a),o0) as a linear
combination of the above mentioned solutions with arbitrary coefficients. The re-
quirement of the regularity at the core center and at the infinity reduces the number
of these coefficients to four. They are determined by the continuity condition at the
monopole’s core boundary and by the matching conditions at » = rg. In this way
we find the following expressions

_ (aro)™ Ry(r) < a
au(riro) = o? [aR};(a) — A2Ryi(a)] forr<a, (18)

T)\1T>\2 a Al—A2
gi(r,ro) = m 1- (7“<> Dll(a)] , forr > a (19)
in the case g > a, and
gi(ryr0) = Ry(r<)Ro(rs) — Ry(ro)Ryu(r)Dy(a) , forr < a, (20)
air,ro) = a7 Bu(ro) forr>a, (21)

o? [aR},(a) — A2Ry(a)]

in the case 19 < a. In these formulas, r- = min(r,ry) and r~ = max(r,r9), and we
have used the notation
alty(a) — AjRj(a)

Dji(a) = R, (a) — ARy (a) ’

j=1,2. (22)

First let us consider the case when the charge is outside the monopole’s core
(ro > a). Substituting the function (19) into (13), we observe that the Green
function is presented in the form of the sum of two terms

G(7,70) = Gm(7,70) + Gc(7,70) , (23)
where \
1 & 2l +1 ot

G (7)) = —= Py(cos7) , 24

(7 7o) dmars lz; o2 +4l(l+ 1) re Heos ) 24

is the Green function associated with the geometry of a point-like global monopole,
and the term

L 1 <= (20 +1)Dy(a) N
= Sy 2P 2
G.(7,70) Tra 2 EETESY) (r70)*? Pi(cos) (25)

is induced by non-trivial structure of the core. In formulas (24) and (25), the ~ is the
angle between the directions (6, ¢) and (0, po), and Pj(z) represents the Legendre
polynomials. As we can see, the contribution (25) depends on the structure of the
core through the radial function Ry;(r).

60



As we have already mentioned, the induced self-energy is obtained from the
renormalized Green function taking the coincidence limit. We can observe that for
points with 7 > a, the core-induced term (25) is finite in the coincidence limit and
the divergence appears in the point-like monopole part only. So, in order to provide a
finite and well defined value to (10), we have to renormalize Green function Gy, (7, 7o)
only:

Gren(r()a TO) = Gm,ren<T0a 740) + GC(T07 700) . (26)

As explained before, to obtain Gy, yen(70,70), we subtract from (24) the terms in
the corresponding DeWitt-Schwinger adiabatic expansion which are divergent in the
coincidence limit:

m (G (7,70) — Gsing(7,70)] - (27)

T

Gm,ren (T07 TO) _1
N

o

The part Gging(7,70) is found from the general formula given, for instance, in [19].
For simplicity, taking the separation of the points along the radial direction only

(v=0), we find
1

_— 28
A7|r — ro| (28)

GSing (7’, 7’0) =

Now, by using formulas (24) and (28), one obtains

20+ 1 1
lim E i th - |, (29)
47”“0 t—1 o + 4l +1) 1—t

where t = r~/r~. To evaluate the limit on the right, we note that

1
: § : l/a+1/2a—1/2 _
%T%( t 1—t>_0‘ (30)

=0

Gm,ren (TO , TO)

On the basis of this relation, replacing 1/(1 —¢) in (29) by the first term in the

brackets in (30), we find
S(a)

Gm,ren(r()arO) = 471 ) (31)
where we have introduced the notation
1 & 20+ 1
Sa)==>" + —1f . (32)
o= a? +4l(l+1)

The function S(«) is positive (negative) for @« < 1 (o > 1) and, hence, the corre-
sponding self-force is repulsive (attractive).

Combining formulas (10), (25) and (31), for the renormalized electrostatic self-
energy we obtain

(33)

Uutrenro) = L2 fj 2+ 1) Du(a) <a> r e
ehrent’0 2r¢ 2aro 2+ A1 1)
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As we can see, the second term of the renormalized self-energy provides a convergent
series for rg > a. Moreover, the dependence of the self-energy on the core structure
is present in the function Dj;(a). For large distances from the core, ro > a, the
main contribution into the core-induced part comes from the term [ = 0 and one
has

2 a a
Ustoren(r0) ~ 2‘170 [5@ - ?y;‘;(o)} . (34)

The self-force is obtained from (33) by using formula (11):

~ 7"0 q 7 a \1+4l(141) /a?
fel,ren(FO) = U Ten(TO 2 2, 5 9.3 Z 2l + 1 Dll ) < > .

(35)

According to the symmetry of the problem, the self-force has only a radial compo-
nent.

Now let us study the case when the charge is inside the core, rg < a. The
corresponding Green function is obtained from (20) and is written in the form

G(7,70) = Go(7,70) + Guo(T, 70) , (36)
where
1 (o)
Go( =i (2l + 1)Ryy(r<)Roy(r=)P(cos7) , (37)
1=0

is the Green function for the background geometry described by the line element (2)
for all values r. < 7 < oo, and the term

o

1

Go(7,70) = i Z(Ql + 1) Ryi(ro) R (1) Do (a) Py(cos ) , (38)

is due to the global monopole geometry in the region r > a. For the points away
from the core boundary the latter is finite in the coincidence limit. The self-energy
for the charge inside the core is written in the form

2 o

Ustren(r0) = 27G*Goen(ro,m0) = & (21 + D) Du(@)RYy(ro) ,  (39)
=0

where

GO,ren (TOa TO) 1} m [GO (777 770) - GSing (Fv 7:’0)] . (40)

70
The only contribution in the divergent part of the Green function comes from the
first term of the DeWitt-Schwinger expansion. Note that near the center of the core
one has Ry;(rg) o« (ro — r¢)! and the main contribution into the second term on the
right of (39) comes from the term with [ = 0. Substituting the self-energy given by
(39) into formula (11), we obtain the self-force for the charge inside the monopole
core.
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2.1.2. Scalar self-interaction

The action associated with a charged massive scalar field, ¢, coupled with a charge
density, p, in a curved background spacetime reads

S = / d*z /=g (§"'V,0Vu¢ + ERP® + m?¢?) + / d'z \/=gp¢, (41)

where the first part contains the Klein-Gordon action admitting an arbitrary cur-
vature coupling, £, and the second part contains the interaction term. In the above
equation R represents the scalar curvature. The field equation can be obtained by
varying the action with respect to the field. This provides

(O—¢R-—m*) p=—p. (42)

The physical system that we shall analyze corresponds to a particle at rest;
so, there is no time dependence on the field. Moreover, because the metric tensor
under consideration is also time-independent, the equation of motion above reduces
effectively to a three-dimensional one:

(V2—€éR-m?*) ¢p=—p. (43)

The energy-momentum tensor associated with this system is obtained by taking
the variation of (41) with respect to the metric tensor. It reads

Tur = 9 g+ VubVad — Lo (NV26Vy0 + m6?)
+ §(Guw® + guwD¢? —WquQ) : (44)

G being the Einstein tensor.
The energy for the scalar particle is obtained as shown below,

—/ Bx =g T . (45)

For static fields configurations and by using the motion equation (43), we have:
1

E= —2/ BrN—gpd. (46)

By using the three-dimensional Green function defined by the differential operator
n (43),

( — &R — m)G(ff’):—i, (47)

the energy given by (46) can be written as

B=—; [ [ dov=g@ a' Vo) s@G@. ) ol (43)
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Considering now a point-like scalar charge at rest at the point 7, the charge
density takes the form,

—\

p(7) (7 — 7o) - (49)

Ry

Finally substituting (49) into (48), we obtain for the energy the following ex-
pression:

q2
E= —EG(FO,FO) : (50)

Here also, the evaluation of the Green function that we need for the calculation
of the energy is divergent at the coincidence limit. In order to obtain a finite and well
defined result for the energy we subtract from the Green function the corresponding
DeWitt-Schwinger asymptotic expansion. Following the general procedure given in
[19], the singular behavior of the three-dimensional Green function associated with
a massive scalar field reads:

1 1
Gs; N=— | — — O(o) . 51
sinli,) = 3 | = = m] + 0(0) 51
Adopting the above mentioned renormalization approach, the scalar self-energy is
given by
e
ERen = _5GRen(F077?O) )

2
= L i [G(F, 7o) — Gsing (7, 70)] - (52)

e
=170

Once more, taking into account the spherical symmetry of the problem, the
scalar Green function can be expressed by the ansatz below,

[eS) l
G(Fa 770) = Z Z gl(r7 TO)}/;m(97 SO)YEm*(QOa 900) . (53)
=0 m=—1

Substituting (53) into (47), we arrive at the following differential equation for the
unknown radial function g;(r,r’):

4 w—Qi — (I + 1)v — ERvw? — mPvw?| g = —8(r — 1o) (54)
dr \ v dr = 0

with the Ricci scalar being given by

9 4w’ 4" 2w 2

R ICAC A (w') . (55)

w? w3 wy? wy?

For £ = 0 and m = 0 the differential equation above is similar to the previous one
found in the analysis of electrostatic self-energy, Eq. (14). Moreover; as to the
solution of (54) the junctions conditions are obtained as explain below:
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e Because the function v(r) and w(r) are continuous at r = a, it follows that
g1(r,r") should be continuous at this point; however, due to the second radial
derivative of the function w(r) in the Ricci scalar, a Dirac-delta function con-
tribution on the Ricci scalar takes place if the first derivative of this function
is not continuous at the boundary.! Naming by R = RJ (r —a) the Dirac-delta
contribution of the Ricci scalar, the junction condition on the boundary is:

dg(r dgi(r _
gclh(d )’T:aﬁL - gclli )|T:a* =¢R gl(a) . (56)

e The function g;(r) is continuous at r = rg, however by integrating (54) about
this point, the first radial derivative of this function obeys the junction condi-

tion below:
dgi(r) dgi(r)

dr ‘r:rg dr |7’:7‘0_ w2(7“0) :

(57)

Now after this general discussion, let us analyze the solutions of the homoge-
neous differential equation associated with (54) for regions inside and outside the
monopole’s core. Let us denote by Ry;(r) and Rg(r) the two linearly independent
solutions of the equation in the region inside with Ry;(r) been the regular one at the
core center r = r.; moreover, we shall assume that solutions are normalized by the
Wronskian relation (16).

In the region outside, the two linearly independent solution are:

1 1
WIW (mr) and WKVZ (mr) , (58)

where I, and K, are the modified Bessel functions of order

v = i\/(% +1)24+(1—a?)(8 —1). (59)

Now we can write the function g;(r) as a linear combination of the above solutions
with arbitrary coefficients for the regions (7., min(rg,a)), (min(ro,a), max(ro,a)),
and (max(rg,a),00). The requirement of the regularity at the core center and at
the infinity reduces the number of these coefficients to four. These constants are
determined by the continuity condition at the monopole’s core boundary and at the
point 7 = ro by the junctions conditions given in (56) and (57), respectively. In this
way we find the following expressions:

alrrg) = Zulmrolful) ! . r<a(60)

azy/arog aR,” (a)K,,(ma) — Ry (a)K,,(ma)
ai(r,ro) = 5 — Dz(+) (a) Ku (mZ)K”l (mm), r>a,
a,/rrg a®\/rrq

!For the flower-pot model this fact occur and has been considered in [13].

L, (mr<) Ky, (mrs)
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in the case of the charged particle is outside the monopole, rg > a , and

a(r,ro) = Ru(r<)[Rau(rs) — D7 (@)Ry(rs)], r<a, (62)
- _ Ry(ro) Ky, (mr) 1 > g
ai(r.ro) a?Var R (a)K,,(ma) — Ry(a)K,,(ma) > a,(63)

in the case of the charged particle is inside the monopole, 1y < a. In these formulas,
r< = min(r,7’) and r~ = max(r, ), and we have used the notations:

L 8
Dl(+) (@) = a%f))(a)lyl(ma) — Rll(a)Ii,l (ma) ’ (64)
aR, "’ (a)K,,(ma) — Ry (a)K,,(ma)
9 .
Pa) = Rii”K (ma) ~ Ru(a) Koy, (ma) 65)
aRy " (a)Ky (ma) — Ry(a) Ky, (ma)
For a given function F'(z), we use the notation
- 1
F(z) = 2F'(2) — §F(z) (66)
and for a solution Rj(r), with j =1, 2,
R (a) = Ry(a) + ERRj(a) . (67)
In the above definition R);(a) = dRélT(r) |r=a-

Before to go for a specific model, let us still continue the investigation of the
self-energy for this general spherically symmetric spacetime. First we shall consider
the case where the charge is outside the monopole’s core. Substituting (61) into (53)
we see that the Green function is expressed in terms of two contributions:

G(Fv 7?0) = Ggm(Fa 770) + GC(F; 7?0) ) (68)
where
G (**)—Li(zwm (mr ) Ky, (mr ) Py(cos ) (69)
gm\T,T0) = 471_&2\/770 2 py\MMr< )y, (TS ) 7] Y
and
1 o0
Go(F, ) = S @1+ 1D (a) Ky, (miro) Ky, (mr) Pi(cosy) . (70)

" Ara? /rr
070

The first part corresponds to the Green function for the geometry of a point-like
global monopole and the second is induced by the non-trivial structure of its core.
In the formulas above, « is the angle between both directions (0, ¢) and (6, o)
and Pj(z) represents the Legendre polynomials of degree [.
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The induced scalar self-energy is obtained by taking the coincidence limit in the
renormalized Green function. We can observe that for points with r > a, the core-
induced term (70) is finite and the divergence appears in the point-like monopole
part only. So, in order to provide a finite and well defined result for (52), we have
to renormalize the Green function Gy, (7, 70) only. Let us first take v = 0 in the
above expressions. The renormalized Green function is expressed by:

GRC’II(TCH 7’0) = Ggm,ren(r()a 7’0) + GC<TO7 TO) ) (71)
where
Ggm,ren(TOa TO) = TILI?O[Ggm (T, TO) - GSing(r7 TO)] . (72)

For points outside the core, the radial one-half of geodesic distance becomes |r—rg|/2,
we have

1 1
Gsmg(r, TO) = E |:|r—7"0| — m:| . (73)

Now, by using G, (ro,7) given in (69), we have:

_ I & 1
lim [042 > @+ 1)L, (mro) Ky (mrs) — ——
=0

Trg r—ro 1—-1

+ (74

Ggm,ren (7’0, T) = A

where t = r-/r~. In order to evaluate the limit on the right hand side of the above
equation, we take the identity (30). So, as consequence of this relation and replacing
in (74) the expression 1/(1 —t) by the first term in the brackets of that identity, we

find
S (mr”) m

/ /
Ggm,ren(r , T ) = Amor A’ (75)
with
= [(20+1
S(a) (mr') = Z [( ;_ )I,,l (mr") Ky, (mr") — 1} . (76)
=0

Two special situations deserve to be analyzed:

e For the case where ¢ = 0, we have v = 5=/4l(I + 1) + o2. Taking the limit
m — 0 in (76), using [20, 21] we get a position independent expression named
Sy

Sa =

o [ 2+ 1 o

Al +1) +a?

=0
Up to a factor 1/« this expression coincides with the similar one obtained in
the previous analysis of the electrostatic self-energy, Eq (32).

e For ¢ = 1/8 we have 1, = 5 (2] + 1). Taking the limit m — 0 in (76) we see
that the term inside the bracket vanishes, consequently Ggmmen(r’, ') =0 and
the only contribution to the scalar self-energy comes from the core-induced
part (70). In fact under these circumstance, the differential equation obeyed
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by the Green function in the region outside the monopole is conformally related
with the corresponding one in a flat space due to the conformal flatness of the
space section of this metric tensor:

di* = dr® + o®r2dQy = p*(dp? + p*dy)) | (78)
with p = (ar)'/® being A = 2(a — 1). Moreover, by explicit calculation we can
show that G g, (7,7) = p~ MG\ (7, 7')p 2.

Finally the complete expression for scalar self-energy reads
2 2 2 X

Sty (mry) = L2+ 87:)427«1, > (21 +1)D{ (@) (K, (mry))? . (79)

Eren = —
en mary,

The self-force on a static test particle can be calculated by taking the negative
gradient of the corresponding self-energy [15],

f=VEgen . (80)

Considering f = f,7, the radial component of this force reads:

2 9 00
_ q g m ul, 41 (mrp)
fro= ms(a)(mrp) ~ 8ra’r, ZZ;(QZ +1) [(IulJrl(mrp) + lmT
VK, (mr )
x Ky, (mry) — I, (mrp) <Kyl+1(m7~p) — 11’)}
mrp
2 ~2m

i(gz +1)D P (a)

2
dmrocr,

v Ky, (mry)
mry '

—— 20+1)D K —
8ra?r?2 Z%( + 1D, (a) Ky, (mip)

B mry) (Ko (mry) = (51)

The second analysis that can be formally developed here, is related with the
case when the charge is inside the core. The corresponding Green function can be
written in the form

G(F, Fo) = Go(’F, ’r_’b) + GQ(F, Fo) , (82)
where
1 o
= (21 + 1)Ry(r<)Ryi(r>)Py(cosy) , (83)
1=0

is the Green function for the background geometry described by the line element (2)
and the term

o0

1
NG 2@+ D{7(a)Ru(r)Ru(ro) Pi(cos ) (84)
=0
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is due to the global monopole geometry in the region r > a. For the points away
from the core boundary the latter is finite in the coincidence limit. The renormalized
scalar self-energy for the charge inside is written in the form

2 2 o
q N q -
ERen = _EGO,Ren(TOa 7o) + e 15—0(21 + 1)Dl( )(a)(Ry(ro))?, (85)

where the renormalized Green function is given by

Go,Ren (70, 70) = lim [Go(7,70) — Gsing (T, 70)] - (86)
T—Tp
Because the divergent part of the Green function should have the same structure as

(51), the above expression provides a finite result; moreover, notice that near the
IL+1/2(m(T—Tc))

N and the main contribution into

center of the core one has Ry(r) ~

the second term on the right of (85) comes from the term with [ = 0. Finally we
can say that the self-force is again obtained by taking the negative gradient of (85).

3. Flower-pot model

As we have mentioned before, there is no closed expression for the metric tensor
in the region inside the global monopole. However, adopting the flower-pot model for
this region, the calculations of vacuum polarization effects associated with massive
scalar and fermionic fields have been developed in [22, 23], respectively. So, motived
by these result we decided, as an illustration of the general procedure described
before, to consider the flower-pot model in the present analysis of the induced elec-
trostatic and scalar self-interactions. For this model the interior line element has
the form [13]

ds? = —dt? + dr* + [r + (a — 1)a)® (d?6 + sin® 8d>p) . (87)

In terms of the radial coordinate r the origin is located at r = r. = (1 — a)a.
Defining 7 = 7 4+ (a — 1)a, the line element takes the standard Minkowskian form.
As we have mentioned before, from the Israel matching conditions for the metric
tensors corresponding to (1) and (87), we find the singular contribution for the scalar
curvature located on the bounding surface r = a [22]:

R=40=%

o (88)

In what follows, we shall consider, separately, the analysis of electrostatic and
scalar self-interactions.

3.1. Electrostatic self-interaction

Now we can express the renormalized Green function in the region outside the
monopole core by taking into account that in the interior region we have two linearly
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independent solutions of the homogeneous equation corresponding to (14):
Ry(r) =7, and Ry(r) =7 ""/(21+1) . (89)

So, from formula (33), the self-energy in the exterior region reads

2

qS() 2q (1—-a) 1(20+1)
Uerenr =
tren{0) 2rg ro Z 2+ Al 1 1)

1+4l(l+1)/a2
«—La/ro) . (90)

[\/m+a+2l]2

The second term on the right of this formula is positive for a < 1 and negative for
a > 1. Combining this with the properties of the function S(«) discussed in the
previous section, we conclude that the electrostatic self-energy is positive for av < 1
and negative for a« > 1. The corresponding self-force is directly found from (35)
and is repulsive in the first case and attractive in the second one. The core-induced
part in (90) diverges at the core boundary, ro = a. Noting that for points near the
boundary the main contribution into (90) comes from large values [, to the leading
order we find
(a

28;a1) In [1 - (a/ro)l/a] , (91)

and the self-energy is dominated by the core-induced part.

Now we turn to the investigation of the self-energy for the particle inside the
monopole core. Substituting the functions (89) into formulas (37) and (38), for the
corresponding Green functions in the interior region one finds

1
drlr —ro| |

1 X242—a-— a2+4l(l—|—1)(ror)
477@@;; 204+ a+ /a2 + 411+ 1)

Uel,ren (7’0) ~q

Go(r,ro) (92)

Ga(ra I'()) =

sibi(cosy) , (93)

Because in the flower-pot model the geometry in the region inside the monopole is
a Minkowski one, we have Gging(7,70) = Go(7,7) and, hence, Goren(ro,r0) = 0.
Finally, the electrostatic self-energy in the region inside the monopole core reads:

P N2A+2—a— /2 +A(l+1) <f0>2l

200 &= 2A+ta+ /o +all+1) \aa
(94)

As in the case of the exterior region, this self-energy is positive for a« < 1 and
negative for a > 1. The corresponding self-force is easily found from relation (11)
and is repulsive with respect to the boundary of the monopole core in the first case
and attractive in the second case. Near the core center the main contribution into
the self-energy comes from the lowest modes and one has

2 11—« 4—a— a2+ 8 (7 \?
Uel,ren(TO)% 1 < 0) (95)

Uel,ren(TO) = QWQQGren(Tm TO) = aa

20a @ 2—|—a+\/a2
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3.2. Scalar self-interaction

In the region inside the global monopole the two linearly independent solutions
for the homogeneous radial equation corresponding to (54) are:

Ii11/2(m7) Ky 12(m7)
Ry(r) = ——=——= and Ry(r) = ——— . 96
(r) = = (r) = =% (96)
Having obtained the above solutions, the expressions for the Green functions in
both, inside and outside regions, can be explicitly constructed, consequently the

corresponding self-energies. These expressions depend on the coeflicients Dl(+) (a)

and Dl(_)(a), which can be explicitly provided as shown below:

(++)

n, ’(a _ n{ ) (a

Dl(+)(a) = éll(cg)) and Dl( )(a) = dl(é)) , (97)

with
”gﬂ(a) = Iy(ma)l;ps(maa) [Wj_a)) -V + ;]
+ ma [I,,l (ma)liy3/5(maa) — Il+1/2(moza)ll,l+1(ma)] , (98)
nl(_)(a) = Ky (ma)Kiy1/2(maa) [W -V + ;]

— ma [Ky,(ma) Ky 3/5(maa) — K1 5(maa) Ky 1 (ma)] — (99)

and
di(a) = Ky(ma)lj;/(maa) {(ZJF%SQ)) -y + ;]
+ ma K, (ma)l32(maa) + Il+1/2(moza)Kl,l+1(ma)] : (100)

As in the first analyze, let us consider the core-induced part of the self-energy
for the region outside, Eq. (79), adopting specific values for the parameter ¢ and
mass of the particle. Taking £ = 0, and by using [21] to obtain the behavior of all
functions contained in the coefficient defined in (97), (98) and (100), in the limit
m — 0, we have:

() . 2 (ma\2 (o + 21 —2a1y)
D)~ () Cavi + a1 2)T(W)2 (101)

So the general term inside the summation of the core-induced part reads,

(102)

a2l +1) Ao — 1) (g) 1 4l(i+1)/a?
VA2 + 41+ a? (VA2 + 4l + a? 4 21 + )2 '

r

Which coincides with the result obtained for the electrostatic case.
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We can see that the core-induced part in (79) is divergent near the boundary
r = a. In order to verify this fact, we should analyze the general term in the
summation for large value of [. Taking again the uniform asymptotic expansion
for large orders of the modified Bessel functions in D(*)(a) and the same for the
Macdonald function, K,,(mr), we get,

[ — 20wy + 21 + 8¢(1 — a)] (%)QW (103)

a4+ 2ap; + 20+ 8¢(1 — o)
At this point we want to mention that the contribution proportional to the curvature

coupling, &, in the above expression is consequence of the delta-Dirac contribution
in the Ricci scalar, given by R, present in (67).

-~ 1—a?)(8¢—1 .
For large value of [ we have 2av; =~ (21 +1) + (2)# +0 ((21+1) ) Substi-

(2141)
tuting this expansion into (103), for the leading term in 1/I, we obtain
(1-8¢) <a>21/a
—a(l —a)——— (- . 104
o(1 o) L2 (¢ (104)
Finally, after some intermediate steps we find:
1—a)(1 -8 1
Epen ~ ¢2 In 1 - /o] 1

ren ~ 2D 1 (afro) (105)

We can see that the above result does not depend on the mass of the particle. In
fact this happens because the leading order term in the expansions of the coefficient
D) (a) there appear a power factor (ma)?, as to the square of the Macdonald
function K,,(mr), the leading power factor in the mass is (mr)~2*. Moreover we
can see from the above result that for £ = 1/8 there is no divergent contribution in
the core-induced part, and that for & > 1/8 this contribution becomes negative.

Now let us turn our investigation of the self-energy for the region inside the
monopole. Substituting the functions (96) into the formulas (83) and (84) for the
corresponding Green function in the interior region one finds [21],

1 e—mR

it R

Go(7,7) = (106)

with R = /(#)2 + ()2 — 27 cos~y, being 7 the angle between the two directions
defined by the unit vectors 7 and 7. Taking v = 0 we get R = |r — /|. Because in
the flower-pot model the geometry in the region inside the monopole is a Minkowski
one, we have Go(7,7) = Gging(7,7), consequently Go ren(70,70) = 0. The scalar
self-energy in this region is given only by the core-induced part:

ERen = Z 20+ 1 ) (Il+1/2(mf0))2 ’ (107)

being 79 = r9 + (o — 1)a. Near the core’s center, 7o ~ 0,

mf0>l+1/2 1
(

napti = (50)  mrram (108)
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so the main contribution into the self-energy comes from the lowest mode, [ = 0,
resulting in
2 (=)
4 mDyg (a)

EpRen ~ R R (109)
Taking the expression for the coefficient Dl(_)(a), for I = 0, and considering £ = 0,
after some steps we find

1 me M (o — 1)

(=)
D == . 11
0 (@) 2 sinh(maa)(a + aam — 1) + aam cosh(maa) (110)

Finally substituting the above expression into (109), and taking the limit m — 0 we
obtain )
¢ (a—1)

Epen(r) ~ 8rala

Also we can calculate the core-induced contribution on the scalar self-energy near
the boundary. Again, adopting a similar procedure as in the previous corresponding
analysis, we can verify after some intermediate steps that the leading term inside

the summation in (107) behaves as,

1(1-a)(8-1) <f>2l . (112)

@ aaq aa

(111)

Finally, taking this expression back into (107) we obtain,

By~ 2L W0 =80 (1 - TO) . (113)

32maa aa

Once more we can see that this divergent contribution vanishes for £ = 1/8.

Before to finish this application we want to cal attention that (105) and (113),
for £ = 0, coincide, up the numerical factor 47, with the corresponding core-induced
electrostatic self-energies derived in [13].

4. Concluding remarks

In this paper we have analyzed induced self-energies associated with particle with
electric and scalar charges place at rest in the global monopole spacetime, consid-
ering a inner structure to it. These two distinct situations have been investigated
separately along this paper.

As we could see, both investigations depend on the corresponding three-dimensiona
Green functions. For the general spherically symmetric static model of the core with
finite thickness we have constructed the corresponding Green functions in both exte-
rior and interior regions. In the region outside the core these functions are presented
as a sum of two distinct contributions. The firsts ones corresponds to the Green
functions for the geometry of a point-like global monopole and the seconds ones are
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induced by the non-trivial structure of the monopole core. A similar structure is
also presented by the Green functions for the region inside the monopole.

The self-energies are formally expressed in terms of the evaluation of the re-
spective Green functions in the coincidence limit; however, because the results are
divergent, we had to apply some renormalization procedure in order to obtain finite
and well defined values. Here we used the point-splitting procedure. We analyze the
divergent contributions associated with the Green functions at the coincidence limit,
and extract all of them. In fact we did this in a manifest form by subtracting from
the Green functions the DeWit-Schwinger adiabatic expansions which are divergent
in the coincidence limit.

As an application of the general results, in section 3 we have considered a simple
core model with a flat spacetime, the so called flower-pot model.

For the electrostatic case, the corresponding self-forces are repulsive with respect
to the core boundary in the case @ < 1 and attractive for o > 1. In particular, for
the first case, the charge placed at the core center is in a stable equilibrium position.
Although in the flower-pot model, we have found a finite value of the self-energy
at the monopole’s center, it presents a logarithmic singular behavior at the core
boundary.

As to the scalar charged particle the main conclusions found in this work, three
deserves to be mentioned. They are: i) The renormalized self-energy depends
strongly on the value adopted for the curvature coupling constant £. For spe-
cific values of this constant, the self-energy may provide repulsive, or attractive
self-forces with respect to the boundary. ii) The self-energy presents a finite value
at the monopole’s core center, and iii) for confomally coupled massless field, the
self-energy only depends on the core-iduced part.
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Quantum vacuum in de Sitter spacetime

A. A. Saharian
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1 Alex Manoogian Street, 0025 Yerevan, Armenia

Abstract

Local properties of the Bunch-Davies vacuum state are investigated for a
massive scalar field with general curvature coupling parameter in background
of D+ 1-dimensional de Sitter spacetime. The influence of the non-trivial topol-
ogy of spatial dimensions and of the presence of boundaries on these properties
are studied. Both the topological and boundary-induced parts in the vacuum
energy-momentum tensor are time-dependent and they violate the local de Sit-
ter symimetry.

1. Introduction

De Sitter (dS) spacetime is one of the simplest and most interesting spacetimes
allowed by general relativity. Quantum field theory in this background has been
extensively studied during the past two decades. Much of early interest to dS space-
time was motivated by the questions related to the quantization of fields propagating
on curved backgrounds (for a review see [1]). This spacetime has a high degree of
symmetry and numerous physical problems are exactly solvable on this background.
The importance of this theoretical work increased by the appearance of the infla-
tionary cosmology scenario [2]. In most inflationary models an approximately dS
spacetime is employed to solve a number of problems in standard cosmology. During
an inflationary epoch quantum fluctuations in the inflaton field introduce inhomo-
geneities and may affect the transition toward the true vacuum. These fluctuations
play a central role in the generation of cosmic structures from inflation. More re-
cently astronomical observations of high redshift supernovae, galaxy clusters and
cosmic microwave background [3] indicate that at the present epoch the Universe
is accelerating and can be well approximated by a world with a positive cosmologi-
cal constant. If the Universe would accelerate indefinitely, the standard cosmology
would lead to an asymptotic dS universe. Hence, the investigation of physical ef-
fects in dS spacetime is important for understanding both the early Universe and
its future. In addition to the above, an interesting topic which has received increas-
ing attention is related to string-theoretical models of dS spacetime and inflation.
Recently a number of constructions of metastable dS vacua within the framework
of string theory are discussed (see, for instance, [4, 5] and references therein).
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In the present paper we discuss the quantization of a massive scalar field with
general curvature coupling parameter on background of dS spacetime. A common
problem in formulating quantum field theory on a curved background is ambiguity
in the choice of vacuum. In de Sitter space there is a one-parameter family of vacua
invariant under the de Sitter group, which have been dubbed the « vacua [6]. It has
long been suggested that the only physically sensible vacuum is the Bunch-Davies
(Euclidean) vacuum. One reason for this choice is that the free propagators in the
Bunch-Davies exhibit a Hadamard singularity, which matches with what is expected
in the flat space limit. We will describe the local properties of the Bunch-Davies
vacuum state. Among the most important quantities describing these properties
are the vacuum expectation values (VEVs) of the field squared and the energy-
momentum tensor. In addition, the VEV of the energy-momentum tensor acts as
a source of gravity in the Einstein equations and, hence, plays an important role
in modelling self-consistent dynamics involving the gravitational field. The VEV
of the field squared for the inflaton field is the central quantity in discussing the
generation of inhomogeneities during the inflationary expansion which are sources of
large scale structure in the universe. For a scalar field on background of dS spacetime
the renormalized vacuum expectation values of the field square and the energy-
momentum tensor are investigated in Refs. [7]-[10] by using various regularization
schemes. The corresponding effects upon phase transitions in an expanding universe
are discussed in [11]. The non-trivial properties of the vacuum state in quantum field
theory are manifested in its response to external influences. As simple models of
the latter we consider boundary conditions imposed on the field operator due to the
non-trivial topology of the background space or related to the presence of boundaries.

The paper is organized as follows. In the next section we consider the quantiza-
tion of a massive scalar field with general curvature coupling parameter in classical
dS background with trivial topology. dS-invariant vacuum states are discussed. By
using the direct modes summation technique the Wightman function, the renormal-
ized VEVs of the field squared and the energy-momentum tensor are evaluated for
the Bunch-Davies vacuum state. The VEV of the energy-momentum tensor for dS
spacetime with toroidally compactified spatial dimensions are considered in section
3. The VEV of the energy-momentum tensor and the Casimir forces for the geom-
etry of two parallel plates in dS spacetime are discussed in section 4. The main
results are summarized in section 5.

2. Scalar field in dS spacetime

As a background geometry we consider the (D + 1)-dimensional de Sitter space-
time (dSpy1) generated by a positive cosmological constant A. dSpi1 may be
realized as the hyperboloid

nHVZuZy:_azv ,u,V:O,l,...,D—}—l, (1)
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in (D+2)-dimensional Minkowski spacetime with the line element ds?,  , = 1, dZ"dZ"
with 7, being the standard Minkowskian metric. In (1), the parameter a =
V/D(D —1)/(2A) is called the dS radius. With this embedding the O(D + 1,1)
symmetry, which is the isometry group of dSp,1, is manifest. Different coordinate
systems can be used on the hyperboloid. In this paper we employ the, so called,
planar or inflationary coordinates, (¢,z',...,2"), which are most appropriate for
cosmological applications. These coordinates are related to the coordinates Z* by
the expressions

t/Oé D
0 _ : € 1y2
Z" = asinh(t/a)+ 9 E (z')%,

=1

Zl = detl* 1=1,...,D,
a D
zb+t = acosh(t/a)—iZ(zl)% (2)
2cv p

They cover the half of hyperboloid (1) with Z° + ZP+! > 0.
In planar coordinates the dS line element takes the form

D
ds? = dt? — */@ Z(dzl)Q. (3)
=1

In what follows, in addition to the synchronous time coordinate, ¢, we will also use
the conformal time, 7, defined as 7 = —ae */®, —co < 7 < 0. In terms of this
coordinate the line element takes the conformally flat form:

D
ds® = o172 [d7'2 - Z(dzl)QI . (4)

=1

Note that the line element (4) with 0 < 7 < oo covers the remained half of the
hyperboloid (1). First we discuss the case of boundary-free geometry with trivial
spatial topology. In this case we have —oco < 2! < oo for 1 =1,2,...D.

We consider a scalar field ¢(z) with curvature coupling parameter £ in back-
ground of dSp4;1. The corresponding field equation has the form

(vlvl +m? §R) v =0, (5)

where V; is the covariant derivative operator and R = D(D + 1)/a? is the Ricci
scalar for the background spacetime. The most important special cases correspond to
minimally and conformally coupled scalar fields with ¢ = 0 and £ = £p = (D—1)/4D,
respectively.

The quantization of the field ¢(x) in dS spacetime is done by the standard
methods of quantum field theory on curved backgrounds (for a review see [1]). Let
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{¢os(x), ¢k (x)} be a complete set of solutions to the field equation (5) specified by
a collective index ¢ and normalized by the condition

/E A3 5 (2)0upor (€) = o1 (2)Oppo (2)] = b0 (6)

where ¥ is a spacelike slice. Here and in what follows, §,,/ is understood as Dirac
delta-function for continuous components of the collective index ¢ and as Kronecker
delta for discrete ones. We expand the field operator in terms of the mode functions
as

(@) =) laspo(x) +ag ¢y ()], (7)

[
where a, and a} are the annihilation and creation operators with the standard
commutation relations [a,,a,] = 6,0/, [a5,a,/] = [af,a}] = 0. For continuous

components of the collective index o the summation in (7) is understood as an
integration with an appropriate measure. Further, we define the vacuum state as
follows: a, |0) = 0. The multiparticle Fock states are constructed in the standard
way acting by the creation operators on the vacuum state. In particular, a one-
particle state is defined as |1,) = aZ |0).

Note that, in general, the notion of the vacuum state depends on the choice of
the mode functions. If {p,(z), @, (x)} is another set of mode functions with the
corresponding vacuum state |0), then this state contains 3 | Boo|? particles in the
¢o(x) mode, where B,; = — (¢,(x), @5 (x)) is the Bogoliubov coefficients. The two
vacuum states, |0) and |0), coincide only in the case 8y, = 0.

In dS spacetime described by the inflationary coordinates, Eq. (3), the spatial
coordinate dependence of the mode functions can be taken in the form e™®% with
z=(z',...,2P)and k = (ki1,...,kp). For dS spactime with trivial topology one has
—00 < k; < 400 and the collective index is specified as ¢ = (k1,...,kp). From (5)
we get the equation for the time-dependent part of the mode functions. The latter
is solved in terms of the cylindrical functions and the mode functions are presented
as

o) =12 > " ¢ HP (kn)e™?, n = |7, (8)
§=1,2

where k = |k|, H,Sj)(z), j = 1,2, are the Hankel functions with the order

1/2

v=[D?/4— D(D +1){ — m*a?] (9)

Note that the latter can be either real or imaginary in dependence of the curvature
coupling parameter and the mass. From the normalization condition (6) we obtain
the following relation between the coefficients c;:

ei(ufu*)ﬂ'/Q

2 i(v—v®)w 2 _ )
eaf” e 2] = S ey

(10)

Different choices of one of the coefficients ¢; correspond to different choices of the
vacuum state in dS spacetime. The choice of the vacuum state is among the most
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important steps in construction of a quantum field theory in a fixed classical gravi-
tational background. dS spacetime is a maximally symmetric space and it is natural
to choose a vacuum state having the same symmetry. In fact, there exists a one-
parameter family of maximally symmetric quantum states [6] which are called «
vacua. In inflationary coordinates these states are realized by the mode functions
(8) with the coefficients ¢; being independent of k. In the discussion below we
will assume that the field is prepared in the dS-invariant Bunch-Davies vacuum
state (otherwise known as the Euclidean vacuum) [10] for which ¢ = 0. As we
have already mentioned before, among the set of dS-invariant quantum states the
Bunch-Davies vacuum is the only one for which the short distance singularities of
the two-point functions are of the Hadamard form. For a general o vacuum, the
subtractions in the renormalization procedure include nonlocal contributions to the
effective action. In [12] it is shown that, except for the Bunch-Davies vacuum, «
vacua states are unphysical when gravitational interactions are included. This ob-
servation is applied to the quantum state of the inflaton, and it is found that strong
fine tuning is required for states other than the Bunch-Davies vacuum to lead to
observable features in the cosmic microwave background radiation anisotropy. In
[13] it is proved that for an arbitrary homogeneous and isotropic physical initial
state in de Sitter spacetime he expectation value of the energy-momentum tensor
for a scalar field approaches the Bunch-Davies value at late times, independently of
the initial state.

Hence, for the mode functions realizing the Bunch-Davies vacuum state one has

po(x) = cin”PHY (kn)e'?, (11)
where the constant ¢; is directly obtained from (10):

ei(u—u*)n/Q

2 _
el = 8(2mra)P—1°

(12)

The free field theory may be defined in terms of its two-point functions. In
particular, the information on the properties of the vacuum state is contained in these
functions. Here we consider the Wightman function, Wys(z, z") = (0]p(z)p(z’)]0),
where |0) stands for the Bunch-Davies vacuum state. Our choice of the Wightman
function is related to that, in addition to the VEVs of various physical observables,
this function also determines the response of the Unruh-DeWitt particle detector at
a given state of motion. Having the mode functions, the Wightman function may
be evaluated by making use of the mode sum formula

Was(z,2") =Y po(@)py(a’). (13)

Substituting the mode functions (11) and by taking into account (12), we find the
following expression
e’i(V—V*)W/2(77,'7/)D

st(ﬂj,x/) = 8(27TQ)D71

/ dPk HV (k) [HD (R )7e™2%, (1)
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where Az = z — z’. For the further transformation of this expression, first we use
the formula

| © i Jpjaa(klAzl)
Dy, ik-Az _ D/2 D-1 D/2-1
/ dPke™ AP (k) = (27) /O di kP P () T (15)

for a given function F'(k), where J,,(x) is the Bessel function. This yield the formula

ez(u V*)ﬂ/2 D/
x H! )(kiﬁ)[ H! )(kﬁ ) JD/2—1(/€|AZ|)- (16)

As the next step, we write the product of the Hankel functions in terms of the
Macdonald function:

= A R (—ikn) K (k) (17)

=2 g (k) [HD (k)] 2

and use the integral representation [14]

+oo d Z2
KV(Z)KV / / w e VY~ Zzw™ Coshyexp < % _ 5 > (18)

for the product of the Macdonald functions. Substituting this into (16) and changing
the order of integration, the integral over k is evaluated with the help of the formula

0 . Y 6V6762/4a

The remained integral over w is expressed in terms of the gamma function and one
gets the expression

N F(D/2) ) ZD/Z—V—l
Waslo )= geppiient Jy P im0

where we have defined
(An)? — |Az|?
2y
In deriving Eq. (20) we have assumed that |u| < 1. The integral in Eq. (20)
(1-D)/2
~1/2
Ref. [15]). Expressing this function through the hypergeometrlc function, after
some transformations, we get the final expression for the Wightman function in
dS spacetime (for two-point functions in boundary-free dS spacetime see Ref. [7]):

u(z,2’) =1+ (21)

is expressed in terms of the associated Legendre function P, (u(z, ")) (see

al=P T(D/2+v)T(D/2 - v)
(47)(D+1)/2 I'(D+1)/2)

D D D+1 1+wu(x, 2
X2F1<2—|—l/, ; ( )>

Was(z, ")

= _ 22
>~ v (22
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Note that, in terms of the coordinates Z* in the higher-dimensional embedding
space for dS spacetime, then one can write u(z,2') = 1+ [Z(x) — Z(2')]?/(2a2).
The property that the Wightman function depends on spacetime points through
[Z(x) — Z(2')]? is related to the maximal symmetry of the Bunch-Davies vacuum
state.

The Wightman function (22) is divergent in the coincidence limit and can not
be directly used for the evaluation of the VEVs of the field squared and the energy-
momentum tensor. In order to find the renormalized VEVs we can subtract from
the Wightman function the corresponding DeWitt-Schwinger expansion truncated
at the adiabatic order D + 1. After this subtraction the coincidence limit is finite.
In this way, for the renormalized VEV of the field squared in the case D = 3 one
finds [7, 9, 10]

i = k(Yo () (3-2) ]

Gl VA —6§+§}, (23)

m2a? 30m2a?

where () is the logarithmic derivative of the gamma-function. Due to the maximal
symmetry of the dS spacetime this VEV does not depend on the spacetime point.
In a similar way, the renormalized VEV of the energy-momentum tensor takes the
form [7, 9, 10] (see also [1])

k
(TFhosen = gobm?a? (m?0/2 4+ 66 — 1) [0(8/2+ ) + (32— )
—1In (m%a?)] — (6¢ — 1)* +1/30 + (2/3 — 6§)m*a’}. (24)

By using the asymptotic expansion of the function ¢ (z) for large values of the
argument it can be seen that for large values of the parameter ma from (24) one

has

Sk 7 58

32m2m2ab <12 5

For a conformally coupled scalar field the coefficient in braces is equal —1/60. The
energy-momentum tensor (24) is a gravitational source of the cosmological constant
type. Due to the problem symmetry this will be the case for general values D. As a
result, in combination with the initial cosmological constant A, the one-loop effects
lead to the effective cosmological constant

(TFY0 zen ~ L7oe? - 144§3> mas1. (25)

Aeg = D(D —1)/20* 4 87G{T)0.xen, (26)

where G is the Newton gravitational constant.

In figure 1 we have plotted the renormalized vacuum energy density in the un-
compactified dS spacetime as a function of the parameter ma for D = 3 minimally
and conformally coupled scalar fields. As it is seen from the plots, the one-loop
correction to the cosmological constant for a minimally coupled scalar field is always
positive, whereas for a conformally coupled scalar it can be also negative.
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Figure 1: Renormalized vacuum energy density in uncompactified dS spacetime,
naP+1 <T[§)>ren as a function of ma for minimally and conformally coupled scalar
fields in D = 3. The scaling coefficient 7 = 103(10%) for minimally (conformally)
coupled scalar fields.

3. dS spacetime with toroidally compact dimensions

3.1. Mode functions

In recent years much attention has been paid to the possibility that a universe
could have non-trivial topology [16, 17]. Many of high energy theories of funda-
mental physics are formulated in higher dimensional spacetimes and it is commonly
assumed that the extra dimensions are compactified. In particular, the idea of com-
pactified dimensions has been extensively used in supergravity and superstring the-
ories. From an inflationary point of view universes with compact spatial dimensions,
under certain conditions, should be considered a rule rather than an exception [18].
The models of a compact universe with non-trivial topology may play an important
role by providing proper initial conditions for inflation (for physical motivations of
considering compact universes see also [19]). There has been a large activity to
search for signatures of non-trivial topology by identifying ghost images of galaxies,
clusters or quasars. Recent progress in observations of the cosmic microwave back-
ground provides an alternative way to observe the topology of the universe [17]. If
the scale of periodicity is close to the particle horizon scale then the changed ap-
pearance of the microwave background sky pattern offers a sensitive probe of the
topology.

The compactification of spatial dimensions leads to a number of interesting quan-
tum field theoretical effects which include instabilities in interacting field theories,
topological mass generation, symmetry breaking. In the case of non-trivial topology
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the boundary conditions imposed on fields give rise to the modification of the spec-
trum for vacuum fluctuations and, as a result, to the Casimir-type contributions in
the vacuum expectation values of physical observables (for the topological Casimir
effect and its role in cosmology see [20] and references therein). Compactification of
extra dimensions have moduli parameters which parametrize the size and the shape
of the extra dimensions and the Casimir effect has been used to stabilize these mod-
uli. The topological Casimir energy can also serve as a model for dark energy needed
for the explanation of the present accelerated expansion of the universe. The effects
of the toroidal compactification of spatial dimensions in dS spacetime on the proper-
ties of quantum vacuum for a scalar field with general curvature coupling parameter
are investigated in Refs. [21, 22]. The one-loop quantum effects for a fermionic field
on background of dS spacetime are studied in [23, 24].

In this section we consider a general class of compactifications of dS spacetime
having the spatial topology RP x (SY)4, p + ¢ = D. This geometry can be used to
describe two types of models. For the first one p = 3, ¢ > 1, and which corresponds
to the universe with Kaluza-Klein type extra dimensions. The presence of extra
dimensions generates an additional gravitational source in the cosmological equa-
tions which is of barotropic type (gravitational source with a constant equation of
state parameter) at late stages of the cosmological evolution. For the second model
D = 3 and the results given below describe how the properties of the universe with
dS geometry are changed by one-loop quantum effects induced by the compactness
of spatial dimensions.

We assume that the spatial coordinate 2!, { = p+1,..., D, is compactified to S*
of the length L;: 0 < 2 < L;, and for the other coordinates we have —oo < 2 < 400,
l=1,...,p. Let z, = (2%,...,2P) and z, = (2PT},.. ., 2P) be the position vectors
along the uncompactified and compactified dimensions respectively. We impose the
following boundary conditions along the compactified dimensions

(,D(t, Zp,Zq + Llel) = :t(p(t, Zy, Zq)v (27)

where [ = p+1,..., D, upper/lower sign corresponds to untwisted/twisted scalar
field, and e; is the unit vector along the direction of the coordinate z!.

As before, for the evaluation of the VEVs will use the direct mode-summation
procedure assuming that the field is prepared in the Bunch-Davies vacuum state.
The corresponding mode functions have the form

ell

i zzfz/*)ﬂ/ZnD
Yo(T) = 2p+27.‘.p—1‘/an—1

1/2
] HO ()i, (25)

where V; = L,41--- Lp is the volume of the compactified subspace, and

ky = (ki,.oo kp) kg = (kpets. o kp), k= /K2 + K2,

ki = 27r(nl—|—gl)/Ll7 n=0,+1,£2, ..., l=p+1,...,D. (29)

In (29), g = 0 for untwisted scalar and g; = 1/2 for twisted scalar field.
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3.2. Vacuum Energy-Momentum Tensor

Having the complete set of eigenfunctions we can evaluate the VEV of the energy-
momentum tensor by using the mode-sum formula

<Ek>p,q = an{(pg(fv),(p;(l‘)}, (30)

where the bilinear form T;;{f, g} is determined by the form of the classical energy-
momentum tensor for a scalar field. We implicitly assume the presence of a cutoff
function in (30) which makes the sum finite. In the problem under consideration
the set of quantum numbers o is specified to (k,,n,) with ng, = (np41,...,np).
Substituting the eigenfunctions (28) into mode-sum (30) and applying to the series
over n,11 the Abel-Plana summation formula (see, for example, Refs. [25]), we find
the following recurrence relation for the VEV of the energy-momentum tensor

<Ek>p,q = <Tz‘k>p+1,q71 + Aer1<Tik>p,q- (31)

Here (TF¥),11,4-1 is the part corresponding to dS spacetime with p+1 uncompactified
and ¢ — 1 toroidally compactified dimensions and Ap+1<7}k>p,q is induced by the
compactness along the zPT! - direction. For the corresponding energy density one
has

277 Lpiq
0 _ p+
Byt = Gyt /%Dﬂzﬂ 3" / da

ng_1=-—00

(0)
xFy (zn) 5 5
X(an+1)p,1f(pfl)/Q(nLP'f‘l\/I +ka,_1)s (32)

with the notations ng_1 = (np42,...,np), fuly) = y*K,(y), and
FO%) = o [I',(y) + I,(w)] K., (y) + D(1/2 = 26)y [(I-, (y) + L () K. ()]
+ -0 (y) + L ()] Ku(y) (v + 2m°a® — 7). (33)

In Eq. (32), the upper/lower sign corresponds to untwisted /twisted scalar field. The
vacuum stresses are presented in the form (no summation over )

i 4n b2 Lpy1 —
AP+1<Ti >P7q = Apvq (27T)(p+3 /2V aP+1 Z :l:l Z / dx Z'K 9077

—1=—00

I_,(zn)+ I, (x
8 ((71212+1)P+(1 n)fé)(nL \/$2+k121q o (34)

where we have introduced the notations

f]gl)(y) = f(p+1)/2(y)7 Z.Zla"'7p7
£ v fo-1)2(4) — 2L o1y 2(0), (35)
) = (nLppk)fp1y2(y), i=p+2,...,D.

<
N~—
Il
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The first term on the right of Eq. (34) is given by

N 277 Ly zn)
Apg = (27) (P+3)/2V,aD+1 Z +1)" Z / nL (nLpi1 )Pt

ng_1=-—00

X f-vya(nlpyiy/a* + k3 ), (36)

with the notation

F(y) = [2(D+1)¢—-D/2ly(I-v(y) + L ()] Ku () + (46 — 1) y° K}, (y)
x [I', () + 1,()] + U-u(y) + L(y)] Ko (y) [(46 = 1) (y* +v%)] (37)

As it is seen from the obtained formulae, the topological parts in the VEVs are
time-dependent and, hence, the local dS symmetry is broken by them. By taking
into account the relation between the conformal and synchronous time coordinates,
we see that the VEV of the energy-momentum tensor is a function of the combina-
tions L;/n = L;e"/®/a, which is the comoving length of the compactified dimension
measured in units of the dS curvature scale.

The recurring application of formula (31) allows us to write the VEV in the form

q
(TF)pg = (TFas + (T)e, (TFe = Ap_1i1{TF) o4, (38)
=1

where the part corresponding to uncompactified dS spacetime, <Tf )ds, is explicitly
decomposed. The part (Tf)c is induced by the compactness of the g-dimensional
subspace. This part is finite and the renormalization is needed for the uncompactified
dS part only. We could expect this result, since the local geometry is not changed
by the toroidal compactification.

For a conformally coupled massless scalar field v = 1/2 and, by using the formu-
lae for I/9(z) and K /o(z), after the integration over z from formulae (32), (34)
we find (no summation over i)

i 2(n/a)PH! n < 9p (nLpi1kn, )
Ap+1 <,Tz >p7q == (27r)P/2+1V;1_1 Z(il) Z (an+1)p+‘12 ) (39)

n=1 ng_1=-—00

with the notations

gISO)(y) = glgl)(y) = fp/2+1(y)> = 17 Y 2)

g7 @) = 0+ 1) L1 ®) — ¥ frpa (), (40)
9 y) = (Lpp1ki)?fop(y), i=p+2,...,D.

In this case the topological part in the VEV of the energy-momentum tensor is
traceless and the trace anomaly is contained in the uncompactified dS part only.
Formula (39) could be obtained from the corresponding result in (D~+1)-dimensional
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Minkowski spacetime with spatial topology RP x (S!)?, taking into account that
two problems are conformally related: Ay, 1(TF),, = Ap+1<Tik>§){\g) /aP+1(n), where
a(n) = a/n is the scale factor. This relation is valid for any conformally flat bulk.
The similar formula takes place for the total topological part (TF).. Note that, in this
case the expressions for A, 1(TF), , are obtained from the formulae for A, 1 (T >2(71,\:11)
replacing the lengths L; of the compactified dimensions by the comoving lengths
ali/n,l=mp,...,D.

Now we turn to the investigation of the topological part in the VEV of the
energy-momentum tensor in the asymptotic regions of the ratio Ly1/n. For small
values of this ratio, Ly+1/n < 1, to the leading order A,;1(TF), , coincides with
the corresponding result for a conformally coupled massless field, given by (39).
For fixed value of the ratio Lj1/c, this limit corresponds to ¢ — —oo and the
topological part (TF¥). behaves like exp[—(D + 1)t/a]. By taking into account that
the part (T)4g is time independent, from here we conclude that in the early stages
of the cosmological expansion the topological part dominates in the VEV of the
energy-momentum tensor. In particular, in this limit the total energy density is
negative.

For small values of the ratio 7/Ly,1, we introduce a new integration variable
y = Lpi12 and expand the integrand by using the formulae for the modified Bessel
functions for small arguments. For real values of the parameter v we find

Ap+1 <T(?>p,q

2VD[D/2—1/+2§(2;/—D—1)}F( < n )DQV
12
(Qw)(p+3)/2L;j1anD+1 L,

“+oo

" Z(il)” Z f(p—&-l)/?—l/(nL]H*lknq,l). (41)
n=1

np+1)/2—v
ng 1=-—00
In particular, this quantity is positive for a minimally coupled scalar field and for a
conformally coupled massive scalar field. For a conformally coupled massless scalar
the coefficient in (41) vanishes. For the vacuum stresses the second term on the
right of formula (34) is suppressed with respect to the first term given by (36) by
the factor (n/Lpt1)? fori = 1,...,p+1, and by the factor (nk;)? for i = p+2,...,D.
As a result, to the leading order we have the relation (no summation over 7)

A:0+1<Tz'i>p,q ~ (QV/D)AP+1<T(?>p,qv n/Lpt1 < 1, (42)

between the energy density and stresses, ¢ = 1,..., D. The coeflicient in this relation
does not depend on p and, hence, it takes place for the total topological part of the
VEV as well. Hence, in the limit under consideration the topological parts in the
vacuum stresses are isotropic. Note that this limit corresponds to late times in terms
of synchronous time coordinate ¢, (a/ Lp+1)e_t/ * « 1, and the topological part in
the VEV is suppressed by the factor exp|—(D — 2v)t/a]. For a conformally coupled
massless scalar field the coefficient of the leading term vanishes and the topological
parts are suppressed by the factor exp[—(D+1)t/a]. As the uncompactified dS part
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is constant, it dominates the topological part at the late stages of the cosmological
evolution.

For small values of the ratio n/L,11 and for purely imaginary v, the energy
density behaves like

_ ADe Dtep
T @2m)er2aLl |V,

Ap+1(T))pg sin2|v[t/a + 2lv[In(Lpsr/e) + ¢o],  (43)

where the parameters B and ¢ are defined by the relation

Be'% = 2WI[|y|(1/2 = 2¢) +i(D/4 — (D + DEIT(i|v])
[e’¢) +oo
) Y (ED" S PP iy (b, ). (44)
n=1 ng_1=—00

In the same limit, the main contribution into the vacuum stresses comes from the
term A, , in (36) and one has (no summation over )

8lvle~PHB
(2m) P32 LP 1V,

Ap+1<1“ii>p7q ~ cos2|v|t/a + 2|v|In(Lps1/a) + ¢o].  (45)

Hence, in the case under consideration at late stages of the cosmological evolution
the topological part is suppressed by the factor exp(—Dt/«) and the damping of the
corresponding VEV has an oscillatory nature.

In the special case of topology RP~! x S! with the length of the compactified
dimension L,1 = L, for the topological part in the energy density we have

2(n/L)P~2 SN (FD)" [
(18)e = oaypatngoem 2= s |, e EY o a(eLin). (49

We recall that the quantity L /7 is the comoving length of the compactified dimension
measured in units of the dS curvature scale a. Note that the corresponding quantity
in the Minkowski spacetime with topology RP?~1 x S! has the form

2 +1)"
0\ (M) _
(T = (QW)(D-H)/QLD—H Z nD+1 fio+1)j2(nLm), (47)

and is always negative for an untwisted scalar field. In order to illustrate the oscil-
latory behavior, in figure 2 by the full curve we have plotted the topological part
in the VEV of the energy density for an untwisted scalar field in dS5 with topology
R3 x S! as a function of the comoving length of the compactified dimension in units
of a: L. = L/n for the value of the parameter aom = 4. This topology corresponds
to the original Kaluza-Klein model. The dashed curve presents the corresponding
quantity in Minkowski spacetime with topology R? x St (formula (47) with D = 4) as
a function of the length of the compactified dimension in the same units: L. = L/a.
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Figure 2: Topological part of the vacuum energy density, o”+1(T; e, in dSs with
topology R? x S! as a function of the comoving length of the compactified dimension
in units of «, L. = L/n, for the value of the parameter am = 4. The dashed
curve presents the corresponding quantity in Minkowski spacetime with topology
R3 x S! as a function of the length of the compactified dimension in the same units:
L.=L/a.

4. Casimir densities in dS spacetime

4.1. Boundary conditions and mode functions

The Casimir effect is now known to be common to systems of very different kind,
involving fluctuating quantities on which external boundary conditions are imposed.
It can have important implications on all scales, from subnuclear to cosmological.
Imposing boundary conditions on a quantum field leads to a modification of the
spectrum of zero-point fluctuations and results in the shifting in the vacuum ex-
pectation values for physical quantities, such as the energy density and stresses.
In particular, the confinement of quantum fluctuations induces forces that act on
the constraining boundaries. The particular features of the resulting vacuum forces
depend on the nature of the quantum field, on the type of the spacetime manifold,
the geometry of the boundaries, and on the specific boundary conditions imposed
on the field.

An interesting topic in the investigation of the Casimir effect is its explicit de-
pendence on the geometry of the background spacetime. As usual, the relevant
information is encoded in the vacuum fluctuations spectrum and, not surprisingly,
analytic solutions can be found for highly symmetric geometries only. The Casimir
effect on the background of dS spacetime described in planar coordinates was investi-
gated in Refs. [26] for a conformally coupled massless scalar field. In this last case the
problem is conformally related to the corresponding problem in Minkowski space-
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time and the vacuum characteristics are generated from those for the Minkowski
counterpart, just by multiplying with the conformal factor. In particular, for the
geometry of a single plate, the vacuum expectation value of the energy-momentum
tensor vanishes. The Casimir densities induced by a single and two parallel plates
for a massive scalar field with an arbitrary curvature coupling parameter has been
considered in [27, 28]. The Casimir effect for a spherical boundary in dS spacetime
was investigated in [29)].

In this section, our main interest are the VEV of the energy-momentum tensor
and the Casimir forces in the geometry of two infinite, parallel plates located at
2P = a;, j = 1,2. On the plates the field obeys Robin boundary conditions (BCs)

(14 B! V)p(x) =0, 2P =aj, (48)

with constant coefficients 3; and with n' being the normal to the boundary. For
the region between the plates one has n! = (—1)7~16,. Dirichlet and Neumann BCs
correspond to special cases 3; = 0 and 3; = oo, respectively. The imposition of BCs
leads to a modification of the VEVs for physical quantities, as compared with those in
the situation without boundaries. Among the most important characteristics of the
vacuum state is the VEV of the energy-momentum tensor. In addition to describing
the physical structure of the quantum field at a given point, the energy-momentum
tensor acts as the source in the Einstein equations and therefore plays an important
role in modelling a self-consistent dynamics involving the gravitational field. The
VEV is expressed as the mode-sum (30), where {¢,(x), ¢k (x)} is a complete set of
solutions to the classical field equation satisfying the boundary conditions (48).

In the region between the plates, a; < z” < ag, the eigenfunctions realizing the
Bunch-Davies vacuum state and satisfying the BC on the plate at 2P = a;, have
the form

o (x) = Con”?HD (nK) coslkp (P — ar) + a1 (kp)]e™*, (49)
with the notations K = y/k2 + k7, and 1@ = (if1z —1)/(if1z+1). In Eq. (49),
z = (z',...,2P71) is the position vector along the dimensions parallel to the plates

and k = (k1,...,kp—1). For a conformally coupled massless field one has v = 1/2.
From the boundary condition on the plate z” = as it follows that the eigenvalues
for kp are solutions of the equation

(1= biboy®)siny — (b1 + ba)y cosy = 0, y = kpa, (50)

where b; = fj/a and a = ap — a;. In the discussion below we will assume that all
zeros are real. In particular, this is the case for the conditions b; < 0 (see Ref. [30]).
The positive solutions of Eq. (50) will be denoted by y = A\, n = 1,2,..., and
for the eigenvalues of kp one has kp = A, /a. Consequently, the eigenfunctions are
specified by the set ¢ = (k,n). The coefficient C, in (49) is determined from the
normalization condition and is given by the expression

CZ (27T)2—Da1—Dei(V—V*)7F/2
= 2a {1 + cos + 201 (/@) Sn(n) A}

(51)
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the star meaning complex conjugate.

It is well known that in dS spacetime without boundaries the Bunch—Davies vac-
uum state is not a physically realizable state for Rev > D/2. The corresponding
two-point functions contain infrared divergences. In the presence of boundaries, the
BCs on the quantized field may exclude long wavelength modes and the Bunch-
Davies vacuum becomes a realizable state. An example of this type of situation is
provided by the geometry of two parallel plates described above. In the region be-
tween the plates and for BCs with 3; < 0, 3; # oo, there is a maximum wavelength,
2ma/ A1, and the two-point functions contain no infrared divergences. Mathemat-
ically, this situation corresponds to the one where in the argument of the Hankel
function we have K > \;/a.

4.2. VEV of the energy-momentum tensor

Combining Egs. (30),(28),(51), for the VEV of the energy-momentum tensor
in the region between the plates we find the expression which contains series over
An. For the summation of this series we apply the Abel-Plana type summation
formula from Refs. [30, 25]. This allows us to write the diagonal components in the
decomposed form (no summation over 1)

(1)) = D+1/ dyy'~ D/ dx H(x,y)

[ (Bjz/n,|z" = ajlz/n)Gi(y) + 2Gia*F, (y)] , (52)
where
B (4W)7(D+1)/2 . B (xQ _ y2)(D73)/2
= 1-nm YT St -1
wy | —2u _ Bju
9(Bju, yu) = cj(u)e®™ + e [cj(u) + 2, ¢j(u) = Bju+1’ (53)
and
F(y) =y” [L(y) + 1. (y)] K. (y), (54)

with I, (y) and K, (y) being the modified Bessel functions. In (52), we have intro-
duced the notations

2
Gotw) = |50 - DI+ €olud, + D4 ma P+ (1-46)*| Fy).

1 D—-1
Got) = {(e-3)wei+ |sz-0)+ 2w -} Rl 69
y* —? 2
Gily) = Gol)+ |7+ (1= 4922| B, 1=1...D -1
and Gp=1,G =4 —1for 1 =0,1,...,D—1. In Eq. (52) (no summation over 1),

D—3 6—2£L‘|ZD—(1]"/7]

(1t = (thhas + 5 [y [T e =) G, 60

cj(x/n)
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is the VEV for the geometry of a single plate at z” = a; when the second plate is ab-
sent [27] and (T})qs is the corresponding renormalized VEV in dS spacetime without
boundaries discussed in section 2. For points away from the plates, renormalization
is required for the latter part only. The last term on the right hand side of Eq. (52)
is induced by the presence of the second plate. Note that in the formulas given
above, |zP — a;j|/n is the proper distance of the observation point from the plate at
2P = a;, measured in units of the dS curvature radius o. The VEVs depend on time
through the combinations |2? — a;|/n and B;/n. This property is a consequence of
the maximal symmetry of dS spacetime and of Bunch—Davies vacuum.
For the non-zero off-diagonal component, we have

A o _
@) = (1P =" —a)gopy [ dw' = Golo)
< [ et (o) [eiofme e - 2o )] (57)
Y

where the part corresponding to the geometry of a single plate is given by

2A & _
(T’); = sen(z” —aj)anl /O dyy' P Gop(y)
© _ 672$‘2D—a]‘|/7]
X dz x(2® — y2)¥7. 58)
/y cj(z/n) (

In these formulas we have defined the function

Gop(y) = [(4§ — 1)y, + 4¢] Fo (y). (59)

The off-diagonal component (57) corresponds to the energy flux along the direction
perpendicular to the plates. Depending on the values of the coefficients in the
boundary conditions and of the field mass this flux can be positive or negative. In the
case when 31 = 32, the off-diagonal component (T{”) vanishes at 2P = (a1 + ag)/2.
This property is a direct consequence of the problem symmetry.

For a conformally coupled massless scalar field (¢ = £p, m = 0) the single
plate part in the VEV of the energy-momentum tensor vanishes and one finds (no
summation over /)

B (n/a)D+1Bl5k 00 :CD
(Th) = {Tk)as = (yDRr (D2 4+ 1) /0 @ e —1 60

where By = 1 for [ =0,...,D —1 and Bp = —D. The boundary induced part
in this formula could have been obtained from the corresponding result for the
Casimir effect in Minkowski spacetime, by using the fact that the two problems are
conformally related. Note that the boundary induced part in Eq. (60) is traceless
and the trace anomaly is contained in the boundary-free part only.

In the region 2P < a1 (2 > ap) the VEV of the energy-momentum tensor
coincides with the corresponding VEV for a single plate located at 2P = a; (2P = as)
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and is given by the expressions (56) and (58), with j = 1 (j = 2). The results
obtained in the present paper can be applied to a more general problem where the
cosmological constant is different in separate regions z” < ay, a; < 2P < ag, and
2P > ay. In this case the plate can be considered as a simple model of a thin domain
wall separating the regions with different dS vacua.

4.3. Casimir Forces

Having the VEV of the energy-momentum tensor, we can evaluate the forces
acting on the plates. The vacuum force acting per unit surface of the plate at
2P = a; is determined by the B—Component of the vacuum energy-momentum tensor
evaluated at this point. For the region between the plates, the corresponding effective
pressures can be written as p(j) = pgj) + pgr)lt), 7 = 1,2. The term pgj) is the
pressure for a single plate at 2’ = aj, when the second plate is absent. This
term is divergent due to the surface divergences in the subtracted VEVs and needs
additional renormalization. The term pgzt) is the pressure induced by the second
plate, and can be termed as an interaction force. This contribution is finite for all
nonzero distances between the plates. In the regions 2P < a; and z” > ay we have
pl) = pgj ). Asa result, the contributions to the vacuum force coming from the term
pgj ) are the same from the left and from the right sides of the plate, so that there is
no net contribution to the effective force.

The interaction force on the plate at zP = a; is obtained from the last term on

the right hand side of Eq. (52) for (T5) (with minus sign) taking 2P = a;:

G _ _ 24p [* 4 _p [% 2(B;/n)> Gp(y)
p(ijnw_anl/o duy’ D/y dMQH(x’y)[ (521:/77)2?1 Th@) . (6

where H(x,y) is defined by Eq. (53). The time dependence of the forces appears in
the form a/n and (3;/n. Note that the ratio a/n is the proper distance between the
plates measured in units of dS curvature radius o. The effective pressures (61) can be
either positive or negative, leading to repulsive or to attractive forces, respectively.
For 31 # (35 the Casimir forces acting on the left and on the right plates are different.
For large values of «, to leading order, the corresponding result for the geometry of
two parallel plates in Minkowski spacetime is obtained:

o ) _2Am)0 /°° L Pt —mH)PRt
(int) ™ F(M) r(D/2) Jm c1(x)co(z)e?or — 1

(62)

Note that in the Minkowski spacetime the force is the same for both plates with
independence of the values for the coefficients 3; and this force does not depend on
the curvature coupling parameter.
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In the special cases of Dirichlet and of Neumann boundary conditions one finds:

- _‘Wi/mdyyp (y) [(D—l)fD(yu )+ fo_y(yun)|, (63)
(int) (27[_)%+1 — Jy v 5 n 5-1 n)|
—-D-1 % 00
~ - D 8o / d Go(y) Uy ), Up = 2Nn0 64
p(lnt) p(lnt) (27_‘_)%_’_1 ; 0 Y y f%*l(y n)a n /n’ ( )

where f,(z) = K,(x)/2*. For 0 < v < 1 the integrand in the expression for pgi)t) is
positive which corresponds to an attractive force for all separations.

Now we turn to the investigation of the asymptotic behavior for the vacuum
forces in the general case of Robin BC. In the limit of small proper distances between

the plates, a/n < 1, to leading order we find

0 x __2nj)P" / dx o (65)
P(int) ™~ " (4m)P/2T(D/2) (r)e2ar —1°
If, in addition, |3;]/a > 1, one has

G ., DPL(D+1)/2)¢r(D+1)
(int) ™ (47r)(D+1)/2(aa/n)D+1 )

(66)

and the corresponding force is attractive. In (66), (g(z) is the Riemann zeta func-
tion. The same result is obtained for Dirichlet BCs on both plates. In the case of
Dirichlet BC on one plate and non-Dirichlet one on the other, the leading term is
obtained from Eq. (66) with an additional factor (272 —1). In this case the vacuum
force is repulsive at small distances.

In considering the large distance asymptotics, corresponding to a/n > 1, the
cases of real and imaginary v must be studied separately. For positive values of v,
one has

) 20z_D_1g,(,J)I‘(V) (67)
Pint) = D211 (2a/n)D-2+2’
for non-Neumann BCs on the plate at z” = a; (|3j] < oo) and
_D—1 N@
W a-D g (])F(V) (68)
D(int) 7D/2+1 (2q /) D=2

for Neumann BC (8 = co0). Here the notations are as follows:

| D+1 y~ (0132)

gy = (2—y>I‘(D/2—1/+1) 1—2< ) ] D122V+2’ 9)
, (0162)

N0 = (D)2 - v)fp Z n}) 22,,
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with fp = —2v[§+ (§ —1/4) (D —2v)] and §; = ¢j(0). Note that 6; = —1 for
non-Neumann BC, while ¢; = 1 if the BC is Neumann. In the case of non-Neumann
BCs we have assumed that |3;]/a < 1.

As it is seen from (68), for positive values of v and when fp # 0, at large
distances the ratio of the Casimir forces acting on the plate with Neumann and non-
Neumann BCs is of the order (a/n)?. Note that in neither of these cases does the
force depend on the specific value of Robin coefficient in the BC on the second plate.
For Dirichlet BC on the plate at z” = a; (8; = 0), at large separations the Casimir
force acting on that plate is repulsive (attractive) for Neumann (non-Neumann) BCs
on the other plate. The nature of the force acting on the plate with Neumann BC
depends on the sign of fp and can be either repulsive or attractive, in function of the
curvature coupling parameter and of the field mass. For minimally and conformally
coupled massive scalar fields one has fp = v(D/2 —v) and fp = v(1/2 —v)/D,
respectively, and this parameter is positive. The corresponding force is attractive
(repulsive) for Neumann (non-Neumann) BC on the second plate. Note that for
the geometry of parallel plates in the Minkowski bulk the Casimir forces at large
distances are repulsive for Neumann BC on one plate and for non-Neumann BC on
the other plate. For all other cases of BCs the forces are attractive.

For imaginary v, the leading order terms at large separations between the plates
are in the form

( 4a~P1g))
Pling) 7 ~2D/aT1(2q, /)P cos[2|v|In(2a/n) + ¢¢;)], 18] < oo,

0

20[7D71’gll>1(j)’ ) (o N B -
int) T rD/2+1(2¢ /p)D cos[2[v|In(2a/n) + ¢(;)], B = oo, (70)

=l
S
l

where the phases are defined in accordance with gl(,j) = \gl(,j)|ei¢(ﬂ'> and g,,N(j) =
| g},\I @) |ei¢<h;). In this case the decay of the vacuum forces is oscillatory.

In Fig. 3, we have plotted the Casimir force for a D = 3 scalar field with Dirichlet
BC, minimally coupled to gravity, as a function of the proper distance between the
plates, measured in units of the dS curvature scale . The figures near the curves
correspond to the values of the parameter ma. Values are taken in a way so to have
both possibilities, with positive and purely imaginary values of the parameter v.

In Fig. 4 the dependence of the Casimir force on the parameter ma is depicted
for a given separation corresponding to a/n = 4. Conformally coupled scalar fields
with Dirichlet and Neumann BCs are considered. For a massless field the force is
the same for Dirichlet and Neumann BCs.

From the discussion given above it follows that for proper distances between
the plates larger than the curvature radius of the dS spacetime, aa/n 2 «, the
gravitational field essentially changes the behavior of the Casimir forces compared
with the case of the plates in Minkowski spacetime. The forces may become repulsive
at large separations between the plates. In particular, for real values v and for
Neumann BC on both plates, Casimir forces are repulsive at large separations, in
the range of parameters for which fp < 0. Recall that, for the geometry of parallel
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Figure 3: Interaction forces between the plates for a D = 3 minimally coupled scalar
field with Dirichlet (left plot) and Neumann (right plot) BCs. The figures near the
curves are the values of the parameter am.

Figure 4: Interaction force between the plates for a/n = 4 as a function of the field
mass, for a D = 3 conformally coupled scalar field with Dirichlet and Neumann BCs.
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plates on the background of Minkowski spacetime, the only case with repulsive
Casimir forces at large distances corresponds to Neumann BC on one plate and non-
Neumann BC on the other. A remarkable feature of the influence of the gravitational
field is the oscillatory behavior of the Casimir forces at large distances, which appears
in the case of imaginary v. In this case, the values of the plate distance yielding zero
Casimir force correspond to equilibrium positions. Among them, the positions with
negative derivative of the force with respect to the distance are locally stable. As it
follows from asymptotic formulas (67), (68), and (70), at large separations between
the plates the decay of the Casimir forces as functions of the distance is power-law
for both cases of massive and massless fields. Recall that, in Minkowski spacetime
the corresponding Casimir forces decay as 1/a”*! for a massless field and they are
exponentially suppressed by the factor exp(—2ma) for a massive filed.

It is also of interest to compare the features for the Casimir force in dS spacetime
with the behavior of the Casimir forces for parallel plates in AdS spacetime. In
Poincaré coordinates the corresponding line element is given by the expression

ds3gs = e~ Mnipdatda® — dy?, (71)

where 7;;, =diag(1,—1,...,—1) is the metric tensor for D-dimensional Minkowski
spacetime. For the corresponding Ricci scalar one has R = —D(D + 1)A? and the
AdS curvature radius is given by 1/\. For the general case of Robin BCs on two
parallel plates, located at y = y;, j = 1,2, the interaction forces between the plates
are investigated in Ref. [31] (see also Refs. [32] for the case where an extra compact
subspace is present). At large distances between the plates, as compared with the
AdS curvature radius, A(y2—y1) > 1, the vacuum interaction forces per unit surface,
pgfr)lt), are exponentially suppressed by the factor exp[2vaqsA(y1 — y2)] for the plate
at y = y1 and by the factor exp[(2vags + D)A(y1 — y2)] for the plate at y = yo, where
vaas = [D?/4—D(D +1)¢ + m2/)\2]1/2. Note that in AdS spacetime the ground
state becomes unstable for imaginary values of vaqs.[33] Hence, in AdS spacetime
the Casimir forces are exponentially suppressed for both massive and massless fields.

5. Conclusion

The natural appearance of dS spacetime in a variety of situations has stimu-
lated considerable interest in the behavior of quantum fields propagating in this
background. In the present paper we have discussed the properties of the quan-
tum vacuum for a massive scalar field with general curvature coupling parameter.
Among the most important local characteristics of the vacuum state are the VEVs
of the field squared and the energy-momentum tensor. First we have considered dS
spacetime with trivial topology described in flat coordinates. Unlike to the case of
Minkowski spacetime, where the Poincaré invariance determines a unique vacuum
state, in dS spacetime the symmetries do not determine the vacuum state completely.
There are a set of vacuum states parametrized by a single complex parameter and
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known as a vacua. Among them only the Bunch-Davies vacuum state smoothly
patches onto the Poincaré invariant Minkowski vacuum in the adiabatic limit. In
free field theories (interacting only with background gravitational field), all proper-
ties of the quantum vacuum are encoded in two-point functions. For the evaluation
of the Wightman function in dS spacetime with trivial topology, in section 2 we
have employed the direct mode summation technique. The mode functions realizing
the Bunch-Davies vacuum state are given by (11) and the Wightman function is
expressed in terms of the hypergeometric function, Eq. (22). Having the Wightman
function, the renormalized VEVs of the field squared and the energy-momentum
tensor are found subtracting the corresponding DeWitt-Schwinger expansion trun-
cated at the adiabatic order D + 1 and taking the coincidence limit. Due to the
maximal symmetry of the Bunch-Davies vacuum state these VEVs do not depend
on the spacetime point. In the special case D = 3 they are given by the expressions
(23) and (24).

The effects of non-trivial spatial topology on properties of the Bunch-Davies
vacuum state were discussed in section 3. We have considered (D + 1)-dimensional
dS spacetime having the spatial topology R? x (S!)4. Both cases of the periodicity
and antiperiodicity conditions along the compactified dimensions are discussed. A
recurrence relation is derived which presents the vacuum energy-momentum tensor
for the dSpy; with topology RP x (S!)4 in the form of the sum of the energy-
momentum tensor for the topology RPT! x (S')9~! and the additional part induced
by the compactness of the (p + 1)th spatial dimension. The repeated application
of the recurrence formula allows us to present the VEV of the energy-momentum
tensor as the sum of the uncompactified dS and topological parts. Since the toroidal
compactification does not change the local geometry, in this way the renormalization
of the energy-momentum tensor is reduced to that for uncompactifeid dSp4;.

At early stages of the cosmological expansion, corresponding to ¢ — —oo, the
vacuum energy-momentum tensor coincides with the corresponding quantity for a
conformally coupled massless field and the topological part behaves like e~ (D+1)t/a
In this limit the topological part dominates in the VEV. At late stages of the cos-
mological expansion, t — +oo, the behavior of the topological part depends on the
value of v. For real values of this parameter the leading term in the corresponding
asymptotic expansion is given by formula (41) and the vacuum stresses are isotropic.
In this limit the topological part is suppressed by the factor e~ (P=2¥)t/e In the same
limit and for pure imaginary values of the parameter v the asymptotic behavior of
the topological part in the VEV of the energy-momentum tensor is described by
formulae (43), (45) and the topological terms oscillate with the amplitude going to
the zero as e PV for t — +oo.

In section 4, we have studied the VEV of the energy-momentum tensor and
the Casimir forces for a scalar field with an arbitrary curvature coupling parameter
satisfying Robin boundary conditions on two parallel plates in dS spacetime. In the
region between the plates, the VEV is decomposed into a boundary-free dS, a single
plate-induced and an interference contributions, respectively. The vacuum energy-
momentum tensor is non-diagonal, with the off-diagonal component corresponding
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to the energy flux along the direction normal to the plates. Depending on the values
of the coefficients in the boundary conditions and of the field mass this flux can be
positive or negative. In the case of a conformally coupled massless field, the single
plate contribution to the VEV of the energy-momentum tensor vanishes and the
interference part is obtained from the corresponding result for the Minkowski bulk,
by standard conformal transformation.

The vacuum forces acting on the plates are determined by the B—component of
the stress. The normal stresses on the plates are presented as sums of single plate
and interaction contributions. The contributions to the vacuum force coming from
the single plate terms are the same from the left and from the right sides of the plate
and thus give no contribution to the effective force. The interaction forces per unit
surface are determined by formula (61) for general Robin BCs and by Egs. (63),(64)
in the special cases of Dirichlet and Neumann BCs. At small distances between the
plates the vacuum forces are attractive, except for the case of Dirichlet BC on one
plate and non-Dirichlet on the other, in which case the force turns out to be repulsive.
At large separations and for positive values of v, the force acting on the plate decays
monotonically as 1/(2a/n)P~2"+2, for non-Neumann BCs, and as 1/(2a/n)?~?", in
the case of Neumann BCs [see Egs. (68)]. For imaginary values of v the behavior of
the vacuum forces is damping oscillatory, in the leading order described by Egs. (70).
From the analysis carried out above, it follows that the curvature of the background
spacetime decisively influences the behavior of the Casimir forces at distances larger
than the curvature scale. As we have seen, in dS spacetime the decay of the forces
at large separations between the plates is power-law. This is quite remarkable and
clearly in contrast with the corresponding features of the same problem in Minkowski
and AdS spacetimes.
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Generation of a toroidal magnetic field
in rotating neutron stars

D. M. Sedrakian
Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

The electromagnetic properties of neutron stars (pulsars) are studied. It is
shown that taking the presence of two angular rotation velocities of the
components of neutron stars and the first corrections to the general theory of
relativity into account in the equations of hydrodynamic equilibrium for the
plasma and in Maxwell’s equations, toroidal magnetic fields are generated.

1. Introdution

The possibility of field generation in neutron stars was considered in Ref. [1]. It was
shown there that taking the general theory of relativity into account in the equations of
hydrodynamic equilibrium for the plasma and in Maxwell’s equations for the
electromagnetic fields to the generation of toroidal magnetic fields. The following
equation was obtained for the time derivative of the magnetic field:

aB—(O)=ﬁ§22Guz—(R)sinzﬁ‘coszﬁ"r, (1)
oT e ‘R

were R, ¢}, and @ are spherical coordinates, u (R) is the accumulated mass of a radius

R, m and e are the mass and charge of the proton, G and c¢ are the gravitational
constant and the speed of light, Q is the star’s angular velocity, and T is the unit
vector in the @ direction. The equation was obtained for an initial time, when the
electric current and magnetic field are zero. This result, however, was not correct, for
the four-dimensional current as [1]

. enc dx'
J =—F7——"70> ()
8oo dx

while the correct definition of this is
ji =enu', 3)

where u' is the four-dimensional velocity. With this definition of the four-dimensional
current the time derivative of the magnetic field goes to zero and no toroidal magnetic
field is generated. Note that in Ref. [1] it was also assumed that in the “pre-" phase of a
neutron star, all three particle species, neutrons, protons, and electrons, are normal.
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However, it is well known [2] that at the temperatures T < 10® of neutron star cores,

neutrons and protons are more likely to be superfluid, while the electrons are normal.
This means that during rotation of a neutron star its nuclear components (the neutrons
and protons) will rotate with the superfluid angular velocity €2, while the normal
component (and, therefore, the electrons, as well) will have an angular velocity _. In
general, the super fluid angular velocity € and the normal angular velocity € _are

not equal.
The purpose of this paper is to show that for AQ=Q —-€Q_. #0, a toroidal

magnetic field can be generated and the rate of increase in the magnetic field is given
by the right hand side of Eq.(1) times (1 - Q? /Qf) . If we assume that

Q_ << Q during the lifetime of a pulsar, as occurs in several scenarios for the
evolution of pulsars, then this factor may be of the order of unity [3].

2. The electric field of a “pre-"’ plasma with super fluid neutrons

The hydrodynamics equations for an individual charged component of plasma with
angular velocity Q have the form [1]

oP P) d o 1 i
—|\p+— |=—Inu"-—F_j =0, 4
ox* (p Cz)ax“ ¢ @
were @ =1,2,3,
Q Qz -1/2
' =enu', u’ =(g00+2?go3 +7g33j ) )

u' is the four-dimensional velocity of the plasma, p and P are the energy density and

pressure of the plasma, j' is the four-dimensional current, and F, is the

electromagnetic field tensor. Here # is the particle number density of the plasma, while
p© and P are functions of n . Note that here, as opposed to Ref. [1], in Eq. (5) we have

introduced the correct definition of the four dimensional current j' ant the expression

for 4’ was obtained from the equation uiui =1.

In simple model of a neutron star its central part consists of superfluid neutrons and
protons and normal electrons. The protons and electrons form an insignificant part, of
the order of a few percent, of the star’s core compared to the neutrons. Thus, the bulk

of the core, the neutrons, forms a superfluid nuclear liquid. This type of core is
surrounded by a solid shell made up of atomic nuclei and electrons. The dimensions of
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the core of a neutron star are of the order of 10 km, and those for the shell are an order
of magnitude smaller. As the neutron star rotates, the shell and the electrons in the core

rotate as a normal fluid at angular velocity €, while the bulk of the core (neutrons
and protons) rotate as superfluid with angular velocity €. .

Writing Eq. (4) separately for the mixture of nuclear matter, consisting of neutrons
and protons and the electrons, we obtain two equations that determine the electric field
E and ﬁP\ (n,), where P (n,) is the neutron pressure, which is equivalent of the

pressure of the nuclear matter when the protons (1% of the nuclear matter) are
neglected:

VP =-mc’n Vinu® (6)
and
E-- L VE )
en, n,
where
) 1/2
0 Qv Qr
u, = g00+2_‘g03+_ig33 )
c c
(8)

Q o’ -2
”S:(goo"'zTCgof"c_;gwj J

and P, and n, are the electron pressure and the number density. Equations (6 ) and
(7) for E and %Py have been derived assuming that there is no initial electron current
J“. Given that the neutrons form a nonrelativistic Fermi gas at the particle densities
characteristic for neutron star cores (n =101/ cm3) and that electrons form an

ultrarelativistic Fermi gas, it can be shown that

VP VP
S — e . (9)
nS n€
Using Eq. (9), from Egs. (6) and (7) we finally obtain
2 v 0
g Ir(t)us ’ (10)
e n

e

where m and e are the proton mass and charge and c is the velocity of light.
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3. Magnetic field generation effect

In a stationary gravitational field, the Maxwell equation relating the rate of change
of the field, 0B /0t , to electric field has the form [4]

roth—la—B, B =l+[gE]. (11)
c ot oo
Here (g)a =—8oa' 8y and
« 1 5 (0E, OE;
(rofE)” = e’ ;— , (12)
2\/7/ ox”  ox”

where ¥, =—8,5+ 808,84 18 the three-dimensional spatial metric and e s the

unit antisymmetric tensor with eme123 =1. Equation (11) shows that a magnetic field
can be generated in the core of a neutron star if the curl of Eq. (10) is nonzero. In order
to estimate the curl of the electric field and, therefore BB/ ot, the gas of nuclear
particles can be treated as almost nonrelativistic and just those corrections that are
linear in (0/ ¢? can be included in the components of the metric tensor [4]:

(24 2 o
g00=1+2¢)/c2, gﬁ=(1—c—?j5ﬁ, 8oy =0. (13)

Here it should be noted that in a rotating neutron star g,, is proportional to
(p/ ¢ -Qr/c, where r is the distance from the axis of rotation. For these models of a
neutron star the maximum value of Qr/ ¢ is no greater than 0.1, so we can assume
that g, is everywhere equal to zero. Then we can write the time component of the

four dimensional velocity u” in the from

o o )7 e o
”0:(g00+2_g03+_2g33] ~l-=+—7F.
c c c 2¢

Further, it is easy to see that

Vinu® :—%(Wp—gzr). (14)
c
Substituting Eq. (14) in Eq. (10), and taking Eqgs. (11), (12) and (13) into account, we
obtain
a_B:ﬁla_ﬂ”(Qg ~Q?)[r,R],
ot ecROR" °

(15)
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where R and r are the spherical and cylindrical radius vectors. Here we note again
that Eq. (15) has been derived for an initial time when the electric currents j* =0 and
there is no magnetic field, i.e. B =0. Expanding the vector product on the right of Eq.
(15) and substituting d@/dR = Gu (R)/R2 (u(R) is the accumulated mass in a
sphere of radius R ), we finally obtain
aB—(O)zﬁQZ (1—Q—i} Gu(R) sin ©¥cos 1. (16)
ot e '\ Q) R

Note that OB (0) / ot is nonzero, since as the angular velocity of a neutron star (pulsar)

decreases there is always a nonzero, stationary difference between the angular
velocities of the superfluid and normal motions, i.e. AQ =8 -, #0. The value of

AQ depends on the pinning of neutron vortices and, as observations of the jump in the
angular velocity of the Vela pulsar show, this difference can be of the order of

AQ/Q ~ 10_4 , where AQ =Q —€, . However, in some scenarios for the evolution

of neutron stars the factor (1 — Qf / Qf ) can be of the order of unity [3].

Therefore, from Eq. (16) it follows that a toroidal field develops in a slowing-down
neutron stars and increases with time. The existence of the superfluid rotation of the
nuclear component of the neutron star and taking the corrections to the Einstein theory
into account mean that the electric field becomes rotational and depends on z . This, in
turn, leads to the development of convection electric currents and the generation of a
toroidal magnetic field [5].

References
[ M. Sedrakian, Astrofizika 6, 615 (1970).

1] D.
[2] D. M. Sedrakian and K. M. Shakhabasyan, Usp. Fiz. Nauk 161, 3 (1991).
[3] A. M. Sedrakian and D. M. Sedrakian, Dokl. Akad. Nauk Armenii 96, 45

(1996).

[4] L. D. Landau and E. M. Lifshitz, Field Theory (Nauka, Moscow, 1972, in
Russian).

[5] J. W. Roxbourgh and P. A. Stritmatter, Mon. Notic. Roy. Astron. Soc. 133, 1
(1966).

106



OUSNYECKHUE OCOBEHHOCTHU Y@ - 'AJIAKTHUK

0.E.Xauuksn
bropaxanckaa Acmpoguszuueckas Obcepsamopus, bropakan, Apmenus

UccnenoBanne ¢u3mku  AKTHBHBIX [allakTWK Bce e€Ile HaXOAWTCS B
IIEHTpe BHUMAaHUS BHEraJJAKTHYECKOM ACTPOHOMMUH. [Toy4uennsie
HaOJIIOIaTe/IbHBIC JaHHBIE II0 TajakKTHKaM C H30BITKOM YIbTPaduoIETOBOIO
m3nydeHuss B ux cnekrpe (Yd-ramakTuky) TOKa HE TMONYYWIA I[OJHOTO
00BsCHEHMS B paMKax KJIaCCHYECKOM (pu3uku. B HacTosIIeH cTaThe pacCMOTPEHBI
HEKOTOpbIe (aKThl, KOTOpbIC, MO MHEHHIO aBTOpa, HE IMOJYYWIA IIOJIHOIO
¢u3nyeckoro oO0BsICHEHMs. Tak Kak OHa NPEJCTABISETCS IO CIydaro roOwuies
akagemuika O.B.Uy0OapsHa, To mpeciemyer Ielib OOpaTUTh BHUMaHUE (PU3UKOB,
MPUCYTCTBYIOIIMX HAa 3TOM CUMIIO3MYME, Ha 3TU HaOJt0AaTeIbHbIC (DaKThI.

1. BBeaenue

B mnHauwame mpomnutoro Beka emie He OBUIO W3BECTHO O CYIIECTBOBAHHUU
HeOeCHBIX 00BEKTOB BHE Halel ["amakTuku. JIMIIE B KOHIIE ABAAIATLIX TOA0B X X-
ro BEKa aMEpPHKaHCKHUM acTpoHOMOM 0.Xa00ioM OBLIM OTKPBITHI HOBEIE
TaJlakKTUKH, KOTOpPBIE UM OBLIM KJIACCU(UIIMPOBAHBI IO WX BHEIIHEMY BUJY.
OpnHako, MO OJHOMY BHEITHEMY BHAY TaJIaKTHKA HEBO3MOXXHO CYIUTH O
(dbm3udecKkux ee 0COOEHHOCTAX. B HaibHEHIIeM BBISICHUIIOCH, YTO OCHOBHYIO POJIb
B TaJlaKTHKaX WrpaeT sap0 WIM WX IEHTpainbHas oOnacte. M mepBeIM Ha
CYIIECTBCHHYIO POJIb SACP B DBOIIONNHU TaNaKTHK oOpatun B.Amapiymsa. Yacto
IIUTAPYETCS M3PEUYCHHE IMHPOKO W3BECTHOTO aMEPUKAHCKOTO acTpodu3mka
A.Canpeitmka: « Hu omamH actpoHOM He OyJeT cerogHsi OTPHUIATh, 4YTO
JIEACTBUTENFHO TaliHA OKPYXaeT siipa TallakKTHUK, W MEePBBIM, KTO OCO3HAN, Kakas
meapas Harpaja CoOACPXKHTCS B O3TOHM COKPOBHIHHMIIE, ObLT AMOapIryMsiH».
B.A.AMOapiyMssH HEOJHOKpAaTHO OTMEYal, 4YTO HauOoliee BAKHBIM €ro
OTKpBITHEM (WM Uaeed) sSBISETCS KOHIEMIUS 00 aKTHMBHOCTH SJEp TaJaKTHK,
KOTOpasi OblIa MpEeIIOKEHa UM ele 0ojiee UeM IOJBEKa TOMY Haszan u Obpuia
mnokeHa B 1958 roxy B goxmane Ha ConbBelickoit koHbepeHiuu B T. JIbexe.[1].
W, neiictBuTenbHO, HH THe-M00, a B cTeHax HarmonanbHo# Axagemun Hayk
CILIA, sto maes B.A. Obuta olieHeHa Kak PEBONIOIMOHHAS KOMEpHHUKOBCKOTO
Macuita0a.

K aktuBHBIM  TajmakTmkam  oTHocsATcs — CeldepTOBCKME  TaJaKTHKW,
Panuoranaktuku, ranaktuku tuna BL Lac (tuma BL Amepunsr), Y@ ranaktuku
(MapxkapsiHoBckue u KazapsHoBckue ranaktuku), U Ksazapel. Bce oHu B
OCHOBHOM XapaKTEpU3YIOTCS HAIMYUEM SPKUX, KaK pa3peuieHHbIX, TaK |
3alpelleHHbIX 3MHCCUOHHBIX JIMHUA B CHEKTpe. OJHEPrus UuX HU3IyYeHUs
Haxomutcss B mpexenax 10%- 107spr/c. Ha ocHoBaHMH HAGIIOZATENBHOTO
MaTrepHuaa, MOJIYIeHHOTO Ha KPYITHEHIIINX ONITHYECKUX M PATUOTEIECKOIaX,
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AMOapityMsiH onrcai clieayrolire (opMbl aKTUBHOCTH T'aJlakTHK [2]:
1. U3BepkeHue ra3oBOil MaTepuul BUAE JKETOB WM OOJAKOB U3 OOJIACTH 5
CKOPOCTBIO JI0 COT€H M Thicsium km/c (Puc.1).

Puc.1: Virgo A (Messier 87)

2. HempepriBHOE wHCTE€YeHHE TIIOTOKA PEISATHUBUCTCKHAX YacTHILl WIH JpPYyTUX
areHTOB, NPOM3BOIALIMX YaCTHUIIBI BBICOKHX OSHEpPIUM, B pe3yibTaTe KOTOPOIro
BOKDYT siipa MOXkeT ¢opmupoBaTbes paguorano - Cygnus A (Jlebenp A).( Puc.2).

Puc2. Cygnus A (JIebenn A)

3. OpynTHBHBIE BBIOPOCH KOHIICHTPUPOBAHHOW PEJIATHBHCTCKON  IIAa3MBI
NGC5128 (Centaurus A) u ap. (Puc.3).
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Centaurus A

Puc.3. Centaurus A
4. DpynTHBHBIE BRIOPOCHI ra30Boi MaTepuu Harmogobue MS82.

Puc.4. M82

5. BBIOpOCHI KOMITAKTHBIX TOJYOBIX KOHJCHCAIMH C a0COJIOTHOW BEINHMYMHOMN
ropsiaka KapukoBbIx TanakTuk (NGC3561-Ambartsumian Knot, IC1182). B atom
CIy4aw BO3MOXKHO TaKKe [IeNICHUE sApa Ha JBa WK 0oJiee CPaBHUMBIX IO BEJH-

YMHE KOMIIOHEHT, THUIUUPYIOMHNX (OPMUPOBaHUE KpaTHBIX ranakTuk. (Puc)).
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. '
NGC 3561B

Puc.5: NGC3561-Ambartsumian’s Knot
lanakTuka cuuTaeTcs akTUBHOM, eciy B Hell HaOmogaeTcst XoTa Obl o1Ha U3 HopM
akTUBHOCTU.  Ecnum BOWTH B MHTEpHET M 3aka3aTh ‘Ambartsumians knot” To
UHTEpHET BBIAACT BaM KapTUHY KoTopas IpencrasieHa Ha Puc.5. Kak xoporo
BUAHO Ha pucyHke u3 ramaktuku NGC3561B BeiOpolmieHO BIpaBo OT rajJlaKTHKH
3B€3/1000pa3Hoe Cr'YIIEHUE, KOTOPOE OKa3aJ0Ch roy0oro 1BeTa.

AMOapiyMsiH CTaBUTh 3aJa4y IO BBHISBICHUIO HOBBIX AKTHUBHBIX TaJlaKTUK
romyboro 1Bera, KakuMm oOmamaer “Ambartsumians knot” DOty 3amauy
Ambapuymsa nopyuusn Mapkapsay u KasapsHy, KOTOpble HayaliW  IOUCK
rajJlakTUK ¢ aHOMaJbHO TOJNyObIM IBeTOM. IlepBbli W3 HHX oOHapyxmil500
00beKTOB ¢  yiabTpaduoieToBbiM  u30bITKOM (Y ®-ramaktuku) ([lepBbrit
Bropakanckwii 0630p (FBS) [3]), a BTOpoii - 6onee 700 Y D-ranaktuk, [4]. O0mee
yrciao Y®D-rajakTHK COCTaBISIOT NpuUMepHO 5% OT oO0miero yucia TajakTHK
mois [3].

B Hacrosimee Bpemsi HanOoyiee MHTEHCUBHO BEIYTCS HCCIIEJIOBAHHS WMEHHO
Y® - ranaktuku u3 cnuckoB MapkapaHa u KazapsiHa. [loatomMy Mbl BKpaTtiie
PacCMOTPHM Pe3yJbTaThl UCCIEOBAHUS ATUX TANAKTUK M OMHUIIEM MPOOJIEMBI,
BO3HHKIIIE BCIEACTBHE OTHUX pabor. Hamomumm, uto Bce Y@ - rajmakTHKH
00BEIMHEHBI B OJIHY TPYIITY B BUY HAJUYUS B UX crieKTpax Y D m30bITKA.

XOoTs B HAcCTOAIIee BPEMs aKTHBHBIE TATAKTHKH 3aHHUMAlOT OCHOBHYIO YacTh
BHETaJIaKTUIECKUX paboT, HO MHOT'HE HCCIIeIOBATENN U, B OCOOEHHOCTH MOJIOJbIC
W3 HUX, HE 3HAIOT, YTO MEPBOOTKPHIBATEIIEM aKTHBHBIX TaJakTHUK Obul Bukrtop
AmOapirymsiH. DakTHYECKH B HACTOSAIIEE BpeMs IMOYTH BCE BakHekiue uaeu B.A.
MOATBEPKIAIOTCA TEOPETHUUECKU WM SKCIepuMeHTanbHO. OaHako, oAHa U3
BEIIIIEOTMEUEHHBIX BXKHEUIIMX HACH 00 aKTUBHOCTU TaJaKTUK, B OCOOEHHOCTH
NpUpoJa ABYXBAJAEPHBIX TajJakKTUK M TaJakTUK CO CJIOKHOH CTPYKTYpOH B HX
LEHTPAIbHBIX 00ACTAX, IBISETCS TUCKYCCUOHHOH (CM. IyHKT 5).
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2. OCHOBHbIE XapPAKTEPUCTHKH CIEKTPOB Y (p-rajlakTHK

[lepBbie ke HAOMIOACHUS CIEKTPOB TaJakTHK W3 chucka MapkapsHa [3] u
Kazapsina nokazanu[4], 4To 3TH raJlaKTUKH SBIISIOTCS OJJHUMH U3 CAMBIX aKTUBHBIX
13 U3BECTHBIX rajakTuk. bojee Toro, n3 70 rajmakTHK IepBOTO Criicka MapkapsiHa
CeMb OKa3allUCh CEeW()EPTOBCKUMHU TaJaKTUKAMHU, OTIUYAOIIUMUCS MIUPOKUMHU
SMHUCCHOHHBIMHU JIMHUSIMU B CIIEKTpE, IMUPHUHA KOTOPHIX mMHOrAa mocturaer 100-
150 A. A ranakuxkn No 9 n 10 mokasamu PEKOpIHYIO AJsl celepTOBCKUX
TaJlakTUK BBICOKYIO CBETMMOCTB, 3aIlOJIHUBIIYIO MPOOET MEXITy HOPMAaTbHBIMHU
TUTAaHTCKUMH TaJIaKTHKAaMH W KBaszapamu. [ amaktwka ke mog NolO2 B crucke
Kazapsina okaszanmace camoil Janexod ceW(epTOBCKON TaJakKTHKOH M CaMbIM
omu3kuM kBa3zapoM(QSO) ¢ kpacubiM cmerennem z=0.135. Bcero e 10 3toro
BpeMeHH ObL10 n3BecTHO MeHee 10 celihepTOBCKHX ralakTHK!

Crektpsl  Y®-ralakTUK 1O BHIY 3HAYUTEIHHO OTIMYAIOTCS JPYr OT JPyTra,
KaK M0 HAJMYHIO0 SMHUCCUOHHBIX JIMHAN, TaK U M0 MX IIUPUHE U HHTEHCUBHOCTH. B
HUX B OCHOBHOM HAONIOMAIOTCA SPKUE U IIUPOKUE DMHUCCHOHHBIE JIMHUH
BanesmepoBckoil cepun Bogoposa, renus, 3anpelieHHble JUHIN KIUCIOpOo/ia, CEpHl,
HeoHa, a3ora u JApyrux. CHoekTpsl Y®-ranakTuk  BOEpBBIE  OBUIN
knaccudumupoBanbl B [5]. Ilomasnsroniee OonbimmHCTBO Y D-raqakTUK HUMEIOT
OMUCCHOHHBIA crekTp (85%) [6,7], cpemu KOTOPHIX Ccel(epTOBCKUX TaTAKTUK
nopsiaka 10% [8.9].

lanaktukn ¢ Y® U30BITKOM He SIBISIOTCS KaKHUM-TO  CIICIUAIBHBIM
MOP(OIOTHUSCKUM THIIOM TAJTAKTHK: CPEIU HUX UMEIOTCS BCE Xa0O0JIOBCKHE THIIHI
raJlakTuK, TanakTuky L[Bukku u ap. X kpacHOE cMellIeHNe COBEPIICHHO PAa3InIHO
ot ~ 0.002 no ~ 0.2. A ramaktuka Mapk132 ¢ kpacHeIM cMmemienueMm z = 1.75
sBisieTcss ogHUM w3 spuadimmx QSO ¢ My ~ - 28. Tak 4TO aOCOMOTHBIE
3BE3IHBIC BEITUYMHBI TalaKTUK C YD U30BITKOM JISKAT B MHTEPBAIEC MEXTy M=-
13 u M =-28. 10% YD-ranakTuk SBISIOTCS ABYSICPHBIMH ramaktukamu [10-12].
Crnenyet 0c000 OTMETUTH TOT (PaKT, UTO B CITUCOK raTaKTHK ¢ Y D M30BITKOM OBLIH
BKJIFOUEHBI OOBEKTHI, KOTOPBIE, KaK OKa3aJlOCh, HE SIBIIAIOTCA TalaKTUKAMU WU
SJIpaMH TaJNakTUK, a CBepxacconManusMu BHE IEHTPAIBHBIX 00JIaCcTe TeX WIu
WHBIX ONPEJCIICHHBIX TAIAKTUK. BriepBbie aBTOpOM U AprioM OBLIO MOKa3aHO, YTO
Mapk94 He sBJsieTcsl rajakTukoil, a Caepxacconuanueii B CIHpaIbHOU
ranaktuke ¢ nepembrukoit 11 Zw 0834 + 51[13](Puc.6). JlecaTku Takux ragakTHK
- Ceepxaccorualiuii Oblii 00HAPYKEeHbI B criickax Y ® - ramaktuk|[14].
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Puc.6 ®ororpadus Mapk.6, nonyueHHas Ha 6M. Teaeckore Poccuun

IlepemenHOCTh raiakTUK ¢ Y@ H30BITKOM SIBJISETCS OJHUM U3 UX YIAUBHUTEIIBHBIX
CBOMCTB. CornacHo koHUENIMUA AMapiyMsiHa, OJHOH U3 GOpM aKTUBHOCTH
rajJakTHK SBJISIOTCS DPYNTHBHBIE BBIOPOCH  Ta30BOH MaTepuM M3 HX f7AeEp,
BCJICICTBUE 4YEro HaOJMIOgaeTCs H3MEHEHHME CIIeKTpa BCEH TallakTUKH. Takoi
BBIOpOC U3 sipa celiepTOBCKOI TranakTuku BTOoporo Tuma Sy2 Mapk.6 BrepBbie
HaOIIOaJICAd B TEUCHHH IPOMEKYTKA BPEMEHH ,IIPOAOIDKUTEIBHOCTBIO BCETO B
onuH rox [15]. B pe3syibrare Takoro BhIOpOCa Yy BOJOPOJHBIX SMHUCCHOHHBIX
JUHAKA TOSBWINCH LIMPOKHE OMUCCHOHHBIE KOMIIOHEHTHI, CMEIICHHBIE B
KOPOTKOBOJIHOBYIO 4acTh cHekTpa. (CMeIleHHe COOTBETCTBOBAJIO CKOPOCTH
BeIOpoca nopsaka 3000 km/cex [15] (Puc.6a). HegaBno, 24 urons 2009t crektp
Mapk6 6bi1 HaOmogaeH Ha 6m Teneckorie CAO (Puc.6b). Kak BumHo u3 Puc.6b
CKOPOCTh BBIOpPOCA YMEHBIIHIOCH 10 puMepHo 2500 kM/cex | OOCyXaeHHE ITOr0
¢akra Oynet npuseneHo Huxe. Bropoii Takoii BeIOpoc HaOmogancs B 1994 rogy y
rajakTuku ¢ YO m3oeiTkom Kaz163 [16].
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Puc 6a: Peructpanus cnekrpoB Mapk6 B o6nactu Hg: 5 Jlexabps 1967r. (Bepxuuii
CHUMOK), 27 SluBaps 1967r. (HIOKHUN CHUMOK).

Ma1 IIPUBEJIN HEKOTOPHIE OCHOBHEBIC, HO JAJICKO HE IOJHBIC XapaKTCPUCTUKU U
HaGJIIOI[aTeJIBHBIe JaHHBIC O CIICKTpaX TaJlaKTUK W HCEKOTOPLIX 06’beKTOB,
HUMCIOIINX Y@ u30BITOK. Tenepb Pa3bACHHUM HAIIC NOHUMAHHC U OLCHKY 3THUX
BECbMa MHTPUTYIOIIUX NJAHHBIX C TOUYKHU 3PCHUA UX (bHBquCKOﬁ MIpUPOABI.
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3. O6cyxnenue

Bo Bcex BhlmenpuBencHHBIX (OpMax aKTHBHOCTH Y D-rajlakTUK OCHOBHYIO
poiib urpaeT Y® u30bITOK B HEIIPEPHIBHOM CIIEKTPE, KOTOPBIH U OOBEAMHSIET HX B
onHy Tpymiry. JIo0oii 00beKT mpu 000N TeMIepaType H3Iy4aeT HelpephIBHBIN
CIIEKTpP, B TOM YHUCIIC U B 00acTh yneTpaduonera, cornacHo 3akoHy [lnanka. Ilog
BBIPAKCHHEM « H30BITOK B YIbTpauOJIeTe» IPEANOoIaraeTcs, YTo HelpepbIBHBIN
CIIEKTpP B 3TOW 00JIACTH MPEBOCXOUT 10 UHTEHCUBHOCTU TaKOBOU MPU U3ITyUYECHUH
no 3akony Ilmamka. Ilpu sTomM n30bpiTkKa B Y@ o00sacTH SICHO HE MOXKET
HaOIOIaThCsI, €CIIM M3NyYeHUE BBIMONHIECTCS Mo 3akoHy [lnmanka. EctecTtBeHHO
BO3HMKAET BOMNPOC: KakoBa (u3uyeckasi NpUpPoAa MCTOYHUKA YD H30bITKA,
KOTOpBINi OOHApYkeH y BceX o0BbekToB? UTo 3Ta 3a cyOcTaHmms? DTO SBISETCS
OCHOBHBIM W BaXKHEHIIMM BompocoM B (m3uke Y®D-rajakTHK, KOTOPBIA, ITOKa
0CTaeTcs He PEeIIeHHBIM.

HekoTopsie u3 BbIllIe TPUBEICHHBIX HAOIONATEILHBIX JAHHBIX, CBI3aHHBIX C
HAJIMYMEM  YIbTpadUOJICTOBOTO HM3IYUYCHHUsS, Takke TpeOylT (u3ndeckoro
000cHOBaHUs. PaccMOTpUM HEKOTOpBIE U3 HUX.

a). 3naunrtensHoe unciao Cepxacconuanuii (CA) okazanuch Cpenu aKTUBHBIX
ramakTuk [14] (Mapk59, Mapx94 u ap. Cm. Puc7). CA cocTosT, B OCHOBHOM, H3
3Be3q Tuna O u B, koTopbie u3nyyaroT coriacHo 3akony Ilnanka u He umeror YO
n30bITKa. CrieIoBaTeNIbHO, KPOME 3BE3/] B HUX UMEETCS KaKOW-TO UCTOYHHK,
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oTBeTCTBeHHbIN 32 Y® mn30biTok. Tak kak HaOmomarorcs u3oaupoBanHbie CA B
MEXTaJTaKTHYECKOM MPOCTPAHCTBE, TO ECTECTBEHHO MPEANOIIOKNUTh, YTO OHHU
SIBIIIIOTCS OJTHOM M3 (hOPM aKTUBHOCTH TaJTaKTHK.

0). YO - ranakTHKH, COCTaBJISIONINAE 110 KOJIMYECTBY HEOOIBIION MPOIEHT OT
00111ero unca ranakTuk (mopsakas%), TeM He MeHee, POPMUPYIOT B psJIE CIIydacB
JIBOWHBIC W MHOTAA OoJiee CIOKHBIE cUcTeMbl. OTMeTnM, Hanpumep, Mapk305 u
Mapk306, cocraBimsomue aBoiiHyo cuctemy (Puc.8)[17], Msl cnenuaibHO
BBIETIIIIA 3Ty COBMECTHYIO CHCTEMY, IIOTOMY YTO OHH CHJIBHO OTIMYAIOTCS TI0
CBOMM (HU3UYECKHMM U MOPGOJOrHYeckHuM OcoOeHHOCTIM: Mapk305 sBisercs
3Be371000pa3HbIM 00BEKTOM, 0€3 KaKHX JINOO SMUCCHOHHBIX JIMHUH B CIIEKTPE, B TO
BpeMs Kak Mapk306 gBysjgepHas cOHpadbHAs TaJakTHKa C  SPKAMU
SMHUCCHOHHBIMU JTUHUAMH B criektpe [18] (Puc8). Otmernm, yto mo MapkapsHy
(BeposITHO MO OMIMOKE) MPUBOAUTCSA MPOTHBOIIOIOKHOE OMICAHNE CIEKTPOB 3THUX
rajakTuk. Takumu ke cucreMamu sBIsitoTess Mapk261 n Mapk262, Kasz.65 u 66,
Ka3.49 u Ka350, Kaz.135 u 136 u MHOTHE ApyTHE.

B). bompmio#t mpoment Y®-ramaktuk (mopsaka  10%), TOKa3BIBalOT
IBysAJepHYIO cTpykTypy (Mapk212, Mapk266, Mapk739,) [10-12], a HekoTOpbIe
TaJIaKTUKH B IICHTPAIBHBIX 00JAaCTAX HMEIOT MHOTOKOMIIOHEHTHYIO CTPYKTYpY
Mapk7, Mapk8, Ka35 [19-21]. Mexauu3m o0pa3oBaHHus JBYSACPHBIX U
MHOTOKOMITOHEHTHBIX B IICHTPAJILHBIX OOJIACTSAX TaJIAKTUK JIO0 KOHIA HE BBISCHEH.
Kak oOpa3syrorcst takue siapa? Kakop (u3nueckuil MexaHH3M 00pa30BaHMs ITHX
saep?

B Hacrosmiee BpeMsi paccMaTpUBAIOTCS JBE aIbTEPHATUBHBIC MOJICIU IO 3TOM
poOieme:

a) pu3nueckass akTUBHOCTH SAPA-MOHCTPA, JIENsIas Ha JBE WU OoJiee YacTH
(5-b1#i yHKT (hOpMBI aKTUBHOCTH AMOapIlyMsIHA);

b) CTOJIKHOBEHHE W CIMSHUE A1ep ABYX WiIH Oojiee HE3aBHCHMBIX TaIaKTHK,
BCJIE/ICTBUE UX OECHOPSAIOYHOTO JIBUKCHHS B MEXKTAIAKTUYECKOM MPOCTPAHCTBE.
(B mHacrosmiee BpeMs ~MHEHHE MHOTHX  acTpodU3WKOB, HHYEM HE
MOITBEPIKICHHOE).

HmMmeroTcss MHOTOYMCIIEHHBIE HAONMIOAaTeNbHble (aKThl ITOJTBEPXKIAIOIINE
MIPaBUILHOCTh 5-TO TyHKTa (popMbl akTUBHOCTH B. AMOaprymsH. [IpuBeneM nBa
npumMepa.
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uc. 7: HoMmepa Ha puCyHKax COOTBETCTBYIOT HOMepaM Y@D-rajakTHK B CIHMCKax
lapkapsHa.

. Mark 305

Mark 306

Puc. 8
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B nepByro odepenp ciegyeT MpEACTaBUTb OYEHb MHTEPECHYI) CUCTEMY
BHETAJIaKTUYECKUX OOBEKTOB B obOjactu Y@ ramaktuk Mapk261 um Mapk262,
COCTABJIIONINX, IO BCEH BEPOATHOCTH, (DU3MUECKH CBA3AHHYIO CHCTEMY B
HeOoNbIIOM 00BeMe mopsiaka pasMepoB Hamel ramaktuku (z=0.03)[22,23]. Ha
Puc.9 npusenena ¢ororpadus 3Toi 0b1acTH, MoJydeHHasT B MEPBHYHOM (oOKyce

5wm. [Tamomapckoro temeckomna (CILIA).
C
a— *—— b
- d
L 3

Mark 262
{ -

' . Mark 251_..J‘

Puc. 9: ®ororpadus mosydeHa B nepBudaHOM (okyce SMm Teneckomna CILIA.

Kpome Mapk.261 u 262 Ha pucyHke o003Ha4eHbl 00BEKTH “a”, “b”, “c”, “d”, “e”
u “f”. Ha npsimbix ¢otorpadusx “a” u “b” BRINIAAAT KaK JBE CIMBIIHECS 3BE3IbI
npuMepHo 18 Buanmon 3Be3nHOW BenuuuHBL. CHEKTpel 3TUX "3Be3n” ObUIH
nonmyueHsl Ha SM Teneckone CHIA u 6Mm teneckome Poccuu. Pesynprar Obln
HEOXXUJAHHBIH: OKa3ajJoCh, YTO 3TO HE 3BE3[bl, a BHETAJAKTMYECKUE OOBEKTHI
(z=0.03) ¢ SpPKUMHU SMHCCHOHHBIMH JTUHUSAMHU. lIprdeM CHEKTPHI OKa3aluCh M0
TAKOM CTEeMEeHW WIACHTUYHBIMH, YTO OHHM TOJYYMJIM Ha3BaHHE "OOBEKTHI-
onusHenp"'[22]. Ho coBepllieHHO yAMBHUTEIBHBIM 0Ka3aj0Ch O0OHAPYKEHUE MEKITY
STUMH OY€Hb TECHO PACIIOJIOKEHHBIMH OOBEKTaMH elle ABYX 00bekToB (¢’ u
“d”), cmekTpsl KOTOpBIX, MOJYYCHHBIX Ha 6M Tenmeckome Poccum, okazamuch

APl

COBEPIICHHO HJCHTHYHBIMU HE TOJBKO MEXIy COOOH, HO U CO CIeKTpamMu ‘‘a” u
“b” (Puc.10a, 10b). BreiacHMIOCH, TaKkkKe, 4YTO O0O0BEKT '"e" sBIgeTcs
BHETAJIaKTUYECKUM, ABOWHBIM ("el","e2") , u B ero crekTpe HaOIIOJJAI0TCS TE Ke
SMHUCCHOHHBIC JIMHUM, YTO M BO BCEX Mpenbaymux odbektax "a", "b", "c" wu

"d"[24] (Puc.10c).
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30000 -
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20000
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4000 5000 6000 7000
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Puc. 10a: PeructporpaMma CIeKTpoB 0OBEKTOB «a» (BEPXHHMA YEPHBIN CIIEKTP) U
“b” (amxHUI royOoi criekTp)(6M Teneckon Poccun).

4000 T T T
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g 2000
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Puc. 10b: PeructporpamMmma crieKTpoB 00BEKTOB "¢" (UepHBIA HUKHHUH CIIEKTP)» U

“d” (romy0Ooii BepxHuii criektp)(6m Teneckon Poccun).
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Vector NZ3 EZ_BR.1
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200 WMN\VW\)\W B

100 H B
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4000 5000 6000 7000
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Puc. 10c: Peructporpamma cniekTpoB 00beKToB "el1" (4epHblil HUXKHUI CIIEKTp) U
“e2” (romy0oit BepxHuii ciekTp)(6m Teneckomn Poccun).

CoBepILIeHHO $ICHO, YTO BEPOSTHOCTb OOpa30BaHUSI TAKOM CHCTEMBI TaJaKTHK C
UACHTHUYHBIMM  OMHCCHUOHHBIMM  CHEKTpaMM IpU  CIy4alHOM  JBH)KCHUH
HE3aBHUCHMBIX OOBEKTOB HUYTOXKHO Mana. Takumu ke cuctemamu Y D-rajgakTuk
saisAorcds Mapk7 u Mapk8, cocTtosmue U3 TATH  CTYIIEHHH C  SpKUMH
SMHUCCHOHHBIMH JTUHUSAMU B criekTpe[19-21].

Kak yxe m3naranocs BbIlIe, 0AHON U3 (HOpM aKTUBHOCTH TaJaKTHK SBISETCA
BBIOPOCHI M3 sA/lpa Ta30BOM MaTepuu B BHUJE JHKETOB WM 00J1akoB. bombrmoi
WHTEPEC NPEJCTABISAIOT TANAKTUKUA C JDKETaMH, NPUYEeM HMU MOTYT OBITh U
onHosinepHble (Mapk423), u nBysanepssie (Mapk273), u MHOTOs iepHble (Mapk773,
Kaz.5) ramakrtuku. CyutaeM HEOOXOAMMBIM OOpaTHTh 0CO00€ BHHUMAaHHE Ha
ramaktuky Mapk 273(Puc3)[17,25]. Ha neBoM CHHMKE TpeACTaBICHA
¢dotorpadusi TranakTHKH, TMOJMYyYCHHAas HA KOCMHYECKOM TelecKomne «Xa00im».
OOmumii pazMep TajJakTUKH 10 JIENIbTa COCTAaBIsIeT MpuMepHO 70 YrIIOBBIX CEKYH]I.
XOopo1110 BUAEH JHKET, UCXOJAIINNA U3 F0KHOTO Siipa ralaKTUKU U UMEIOIINHI JJIMHY
nmpuMepHO 45 yriuoBeIX cekyHA. Kaxkmas yrioBas CeKyHIa COOTBETCTBYET
npumepHo 70 mc. Y auBUTENbHAS KapTHHA Spa 3TOW raaKTHKH TPEJCTaBIICHA HA
MpaBOM pHUCYHKE. Bcero mpuMepHO B SYTiOBBIX CEKYHIAX IO O PACIHOJIOXKEHBI BCE
TPH siJipa TAIAKTUKH: OJHO FOXKHOE M JBa ceBepHbIX! [Ipuuem paccrosHue Mexay
CeBEpHBIM sapaMu (nBoiiHOe siapo) He Oomee 70mc! Her comHeHus, 4to 3Ta
CHUCTeMa IMPEJICTABIAET COOOW OJIHY TAJIAKTUKY CO CIIOXKHBIM SIIPOM H KETOM.

119



Takum obpazom, ynvmpaguoyiemosvlii U30bIMOK A6NAEMCA 6Ceoduiell
XapaKmepucmuKoi 011 6cex AKMUGHBIX 2ANAKMUK, He3A6UCUMO Om UX
Mopgponozuu, cmpoenus yeHmpanbHLIX oOAACHMEl, ADCONIOMHON APKOCMU,
KPAcHo20 cmeuwjenus, nepemenHocmu u m.o.

®dusnveckass MPHUPOJIAa HMCTOYHUKA ITOTO  yIbTPa(HOIETOBOTO H30BITKA
ocraercs 3araukoi. [[ns BbIICHEHHS 3TOro ()eHOMEHa, M0 HallleMy MHEHHIO,
TpeOyIOTCS HOBbIE KaK TEOPETHUECKHE, TaK M HAOJII0JaTeIbHbIC HCCIICI0BAHUS.
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Tornado mechanism of astrophysical jets generation,
acceleration and collimation

M. G. Abrahamyan
Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

1. Introduction

Jet eruptions are a universal phenomenon in the universe. This phenomenon
encompasses a wide range of astrophysical objects, from active galactic nuclei
(AGN) to young stellar objects (YSO) within our galaxy. Supersonic outflows with
less collimation are observed in massive hot stars, such as bright blue variables, as
well as in low-mass stars, such as protoplanetary clouds (Gonzalez et al., 2004,
Soker, 2004). These are all observed in the final evolutionary stages of these
objects.

Recent extraterrestrial observations of the sun have shown that the solar corona
is full of jets and flares. Although the total energy of the solar jets and flares is
much less than in cosmic jets, the spectra and variability of the electromagnetic
waves emitted from solar jets and flares are similar to those from cosmic flares
(Shibta and Aoki, 2004)

Despite the enormous difference in their sizes and powers (AGN jets have
typical sizes of ~10° pc, with core velocities on the order of the speed of light, and
source masses of ~ 10°°M,, while the typical sizes of YSO jets are ~1 pc, with
node velocities of ~107c, and masses of ~ M.. Most of the outflows are
morphologically similar and apparently have a common physical origin. There is
proof of the existence of an accretion disk surrounding the central sources (Konigl,
1986, Dal Pino, 1995, Bridle, 1998, Reipurth & Bally, 2001).

Rotation with the velocity on the order of ~10km/s of many jets from YSOs
has been established (Coffey et al., 2008, 2010, Chrysostomou, 2008). In some
cases jets "swing" with increasing amplitude from side to side (e.g., HH83 and the
jets of HH110 (Reipurth, 1989), jet of AGN object 1803+784 (Matveenko et.al,
2007), rather than appearing as chains of nodes.

The temperature of the jets from YSOs is slightly greater than ~10* K, and the
corresponding sound speeds are on the order of ~10 km/s (Bacciotti & FEisloffel,
1999). The YSO jets have radii R, ~3x10" cm, average hydrogen density
~10*° cm™ (Morse et al., 1992). Observations yield a somewhat uncertain value for
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the ratio of the densities of the jet and surrounding medium on the order of p;/ps ~
20 (Perlman et al., 1999).

The origin of the jets and the mechanisms for their formation are not fully
understood. Since the erupting matter is partially ionized, the strong collimation of
jets is associated with magnetic fields (Bisnovatyi-Kogan, Komberg, Fridman,
1969). The magnetic field determines the direction of the jet and an axial current
may stabilize the elongated shape of a jet at large distances from its source
(Bisnovatyi-Kogan, 2004, 2007).

In this paper a vortical mechanism for the generation, acceleration, and
collimation of astrophysical jets is proposed on the basis of exact vortical solutions
of the hydrodynamic equations.

2. Equilibrium state of the source

Consider a rotating protostar formation of mass M and polar radius R in an
incompressible fluid model. The equilibrium state of the rotating gravitating mass
is determined by Mc’Lauren spheroid (Chandrasekhar, 1969). The equilibrium of
an axial cylindrical region with a lower base at depth H from the pole of the
spheroid (Fig. 1) in a cylindrical coordinate system rotating with angular velocity
Q) is described by the equations

0 0
Mz—r(ﬂ% —Qz)r, Mz—rﬂ%B(R—H+z), (1)
or or
where
\ —_— 2 —
Q(Z) =2pGrA, A:%—N—3€arcsine, B =1TA.
e e

(R-H) is the distance from the center of the spheroid to the lower base of this
region, which is taken as the origin for the coordinate z, and r is the radial
cylindrical coordinate. Integrating Eq. (1) subject to the condition H [ R, we find
the equilibrium pressure to be'

P%(r,z) = rQ3BI2RH —(1—€2)r? —2Rz — 2] (1a)
where we have set

0?2 =03[1-2B(1-¢%)]. )

" Here and in the following we neglect H compared to R
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These equations describe a Mc’Lauren spheroid with polar semiaxis R and
eccentricity e in the meridional cross section rotating with an angular velocity €.

The isobaric surfaces are obviously spheroids, while the equation for the isobar
intersecting the z = 0 plane in the chosen coordinate system along a circle of radius
ro at depth H from the pole of the cloud is

2+ 2Rz- (I- ez)(roz— r’)= 0. 3)
The pressure at the lower base z = 0 is equal to
P’(r,0)=pQ,’B(1- &*)(r>=r?). (3a)

Equation (la) implies that the z = O plane intersects the outer boundary of the
protostar at a distance r, from the axis of rotation (Fig. 1) given by

r?= 122{2 (1b)

3. Development of a no stationary vortex

Let us consider the nonlinear dynamics of vortical perturbations of a protostar.
At time ¢t = 0 let the selected cylindrical region be subject to a vortical perturbation
with an azimuthal velocity profile of the form

Vj( ):{ w;,,Or, r<rn,

4
a)e(t)roz/r, r>ry, @

which describes rigid-body rotation in the region r < ry of the trunk and a
differential rotation outside the trunk. The structure given by Eq. (4) is known as a
Rankine vortex (Rankine, 1870, Meleshko & Konstantinov, 1993, Kundu, 1990,
Pashitskii, Malnev, Naryshkin, 2007, Abrahamyan, 2008). In writing Eq. (4), we
have taken into account the fact that the angular velocity of the vortex can vary
with time, while the time dependence of ®(f) can be different in different regions of
the vortex.

Let us write” in the Navier-Stokes equation concerning inertial system of frame
(Landau & Lifshitz, 1986)
P="P(rz) +p(rzt), V,=Qr+v, S

* Perturbations under consideration do not change the spheroid geometry. The
change of gravitational potential can be caused by the mass loss. In need we can
include this, considering mass of a protostar slowly decreasing. Within the
framework of given approach Egs. (6) - (9) are exact.
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and including Egs. (1) and (2), we will receive the equations for an axially
symmetric flow of viscous incompressible fluid in a coordinate system rotating
with angular velocity € in the form

2

avr+vr v Y _ 18p+2£2 +ni aﬁ+v—r : (©6)
ot or r r or Y or\ ar r

v v v d ;
Pipy | LN gy e 2| DY )
ot or r or\ or r

dv, v, 10p azvz

o 2oz roz 972 @
o, v, Oov

Zryr Tz ) 9
or r 0z ®

where p is the perturbation in the pressure owing to the vortical motion, v, , Vo
are the radial and rotational components of the relative velocity, v is the kinematic
viscosity, and p is the uniform mass density of the protostar. Note that, because of
the axial symmetry of the problem, in these equations we have omitted the terms
containing derivatives with respect to the azimuthal coordinate ¢ and with respect
to z (except for the pressure and v, ), and we have taken v, =v,(z,1).

Assuming that v, = v, = 0 at time ¢ = 0, from Eqs. (6) and (7) we obtain

2
) Vs v ; (v v,
—pzr—]+2r§2vj, L =p| L4+ (10)
or r ot or\ or r
Given Eq. (4), the solution of the first of Egs. (10) can be written in the form
pe +r(o, ,% +2$2a)l-n)r2 12, r<n,
_ 2.2 2
= w, 11
PRI - 4200, 0, r> ()
2r2 T r

N

where it is assumed that the perturbation in the gas-kinetic pressure goes to zero at
a distance r; >> r, from the cylinder axis, and p. is the pressure drop along the axis
of the vortex. The requirement that the pressure perturbation be continuous at the
surface of the vortex trunk yields
d O2 2 2 T's
P =—r—|w;, +2Qw;, + @, +4Qa, In—]. (12)
2 )
Because of the pressure drop, a longitudinal flow of matter develops through
the lower base of the vortex. We write its velocity in the form
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(13)

_{VZO t+az, r<r,
.=

0, r>rn,

where v,o and a can, in general, be functions of time. The parameter 1/a has the
dimensions of time and characterizes the velocity gradient along the vortex trunk.
In the following we shall assume a = const.

Given Eq. (13), the continuity equation (9) yields

a r, r<r,

v —_—
" 2{1’02/1”, r>n.
Thus, because of the pressure drop on the axis of the vortex, a suction effect
creates, the longitudinal flow (13) develops; it creates the converging radial flow of
matter (14), which, in turn, transports angular momentum and energy from outer
regions into the region of the vortex trunk.

(14)

Regardless of the functional form of v,., Eq. (7) with Eq. (4) implies that in the

region of the trunk (r < ry) the convective and Coriolis accelerations add up, while
outside the trunk (r > ry) they compensate one another. Given Eqgs. (4) and Eq. (14)
in Eq. (7), we find
— (15)
dt
that is, because of the transport of angular momentum by the converging radial

flow (14), the angular velocity of the trunk increases with time, with different rates
of change of @ in the region of the vortex trunk (r < ry) and outside it (r > ry). Eq.

do |a(@+Q), r<ry,
| aQ, r>n.

(15) for the time dependence of the angular velocity of the vortex gives

at
o) = {(a)o +Q)e™ —Qew;,, r<ry, (16)

ay +aQtew,, r>rny,

where @) is the angular velocity of the trunk at the time the vortex is formed.

Thus, in Egs. (4), (11), and (12) it is necessary to assume a linear variation in
the angular velocity ®, in the outer region of the vortex and an exponential
variation ®;, in the trunk; this has been done in the formulas given here.

The velocities (4), (13), and (14) drive the viscous terms in Eqgs. (6) - (8)
identically to zero, while the diagonal components of the viscous stress tensor are
nonzero. This yields the following power for the dissipation of the kinetic energy
per unit length of the vortex:

dE
Tk5—4pnrr02(3a2/2+a)62 +2Qw,). (17)
t

Note that a rapid increase in the angular velocity only occurs in the region of the
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trunk, r<r,, where the angular velocity increases exponentially with time, while the
angular velocity increases linearly in the outside region r > ry. Thus, at the
boundary r = ry, there is discontinuity in the rotational velocity which,
simultaneously with the pressure drop (12) on the vortex axis, increases
exponentially with time. The increase in the energy dissipation (17) proceeds much
more slowly. Thus, in this vortical motion the dissipation remains small, in spite of
a rapid rise in the angular velocity of the vortex trunk.

The tangential discontinuity in the rotational velocity at the boundary of the
vortex trunk is

[vj] =V =|w;, (t)— o, (t)]ry = ry(@y + Q)(eat -1 —-Qnat, (18)

while the discontinuity in the longitudinal velocity determined by Eq. (13) is
[v.1eU =z,9 +az. (18a)

4. The structure of the vortex

Using Egs. (13) and (14), Egs. (6) and (8) can be written in the form

(a® /4—601% =2Q;,)r, r<rny,

dp
L=y 4 1 2 (19)
or r%(za2+wez)+2§zweri, r>r,

r r
0 alv,og+az)+v.,y, r<rp,
—p:—}" ( z0 ) z0 0 (193)
0z 0, r>r.

Note that the first derivatives of the pressure perturbation have a discontinuity a
the trunk surface. On the other hand, the pressure must be continuous at the trunk
surface.

Using Eqgs. (19) and (19a), for the pressure perturbation we obtain

2 2 3
pe—(a”14—-w;;, —2Qw;,)r” /2

. 2.2
p(r 2,0 = , —;[(vzo+avzo)z+a 27121+ C, r<r, 20)
1
—é[r%—r%)(za2+a)ez)+4§2a)elnr—s]r02, r>ry,
r I r

where C(¢) is determined from the requirement that the isobaric surface be
continuous at the trunk boundary r = r,. Given Egs. (5), (1a), and (20), for the total
pressure in the region r > ry we find
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P
e = QZBl1-e?)(r2 —r%)—2Rz—2°]

r
2 o) 21)
(N ORISR s
——| (- )=a" +w,)+4Qw, In— |,
2,2 ;204 ¢ Ty
and in the region r <r, of the vortex trunk,
2 i
i — Q3B(1—-e?)(r? - r?) — (@} +2Quw, ) —(@? +4Qa, 1n—)—§
U
2.2 2
ar C
— 2 _(QOBR+VzO+aVzO)Z (QOB+ 2)—+7 (22)

The equation for the isobaric surface corresponding to a given value of P = P°(r,0)
at the initially spheroidal surface (3) can be obtained from Egs. (21) and (22):

.0 —a’R _wl%+2§za) —a’/4 2

+av
z +21(R+ V20

Q(Z)B+a QOB+a
Q3B(1-€?) 5 5. @k +2Qw, +©F +4Qw, In(r, I 19) 2
TTo2e, 2 Uy TrF 0
QoB-I-Cl Q()B-I-Cl
—0 o (23)
r(QgB+a”)

with the unknown function C(f), while in the outer region r > ry this isobaric
surface is described by

2 4
w, +a” /4
z2+2Rz—(1—e2)(rs2—r2)+—“(——ri
QzB r2 r2
41Qw
+ > £ I”OZ lIlr—SZO.
Q3B r

Assuming that the size of the vortex is small compared to the protostar and
requiring that the isobaric surface be continuous at the vortex trunk boundary r =
ro, we obtain the unknown function C(t) and from Eq. (23) we obtain the final form
of the equation for the isobar in the region r < ry of the vortex trunk:

Wl +2Qw, —a® 14— QOB(I e?)

Zin(r,t) =— " O2BR) (o —r?)
1% + av +
z0 z0 0 (25)
1—e2 5 o @F+a’l4+4Qw,In(r, 1 1y) 5
+ (rg =19)— 1 -
2R 202%BR
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The continuation of the isobar in the outer region of the vortex is given by the

solution (24):
2 2 2 2 2
1—e +a“/4r; —r 2Qw, r
Ze(r,t):—(rs2 P g 5 5 ) ré 5 € ’,02 In-*. (26)
2R 2Q6BR  r{r Q4BR r
In deriving Eqgs. (25) and (26) we have expanded the square roots in the solutions
of Egs. (23) and (24) in series, assuming that wi,,zroz = cs2 << Qosz, where c, is the

sound speed (see below).
It is evident from (23) and (24) that the problem allows the particular solution

V- a(v,- aR)=0, 27
which, with the initial condition v,(0) = 0, yields
v,,(®)=aR(1- ¢“). (28)

Equations (25) and (26) show that the position of the intersection of the isobar
with the vortex trunk surface r = ry moves over time toward negative values of z
because of the linear dependence of w.(?), i.e.

2
2o (rgut) = 2y (g 1) = H ——2. 5 L2 s @2+ 400, s |, 29)
2RQG 4 0

The isobar described by Eqgs. (25) and (26) has a funnel shape which becomes
deeper with time. Here the wide part of the funnel (28), which corresponds to the
outer region of the vortex, develops slowly owing to the linear dependence of w.(?).
In the region of the vortex trunk, on the other hand, the isobar funnel (25) develops
much more rapidly, and moves into the depth of the protostar in accordance with
an exponential law (Fig. 1). The bottom of the funnel lies on the axis » = 0 of the
vortex and its position changes with time as

2 2 2 2
Wiy (1) +2Qw;, (1) —a” 14 -QyB(1 -
A0 in (1) —a =0 A=eD) 2 o0, GO)
20,0 +av g + QHBR)

where the term in parentheses in the denominator equals av,g + Q)R - for v, =
const, and (oc2 + Qoz)R - for the particular solution (27).

In the initial stage of the development of the power-law instability, 1 <<1/2a,
for ry << R the coordinate of the bottom of the funnel varies linearly with time:

Q+ap)*R , Qa +20%1In(r, I 1) | 1
—a
V.o +av, + QEBR Q3B R
and at times ¢ >1/ 2a the vortex deepens exponentially as

2(0,1) ~ = t, @3D

z2(0,1) ~ —

—2 (32)
‘)ZO +(1VZO + QoBR 2
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Fig. 1. The approximate evolution of an isobaric
funnel in the region of a vortex through equal time
steps (scale lengths are not maintained).

S. Instability of the tangential velocity discontinuity at the trunk
boundary and the saturation of the vortex

Surfaces with a tangential velocity discontinuity are known (Landau &
Lifshits, 1986) to be unstable to surface perturbations. Let us consider a two-
dimensional flow of an incompressible medium with velocity discontinuities (18)
and (18a) in the XZ plane (a part of the surface of the trunk with the Z axis parallel
to the jet axis).

We shall study a local instability of a tangential velocity distribution; i.e., we
assume that the dimensions of the segment of the surface being studied are much
smaller than the corresponding dimensions of the trunk, and that the periods and
reciprocal growth rates for the perturbations are much shorter than the
characteristic times for growth of the angular velocity of the vortex.

In the chosen coordinate system, small perturbations of the surface of
discontinuity in a coordinate system moving with the cloud are given by

a—V+V8—V+Ua—v:—Cﬁ‘£+2[\7f2]+nD\7, Cv =0. (33)
ot ox 0z r

Applying the operator V to both sides of the first equation, we find, using the
second equation, that the perturbed pressure obeys a Laplace equation, AP/p = 0.
Thus, we write

Plp ~ ™ exp{ilkex + k,z — o1)}. (34)
where k is the wave number and ¢ is the frequency of the perturbations, and the Y
axis is directed along the normal to the surface of discontinuity toward the vortex
trunk.

Let {{x,z,t) be the displacement, in the Y direction, of the particles in the plane
of the discontinuity. Then, assuming v, vy and { ~ exp{i(kwx + k,z — ot)} we obtain
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a dispersion relation for the perturbations of the tangential discontinuity surface:

P N 2 . 2 2\2 2
(s—kw+znk3 —-4Q (s—lgvT/)z (s+ink“)" —4Q . 39)
20k — k(s —kiv+ink?) 20k, + k(s +ink?)

We now examine the stability in two limiting cases: short and long wavelength
perturbations.

Short wavelength - these are perturbations with a wavelength that is much
shorter than the trunk radius (kry >>1) and are typical of perturbations that
propagate along the azimuth (x - perturbations). Taking &k, = 0 for simplicity, from
Eq. (35) we obtain®

(c—kV)(o—-kV+2Q2) + o (c-2Q2) + k(2 6 —kV) = 0. (36)
The solution of this dispersion relation is
ook) =Re 6 = kV/2, y(k) = Im o = [ KV +VK'- 4QkV)"* —vi’112. (37)

We note first that the expression under the square root in Eq. (37) becomes

positive for perturbations with wave numbers

{ 4
k>kcr:32§2—2v 1+ 1+% (38)
n 108Q°n

and the perturbations with still larger wave numbers grow. The rotation stabilizes

long wavelength perturbations of the trunk boundary; thus, short wavelength
perturbations which also lie in our approximation of local instability turn out to be
unstable. Equation (37) for the growth rate of the perturbations implies that the
maximum value is reached as k —oo, i.e.
Y = V/dv. (39)

Using Egs. (16) and (37), for the time dependence of the amplitude of the
surface perturbations in the y = O plane, in the initial stage of development of the
instability over a time interval r <<1/a, for a vortex with a power law evolution of
the instability, we obtain

2.2 2
L@y =Goe” = Coexpl DVEA |, (40)
vV

i.e., during the initial stage of the development of the instability the maximum
growth in the amplitude with time follows {{(t) ~ {yexp ( r) dependence.

In an inviscid fluid (v = 0) surface perturbations with a tangential velocity
discontinuity develop during the initial stage as

3 Instead of k, we shall use the notation .
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C(1) = & explayrpokt® 12) . (41)

The maximum growth rate for the perturbations in a layer is known to be

attained for wavelengths on the order of its thickness /, i.e., with &, ~1/[ . In the

case of surface waves, the layer thickness is ¢ ~2{(t), so that k,, =1/2{(t). Using this
in Eq. (43), we obtain

n® _ amyryt”
o 200
which implies that ((r) varies with time roughly as ¢/ In 7. Thus, a turbulent
transition layer of thickness 2{(t) develops on the surface of the vortex trunk with
an effective turbulent viscosity which, in the initial stage of the development of the
instability, can be estimated using the formula

Vi e 20y = %avo 1C@)lt. (43)

The turbulent viscosity increases very rapidly with time (~£') and can reach
large values (v~v*). This leads to intense nonlinear dissipation of the growing
turbulent perturbations in this layer and to a transition into a saturated state.

The turbulent perturbations saturate when the rise in the kinetic energy of the

) (42)

surface waves per unit time owing to instability in the tangential velocity
discontinuity, ypv’/2, approaches, in order of magnitude, the power of the turbulent
energy dissipation per unit volume, pv’/f (Landau & Lifshits, 1986). In the
estimates given above, v ~ dI{{#)/dt is the velocity of the turbulent fluctuations, £ ~
I (#)| is their characteristic scale length, and y ~ zV/I { | is the maximum growth
rate for the instabilities. This implies that the velocity of the turbulent fluctuations
is essentially the same as the discontinuity in the tangential velocity, i.e., v(t) =
V(t).

On the other hand, the angular acceleration in the rotation of the vortex trunk
ceases when the discontinuity V(7) in the tangential velocity approaches the sound
speed ¢,. The characteristic time ¢, for this process is given by Eq. (18) (See Eq.
(53)).

Thus, V,, = ¢, u y,, = mc/,, where {, is given by Eq. (42):

mém - amyrts
50 2;m
Long wavelength-- these are perturbations with a long wavelength exceeding
the transverse dimension of the trunk, i.e., kry << 1. Clearly, they can arise only in
longitudinal z-perturbations,

(44)

{(z,1) = zge?! exp(ik ,z —iopyt), (45)
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caused by the discontinuity in the longitudinal flow velocity of the material (18a).
Taking k, = 0 in Eq. (35), we obtain a dispersion relation for the longitudinal
perturbations of the form®

[(0—kU +ivk®)? —4Q2 (o - Uk) (o +ivk?)

+(c+ivk?)? —4Q%10(o +ivik?) = 0.
Of course, the effect of viscosity on the long wavelength perturbations can be
neglected. Then Eq. (35b) becomes much simpler:

(0% —oUk +U%k?12-4Q%) 6 -Uk) =0, (46)

and has the solutions

(35b)

o) =Uk, 0y3 —UKI2F WU K2 14-4Q2 . @7

Only the third mode, which describes oscillations with frequency o, = Y2Uk,
yields perturbations (45) that increase in time. Here the perturbations increase only
within the wavelength interval

491’0 . 4QI’0 )
V20 + oz ’

2y << A< i (1 >> kry > (48)
2Q
with a growth rate
y, = Vo, - 400, (49)

Given that, in the initial stage (the instability in the longitudinal perturbations
sets in at a time ¢ > 4Q/a’kR, of the development of the vortex in the region z =0,
we have U ~ o’R, (using Eq. (26)), we obtain the following for the amplitude of the
particle oscillations in the long wavelength perturbations of the surface of the
vortex trunk:

Coe! ~ {oexplk,*Ryt* 12). (50)

The comparison of Egs. (50) and (41) shows that the longitudinal long
wavelength perturbations develop much more slowly than the short wavelength
perturbations. Thus, saturation of the vortical motion (i.e., termination of the
exponential growth in the angular velocity of the trunk and in the pressure drop on
its axis) occurs when the discontinuity in the azimuthal velocity reaches the sound
speed.

The time ¢, for the vortex to saturate is determined from the equation

* Instead of k. here we also use k.
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Over this time the bottom of the isobaric funnel moves downward by a distance

2
(CS +.Q.07”06¥ts)

g = > (52)
2(VZ0 tav,y)+ .Q.()BR)
and, in the case of the particular solution (28), v, increases to
+Q
voo(ty) = aR| 1~ 2D | (53)
cg +Qryaty

Equation (13) can be used to estimate the velocity of the vertical flow of matter
(the jet) at the protostar's surface. If the lower base of the vortex lay at a depth H
from the cloud surface at the time it was formed, then at the time the vortex
saturates on emerging from the cloud, the velocity of the jet would be equal to

v.ota(zy +H), v,5=const, 54)
T vaolty) +alzg + H), v =aR(1—e™ ).
The mass lost by the protostar in a year is
dM/dt = zrypv;. (55)

6. Generation of astrophysical jets by a vortex

The appearance of a Rankine vortex in the surface axial layer of a gravitating
body, therefore, produces a longitudinal flow of matter (13) and a flow of matter
which converges toward the vortex trunk (14). These flows provide for an
exponential growth in the rotational velocity of the trunk and in the pressure drop
on its axis. The power law increases in the angular rotation velocity and in the
pressure drop cease and the vortical motion enters a state of saturation when the
discontinuity in the azimuthal velocity at the surface of the trunk (as we have seen,
the growth of the long wavelength perturbations proceeds much more slowly)
reaches the sound speed. This takes place over a time ts (given by Eq. (51))
following the appearance of the vortex within which the vortical motion extends to
ever deeper layers of the cloud, covering a distance given by Eq. (52). On the other
hand, the longitudinal velocity of the flow along the vortex trunk reaches the value
given by Eq. (53) during this time, causing mass to flow out through the surface of
the protostar in the form of a jet with velocity v; (see Eq. (54)).

As an illustration of the results obtained here, let us consider a spheroidal
protostar of mass ~ 2 M., polar radius 10 a.u., and eccentricity 3/4. For the mass
density of the protostar we obtain p = 3 M, (1-e>)/2nR,’ ~ 10"'g/cm’ and, using Eq.
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(2), we find its angular rotation velocity to be Q ~ 1.8:10°s™" and Q, ~ 2-107s™.

Let a vortex (4) which appears at time ¢ = 0 in the surface polar layer of the
protostar have a thickness H = 0.2 a.u., trunk radius ry = 0,5 a.u., and azimuthal
velocity vy = worp = 0.3 km/s at its surface. Taking the velocity of the radial flow
(14) at the surface of the trunk to be v, = 0.5 km/s, (corresponding to o ~ 1.3-10%
" and the sound speed be ¢, =10km/s, with Eq. (51) we find the saturation time for
the vortex to be t; = 2.4-10°s ~ 8 years. During this time the low pressure vortical
funnel spans ever deeper layers of the protostar, forming an essentially stationary
cylindrical vortex of length ~1.8 a.u. The longitudinal flow velocity at the z = 0
level turns out to be v,(t,) = 19.2 km/s, and at the surface of the protostar, v; =~ 20
km/s, while the parabolic velocity at the protostar's surface is ~12 km/s. The rate of
loss of mass by the protostar is then ~10° M, /year.

The jet velocity at the surface of the protostar can also be estimated using
energy conservation arguments. In fact, equating the total work by the pressure and
gravitational forces to the kinetic energy of the trunk at the surface of the protostar,
i.e., taking the Bernoulli integral for the lower and upper bases of the vortex trunk,
we obtain the same estimate for v;.

We now estimate the thickness {,, of the transition turbulent layer. To do this
we assume that the displacement (, is on the order of the mean free path for the
particles, i.e., { = my /naHZp ~ 10* cm, where my is the mass of a hydrogen atom
and ay is its Bohr radius. Then Eq. (44) gives {, = 1.5-10” cm. The maximum value
for the coefficient of turbulent viscosity in the transition layer is then

v o= %mogmts ~2:10 sms. (56)
while the ordinary kinematic viscosity of the gas is much smaller, at
v = vl/3 ~3-10° cm’/s, (57)
where vy is the thermal speed of the atoms and / is their mean free path. Thus, at
the surface of a vortex trunk of radius r, rotating at almost the sound speed v,,, =
voexp(ym t) ~ cs, , turbulence creates a layer of thickness max 2, with an
anomalously high viscosity v, >> v.

The lifetime of the resulting vortex can be estimated by dividing the kinetic
energy per unit length of the vortex in its saturated state by the energy dissipated
per unit length (17):

Loortex = 1.8X107 /[V] year, (58)

where the viscosity is expressed in units of 10'> cm*/s. The molecular viscosity
gives an estimate in Eq. (58) of ~3-10° years, while the turbulent viscosity yields
~5-10° years for the lifetime of the vortex. Thus, these vortices are substantially
dissipation-less, even when an anomalously high turbulent viscosity is assumed.

135



7. Concluding remarks

The vortical mechanism proposed in this paper for the generation of
astrophysical jets is a unique way of converting gravitational energy of a source
into the kinetic energy of an erupting jet. This mechanism can also provide for the
acceleration and collimation of jet flows beyond the confines of a source, both in
slowing-down regions and in inertial outflows.

The formation of a turbulent transition layer at the surface of a vortex trunk
leads to more than the saturation of the vortex. It drives a number of hydrodynamic
and physicochemical processes which merit detailed study.

As the vortex trunk emerges from the compact formation, it enters a rarefied
environment and begins to expand. The following scenario for expansion of the jet
can be imagined: radial distension of the jet as a whole and expansion of the
surface layers into the rarefied surrounddings’. Radial distension converts the jet
from a dense, rapidly rotating state into a less dense, more slowly rotating state
while conserving its angular momentum. At the same time, matter flows out from
the jet surface: initially the layers adjacent to the boundary come into motion, and
ever deeper regions away from the boundary are gradually brought into motion. A
rarefaction wave develops and propagates radially into the depth of the jet, creating
a "sheath" of no uniform density with a differential rotation around the jet. This
leads to the recovery of equilibrium at the boundary of a uniform trunk at some
radius R of the trunk. After this, the rapid expansion processes cease and a
quasistationary pattern consisting of two regions is established in the jet: a core
region that is uniform in density and rotates rigidly and a sheath region with a no
uniform density, differential rotation, and a converging radial flow of matter. Thus,
self generation of a vortex from a bare trunk in a jet is possible (Abrahamyan,
2009). A vortex of this sort will accelerate and simultaneously collimate the core
region of a jet. The result is a fast, more collimated jet inside a slow jet. "Two-
velocity" CO outflows of this type have been observed in a number of molecular
jet flows (so-called "molecular bullets"), such as HH211 in IC348 (Gueth &
Guilloteau, 1999), 1.1448 (Nisini, et al., 2000, Masson et al.,1990), HH7-11 (Koo,
1990, Bachiller et al., 1998), and HH111 (Cernicharo & Reipurth, 1999, Hatchell et
al., 1999).

> Here is significant the presences of an accreting disc component round the
protostar, which can enrich angular momentum of the jet, accelerate and collimate
it at the long distance from the source.
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3ABUCUMOCTD ®YHKIINN CBETUMOCTU I'AJTAKTHUK
OT UX MOPOOJIOI'MYECKOI'O TUHIA U OT
OKPYXAIOIIEN CPE/IbI

A. Il. MarrecsiH
bropaxanckaa Acmpoguszuueckas Obcepsamopus, bropakan, Apmenus

1. BBeaenne

Oynkius cBetumoctu (PC) rajgakTvk UMeeT odeHb OOJIBIIOE 3HAYEHUE IS
UCCIICIOBAHUSI U IIOHMMAHMS IPOUCXOKICHUS M D3BOJIIOLUHM TaJaKTHUK, I
NPOBEPKH  KOCMOJIOTHUECKMX  MOZeNed W  MHOTHX  Jpyrux  Mmpobiiem
BHETAIAKTUIECKOW aCTPOHOMUH.

B3anMoieiicTBUSL MEX]y TaJaKTUKaMH UTPAIOT BAKHYIO POJIb B MX JBOIIOIHH.
OHH MOTYT cIocoOCTBOBATh WJIM TIOAABIATH 3BE31000pa30oBaHUE B TajaKTHKaX.
OTH B3aMMOJEHCTBHS B PAa3HBIX CHCTEMax MOTYT OTJIMYaTbci OPYr OT Apyra.
Hanpumep, rpynmsl rajgakTHK MO CPaBHEHHIO CO CKOIUICHUSIMH HMMEIOT Malble
JIICTICPCUH JIYYEBBIX CKOPOCTEH, Mallble TUIOTHOCTH W TEMIIEPaTypy rasa, mod3ToMy
B OTUX OKPYXKEHHUAX OIPQPEKTUBHBI Takue MexaHu3Mbl Kak ciusaug (Toomre,
Toomre 1972, White 1979), morepum Tra3a CHOUPaTbHBIMH TaJlaKTUKaMHU,
00yCJIOBIEHHOH TpaBUTAIMOHHBIM B3aUMOJCHUCTBHEM C JPYTUMH UWICHAMH
ckomieHust (Spitzer, Baade 1951) wnm paspylneHus CHOUpaNbHBIX BETBEH
npunruBHEIM oOaupanueM (Negroponte, White 1983). B ckoruieHUsIX TanakTuk, Tae
JHCIIEPCUST CKOPOCTEH MOBOJBHO BBICOKAs, 3()(EKTUBEH MEXAaHM3M BBIMECTAHUS
rasa W3 TaJlaKTUK JIOOOBBIM JIaBICHHEM MEXIaJaKTHYECKOTO ra3a CKOILUICHHS
(Gunn, Gott 1972). OguHOYHBIC TATAKTHKH HAXOJIATCS B COBEPIICHHO APYroi
curyauru. MOXHO IPEIIONIOKUTb, YTO 3BONIOUUS 3THUX TAIAKTHUK CBS3aHA C
MPOIIECCaMU, IPOUCXOISIIIUMEI BHYTPH UX CAMHUX.

OTH MeXaHU3Mbl MOTYT U3MEHHUTh CBETUMOCTH TAJIAKTHK, U TIOATOMY OXKHIAETCS
3aBUCUMOCTH (DYHKIHH CBETUMOCTH T'aJAKTUK OT OKPYKAIOLIEeH Cpepl.

Baxno moHsaTh, kak MeHsercss @OC TamakTUK B 3aBUCUMOCTH OT HUX
MOP(HOJIOTUYECKOTO THIIA, a TAKKE, KaK BIMIET OKpyxaromas cpeaa na OC.

OC ranaktuk o0bYHO TpenctaBusercs ¢ynkuueil Llextepa (Schechter
1976), koTOpast B SIpKO¥ 4aCTH CBETHMOCTEH MMEET DKCIIOHEHIHAIbHYIO0 (hopMy, a
npu cabbIX CBETUMOCTSX UMEET CTENICHHYO (hopmy.

D= ¢*100.4(M*—M)(1+a) exp(_100.4(M*—M)), (1)
rae @. - koaddument HopManmzanuu, M, u & onpenenstor GopMy KpUBOMA.
IMapamerp « mupexacraBnser JorapuMHUUECKH HAKIOH B cilaboM KOHIIE
CBETUMOCTEM.

Ecim « wmenbpme, gem -1, To @C B cmaboM KOHIE BO3pacTaromias, a HpH
a > —1 ona yobiBatomas. I'pannyHoe 3HaYeHHE = —] COOTBETCTBYET IIIOCKOMY

kouiy ®C. M., mokassiBaeT MecTo u3MmeHeHus nosefacHus OC. Tlpu 3HaYCHUAX

HamHoro Mmewpmux M,, ®C craHoBurcs skcrnoHeHnuanbHoil. @C ramakTuk B



CKOIUICHUSIX, TPYNIax W B OOINEM MoJie W3y4eHbl BO MHOrHx paborax (Oemler
1974; Schechter 1976; Felten 1977; Dressler 1978a; Sandage et al. 1985; Oegerle
et al. 1986; Lugger 1986; Oegerle et al. 1987; Binggeli et al. 1988; Colless 1989;
Willmer et al. 1990; Gudehus & Hegyi 1991; Garilli et al. 1991; Ferguson &
Sandage 1991; Garilli et al. 1992; Loveday et al. 1992; Marzke et al. 1994; Ribeiro
et al. 1994; Driver et al. 1994; Lopez-Cruz & Yee 1995; Barrientos et al. 1996; Lin
et al. 1996; Andreon u np. 1997; Gaidos 1997; Jerjen & Tamman 1997; Lopez-
Cruz et al. 1997; Lumsden et al. 1997; Trentham 1997; Valotto et al. 1997; Zepf et
al. 1997; Andreon 1998; Bromley et al. 1998; Muriel et al. 1998; Rauzy et al. 1998;
Garilli et al. 1999; Marinoni et al. 1999; Ramella et al. 1999; Zabludoff &
Mulchaey 2000; Paolillo et al. 2001; de Propis et al. 2002; Goto et al. 2002;
Trentham & Hodgkin 2002; Cuesta-Bolao & Serna 2003). B stux paborax
MPEIMETOM CEPhE3HOTO M3YUEeHHS SBISUIICA BoIpoc 00 yHuBepcabHocTH OC.

B nepBrix pe3ynbraTax 0bUI0 TONayueHO, 4T0 DC rajakTvk B CKOIUICHUSX U B
olmeM mosie HE OTIAMYAarOTCs APYr OT npyra (Hanpumep, Felten (1977)). B
JanpHeieM HekoTopslie aBTophl (Loveday et al. (1992); Marzke et al. (1994); Lin
et al. (1996)) mist ®C ranaktuk o, npeactasisis ee ¢pyukiueii Lllexrepa (1976),

MOJIy4YUnIn OombIIne pa3mnaug 4Jis1 BEJIMIUHBL M* , HO JJIs1 HAaKJIOHA ®C B cmabom

KOHIIE MOJTyYHITH OJ00HBIE pe3ysbTaThl: & = —1.

B HekoTophIX paboTax, KacaroIMXCsl CKOIUICHUH TalakThK, Js C1adoro KOHLA
®C, Tarke ObLT MONYyYeH IJIOCKMHA HakioH (cMm. Hampumep, Garilli et al. 1999;
Paolillo et al. 2001; Goto et al. 2002). Bo muHorux apyrux paborax (Schechter
1976; Dressler 1978a; Sandage et al. 1985; Ferguson & Sandage 1991; Lugger
1986; Colless 1989; Lumsden et al. 1997; Trentham 1997; Valotto et al. 1997;
Rauzy et al. 1998; Garilli et al. 1999; Paolillo et al. 2001; de Propis et al. 2002;
Goto et al. 2002; Cuesta-Bolao & Serna 2003) mis cnadoro xonna ®C moxydeHsl
JnoBOJIbHO Oonbmire HakaoHbl (—1.5<a <-1.2). Jlna cnaboro konma OC
MOJTy4aeTcsl TOBOJBHO OOJbIIOH HakiIOH (@ <—2), KOrJa paccMaTpUBAIOTCS
oueHp cnabbie Tamaktuku ckorenus: (Trentham, Hodgkin 2002). B paborax
Lopez-Cruz, Yee (1995) u Lopez-Cruz et al. (1997) uzydenst 45 ckomenuii Diibia
¢ kpacHeiM cMmemeHneM z<(0.14 u momydeHo, 4ro 39 W3 HHX TIOKAa3bIBAIOT
yBEIMYEHHE OTHOCHTEIBHOTO 4YHCNA cJa0blX TajakThK. Tompko 7 W3 HHUX
npezacrasisioress OC IMlexrepa ¢ a = —1. Okazanock, YTO0 OHM MMEIOT B CBOEM
coctase cD ranakTHKH U B cpefHEM OoJiee MacCHBHBI U OOTaThI Ta30M.

Pesynprarel m3ydennss ®C TranakTHK TPYHI pa3sHBIMH aBTOPaMU JOBOJBHO
CHJILHO OTJIIMYAIOTCS JIPYT OT Jpyra. B HEKoTOphIXx paboTax, OTHOCSIIUXCS K
OMM3KKUM TPYIIIIaM TATaKTHK, MOJYYEHBI coriacytommuecs: pe3ynbratel (Ferguson
and Sandage 1991; Muriel et al. 1998): . e., nony4ena mnockas ®C, moxoxas Ha
@®C ranmaktuk noisi. M3ydenne xe komnakTHeIX rpymnm (Ribeiro et al. 1994; Zepf et
al. 1997) Takxke mpuBeno K Mmiockoi mwim cinabo nonwkatomed @C B cnabom
KoHLE cBeTumocTeld. B mpotuBoBec atomy B pabore Zabludoff and Mulchaey
(2000) OpuTO TOKa3aHO, uTO B Tpymmax PC rajmakTHK B c1a0OM KOHIIE UMEET
Oompoit norapupmuueckuii HakioH. B Cuesta-Bolao, Serna (2003) moka3aHo, 4To
Kak Majble, TAK U OTHOCHUTENIFHO OoJblINe rpynmsl B cinadoMm koHue OC umeror
c1a00 TTOHIKAIOIIHNICSA HAKJIOH MOJ00HO pe3yabTary Ribeiro et al. (1994).



U3BecTHO, 4YTO CylIeCTBYeT 3aBHCUMOCTb IUIOTHOCTH - Mopdosioruueckoe
conepkanue (Dressler 1980). CormacHo 3TOW 3aBHCHMOCTH B 00JacTAX BBICOKHX
TUIOTHOCTEH OTHOCUTENHHOE YHCIIO DIUTMINTHYECKUX W JIMH30BUJIHBIX TaJaKTHK
BBIIIE, YeM B 00JAaCTSIX MalbIX ILIOTHOCTEH. M3BECTHO Tak)ke, YTO KaXAbIid
xa0O0JIOBCKUH THII TallaKTUK UMeeT cBOto XapakrepHyto @C (Hanmpumep, Binggeli et
al. 1988). IloaTomy oxwumaercs, uro cymmapHas PC ramakTuk AODKHA OBITh
3aBUCHMAa OT OKPYKCHHUSI.

[IpencraBnsercs Takke BaXXHBIM BBISICHUTH: YHUBepcanbHa Jin ©C 11 gaHHOTO
xa0O0JIOBCKOTO THIIA TATAKTHK, WM OHA 3aBUCUT OT oKpyxkeHus? B Binggeli et al.
(1988), mzyuas ®C rajakTHK B TOJIE, B TPYIIax U B OCTHBIX CKOIUICHUSIX, OBLIO
nokazano, 4ro @OC TajlaKTUK OTIEIBHOIO XaOOJOBCKOTO THIA SIBISETCS
yHUBEpcanbHOH. Jlpyrue aBTOpbI MOATBEPIWIM OTOT pe3ylnbTaTr (Hampumep,
Andreon et al. 1997; Jerjen and Tamman 1997; Andreon 1998). Onu momyqwnnm,
gyro @C ramaktuk E, L, S He 3aBUCAT OT IJIOTHOCTH OKpyXaromieil cpempl. B
mpoTUBOBeC 3TOMy B padorax (Valotto et al. 1997; Bromley et al. 1998; Marinoni
et al. 1999; Ramella et al. 1999; Cuesta-Bolao, Serna 2003) monydeHa 3HagnMas
3apucuMocTh OC TrajgakTHK AaHHOTO MOP(OJIOTHYECKOTO THUMA OT TUIOTHOCTH
OKpYarollen cpeibl.

Takasi HecorIacOBaHHOCTh PE3YJIBTATOB, BO3MOXKHO, CBSI3aHA C HEIOCTATOYHO
YBEPEHHBIM pa3jieliecHueM OJM3KHX M JAICKUX (POHOBBIX TANAKTUK OT TallaKTHK
CKOIUJICHUS, a Uil MaibIX TPYNI - HEYBEPEHHOW HICHTU(HUKAIMEH WX YJICHOB.
ITockoabKy YHCIIO YWICHOB TPYMIT MaJIO, TO OIMIHOOYHOE MPHCOEANHEHNE K JaHHON
TpyINIle OJHOM WM HECKOJBKHX JIOKHBIX TaJlaKTHK, WJIH HENPHCOCIHHEHUE
WCTUHHBIX YWICHOB, MOYKET 3HAUMMO BIHATH Ha onpeaencaue OC.

Ectp eme opHa mpuumHa, KOTOpass MOXKET MOBIMSATH Ha JIOCTOBEPHOCTH
pe3ynbraToB. OHa 3aKitoYaeTcs B TOM, YTO aBTOPHI dacTo mpezactaBisitor OC
¢ynkuueii Hlextepa Bo Bceil m3yuaemoit obmactu cBetuMmocTeil. Ho mzyuenwe
MHOTHX Pa0OT MMOKa3bIBAET, YTO 3Ta (PYHKUHUS TOBOJILHO I0X0 mpencrasisier OC
KaK B ApKOM, TaK U B cTaOOM KOHIIE CBETUMOCTEMH.

Taxum 06pazom, Borpoc o 3aBucUMOcTH PC ramakTuk OT OKpy’Karomeil cpepl,
a Takxe Bompoc 00 yHuBepcanbHOocTH PC ranakTHK pazHbIX MOPQOIOTHYECKUX
THTIOB ITOKA OCTAEeTCS OTKPHITHIM, OCOOSHHO ISl MAIIBIX TPYIIT. DTOT BONPOC OYEHb
BaXEH JUIS NPABHIBHOTO MOHWUMAHHUS IMPOIECCOB MPOHMCXOXKICHUS H 3BOJIIOIUH
rajJaKkTUK.

2. HoBblii MeTO onpeaeeHus (PYHKIUM CBETHMOCTH FaIaKTHK

Knaccuueckuit meron onpeaenenuss ®C (Binggeli et al. 1987) ocHoBbIBaeTcs
Ha TMPEJIIIOJIOKEHHH, YTO TAIAKTHKH PABHOMEPHO paclpe/ielieHbl B TPOCTPAHCTRBE.
UroObr  Beiuuciute ®C  06e3  000r0  MPEHIOSIOKEHUS  OTHOCHTEIBHO
NPOCTPAHCTBEHHOIO pACHpEAeNCHUs] TalaKTUK, OBUIM TpPENJOXKEHBl JpyTrHe
HenapameTpuieckne Metonsl (Hanpumep, Lynden-Bell 1971, Choloniewski 1987)
WM METOJIBI, OCHOBaHHBIC HAa METOJE MakcHMaiabHOTo mpapmonomooms (Nicoll &
Segal 1983; Efstathiou et al. 1988). Jlns y4yera 3aBUCHMMOCTH TUIOTHOCTH YHCIIA

FaJIaKTUK OT paccTostHust, Mbl 0000 1/V,_ . wmerox [lImuara (1968).



TamakTuka ¢ aOCOMIOTHOM 3Be3qHOM BennuuHou M ; Oyzer BuaHA B 00bEME,
Ha TPaHMIIe KOTOPOii OHa OyIeT UMETh MPEACIbHYIO 3BE3HYI0 BEITHUYNHY BHIOOPKU
(8 mamHom cimydae m, =15."5). TlockonbKy Hama BHIOOpKAa OrpaHHYCHA
paccTosHHEeM CHH3y W CBEpPXY, TO IMPOCTPAHCTBEHHYIO IUIOTHOCTh TAAKTUKH C

abCoMOTHOM BemnuuHOi M, MBI JJOJDKHBI OLEHHTH B 0Obeme V) —V ., xorma
M =M, >2M . unsobseme V,  —V .  xorma M, <M . .TIne
;. Qf ez, .
V. =—|—"| 310 TOT 00BEM, Ha IpaHHIC KOTOPOTO TaJaKTHKa C aOCOTIOTHOM
3\ H
3B€3JHOM BenMunHOH M, OyfeT wuMeTh NPENeNbHYI0 BHIUMYKO 3BE3HYIO
3
Qfcz,. . .
BEIIMYMHY BBIOOpKH M1, V. . =— 9T0 OIM3KHUNA 00BEM, UCKIIFOYEHHBIN
3\ H
3
Qfcz,,. .
U3 paccMoTpenusa, a Vo= ? T €CThb MAaKCHUMAaJbHBLII 00bEM,

HaXOJIIMECS Tajbllle KOTOPOrO TAJaKTHKHM TaKKe He paccmarpuBaiorcs. (2 -
00BEMHEIH YyToJl BEIOOPKH, U B HAIIIEM ciIydae paseH 4.3 cp.

Ecim  mpenrnonoxuTh, 4YTO TaJaKTUKH B TMPOCTPAHCTBE paclpeacicHbI
paBHOMEpPHO, To cieayst Schmidt (1968) u Huchra, Sargent (1973):

ﬁ z ﬁ 9 MmaxZMiZMmin
M =AM /2,j \F'm ™ Vmin
D, (M,) = " @
1 s Mi <Mmin
AM (Vmax _Vmin) M;+AM /2,j

IlockonpKy  raJakTUKH  HE  paclpeleleHbl  paBHOMEPHO, M CpenHssd
MPOCTPAaHCTBEHHAs IUIOTHOCTh TalaKTHK, [0 KpaiiHell wMepe, B OJIM3KOI
Bcenennoii, 3aBUCHT OT paccTosHUsS (OCOOEHHO B CEBEPHOM IIONYIIAPUH), TO
onpeneneane PC, TakuM 00pa3oM, NPUBEAET K HOBBILICHHONW OLIEHKE INIOTHOCTH
abCONIOTHO CITa0BIX TajmakTHK. [103TOMy MBI TOIKHBI YYUTHIBATH 3Ty 3aBUCHMOCTh

U TNpPUBOAUTH CPEAHUC IUIOTHOCTU TaAJIaKTUK K HaI/I60J'H>].HCMy OG’LCMy Vmax'

BcenencTsue aToro, ypaBHeHue (2) MIPUMET CIIETYIOIINA BUI:

1 1
m I j oMmaXZMiZMmin
M‘.iAM/Z,jD(”m)(Vm _Vmin)
D pps (M) = 1
1 :M'<Mmina (3)
AM D(Fmax ) (Vmax _Vmin)M,_iAM/Lj :




i i 1/3
. ocz v ;
rac r.o = = - paCCTOHHI/IC COOTBeTCTByIOHIee 06’B€My Vm .

" H Q

®akrudecku D(7,) - 9TO INIOTHOCTH IAIAKTHK, HOPMUPOBaHHas Ha o0beM V.

D(r,_. )=1.Pacuers cuenansl ipu AM =0.2.

max
Taxoe ompexnenenne mpenmnonaraeT He3aBUCUMOCTh PC OT MPOCTPaHCTBEHHBIX
KOOpAMHAT. MBI Takke IpeHeOperaeM JIOKAJIbHBIMH TOBBINICHUSMU TUIOTHOCTH B
BUJIC TPYII TaJaKTHK, IIOCKOJIEKY PeUYb UJET O CPEIHUX IUIOTHOCTSAX TaJaKTHK, B
00peMax HAMHOTO TIPEBHIMAIOIINX 00bEM TPYIII TaJaKTHK.
CpenuexBagparuunoe orkioHenne @, (M) ouenuBaem crieyroumm
obpazoM:
1 B 1/2
n .
— 1
(D g (M) = — mi 1=k
ZXA{Z)(nn)(V%1_'Vﬁﬁn)_

-1/2
_Pops M| (i
- l
n; N

1 .

, “

TIe 1, - 9uciio ranaktuk B uatepsane M, £ AM /2, N - obuiee 9ucio ranakTuk B

BEIOOpKE.

B a3Tux OTHOWICHHMSX BUIUMBIE 3BE3JHBIC BEJIWYMHBI HWCHPABICHBI 32
ranaktnyeckoe moriomenne (Sandage 1973, cm. (3.3)) m 3a K - ocmabnenue
(Efstathiou et. al 1988, cm. (3.4)): Am =—A— K . JIyueBble CKOPOCTH TaJlaKTHK
WCIIpaBJICHBI 3a BpaleHue ['ajakThkuy U 3a ABWKeHre MeCTHOM CUCTEeMbI ralakTHK
B HarpaBjieHuH ckoruieHus B [lese (cm. (2.17)-(2.19)).

M, =m,—25-5log(cz,/ H),
M, =my —25-5log(cz., | H),
M. . =m, —25-5log(cz,, /H),

M. =m, —25-5log(cz,,, /H),

m:

-1 -1
H =100km-¢— - Mnx~ - mnocrosnnas Xa0bma, m - BHOUMas 3Be3qHAS
BeIMYMHA TanakTuky. Kak ormerunu Beie, ¢z, = 500 km/c, ¢z, = 20000 xm/c,

my =15."5.Tlostomy M =-13."0, M _. =-21."0.

VYpaBHeHue (3) MOKHO TAKXKE HAIMUCATh CIACIYOIIUM 00pa3oM:



1 310—0.6(m“m—25—M )

max

AM Q
~0.6(M,~M,_ ) -1
(10 j max _1)

X Z . l)(l()O.Z(mlim -M, —25)) s Mpax =2 M; 2 M in
Dy (M;)= 1 M +AM /2,

1 - - - - — —

" % 1070607, =25-M 1,)) (1=06(M 1, =M ..} _1y-]

% Zl s M <My, (5)

M +AM /2,

OTHU ypaBHEHHs NaayT UCTUHHYIO TUIOTHOCTh YMCJIA TajJakTUK TOJBKO B TOM
ciIydae, KOrJla UMeeM JIeJo ¢ IMOJHOW BhIOOpKoi. Korma BeiOopka HemoiHas, U
(hakTOp TOJHOTHI HE 3aBHUCHUT OT aOCOJIFOTHOW 3BE3THOW BEIMYWHBI, MBI MOXKEM
TOYHO OIICHUTH TOJMHKO HOpMHUpoBaHHYI0 DC ramakTuk (Hampumep, Neyman, Scott
1974; Tepebmxk 1980).

O, (M,

\I](Ml) — obs ( 1 ) . (6)
2@, (M)
J
HctrHHAS IUIOTHOCTE YKCiIa TAIAKTHK ¢ a0COIIOTHON BEITHYNHOMN Mi 6yI[€TZ
CD(MI) =1)(rnlim)_1 (Dobs(Mi)’ (7)
a CpCAHCKBAAPATUIHOC OTKIIOHCHHUC 6y):[eT:

o(®(M,)) = P(my,)" o(®,,,(M,)) (8)

rae P(m,, ) - GakTop MOJTHOTHL.

JUtsi W3y4eHWsI TOJHOTHI BBIOOPKH, OTPAHMYEHHON 3BE3[HON BEIMYUHOM,
mmpoko wucnoissyercs V' /V,  merox (Schmidt 1968), rme V - o0wem
IPOCTPAHCTBA, Ha KPAK KOTOPOrO HAXOAWTCS TrajakThuka, a V, - ecTb

MaKCHMAaJbHBII 00BEM MPOCTPAHCTBA, HA KPAal0 KOTOPOTO TaJakTHKa OyJIeT NMETh
BHJIUMYIO 3BE3JIHYyI0 BEJIMYMHY, pPABHYI IIPEACIIbHON 3BE3JHOM BEIMUYMHE
BeIOOpkH. Ecnmu B EBKIMIOBOM mpocTpaHCcTBE OOBEKTHl  PacHpeaeieHB

PaBHOMEPHO, TO CpejHee 3HadeHue BenuduHbl < V' /V, > nomkHO OBITH paBHO
0.5. TIpu maHHOM NPOCTPAHCTBE pacmpenencHue BenwduHel < V' /V > crporo
SKBHBAJICHTHO pactpeaeneHnio BuauMbeIx BemnanH (Tepedmx 1980), koTopoe mpu
paBHOMEPHOM pacripesencann  o0bekToB Oyzer Buaa N(m)~10"°". Mu

npeamnojara€M, 4TO IINIOTHOCTH TaJIaKTUK 3aBUCUT OT pPACCTOAHUA, U IIO3TOMY
JAaHHBIC METO/Ibl UCTIOJIB3YCM JIA HpH6J’IH)K€HHOI7[ OLICHKHU IMOJHOTBI BBI60pOK.

3. 3aBHCHMMOCTD IJIOTHOCTH TAJIAKTHK OT PACCTOSIHUSA
3aBI/ICI/IMOCTB IIJIOTHOCTU TaJIaKTHK OT paCCTOSIHI/ISI MOXHO HOCTpOI/ITI) HpI/I

MOMOIIIH TIOJHBIX (10 BUAMMOMN U 1O a0CONOTHOMN 3BE3HOW BEIIMYMHE) BHIOOPOK.
J1J1s 3TOTO MBI CO3/1aJIH TPY ITOABBIOOPKH TAJIAKTUK 110 a0COTIOTHBIM BEIIMYMHAM



a. Beibopka ¢ M <-21", koropas monHa 10 aOCONIOTHOW 3BE3IHOM
BEIMYHMHE BO BCeM H3yueHHOM oObeme. [lo 3Toii BEIOOpKE ompeneneHa HCKOMast
3aBUCHMOCTh TIpH KpacHbIX cMeniennsx oT 7000 km/c go 20000 km/c. Tlpn mambix
paccTOsHHX 3Ta BEIOOPKA HEMPHUTOJHA 110 IPUIHHE MAIOUYNCIEHHOCTH TaJaKTHK.

0. Bribopka ¢ M <—20". Dra BHIOOPKA MOJHA IO KPACHOIO CMELIEHHS

12600 km/c. Ilo 3Toil BEIOOpPKE OmpeneneHa UCKoMasi 3aBUCUMOCTh TPH KPAaCHBIX
cMmenrenusx or 1700 xkm/c mo 12600 xm/c.

B. Boibopka ¢ M <—17.8". Tlo oT0ii BBHIOOpPKE OmNpeneeHa HUCKOMas
3aBHCUMOCTD IIPU KpacHBIX cMemenusax ot 500 km/c 1o 5000 km/c.

OTH 3aBUCHMOCTH CIIUTHI MO OOIIUM y4YacTKaM W HOPMHPOBAHBI Ha KPacHOE
cmerenne 20000 km/c. Tlomydennas kpuBas npuBeAeHa Ha puc. 1. s ymobcTea

IIPpU BBIYUCJIICHUAX PA3HBIC YYAaCTKHU KpI/IBOP'I OpeACTABJICHBI ITOJIMHOMAaMU MICPBOTO
HJIK BTOPOI'O IMOPAAKA.
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Puc. 1: 3aBUCHMOCTh OTHOCHTCIBLHOM INUIOTHOCTH YHKCJA TaJIaAKTHK OT KpacHOTro
CMCIICHU .

4. ®C rajakTHK 10Jis1 pa3HbIX MOP(OJIOrH4eCKHUX THUIIOB

Ha puc. 2 mnpencraBieHa HOpManH3OBaHHAas Jorapupmuueckas (QyHKIHS
ceetumoctd (JI®C, Log¥(M)) ramaktux moss. [lox HasBaHWeM ‘‘TalakTHKQ

IIOJIST” MBI noApasyMeBacM BCC I'aJIaKTUKH, PACIIOJIOKCHHBIC B U3y4aCMOM O6’L€Me,

HE3aBHCHMO OT TOTO, BXOJST OHH B TPYIIBl WINH SBISIOTCS OIMHOYHBIMU
rajaktukamu. Hcnonp3oBan CfA2 kaTajor KpacHbIX cMenleHuid. Bribopka
kpacabiM  cMemennem  500xm/c < cz <20000xkm/ ¢
v v 17

raJakTHYCCKOM MINPOTOM ‘b ‘ >20°.

OorpaHu4eHa u

Ha stom u Ha cnemyromux puc. 3 — 6 CpeqHEKBaApaTHUYHOE OTKIOHEHHE
HOCUUTAHO CIEAYIOIUM 00pa3oM:

1/2
Y(M, .
(—l) n, 1_i 9)
n, N

a(‘Y(M,)) =



W3 puc. 2 BumHo, uro ®C rajakTHK TMOJS MOXHO MPEICTABUTH (DyHKIHEH
Mextepa ¢ mapamerpamu M, =—-19.30 u a =-0.90 To7BKO B OrpaHMYECHHOM

yuactke cerumocteit: —21.0<M <—17.6. Jlesee or aroii obmactu JIDC
MOKHO TIPEJCTaBHTh KBAJPATHBIM MHOTOYICHOM, a IIpaBee, NpH CcrIaldbIX
ceetumocTsax JIOC MOXHO IpeCcTaBUTh JINHEHHON (pyHKIHEH.

Ha puc. 3 mpeacrapnena JIOC ramakTuk 1oinsi C  W3BECTHBIMH
MOpdoJIOrnYecKMMHU THaMu. BuaHo, uto oHa moutn He otinuyaercs ot JIOC Bcex
raynakTuk (puc. 2).

0,0 . : : . . e . e 0,0
All, N=16291 Log'¥(M)=1.08+017M 5 ] ELS.J: N=8273 Log'#(M)=1.08+0.17M

Log‘'V(M)
Log'¥(M)

Puc. 2. JI®C ranaktuk noss B oosact | Puc. 3. JIOC ramakTMK moas C
500 <V <20000 xm/c u |b H| >2(0°. | U3BECTHBIMU MOP(}OIOTUIECKUMH

THUIIAMU B obmacTu
500 <V <£20000 KM/C u
|b11] > 20°.
0,0 T T T T 0,0
Log¥(M)=1.2+0.17M
40f  ELiN=2247 \ of SliN=6026 ]

201 201

Log¥(M)=Log(SchF(-19.40,-1.25))

M)

=301 =301

Log'¥(M)=Log(SchF(-19.45,-0.90))

Log'¥(
Log‘V(M)

40 40F

50l %
P et
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501

Puc. 4. JI®C osmmnrudeckux u | Puc. 5. JI®C choupanbHBIX |
JUH30BUIHBIX  TaJaKTHK TION B | HPPETYJSPHBIX TalaKTUK TIONS B

oomactm 500 <V <£20000 xm/c u | obmactm 500 <V <20000 km/c u
|b11| > 20°. 11| > 20°.

Ha puc. 4 pencrasnena JIOC umANTHYECKAX W TUH30BUIHBIX TaTakTHK. U3 puc.
4 BUAHO, YTO JUIS SJUIMNTHYECKUX WM JMH3OBHAHBIX TaJlaKTHK, KaKk U JUII BCEX
ranaktuk, ¢ynkmmer [llextepa Bo3MoxHO mpeacraBuTh Tonbko dacth PC. Ilo

napaMeTpy & OHH HE OTJIMYAIOTCs, a 1Mo napameTpy M. OTIHYaroTCs Mao.
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Ha puc. 5 npencrasnena JI®C crnupanbHBIX M UPPETYNSpHBIX TanakTuk. M3
pucyHka BuAHO, uTo PC CHUpaNbHBIX W HPPETYJAPHBIX TalaKTUK XOPOIIO

npencrasisercs Gynkiumeii [llextepa ¢ mapamerpamu M, =—194 u o =-1.25

MOYTH BO BCEW M3y4eHHOM obnactu cBetumocreit: M > —-21.5.

3HAUUTEILHOE YHCIIO TaJaKTHK C W3BECTHBIM MOPQOJIOTHUECKHM THUIIOM
MO3BOJISIIOT HaMm Oosiee  MOAPOOHO wm3ydarTh 3aBUCHUMOCTh PC TaNakTHK OT
MOpP(}OJIOrHH TallaKTHK. Pe3ysbTaTsl MpeacTaBieHsl Ha puc. 6. 3 puc. 6 BHIHO,
yro nosenenne PC ramaxktuk thoB E m L momooHo mosemennto PC Becex
rajlakTHK, T.€. HE BO BCEM JIHAaIla30HE a0COIIOTHBIX 3BE3MHBIX BeIUYHH PC MOKHO
npencraButh  QyHkuuei Illexrepa. JlanHas QYHKIUS I SJUTHITHYECKHAX
rajakTUK [pPUMEHHMa ToJabko B jgumamazone —21.2<M <-17.8, a s
JIMH30BU/HBIX TAJIAKTHK — B quanazone —21.2<M <-16.5.

®C cnupaidbHBIX TAJTAKTHK MOXHO TpeacraButh ¢(ynkiued Illextepa B
JOBOJIGHO IIMPOKOM JHarna3oHe aOCONIOTHBIX 3BE3IAHBIX BenuuuH. [lapameTpom
M. oum cnabo ormmuarorcs. Ilpu mepexoje OT paHHUX COHPAJEd K IMO3JIHHM

CIUpasIM TIPOMCXOJIUT YMeHbIIeHHe mapamerpa ¢ B ¢yHknum Lllextepa, T. e.
YBEIMYMBAETCS OTHOCUTEIHFHOE YHCIIO CA0BIX TAaKTHK.

Ha mnocnegnem wuzobOpaxenun puc. 6 mnpusenena JIOC crompaneir 0Oe3
HENPABUJIBHBIX CIIUPAIBHBIX M MPPETYISPHBIX ralakTUK. V3 prUCcyHKa BUJHO, 4TO
JIOC “guereix cruparneir” B c1abOM KOHIIE JOBOJBHO IUIOCKAs W B JHMANa3oHE
—21.5<M <£-14.0 moxuo npencraButs (ynkimein [llextepa ¢ mapamerpamu

M,=-192 u a=-1.0.

5. CpeaHsisi IVIOTHOCTH YMCJIA TAJIAKTHK Pa3HbIX MOPG0I0TrH4yecKUX TUIIOB

Ecnu ¢akTop MONMHOTHI HE 3aBHCUT OT aOCONIOTHOW 3BE3AHOW BEIMYUHBI, TO
HopmupoBaHHass PC ramakTHK HE 3aBHCHT OT ITOJIHOTHI BEIOOPKH MO BUAMMOM
3BE3MHOW BenmmunHEe (CM., Hampumep, Neyman, Scott 1974, Tepebmwxk 1980). To
€CTb, KOTJa BBIMIOJIHSIETCS 3TO yCJIOBUE, TO HOpMHUPOBaHHYI0 PC rajJakTHK MOKHO
MOCTPOUTH TaKXke 10 HEMOJHOW BEIOOpKe. MIHOe mojoXeHHne, KOT/la OIIeHUBAeTCs
CpelHss IUIOTHOCTh 4YHWCIA TaJakTUK. JJis 3TOro HaJo0 OICHUTH IONHOTY
M3y4aeMbIX BHIOOPOK.

Ha puc. 7 as Haueit BIOOpKH IpeACTaBlIeHa 3aBUCUMOCTb BenuauH V' /V, ot

a0COJIFOTHOM 3BE3[THOM BEIMYWHBI TalakTHKU. Puc. 7 He mokasbIBaeT KaKyro-aubo
3aBUCHMOCTh MEXIy OOCYKIaeMBIMH BEIHMYMHAMH, T.€ (AKTOp IOIHOTH HE
3aBUCUT OT a0COIIOTHOM 3BE3/IHOI BEJIUYUHEL.

[MonHoTy CfA2 BBIGOPKM MOXEM HPHOIM3UTENBHO OLEHUTH mo <V /V >

tecty llmuara (Schmidt 1968), mockombky 3TOT TecT TpeOyeT paBHOMEPHOTO

pacipeacsCHus raJJaKTUK B IIPOCTPAHCTBE.

B Tabn. 1 mpencrasinensi Bemumnsi <V /V, >+(12n)""? B 3aBucumoctn ot

BH}II/IMOﬁ 3BC3ZIHOI71 BCIIMYMHBI, KaK I BCCX TraJlaKTHK, TaK U OJIA TraJJaKTUK C
N3BCCTHBIMHA MOp(bOJ'IOFI/I‘ICCKI/IMI/I tunamu. 13 Ta6JII/IHI>I BUJHO, YTO BBIGOpKy BCEX
TaJaKTUK MOXHO CYHUTaTb HOJ'IHOI‘/'I, a BBI60pKI/I raJJaKTUK C H3BCCTHBIMH



MOP(}OJIOTUYECKUMH THIIAMH MOXKHO CYHTAaTh IOJIHBIMH 10 BHJIMMOM 3BE3AHOMN
BesmunHBI M=14.0 - 14.5.
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Puc. 7: 3aBucumocts Bemmuns V' / V0T abcomoTHO# 3Be31HOI

BCIIMYHWHBI TAJIAKTHUKH.

Ha puc. 8 mpencrasiieHsl pacnpeneaeHus BUIUMBIX 3BE€3/IHBIX BEJIMYUH TaJIaKTHK
pasHbIX Mopdosoruueckux THUNOB. M3 pucyHka BHIHO, YTO paclpelesICHHs
BUJMMBIX 3BE3AHBIX BEIUYMH ISl TATAKTHK Pa3HBIX MOP(OJIOTHYECKHX THUIIOB
MOXO0H JIPYT Ha ApYyra M 3aMETHO OTIUYAIOTCSA OT aHAJIOTMYHOTO paclpeieseHus
Ul BCEeX TaJIaKTHK B €l1a0OM KoHIe, HaunmHas ¢ m=14. MoXHO cKa3aTh, 4TO
HeXBaTKa MOP(HOIIOTUIECKNX THIIOB TposBisieTcs nocie m=14-14.5. [Ipuuem, sti
NPOIYCKH HE3HAYMMO 3aBUCIAT OT MOP(QOIOTHYECKOTO THIA, M B TEPBOM
NpUOIKEHUH MBI IPUHSIIM, YTO BBIOOPKH IUIS PAa3HBIX MOP(OIIOTHUECKUX THUIIOB
mosHBI 10 m=14.2. Taxxe MOXeM MPHUHSITH, YTO BCS BHIOOPKA OE30THOCHTEIHHO K
W3BECTHOCTH MOP(HOJIOTHUECKOTO THIIA, SIBJISIETCS TOTHOH.



Tabauna 1. Bemuuunbr <V / Vm > B 3aBUCUMOCTA OT BHIMMOH 3Be€3JHOU

BCJIMYMHBI IJIs BCEX raJlaKTUK W JJIs TaJJaKTHK C U3BCCTHBIMU MOp(l)OJ'IOI‘I/I‘-ICCKI/IMI/I
THUITAMH.

m 10.0 105 [11.0 [11.5 [12.0 [125

<VIV. > 049+ | 0.54% | 0.44% | 0.49+ | 0.44+ | 0.45+
" 0.077 | 0.051 | 0.040 | 0.027 | 0.021 | 0.016

BCC IraJIaKTUKHN

n 14 32 |52 113|189 |337

<V/V, > 049t | 0.54% | 0.44% | 0.49+ | 0.44+ | 0.45+

R —. 0.077 0.051 | 0.040 | 0.027 | 0.021 | 0.016

Mopddooruyec-

KHMH THIIAMHU
n 14 32 52 113 188 336

Tabmuua 1 (mpoxomkeHue)

m 13.0 [13.5 | 14.0 | 145 | 150 | 155
<V/V, > 0.47+ | 0.46+ | 0.46= | 0.48% | 0.53+ | 0.50+
e rATATHK 0.012 | 0.009 | 0.007 | 0.005 | 0.003 | 0.002
n 611 | 1089 | 1872 | 3496 | 7773 | 16291
<V/V > 0.46= | 0.45% | 0.45% | 0.46% | 0.44% | 0.39+
r " 0.012 | 0.009 | 0.007 | 0.005 | 0.004 | 0.003
AJIAaKTUKH C

Mophoorngec-

KHUMHU TUIIaMHU

n 597 | 1044 | 1763 | 3164 | 5338 | 8273

st TadakTUK KOHKPETHBIX MOP(OJIOTHYECKUX THIIOB (PAKTOP MOJTHOTHI OLCHHIIH
JIBYMsI CITOCOOaMH:

a. [lo dopmyne, npemnoxenHonr Tepebmwxom (1980), kotopas, cTporo
rOBOPsI, TPEOYET PAaBHOMEPHOT'O paclpe/ie/icHus TaTaKTHK B TIPOCTPAHCTBE.

n(m,)

P(mlim ) = 1070'6(”’“"‘7’”I ) |:1 +0.6In10 N(mlim) — N(ml)j|9 m, < My (10)

rne P(my,) - daxkrop HOIHOTBI, M, - BUAMMAs BEJIMYUHA, 10 KOTOPOIl BEIOOPKY
MOXXHO MpUHATH HOMHOH, N(m,) - 4Ynciao OOBEKTOB, HMECIOIINX 3BE3/HBIC
BEJIMYMHBI MEHbIIE 71,, (M) - NPOCTPAHCTBEHHAS IUIOTHOCTh YKCIA TalaKTHK

npu m, (WK 9ucio ragakTuk B untepsane m, £0.5), N(m,, ) - uucio o6beKToB,
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Puc. 8. PaCHpe,Z[GJ'ICHI/ISI BUJUMBIX 3BC3JIHBIX BCIWYUH TaJIaKTHUK Pa3HbIX
MOp(bOJ'IOFI/I‘IGCKI/IX THIIOB.

BUAMMBIC BEIMYMHBI KOTOPBIX MEHbBILE TPEACIbHON 3BE3AHON BETMYUHBI BEIOOPKH
My, -

0. Ipennonoxum, 9to (akTOp TONHOTHI JUISl TAIAKTHK OTJCIBHBIX
MOPQOIOTUYECKUX TUIOB OJUH W TOT Xe. Toraa Qakrop NONHOTH Oyner
PaBHATHCSI OTHOIIEHWIO IUIOTHOCTH, TOJNYYCHHOW IJISi TANaKTUK C HM3BECTHBIMH
MOP(OIOTHYECKUMH THUIIaMH, Oe3 ydera 3TOro (Qaxropa, K IJIOTHOCTH BCEX
TaJIaKTUK 0Ee30THOCHTENBHO K MopdomormdeckuM TumaM. Ona pasasiercs 0.69.
SIcHO, 4TO Takoi MOAX0]T TAKKE MPUOJINKCHHBIH.

Tabnmma 2. @akTOpHl MOTHOTH M CPEAHHUE NMPOCTPAHCTBEHHBIE TUIOTHOCTH YHCIA
JUTS TATAKTUK Pa3HBIX MOP(QOJIOTHYECKHUX TUIIOB

T All E,L,SI|EL |S,I SO0/a- | E
Sd
a crocod P(m,) 1 0.69 0.60 |0.73 |0.73 |0.56
6 crioco0 P(m,) 1 0.69 0.69 |0.69 |0.69 |0.69

a crocod p(MpC_3) 0.127 |1 0.126 | 0.022 | 0.101 | 0.035 | 0.012
6 croco0 p(Mpc_S) 0.127 | 0.127 | 0.019 | 0.108 | 0.037 | 0.010
n 16291 | 8273 2247 | 6026 | 5488 | 746




Tabnuma 2 (mpogomKeHue)

T L S0/a- | Sb/Sbc | Sc Scd/Sd | Sdm/Irr
Sab

a P(m]im) 062 |0.72 |0.75 0.73 |0.70 0.74
croco0
S p(m]im) 0.69 | 0.69 |0.69 0.69 | 0.69 0.69
croco0
a p(Mpc_3) 0.010 | 0.007 | 0.008 0.011 | 0.011 0.065
croco0
0 p(Mpc’3) 0.009 | 0.007 | 0.008 0.011 | 0.011 0.071
croco0

n 1501 | 1704 | 2027 1282 | 475 538

®akTopsl monHOTE P(m,, ) ¥ cpeqHue IPOCTPAHCTBEHHBIC INIOTHOCTH YHCIIA
1
p=Pr (mlim)zq)obs(M[)’ (11)
i

JUSL TalaKTHK pa3HBIX MOPQOIOTHYECKUX THUIIOB W ISl 00OMX CrOco0OB
BBIYKCIICHHS, TPUBEICHbl B Tabi. 2. BuaHO, 4TO pasHMIA MPOCTPAHCTBEHHBIX
IUIOTHOCTEH YHCIa TANaKTHK Pa3HBIX MOP(OJOTHUECKUX THUIIOB, BBIYUCICHHBIX
pa3HbIMU CcIOCO0aMU, HE OTauYaeTcst 0oJibine yem Ha 20%.

Hcxons uz nosenerus OC UTUNTHICCKUX U JIMH30BUIHBIX TAIAKTHK, CPEIHIE
a0COJTIOTHBIE BEJIMYMHBI TATaKTHK TPUBEIEM IS JABYX HHTEPBAJIOB aOCONFOTHBIX
BenuunH, — 23 <M <-17.8u —23<M <-14.0.

PesynbraThl TpHEBeieHbI B Ta0i.3, OTKyJa BHIHO, 9TO TPH MEPEXoie OT
SIUTUNITHIECKUX TATAKTHK K JIMH30BUIHBIM TAIAKTHKaM, K PAHHUM CIHAPATBHBIM
rajakTHKaM, M Jajee, K MO3JHUM CIHPAIbHBIM TalaKTHKaM HaGI01aeTcst
YMEHBILICHUE CPEAHEH CBETUMOCTH APKHUX ramakTuk (—23 <M <-17.8).
Ta6muma 3 Cpenuue aGCOTIOTHBIE BEIHYHHBI TATAKTHK Pa3HBIX MOP(HOIOTHYECKHX
THITOB

—-23<M <-17.8 —-23<M <-14.0
T (M) oM) | n (M) oM) | n
Bcee -18.74 0.006 14646 -15.93 0.013 16269
E,L,S,1 -18.68 0.008 7154 -15.75 0.017 8257
E,L -18.81 0.016 2027 -15.83 0.034 2245
S,1 -18.66 0.009 5127 -15.73 0.020 6012
S0/a-Sd -18.67 0.010 4917 -16.44 0.022 5485
E -18.92 0.030 650 -15.36 0.051 745
L -18.78 0.019 1377 -16.35 0.042 1500
S0/a-Sab | -18.78 0.017 1586 -16.82 0.042 1704
Sb/Sbc -18.76 0.016 1897 -17.27 0.033 2026
Sc -18.55 0.019 1090 -16.14 0.044 1282
Scd/Sd -18.42 0.031 344 -15.85 0.066 473
Sdm/Irr -18.29 0.037 210 -15.03 0.043 527




6. Binsinue okpykeHHs Ha QYHKIUIO CBeTHMOCTH TraJIaKTHK

Hnst mzydenus OC ranakThk B pa3HbIX OKPYXKEHHUSIX HCIOIb3YEM CIUCOK TPYIII
ranaktuk MartecsHa u Moscecstra (2010). st moctpoennss OC ramakThk
HCITOJIB3YEM BBIIIE TPEIOKEHHBIA METOI.

B §4 wmbl paccmorpenu 3aBucumoctb @OC ramakTMK 1o OT HX
Mopdosorndeckoro Tuma. JJis ONeHKH aOCOTIOTHOW BEIWYMHBI TAAKTHK TIOJS
HAMH HCIOJB30BaHbl COOCTBEHHBIE JIyYeBBIE CKOPOCTH TalakTUK. [1O0CKOIBKY
YacTh TaJaKTUK TOJS BXOAAT B CHUCTEMbI, TO BO3HHMKAET BOIPOC, HACKOIBKO
WU3MEHUTCS Pe3yJIbTaT, €CIH AJIsl OLEHKH a0COIIOTHON BEJIMYMHBI TAJIAKTHK CHCTEM
MCTIOJIH30BATh CPETHUE JTyUeBhIe CKOPOCTH CHCTEMBI.

Ha puc. 9a npusenena HopmanuzoBanHas JIOC ranakTuk moss, a Ha puc. 96 —
TaJIaKTUK CHCTEM C YHCIOM 4ieHOB OoT | mo 337 mns pasHbIX MOPGOIOTHIECKHX
THIOB, B auanazoHe nyueBbix ckopocredt 1000xm/c <V <15000xm/c. Dru

BBIGOpKI/I COCTOSAT M3 OOHHUX M TEX JK€ TrajakTHK. Pa3HMIa 3aKII04aeTCs TOJIBKO B
OIpEACICHUU a0COIFOTHOM BEJIMYMHBI TAJIAKTHK.

U3 puc. 9a u 96 BunHO, uro OC rajgakTuk pasHbIX MOPHOIOTHYECKUX TUIIOB,
BCEX TaJlaKTUK C M3BECTHBIMH MOPQOIOTHYECKUMH THUIIAMH, BCEX TAAKTHK 0Oe3
OTHOIICHUS K W3BECTHOCTH MOP(QOIOTUYECKAX THUIIOB CYIIECTBEHHO HE
OTIMYAIOTCsA, KOrga  aOCOoNIOTHAsT  CBETHMMOCTh  TaJlaKTHK — OLEHHMBAETCS
WHMBUYaJbHBIMU JIYYE€BBIMH CKOPOCTSMH TaJaKTHK WJIM CPEIHHMH JIy4EeBBIMH
CKOPOCTSIMH TallaKTHK CHCTEMBl. BO3MOXHO, YTO ISl DIUIMOTHYECKHX U
JMH30BUIHBIX TaJJaKTHK UMEETCS] HEKOTOpasi HECOTJIaCOBAaHHOCTh B CIIA00M KOHIIE
npu M>-15.5.

Ha puc. 10 mpuBegena HopmanuzoBanHas JIOC ramakTUK pa3HBIX
MOpP(OJIOTUYECKHX THUIOB B PAa3HBIX OKPYXKCHUAX (B CHCTEMaxX pa3HBIX
KpatHocTei). B rpynmax aOCoNIOTHBIC BETHYUHBI TAAKTHK PACCUYUTAHBI 110
CPEIHHUM JIyYEBBIM CKOPOCTSIM IPYIIIIbI.

U3 puc. 10a n 106 BuxHO, yTo @C 1151 BCEX raakTHK, 0€30THOCUTEIHHO K
M3BECTHOCTH MOP(OJIOTHYECKUX THMOB, ¥ I TalaKTHK C W3BECTHBIMHU
MOPQOIOTUIESCKUMH THIIAMH, HE OTJIMYAIOTCS APYT OT JIpyra BO BCEX CHCTEMaX.
Uro xkacaerca 3aBucuMmocTH @OC rajakTK OT KpaTHOCTH Tpydm, TO OHa
CYLIECTBEHHO OTJIMYAETCsl TOJABKO B CaMbIX OOrarbiX rpynmax (B CKOIUICHUSX),
UMEIOIINX, Mo KpaifHel wmepe, 60 BuanMbIX uwieHoB. B stux rpymmax @OC
HEBO3MOXXHO mpenactaBuTh ¢yHkuueit Illextepa. Pasubie ywactku JIOC moxHO
NPEACTaBUTb JIMHEHHBIMU (YHKLIUSIMH.
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Puc. 9a. JI®OC ranaktuk mons (Kaxmas TaJaKTHKa CUYUTACTCS WHIWBHIYATHHBIM
00bekTOM) B auanaszone sydesbix ckopocreit 1000xm/c <V <15000xm/c.
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Puc. 10a. JI®C Bcex ranakTuk, 0€30THOCUTEIBHO K MOP(HOJIOrHYECKUM THIIAM, AJIS

CHCTEM Pa3HBIX KPaTHOCTEH.
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Puc. 106. JIOC ranakTHk ¢ H3BECTHEIMH MOP(HOIOTUIECKUMH TUTIAMHE IS CUCTEM

Pa3HBIX KPATHOCTEM.
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Puc. 10B. JI®C E u L ranakTuk ajis CUCTEM pa3HBIX KPaTHOCTEH.
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Puc. 10r: JIOC cnmpanbHbIX U HPPETYIIAPHBIX TaJTAKTHK JJIS CUCTEM Pa3HBIX
KPaTHOCTEH.

HabmomaeTcss Takke KpyTOH HAKJIOH B Ci1a00oil dYacTH CBETUMOCTEH, T.C.
CKOIUIEHHST TaIaKTUK OTJIMYAIOTCS OOJIBIINM OTHOCHTEIBLHBIM YHCIOM CHa6BIX
TaJIaKTUK.

Cka3aHHO€  OTHOCHUTCS  TakXe  OTIeNbHO K  TajlaKTUKaM  pasHBIX
Mopdonornueckux THoB (puc. 108-10m). Bo3zmoxHO, 4To B rpyniax HMEIOMINX
IBa BHIMMBIX 4YICHA €CTh HEXBAaTKa CJIA0ObIX TAlaKTUK II0 CPaBHEHUIO C
OCTaJILHBIMH TPYIITIaMH.

Takum oOpazom, ®C Bcex TalaKTUK W TAITAKTHK Pa3HBIX MOPQOIOTHIESCKUAX
THTIOB B OJWHOYHBIX TaJIaKTHKaX M B MallbIX rpymmax (k<35) cymecTBEeHHO HE
oTnyaroTcs Apyr ot npyra. Yto kacaercs @C CKOIUICHWH TallaKTHK, TO OHU
CWJIBHO OTJIMYAIOTCS OT aHAIOTUYHOW (YHKIMM JIPYTHMX CUCTeM. B CKOIUIeHHSX
HabIogaeTcs 00IBII0e OTHOCUTENHFHOE YHCIIO Ca0BIX TANaKTHK.

Ha puc. 11 u 12 npuBeneHs! (yHKIIUM CBETUMOCTH OTAEIBHO JUIsl CKOTICHHHA B
Hee m B Bomnocax Beponuku. Kak BugHo JIOC 3THX CKOIUVIEHHMM MOXHO
MIPEICTaBUTh TMHEHHOW QPYHKITHEH 1151 BceX MOP(OIOTHISCKIX THUIIOB.
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Puc. 10x: JI®C cnupanbHBIX ralakTUK JJI CUCTEM Pa3HBIX KPAaTHOCTEM.
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Puc. 10e: JIOC >:mMnTHYECKUX TANAKTUK JUISI CHCTEM Pa3HBIX KPaTHOCTEH.
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Puc. 10x: JI®C n1uH30BUIHBIX TANAKTHK TSI CHCTEM Pa3HBIX KPaTHOCTEH.
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Puc. 103: JIOC S0/a-Sb ranakTyk JUisi CHCTEM pPa3HbIX KPaTHOCTEH.
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Puc. 11. JI®C ramaktuk pa3HbIX MOP(OIOrHYECKUX TUTIOB CKOTUTEHUS B JleBe.
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Puc. 12. JI®C ranaktuk pa3HbIX MOp(HOJIOrHYECKUX TUIIOB CKOIUIeHUs B Bomocax
Beponuku.

B 1a6:1. 4 npuBeneHsl cpeHrue abCOMIOTHBIE BEIMYMHBI FAIAKTHK B CHCTEMAax
pasHBIX ~ KpaTHOCTEH B  JIByX  HHTEpBajlaX  aOCOJIOTHBIX  BEJMYHMH
(=23<M <-18,-23<M <-16). B rtabnuie, rae HE NPUBOTUTCI OTH
BeNMUMHBI 1St citydast —23 < M < —16, o3Havaer, 4TO HET JaHHBIX JI0 BEJIUYHHBI
M =—16. 13 tabnuipl BUAHO, YTO CPEIHKME a0COMIOTHBIC BEJIMYMHBI TAIaKTHK B
MaJIbIX CHCTEMax 3HAUYMTEIBHO HE OTJIMYAIOTCA. B CKOIUIEHHWSX K€ CpeaHss
a0COJIIOTHAsT CBETHMMOCTh TaJlaKTMK HECKOIBKO HHXKE B JBYX M3YYEHHBIX
IMaIa3oHax abCOMIOTHBIX BEJIMYMH. DTO O3HAYAET, YTO B CKOIICHUAX T'aJAKTHK HE
paboTalOT MEXaHWU3MBbI, KOTOPbIE MOTYT CO BPEMEHEM YBEJIMYHTh CBETHMOCTH
SpKuX TamakThK. CKopee MPOMCXOAUT OOpPATHBIM MPOIECC W PACIIPEICIICHHE
MacC TaJakKTHK B CKOIUIEHHSX (@ TakKe B MalblX CHCTEMAax) OINpeaesseTCs
HaYaJbHBIMH YCIOBHSIMH ITPU GOPMHUPOBAHUHU CHCTEM.

U3 tabi. 4 Takke BUIHO, YTO TPH TEPEXOJE OT DIUIUNTHYECKUX I'aJIaKTHK K
JMH30BUIHBIM TajakTUKaM, a Jajee K pPaHHUM M K [O3JHHM CIHPaJbHBIM
rajlakTUKaM CpejHsst aOCONIOTHAs CBETUMOCTh TaJaKTHK YMEHBINAETCS, KaK B
OJIMHOYHBIX IaJIAKTHKAX, TaK ¥ B TPYIIIax.

7. CpeaHsisi IVIOTHOCTH YHCJIA TAJIAKTHK B CHCTEMAax
Pa3HBIX KPATHOCTEM

Ha puc. 12, cooTBETCTBEHHO, NPUBEACHBI pacipeeiAeHUs] BUIUMOMN 3BE3IHOM
BEITUYHMHBI JJISI TATAKTUK TOJIS, JUIS TATAKTUK TPYII U JJIs ONWHOYHBIX TaJaKTHK.
U3 3TuX pUCYHKOB BHJIHO, YTO BO BCEX 3THX CHCTEMaX HEMOJHOTA TaJlaKTHK I10
BUJIMMON 3BE3JHOH BEINUYWHE, C W3BECTHBIMH MOPQOIOTUIECKHUMH THIIAMH,
HaunHaeTcst okosio m=14", Cuuraem, 9TO B M3yYCHHBIX CHCTEMax BBHIOOPKH BCEX
rajlakTUK, OC30THOCHTEIBHO K HM3BECTHOCTH MOP(OIOTHMUYECKUX THIIOB, MOJIHBI.
[lomHOTY BBIOOPOK TANAaKTHK pPa3HBIX MOP(MOIOTHYECKHX THIOB OIICHHM II0
BTOPOMY METONY, NPEMIOKCHHOMY BhITe (pazmen 5). To ecth, GakTop MOTHOTHI
OyIeT paBHATHCS OTHOIICHUIO TUIOTHOCTH, MTOIYICHHON IS BCEX TAIAKTHK JAHHOU
CUCTEMBI C U3BECTHHIMU MOP(OIOTHIECKHUMHU TUTIAaMU, 0e3 ydera 3Toro (akropa, K
TUIOTHOCTH BCEX TallaKTUK OE30THOCHTENBHO K MOP(]OIOTHYECKUM THIIAM.
CunraeM TaKKe, 9TO MOJTHOTA BEIOOPOK HE 3aBUCUT OT MOP(OIOTHIECKOTO THIIA U
OT a0COJIFOTHOHN BEJIMYMHBI TAIAKTHK (CM. paszen 5).
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P(m,_ .k = = (12)
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Tabnuua 4. CpeaHre abCONIOTHBIC BETMYMHBI TAJIAKTUK B JABYX JUANIa30HAX
a0COJIFOTHBIX BEJIMYUH B TPYIaX Pa3HbIX KPATHOCTEH.
k 1 2 3,4 5-10 11-34 | 63-337 | 2-337
M< | -18.78 | - - - - -18.62 | - cpenHee
-18 | 0.008 | 18.88 | 18.83 | 18.72 | 18.78 | 0.027 | 18.79 | cT. OTKIL.
7925 | 0.015 | 0.019 | 0.019 | 0.026 | 450 0.009 | n
All 2294 | 1562 | 1280 | 568 6154
M< | -18.46 | - - - - -16.48 | - cpenHee
-16 | 0.013 | 17.86 | 17.97 | 17.56 | 17.38 | 0.031 | 17.26 | cr. OTKI.
8679 | 0.026 | 0.028 | 0.031 | 0.047 | 673 0.015 | n
2400 | 1638 | 1396 | 626 6733
EL, M< | -18.71 | - - - - -18.64 | - cpenHee
S,1 -18 | 0.011 | 18.81 | 18.82 | 18.77 | 18.81 | 0.032 | 18.78 | cT. OTKIL.
3484 | 0.021 | 0.026 | 0.026 | 0.036 | 369 0.012 | n
1153 | 825 789 354 3490
M< | -17.29 | - - - - -16.51 | - cpenHee
-16 | 0.018 | 17.86 | 17.88 | 17.47 | 17.25 | 0.035 | 17.14 | cT. OTKIL.
3962 | 0.035 | 868 0.040 | 0.059 | 545 0.019 | n
1212 | 0.040 | 871 397 3893
E,.L M< | -18.88 | - - - - -18.73 | - cpenHee
-18 | 0.025 | 18.97 | 18.92 | 18.90 | 18.90 | 0.049 | 18.89 | cT. OTKIL.
768 0.041 | 0.050 | 0.048 | 0.058 | 183 0.022 | n
321 260 288 153 1205
M< | -17.66 | - - - - -16.47 | - cpenHee
-16 | 0.043 17.83 | 17.73 | 0.050 | 17.06 | ct. oTKJI.
819 0.066 | 0.097 | 264 0.034 | n
311 164 1334
S,I M< | -18.67 | - - - - -18.57 | - cpenHee
-18 | 0.012 | 18.77 | 18.78 | 18.72 | 18.75 | 0.041 | 18.74 | cT. OTKIL.
2716 | 0.024 | 0.031 | 0.031 | 0.045 | 186 0.014 | n
832 565 501 201 2285
M< | -17.24 | - - - - -16.54 | - cpenHee
-16 | 0.019 | 17.73 | 17.77 | 17.35 | 17.08 | 0.049 | 17.19 | cr. oTKIL.
3143 | 0.041 | 0.047 | 0.049 | 0.072 | 281 0.023 | n
882 603 560 233 2559
S M< | - - - - - - - cpenHee
-18 | 18.70 | 18.77 | 18.81 | 18.73 | 18.7 | 18.58 | 18.75 | cT. oTKIL.
0.013 | 0.024 | 0.032 | 0.032 | 7 0.044 | 0.015 | n
2606 | 806 536 490 0.04 | 175 2199
5
192
M< | -17.46 | - - - - -16.72 | - cpenHee
-16 | 0.021 | 1793 | 17.85 | 17.63 | 17.19 | 0.062 | 17.43 | cT. OTKIL.
2913 | 0.040 | 0.049 | 0.050 | 0.076 | 233 0.025 | n
843 568 532 218 2394




Tabnuma 4 (mpoxomKeHue)

k 1 2 34 5-10 11-34 | 63- 2-337
337
E M< | -18.98 | -19.17 | -18.88 | -19.20 | -18.93 | -18.75 | -18.99 | cpennee
-18 | 0.049 0.073 0.089 | 0.090 | 0.105 | 0.102 | 0.042 | cr.
218 95 100 101 62 54 412 OTKIL
n
M< | -16.70 | - - - - -16.23 | -16.62 | cpeanee
-16 | 0.102 0.054 | 0.050 | ct.
234 105 475 OTKII.
n
L M< | -18.85 | -18.91 | -18.94 | -18.80 | -18.89 | -18.72 | -18.85 | cpennee
-18 | 0.030 0.048 0.059 | 0.055 | 0.068 | 0.055 | 0.025 | cT.
550 226 160 187 91 129 793 OTKIL
n
M< | -17.65 | - - -17.75 | -17.64 | -16.96 | -17.54 | cpennee
-16 | 0.050 0.078 | 0.128 | 0.081 | 0.042 | cr.
588 205 98 159 859 OTKIIL.
n
SO0/a- | M< | -18.81 | -18.88 | -18.88 | -18.84 | -18.74 | -18.57 | -18.82 | cpennee
Sb -18 | 0.018 0.031 0.040 | 0.043 | 0.056 | 0.054 | 0.019 | cT.
1473 501 337 288 119 121 1366 | otk
n
M< | -17.72 | -18.25 | -18.10 | -17.69 | -17.69 | -17.13 | -17.77 | cpennee
-16 | 0.031 0.051 0.062 | 0.068 | 0.096 | 0.089 | 0.031 | cr.
1568 513 350 309 129 144 1445 | otk
n
Sbc- | M< | -18.56 | -18.64 | -18.67 | -18.60 | -18.76 | -18.58 | -18.64 | cpennee
Irr -18 | 0.017 0.035 0.046 | 0.045 | 0.074 | 0.063 | 0.022 | cr.
1243 331 228 213 82 65 919 OTKIL
n
M< | -17.06 | -17.42 | -17.53 | -17.14 | -16.78 | -16.37 | -16.91 | cpennee
-16 | 0.024 0.059 0.069 | 0.068 | 0.096 | 0.055 | 0.031 | cr.
1575 369 253 251 104 137 1114 | otk

n
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Puc. 12: PaCHpC,Z[GJ'ICHI/IC BUAWMBIX 3BC3HBIX BCJIWYHH TaJIaKTUK II0JId, TPYHII U
OJVHOYHBIX TaJJaKTHK B JAaIra3oHe JIYYUCBBIX CKOpOCTefI

1000km/c <V <15000xm/c.

JlaHHbBIE IPUBEICHEI B TA0II. 5.

Tabmuna 5.

[InoTHOCTE YKCNa BceX rajlakKTHK U HaOJtoaeMasi JI0THOCTb IaJlaKTHK
(Mric™) ¢ u3BeCTHBIMU MOP(OIOrHUCCKUMH THIIAMH ¥ (AKTOP TIOTHOTHI B
CHCTEMax pa3HbIX KPaTHOCTEH B AMANa3oHe aOCONMIOTHBIX 3BE3IHBIX BEIIMYHH

M <-145.
k 1 2 3,4 5-10 11-34
All pk) 0.0369 | 0.00486 | 0.00316 | 0.00509 | 0.00352
n 8790 | 2412 1644 1416 642
ELSI| p, (k) |0.0220 | 0.00250 | 0.00187 | 0.00314 | 0.00214
" ‘ 4023 1218 872 885 405
P(m,_) | 0.596 | 0.514 0.592 0.617 0.608
Tabauia 5 (mpogoKEHHE)
k 63-337 | 2-337 | 1-337 | field
All pk) 0.00665 | 0.0233 | 0.0602 | 0.0702
n 673 6787 | 15577 | 15577
ELSI| p, (k) |0.00508 | 0.0147 | 0.0367 | 0.0460
" ‘ 545 3925 | 7948 | 7948
P(m,_) | 0.764 0.631 | 0.610 | 0.655

B Tabn. 6 npuBeneHa cpeaHss INIOTHOCTh TAJIAKTHK Pa3HBIX MOP(OIOTHIECKUX
THIIOB B TPYyIIax pa3Hoit kpaTHOCTH B mpeaenax M < —14.5, paccunranHoii B

o0beme ¢ npeaeiamu ayueBsix ckopocreit 1000 xm /¢ <V <15000xm /¢ .

ONEHUM TIIOTHOCTh TallaKTHK pa3HbIX MOPQOJIOTHYECKUX THIIOB BHYTPH
rpyni. O6beM NPOU3BOJILHON IPYIIBI OLIEHUM CIIEIYIOLUIMM 00pa3oM:



Vol, = g;zR;’naX (13)

rne R’

max

- pammyc rpymnnsl (HanOoJblliee PacCTOSHUE WICHOB TPYIIBI OT €e

neHrtpa). Torna cymMmapHasi INIOTHOCTh TPYTII C JAHHOW KPaTHOCTBIO OyieT:

Vol(k) =Y _Vol,(k) (14)

A TIJIOTHOCTP TaJIAKTHK BHYTPH I'pyHIlbl MOKHO OLCHUTH CJICAYIOINUM 06p330MZ

V.o -V
k — k max min . 15
P, (k)= p( )—Vol(k) (15)
Ta6muma 6. Cpexmsis miotHOCTh TanakTik ( P(k) , Mik™) pasHbix
MOP(hOJIOTHIECKUX THITOB B TPYIIIaX Pa3HOW KPATHOCTH B JHAITa30HE
a0CONIOTHBIX 3Be3aHbIX Benmnuud M < —14.5.
k 1 2 3.4 5-10 11-34
All p(k) 3.6910° |4.8610° |3.1610° |5.0910° |3.5210°
n 8790 2412 1644 1416 642
ELSI p(k) 3.6910° |4.8610° |3.1610° |5.0910° |3.5210°
g 4023 1218 872 885 405
EL p(k) |62710° [92310* |8.9910* |9.2110* |4.9310*
’ n 831 331 266 312 164
S1 p(k) 3.0510° [3.9310° |2.2610° |4.1710° |3.0310°
’ n 3192 887 606 573 241
S p(k) | 156102 [2.8010° | 1.6410° |2.3210° |1.4510°
n 2931 844 568 536 220
E p(k) |2.6810° |1.6110* |1.3710* |1.8810* | 1.7210*
n 235 97 101 106 66
L p(k) |3.6110° |7.6210* |7.6210* |7.3310* |3.2110*
n 596 234 165 206 98
S0/a- p(k) |52810° |[1.2110° |79110" |1.2910° |5.7110"
Sb n 1571 513 350 312 130
Sheqrr | AK) | 2.53107 1272107 | 1.4710° | 287107 |2.45107
¢ n 1621 374 256 261 111




Tabmuria 6 (TTpoI0IDKEHNE)

k 63-337 2-337 1-337 field
All pk) |6.6510° 233107 6.02 107 | 7.02 107
n 673 6787 15577 15577
ELSI p(k) 665107 233107 6.02 102 | 7.02 10
el 545 3925 7948 7948
EL p(k) |[3.1810° 6.82 107 1.31 107 | 2.32 107
’ n 264 1337 2168 2168
S p(k) |3.4710° 1.65 107 470107 | 4.70 107
’ n 281 2588 5780 5780
S p(k) [2.07107 9.99 10 2.56 107 | 2.43 107
n 233 2401 5332 5332
E pk) |[2.1610° 3.23 103 59110 |7.20103
n 105 475 710 710
L pk) ]1.0210° 3.60 107 7.21107% | 1.60 102
n 159 862 1458 1458
S0/a- p(k) |7.6810" 447107 9.7510° |9.2310°
Sb n 144 1449 3020 3020
Sheprr | PK) | 2.7010° | 1.20107 373107 |3.77 107
n 137 1139 2760 2760

JlaHHbIe JUIsl TPYIII C pa3HBIM YKCIIOM YJICHOB NpuBe/eHbI B Ta0. 7. Kak BuaHO
IJIOTHOCTh YHMCJIa TaJJaAKTUK BHYTPU PYNI C Pa3HbIM YKMCIIOM YJIEHOB HECKOJIBKO

ax Vmin) .

[I1oTHOCTH YKCIIa rajlakTHK BHYTpHU Irpynil ¢ 41CJIOM YJICHOB Oouibllie 3 COCTaBIISIET

THICSY pa3 OoJIbIle, YeM CPEAHSS IUIOTHOCTh rajakTHK B ooveme (V)

44 Mux>.

Koaddurmentsr (V

—V_. )/ Vol(k) MoxHO HCTIONIB30BaTh TAKKE IS

OLCHKU ITNIOTHOCTH BHYTPU I'PYIIT AJId TaJJaKTHUK Pa3HbIX MOp(l)OJ'IOI‘I/I‘{CCKI/IX

THIIOB.

Tabmnuma 7
. Vol(k) Vinax — Vi p(k) P, (k
Mk’ Vol(k) Mk Mk
3,4 600.48 8053.7 0.0032 25.77
5-10 735.14 6578.4 0.0051 33.55
11-34 728.40 6639.3 0.0035 23.24
63-337 509.87 9484.9 0.0067 63.55
3-337 2573.89 1879.9 0.0233 4378




8. 3aBucumocTs @C rajakTuK OT IVIOTHOCTH U IMCTIEPCHH
CKOpOCTeil rajlakTUK B rpynmax

UccnenoBanue 3apucumoctd OC rajakTUK OT IUIOTHOCTH U OT IUCIIEPCHUHU
JYYEBBIX CKOPOCTEH TallakKTUK B TPYIINE BBITOJHEHO IS TPYIIIT C YUCIIOM YJICHOB
or 5 mo 34. B kadectBe Mepbl JUIsl IJIOTHOCTH OyJE€M HCIOJb30BaTh CpelHEE
MApPHOE PACCTOSHUE MEXK/y TaTaKTUKAMHU TPYTIITbL:

k k-1
2D

j<i i=1
Rp :jk(k—_l) ’ (16)

rae 1, =2(<V >/ H)sin(d, /2) ,a d - yropoe paccTosHue MEXKIY [-bBIMU j - bIM
“JICHAMH TPYTITIbL, K —9¥ICIIO WICHOB B IPYIIIIC.

ITo sTomMy mapameTpy rpynmel paspenuM Ha ase wactu: R, <0.5Mnk n

R, > 0.5 Mnk . TTo qucriepcuu Jy4eBbIX CKOPOCTEH
1/2

o=\ 1Z(V <V >) (17)

(tne V., - mydeBas cKOPOCTb i - OroO WIEHA JAHHOH IPYIIIBL, kK —4UHCIIO WICHOB B TPYTIIIE,

<V > - cpennsist TydeBasi CKOPOCTb TPYIIIIbI) TAKXKE TPYIIIBI Pa3IeIiM Ha JBE YaCTH:
o, <200xm/c u o, >200KkMm/c.

0,0 [ 0,0 prrrrrrreee
k=5-34: Al k=5-34; Al
RP<=0.5 Mpc RP>0.5 Mpc I3
A0} N=g14 1,07 N=1244 oo 2
S 20} S 20t
: 1
S 30t 3 30}
N \
20 Log¥(M)=Log(SchF(-19.00.1.20)) sob T/ LoatM)=Log(SchF(-19.35.0.60)
0 e v v
23 22 21 20 19 -18 A7 -16 -15 -14 23 22 21 20 19 18 A7 16 -15 -14
M M

Puc. 13: JI®C ranakTuk rpynm ¢ YUCJIOM YJIEHOB OT 5 10 34 11 ByX JUana3oHOB
CPEAHUX MapHBIX PACCTOSHUH MEXIY TaTaKTHKAMH.

Ha puc. 13 npusenena JIOC ramakTukK A TPYHNI C CPeIHUMH MHapHBIMU
paccrosHnsaMu Mexkay ranakrukamu R, < 0.5Mnk w R, > 0.5 Mnx . U3 pucynka

BUJHO, YTO B IDIOTHBIX TPyIIax (Rp < 0.5 Mnk ) Habmogaercss OTHOCUTEILHO



MHOTO CJabblX W MaJo SPKHX TaJakTHK, Ye€M B pPa3peKEHHBIX TpyIax
(R,>0.5Mnk). Cpennss aOcomoTHas BEIMYMHA TaNaKTHK B JMANa3oHe

a0COJTFOTHBIX BEJINYUH M <-18, COOTBETCTBEHHO, paBHa
<M >=-18.58+£0.024 JUTISt rpym c R, <0.5Mnx u

<M >=-18.87+0.020 ans rpynnc R, >0.5Mnx .
Ha puc. 14 npusenena JIOC ranakTuk Ais rpyIn ¢ AUCHEpCUeil TyueBbIX
ckopocreir 0, <200xkm/c u o, >200xkm/c. U3 puc. 14 BugHO, 4TO B TpymIIax

C MCHBIIMMHU JAHUCTIEPCUSIMU JIyYEBBIX CKOPOCTEH, KaK M B IUIOTHBIX Tpynmax,
HaOJrogaercst OOJIBIION HakioH B ciaabom koHue JIDC, T. e. wmmeercs
OTHOCHUTEIHFHO MHOTO Cla0bix rajmakTtuk. CpemHsii aOCONIOTHAs BEIMYMHA
raJakTWK B auara3oHe adbcomoTHeIX Bemuund M < —18, cooTBeTCTBEHHO, paBHA

<M >=-18.64+£0.022 st rpymnm c o, <200xm/c u
<M >=-18.86£0.022 gusrpymnc o, >200xm/c.

0,0 e 0,0 S
k=5-34; All k=5-34; Al
SigV<=200km/s =z SigV>200km/s z
-1,0F N=1054 1 -1,0FN=1004
S 20 S 20
= =
(o)) (o))
830 930 \
7 | Log¥(M)=Log(SchF(-19.30-0.70))
40 \ ] 40t
' Log'¥(M)=Log(SchF(-19.35,-1.20)) ’
_5’0 " n L L n L " L _510 " L n L L L L L
23 22 21 20 19 -18 -17 -16 -15 -1 23 22 21 =20 19 -18 -17 -16 -15 -14
M M

Puc. 14: JI®C ramakTuk TpyHI C YHCIOM WICHOB OT 5 110 34 I IBYX AWAIa30HOB
AWCIIEPCHH JTy4eBbIX cKopocTeit ranaktuk: o, < 200xm/c u o, >200xm/c.

Ha puc. 15 rpynmbl rajakTHK pasfeleHbl Kak [0 CPeAHUM IapHbIM
paccTOsHMEM, TaK U IO JIy4eBbIM CKOpPOCTSIM rajpaktuk. M3 puc. 15 BHaHO, 4TO

TUIOTHBIE IPYIIIBI ¢ MAJIBIMH JIMCTIEPCHAMH JTy4eBbIX ckopocteit (R, < 0.5Mnk u
o, <200xm/c) cBonmu @C TOBOJIBHO CHIBHO OTIMYAIOTCS OT TPYIIT HMEIOLIHE
MaJlylo TUIOTHOCTb W Oonbluyro aucnepeuto  ckopocteit (R, >0.5Mnk  u

o, >200xm/c). B rpynnax ¢ o, >200xkm/c u R, >0.5Mnk mabmonaercs

CWIBHBIA JeUIUT C1a0blX TaJaKTHK, a TaKKe MHOIO SPKMX TallaKTHK IO
cpasHenmto ¢ rpynmnamu ¢ R <0.5Mnx u o), < 200xm/c . ®C ramakTHK Ipyrin

¢ 0, >200km/c u R, >0.5Mnk neBosmoxHO mnpeicTaBuTh (yHKUMEH

[lexrepa.



Takum O6p330M, rpynnbl ¢ MaJbIMU JUCHECPCUAMU JTYUYCBBIX CKOpOCTCfI uc
MaJIbIMU CPEAHUMMU IMMAPHBIMU PACCTOAHUAMHU MCXKAY YICHAMU COACPIKAT B cebe
OTHOCHUTEJIBLHO MHOI'O CJIa0BIX TAIAKTHK U OTHOCUTEIHLHO MAaJIO APKUX TaJIaKTHK, 1O
CpaBHCHUIO C IpyHniiaMu UMCIONIUC OoJIbIIINE AUCTIEPCUN JTYUYCBBIX CKOpOCTeﬁ n
OOJIBIIIHE CpCAHHNC TApHBIC pACCTOAHNA MCXKAY YJICHAMMU.

0,0 prrrrrer 0,0 prerrrrer
k=5-34; Al k=5-34; Al
SigV<=200 km/s 4. z 2 SigV>200 km/s z
-1,0FRP<=0.5 Mpc .~ 1 -1,0F RP<=0.5 Mpc
N=522 ’ N=292
<20 < 20}
2 SigV/>200 km/s §
c RP>0.50 Mpc 5 \
530 S 30t ]
Log¥(M)=Log(SchF(-19.10,-1.10))
40 Log®(M)=Log(SchF(-19.00,-1.25)) ] 40}
_50 L L n L L L L L _510 L L L L L L n L
23 22 21 20 19 18 17 -16 -15 -14 -23 22 21 20 19 -18 -17 -16 -15 -14
M M
0,0 prrrrrrrr 0,0 et
k=5-34; Al 2 k=5-34; Al
SigV<=200 km/s 2 SigV>200 km/s
-1,0F RP>0.5 Mpc 1 -1,0FRP>0.50 Mpc
N=532 N=712
S 20 s 20}
5 5 ™ Log'¥(M)=-460.1563-65.6466M-
0] D 2 3
8 a0 8 a0 3.0828M2-0.0474M
Log¥(M)=Log(SchF(-19.50,-1.10
40 0g'¥(M)=Log(SchF(-19.50,-1.10)) ] a0l
_5,0 i 1 I 1 I 1 1 1 _5’0 1 1 1 L 1 I 1 1
23 222 21 20 -19 -18 -17 -16 -15 -14 23 22 21 -20 19 18 -17 -16 -15 -14
M M

Puc. 15: JIOC rajgakTuk B 3aBUCHMOCTH OT CPEIHETO MAPHOTO PACCTOSHHS MEXITY
rajJakTHKaM{d M JHUCTIEPCHH JYYEBBIX CKOPOCTEH TajakTHK B IPYIIAX C YHUCIOM
yiieHoB k=5-34.

Ob6cyauM  5TOT  BOMPOC Ui TaJlaKTUK ~ 00OMX  MOP(OIOTHIECKUX
nmoapasneneHuil: ramakTuku E+L u ramaktukn S-+1. PesynmeTaTel mpuBeneHB Ha
puc. 16 u 17. OTu pUCYHKH TOKA3bIBAIOT, YTO BBHINIECKA3aHHOE MOBTOPSETCS KaK
JUISL DJUTMOTUYECKUX M JIMH30BHUIIHBIX TalakTHK, TaK M JJs CHUPAIBHBIX H
HPPETYIISAPHBIX TAIAKTHK.

OO0cyMM aHAJIOTUYHBIN BOIIPOC JJIsl TPYIII UMEIOIIME JIBa BUUMbIEC YIeHA. JTH
TPYIIBI Pa3fesidM MO Pa3HOCTH JYUYEBBIX CKOPOCTEH U MO PACCTOSHUIO TajJaKTUK
Ha HeOecHoU ctepe. Pesymnprar npencraened Ha puc. 18. Kak BumHO U3 pucyHka
MOJTyYeH aHAJIOTUYHBIN pe3ybTaT, KaK ¥ ISl TPYIIIT C YMCIIOM WIEHOB OT 5 110 34.
Pesynbrar moBTOpsETCS Takke JUIS TaNaKTHK Pa3HBIX MOPQOJIOTHIESCKUX
nonipazaenenwnii (puc. 19).



0,0 e 0,0 S
k=5-34; E L k=5-34; E,L
SigV<=200 km/s zz SigV>200 km/s g
-1,0F RP<=0.5 Mpc g I 1 -1,0F RP<=0.5 Mpc 1
N=119 N=81 =
S 20 $-20 ]
330 1l S 30 \ 1
Log'¥(M)=Log(SchF(-19.00,-1.00)) Log¥(M)=Log(SchF(-19.30,-1.10))
4,0 1 40 ]
50 U 50 T
23 22 21 20 -19 -18 -17 -16 -15 -14 23 222 21 20 -19 -18 -17 -16 -15 -14
M M
0,0 s 0,0
k=5-34; E,L k=5-34; E,L
SigV<=200 km/s k3 :{ SigVv>200 km/s
-1,0F RP>0.5 Mpc -1,01 RP>0.50 Mpc 1
N=81 N=195
< 2,0 < 20 1
5 S T
fed 20 2 20 Log¥(M)=-112.4631-13.564M-
- Log¥(M)=Log(SchF(-20.10,-1.05)) - 0.4968M?-0.0049M?*
40 4,0 ]
50 T 5,0 P P
-23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -23 -22 21 -20 -19 -18 -17 -16 -15 -14
M M
Puc. 16. To xe, uro u Ha puc. 15 ma E+L ranakruxk.
(o[ Emm— 0,0
k=5-34; S| k=5-34; S|
Sigv<=200 km/s =3 Sigv>200 km/s
-1,0F RP<=0.5 Mpc -1,0F RP<=0.5 Mpc 1
N=235 N=101
s 20 S 20 ]
Eal =
g 30
= -3,0 -3, 1
AN
N Log¥(M)=Log(SchF(-19.00,-1.10))
40 ] 4,0 ]
Log'¥(M)=Log(SchF(-19.15,-1.40))
50 T B0 e
23 222 21 20 19 -18 -17 -16 -15 -14 23 22 21 20 19 -18 -17 -16 -15 -14
M M
0,0 0,0 S
k=5-34; S| z o k=5-34; S|
SigV<=200 km/s SigV>200 km/s
-1,0F RP>0.5 Mpc -1,0f RP>0.50 Mpc 1
N=249 N=229
$ 20 s 20
z %
3 30 3 30 Log¥(M)=-327.3813-44.6869M-
1.9856M2-0.0284M°
Log¥(M)=Log(SchF(-19.70,-1.25))
-4,0 1 4,0

-23 22 -21 -20 -19 -18 -17 -16 -15 -14

M

,0
-23 -22 -21 -20 -19 -18

M

-17 -16 -15

14

Puc. 17. To xe, uaro u Ha puc. 15 g S+I ramakTuk.



k=2; All

dv<=85 km/s
F dR<=0.15 Mpc

N=534

\

Log¥(M)=Log(SchF(-18.90,-0.95))

k=2; All
dv>85

[ dR<=0.15
N=536

Log¥(M)

a0l Log¥(M)=Log(SchF(-19.10,-0.70)) ]

50 . . . . A A . .
-23 -22 -21 -20 -19 -18 -17 -16 -15 -14

M

M M
0,0 ——— 0,0
k=2; All k=2; All
dv<=85 drR>0.15
-1.0FdRrR>0.15 -1,0F dv>85 = E 1
N=580 N=762
=20 S 20 \
5 > Log¥(M)=451.8173+76.8168M+
[=2
§’ 3.0 Log'¥(M)=Log(SchF(-19.10,-0.20)) S 30 4.3169M?+0.0804M°
4.0 40t <
5.0 e 5,0 — . . . . . .
23 22 21 -20 19 -18 -17 -16 -15 -14 23 22 21 20 -19 -18 -17 -16 -15 -14

M

Puc. 18: JIOC ranakTHK B 3aBUCHMOCTH OT PACCTOSHHUS MEXIy TallaKTUKaMU U
Pa3HMLIBI JIy4EBBIX CKOPOCTEH rajlakTHK B TPYIax C YMCIOM WiIeHOB k=2.

M

0,0 0,0
k=2; E,L T k=2; E,L
AV<EBSKMIS g et dvsgs % TE
-1,0} dR<=0.15 Mpc =~ -1,0FdR>0.15 -
N=64 = N=115 4 ¥
_ _ i\
S 2,0} .» < 2,0}
S JE B Log'¥(W)=-558.667 1-71.0277M-
3 30 \ 8 30 2.8901M2+0.0367M
" Log®¥(M)=Log(SchF(-18.90,-0.75))
4,0 40
B S U 5,0 e O U SwRE
23 22 21 20 -19 -18 -17 -16 -15 -14 23 22 21 20 -19 -18 -17 -16 -15 -14
M M
0,0 e 0,0 ——r
k=2; S, z k=2; S,
dV<=85 km/s dv>85 = }:
-1,0F dR<=0.15 Mpc -1,0}dr>0.15 z
N=219 N=237
5—2,0 g_z,o \
% % Log'¥(M)=292.7208+51.2965M-+
S 30t . S 30 2.9597M2+0.0565M3
4,0 Log'¥(M)=Log(SchF(-18.80,-1.00)) ] -4,0
B 50 T
23 22 21 20 -19 -18 -17 -16 -15 -14 23 22 21 20 -19 -18 -17 -16 -15 -14

M

Puc. 19: JI®C E+L wm S+ rajakTHUK B 3aBHCHMOCTH OT PACCTOSHHS MEXIy
rajJJakTUKaMHd ¥ DPa3HMIBI JIy4E€BBIX CKOPOCTEM TrallakTHK B TPYMIAX C YUCIOM

yieHoB k=2.




9. 3ak/I0ueHue

B naHHO# paboTe mpeayioKeH HOBBIA METON Ul OmpeAeicHHs (yHKIUH
ceerumoctH (DC) ramakruk. Ilo cytn, 0600men merox llmuara (Schmidt 1968) ¢
YYETOM 3aBHCHUMOCTH IJIOTHOCTH TAJIAKTHK OT PaccTOSIHUS B Oim3Kkol BceeneHHOM.
Nzyuena ®C ranakTuk mojs U €€ CBI3b ¢ MOP(OJIOTUISCKUMHU THITAMHU TaTaKTHK.
[lomydeHs! cenyronue pe3ynbTaThl:

1. ®C ramakThK TONSI MOXHO TIpeAcTaBUTh GyHKnued Lllextepa
(Schechter 1976) ¢ mnapamerpamu M, =-1930 u «a=-0.90 Tomeko B

orpannueHHOM yuactke cetumocteii: —21.0<M <—-17.6. Jleee ot sr0iA
obnacti JI®C MOXHO MpPEACTaBUTH KBAJPATHBIM MHOTOYJICHOM, a MpaBee, IpH
CITa0BIX CBETUMOCTSIX - JUHEWHOH (yHKIuen. JIOC ramakTuk mois ¢ U3BECTHBIMU
MOP(HOJOTUIECKMMH TUITAMH MOYTH He oTindaercst oT JIOC Beex rajakTHk.

2. JIns SJUTMNTHYECKUX W JIMH30BHIHBIX TaJaKTHUK TIOJIS, KaK U JUIS BCEX
rajaktuk, Gynkuueid lllexrepa MOXHO mpencTaBuTh TOJbKO yacth OC. IIpuyem,
0 MapaMeTpy ¢ OHHU HE OTIHYAIOTCS, a 1o mapamerpy M, OTIMYarTcs Majo.

3. ®C croupaldbHBIX H HUPPETyISAPHBIX TAJTaKTHK TIOJIST  XOPOIIO
npencrasisercs ¢ynkiumeii [llextepa ¢ mapamerpamun M, =—19.4 u o =-1.25

IIOYTH BO BCEM M3yueHHOM obmacTu cBeTMocTeit: M > —21.5.

4 ITosenenne PC ranaktuk inoB E u L mogoono mosegennio PC Beex
rajlakTHK, T.€. HE BO BCEM JHaIa3oHe a0COMIOTHBIX 3Be3AHbIX BennuuH @C MOKHO
npencraButh GyHkiumed lllextepa. Jlammas QyHKIUS IS SJUTHITHYECKAX
rajakTUK [pPUMEHUMa TOJabko B sguamazone —21.2<M <-17.8, a s
JIMH30BUIHBIX TATAKTUK — B quanazone —21.2< M <-16.5.

5. ®C crimpanbHBIX TallaKTUK MOXKHO TpencTaBuTh (GyHKImed [llexrepa B
JIOBOJIBHO IIMPOKOM JiMana3oHe aOCOJIOTHBIX 3BE3JIHBIX BeiauuuH. [lpu mepexone
OT PaHHUX CIUPAJICH K MO3HUM CIUPATISM POUCXOIUT YMEHbBIIIEHHE MapaMerpa
a B ¢(yskinuu lllextepa, T. e. yBenMuMBaeTCS OTHOCHUTEIBHOE YHCIO CIIA0BIX

ranaktuk. [Tapamerpom M, oHM c1abo OTIMYAIOTCS.

6. OueHeHa NOJHOTA M CPEOHSASA IUIOTHOCTh BBIOOPOK TalaKTHUK OIS
pa3HBIX Mopdosorndeckux THIOB. CpemHss IUIOTHOCTh YHCNIA BCEX TaJaKTHUK B
nuamazone —23 <M < —13 pasna 0.126 Mmc™.

7. OueHeHbl cpenHHe aOCONIOTHBIE 3BE3/HBIC BEIWYHHBI TaJaKTHK IOJIS
pa3HbIX MOP(OJIOTMYECKHX THIIOB B JIBYX HHTEpBajax aOCOIOTHOM 3BE3JHON
Bemmunabl: —23<M <-17.8 u —-23<M <-14.0. Ilpu mnepexome OT
SJUIMNTUYECKUX TAIAKTHK K JIMH30BUIHBIM, K PAaHHUM M K ITTO3/HHUM CHHPAJSM B
SIPKO# YacTH abCOMIOTHBIX 3Be3MHbIX BenuuuH (— 23 < M < —17.8) nabmomaercs
YMEHBIICHUE CPETHUX CBETUMOCTEH.

8. ®C Bcex TalaKTUK W TalaKTUK pa3HBIX MOP(OIOTHYECKUX THUIIOB B
OJJMHOYHBIX TAJIAKTHKAX U B MaibIX rpynmax (k<35) cymiecTBeHHO HE OTIMYAIOTCS
Ipyr ot gapyra. Yro kacaercs ®C CKOIJIEHUH TalakKTHUK, TO OHHU CHIJIBHO
OTJIMYAIOTCA OT AaHAIOTUYHOW (YHKIMHM JpPYyrUX CUCTeM. B  CKOIUICHHSX
HaOmro1aeTest 00JIBIIOE OTHOCUTENBFHOE YUCIIO CJIA0BIX TANAKTHK.



9. JI®C ckorutenuii B [lese u B Boiocax BepoHuku MokHO MpeICTaBUTh
TMHEHHOH QyHKIMEH U1 BceX MOP(OIOTHIECKUX THIIOB.

10. Cpenmnue aOCOMIOTHBIC BETWYMHBI TAJTAKTHK B MAalbIX CHCTEMax
0c00EHHO HE OTJIMYAIOTCs. B CKOIUIEHMSIX e cpeqHHe aOCONOTHBIE CBETUMOCTH
rajJakTUK HECKOJIBKO HWXKE B JBYX HW3YUYCHHBIX [JHana3oHax aOCOJIOTHOM
BenuuuHbl (M<-18 u M<-16).

11. Ilpm mepexoje OT DIUIMNTHYECKHX TaJaKTHK K JIMH30BHUIHBIM
rajlakTiKaM, K PaHHMM W K TO3JHAM CHHUPATBHBIM TaJaKTHKaM aOcCOJOTHAs
CBETUMOCTh TallakKTUK YMEHBIIAETCS, KaK B OAMHOYHBIX TaJIaKTHKaX, TaK U B
rpynmnax (cM. MyHKT 7).

12. I'pynmsl ¢ MalbIMH JUCTIEPCHSIME JTyYEBBIX CKOPOCTEH M C MabIMHU
CPeIHHUMH TapHBIMH DPAaCCTOSHUSAMH MEXJy UIEHaMH cojepxar B cebe
OTHOCUTEIFHO MHOTO CJIa0BIX FaJJaKTHK U OTHOCUTEIHLHO MaJlo SIPKUX TaJIaKTHK, 110
CPaBHEHMIO C TPyNIIaMU MMEIOIIHME OOJIBIINE AUCIEPCHU JIyYEBBIX CKOPOCTEH M
OoJbIIMe CpeHHE MapHbIE PAcCTOSHUSA MEXIy 4wieHamMu. CKa3aHHOE OTHOCHTCS
KaK K SJIJIUNTHYECKUM M JIMH30BUAHBIM TaJakTHKaM, TaK M K CHHUPAJIbHBIM U
UPPETYISPHBIM TaJaKTHKaM.

IToBenenne ®C ranakTHUK B CKOIDICHUAX HABOAWT HAa MBICIB, YTO BO3MOXKHO B
9THX CHUCTEMax B DBOJIOIHMH TaJaKTHK BAXKHYIO POJIb MOXET HIpaTh MEXaHH3M
BBIMETAHUS Tra3a W3 TAJAKTUK JIOOOBBIM JaBICHHEM MEKIaJIaKTUYECKOro Trasa
CKOTUIEHHS, a B OegHBIX CKOIUICHWSIX WM B TpyIax - MPUIHBHBIE
B3aMMOJICHCTBUS MEXIy TajakTukamu. Ho ecTh ofHa mpu4MHA, KOTOpas CTaBUT
MOJl COMHEHHUS ATHX MEXaHU3MOB. JT0 TO, yTo PC Kak JUIMNTUYECKUX, TaK U
CHHMPAJIbHBIX TAJAKTUK UMEIOT HOA0OHBIE 3aBUCMOCTH OT OKPY>KEHHS.

Bomee BepoATHO, YTO pacmpeneleHHEe MacCc TalaKTHK B  CHCTEMax
omnpezenseTcs HadyallbHBIMHU YCIIOBUSMH NP UX (POPMHUPOBAHHH.
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Abstract

We consider the geometry of second order linear operators acting on the
commutative algebra of densities on a (super)manifold introduced in our pre-
vious work. In the conventional language, operators on the algebra of densities
correspond to operator pencils. This algebra has a natural invariant scalar
product. We consider self-adjoint operators on the algebra of densities and an-
alyze the corresponding “canonical operator pencils” passing through a given
operator on densities of a particular weight. There are singular values for the
pencil parameters. This leads to an interesting geometrical picture. In particu-
lar we obtain operators that depend on equivalence classes of connections and
we study a groupoid of connections such that the orbits of this groupoid are
these equivalence classes. Based on this point of view we analyze two exam-
ples: the second order canonical operator on an odd symplectic supermanifold
appearing in the Batalin-Vilkovisky geometry and the Sturm-Liouville operator
on the line related with classical constructions of projective geometry. We also
consider a canonical second order semidensity arising on odd symplectic super-
manifolds, which has some resemblance with mean curvature in Riemannian
geometry.

1. Introduction

Second order linear operators appear in various problems in mathematical physics.
A condition that an operator respects the geometrical structure of a problem under
consideration usually fixes this operator almost uniquely or at least prov1des a great
deal of information about it. For example the standard Laplaman 77+ ayé + az

*E-mail: khudian@mpim-bonn.mpg.de; khudian@manchester.ac.uk
tE-mail:theodore.voronov@manchester.ac.uk
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in Euclidean space E? is defined uniquely (up to a constant) by the condition that
it is invariant with respect to isometries of E3. Consider an arbitrary second order
operator

A= % (sabaaab T, + R) (1)

acting on functions on manifold M. It defines on M symmetric contravariant tensor
S (its principal symbol). For example for a Riemannian manifold one can take
a principal symbol S = ¢ where ¢® is the metric tensor (with upper indices).
Then one can fix the scalar R = 0 in (1) by the natural condition A1 = 0. What
about the first order term 70, in the operator (1)? One can see that Riemannian
structure fixes this term also. Indeed consider on M a divergence operator

1 0
p(x) 0ze
where p = p(z)|D(x)| is an arbitrary volume form and choose a volume form p =

; = Vdet g|D(x)|. On Riemannian manifold this volume form is defined uniquely

(up to a constant factor) by covariance condition. Thus we come to second order
operator Ay such that for an arbitrary function f

- <pg (x)g“ba‘ggg)>

div, X =

(p(x)X*), (2)

110
2 p(x) 0

1.
Ayf = idlvpggradf:

1
= 5 (0 (9" 0uF) + dulogp, (2)g™01 ()
1
= 5 (570u00f + 0ug 00t + 0ulog /Aot gg 0, f () . (3)

We see that Riemannian structure on manifold naturally defines a unique (up to a
constant factor) second order operator on functions (the Laplace-Beltrami operator
on Riemannian manifold M). For this operator the terms with first derivatives
contain a connection V on volume forms. This connection is defined by the condition

that for an arbitrary volume form p = p(z)|D(x)|, Vxp = 0x ( )pg

VXP = Xa(6a+7a)p<x)’D( )’_Xaa <P )pg

= X%, ( )Mm
- Xx° (aap<x>—aalog(m))|0<m>r. (4)

(Here the symbol of connection v, = —9,(pg(x)) = —9, log \/det g.)

Consider another example: Let S%(z) be an arbitrary symmetric tensor field (not
necessarily non-degenerate) on manifold M equipped with affine structure with the
connection on vector fields V: V.0, = I'¢;0.. The affine structure defines the second
order operator S®V,V, = S%9,0, + .... Principal symbol of this operator is the
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tensor field S?(x). The affine connection induces a connection V on volume forms
by the relation v, = —I‘Zb. In the case of a Riemannian manifold the tensor S can
be fixed by Riemannian metric, S® = g%, and the Levi-Civita Theorem provides
a unique symmetric affine connection which preserves the Riemannian structure.
Thus we arrive again to the Beltrami-Laplace operator (3).

Often it is important to consider differential operators on densities of arbitrary
weight A. For example a density of weight A = 0 is an ordinary function, a volume
form is a density of weight A = 1. Wave function in Quantum Mechanics can be
naturally considered as a half-density, i.e. a density of weight A = 1/2.

Analysis of differential operators on densities of arbitrary weights leads to beau-
tiful geometric constructions. ( See e.g. the works [7, 8, 16] and the book [18].)
For example consider Diff (M )—modules which appear when we study operators on
densities. Namely let D)(M) be a space of second order linear operators acting on
densities of weight A. This space has a natural structure of Diff (M)-module. In the
work [8] Duval and Ovsienko classified these modules for all values of A. In particular
they wrote down explicit expressions for Dy (M )-isomorphisms ¢ , between modules
Dy(M) and D,(M) for A\, u # 0,3,1. These isomorphisms have the following ap-
pearance: If an operator Ay € Dy (M) is given in local coordinates by the expression
Ay = AY(2)0,0; + A'(2)0; + A(z) then its image py ,(Ay) = A, € Du(M) is given
in the same local coordinates by the expression A, = B%(z)8;0; + B'(z)0; + B(x)
where

B = AU
& }f s 6
B = l;(l;—l)A+ EA—1)(A-1) (9;A7 — 0,0;A9) .

At the exceptional cases A\, u = 0,1/2, 1, non-isomorphic modules occur.

In work [15] it was suggested the new approach to consider the commutative
algebra F (M) of densities of all weights on a manifold M. This algebra possesses
a canonical invariant scalar product. One can study differential operators on the
algebra F(M). Due to the existence of the canonical scalar product it is possible to
consider the notion of self-adjoint and antiself-adjoint differential operators on this
algebra. Operators on the algebra F (M) can be identified with pencils of operators
acting between the spaces of densities of various weights. Self-adjoint operators of
second order on F (M) correspond to certain canonical pencils of operators with the
same principal symbol and associated with connection on volume forms on M. This
approach was suggested and developed in [15] for studying and classifying second
order odd operators on odd symplectic manifolds (arising in the Batalin-Vilkovisky
formalism) and on odd Poisson manifolds.

The canonical pencils of second order operators have the “universality” property:
there is a unique such a pencil passing through an arbitrary second order operator
acting on densities of arbitrary weight except for three singular cases. For example
consider the operator A of weight 0 acting on densities of weight A\, A € Dy (M),
A = 8%9,0,+..., where S is a symmetric contravariant tensor field. Then for an

arbitrary Welght )\ except for the singular cases A\ = 0, 1 5,1 there exists a canonical
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pencil of operators which passes through the operator A. These exceptional weights
have deep geometrical and physical meaning. E.g. the failure to construct maps
©x, b in equation (5) for singular cases is related with existence of non-equivalent
Diff (M) modules (see for detail [8]). The space D; (M) of operators on half-
densities is drastically different from all other spaces Dy (M), since for second order
operators on half-densities there is a natural notion of a self-adjoint operator. This
fact is of great importance for the Batalin-Vilkovisky geometry (see [12, 14]).

Applying the approach of the work [15] we study canonical pencils of second
order operators of an arbitrary weight § and analyze in detail the exceptional case
when these operators act on densities of weight A = 1%5. (An operator has weight
0 if it maps densities of weight A into the densities of weight p = A\ 4+ ¢.) Such
an operator pencil can be defined by a symmetric contravariant tensor density S =
|D(x)[°S%0, ® O, (this field defines the principal symbol) and a connection V on
volume forms. Specialising the pencil to the exceptional value of weight A = %‘5 we
come to an operator which depends only on a equivalence class of connections. We
assign to every field S the certain groupoid of connections Cg. For the exceptional
weight A = 1—55 the operator with the principal symbol S depends on an orbit of
this groupoid.

This is particularly interesting in the case of odd symplectic structures. For
symplectic structures (even or odd) there is no distinguished connection. On the
other hand, if a symplectic structure is odd, then the Poisson tensor is symmetric
and it defines the principal symbol S of an operator pencil of weight § = 0. It turns
out that in spite of the absence of a distinguished connection, there exists a canonical
class of connections on volume forms such that for them ~, (V, = 9, +~,) vanishes
in some Darboux coordinates. Connections of this canonical class belong to an orbit
of the groupoid C's and the corresponding operator on half-densities is the canonical
operator introduced in [12]. This operator seems to be the correct clarification of the
Batalin-Vilkovisky “odd Laplacian” [3]. (See for detail [14].) This approach may be
used also in the case of Riemannian geometry where S is defined by a Riemannian
metric. However in this case there exists a distinguished connection (Levi-Civita
connection). We would like to mention article [2] where an interesting attempt to
compare second order operators for even Riemannian and odd symplectic structures
was made.

Another important case is a canonical pencil of operators of weight § = 2 on
the line. By considering exceptional weights we come in particular to Schwarzian
derivative.

The plan of the paper is as follows.

In the next section we consider second order operators on the algebra of functions.
We come in this “naive” approach to preliminary relations between second order
operators and connections on volume forms.

In the third section we consider first and second order operators on the algebra
F (M) of all densities on a manifold M. First we define an invariant canonical scalar
product on the algebra F(M). This zll\gebra can be interpreted as a subalgebra

of functions on an auxiliary manifold M. We consider derivations (which can be
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identified with vector fields on M) and first order operators on the algebra F(M).
The canonical scalar product on F(M) leads to the canonical divergence of vector
fields on M. We come in particular to the interpretation of Lie derivatives of densities
as divergence-free vector fields on M.

After that we consider second order operators on the algebra F(M). We intro-
duce our main construction: the self-adjoint second order operators on the algebra
F (M), and consider the corresponding operator pencils. These considerations are
due to the paper [15].

In the fourth section we consider operators of weight § acting on densities of
exceptional weight A = 1%5. For an arbitrary contravariant symmetric tensor density
S of weight § we consider groupoid Cg. The orbits of the groupoid Cg are classes
of connections such that operators with the principal symbol S acting on densities
of the exceptional weight A = %5 depend only on these classes. This groupoid was
first considered in [14, 15] for the Batalin-Vilkovisky geometry. We also give explicit
description for corresponding Lie algebroids.

Then we consider various examples where these operators occur. We consider
the example of operators of weight § = 0 acting on half-densities on a Riemannian
manifold and on an odd symplectic supermanifold, and the example of operators of
weight 0 = 2 acting on densities of weight A = —% on the line. In all these examples
the operators depend on classes of connections on volume forms which vanish in
special coordinates (such as Darboux coordinates for symplectic case and projective
coordinates for the line).

Finally we consider the example of the canonical odd invariant half-density intro-
duced in [13]. We show that this density depends on the class of affine connections
which vanish in Darboux coordinates.

By differential operators throughout this text we mean only linear differential
operators.

For standard material from supermathematics see [5], [17] and [20].

2. Second order operators on functions

In what follows M is a smooth manifold or supermanifold.
Let L = T%x) 82@ + R(z) be a first order operator on functions on a manifold

M. Under change of local coordinates 2% = z%(z%) L transforms as follows:

L= T“(x)% + R(x) =T (x (¢')) 2f afa’ + Rl@), (xg’ - gj;a > '

We see that T%(z) aga is a vector field and R(x) scalar field.

Now return to the second order operator (1) on a manifold M. Under a change
of local coordinates 2% = z%(z%)

A=l (Sab(x)aaab + T%(2)0, + R(m)) = 19:3’5“%2’ Oa/ O + ... (6)
2 2L 2

Sa’b/
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Top component of operator A, %Sab(% ® 0y defines symmetric contravariant tensor
of rank 2 on M (the principal symbol of the operator A = 1 (5% (2)9,0 + ...)).

If tensor S = 0 then A becomes first order operator and T%9, is a vector field.
What about a geometrical meaning of the operator (6) in the case if principal symbol
S # 07 To answer this question we introduce a scalar product ( , ) in the space of
functions on M and consider the difference of two second order operators A™ — A,
where AT is an operator adjoint to A with respect to the scalar product. A scalar
product (, ) on the space of functions is defined by the following construction: an
arbitrary volume form p = p(z)|D(z)| on M is chosen and

(f.g ,,_/ f(@)g(@)p()|D()]. (7)

If 2/ are new local coordinates % = 2% (z') then in new coordinates the volume form
p has appearance /(') D(2') = P( )lD(ff)li

p = PP = plale) | D

ie. p(z') = p(x(z')) det <g§a >

In what follows we suppose that scalar product is well-defined: we suppose that M is
compact orientable manifold and the oriented atlas of local coordinates is chosen (all
local coordinates transformations have positive Jacobian: ? = det ( ) >0)) L.

Now return to the operators A and the adjoint operator A™. For operator A
the operator A™ is defined by relation (Af, g), = (f, A*g),. Integrating by parts
we have

L9 = [ 5 (S7@0.00f + (@001 + R@)F) a(a)ple)| Dle)| =

Af

[ 560 (500 (0 (509) ) = 5,00 (T°00) + 570 o@D = (1.3

A+g

Principal symbols of operators A and AT coincide. Thus the difference A* — A is
a first order operator:

AT —A = <8b5ab — T% + 5%, log p) 0, +scalar terms. (8)

vector field

!Coordinate volume form |D(z)| is usually denoted by dxz'da?...dz™. We prefer our notation
|D(z)| having in mind further considerations for supermanifolds.
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Introducing the scalar product via chosen volume form p we come to the fact that
for an operator A = % (Sabaaab + T, + R), and for an arbitrary volume form
p = p(z)|D(z)| the expression (9,5 — T + S99, log p) J, is a vector field.

Claim : For an operator A = % (S“baaﬁb + T, + R) the expression
A0 = 9,5 — T (9)

is an upper connection on volume forms.
Before proving the claim we give two words about connections on the space of

volume forms.
Connection V on the space of volume forms defines the covariant derivative of volume forms
with respect to vector fields. It obeys natural linearity properties and Leibnitz rule:

L]
Vx (1 +p2) = Vx (p1) + Vx (ps)
e for arbitrary functions f,g

Vix+gy (p) = fVx (p) +9Vv (p) ,

e and the Leibnitz rule:

Vx (f(z)p) = 0x f(z) (p) + f(2)Vx (p) , (10)

(0x is the directional derivative of functions along vector field X: dx f = X© aazfa ).

Denote by V., covariant derivative with respect to vector field 32:. Due to axioms (10)

0

= Oge

Va(p(@)|D()]) = (Bap(x) + vap(z)) |D(z)|,  where va| D(z)| = Va(|D(2)]), %a

Under changing of local coordinates z“ = x“(ma/) the symbol 7, transforms in the following
way:

ox
ox’

ox

ox’

Ya|D(@)| = Va (|D()]) = 28 Vor  det - |D(a')| =i 8u logdet + 7 D), (11)

’

a/ 83:' al
Ya =Tq Vo + Our logdet oz = Tg Yo' — wlb)’mga .

(We use the standard formula that §logdet M = Tr(M~'6M). We use also short notations for
Oza/ (z) a’ 890“/

!
derivatives: zg = “5a~, The = 30500

The summation over repeated indices is assumed.)

Let S°° be a contravariant tensor field. One can assign to this tensor field an upper connection
S,
i.e. a contravariant derivative V

Ve pID@))) = S0 ++° p|D(x)]. (12)

Remark 1 Given a contravariant tensor field S°°(x) an arbitrary connection V (covariant deriva-

tive) induces the upper connection (contravariant derivative) V: V= S°V,. In the case where
tensor field S%° is non-degenerate, the converse implication is true also. A non-degenerate con-
travariant tensor field S“b(x) induces one-one correspondence between upper connections and usual
connections. (Compare with the example 5 below where upper connection in general does not define
the connection.)
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Under changing of coordinates a symbol v of upper connection (12) transforms in the following

way:
’

y* = a7 7" + S*dy logdet dx'/Ox . (13)

Remark 2 From now on we refer to genuine connections (covariant derivatives) simply as con-
nections. With some abuse of language we identify the connection V with its symbol v = {ya}:
Ya = Va|D(z)|.

Remark 3 It is worth noting that the difference of two connections is a covector field, the difference
of two upper connections is a vector field. In other words the space of all connections (upper
connections) is affine space associated with linear space of covector (vector) fields.

Consider two important examples of connections on volume forms.

Example 1 An arbitrary volume form p defines a connection 4° due to the formula (4): v°: £ =
—0alog p(x). This is a flat connection: its curvature vanishes: Fup = OaYo — 0aya = 0. (Connection
V considered in the formula (4) is a flat connection defined by the volume form p,.)

Example 2 Let V be affine connection on vector fields on manifold M. It defines connection on
volume forms V — —TrV with v, = —I'%, where T, are Christoffel symbols of affine connection.

It is easy to see that connection and upper connection define the covariant and respectively
contravariant derivative of the densities of an arbitrary weight: for s = s(z)|D(x)|* € Fa

Vas = (0as(z) + Mas(z)) | D(x)].
Respectively for upper connection
Vis= S™s(x) + M s(zx) |D(x). (14)

Sometimes we will use the concept of connection of the weight §. This is a linear operation that
transforms densities of weight A to the densities of weight u = X + §: for s = s(z)|D(z)|* € Fx
Vas = (8a5(x) + Mas(2)) [D(2)|*°, Va|D()| = 7| D(@)|"".

Respectively for upper connection

Vis= SUs(z) + M *s(x) |D@)*", V*|D(x)| =+ |D(x)]"*!

Proof of the claim (9): Consider a flat connection 4°: 4 = —0, log p defined by
the volume form p = p(x)dx (see Example 1 above). Since the expression
Y = ((%Sy“b — T + 5%9, log p) 0, in (8) is a vector field (the principal symbol of
the first order operator AT — A) and Sab'y{)’ = —8%9ylog p is an upper connection
then the sum Y% + Sabfy,’)’ is also upper connection:

S Y0 = 5™y log p+ (8,5 — T + $70ylog p) Oy = 05 — T*.

Thus we have proved the claim.

Having in mind the result of the claim we can rewrite the operator A on functions
in a more convenient form:

Af = % (Sabaaab FTO, + R) f= % (aasabab +Lo0, + R) 1,

with L¢ = T% — 9,5%. We come to Proposition
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Proposition 1 For an arbitrary second order operator on functions on manifold
M:
1 1
A=z (sabaaab T, + R) =3 (aa (Saba,, N ) 4190, + R) ,

the principal symbol %S“b is symmetric contravariant tensor field of rank 2, the
symbol 4* = —L® = 9,5 — T* defines an upper connection and the function R =
2A1 is a scalar:

1 1 1
Af==0,1 8% of| —= ~* 8uf+ =R f.
2 ~~ 2 =~ 2

tensor connection
scalar

Second order operators on functions are fully characterised by symmetric contravari-
ant tensors of rank 2 (principal symbol), upper connections and scalar fields. In the
case if principal symbol is non-degenerate (det S # 0 upper connection defines a
usual connection on volume forms: v, = C;lfyb.

3. Algebra of densities and second order operators on algebra of
densities

3.1. Algebra of densities F(M). Canonical scalar product

We consider now the space of densities.

As usual we suppose that M is a compact orientable manifold with a chosen
oriented atlas.

We say that s = s(x)|D(z)|* is a density of weight \ if under changing of local
coordinates it is multiplied on the A-th power of the Jacobian of the coordinate
transformation:

s = @D =5 (o () |

DG = s (o () (det ( ?))A D).

(Density of weight A = 0 is a usual function, density of weight A = 1 is a volume
form.)

Denote by Fy = Fx(M) the space of densities of weight A on the manifold M.

Denote by F = F(M) the space of all densities on the manifold M.

The space F) of densities of the weight A is a vector space. It is the module
over the ring of functions on M. The space F of all densities is an algebra: If
s1 = s1(2)|D(x)|M € Fy, and sy = sa(z)|D(x)|*2 € Fy, then their product is the
density sy - sp = s1(x)2(z) DM T2 € Fap+xg-

On the algebra F (M) of all densities on M one can consider the canonical scalar
product (, ) defined by the following formula: if s; = s1(z)|D(z)|™ and sy =
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s9(z)|D(z)[*? then

Jur si(@)s2(z)[D(x)], ifA+ =1,
(s1,82) = (15)

(Compare this scalar product with a volume form depending scalar product ( , ),
on algebra of functions introduced in formula (7).)

The canonical scalar product (15) was considered and intensively used in the
work [15]. Briefly recall the constructions of this work.

Elements of the algebra F(M) are finite combinations of densities of different
weights.

It is convenient to use a formal variable t in a place of coordinate volume form
D@)!

An arbitrary density F > s = s1(2)|D(x)|M +- - - + s (2)|D(x)|** can be written
as a function polynomial on a variable t:

s =s(z,t) = s1(2)t" + - + sp(2)t™ . (16)

E.g. the density s1(x) + so(z)|D(z)|'/? 4 s3(x)|D(z)| can be rewritten as s(z,t) =
s51(x) + V/tsa(z) + tsz(x). In what follows we often will use this notation.

Remark 4 With some abuse of language we say that a function f(x,t) is a function
polynomial over t if it is a sum of finite number of monoms of arbitrary real degree

overt, f(x,t) =3, fin(z)t), A€ R.

What is a global meaning of the variable t? The relation (16) means that an
arbitrary density on M can be identified with a polynomial function on the extended
manifold M = det(TM)\M which is the frame bundle of determinant bundle of M.
The natural local coordinates on M induced by local coordinates % on M are (x%,t)
where t is a coordinate which is in a place of volume form |D(z)|. Let 2%, 2% be two
local coordinates on M. If (% t) and (z%,t') are local coordinates on M induced
by local coordinates x* and v respectively then

a _ a/.a / <833/>
@ =z%(z%) and t' =det | =— | ¢. (17)
ox
If a function is a polynomial with respect to local variable ¢, then it is a polynomial
with respect to local variable ¢’ also. (As it was mentioned before we consider only
oriented atlas, i.e. all changing of coordinates have positive determinant.)
It has to be emphasized that algebra F (M) of all densities on M can be identified
with an algebra of functions on extended manifold M which are polynomial on t.
We do not consider arbitrary functions on t.
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3.2. Derivations of algebra of densities (=vector fields on the extended
manifold)

Consider differential operators on the algebra F. (We repeat that we consider
only linear operators.)
Let X be a derivation of the algebra F, Then for two arbitrary densities s1, s9

X (Sl . SQ) = (XSl) -89 + 87 - (XSQ) , (Leibnitz rule).

The derivations of the algebra F (M) are vector fields on the extended manifold M ,
where coefficients are polynomials over ¢:

X = X%, t)ai+X°(:p HA = Zt5< N )aia +X(05)(g:)X> . (18)

We introduced in this formula the Euler operator

0
X=t—
ot
which is globally defined vector field on M (see transformatlon law (17)). Euler
operator A measures a weight A of density: A (s(x)t) = As(z)th
There is a natural gradation in the space of vector fields. The vector field

X =t (X“(x)@a + XO(:U)X) (19)

is the vector field of the weight §. It transforms a density of weight A to the density
of weight \ 4 9.

Remark 5 From now on considering vector fields on extended manifold M we sup-
pose by default that coefficients of these vector fields are polynomial ont (see equation

(18)).

Our next step is to consider adjoint operators with respect to canonical scalar
product (15) on the algebra F: operator Lt is adjoint to the operator L if for
arbitrary densities si, s, (le, S9) = (si, L+SQ> One can see that

o\" ) ~ -
+ _ i - _ +_1_
T =z, <8x> BT and A\ 1—A.

Check the last relation. Lgt s1 be a density of the WeigAht A1 and sy be aAdensity
of the weight A\o. Then (As1,s2) = Ai(s1,s2) and (s, ATs2) = (s1,(1 — N)sa) =
(1 — X2)(s1,s2). In the case if A\; + A2 = 1 these scalar products are equal since
A1 = 1 — Xo9. In the case if Ay + A9 # 1 these scalar products both vanish.
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Example 3 Consider vector field on M ( derivation of algebra of densities): X
: Xs = (X“(a:,t)aa + Xo(m,t)/)\\> s(z,t). Then its adjoint operator is:

Xt:  Xts= [(Xa(;p, £)0 + XO(z, t)X)] s
= —0, (X%, )8)) + (1 = X\) (XO(z,t)8) ,
X+ = —9,X%x,t) — Xz, )00 — XO(z, ) + (1 - X) X0z, 1)

Definition 1 (Canonical divergence). Divergence of vector field X on M is defined
by the formula

divX = (X +XT) = 9,X° + (X - 1) X0z, 1) (20)

In particular for vector field X of the weight §, X = t° (Xaaa + XOX) (see equa-
tion(19))
divX =t (9, X" + (6 — 1)X?) .

Divergence of vector field on F vanishes iff this vector field is anti-self-adjoint
(with respect to canonical scalar product (15)): X = —X* & divX = 0.

Example 4 Divergence-less (=antiself-adjoint) vector fields of weight § =0 act on
densities as Lie derivatives. Indeed consider vector field X = X%0, + XONX of the
weight 6 = 0. The condition divX = 9,X* — X% = 0 means that X° = 9,X°, i.e.
X = X%, + 9, X\. Hence for every A, X‘ﬂ = X0y + A0, X?*. This means that
the action of divergence-free vector field X of weight § = 0 on an arbitrary density
is the Lie derivative of this density: for s € Fy

Xs = (X%, + Mg X)s = Lxs = (X®0as(x) + A Xs(z)) |D () . (21)

If X is divergence-free vector field on M of arbitrary weight then divX =0 X =
t0 (Xaaa + aaxa%) We come to generalised Lie derivative: if 6 # 1 then for
s € Fy

Lxs = |D(z)]° <X“8a + aaXalié> s = <X“8as(x) + Af“_X(;) ID(@)*.

(22)

One can consider a canonical projection p of vector fields on M ( derivation
of algebra F(M)) on vector densities on M. It is defined by the formula p(X) =
X‘]:O:COO(M)' In coordinates p: X = X%(x,t)9, + X (z,t)\ — X(x,t)0,.

We say that vector field is vertical if pX =0, ie. if X = X0z, t)/)\\ Divergence
of vertical vector field X = X%(z,t)\ equals to divX = (A — 1) X%(z, ).
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Proposition 2 Let I be a projection of vector fields onto vertical vector fields such
that divX = div (IIX), We have that
1) a 0y 1) 0a X" 07y
I X=t (X 0o+ X A) =X =1 (T2 4+ X)X
Every vector field X of weight § # 1 can be uniquely decomposed as the sum of a
vertical vector field and divergence-free vector field, generalised Lie derivative (22))
with respect to vector field pX:

X =X + (X — I1X) = ITX + L,x .

One can check the statements of this Proposition by straightforward applications
of the formulae above.
What relations exist between the canonical divergence (20) of vector fields on extended manifold

§# and a divergence of vector fields on a manifold M ? Let V be an arbitrary connection on volume
forms. It assigns to the vector field X on M a vector field X on the extended manifold ¥ by

the formula X, = X“ aia + R’ya , where v = {74} is a symbol of connection V in coordinates z,

(Va|D(z)| = vo|D(x)]). Connection V defines the divergence of vector fields on M via the canonical
divergence (20): for every vector field X on manifold M:

Xa
div,X =divX, = ox*" —Ya X" . (23)
Ox@
A volume form p = p(z)|D(x)| defines flat connection v£ = —9, log p (see equation (4) and example

1). The formula (23) implies the well-known formula (see also equation (2))) for divergence of vector
field on manifold equipped with a volume form

oxX“

a _ 10 a
D + X%y logp = (pX*) . (24)

p Oxa

div X = divX,, =

Considering a connection corresponding to an affine connection (see Example 2) we come to
diveX = VX% = (0. X% + X“ng). On Riemannian manifold M Riemannian metric defines
connection on volume forms v, = —9, logv/det g (via Levi-Civita connection or via invariant vol-
ume form p,). We come to

ox° P— 1 5 P——
div , X = X%, 1 det = det gX ¢
Vo gge A Oalog detg = Tm=gn  dety

3.3. Second order operators on the algebra F(M)

We will study now operators of order < 2 on the algebra F (M) of densities on
manifold M.

First of all general remark about n-th order operators. 0-th order operator on
the algebra F (M) is just multiplication operator on non-zero density. L is n-th order
operator on the algebra F(M) (n > 1) if for an arbitrary s € F (M) the commutator
[L,s] = Los—soLis (n—1)-th order operator.

One can see that if L is an n-th order differential operator on F(M), then
L+ (—1)"L* is n-th order operator and L — (—1)"L™ is an operator of the order
< n—1. We have:
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Proposition 3 An arbitrary n-th order operator can be canonically decomposed on

the sum of self adjoint and antiself-adjoint operators:
1 1
L= - (L+(-1)"L" —(L—(-)"L*
(LA £ (- (1)

n-th order operator operator of the order < n — 1

An operator of the even order n = 2k is a sum of self-adjoint operator of the order 2k
and antiself-adjoint operator of the order < 2k — 1, and an operator of the odd order
n =2k 41 is a sum of antiself-adjoint operator of the order 2k + 1 and self-adjoint
operator of the order < 2k.

Operators of the order 0 are evidently self-adjoint.

Let L = X + B be first order antiself-adjoint operator, where X is a vector field
on M and B is a scalar term (density). We have L + LT =0 =X + X" + 2B = 0.
Hence L = X + %div X.

Now study self-adjoint second order operators on F(M). Let A be second order
operator of the weight § on algebra F (M) of densities. In local coordinates

)

t ~ ~ ~
A= ) SP(£)0,0p + AB*(2)0y + N2C(z) 4+ D% (2)0y + A\E(z) +F(x)
second order derivatives first order derivatives (25)
25
Put normalisation condition
A(l)=0 (26)

i.e. density FlDf(m)lé in (25) vanishes (F' = 0).

The operator AT adjoint to A equals to
At = % (abaa (Sabt5...> — 8, (Ba%fS . ) n (C(X+)2t5 . )
— 4 (D“t‘?..) + (EXH‘Y..))
- t; (sabaaab + 28,58, + aaa,,sba) + t; ((X . 1) (B“Oa + 8bBb)
+(X+5—1)20— (X+5—1)E—Daaa—abpb> :

Comparing this operator with operator (25) we see that the condition At = A
implies that

A = t; (sab(m)aaab + 9,5%0, + (2X v 1) ~ ()
07 (z) + A (X . 1) 9@;)) . (27)

Here for convenience we denote v* = 2B® and 6 = C'. Studying how coefficients of
the operator change under changing of coordinates we come to
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Theorem 1 (See [15].) Let A be an arbitrary linear second order self-adjoint op-
erator (At = A) on the algebra F (M) of densities such that its weight equals § and
A(1) = 0. Then in local coordinates this operator has the appearance (27). The
coefficients of this operator have the following geometrical meaning

o S =115%(z) = S (z)|D(x)|° is symmetric contravariant tensor field-density
of the weight 8. Under changing of local coordinates % = z® (z) it transforms
in the following way:

ST = J0xd af S

e % is a symbol of upper connection-density of weight ¢ (see (13) above). Under
changing of local coordinates z® = z* (z%) it transforms in the following way:

fy“' = J—%g’ (fya + 5%, log J) ,
e and 0 transforms in the following way:
g =J° (9 + 2729, log J + 8, log J 5%, log J)

Here J = det (%—5’;), and :cg’ are short notations for derivatives: xg/ = Dz () =

927 (z)
ox®

The object §(x)|D(x)|° is called Brans-Dicke function 2.

Remark 6 Let A be self-adjoint operator (27) and ' = {+,} be an arbitrary con-
nection on volume forms (V|D(x)| = ~,|D(z)|). Then for the upper connection-
density in the equation (27) the difference (v — S%+)|D(x)[° is a vector density of
the weight §. Respectively for Brans-Dicke function 0, the difference 0 — fy{lS“b’y{) 1
a density of the weight §. (One can easy deduce this recalling the fact that the space
of genuine connections as well as the space of upper connections is an affine space:
if V and V' are two different connections then their difference is (co)vector field:
V=V =9 —"%=Xa4)

Corollary 1 Given principal symbol S = S| D(z)|° of the weight & and connection
~ on volume forms canonically define the second order self-adjoint operator (27)
with upper connection ¥* = S, and Brans-Dicke function 0(z) = v,5%y,. We
denote this operator A(S,7y).

The inverse implication is valid in the case if S = S%®|D(x)|° is non-degenerate:
Second order self-adjoint operator A of weight § which obeys normalisation condition
(26) with non-degenerate principal symbol S uniquely defines connection 7y such that
A = A(S,y) + AA+ 6 — 1)F, where F is a density of weight &, and Brans-Dicke
function 0 equals to 0 = v,7v* + F = 7,5%, + F.

’ 5

2Tts transformation is similar to transformation of Brans-Dicke ”scalar”, in Kaluza-Klein reduc-
tion of 5- dimensional gravity to gravity+electromagnetism.
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Consider examples.

First consider the example of operator (27) with degenerate principal symbol
Sab|D(x)|5.

Example 5 Let X = X? £a and Y =Y° aga be two vector fields on manifold M.
Recall the operator of Lie derivative (see equation (21) Lx = X%y + A0, X and

consider the operator
1 1 a N a a 3 a
A= (ExLy +LyLx) = 5 (X0, +30,X%) (Y0, +30.Y*) + (X = Y) .

It is self-adjoint operator since Lie derivatvie is antiself-adjoint operator. Calculat-
ing this operator and comparing it with the expression (27) we come to

59 — xoyb 4 ybxe 40 — (abxb) Yo+ (a,,yb) X9, 0 = (9,X%) (abyb) :

We see that in the general case (if dimension n of manifold is greater than 2) this op-
erator has degenerate principal symbol and upper connection does not define uniquely
genuine connection.

3.4. Canonical pencil of operators

Note that an operator L on the algebra F (M) of densities defines the pencil {L)}
of operators on spaces Fy: L) = L‘ X The self-adjoint operator A on the algebra

of densities (see equation (27)) defines the canonical operator pencil {Ay}, A € R,
where

Ay = A‘B =
4
= 5 (5™(@)0uh + 0,5%0u + (22 + 6 — 1)1 (1) + 207" () + A(A+ 6 1) 6(x))
(28)
It is canonical pencil defined by symmetric tensor density S = Sab(gp)| D(x)|5 , upper

connection v* and Brans-Dicke function 6(z). Respectively self-adjoint operator
A(S,7) on the algebra of densities defined by tensor field-density S = S%(x)|D(z)|°
and genuine connection v (see Corollary 1) defines the operator pencil Ay(S,7y) with
Brans-Dicke function 0(z) = 7,5%.

Operator Ay of the weight § maps density of weight \ to densities of weight
A+9. Its adjoint operator A;f maps density of weight 1 —J — A to densities of weight
1 — X. The condition A = AT of self-adjointness of operator A is equivalent to the
condition

AT =A1_ 5. (29)

Example 6 Let p = p(z)|D(z)| be a volume form on the Riemannian manifold
M. We can consider an operator A on functions such that Af = div pgrad f =

%ﬁaia (p(az)gab%fT(f)> (see equations (2) and (24) (In the case if p = v/det g|D(z)]
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this is just the Laplace-Beltrami operator (3).) Using this operator consider the
pencil

1
m=p*vo,?i (forsef» Ajs = p'div, grad (5)) '

One can see that this pencil corresponds to self-adjoint operator (see relation (29)).
It coincides with the canonical pencil (28) of weight 6 = 0 in the case if principal
symbol is defined by Riemannian metric S® = ¢, connection is a flat connection
defined by the volume form (see formula (4) and Ezample 1): v* = —g®d,logp,
and 0 = y%y,.

The canonical pencil (28) has many interesting properties (see for detail [15]).
In particular it has the following “universality” property:

Corollary 2 Let A be an arbitrary (linear) second order operator of weight 6 acting
on the space Fy of densities of weight X, A: Fy — F, (u = X+6). In the case
fAN# 0,0 #1 and A+ p # 1 there exists a unique canonical pencil which passes
through the operator A.

If the operator A is given by the expression A = A0,y + A%D, + A(x) then the
relations

15ab :Aab

2 )

S ((2A+6 = 1)y + 9p5%7) = A, A£0,A+p#Lu#1).
%(A@a'ya—k)\()\—ké— 1)) =A,

uniquely define principal symbol, upper connection and Brans-Dicke field. Hence
they uniquely define canonical pencil (28).

The “universality” property provides a beautiful interpretation of canonical map
@, in the relation (5). Indeed due to this Corollary we ”draw” the pencil through
an arbitrary operator Ay = AY(z)9;0;+ A'(z)0;+ A(z) acting on densities of weight
A. Then the image of this operator, operator A, = ¢y, (Ay) is the operator of this
pencil acting on densities of weight p.

4. Operators depending on a class of connections

In this section we will return to second order differential operators on manifold
M. We consider second order operators acting on densities of a specially chosen
given weight.

. . . . 1-5
4.1. Operators of weight § acting on densities of weight ~5-

The Corollary 2 states that for a second order operator A: Fy — F,, for all values
of weights except the cases A =0, 4 = 1 or A + p = 1 there is a unique canonical
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pencil (28) which passes through the operator A. Consider now an exceptional case

when operator A: Fy — F,, is such that it has weight § and A 4+ p = 1, i.e. it acts

on densities of weight A = 1775 and transforms them to densities of weight u = %”5.
Let Agng be such an operator which belongs to the canonical pencil (28):

t&
Buing = (A)|y_ocs = 5 (sab(x)aaab + 955", + Auy(x) + AN+ — 1) 9(:1:))
2

_ D@

5 <Sab(x)8a8b + 8,5%20, + 12;5 (awa(:c) + 5;19(9[;))> . (30)

On the other hand let A be an arbitrary second order differential operator of
weight ¢ which acts on densities of weight 1 5 s A Fis o = F 145 Compare this

operator with the operator Ay . The operator A+ Wthh is adJomt to the operator
A also acts from the space Fi—s = into the space .7:1+5, since A\ 4+ p = 1—5 + ITM =1

(compare with formula (29)). Hence an operator A can be canomcally decomposed
on the sum of second order self-adjoint operator and antiself-adjoint operator of the
order < 1. Antiself-adjoint operator is just generalised Lie derivative (22):

1
AT A= £X|f1_5 = |D(z)|° <X“6a + 28QX“> .
2

Operator Aging in formula (30) belongs to canonical pencil, it is self-adjoint operator:
A:ng = Aging - Difference of two self-adjoint operators of second order with the same
principal symbol is self-adjoint operator of order < 1. Hence it is the zeroth order
operator of multiplication on the density. These considerations imply the following

statement:

Corollary 3 Let A be an arbitrary second order operator of weight § acting on the
space of densities of weight 152 .

Let S = S®|D(z)|° be a principal symbol of the operator A. Let Agng be an
operator belonging to an arbitrary canonical pencil (28) with the same weight 6 and
with the same principal symbol S = S| D(x)[°.

Then the difference A — Aging is an operator of order < 1. It equals to gen-
eralised Lie derivative (22) with respect to a vector field +zeroth order operator of
multiplication on a density:

A = Aging + Lx + F(z)|D(z)]° .

In the case if operator A is self-adjoint, AT = A, then Lie derivative vanishes

(X =0).

It follows from this Corollary that if the operator A: Fi_s s — F 145 is self-adjoint
operator then it is given in local coordinates by the expressmn

A= 1 (S()0udy + 35" (2)d + Us () |D ()
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where

Us@ID@) =152 (a@) + 25 000) ) D@ + F@) D)l
Here 4%, 6 are upper connection and Brans-Dicke field defining the pencil (28), and
F(z)|D(z)]° is a density. In particular the self-adjoint operator A: Fi_s — Fiis
belongs to the canonical pencil defined by the same principal symbol S,Qand uprer
connection v* but different ¢/ = 6 — %. It may belong to many other pencils
with different upper con?egtions. Self-adjoint operator A acting on densities of the

exceptional weight A = 5% does not define uniquely the canonical pencil. Thus we

come to

4.2. Groupoid of connections

We define now a groupoid Cg of connections associated with contravariant tensor
field-density S = S®|D(x)|° of weight 4.

Consider a space A of all connections on volume forms (covariant derivatives of
volume forms) on manifold M. This is an affine space associated to the vector space
of covector fields on M: difference of two connections V and V' is covector field
(differential 1-form):

V-V =qy—9"=X=Xqdz", where X, =7, —,,.

Define a set of arrows as a set {’yify’} such that 4,4 € A and v = v + X,
where X, difference of connections is a covector field. We come to trivial groupoid
of connections:

X -X X Y X+Y
- <’y —w’) =7, (71—%) + (72—>73) =n——. (31

Pick an arbitrary contravariant symmetric tensor field-density of the weight o:
S(z) = S®(x)|D(z)|°. The tensor field-density S and an arbitrary connection
define the self-adjoint operator A(S,«y) on the algebra of densities. It is the oper-
ator defined in the equation (27) with principal symbol S, with upper connection
7® = §%~, and Brans-Dicke function 6 = v,7® (see the Corollary 1). Consider cor-
responding pencil of operators and the operator Aging (S,7) which belongs to this
pencil and acts on densities of weight 1%5:

Asing (S,7) =A(S,v) ’]:176 =

=2

|D(x)]°

1-6 d—1
= <S“b(x)8aﬁb + 8,5%0, + 5 <8a7“(a:) + 27a'y“(:n)>> . (32)

Thus an arbitrary contravariant symmetric tensor field-density S = S%(x)|D(z)|® of
the weight § and an arbitrary connection -y defines self-adjoint operator Aging (S,7y)
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by the relation (32). “Pseudoscalar” part of this operator is equal to

_ _ 18
Usa@ID@ = (15°) (o) + 25 @) P50 )

Let 4 and 4’ be two different connections. Difference of two operators Aging (S,7)
and Aging (S,7') with the same principal symbol S = S%(z)|D(z)|° is the scalar
density of the weight §. Calculate this density. If 4/ =« + X then

Asing (8,7') = Duing (8,7) = Us y (@)|D(x)|” = Us y(2) | D(@)]” =
(552) (0@ + 25t = 2ue) = S5 ) ) 1D =
1-46

<4> (aa(sabxb) + (6 — 1)7a(S™X,) + ‘S;XQS“’)XQ |D(x)|” =

1—
0 i <d1v7X + 5X2) (34)

Here div 4 X is the divergence of vector density X on M with respect to connection
v (see (23)). With some abuse of notation we denote the covector field X,dz® and
vector density of the weight 6, X¢|D(x)|® = S®X,|D(x)|® by the same letter X.

Definition 2 Let S = S%(x)|D(z)|® be contravariant symmetric tensor field-density

of the weight 6. The groupoid Cs is a subgroupoid of arrows 'yiwy’ of trivial
groupoid (31) such that the operators Aging (S,7y) and Agng (S,7') defined by the
formula (32) coincide:

Cs = {Groupoid of arrows 'yivy’such that Aging (S,7") = Asing (S,7)}- (35)

Using the formula (34) for difference of operators Aging (S,7’) and Aging (S,7)
rewrite the definition (35) of groupoid Cg in the following way:

0—1
Cs = {Groupoid of arrows 7y iwy’ such that div,X + TX2 =0}.

In other words the arrow 7 L'y’ belongs to the groupoid Cg if two canonical
pencils Ax(S,7) and Ax(S,v’) intersect at the operator Aging (S,7).
We consider the case § # 1, The case § = 1 is trivial 3.

Denote by [y] the orbit of a connection « in the groupoid Cg

M ={: 79 €eCs}.

3In this case all the operators Aging (S,7) do not depend on connection 4. Principal symbol
S = S%|D(x)| defines the canonical operator A(S): Fo — Fi such that in local coordinates A(s) f =
B S8y f |D(z)|. The groupoid Cs is the trivial groupoid of all connections.
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Proposition 4 An arbitrary contravariant symmetric tensor field S = S®(x)|D(z)|°

of the weight § defines the groupoid of connections Cs and the family of second order
differential operators of the order § and acting on densities of the weight 1776

A([’Y]) = Asing (S"Y) Fng - flT‘H; .

Operators of this family have the same principal symbol and they depend on equiva-
lence classes of connections which are orbits in the groupoid Cs.

Remark 7 Let v,7v9 and vy3 be three arbitrary connections. Consider correspond-
. X Y X+Y X Y
Ng arrows Y;——"Yq, Yo——"Y3 and y; — 3. We have that y,—7v9 + Yo—v3 =

'yl)ﬂ'yg. This means that for non-linear differential equation div,X + %XQ =0
the following property holds:

YAt = divy, (X +Y)+ ——(X+Y)2=0.
le—yQY‘i‘ TY =0 2

It follows from (34) the cocycle condition that the sum of left-hand side of first two

equations is equal to the left hand-sight of the third equation.

Remark 8 Let p be an arbitrary volume form. Using the operator A([7y]) = Asing (S,
one can consider second order operator

A Af=pT AW (b7 /(@)

on functions depending on volume form p. Calculating one comes to
Af =1 (50,8, + 0,50, + (5 99 +
f—§ 500y + 0p5"" 04 + ( —1)7pa+t7;(Us;y—Usnp) f

Here 4P: ~n, = —04logp is a flat connection defined by the volume form p =
p(z)|D(z)|, v* = S%y, and Us./t° is a "pseudoscalar” part (33) of the opera-
tor (32). The difference Us — Usy, is a density of weight 6 (see Corollary 3 and
equation (34)).

We consider now examples of groupoids and corresponding operators Aging (S,7).

4.3. Groupoid Cg for a Riemannian manifold

Let M be Riemannian manifold equipped with Riemannian metric G. (As always
we suppose that M is orientable compact manifold with a chosen oriented atlas).
Riemannian metric defines principal symbol S = G~!. In local coordinates S% = g%
(G = gapdx®dz®). Tt is principal symbol of operator of weight § = 0.
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Let v be an arbitrary connection on volume forms. The differential operator
A = Aging (G71,v) with weight § = 0 transforms half-densities to half-densities.
Due to the formulae (32), (33) this operator equals to

Aging (G™1,7): Fi— F,
—1 1 ab ba 1 a 1 a
Aging (GT1,y) = 519 DaOp + Oy 8a+§6a'7 ="

We come to the groupoid
1
Cg = {Groupoid of arrows 7y L’y’ such that div,X — §X2 = O}

and to the operator on half-densities depending on the class of connections

1 1 1
Ap]) =3 <g“b8a8b + Dpg"* 0 + 50a7" = 4fma> :

On Riemannian manifold one can consider distinguished Levi-Civita connection
on vector fields. This connection defines the connection 4 on volume forms, such
that 7,? =-T Zb = —0,log v/det g, where I', are Christoffel symbols of Levi-Civita
connection. (We also call this connection on volume forms, Levi-Civita connec-
tion.) Consider the orbit, equivalence classes [y“] in the groupoid Cg of Levi-Civita
connection ¥¢. This orbit defines the distinguished operator on half-densities on
Riemannian manifold:

A=Aq () -

One can always choose special local coordinates (z%) such that in these coordinates
det g = 1. In these local coordinates 7f = 0 and the distinguished operator A on
half-densities has the appearance:

A = % (gabaaab + 8bgba(9a> , fors= s(x)]D(x)\%,
As = % (2 (™ 0us()) ) ID()]

The differential equation
1
div,X — 5X2 =0

defining groupoid Cg has the following appearance in these coordinates:

X% xz) 1_, B
o — S X (@)X, (@) = 0.

All connections 4 such that they have appearance v,(z) = X,(z) in these special
coordinates, where X,(z) is a solution of this differential equation, belong to the
orbit [y¢].
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The operator A ([’yG]) belongs in particular to the canonical pencil associated
with the Beltrami-Laplace operator (see the example 6).

On the other hand let ¥ be an arbitrary connection and let p be an arbitrary
volume form on the Riemannian manifold M. One can assign to volume form p the
flat connection ¥°: 44 = —3d,logp. Consider operator %A ([v]) v/p on functions

(see Remark 8.) We come to scalar operator on functions
1
Af =5 (9 (9700F) =1"0u+ R)
where scalar function R equals to
1. 1o
R=Ugy—Ugqe = §d1vX — ZX .

Here vector field X is defined by the difference of the connections: X =y —~*.

It is interesting to compare formulae of this subsection with constructions in the
paper [2] for a case of Riemannian structure.

Our next example is a groupoid on odd symplectic supermanifold. Before dis-
cussing it sketch shortly what happens if we consider supermanifolds instead mani-
folds.

4.4. Supermanifold case

Let M be n|m-dimensional supermanifold. Denote local coordinates of super-
manifold by z4 = (z%,6%) (a = 1,...,n;a = 1,...,m). Here 2% are even coordinates
and 0% odd coordinates: z428 = (—1)P(AP(B) 2B A where p(z4), or shortly p(A) is
a parity of coordinate z4; (p(z®) = 0,p(8%) = 1).

We would like to study second order linear differential operators A = S489,40p+

.... Principal symbol of this operator is supersymmetric contravariant tensor field
S = S4B, This field may be even or odd:

SAB = (P APEIGBA p(SAP) = p(S) + p(A) + p(B) -

The analysis of second order operators can be performed in supercase in a way
similar to usual case. We have just to worry about sign rules. E.g. the formula (28)
for canonical pencil of operators has to be rewritten in the following way

t&

Ar=75 <SAB($)3B<9A + (*1)p(A)p(s+1)8BSBA3A> +

6

5 (2045 = )7 (@) + (~1PIPEA A @) £ A (45— 1)0(x)) - (36)

Here A is even (odd ) operator if principal symbol S is even (odd) tensor field (see
for detail [15]).

In the case if S is an even tensor field and it is non-degenerate then it defines
Riemannian structure on (super)manifold M. We come to groupoid Cg in a same
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way as in a case of usual Riemannian manifold considered in the previous subsection.
(We just must worry about signs arising in calculations.) In particular for even
Riemannian supermanifold there exists distinguished Levi-Civita connection which
canonically induces the unique connection on volume forms. This connection is a
flat connection of the canonical volume form:

p, = \/Bergap|D(2)|, 74 = —0alogp(z) = —(-1)PTE,. (37)

Here gap is a covariant tensor defining Riemannian structure, (S48 = ¢4P) and
I‘gc are Christoffel symbols of Levi-Civita connection of this Riemannian structure.
Ber g4p is Berezinian (superdeteriminant) of the matrix g4p. It is super analog of
determinant. The matrix g4p is n|m X n|m even matrix and its Berezinian is given

by the formula

Ber gap = Ber (gab gaﬁ) = det <9ab — ga7975g5b> . (38)
Jab  YGop det go

(Here as usual g7 stands for the matrix inverse to the matrix g.s.)

The situation is essentially different in the case if S = S48 is an odd super-
symmetric contravariant tensor field and respectively A = S489,405 + ... is an
odd operator. In this case one comes naturally to the odd Poisson structure on
supermanifold M if tensor S obeys additional conditions.

Namely, consider cotangent bundle T*M to supermanifold M with local coor-
dinates (zA,pB) where p4 are coordinates in fibres dual to coordinates z* (pa ~
a%). Supersymmetric contravariant tensor field S = S48 defines quadratic master-
Hamiltonian, odd function Hg = %SABpApB on cotangent bundle T*M. This
quadratic master-Hamiltonian defines the odd bracket on the functions on M as
a derived bracket:

{f,9} =((f.Hs),9), p{f,g})=p(f)+plg) +1. (39)

Here (, ) is canonical Poisson bracket on the cotangent bundle 7*M. The odd
derived bracket is anti-commutative with respect to shifted parity and it obeys
Leibnitz rule:

{f.g} = —(—~1)PDE@TILg 1y Lf gh}y = {f,gth+ (=1)P@PM L f hlg.

This odd derived bracket becomes an odd Poisson bracket in the case if it obeys
Jacobi identity

(=1)PNFDPFD £ 1 B 4 (—1)PUFDPIOFD 16 By )
(LB h, £} gy = 0. (40)

It is a beautiful fact that the condition that derived bracket (39) obeys Jacobi identity
can be formulated as a quadratic condition (H,H) = 0 for the master-Hamiltonian:

(Hg, Hg) = 0 < Jacobi identity for the derived bracket {, } holds. (41)
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(See for detail [14]). In the case if S is an even field (Riemannian geometry) master-
Hamiltonian H is even function and Jacobi identity is trivial (see for detail [14] and
15].)

From now on suppose that tensor field S is odd and it defines an odd Poisson
bracket on the supermanifold M, i.e. the relation (41) holds. This odd Poisson
bracket corresponds to an odd symplectic structure in the case if the bracket is
non-degenerate, i.e. the odd tensor field S is non-degenerate tensor field. The
condition of non-degeneracy means that there exists inverse covariant tensor field
Spc: SABSpc = 68. Since the matrix S4Z is an odd matrix (p(SA8) = p(A) +
p(B)+1) this implies that matrix S4# has equal number of even and odd dimensions.
We come to conclusion that for an odd symplectic supermanifold even and odd
dimensions have to coincide. It is necessarily n|n-dimensional.

The basic example of an odd symplectic supermanifold is the following: for an
arbitrary usual manifold M consider its cotangent bundle 7% M and change parity
of the fibres in this bundle. We come to an odd symplectic supermanifold I17™ M.
To arbitrary local coordinates % on M one can associate local coordinates (z%,6,)
in IIT* M, where odd coordinates 6, transform as 0,:

a

a d’ a 0$
% =z (2), O = 5
Oz

O, . (42)
In these local coordinates the non-degenerate odd Poisson bracket is well-defined by
the relations

{2%,0,} = 0%, {2%,2°} =0, {64,605} =0. (43)

(These relations are invariant with respect to coordinate transformations (42).)

Remark 9 An arbitrary odd symplectic supermanifold E is symplectomorphic to
cotangent bundle of a usual manifold M. One may take M as even Lagrangian
surface in M. (See for detail [12].) One can consider instead supermanifold E the
cotangent bundle IIT*M for usual manifold M. The difference between cotangent
bundle to M with changed parity of fibres and supermanifold IIT*M is that in the
supermanifold IIT* M one may consider arbitrary parity preserving coordinate trans-
formations of local coordinates x and 0 which may destroy vector bundle structure,
not only the transformations (42) which preserve the structure of vector bundle.

4.5. Groupoid Cs for an odd symplectic supermanifold

Let E be (n|n)-dimensional odd symplectic supermanifold, where an odd sym-
plectic structure and respectively odd non-degenerate Poisson structure are defined
by contravariant supersymmetric non-degenerate odd tensor field S = S4% such that
Jacobi identities (40) hold. We study second order odd operators A = 2548 4
of weight § = 0%.

4The following construction of groupoid is obviously valid in the general Poisson case, but in
this subsection we are mainly interested in the odd symplectic case
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Let v be an arbitrary connection on volume forms. The differential operator
A = Aging (S,7) of weight § = 0 with principal symbol S defined by equation (32)
transforms half-densities to half-densities. Due to the formulae (32), (33) and (36)
this operator equals to

Asing (S,7): .7'-%—>.7'—%,

1 1 1
Aging (S,7) = 3 <SABaBaA + dpgPA0, + iaA”YA — 4’YA’YA> : (44)

We come to the groupoid
1
Cs = {Groupoid of arrows =y L’y’ such that div,X — §X2 = 0}
and to the operator on half-densities depending on the class of connections

A(l]) = % (54P0p04 + 0pg" "8, + Us (17])) , where Us ([7]) = %@WA - %wwA :

(45)
It is here where a similarity with Riemannian case finishes. On Riemannian manifold
one can consider canonical volume form and distinguished Levi-Civita connection
which induces canonical flat connection v (see equation (37)). On an odd symplectic
supermanifold there is no canonical volume form ° and there is no distinguished
connection on vector fields. On the other hand it turns out that in this case one can
construct the class of distinguished connections which belong to an orbit of groupoid
Cs. Namely study the equation

1
div,X — 5X;Q =0, (46)

which defines the groupoid Cs. According to equations (34), (44) and (45) we see
that for operators A ([y]) acting on half-densities we have that

A (1) = A([]) = Asing (S,7) — Asing (S,7) = i (div,yx - ;X2) . )

We call the equation (46) Batalin-Vilkovisky equation. Study this equation.

It is convenient to work in Darbouz coordinates. Local coordinates z4 = (x2, 6)
on supermanifold E are called Darboux coordinates if non-degenerate odd Poisson
bracket has the appearance (43) in these coordinates.

We say that connection v is Darboux flat if it vanishes in some Darboux coordi-
nates.

Lemma 1 Let~y,v' be two connections such that both connection vy and~y' are Dar-

boux flat. Then the arrow 'yiwy' belongs to the groupoid Cs. i.e. the Batalin-
Vilkovisky equation div,X — %X2 = 0 holds for covector field X =~ — .

®Naive generalisation of formulae (37) and (38) does not work since in particular S*% is not an
even matrix
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We will prove this lemma later.

Remark 10 In fact lemma implies that a class of locally defined Darboux flat connections de-
fines globally the pseudoscalar function Us in (44). Let {z(‘z)} be an arbitrary atlas of Darboux
coordinates on EE. We say that the collection of local connections {'y(a)} is adjusted to Darboux

atlas {z{}l)} if every local connection 7y, (defined in the chart z{}l)) vanishes in these local Darboux
coordinates Z&). Let {4} and {'y'(a/)} be two families of local connections adjusted to Darbouz
atlases {z(’z)} and {Z(Aa/,)} respectively. Then due to Lemma all arrows Y(a) L’y(a,) ’y/(a) L’y/(a,)
and Y (q) ivyéa,) belong to local groupoid Cs (if charts (z(}l)), (z{}l/)), (zfqa/)) and (z{‘a/,)) intersect).
This means that in spite of the fact that the family {va} does not define the global connection, still
equations (46) hold locally and operator A = A(S,v,) globally exists. (These considerations for
locally defined groupoid can be performed for arbitrary case. One can consider the family of locally
defined connections {v,} such that they define global operator (32).) On the other hand in a case of
an odd symplectic supermanifold there exists a global Darbouz flat connection, i.e. the connection vy
such in a vicinity of an arbitrary point this connection vanishes in some Darboux coordinates. Show
it.

Without loss of generality suppose that E = IIT*M (see Remark (9).) Let o be an arbitrary
volume form on M (we suppose that M is orientable). Choose an atlas {{,)} of local coordinates
on M such that o is the coordinate volume form, i.e. o = dw%w A ...dz{,y. Then consider asso-
ciated atlas {x{,y,0.(a)} in supermanifold TIT* M which is an atlas of Darbouz coordinates. For
this atlas as well as for the atlas {w?a)} Jacobians of coordinate transformations are equal to 1.
Thus we constructed atlas of special Darbouzx coordinates in which all the Jacobians of coordinate
transformations are equal to 1. The coordinate volume form p = D(x,0) is globally defined. The

flat connection defined by this volume form vanishes. We defined globally Darbouz flat connection.
We come to Proposition

Proposition 5 In an odd symplectic supermanifold there exists a canonical orbit of
connections. It is the class [y] in the groupoid Cs, where vy is an arbitrary Darboux
flat connection. We will call this canonical class of connections “the class of Darbouz
flat connections”.

For any connection belonging to the canonical orbit of connections, the pseu-
doscalar function Us in (45) vanishes in arbitrary Darboux coordinates®. The op-
erator A = A[y] on half-densities corresponding to this class of connections has the
following appearance in arbitrary Darboux coordinates z4 = (2%, 6j):

92
A= 92990, " (48)
(This canonical operator on half-densities was introduced in [12].)
Now prove Lemma 1.
For an arbitrary volume form p consider an operator
Apf = %divpgradf. (49)

5This function vanishes not only for globally defined Darboux flat connection but for a family
of connections adjusted to an arbitrary Darboux atlas (see Remark 10)
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Here grad f is Hamiltonian vector field {f, zA}aziA corresponding to the function
f. (Compare with (2).) This is the famous Batalin-Vilkovisky odd Laplacian on
functions. In the case if 24 = (2%, 6,) are Darboux coordinates and a volume form
p is the coordinate volume form, i.e. p = D(z,0), then odd Laplacian in these
Darboux coordinates has the appearance

82
A= 0z200,

(50)

(This is the initial form of the Batalin-Vilkovisky operator in [3]. (Geometrical
meaning of BV operator, and how formulae (49) and (50) are related with canonical
operator (48) on semidensities see in [10, 19, 12].)

The equation (46) characterising the groupoid (the Batalin-Vilkovisky equation)
is related with the Batalin-Vilkovisky operator by the following identity:

- 1 1
—e%ApeTF = —div,X — -X?, (51)
4 8
where connection « is a flat connection induced by volume form (v, = —09,logp )

and vector field X is Hamiltonian vector field of the function F'.

We use this identity to prove the lemma. Let connection 7 vanishes in Dar-
boux coordinates z4 = (2%,6,) and connection 4/ vanishes in Darboux coordinates
A" = (2%,04). Then (compare with equation (11)) connection 4’ has in Darboux
coordinates z# = (2%, 6,) the following appearance

YA 87(%' + Oarlog J) ,

o(x,0)
9(z’,0")

where J is Jacobian of Darboux coordinates transformation J = Ber J = Ber
(see also the formula (38))

Hence for the arrow =y L’y’ the covector field X equals to

9 (', 0)
Xa=- 2. 0)

0z%

log Ber

Apply identity (51) where v, = 0, p = D(«,6) is coordinate volume form and
F = —log Ber 88(2';22)). Using (49) and (50) we arrive at

1. IO N O(z,0) 0? o(',0)\
gIVXogX = e dpen = ( B o, 0) ) aen, \\| " 0w, 0) ) T

The last identity is the famous Batalin-Vilkovisky identity [4] which stands in the
core of the geometry of Batalin-Vilkovisky operator.
Lemma is proved.
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Remark 11 The canonical operator (48) assigns to every even non-zero half density
s and to every volume form p the functions os and op:

(see [12]). In the articles [1, 2] Batalin and Bering considered geometrical proper-
ties of the canonical operator (48) on semidensities. In these considerations they
used the formula for expressing the canonical operator (48) in arbitrary coordinates.
This formula was suggested by Bering in [6]. Clarifying geometrical meaning of
this formula and analysing the geometrical meaning of the scalar function o(p) they
come to beautiful result: if V is an arbitrary torsion-free affine connection in an odd
symplectic supermanifold which is compatible with volume form p, then the scalar
curvature of this connection equals (up to a coefficient) to the function o,.

Remark 12 In work [1}] we have considered in particular the following “Batalin-
Vilkovisky groupoid” of volume forms on an odd Poisson manifold: the arrows

pr’, where J = %, are defined by the Batalin-Vilkovisky equation Ap\/j = 0.
The operator A, is defined by equation (49). Assign to each arrow pi>p’ the arrow

fyivy’ of the groupoid Cs such that the connections 7, are defined by volume
forms p,p’ respectively (v, = —0qlog p and ), = —0,1ogp’). Then it follows from
equation (51) that the groupoid of volume forms is a subgroupoid of the groupoid Cs.

Both the Batalin—Vilkovisky groupoid and the groupoid of connections C's consid-
ered here can be regarded as Lie groupoids over infinite-dimensional manifolds, which
are the space Vol* (M) of the non-degenerate volume forms and the space Conx(M)
of the connections on densities on a manifold M respectively. The corresponding
Lie algebroids can be described as follows.

For the Batalin—Vilkovisky groupoid, the Lie algebroid is the vector bundle over
the (infinite-dimensional) manifold Vol* (M) whose the fiber over the point p is the
vector space of all solutions of the equation A F = 0 where F € C*(M). The
anchor is tautological: it sends a function F' to the infinitesimal shift p — p+ecpF.
A section of this bundle is a functional F[p] of a volume form with values in functions
on M such that for each p, the above equation is satisfied. The Lie bracket is the
restriction of the canonical commutator of vector fields on Vol* (M) and can be
expressed by an explicit formula

[F, G[p;x /Dyp ( [p; y]égf’)] —G[,;;;,}W) :

Here we write F|p;x] for the value of F[p] € C*°(M) at x € M.

For the groupoid of connections (with a fived tensor density S of weight 6 ), the
Lie algebroid is the vector bundle over Conx(M) whose fiber over v € Conx(M) is
the vector space of all solutions of the equation div,X = 0. A section is a functional
of a connection taking values in these vector spaces. The anchor is tautological: it
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sends a covector field X, to the infinitesimal shift of the connection g — V4 + €Xq.
The Lie bracket can be expressed by the formula

(X, Y]aly; 2] = /MD?J <Xb[7;y}m

(For supermanifolds the formulas for the brackets contain extra signs.) Note that
since the groupoids in question are subgroupoids of the trivial (pair) groupoids, these
Lie algebroids are subalgebroids of the respective tangent bundles.

— Yl y]éXah;x}) :

6v(y)

4.6. Groupoid Cg for the line

We return here to simplest possible manifold—real line. The symmetric tensor
field S of rank 2 and of weight ¢ on real line R is a density of the weight § — 2:
S = S92|D(z)|® ~ S|D(x)[°~2. Consider on R the canonical vector density |D(x)|0,
which is invariant with respect to change of coordinates. Its square defines canonical
tensor density Sg = |D(x)|?(9;)? of weight & = 2.

We see that on the line there is a canonical pencil of second order operators of the
weight § = 2: [D(z)|? (92 + ... ) with canonical principal symbol Sg = |D(z)|?(9,)>.
The operator (32) belonging to this pencil acts on densities of weight 1—55 = —% and
transforms them into densities of weight 1%‘3 = % According to (32) It has the
following appearance:

Njw

A(y):  U(z)|Dz| "2 &(z)|D(x)|

1 (90*0(x)
2 Ox?

+ U(:z:)\Il(x)) \Dz|2

where according to the equation (33)

1

Uy(e) = (% n ;v) D@ (52)

This is Sturm-Lioville operator recognisable by speciaialists in projective geometry
and integrable systems’ (see e.g. [9] or the book [18]).
We see that in this case the difference of operators is

A) = Am) = 4 (243 07 D@ + § (304 3 0)F) I =

1 1
- (divX + 2X2> .

Here X = (v — v)|D(x)|?0, is vector density of the weight § = 2. (compare with
formulae(34) and (47)).

"The operator A corresponds to a curve t +— [u1(t) : uz(t)], R — RP" in projective line defined
by the solutions of equation Au = 0.
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Using formulae (35) we come to the following canonical groupoid Cr on the line:
Cr = {Groupoid of arrows 'yivy'such that A(y') = A(y),i.e. Uy = Uy} =

1
= {Groupoid of arrows 7 L,)/ such that div,X + 5X2 =0},

where A(7y) is the Sturm-Lioville operator (52). It depends on the orbit of connection
v, the class [y].

Analyse the equation div X + %Xz = 0 defining the canonical groupoid Cr and
compare it with the cocycle related with the operator.

If covector field equals to 4/ — 4 = a(x)dx, then the vector density equals
to Sr(a(z)dz) = a(z)|D(z)|?0,. Hence X% = a?(x)|D(x)|? and divX = (a; +
va)|D(x)|?. We come to the equation:

1 1
divX + §X2 = (ax +va + 2(12) |D(z)> =0.

Solve this differential equation. Choose coordinate such that ~ vanishes in this
coordinate. Then

2dx

X —
C+z’

where C' is a constant . (53)

On the other hand analyze the action of diffeomorphisms on the connection vy and
the Sturm-Lioville operator (52). Let f = f(z) be a diffeomorphism of R. (We
consider compactified R ~ S! and diffeomorphisms preserving orientation.) The new
connection ¥ equals to ys, <'y|y(w) + (log xy)x> dz and the covector field 4 — 4
equals to

XU =) —y = y(y())dy + (log z),, dy — y(z)dz .

We come to cocycle on group of diffeomorphisms:

() =AMy =AM =A0) A = 7 Uy —Uy) =

1
4\

1 1 2
2 divx £ = (x()
4 ( ' 2 ( ) > ' (54)

In coordinate such that v = 0, X(/) = (log Iy)y dy. Combining with a solution

2
CHzx-

(53) we come to equation (logz,), = Solving this equation we see that

1 2 b
divX®) 4 - (X(f)> =0&sy= ar + is a projective transformation .
2 cr+d

The cocycle (54) is coboundary in the space of second order operators and it is a
non-trivial cocycle in the space of densities of the weight 2. This cocycle vanishes
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on projective transformations. This is well-known cocycle related with Schwarzian
derivative (see the book [18] and citations there):

o(f) = A= Aly)=A0) - A®)

1 1 1 2
> (Uyr = Uy) = =5 (leX +5 (x9) )
1
= — 1 (GWIPWI +S @) IDW)I* = Uy(@)| D)) ,
where
Tyyy 3 [ Tyy ?
S — Ty °
() = 22 (22
is Schwarzian of the transformation z = z(y). If ¥ = 0 in coordinate z then

c(f) = S(x(y) D>

4.7. Invariant densities on 1|l-codimension submanifolds in an odd
symplectic supermanifold and mean curvature

In the previous examples we considered second order operators which depend
on a class of connections on volume forms. In particular we considered for odd
symplectic supermanifold the canonical class of Darboux flat connections (see the
Proposition 5) and with use of this class redefined the canonical operator (48).

Now we consider an example of geometrical constructions which depend on sec-
ond order derivatives and on a class of Darbouz flat affine connections.

Let F be an odd symplectic supermanifold equipped with volume form p. Let
C be a non-degenerate submanifold of codimension (1]1) in E (induced Poisson
structure on C' is non-degenerate). We call such a submanifold ”hypersurface”.

For an arbitrary affine connection V and arbitrary vector field ¥ consider the
following object:

AV, ¥) =Tr (II(VY)) — div , ¥, (55)

where IT is the projector on (1]1)-dimensional planes which are symplectoorthogonal
to hypersurface C' at points of this hypersurface. (We define these objects in a
vicinity of C'.)

Let vector field ¥ be symplectoorthogonal to the hypersurface C' at points of C.
Then one can see that at points of C'

AV, f¥) = FA(V, ¥) (56)

for an arbitrary function f. Thus A(V, V) is well-defined on C' in the case if ¥ is
a vector field defined only at C' and ¥ is symplectoorthogonal to C'. This object is
interesting since it is related with canonical vector valued half-density and canonical
scalar half-density on the manifold C' (see for detail [11].)

Namely let ¥ be a vector field on hypersurface C' symplectoorthogonal to C.
From now on we suppose that it also obeys to following additional conditions
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e it is an odd vector field p(¥ = U49,) = p(¥4) + p(A) = 1,
e it is non-degenerate, i.e. at least one of components is not-nilpotent,

e w(U,¥) = 0, where w is the symplectic form in F, defining its symplectic
structure.

One can see that these conditions uniquely define vector field ¥ at every point of
C up to a multiplier function. Consider now a following volume form pg on C: Let
H be an even vector field on hypersurface C such that it is symplectoorthogonal to
C and w(H, ¥) = 1. Define an half-density py by the condition that for an arbitrary
basis {e1,...e,—1;f1,...,f,_1} of surface C

Pu (ela . 'en—l;flw . '7fn—1) = p(e17 e ‘en—lvH;flv s 7fn—17\I/) .

(Here ey,...e,—1 are even basis vectors and fj,...,f, 1 are odd basis vectors.)
Using formula (38) for Berezinian and relation (56) one can see that for an arbitrary
function f,

Py
wa—ﬁ-

We come to conclusion that vector valued half-density W,/py is well-defined odd
half-density on hypersurface C. Applying equation (55) we come to well-defined
half-density on hypersurface C: s (V) = A(V,¥),/py. This half-density depends
only on affine connection V.

We say that affine supersymmetric connection V on E with Christoffel symbols
'S5 is Darboux flat affine if there exist Darboux coordinates 24 = (2%,6,) such
that in these Darboux coordinates the Chrsitoffel symbols of the connection vanish:
V40p = 0. (Darboux flat affine connection on F induces Darboux flat connection

v:ya = (=1)BTZ, on volume forms.)

Proposition 6 The half-density s (V) does not depend on a connection in the class
of Darbouz flat connections: s, (V) = s,(V') for two arbitrary Darboux flat affine
onnections V and V'.

This statement in not explicit way in fact was used in the work [11] where the
half-density was constructed in Darboux coordinates.

The Proposition implies the existence of canonical half-density on hyperLsurfaces
in odd symplectic supermanifold. This semidensity was first calculated straightfor-
wardly in [13]

On one hand the invariant semindensity in odd symplectic supermanifold is an
analogue of Poincare-Cartan integral invariants. On the other hand the construc-
tions above are related with mean curvature of hypersurfaces (surfaces of codimen-
sion 1) in the even Riemannian case: if C' is surface of codimension (1|0) in Rieman-
nian manifold M then one can consider the canonical Levi-Civita connection and
canonical volume form. Applying constructions above we come to mean curvature.
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In the odd symplectic case there is no preferred affine connection compatible with
the symplectic structure(see for detail [11]).

Acknowledgment We are grateful to O.Little for useful discussions which were
helpful for understanding the relation of formula (55) with invariant half-density.
Khudaverdian is very happy to acknowledge the wonderful environment of the MPI
which facilitates the working on this paper.

References

[1] I. A. Batalin, K. Bering, J. Math. Phys. 49, 033515 (2008).
[2] I. A.Batalin, K. Bering, J. Math. Phys. 50, 073504 (2009).

[3] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B 102, 27 (1981).
[4] I. A. Batalin, G. A. Vilkovisky, Nucl.Phys. B 234, 106 (1984).

[5] F. A. Berezin, Introduction in superanalysis. Expanded translation from the
Russian: Introduction to analysis with anticommuting variables. A. A. Kirillov
(Editor), Moscow State Univerisity, Moscow (1983). Translation edited by D.
A. Leites, D. Reidel, Dordrecht (1987).

[6] K. Bering, J. Math. Phys. 47, 123513 (2006).

[7] P. Cohen, Y. Manin, D. Zagier. Automorphic pseudodifferential operators. Al-
gebraic aspects of Integrable systems., A. S. Fokas and I. M. Gelfand (Editors).
Boston, Burkhauser, (1997), pp.17-47.

[8] C. Duval, V. Yu. Ovisenko, Advances in Mathematics 132, 316 (1997).

[9] N. J. Hitchin, G. B. Segal and R. S. Ward Integrable systems. The Clarendon
Press, Oxford Univ. Press, New-York (1999).

[10] O. M. (H. M.) Khudaverdian, J. Math. Phys. 32, 1934 (1991).
[11] O. M. (H. M.) Khudaverdian, Comm. Math. Phys. 198, 591 (1998).
[12] H. M. Khudaverdian, Comm. Math. Phys. 247, 353 (2004).

[13] O. M. (H. M.) Khudaverdian, R. L. Mkrtchian, Lett. Math. Phys. 18, 229
(1989).

[14] H. M. Khudaverdian, T. Voronov, Lett. Math. Phys. 62, 127 (2002).

[15] H. M. Khudaverdian, T. Voronov, In Amer. Math. Soc. Transl.(2), Vol.212,
179 (2004).

221



[16]

[19]
[20]

P. Lecomte Classification projective des espaces d’operateurs differentiells agis-
sant sur les densities. C. R. Acad. Sci. Paris.—Ser.1 Math. (1999), 328. 4,
pp-287-290.

D. A. Leites, The theory of Supermanifolds. Karelskij Filial AN SSSR (in
Russian) (1983). Seminar on Supermanifolds, D. Leites (Editor). Reports of
Stockholm University, 1986 V1990. V. 1 V35. ca 2000 pp.

V. Ovsienko, S. Tabachnikov Projective Differential Geometry Old and New
From Schwarzian Derivative to the Cohomology of Diffeomorphism Groups.
Cambridge University Press (2005).

A. S. Schwarz, Comm. Math. Phys. 155, 249 (1993).

T. Voronov Geometric integration theory on supermanifolds. Sov. Sci. Rev. C,
Math. 9, 1 (1992).

222



Quantum superpositional beam-splitter
for a two-bunch atom interferometer

Lilit A. Hovhannisyan, Gevorg Muradyan, Atom Zh. Muradyan
Department of Physics, Yerevan State University
1 Alex Manoogian Street, 0025 Yerevan, Armenia

Abstract
The problem of Kapitza - Dirac diffraction is solved in Raman-Nath approximation
without imitations on resonance detuning. A formula for the scattering amplitude in a
definite integral form is obtained. It shows that in case of initial superposition state of
discrete Gaussian form the scattering spectrum has a new regularity, more usable for the
atomic optics.

1. Introduction

Interaction of atoms with electromagnetic field has a double nature: it changes
the population of energy levels and a momentum exchange takes place between the
field and the atom, as a result of which the speed of atoms changes [1]. The mean
power, which has an effect on the atom, has a resonance nature and changes the
sign when crossing the resonance [2].

The problem of motion of scattering atoms in the field of counterpropagating
waves, attracts a constant attention in atomic optics and atomic interferometry
[3,4]. The mechanism of atom scattering in this case is the re-emission of photons
of one wave into the other counterpropagating wave, when due to each reemitted
photon the atom acquires recoil momentum 27k , where k -is the wave vector [5,6].

As an unknown for each process of scattering, stand the scattering probability
amplitudesa ,, corresponding to the number n of the re-emitted photons for ¢

interaction time [7]. Analytical results for the scattering amplitudes, outside of
Bragg regime, is possible to obtain only for short times of interaction, when the
operator of kinetic energy of the atom can be neglected. This is mathematically
equivalent to the Raman—Nath approximation. By this approximation the scattering
amplitude with an accuracy of a phase factor are given by the n-order Bessel

function

a, (1) =4, (R 1) (1)
where the argument is a product of the Rabi frequency of the optical transition
between the energy levels of the atom during interaction with the
counterpropagating waves field [8].

The characteristic form of the temporal development of the diffraction of
atomic wave according to the formula (1) for high Rabi frequencies is shown in
Fig.1. The development is described by two charcteristics: first, the momentum
spectrum is symmetrical and monotonic and second, the maximum scattering
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amplitudes always remain grouped on the boundaries of distribution. For later
discussion is important that formula (1) nevertheless is related to the case of zero or
large resonance detuning A = w—- @, , where o is the field frequency and w, is the

atomic transition frequency. In the presented paper the expression for scattering
amplitude, derived without limitations for A will have a form of a definite integral,
which in the limit of small and large A passes into a Bessel function. Thus it can
be viewed as the generalized form of a Bessel function.

Detailed comparison with formula (1) shows, that differences have
quantitative nature only if the atom before interaction has a definite momentum.
But if the moving atom is in the superposition state of many momentum states the
evolution of atom acquires a qualitatively new content compared to the case of
zero or asymptotically large detunings. In particular a periodic oscilliation of
atomic beam direction from the initial one is possible too.

(0.5

Figure 1: Temporal evolution of the atomic diffraction probability in the field
of two counterpropagating optical waves, in case of the high
intensitiestransitions.

2. Scattering amplitudes

The two-level atom interacts with the field of counterpropaating waves.
The electric field is

E(z1)=E ()" +E, (1)) yee, )

where k=m/c, z is the atomic center of mass coordinate and for amplitudes
E,(t) u E,(t) is taken a simple law of instantaneous turn-on. Limiting with dipole

approximation, for the interacting atom Hamiltonian we will have
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A 19
H=——2"—+H,-dE(z1), 3
201 97 HHomdE(z) ©)

where H 0 is the Hamiltonian of free and immovable atom, M is atomic mass,

and d - operator of dipole moment. The atomic wavefunction can be written in the
following form:
At LV
y(zrit)=a(zt)y,(r)e " +b(z,t) y,(r)e * , 4)
where a(z, t) and b(z, t) are the sought probability amplitudes of the atom being

in ground and excited states, respectively, &, & and w,(r),y,(r) are

eigenvalues and eigenfunctions of the free atoms Hamiltonian, r — the radius-
vector of optical electron relative to the center of mass.

The Raman — Nath approximation assumes that the atomic displacement
during interaction is considerably smaller than the light wavelength. Hence it
proves to be possible to neglect the kinetic energy operator, after which equation
for the probability amplitudes substantially simplifies and takes the following form:

th%a(z t)= d( E e " +E) ¢ jb(z,t) , 5
[ih%—h Ajb(z, t)=-d (E " +E,e’* ") a(z1). (6)

Since the right side coefficient of equation (5) does not depend on time, the
equation for the amplitude of the ground state a(z, 7)can be obtained from it by

simply acting from the left side with operator i# %—h A, and using equation (6).

This will bring to

ot

The solution of this equation we can present in the form of Fourier- transformation
in terms of dimensionless space coordinate 2k z :

)

a(z, t) = z an (t) ei”Zkf ’ (8)

n=-co

2
(iﬂ'AJ% a(z 1) =—|;1l—|2(Ef+E§+2 E E,cos(2kz))a(z.1). (7)

where the unknown amplitude a,(z) will be sought in the form of a definite

integral
J‘e"’”‘”) "cos (n @) dp 9)

0
with unknown function A(¢). Substitution of (8) and (9) into (7) gives two
possible expressions for A(¢):

(AL 1A
2

i1+ (). (10)

where &(@)=&+& +24& & cos() and &, =4d°E], 1 *A%,
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The general solution, as usually, is presented as a superposition of two
linearly independent solutions

a,(r)= Cl,[o exp(i A, (¢)t)cos(ngp)d o+ CZJO exp(i A, (@)t) cos(n@)d o. (11)
The coefficients C, and C, are determined from initial conditions. If, for example,
before interaction the atom resided on the ground state and was in rest, then

1 sign[A] | [44E &, ) _ 1 sign[A] | [ 465 )
C‘_2+4\/1+§ {FL 1+& ]J 673 4 1+¢ {FL 1+¢ D 2

where F(x)is the elliptic integral of the first kind. The obtained solution (11) with

coefficients (12) and integrands (10) is the generalization of known formula (1) in
the case of arbitrary resonance detuning.

3. Numerical calculations

As shows the more detailed analysis of the situation, the biggest differences
from the Bessel regularities are obtained, when the initial state of the atom is a
superpositional one. For example, when at the beginning it has the following
discrete Gaussian distribution [9]:

a(z,t=0)= Z 5, €, (13)
()
1 ian 1 crave- o
Sy =L =l 7, (14)

where s is the distribution FWHM and a is the initial phase of each scattering
component n= 0,+1,+2,.... Then for the scattering amplitudes instead of (11) we
will have the following, more general expression

a (t):Le[anL
LN A
(Cl.[:exl{_"%"'i%\/“'f((/’ﬂzj_wexp[—iav—(nz_;) ]cos(wp) do+ (15)

+C2J'0”exp[—i%—i% 1+§((/’)jz;mexp[—iav - (n2—:) }cos(v ) do),

with the same coefficients C,, C, that appear in (12).

For illustrating the new regularities, we will limit the discussion to the cases
a=0 and @=x/2. In the case a=0, for example was obtained’ that if we

proceed from the Bessel approximation for the scattering amplitudes, then initial

Gaussian distribution in the course of interaction monotonically increases its width

and only. Calculations according to the formula (15) give a qualitatively different

result: the distributions are split into two identical peaks, which preserving the

form, symmetrically move away from the distribution center. Fig.2 illustrates this
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picture at ¢=18x10°(here and afterwards ¢ is given in A™' units.

0.008

0.006

0.004
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Lea” 1* J 12 taad

-30 -15 0 15 30

Figure 2: Picture of the momentum distribution for a moving atom scattering
in the field of counterpropagating waves at ¢=59x10". Initial distribution had

a Gaussian form (14) with the phase parameter =0, with half-width o =10.

Qualitative differences are present also for & =7 /2. Within the framework of

the Bessel approximation the initial Gaussian distribution is monotonically moving
to one side with a weak change of the form. Formula (15) gives a new, oscillatory
behavior: in the beginning the Gaussian peak, as in Bessel approximation case, is
moving in one direction, but soon in symmetrically opposite direction gradually
appears a new peak, the growth of whichis accompanied by the decrease of the first
one, before it totally disappears as in Fig.3. Subsequently the reverse process
occurs, and two peaks, oscillating in reversed phase, monotonically are moving
away from the distribution center(Fig.4(a) and Fig.4(b)). It is evident that the
atomic wave packet evolution preserves the Gaussian form.
W
0.04

0.03-

0.02

0.01+

. -
1l POLLLIM L. 4 [ R

-30 -15 0 15 30
Figure 3: Appearance of a new peak in the momentum distribution of atom,
when scattering in the field of intense counterpropagating waves for a=7/2,

o=10, t=6x10".

n
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Figure 4a: Appearance of a new peak in the momentum distribution of atom,
when scattering in the field of intense counterpropagating waves for a=7/2,

o=10, t=6.07x10".

W
0.00012 .

0.00010
0.00008 .
0.00006
0.00004 !

0.00002 * 1|1t

1

-30 -15 0 15 30

Figure 4b: Appearance of a new peak in the momentum distribution of atom,
whenscattering in the field of intense counterpropagating waves a=7/2,

o=10, t=6.12x10".

Not less interesting, especially for applied optics, appears the case a=x. In this
case it proves to be possible to obtain a table-shaped form of momentum
distribution, which is the base form for high resolutionspectroscopy [10]. Such a
distribution is shown in Fig.5.
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Figure 5: Form “of the table” of the momentum distribution for a movingatom
in the Raman - Nath approximation. a=7, =10, +=17.8x10°.

4. Coclusion

The problem of resonance Kapitza-Dirac scattering of atom in the laser field
of counterpropagating waves is solved in Raman-Nath approximation without the
limitations put on the resonance detuning. The obtained formulas somewhat
generalize  the known Bessel functions expression for the scattering
amplitudes. More valuable is the fact that the refinement of formula allows to
obtain table-like momentum distribution forms, desirable in applied atomic optics
and interferometry.
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AJIJUABATUYECKOE OIIUCAHUE KOJIBIHEOBPA3HBIX
HAHOCTPYKTYP
O.M. Ka3ap;1H1, AA. CapKI/ICHHl’Z

IPoccuﬁcxo-ApMﬂHCKuﬁ (Cnasanckuit) ynusepcumem
0051 O.9muna 123, Epesan, Apmenus
2Epeecmcxm? 20Cy0apCcmeeHHblil YHUGepCcumem,
0025 A. Manykana 1, Epesan, Apmenus

B kpatkom o0030pe mpexacTaBieHa MpoIeaypa aguadaTHYECKOTO  OMHCAaHUS
3JIEKTPOHHBIX COCTOSIHUM B KBAaHTOBBIX CHCTEMax C HETpHUBHAlIbHOM reomerpueil. Ha
MpUMEpPE TONTYIPOBOAHAKOBBIX HAHOCTPYKTYP C KOJBICOOPA3HOM reoMeTpHell Mmoka3aHo,
9TO MPH MAaJlbIX 3HAYCHHUSAX TOJIIMHBI KBAaHTOBOIO KOJIbIIA XapaKTepPHBIC YacCTOTHI
paJMaNEHOTO KBAaHTOBAHWS HACTOJIEKO BCIMKH, 10 CPAaBHCHHIO C YacTOTaMHU YTIIOBOTO
KBaHTOBAaHHUS, 4YTO CHCTEMY MOXHO paccMaTpWBaTh KaK COBOKYIHOCTh OBICTPOH U
MeMIeHHOW moacucteM. [locnmenHee OOCTOSTENBCTBO MO3BOJSCT MPUMEHUTH MOICTH
IUTOCKOT'O pOTaTOpa JJISl OIMCAHUS JJICKTPOHHBIX COCTOSHUI B KBAHTOBOM Kojblle. Ecnu
TOMY K€ KBaHTOBOE KOJIBIIO IOMEIICHO B aKCHAJbHOE MATHUTHOE II0JIC, TO BO3HHUKAIOT
ycimoBus ans  TpoBepku  dddexta AapoHoBa-boma  IsI  CBSI3aHHBIX  COCTOSIHUU.
OO6cykaaeTcs TakKe cilydaid y3KO30HHOTO KBaHTOBOTO Kojblla m3 InSb ¢ keitHOBCKUM
3aKOHOM JHCTIEpCHH AJIeKTpoHa. [lokazaHo, 4To Onaromaps HaIHYMIO HEMapaOOIMIHOCTH
3aKOHAa JWCIEPCHU HOCUTENIeH 3apsiia MEHSAeTCS XapakTep 3aBHCHMOCTH JHEPTUU
AJIEKTPOHA OT BEJIMYUHEI IOTOKA MATHUTHOTO IMOJIS IIPOHU3BIBAIOIIETO KBAHTOBOE KOJIBIIO.

1. Beenenue

[MpubnmkeHHbIE METONBI pelieHHs KBAHTOMEXaHMUYECKHX 3aj7ad  BCerjaa
SIBJISLJTUCH BAXKHOM COCTABHOW YacCThIO TEOPETUUYECKOTO ammapara MCCiel0BaTele,
M3YYaoIUX 0COOCHHOCTH MUKPOMHUpPA, HAYMHASI C OTIMCAHUS TIOBEJICHUS HYKJIOHOB
B fAOpax ® 3aKaH4MBasg Cyry0o TMPHUKIATHBIMA TpoOJIeMaMH MHKpPO- U
HaHORJIeKTpoHUKH [1, 2]. Ha ocHOBE TakumxX METOJOB, KaK CTallMOHApHas U
HECTAllMOHApHAsT  TEOpUS  BO3MYIIEHHWH,  BapUAllMOHHOE  NPUOJIMKEHUE,
annabaTHYeCKoe NPUOIMKEHUE, METOJ KaHOHWYECKHX NpeoOpa3oBaHMid, METOJ
OCHWJIISITOPHOTO TPEJCTABICHUS W T.J., YIAeTCS MOJIYYHTh NPUOIMKEHHEIE
AQHAJIMTUYECKHE BBIPAKEHHUS, KOTOPBIE 3a94acTyi0, HECMOTPS Ha CPaBHUTEIHHYIO
MIPOCTOTY OKOHYATEIBHBIX COOTHOILIEHUH, XOPOIIO COINACYIOTCA C Pe3yJbTaTaMu
YUCJICHHOTO MOJICTTUPOBAaHUA M OJKcrmepuMeHta [3-6]. SlcHo, dYro Hammune
AHAIIMTUYECKUX  BBIPAXEHWHA M  pa3iuyHBIX  (U3MYECKHUX  IapaMeTpOB,
XapaKTEePU3YIOMINX KBAaHTOBBIE CHCTEMbBI, 3HAUUTEIBHO YIOPOIIAET MPOIEAYPY
aHalu3a MOJIYYCHHBIX PE3YyJIbTAaTOB U UX CPAaBHEHUE C JAHHBIMU SKCIEPUMEHTA.
[losTomMy, Hapsimy € MOIIHBIM anmapaToM YHCICHHOTO PEIIEeHUS pPa3IMIHBIX
YpaBHEHU! KBAaHTOBOH MEXaHHWKH, NPUOIMKCHHbIE aHAIUTUYECKHE METOJIbI
AKTUBHO MPUMEHSIOTCS JJIs1 KAUECTBEHHOT'O aHallM3a MaTeMaTUYECKUX MojeneH [7,
8].

Krnaccnveckum npuMepoM MpUMEHEHHUs IPUOIHKEHHOTO METOJIa
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CTAallMOHAPHOM TEOpUU BO3ZMYIICHHM, [ OMNHCAHHUSI KBAHTOBOM CHUCTEMBI,
SIBIIIETCSL MpoOiemMa aToMa BOJOpOnaa B ciaboM 3iekTpudeckoM moie (3ddexT
Ilrapka) (cm., Hamp. [1]). B pamkax a3Toif 3amaum OblIa IPOAEMOHCTPHUPOBAHA
CpaBHHTEIbHAs] MPOCTOTa U 3(PPEKTUBHOCTH ammapara TEOPUU BO3MYIICHUH, a
Takke 00O0CHOBaHa crenuduKa IMTAPKOBCKOTO pAaCIIEIUICHUS YpOBHEHW aToma
BOJOPO/JIA, CBA3aHHAS CO CIyYalHbIM BBIPOKJIEHUEM HEBO3MYILIEHHOIO CIIEKTPA.

BapuarnmonHoe mnpuOnmkenue sBisercss d(O(EKTUBHBIM  HWHCTPYMEHTOM
OMUCAHUSl KBAHTOBBIX CHUCTEM, HAllpUMEpP, B T€X CIydasX, KOrJa MOJs SBISIOTCA
MIPOMEKYTOUHBIMH, UK K€ HEBO3MOXKHO OCYIIECTBUTH Pa3elicHUE EPEMEHHBIX B
ypaBHennu Ulpenunrepa (cMm. Hamp., [9-11]). TummyaeiM npumMepoM Takon
CUTyaIluu SIBJIAETCS TpoOJieMa CBSI3aHHBIX COCTOSHUM YaCTHIIBI, HAXOSIICHCS B
LEHTPAIbHO-CUMMETPUYHOM TMOJI€, KOrJa Ha CHUCTEMY HaJOXXEHO BHEIIHEe
MarauTHoe Toiie [4, 9]. B aTom cimydae yriioBast 4acTh B ypaBHeHuH lllpenunrepa
HE OTICNETCSA, M TO3TOMY, JHakKe TMPOCTEHInas OJHOYACTHYHAS MpodiieMa
pemiaeTcsi Ha  OCHOBE  UHCIEHHOTO  MojenupoBaHust [12] wumm ke
COOTBETCTBYIOIIETO T0A00pa MPOOHBIX BapHAIIMOHHBIX BOJIHOBBIX (yHKIWH [13,
14].

C npyroil CTOpOHBI, HApsAYy C BBILIEIEPEUHUCICHHBIMU METOJAMHU JOBOJBHO
3G(})EeKTUBHBIM  MEXaHM3MOM  ONKCAaHUS  KBAaHTOBBIX  CHUCTEM  SIBIISETCS
aanabaTryeckoe npuomKeHue. B npeamaraeMoM KpaTkoM 0030pe HpeacTaBiieHa
cxema anuabaTUYecKoro ONHCAHUS OJHOYACTUYHBIX COCTOSHHM B KBAHTOBBIX
cucremMax co crenududeckoil reomerpueil. Ha mnpumepe KosblieoOpa3HbIX
kBaHTOBBIX ToueK (KT) BBIABIAIOTCS OCOOCHHOCTH OIHORJCKTPOHHOTO CIIEKTpa B
CIydae MaJlbIX TOJIIHH W3y9aeMbIX CTPyKTyp. IIpm 3Tom mpeamosaraercs, 4To
BbIOpaHHass reomerpust paccmarpuBaeMbix KT  mo3Bonser 3ddexTuBHO
MOJIb30BAThLCS TAK HAa3bIBAEMBIM NIPUOIMKECHUEM ‘TE€OMETPUUECKON anuadaTuku’”.

2. AnnadaTnyeckoe nNpuoOJIMKeHHE B CTAIIMOHAPHBIX 3a1a4ax

CyTp anmabaTHYEeCKOTO IMOIX0/Aa COCTOMT B BO3MOKHOCTH MpPEACTaBICHHS
paccMaTpuBaEMOM CUCTEMBI B BUIE COBOKYITHOCTH JIBYX ITOJICHCTEM: ‘‘MEIJICHHOW
u  “ObICTpOH”, KOIJa ONHCAaHME TIOBEACHHMS ‘MEIJICHHOH IMOJCHUCTEMBI
OCYILIECTBIISIETCSL MyTEM YCPETHEHHUsl Mo JBWKeHuto “Obictpoit” [7]. Ilpu sToMm,
o0nacTh MPUMEHMMOCTH aguadaTUYecKOro MOAX0Ja MOXKET —OINpPEesAThCA
pa3auuHbIMHA (HU3HMUYECKUMH (PaKTOpaMH, HAIIPUMED:
® CyllecTBEHHOe paznuuue dI(P(EKTUBHBIX MacC, XapaKTEPU3YIOLIUX
“OplcTpyto” H “MemyieHHy0 mojcucTeMbl (mpuOmmxenue bopHa-
Onenreiimepa);

® HajgMyMe CYyLIECTBEHHON pa3HUIBI B 3HAUEHUAX IIONEPEUHOH U
IponosibHONH 3((EeKTUBHBIX MacC 4YacTULbl B KpHUCTalie (9KCUTOH B
AHU30TPOITHOM KPUCTAIIIE);

® HaJW4yHMe CYLIECTBEHHOH AMAIEKTPUUECKOW aHU30TPOIHU B MCCIEAYEMOM
KpHUcTaiie (3KCUTOH B aHU30TPOITHOM KPUCTAJLIE);
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® HajguyMe CWIbHBIX BHEUIHHMX IOJEH (aTOM BOAOPOJA B IKCTPEMAJIbHO
CHJIBHOM MarHUTHOM II0JIE).

B TBepmoTenbHBIX 337adax aguMadaTUYeCKUd METOJ| LIMPOKO MPHUMEHSETCS
NIPY ONMCAHUH CBOMCTB KPUCTANTMUECKON PEIIETKH. 31eCh B KayecTBe “ObICTpOil”
HOJCUCTEMBI PACCMATPUBAIOTCS IEKTPOHBI, B yCPEIHEHHOM 3()()EeKTUBHOM IIOJIE
KOTOPBIX JBUXKYTCSI B OKPECTHOCTH Y3JI0B KPUCTAJUIMYECKON PEIIETKH MacCHUBHBIE
HoHbI [15].

WntepecHass curyanyss BO3HUKAeT B AaHU3OTPOIHBIX KpHUCTaIax, Korua
HUMEETCsl MECTO CYLIECTBEHHAsl Pa3HUIA B 3HAYECHUSAX IPOJOJBHON U MONEPEeYHOil
s¢pdextuBHBIX Macc [16]. Hampumep, ecim mpogonbHas 3¢ddexkTuBHas macca
HAMHOTO OOJIbIIE  TOTEpPEeYHON, TO MEIJICHHOE TMPOJOIBHOE JIBUKEHUE
YCPEIHSETCS 10 MOIEPESYHOMY JABMIKEHUIO “OBICTPON” TOJICHUCTEMBI.

W3 3amad acTpou3uKy XOpOLIO M3BECTHO, YTO B TaKUX CHCTEMax, Kak
KBa3aphl, BOAOPOIONOA00HBIE aTOMBI MO/ BO3ACHCTBHEM 3KCTPEMAIHO CHIIBHBIX
MarHUTHBIX TToJeH (mopsiaka 10" I'c) npuHuMaroT urompuatyio hopmy. [lociensee
SBJISIETCSL CJICCTBUEM CHJIBHOM JIOKAJIM3allMM D3JEKTPOHAa BOKpPYr sipa B
NEPIEHIUKYISIPHON K TIOMIO TUIOCKOCTH. B Takol cucteMe MOXKHO MpPEAIoJiarath,
YTO B IEPIEHIUKYIISIPHOM K IIOJII0 INIOCKOCTH JIEKTPOH COBEpPUIAET ABMXKEHUE 03
BIMSHUS KYJOHOBa IONs sAnpa. B HanpaBineHuM e TMOJs COBEpLIAeTCs
OJIHOMEPHOE [JBIWKEHHE B YCPEAHEHHOM IO IIONEPEYHOMY JBMIKEHHUIO
3¢ (heKTUBHOM KYJIOHOBCKOM Toie [1].

3. MaTtemaTH4yeCKHUil annapaTt aiuadaTu4ecKoro npuoIuKeHus
CTAIMOHAPHBIX 32124

OnHUM U3 BaXHBIX KPUTEPUEB NPUMEHUMOCTH aquabaTHdecKoro ONMCaHUs
MOBE/ICHUS CTAl[MIOHAPHON KBaHTOBON CHUCTEMBI SIBISETCSI HE TOIBKO BO3MOXKHOCTh
ee pa3OMeHus Ha MOAXOAAIINE “OBICTPYI0” U “MeUICHHYIO B3aUMOJCHCTBYIOLIHE
MEXay COo0OH TOACHCTEMBI, KOTOpBIE, COOTBETCTBEHHO, XapaKTEPU3YIOTCS
OOJNIBLIMMHU M MaJIbIMH 9acTOTaMM KoJieOaHHiA, HO U BO3MOXHOCTb IPEACTaBICHHS

ee ramuibTonmana H ()cl . Xy ) B BHJE CyYMMBl TaMWIbTOHHAHA OBICTPOU
IIOJICHCTEMBI H | (x1 ) , TaMHUJIbTOHHAHA MEJJICHHON IOJCHCTEMBI H ) (x2 ) H
omneparopa B3auMOACUCTBUS MOJCUCTEM 1% ()cl ) Xy ) :
ﬁ(xl’xZ):ﬁl(xl)+ﬁ2(x2)+‘}(xl’x2)' (D
Vpasuenue Illpenunrepa s BonHoBoM ¢GyHkmmun ¥ (x1 ' ) TaKOW KBaHTOBOMU
CHUCTEMBI C TAMUJIBTOHUAHOM H (xl, xz) u sHeprueid E umeer Bun [7]:
(I-Al(xl,xz)—E)‘P(xl,xz)zO. (2)

C y4eToM TOTO, YTO XapaKTepHbIe YacTOThI 1-H TOJCHCTEMBI HAMHOTO OOJIBIIE
XapaKkTepHBIX YaCTOT 2-i, MPOOIEMY BBIYUCICHUS SHEPTETHUECKIX YPOBHEH
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COBOKYIHOW CHCTEMBI TMPHUOIMKEHHO MOXHO CBECTH K PEIICHUIO ypaBHCHHU
Hlpenunrepa mnga  OTAENBHBIX €€  mojacucteM. JleMCTBUTENbHO, eclu

3auKCUpOBaTh KOOPAUHATY “MEJIEHHON MOJCUCTEMBI X, , TO, 0003HAYUB Yepe3
P, (x5x,) u E, (x,) cobcrBennble (YHKIMM M COGCTBEHHblE 3HAYEHUSA
ormeparopa

Hf(xl;xz):Hl(xl)+V(xl’x2)’ 3)

MIPUJIEM K YPaBHEHHIO, ONIPEACTIAIOIIEMY <I>nl (xl;xz) u En1 (xz) :

|:I_A11 (xl)+VA (xl’xz ):|q)n1 (xl;XZ) = Enl (xz)q)nl (xl;xz) ) (C))
C JOTIOJIHUTENBHBIME YCIOBUSMH OPTOTOHAIBLHOCTH M HOPMHUPOBKH COOCTBEHHBIX
bynkunit P, (x,,x,)e F @ L (Q (x, )) B BHJE BHYTPEHHETO CKAISPHOIO
NPOM3BEIEHHS
(q)nl"¢nl ) = IqDZ; ('xl;x2 )q)nl (xl;x2)dxl = §nf,nl . )
Jlanee, TpeiCTaBAM TOMHYK BONHOBYW dynkimmio cuctemsr W (x,x,) B
MPHUOJIMIKEHHOM BUJIE
‘P(xl,xz)zcbnl (xl;XZ)lnl,nz('XZ)' (6)
C yuerom (6) ypaBHEHHE
(I:II () +V (xp, %) + ﬁz(xz))q’nl (X13%0) X0, 0, (X2) =
= En1 N, q)n1 (x15x2 )an 7, (x2)

MocCJIC YMHOKCHUSA 0o00MX dYacTel Ha qD;l (xl;xz) U HHTCTPUPOBAHUA TII0

(N

KOOpJMHATE X,, NPUBOAUTCA K TaK Ha3plBa€MOMY IpyOOMy aanabaTUuecKOMy
MPHOTMIKEHUIO

(FAI2 ('x2)+ E‘nl (x2))znl,n2 (x2) = Enl,nzlnl,nz ('XZ)‘ (8)

A

IIpu sToM, mpeHeOperaroT AeiictBueM omepatopa H, (xz) Ha NEPEMEHHYIO X, ,

BXOJISIIIYIO B ‘I’nl (xl,xz), WHa4Ye TOBOPs, TMPEIIOJIaraloT, YTO HWMEET MEeCTO

NPHOIMIKEHHOE PABEHCTBO:
H, (xz)anl (xl’XZ)an,nz (xz) = q)nl (xl’xz)Hz ('XZ)Inl,nz (xz) . (€))

U3 ypaBuenust (9) cremyer, 4TO COOCTBEHHBIE 3HAYCHUS En1 (xz), TaKk

Ha3bIBaGMBbIC TEPMbl WJIM NOTCHIMAJIbHBIE KPHUBBIE, UTPAIOT POib 3(h(HEKTUBHOI
MOTEHIMAIBHON SHEPIUU I “MEIJICHHO# ™ HojcucTeMbl. TakuM 00pa3oM, 3ajada
CBOJWTCS K PELICHUIO COOTBETCTBYIOIIMX ypaBHeHu# Illpenunrepa s aByx
MOJCUCTEM, CBSI3b MEXIY KOTOPbIMHM YCTAHABIMBA€TCA IIOCPEICTBOM JHEPIUM
“OBICTPOH” MOACHCTEMBI, NapaMETPHYECKH 3aBHUCSALIEH OT KOOPAMHATBI X,

“MeUIeHHON” TIoicucTeMbl. Pemenne ypaBHeHHS (8), NCIIONB3YIONIEE pa3IoKeHNe
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TepMa En1 (xz) B psj Teisiopa B OKpECTHOCTH TOYKH YCTOWYMBOIO PaBHOBECHUS 10

KBaJIpaTHYHBIX YJICHOB, COOTBETCTBYET npuoamxkenuto bopaa-Onenreiimepa [17].

Crnemyer OTMETHTH, YTO aauabaTHYECKOE NPHOMIKEHHE MOXKET OKa3aThCs
UCKJTIOUUTENBHO 3()()EKTUBHBIM HHCTPYMEHTOM JJisl TEOPETUYECKOTO OMHCAHHS
nonynpoBogaukoBeix KT, obnagaromux HeTpuBUanbHON reomerpueil. [lpu stoMm,
caMa HaHOCTPYKTYpa MOKET IUKTOBATh yCJIOBUS IPUMEHUMOCTH 3TOrO MOAX0AA B
3aBUCHUMOCTH OT COOTHOWICHMH pAa3IMYHBIX TEOMETPUYECKHMX MAaclTaboB
JIOKaJIM3aldyd HOCUTEJEeH 3apsia B KOHKPETHO H3ydaeMbIX oOpasmax. Takum
oopasom, B KT peanusanus ycloBHi anuabaTHYECKOrO OMUCAHHUS MOXKET OBITh
00YCIIOBJIEHHOH Cyry00 reOMEeTpHYeCKUMH OCOOCHHOCTSAMH HM3YyYaeMBIX CHCTEM.
WHpIMH croBaMH, B Takux cioy4yasX MOKHO TOBOPHUTH O PEATU3ALUHN YCIOBUH
NPUMEHUMOCTH  “‘TeoMeTpuueckod anmabaTuku’. brecTsmeid wummocTpanueit
MPUMEHEHHUS “‘TEOMETPUYCCKOW anuadaTuku’ SIBJISETCS 3ajada NpPUBEIACHHAs B
3agavHuKe [8], B KOTOpOil HEOXOAMMO ONPEAEIUTh YPOBHH SHEPTUH JJIEKTPOHA B
JIBYMEPHOW HENMPOHUIAEMOHN 3JUIMIICOMJANBHON SIME MOIYOCH KOTOpPOW CHIIBHO
OTIMYaTCa Apyr oT aApyra. C MareMaTH4ecKod TOYKHM 3peHHsS 3Ta 3ajaada
CBOAWTCSA K pemieHnto ypaBHeHus LllpeawHrepa ¢ MOTEHIMANBHBIM YJICHOM
HMMEIOLINM BHI

[S)
0~

X Y
0, ?+?Sl
Ves)=g G T (10)
oo, —+-—>1
at b

IIe a U bCOOTBETCTBEHHO Mayiasg M OoJblias moiayocu »iuiwrca. [Ipu Hammuuum
YCIIOBUS

b>>a, (11D
CTaHOBUTCS $CHO, 4YTO “‘OBICTPbIM~ SBJISETCS [BI)KEHHE BIONb OcH o0X , a
“mMemneHHbIM” — BAOIb ocu oY . IlpumeHsss cxeMmy NpeICTaBIECHHYIO BBIIIE

3aMeTUM, YTO JBW)KCHUE BIIONIb 0X , MPU (PUKCUPOBAHHOM 3HAYEHUU KOOPIUHATHI
Y , IMEET MECTO B OECKOHEYHO ITyOOKOM SMe IUPHHON

a(y):zaJl—)ﬁ/bz. (12)
TakuMm 00pa3om, AJis BOJTHOBOM (YHKIIMM M SHEPreTHYECKOrO CIEKTpa “‘ObIcTpoi”

HNOJCUCTEMBI MOKEM 3aIIUCATE!
2 7r(n1+1)(x+a(y)/2)

@, (x,y)= dﬂﬁn o) : (13)
R (m +1)
En](y)—ZIua—z(y), (14)

rac [ —macca 3JICKTpOHa.

YuuTsiBas cOOTHOIIEHUE (§) 3aKII0YaeM, YTO JBMKEHHUE AIEKTPOHA BIIOJIb OCH
oY ormpenensercs MOTSHITHAIOM
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T (n1+1)2
E = , 1yl < b,
V(y)= ") 8ua’ (1-y*1b*) b (15)

oo, |y|>b.

OnnomepHoe ypaBHenue lllpenunrepa ¢ norenuuanom (15) Touno He pemaercs. C
JIPYrol CTOPOHBI MOKHO 3aMETUTh, YTO /AJI1 CPaBHUTENBHO HU3KUX YPOBHEU
00J1acThIO JIOKAU3AIMK DIIEKTPOHA SBISICTCS IEHTpajbHAas YacTh JIBYMEPHOI

IIUNTHYECKON KBaHTOBOHN sMBI. IHaue roBops, UMEET MECTO YCIIOBUE |y| <<b,
Onarozapst KOTopomy moteHiyai (15) MOKHO pa3ioxuTh B psix Teitmopa
v Rt (n +1) 70 (n +1)"
(v)= 81ua’ 8ua’h’
Hns “menneHHON” TOJICHUCTEMBI IOMY4YaeTCsl YpaBHEHHE TapMOHHYECKOIO
OCHMJIISATOPA C YaCTOTOM

(16)

zh(n, +1)
2uab
Takum 00pa3zoM, Ui SHEPreTUUECKOrO CIEKTPa W BOJHOBBIX (DYHKIHUH CHCTEMBI
OKOHYATeJIbHO MOXEM 3aIicaTh

e - 7202 (n +1)° N 7202 (n +1)°
ity 8,[!612 S/,l(lb
i 2 2

expl=y= /2yo)l [y
| Tyg2™ myh!? "o

2 A D+ ay)/2)
a(y) a(y)

(7

m

(ny +1/2), nyp =0,12,..

Yn .n, (x,y) =
, (18)

rae y, =

4. Kosbueoopa3Hble KBAHTOBbIE TOUKH

B nocnennue roapl yAanoch peaju3oBaTh U TEOPETUUYECKU HCCIEIOBATh
cioucteie U KombleoOpasubie KT chepruueckoil 1 HUIMHIPUYECKOH TeOMETpHil
[18-24]. UckmrounTenbHas BAKHOCTh U3YUEHHUS TAKHX CHCTEM, B IIEPBYIO OYepEb,
CBs3aHA C BO3MOXKHOCTBIO JKCIIEPHMEHTANBHON mpoBepku 3¢ ¢dekra AapoHOBa-
Boma mns cBs3aHHBIX cocrostHmMi. Kak w3BecTHO, 3TOT 3 (EKT, HEe WUMEIOIIUi
KJIACCHYECKOTO aHallora, IO CYTH, CBHIETENBCTBYET 00 OrpPOMHOW pOIHU
BEKTOPHOTO 1 MArHHTHOTO MOTEHLMANOB B KBAHTOBBIX CHCTEMAX. B pamxkax

KJIACCHMYECKOW OJJICKTPOJMHAMHKM A W (0 wurpaioT (GOpMalbHYIO pOJb |

OTIPEIENISIOTCS ¢ TOYHOCTHIO JIO HEKOTOPOT'O KAITMOPOBOYHOI'O IPE0Opa30BaHusI.
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JleficTBUTENIbHO, TaK KaK

E :—?¢+18—A (19)
c ot
nu
H=rotA (20)

TO JIETKO 3aMETHUTh, 4YTO, Hampumep, ecid BMecto A B3ath A'= A+ Vf (tme

Jf — HekoTopas ckanspHas QyHKIHs), U ¢ yIeTOM paBeHCTBA

rot (V) =0 21)
nojry4acm

- ., -
rot A=rotA'=H . (22)
C napyroit CTOpOHBI, peajbHO U3MEPSIeMbIe PU3NUECKHE BEIUUNHBI B KJIIACCUYESCKOM

- i e _>/
¢usuke spustotes E u H, BemeactBue dero mepexoq or A kK A HHUKOUM
00pa3oM He TOBJIMSET Ha (HU3NIECKYIO KapTHHY KIACCHIECKO# cucTeMsl. B cirydae
KBaHTOBOTO OIMCAHMS CHCTEMBI BMECTO OOBIYHOTO OIEeparopa HMITyJbca P

BBOJMTCS OrepaTop 0000IIEHHOr0 UMIYJIbC P, onpenenseMblii COOTHOIEHUEM

— - e —
P=p-—A, (23)
c
T7Ie €—3apsAl YacTUIbl, C— CKOpPOCTh cBeTa. lIpm 3TtoM omepatop ['ammibpToHa
paccMaTpuBaeMOl CUCTEMbI TPHOOPETACT CIICAYIOIINUN BUI:
2
~ 1 (. e- -
H=—|p——A| +U(). 24)
2u c
Kak cnemyer u3 (24), BeKTOpHBINH MOTeHNHan A B ABHOM BHAe (GHUTypHpYET B

Beipaxkenun st H . CrenoBarenbHO, HATHYUE 3JICKTPOMArHUTHOTO MOTEHIIHAIA
OTpa3uTCs HA BUJE BOJHOBON (DYHKIIMH 3JIEKTPOHA, U IPH BHIOOpPE OMpeeIeHHOMH
TEOMETPUH KBAHTOBON CHCTEMBI 3TO OOCTOSATEILCTBO MOXKET TPUBECTH K
HaOmogaeMoMy — uHTepdepeHunoHHOMY  3(dekty. Bmepseie Ha  3TO
00CTOSITENLCTBO 00paTiu BHUMaHue B 1949 roay Opuranckue ¢pusuku IpeHoepr
u  Cumail, KOTOphIe TOAYEPKHYIH  MPUHIUIHATBHO  BOXHYIO  POJb
3JIEKTPOMATHUTHBIX MOTEHIMATIOB B KBAHTOBOU (u3uke. B manbHeiimem AapoHOB
u BoMm mpoBenu eTanbHBI aHAIM3 BIMSHHS 3TUX MOTCHIMATIOB HA TOBEICHHE
KBaHTOBBIX CHCTeM. B pe3ynbraTe 3TOro OHU MPHIUIA K BBIBOAY, YTO TMOBEACHUEC

KBAaHTOBOM 4YaCTHIIbI, HEIOCPEACTBEHHO HE Haxomsdileics B moine H, HO

IBIKyIeiics B oomactu, rae A # 0, TeM He MeHee, TIPH ONPEIEICHHBIX YCIOBHIX
MIpeTepreBaeT U3MEHEHUE, YTO MOKET OTPA3UTHCS HA €€ IHEPreTUUECKOM CIEKTpE.
Takum  oOpa3zoM, ObUI  NPOJEMOHCTPUPOBAH  HEJOKAIBHBIH  Xapaktep
B3aMIMOJCHCTBUS 3apSHKCHHBIX KBAHTOBBIX YACTHIl C AJIEKTPOMATHUTHBIM ITOJIEM.
HaubGonee HarmsaHbpIM 00pa3oM 3TO YTBEPXKICHHUE MOXKHO MPOAEMOHCTPUPOBATH
Ha MpUMEpPE IIOCKOTO POTaTOpa, HAXOJSAIIErocss B MarHUTHOM mnoje. OmHako,
MpeXK/JIe YEM MEPENTHU K ITOM 3a7aue, BBIBEAEM DS/l MIOJIE3HBIX COOTHOIIECHUH.
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Paccmotpum cnenyrommii HHTETpa OT A(? ) 1o 3aMKHyTOMY KOHTYpY I :

[Adl =1. (25)
r
Cormacao Teopeme CTokca,
[Adl = [rot AdS = [ HdS = @, (26)
r S S

rac ® — MOTOK MArHUTHOTO MOJS CKBO3b miomanab S . Ecmm PacCcMOTPETh

JIBIKCHHE YacTUIBI 1O OKPYKHOCTH paguyca R B marHutHoM mnoje H, To,
BBIOMpAs B KauecTBe KOHTYpa I' MMEHHO 3Ty OKPY:KHOCTH st MoToKa P, MoKeM
3aIimucaThb

®=7R’H . (27)
B ToMm ciayuae, Korja mojie CKOHIEHTPHPOBAHO BHYTPH ILIOMIanu KoHTypa I’ u
IIpu 3TOM Ha CaMOM KOHTYPE UMECT MCCTO YCIIOBUC

rotA=0, A#0, (28)

MOXKHO YTBEPKAATh, UTO 3apsHKEHHAS] YaCTHUIA HE HAXOAWTCS B MArHUTHOM IIOJIE.
Onmako, Kak OyIeT IIOKa3aHO HIDKe, Hanuuue Ha KoHType [ HeHymeBoro

3HA4YeHUS A TPHUBOJUT K BOSHUKHOBEHHIO d((eKTa CMEIICHUST YPOBHEH dHEPTUU
IJIOCKO Bpalaroleicss 4yacTuilbl (IJIOCKOT0 PoTaTopa) Mo CPAaBHEHHUIO CO CIIYYaeM
OTCYTCTBHS ITOJIS.

B 2000 romy Obuto cooOmeHO 00 SKCHEpUMEHTAIBHON peanu3aluu
MOJIYPOBOJHUKOBBIX KOJIbLIeOOpa3Hbix HaHOCTPYKTyp [18]. Ha ocHoBe MeToma
CaMOOpPraHU3aIly YAAJlIOCh BBIPACTUTH MOJIYIPOBOJAHUKOBBIE KBAaHTOBHIE KOJIBIA
u3 InGaAs . Ilpu 3ToM 17151 OTHO- ¥ IBYXDJICKTPOHHBIX COCTOSIHHIA HCCIIEI0BAINCH
OCHOBHOW, a Takke BO30YXIEHHbIC YPOBHH TMPU HAIWYUH OIHOPOIHOTO
MarHMTHOTO TIOJISl, HANpPAaBICHHOTO MEPICHANKYISIPHO IUIOCKOCTH KBaHTOBOTO
KojJblla W MeHstomerocs B npexenax or 0 go 12T. OOpatumcs Temeps K
TEOPETUYECKOMY OIHMCAHUIO TOBEJACHHS JJIEKTPOHa B KBAHTOBOM KOJIBLIE TIPH
HAJIMYUHN OJTHOPOJHOTO MAarHWTHOTO TIOJIS, HAPABICHHOTO BIOIbL ocH Koubla OZ.
PaccmaTpuBas KOJIbII0 MAJIOH TONIIUHBL, OyJeM MpeAIoiIaraTh, YTO M0 CPABHEHUIO
C OCHWJUISIUSMH BIOJIb paJnyca KOJbIla, BPALICHUE TI0 OKPYKHOCTH TPOUCXOIUT
3HAYUTENFHO MeljicHHee. VHave ToBOps, paaualbHOE KBAaHTOBAaHHE HAMHOTO
CWJIbHEE BpAIIaTeIbHOTO, BCJICICTBHE YEero B IEPBOM NPUOIMKEHUH MOXHO
CYHUTATh, YTO JIEKTPOH HAXOAHUTCA Ha OCHOBHOM pajuaibHOM ypoBHe. C apyroit
CTOpPOHBI, CYMTas, YTO DJEKTPOH JIOKAJM30BAaH HA CEpPEeJMHE KOJbIla W BBOJIS
paamnyc

R= M’ (29)
2

rae R, —BHyTpeHHMI (BHeWHMI) pajamyc, 3amady OyaeM pelath B pamKax
MOJIETH TJIOCKOTO pOTaTopa B MarHUTHOM Tojie. BeiOupas BEeKTOp-IOTEHIIHA B
BUJE
A=[HF]/2, (30)
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JJI TaMAJIbTOHHAHA CUCTEMBI MOKEM 3aIIUCATh

h*> d* ieH d ¢’H?
L

2ldep™ 2ucdp 8uc

2
rne = (#R°—MOMEHT HHepIHMH IUIOCKOrO poTtaropa. biaromaps ToMmy, 4TO

I, (31)

OniepaTop NpOCKIUN MOMCHTA UMITYJIbCa

| .= —ih a— s (32)
<
KOMMYTHUPYET C TraMHUJIbTOHHAHOM (31), a Takxke Y4UuTbIBasA HUIMHAPUYCCKYIO
CUMMETPHIO CUCTEMBI 1JIA erIOBOI;'I BOJIHOBOM Q)yHKHI/II/I, MOXKEM Cpa3y 3amnmcarh:

¢m(¢):Le”w (m:();il;iz;...). (33)

2z

[Moactasmss (33) B (31) s BpamaTenbHBIX YPOBHEH SHEPTUH, TIOTYyUHM:

h? P
E =—|m—|, (34)
21 D,
rne ®=7R*H — BBenennsii Boime (cM. dpopmyiy (54)) MarHHTHbI IOTOK,
5 27he
IPOHH3BIBAIOMINI paccMaTpUBaeMoe KONbIO, BennunHa P, = ——, Bxozsmias B
e

BeIpakeHue (34), Ha3bIBae€TCS KBAHTOM MAarHUTHOTO MOTOKA W OMPEAEIseT MOTOK
MAarHMTHOTO TOJISI CKBO3b OKPY>KHOCTbh, OITUCBHIBAEMYIO 3JICKTPOHOM B OJHOPOIHOM
MarauTHOM Tmose. CoriacHo cooTHomeHHiO (34), ¢ yBeIWYEHUEM 3HAYCHUS
MarHMTHOTO TIOJISi OCHOBHOW YPOBEHb CHCTEMBI CHAauYalla COOTBETCTBYET 3HAUCHUIO

MarHuTHOTO KBaHTOBOro urcina m =0, nanee ¢ poctom H HauHM3IIEMY YPOBHIO
COOTBETCTBYET 3HaueHue m=—1, mocme — m=-2 u T.0. Takum o00OpaszoMm,
BO3HMKAIOT TaK Ha3bIBaeéMble aapOHOB-OOMOBCKHE OCIWJUISIMA OCHOBHOTO
COCTOSTHUSI, TIpe/icTaBlieHHbIe Ha puc.l. OTMETHM, YTO YPOBHH, COOTBETCTBYIOIINE
OTPULIATENILHBIM ~ 3HAYEHUSIM  MArHUTHOTO  KBaHTOBOTO  4YHCIIa, CHayala
OMYCKAIOTCA, & MOTOM HAaYMHAIOT MOJHUMATHCS, B TO BPEMS KaK YPOBHU C MOJIOXKHU-
TEJIBHBIMHU 7711 Cpa3y HAYMHAIOT OJHIMAThHCA.

Kak BuamM, KONbIEOOpa3HBIE CHCTEMBI SIBISIOTCS OYECHb YIOOHBIMH
CHUCTEMaMH, T/I€ HEMOCPEACTBEHHO MOXKHO CO3[aTh YCIOBHUS MJIs TPOBEPKU
addekra AapoHoBa-boma B citydae CBS3aHHBIX COCTOSIHUHU. J[eficTBUTENBHO, eciiu
paccMOTpeTh CHUTYallMIO, KOIJa OKPY)XHOCTb, IpOYepuMBaeMasi 3IICKTPOHOM,
OXBAaThIBA€T MOTOK MarHWTHOTO TIOJIA, OJTHAKO HA CaMOW OKPYXHOCTH 3HAaUYEHUE
3TOTO TIOJIS PABHO HYIIIO, TO YPOBHH SHEPTHU TAKOW CHCTEMBI OYIIyT ONPENeNAThCS
B TOyHOCTH (opmynoit (34), Tak Kak 3Ta OHA ONPEICNACTCS HE JIOKATbHBIM
3HaYeHHEeM MarHUTHOTO IIOJIA B CBOEHM TOYKE HAXOXICHWS, a BEITUYMHOM MOTOKA
MarHUTHOTO TIOJS TPOHM3BIBAIONIETO KBAHTOBOE KOJBIO. SICHO, YTO e€ciu

OTHOIIIEHHE —— OyIeT IENOYHCACHHBIM, TO MPOHU3BIBAIOIIMA KOJBIO MOTOK
0
HUKOUM 00pa3oM HE MEPECTPOUT CIIEKTP POTATOPa, KOTOPBIA COOTBETCTBYIOET
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ClIydar0 OTCYTCTBHA II0JIA. OZ[HaKO IIpU HHBIX 3HAYCHHUAX O3TOTI'O OTHOIICHUA
BHCPFCTI/I‘{CCKI/Iﬁ CIHCKTp MPETCPHCBACT U3MCHCHHUS. CkazaHHOE CTAHOBHTCS Ooliee
HariisiAHbIM, €CJIKW Y4Y€CTb, YTO B MPONECCC BKIHOYCHUSA MArCHUTHOIO IOJIA
BO3HHUKACT BUXPEBOC JICKTPHUYCCKOC I10JIC, UBMCHAIOIIEC SHCPIUIO DJICKTPOHA.

H7rR2/<I>0
4 1 2 3
E
n? 1(2uR?)
=
0
m=0 m=-1 m=-2 m=-3

Puc. 1. AapoHOB-00MOBCKHE OCUMIUISIINA OCHOBHOTO COCTOSIHHS.

WHuTepecHas cutyanus BO3HUKAET MPU OMMCAHUH MOBEEHUS 3JIEKTPOHA B
NAITUHAPUYIECKUX HAHOCIIONX C Y3KOH 3ampernieHHon 30H0H. OOCY UM 3TOT CITydai
Ha mpuMepe HaHocnost u3 InSb, 1 KOTOPOro 3aBUCHMOCTH SHEPTUH DJIEKTPOHA
OT €r0 MMITYJIbCa SBJISAETCS HemapaOoIMYecKuM M ompeselsercs 3akoHoM KeiiHa,
10 BUAY COBINAAAIOUIUM C PEISTUBUCTCKUM

E=\p’s*+u’s" — us*, (35)

8 - N
rae s ~ 10" cM/c — Tak Ha3bIBaeMblil KEHHOBCKUI MapaMmeTp HemapabOoIUYHOCTH.
EcTecTBeHHO, HU 0 KAKOM HACTOSIIEM PENATUBU3ME peub HE UIET. JlaHHBIN 3aKOH
oTpaxkaeT TOT (aKT, YTO B Y3KO30HHBIX MOJYNPOBOJAHUKAX, a mis InSb

E . =0.18 3B, ayeKTPOH, HAXOMACh B 30HE MPOBOJUMOCTH, YYBCTBYET BIIHSIHHE

TaKXe€ BAJICHTHOMN 30HBI.

B kBaHTOBOW MeEXaHHWKE MOKa3aHO, YTO YAaCTHUIBI IS KOTOPBIX HMEET
MecTo aucrnepcus Ttuma (35), OMHMCHIBAIOTCS B paMKax ypaBHeHus KieiiHa-
l'opnona, xoTopoe B cilydae CTallMOHAPHBIX MOJEH TMocie psna npeoOpa3oBaHUit
CBOIUTCS K YPaBHEHUIO MIPEeIUHTEpOBCKOro Trma [8]. Eciin Temeps paccMaTpuBaTth
TOHKMH IWIHHAPWYECKMHA HaHocio w3 InSb, To B mnpubmmKEeHHH
HEMPOHHUIIAEMBIX MPAMOYTOJIBHBIX CTEHOK ITOBEIEHHE 3JIEKTPOHA B IUIOCKOCTH
CJIOS1 CHOBA MOXKHO OIKCATh € MOMOIIBIO MOJICITH TUIOCKOTO poTaTopa pamuyca K.
OpHako B 3TOM Cllydae HYKHO YYeCThb, YTO JHUCIEPCUS DIIEKTPOHA OyIeT
OTIMYATBCS OT CTAaHJAPTHOW KBQJPaTUYHOW U, B CBOIO ouepenb, Oyner
omnpenenaTecs cormacHo (35). Cumras, 4TO B HaNpaBICHUHM OCH HAHOCIOS

ANEKTPOH HAXOJHUTCS B MPSMOYTOJIbHOM, OECKOHEYHO TITyOOKOH siMe mmpuHbl L
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JUTSL BOJTHOBBIX (DYHKIIUMH YITIOBOTO IBUIKCHHMS, & TAKXKE IBUKCHHS BIOJIb OCH CJIOS,
0Z MoOXeM 3anucathb [23]:

1 img
n = e, (36)
¢, (o) Ton
a TaK¥XKe
sin @z ,n=2k
2 L
X, (2) =4~ (k=1,2,3,.), (37)

cos @z ,n=2k+1
L

rIe 7 — KBAaHTOBOE YHCIIO, XapaKTEepHU3ylollee COCTOSIHHS Baoimb ocu OZ.
Bocnons3oBaBmiuck BeipaxkeHussMu (36) u (37), MOKHO Ha OCHOBE JACTANbHBIX
pacyeToB BRIYMCIIMTH SHEPTHIO 3JIEKTPOHA B paccMaTpuBaeMoi cucreme [23]:

2 2 2.2 2
E,, = |2us’ };—I m—% +7z2h—L'21 + st (38)
0 M

IIe BTOpPOM 4WiIeH B TOAKOPEHHOM BBIPQXEHHH OMpEAENseT DHEPTrHIo,
npuxosnlytocs Ha HampaeineHue OZ. Kak Bumum, yder HemapaOOIHMYHOCTH
2
P
3aKOHA JUCIEPCUM MPUBOAUT K TOMY, UYTO COOTHOIICHHE | M —— B
@,
BBIPXEHHUH /ISl SHEPTUHU JJIEKTPOHA HAXOAWTCS IO/ KOPHEM, B TO BpeMs Kak B
cIy4yae CTaHAAPTHOM NUCIIEPCUH peaTu3yeTcs MpsMasi MPOMOPIUOHATBHOCTD.

5. 3akarouenue

Takum 00pa3oM, HCIONB30BaHUE aarMabaTUIECKOTO MPHOIIKEHUS MOXKET
CYIIECTBEHHBIM 00pa3oM oOneryuth omnucanue ¢usndeckux cpoiictB KT ¢
HETPUBHAIHHON T€OMETPHEH, TO3BOIISS MONYIUTh AHATUTUIECKIE BRIPAKEHUS IS
JHEPreTHYECKOTO CIEKTPa W BOJHOBBIX (YHKIIHIA SJIEKTPOHA KakK MPH OTCYTCTBUH,
TaK W MNpU HAIUYUK BHEUIHUX IMOJied. SICHO, 4YTO Halu4yue aHATIUTUYECKUX
BBIPOKCHHHA JUIsI DHEPTUHM M BOJHOBBIX (DYHKITMH HOCHUTENCH 3apsma TO3BOJISAET
MPOBECTH PacUEThl KOHKPETHBIX (U3UUECKUX XaAPAKTEPUCTHK M3yUAEMBIX CHCTEM:
KO3 (UITMEHTOB MEX30HHOTO M BHYTPU3OHHOTO IMOTJIONICHUS, PETaKCAIIHOHHOTO
Bpemenn wu T.1. [lociemHee, B CBOIO odepenb, IMO3BOJSET MPOBECTH Ooiee
JIETAIbHBIA aHaNU3 (PU3UYECKUX XapaKTEPUCTUK H3YYaeMbBIX CTPYKTYp, 4YTO, B
KOHEYHOM CYETEe, OYEHb BaXXHO IMPU KOHCTPYUPOBAHUU (MPOCKTUPOBAHUU)
MOJTYIIPOBOJHUKOBBIX TPUOOPOB HOBOTO TIOKOJEHHUS, B KOTOPBIX 3TH CUCTEMBI
WUTPAIOT POJIb DJIEMEHTHOU Oa3bl.
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Pulsed "three-photon” light
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Abstract

Generating multi-photon entangled states is a primary task for applications
of quantum information processing. We investigate production of photon-triplet
in a regime of light amplification in second-order nonlinear media under action
of a pulsed laser beam. For this goal the process of cascaded three-photon
splitting in an optical cavity driven by a sequence of laser pulses with Gaussian
time-dependent envelopes is investigated. Considering production of photon-
triplet for short-time regime and in the cascaded three-wave collinear configura-
tion we shortly analyze preparation of polarization-non-product states looking
further applications of these results in the cascaded optical parametric oscilla-
tor. It is also demonststed the nonclassical characteritics of the photon-triplet
in phase-space on the base of the Wigner function. Calculating the normal-
ized third-order correlation functions below-and at the generation threshold
of cascaded optical parametric oscillator, we demonstrate that in the pulsed
regime, depending on the duration of pulses and the time-interval separations
between them, the degree of three-photon-number correlation essentially exceed
the analogous one for the case of continuous pumping.

1. Introduction

Multiphoton entangled states have attracted a great interest in probing the foun-
dations of quantum theory and constitute a powerful quantum resource with promis-
ing potential for various applications in quantum information technologies. Recently,
experimental efforts in the direct production of multiphoton joint states, particu-
larly, three- or four-photon states have paved a new stage for the study of multi-
partite entanglement [1]. Indeed, the simultaneous generation of three photons is at
the origin of intrinsic three-particle quantum properties such as Greenberger-Horne-
Zeilinger (GHZ) -class and W-class quantum entanglement [2] - [5]. Up to now,
several physical systems have been proposed for the generation of photon triplet
including third-order nonlinear medium [6] and cascaded spontaneous parametric
down-conversion (PDC) [7, 8]. Experimentally, three-photon down-conversion was
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studied in third-order nonlinear media [9] - [11] and also by using cascaded second-
order nonlinear parametric processes [12]. Direct generation of photon triplets using
cascaded photon-pairs has been demonstrated in periodically poled lithium niobate
crystals [1]. The distinction of three-photon GHZ and W states entangled in time
and space has been also reported [13, 14]. It was also shown that intracavity three-
photon down-conversion can be effectively realized in cascaded optical parametric
oscillator (OPO) [15]. This scheme that involves cascading second-order nonlinear-
ities is based on the parametric processes of splitting and summing in which the
frequencies between the pump and two subharmonics frequencies are in the ratio of
3 :2: 1. Experimental realization of cascaded OPO by using the dual-grid method
of quasi-phase matching (QPM) has been done in Ref. [16]. Most recently, joint
quantum states of three-photons with arbitrary spectral characteristics have been
studied on the base of optical superlattices [17] for the cascaded configuration pro-
posed in [15]. Two cascaded configurations have been considered in [17] that lead to
production of spontaneous photon triplet in cascaded PDC and generation of high
intensity mode due to cascaded three-photon splitting in optical cavity.

In this paper we continue the investigation of cascaded three-photon splitting
in an optical cavity following the paper [17]. Our goal is twofold. In one part of
the present paper we extend our previous results regarding three-photon splitting in
optical cavity for an experimentally available scheme that is a cascaded parametric
oscillator pumped by a sequence of Gaussian laser pulses (see, Sects. II and III).
The other part of the paper is devoted to studies of quantum properties of ”three-
photon” mode. We discuss preparation of non-product states that are superposition
of three-photon polarization states, however, without any consideration of cavity
effects (see, Sec. IV). We also calculate the Wigner function of the subharmonic,
i.e. "three-photon mode” showing the negativity in phase-space (see, Sec. V). Our
analysis includes calculation of third-order correlation function of photon numbers
for various operational regimes of pulsed OPO(see, Sec. VI). It is known, that it is
possible to control the behavior of quantum dissipative system by a train of pulses.
In this paper, we use this approach for suppression of dissipation and cavity induced
feedback in cascaded OPO that leads to increasing the level of three-photon-number
correlation.

2. Periodically pulsed cascaded OPO: Generation threshold

In this section we briefly describe the cascaded optical parametric oscillator
(OPO) with a triply resonant optical ring cavity driven by a sequence of laser pulses.
The semiclassical and quantum theories of this device for the monochromatic pump
field were developed in Refs. [15, 17] and here we only add some important details re-
garding cascaded OPO under laser pulses with Gaussian time-dependent envelopes.
This cascaded configuration involves the fundamental mode driven by an external
pump field at the central frequency wy with an amplitude £, and two subharmonic

modes at the frequencies wy = % and wy = 2%. Due to intracavity parametric type-
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I three-wave interactions pump field is converted to the subharmonics throughout
two cascaded processes: wy — w1 + w9 and wo — wq + w1. Subharmonic modes have
the same plane polarizations and are all propagating in the same direction. The
pump field consists from the sequence of Gaussian laser pulses with the amplitude

E(ta Z) = ELf(t)e_i(WOt_kLZ)a (1)
f(t) _ Z e—(t—to—n—r)2/T2’ (2)
n=0

where T is the duration of pulses that are separated by time intervals 7. The
cascaded OPO is dissipative, because the modes suffer from losses due to partially
transmission of light through the mirrors of the cavity. We consider below the case
of high cavity losses for the pump mode (y9 > 7,71 = 72 = ), when the pump
mode is eliminated adiabatically in non-depletion approximation. In this case, the
effective interaction Hamiltonian in the rotating wave approximation reads as

Hipy = thx1 Eof(t) (afa; — alaz) + ihxo (af2a2 — a%a;) , (3)
where Ey = Er/v0, a; (i=1,2) are the operators of the modes at the frequencies
w; = P and wp = 2% and the coupling constants between the modes are expressed

through the Fourier spectra of the second-order susceptibilities of nonlinear crystals
of the length L

L
X1 = /0 dzx (z)e' M1 (2)7, (4)

L
Yo = /0 dox @ (2)e )z, (5)

We assume collinear, one-dimensional on z quasi-phase-matching with the phase
mismatch vectors

Aki(z) = kp(wo, 2) — k1 (w1, 2) — ka(w2, 2), (6)

Ak‘g(z) = ]{ZQ(LUQ, Z) - 2]{?1((.()1, Z) (7)

analyzed in the details [17].

In this regime, the stochastic equations of motion for the complex c-number
variables a2 and (3 o corresponding to the operators a; 2 and aIQ, have the following
form

d

% = —moq + Eof(t)x1082 + 2x20061 + Wa, (1), (8)
dpi

a 1161 + Eo f(t)x102 + 2x208201 + W, (t). (9)
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The equations for ag, F2 are obtained from (8), (9) by exchanging the subscripts
(1) = (2). Our derivation is based on the Ito stochastic calculus, and the nonzero
stochastic correlators are:

(W (W) = 12250 - ), (10)
(Way () Way (£)) = 2x2020(t — 1), (11)
(W, ()W, (t)) = 2x220(t — 1), (12)
(Wey () Way (t)) = 2x2018(t —t). (13)

The Egs. (8), (9) and the correlation functions modifies the analogous ones derived
for OPO with monochromatic pumping [15] on the case of non-stationary pump
field.

In accordance with the cited paper, for the monochromatic driven cascaded
OPO, zero-amplitude solutions oy = as = 0 of Egs. (8), (9) with f(t) = 1 are
stable, if B, < E, = %m, while steady-state photon numbers n; and no

displays histeresis-cycle behavior in a small domain % < Er/Ey < 1. Thus,
remarkable feature of OPO under monochromatic pump is comparatively low gen-
eration threshold in comparison with the scheme of direct intracavity three-photon
down-conversion, where the pump power threshold is determined by third-order
susceptibility [9].

Below, we derive the threshold value for OPO driven by trains of Gaussian pulses.
The analysis of stochastic equations shows that similar to the standard OPO with
monochromatic pump field amplitude, the periodically pulsed OPO also exhibits
threshold behavior, which is easily described through the period averaged pump
field amplitude f(t) = % fOT f(t)dt. We demonstrate this statement analyzing the
stability of zero-amplitude solutions of oy = ag = 0 of Egs. (8), (9) for both modes
below threshold and for v; = 9 = 7. To check the stability we turn to the linearized
on the small deviations d«;, 3; the equations in the semicalssical approach without
noise terms. These equations can be rewriten in the following form:

d E
EéXi = (= + Ly f()0 X+, (14)
Y0
d E
ZOVe = (=7 £ —xaf(£)dYz, (15)
Y0

through the quadrature field variables defined as dat+ = day + das and X4 =
$(6at 4+ 0a}),6Yy = £ (dar — dat). In these variables the time evolution has the
simple form

6X4(t) = Ax(t, t0)0.X+(to), (16)
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6Y:i: (t> = A:F(tv tO)(SY:I:(tO)7 (17)

Ay (t, tg) = exp(x

Erxa [*, .
o /0 ()~ (t — to). (18)

Analyzing semiclassical equations and operational regimes we choose the switch-
ing time in infinity, i.e. t) — —oo, and add in (2) terms with negative n. In
this case, the function f(t) is periodic on time f(t 4+ 7) = f(¢) and the analysis is
simplified. Since the function f(¢) is periodic on time, we can obtain the general
formula ftto f(t)dt = f(t)(t — to) + F(t) — F(to), where F(t) is a periodic function,
F(t+ 7) = F(t). Therefore, we see from (16), (17), (18) that the solution a; = 0
below-threshold is stable if £}, < Z‘;—jm It is easy to check also that due to noted
periodicity of the amplitude the following formula takes place (see, for example [18])

T o o)
/ dt Y e / dte T (19)

0 Nn——00 —00
This formula allows us to calculate the averaged value of the amplitude f(¢). On the
whole, we arrive to the result that for the case of Gaussian pulses above threshold

regime is realized if
T 707

.
VT " TJT x1
The important peculiarity of the system proposed is that the threshold value Ey, de-
pends on the coupling constant x; which is related to the second-order susceptibility
as well as depends on the characteristics of laser pulses.

EL > Ey, =

Ep (20)

3. Numerical simulation of dissipation and decoherence

The cascaded OPO is dissipative, because the modes suffer from losses due to
partial transmission of light through the mirrors of the cavity and due to quantum
fluctuations. We analyse dissipative and decoherence effects on the base of master
equation for the density operator of the cavity modes in the Limbland form

gﬁt) = %[Hmt,p] + Z-EI:Q Vi (2ai,0a;r —ajaip— pa;rai). (21)
We calculate the quantities of interest (the photon number distributions, Wigner
functions, etc.) mainly for the subharmonic mode (1) by using the reduced density
operator pi(t) which is constructed from the density operator p(t) of both modes
by tracing over the mode (2), pi(t) = Tra(p). We analyze the master equation
numerically using quantum state diffusion method (QSD) [19]. According to this
method, the reduced density operator is calculated as the ensemble mean

N
p(t) = M) () = Jim S e(®))we(d) (22)
3
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over the stochastic pure states |¢¢(t)) describing evolution along a quantum trajec-
tory. The stochastic equation for the state |1)¢(t)) involves Hamiltonian described by
Eq. (3) and the Linblad operators described by noise terms in the master equation
(21). We calculate the density operator using an expansion of the state vector |i)¢)
in a truncated basis of Fock’s number states of modes of the subharmonics (1) and
(2)
[Ve() = D af, ny (D)n1)1]n2)2- (23)
n
Details of analogous calculations for an anharmonic oscillator in time-modulated
field can be found in [20]). The numerical simulations are performed in the trun-
cated Fock basis of the subharmonic modes that are limited by 500 photons. This
approximation is valid for the case of strong nonlinear couplings x; and y2 with
respect to the dissipation parameters.

4. Production of polarization, non-product states of photon triplet
in collinear configuration

Three-photon correlations allow the creation of tripartite entangled states such
as the GHZ state. For cascaded SPDC in noncollinear configuration spatially-
polarization GHZ states has been considered in [17]. Below we apply the results ob-
tained for preparation of three-photon polarization states in collinear configuration
of interacting waves. Recently, a simple but highly efficient source of polarization-
entangled photon pairs at nondegenerate wavelengths and in collinear configuration
has been demonstrated [21]. We consider the production of polarization-entangled
photon triplet. It is possible for the case when cascaded processes involve polarized
photons.

Thus, we modify the above results considering three-wave interaction with the
indexes of polarization states. Looking further applications of above results for in-
tracavity three-photon down-conversion in collinear configuration of cascading pro-
cesses we concentrate on consideration of non-product states that are entangled
only on polarization degree of freedom but not on spatial variables. Thus, including
into consideration the polarization states of the photons we assume that the type-I1
process wy — wj + we create the pair of photons with a vertical V, (a1(V), (a2(V))
and horizontal H, (a1(H), (a2(H)) polarizations in collinear configuration. If the
pump field is oriented at 45° to the horizontal and vertical axes two processes
wo — w1(V) + wa(H) and wy — wi(H) + wa(V) take place in the first crystal.
The next process is considered as the type-I parametric process. In type-I conver-
sion, photon pairs are created with the same polarization state, but ortogonal to the
input mode. Therefore, the second, type-I crystal is arranged in the manner that
the following process: wo(H) — wi(V)+w1(V) and wo(V) — wi(H)+ w1 (H) should
be realized.

For simplicity, we restrict our attention considering frequency-uncorrelated three-
photon states and assume that the process under photons with (V) and (H) polar-
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izations are described by the equal coupling constants. Thus, we assume that photon
pairs in three-wave processes : wg — w1 + wa, Wy — wll —i—wz have correlations on the
polarization, but not on the spectral lines. In analogy with Eq.(3), we model the sum
of the corresponding parametric interactions by the following effective Hamiltonian

H=H| + H,, (24)
Hy = ihxEof(t)(af (V)as (H) + af (H)a3 (V) + h.c., (25)
Hy = ihk[(az(V)(af (H))* + az(H)(af (V))*)] + hec.. (26)

Here, a1(V') and a2(V') are the annihilation operators of modes (1) and (2) at ver-
tical polarizations, while the operators a;(H), ag(H) corresponds to the horizontal
polarized photons of the frequencies w; and we, respectively.

We focus on analysing the generation of non-product states for one-passing con-
figuration of cascaded parametric spontaneous processes without consideration of
cavity dynamics and feedback effects. This approach is valid for short interac-
tion time intervals much shorter than the characteristics relaxation time. In this
case time-evolution of the vector state of the system is described by the second-
order term of the perturbation theory. Choosing the initial state as a vacuum state
[Vin) = 10)a; (1)10) as ()[0) ay (v)10)ay (v for all modes we derive the final state during
time evaluation in the following form

.\ 2
i
6(0) = (-~ ) PHH D)0~
XEEo(IV)IV)V) + [H)H)H))|0)ay (1) 0)as (v (27)
where ¥ = xt and k = kt are the coupling constants and the states |V) = a] (V) 0)ay
|H) = af (H)|0),, () Present the vertical and horizontal polarization states of pho-
tons at the frequency w; = <. Thus, we demonstrate that in this collinear, one-
dimensional cascaded scheme triple photons can constitutes the polarization entan-
gled (non-product) states of light. It should be noted that under cavity feedback
effects the non-product quantum state cannot be described by this simple expres-
sion and we should include the higher-order terms of the perturbation expansion

into consideration.

5. Photon triplet in phase-space: Wigner functions and photon
number distributions in the pulsed regime

Quantum interference signature of three-photon states in phase-space has been
demonstrated for the direct three-photon down-conversion in third-order nonlinear
medium [6, 9] as well as in the cascaded scheme [17] for the case of monochromatic
pumping. We demonstrate now this effect for the pulsed regime of cascaded OPO.
We illustrate these effects numerically on the base of the master equation, however,
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in the regimes when the dissipation in the cavity is unessential and the dynamic of
modes is almost unitary. For the cavity configuration presented, the validity of such
approximation is guaranteed by consideration of short interaction time for which
the duration of pulses are much shorter than the characteristics relaxation time,
1/(x1Eo),1/x2 << t << 1/72 , provided that the nonlinear coupling constants
exceed the dumping rates for the modes.

Below, we present the results on the photon-number distributions and Wigner
functions for three-photon mode. The photon number distribution for w; = %> mode
is calculated as the diagonal element P;(n) = (n|p|n) of photonic Fock states while
calculations of the Wigner function for the this mode are performed by using its
standard formula in a Fock space:

Wi (pa 0) = Z Pl,mnWmn (p, 9) (28)

Here, p, 0 are the polar coordinates in the complex phase space which is deter-
mined by the position and the momentum of quadratures z = (a + a*)/v2,y =
(a — at)/\/2i, respectively, while the coefficients Wi, (p,6) are the Fourier trans-
forms of the matrix elements of the Wigner characteristic function.

Three-photon structure of the mode is shown on photon-number distributions in
Figs. 1 (a, d). As we see, for short time-intervals, the most probable values of pho-
ton numbers are separated by three photons. In Figs.1 (b, €) we present results on
the Wigner functions that clearly exhibit phase-space quantum interfringes. These
results describe the case of cascaded OPO under two consecutive pulses with the
duration Ty = 1 % 1073 separated by the interval 7y = 6 x 1073. Fig.1(b) shows the
Wigner function evolved for a time interval ¢t = tg+6.2x10~3y~! that corresponds to
maximal photon number n,,q, of the first pulse; Fig.1 (e) shows the Wigner function
at t = tg + 6.2 % 1072y~ corresponding to nmq, of the second pulse. The Wigner
function shows three phase components with an interference pattern in the regions
between them. We show the regions of quantum interference in the contour plots
(see, Figs.1 (c, f)) depicting negative regions of the interference terms in black. Note
that threefold symmetry of the Wigner function and interference pattern has been
demonstrated for the direct three-photon down-conversion in x(3) media [6, 9]. How-
ever, we note that the results presented here for the pulsed cascaded configuration
are also different in details from the analogous calculation of the Wigner function
for the case of monochromatic pump field [17].

6. Photon-number correlation in the pulsed regime

The experimental verification of time-dependent correlation between photons in
triplet has been demonstrated for one-passing configuration of cascaded SPDC [1].
Considering production of photon triplet in a cavity, it seems that the correlation
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Figure 1: The photon number distributions (a, d), the Wigner functions (b, e) and its
contour plots (c, f) for wi-mode and for different time intervals: ¢ = to+6.2%107 3y}
(a, b, c); t =to+ 6.2 1072y~ ! (d, e, f). The other parameters are: x1/v1 = 200,
X2/71 =100, 72 =y =7, Ty =1%10"% 7y = 6% 107" .
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between photons can be evidently displayed for short interaction time intervals much
shorter than the relaxation time. Nevertheless, the three-photon number correla-
tion exceeding the coherent level, (that means the normalized third-order correlation
function ¢® > 1), has been demonstrated for cascaded OPO driven by monochro-
matic pumping, in over transient regime for modes generated below the threshold
[17]. This effect decreases if the system moves to the range of the generation thresh-
old. At the threshold, the typical value for the normalized third-order correlation
function for zero delay-time, ¢® = 1.2, has been obtained.

In this Secion, we demonstrate the new regimes of strong three-photon correla-
tion for the pulsed cascaded OPO. We concentrate on numerical simulation of both
the mean photon number of subharmonics as well as the third-order correlation func-
tion. Let us now discuss photon-number correlation in the time domain, considering
output twin light beams from the pulsed cascaded OPO on the base of normalized
third-order photon-numbers correlation function ¢ for the mode (1)

9P () = Tr(af aipy (1)) /n’ (). (29)

Here, n(t) = Tr(aj a1p1(t)) is the mean photon number. Considering three-photon
number correlation for the intensive cavity mode in the presence of dissipation and
cavity induced feedback, we control quantum dynamics of dissipative systems by
a train of pulses. Here, we use this approach for controlling quantum statistics of
mode, particularly for increasing the level of three-photon-number correlation. We
analyze the cases in which Ty < 1 and 7y > 1, for over transient time-intervals,
t > ~~1, considering the operational regimes below-and at the generation threshold.
Typical results for the mean photon numbers and the correlation function ¢® for two
different parameters of the Gaussian pulses : T =~~"!, 7 =10y tand T =7, 7 =
5y~! are presented in Figs. (2) and (4). As we see from these figures, the time-
dependence of these quantities repeat the periodicity of the pump laser over transient
time intervals. We also conclude that the maxima of the three-photon correlation are
realized for the definite time intervals for which the mean photon number of mode
(1) is in the ranges between its maxima and minima. As shown our calculations,
such strong photon correlations take place in nonstationary regime of cascaded OPO
when duration of pulses is close to a characteristic dissipation time. In Figs. (2) we
analyze the mean photon number (Fig. 2(a)) and the correlation function (Fig.2(b))
in the operational regimes of OPO at the generation threshold. In the regime below
the generation threshold, at E/Ey, = 0.5 the correlation function display two-peak
structure (see, curve (2)). The lower peak corresponds to the time intervals for which
the mean photon number is between its minimal and maximal values. More correctly,
for the period trains of intervals ¢ = tg +m11.6y~!, (m = 1,2, ...), the mean photon
number n = 50 and the correlation function ¢ = 8.9. The other peaks correspond
to the minimal values of the mean photon number. At the threshold (see, curves (1))
the effect of photon correlation is decreased, although the level of correlation exceeds
the coherent level, g(3) > 1, particularly, we get g(3) = 3.4 for the mean photon
number n=251. Thus, we found a remarkable result that the degree of three-photon
number correlation for the pulsed regime of OPO surpass the analogous result for
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Figure 2: The mean photon number (a) and the third-order correlation function
(b) versus ty at the threshold Ep/Ey, = 1, curves (1) and below the threshold
E;/Ey, = 0.5, curves (2). The parameters are: x1/7 = 0.2, x2/7 = 0.1, 72 =y = 7,
Ty =10, Ty = 1.

OPO with continuous pumping for the same mean photon numbers. Indeed, this
conclusion is illustrated in Figs. (2) and (3), where the comparison of the results on
pulsed regime with the calculations based on the Hamiltonian (3) with f = 1 is done.
Note, that the ideal limit of continuous pumping is realized if 7' — 0,7 — oo for the
case of infinity numbers of pulses. We present on the Figs. (3) the results for OPO
with continuous pumping at the threshold E; = Ej,, in which the mean photon
number n = 52 in the steady state regime (curve (2), Fig. 2(a)) approximately
equals to the maximal value of the photon number in the pulsed regime. However,
as we see, the level of the maximal correlation, ¢ = 9 in this case exceeds the
analogous one for the case of continuous pumping, ¢® = 1.2.

It is natural to explain such improvement of three-photon correlation by control
the behavior of a quantum system by an external time-dependent force. The presence
of these effects in the cascaded OPO, particularly, can been seen from the noise-
correlation functions. Indeed, the equation (10) describes a multiplicative noise-
term, where the level of noise is determined by the amplitude of pulsed driving field
Epf(t) leading to the control of dissipation. In this spirit, we emphasize that the
idea of controlling the dynamics of a quantum system in the presence of dissipation
and decoherence by an external periodic driving was exploited by many authors
(see, for example, [22] and the references therein). In one of the standard techniques
control of the optical quantum system is achieved through the application of suitable
tailored, synchronized laser pulses [23]. In this way, it is interesting to analyze
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Figure 3: Mean photon number (a) and the correlation function (b) for continuously
pumped OPO at the threshold E/E;, = 1. The parameters are: xi/y = 0.2,

x2/v7=0.1, 72 =7 =17.

the three-photon correlation function in dependence of the time-separation between
pulses, i.e. for the other parameters of driving pulses in additional to the parameters
considered in Figs. 2. The results are presented in Figs. 4 in the regime below the
threshold where strong three-photon correlations are realized. As we see, in this case
the correlation function reach to g = 75 for n = 1.1 (curves (1)) for time-intervals
between pulses, 7 = 10y~!. Decreasing of the time-separation between pulses leads
to decreasing of the correlation function (see, curves (2), where 7 = 5y~1).

7. Conclusion

In conclusion, we have studied quantum properties of photon triplet cardinally
different from those of twin photons. Because photon-triplet originates from a single
laser photon, the quantum correlations take place between all three photons allowing
the creation of entangled, non-product states. The production of photon-triplets in
the presence of stimulation radiative processes, cavity feed-back effects and dissipa-
tion have been investigated. We have demonstrated the possibility to create polar-
ization, non-product states of photon-triplet for one-passing, collinear configuration
of cascaded parametric spontaneous processes. We have also illustrated three-photon
structure of sub-harmonic mode on the base of both the photon-number distribution
and the Wigner function. We have demonstrated the operational regimes depending
on the durations of pulses and the intervals between them that guarantees strong
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three-photon-number correlations . This effect of strong correlation takes place
for the definite time intervals corresponding to generation of high intensity ”three-
photon mode” in over transient regime and for wide ranges of the system parameters.
We hope that these results could be of interest in areas of quantum communications
and photonic quantum computing.
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Magnetic properties, classical and quantum phase
transitions in anti-ferromagnetic models

N.S. Ananikian
A.L Alikhanyan National Science Laboratory
2 Alikhanyan Brothers Street, 0036 Yerevan, Armenia

Abstract

The magnetization plateaus, biffurcation points and chaos are playing the
greate role in the classical and quantum phase transitions. We obtained three-
cycle windows of antiferromagnetic Potts and magnetization plateaus of anti-
ferromagnetic Ising model with multisite interactions. Using Gibbs-Bogolubov
inequality the quantum entanglement (concurrence) of antiferromagnetic spin-
1/2 Ising-Heisenberg model on the triangulated kagome and two dimentional
kagome (fluid 3He) lattices are investigated.

1. Introduction

Entanglement is considered to play a key role for the understanding of strongly
correlated quantum systems, quantum phase transitions and collective quantum
phenomena in particular many-body spin and fermionic lattice models [1]. One can
introduce the fundamental connection between quantum transitions in d dimensions
and certain well studied finite temperature phase transitions in classical statistical
mechanics in d41 dimension [2]. The magnetization plateaus have played a great role
in understanding of a large family of nontrivial quantum phenomena of spin systems
[3]. The experimental [4] and theoretical [5] studies suggest that three-site exchanges
are dominant in solid *He atoms, which have 1/2 spin [6]. One can obtain magneti-
zation plateaus with multiple-spin exchange using the dynamical and transfer matrix
methods [7]. In this paper I would pay attention to the researching of classical phase
transitions, magnetisation plateaus, stable cycles of Potts antiferromagnetic model
and quantum entanglement of spin-1/2 Ising-Heisenberg model on the triangulated
kagome lattice, solid and fluid *He models with multi spin-exchanges.

2. Bifurcation points and chaos

The Potts and Ising models played an important role in the theories of phase
transitions and critical phenomena [8]. The aim of this section is to analyze the
cyclic period-3 window for rational mappings describing the antiferromagnetic Q-
state Potts model on the Bethe lattice (@ < 2) and the antiferromagnetic Ising model
with three-site interaction on the Husimi cactus (tree). This window is represented
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by the laminar phase with an incorporated chaotic behavior. The transition from the
chaotic regime to the period-3 regime occurring through tangent bifurcation (type-I
intermittency) [9], as well as subsequence doubling of the period through the type-1I
intermittency (doubling bifurcation), is considered.

In the presence of external magnetic field, the @)-site Potts model on the Bethe
lattice is specified by the Hamiltonian

H:—chs(ffi,o’j)—Hz(s(UiaQ), (1)
(6.3) ¢

where 0; = 1,2,...,Q; and §(z,y) is the Kronecker delta; the first and second sums
are taken over all of the edges and sites of the lattice, respectively; and J < 0
corresponds to antiferromagnetic pairing. The partition function and magnetization
at the central site can be represented as

zZ= {2; T, M = (5(00,Q)) = 2! {2;5«;0, Q)e o7, 2)

where kp is the Boltzmann constant (below, we set kg = 1). Cutting the Bethe
lattice at the central site into 7 identical branches (v is the coordination num ber),
we represent the partition function in the form

2= Y conog - 6(00.Q)Han(oo)]™ ®)
{oo}

where oy is the central spin and g, (0¢) is the contribution of each of the identical
branches. Following a known procedure described in [10], we obtain

A P
tn = filann), fi(e) = ST T QT2
e T +(Q— 1)1

where z, = gn(0 # Q)/gn(0c = Q). Using these equations, one can express magne-
tization via x.

We study the transition from the chaotic regime to the cyclic period-3 regime
through tangent bifurcation. Certain values of the temperature 7" and magnetic field
H specify a curve separating the chaotic and period-3 regimes (the mapping in the
latter regime has three stable stationary points). In this curve, tangent bifurcation
occurs under the condition

f @) =2
{ P (@) =1, =1,2). (4)

where f©®)(z) = f{f[f(z)]}. Subsequent bifurcations, responsible for the appearance
of a stable cycle with a period of 3 x 2"(n = 2,3,...), correspond to the doubling
of the period.

When an H = const line intersects only the upper curve (corresponding to Eq. (4)
with i = 1), the boundaries of the cyclic window are strictly distinguished (tangent
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Figure 1: Magnetization in the cyclic period-3 window for the Potts model at Q =
1.1,J = 1, and 7 = 3 (a) versus the temperature for H = 1.24 (inset shows the
details of the modulated period-six phase) and (b) versus the magnetic field for
T=1.

bifurcation occurs at both edges). This window is represented only by the 3MO
phase (a stable period-3 cycle) (see Fig. 1a). The phase transition between the 3MO0
and 3M1 phases, accompanied by a change in symmetry, occurs at the bifurcation
points. With a further decrease in the field, new bubbles corresponding to modulated
phases with larger periods will appear on bifurcation diagrams. Finally, the chaotic
regime, which is localized inside the cyclic period-3 window, will be reached. At the
same time, when the magnetization is considered as a function of the temperature
T at a fixed value H < 0.1 or as a function of the magnetic field H at any fixed
temperature, tangent bifurcation occurs only at one edge of the cyclic window [11].
A crisis [12, 13], i.e., the collision of the chaotic attractor with the independent
unstable stationary point with a period of 3, occurs at the other edge (see Fig. 1b).
In this case, modulated phases with a period of 3 x 2" are not localized inside the
window (similarity with logistic mapping).

3. Magnetization plateaus and frustrated systems

In this section the dynamical (recursive) approach was used to study magnetic
properties of a kagome chain. The magnetization plateaus were found at low tem-
peratures and moreover, the kagome chain was separated into four sublattices with
different magnetizations. Two of these exhibited plateaus, whereas the others did
not. The stability of the system is described by Lyapunov exponents [15] by means
of which the exponential rate is measured, at which the adjacent orbits converge or
diverge [14, 15]. It is interesting to check whether the maximum Lyapunov exponent
has plateaus that coincide with the magnetization one. According to [7] the multiple
spin exchanges Hamiltonian can be written as

Hep=J2 Y Po=Js > (B+P )+l > (Bs+F'), (5

Pairs Triangles Hexagons

where P, is the pair transposition operator, P3 (Ps) is the operator making a cyclic
rearrangement in the triangle (hexagon). The explicit expression of pair transposi-
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Figure 2: Sublattices on the kagome chain.

tion operator Pj; was been given by Dirac
1
P =Py =5 (1+0i0;), (6)

where o7 is the Pauli matrix, acting on the spin at the ¢-th site. The expressions for
Ps, Py, ... can be calculated using (6). By using these expressions one can rewrite
the Heisenberg Hamiltonian in terms of Pauli matrices. By taking into account that
in a strong external magnetic field directed along the z-axis the contribution from
x and y spin component will be negligible and the only relevant contribution will
come from the z component (which can effectively take values s, = +1), we may
consider an Ising model instead of Heisenberg one. By using expressions for P3, and
Ps and by substituting the Pauli matrix with s, we get the Ising approximation of
the Heisenberg Hamiltonian:

o J3 Jo (6)
H = 5 Z Sisj—? Z (Si$j+3j5k;+5ksi)+? Z H —hzsia (7)

Pairs Triangles Hexagons

where H®) represents the six particle exchange term in each hexagon:

1
H(ﬁ) = — Z SuSy + Z SpSuSASp + 8182558659510 (8)

8
n<v p<U<ALp

where the first sum goes over all pairs in the hexagon, and the second one goes over
all quartets in the hexagon.

To obtain recursion relations for the partition function one can separate the
kagome ladder into two identical parts (branches) and firstly perform a summation
over all spin configurations on each branch, and secondly sum over the central spin
variable (see Fig. 2). The summation on each branch yields the same result and
such a term only depends on the value of central spin:

Z =3 etg2(s) = eT g2 (+) + e Tg2(—), (9)
S0

where g,,(s9) denotes the contribution of each branch. The expression for g, (sg) can
be written (s1...s11, see Fig. 2) in the form:

gn(SO) = Z ek(sow'sn)gnfl(sll)? (10)

81,53...511
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Figure 3: Magnetization curves for Jo = 2mK,J; = 1.bmK,Jg = 2mK,T =
0.04mK for a) sublattice A, B,C, D b) Average magnetization of all sublattices.

where and n is the number of generations and the expression for k(sg, ...s11) has the
following form:

J2 J3
k(s(), ...811) = _ﬁ Z $iS; + ﬁ Z (sisj- + 88K+ Sksi) —
18 pairs 6 triangles
11
— — ;e 11
T + = ;Sz (11)

The recursion relation is obtained by introducing a new variable x,, = g, (+)/gn(—):

K(+,+)Tn-1 + K(+,—)
K(_7 +)xn—1 + K(_a _) .

Ty = (12)

where

Klsisim)= Y ekomen), (13)

52,83...511

By using this equations one can write for the magnetization of the central vertex

h _h 2h

eT@R(+)+e Tg2(=) eT w% +1

At the same way one can obtain the magnetizations of the non-central vertexes.
Because of the symmetry of the Hamiltonian, the values of magnetization for some
spins are equal: we have in general (See Fig. 2),

m(s3) =m(s4) =m(s7) =m(ss) — A
m(s1) = m(s2) = m(sg) =m(s10) — B
m(ss) =m(ss) — C

m(so) =m(si1) — D (15)

In Figure 3a magnetization curves are plotted for different sites. As it can be seen
from the figures, the magnetization functions have plateaus only for the sublattices
B and C. In magnetisation curves there are regions with unusual nonmonotonous
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Figure 4: The kagome chain.

magnetisation behaviour. In Figure 3b plotted the average magnetization of all
sublattices and the figure show that the curve is smooth and monotonous as it
should be.

It is interesting to calculate the Lyapunov exponent near plateaus but one cannot
use recurrent function (12) because it is related to s; site. To obtain the recursion
relation for the partition function that is related to so site one can separate the
kagome chain into two identical parts as shown in Figure 4:

Z= ) NJ32ogn(s1.82) - galp1,p2), (16)
51,52, P1,P2
where
n (o]
Lps = Z e 2 (s1s2+s0+p1+p2)+ T35z (H 2 (s0,51,80)+ H 2 (s0,p1,p2) ) — 5% H(® (17)
p1,p2

S0

and the contribution of each branch is denoted by g, (s1, s2). The recursion relations
for g, can be obtained by performing eleven (s3...s13, see Fig. 4) summations in
the kagome chain:

gn(s1,82) = Z K3 3t - gn—1(s12, 513), (18)
512,513

where K33 52, is as follows

J3—J2 P H23)_J6 g(6) 4 h P s
Ksh s2 T 6 Triangle T T 1=3 19
512,513 € : ( )
§3°:°S11
. S1, S S92, S S1, S S1, S

Since K315 = Ksi3,s15: Ksi3,515 = Ks13,51, one can show that g, (+, —) = gn(—, +)
and, hance,the recurrence relations are two-dimensional. By introducing x, =
gn(+,+)/gn(—, —) and yn = gn(+, —)/gn(—, —) the recursion relations may be writ-

ten in the following form:

Ki”i:r + QKI”iry + K:’j—
K jo+2K"y+K_~
KiTo+2K{ y+ K+’

Y :\P(:E -1, Y 71)7 \I’(l‘,y) = . (20)
" " " Ko x+2K,y+K__

T = @(xnflaynfl)a @(xay) =




The magnetization can be expressed in terms of z,,y, with due regard for (16) and
(17)

Relations (20) permit the calculation of Lyapunov exponents near the plateaus.
At first we shall give definition of Lyapunov exponent for an one-dimensional case.
For display x,+1 = f(z,) Lyapunov exponent characterizes exponential divergence
of two next points after n iterations [14, 15]. By definition in the two-dimensional
space Lyapunov exponent defined as

1
Ao = A}im N In (eigenvalues{A(x1,y1) - Alx2,y2) - Alxn,yn)}), (21)

—0Q

where A(z;,y;) is Jacobian matrix evaluated at the (x;,y;) point
00 0B
Alwiz)=| %% &

One of the basic features of chaos is the sensitive dependence on initial conditions
and the Lyapunov exponents provide quantitative measures of response sensitivity
of a dynamical system to small changes in initial conditions. For a chaotic orbit at
least one Lyapunov exponents is positive, implying exponential divergence of nearby
orbits, while in the case of regular orbits all Lyapunov exponents are zero. There-
fore, the presence of positive Lyapunov exponent is a signature of chaotic behavior.
Usually the computation of only the maximal Lyapunov exponent is sufficient for
determining the nature of an orbit, because it guarantees that the orbit is chaotic.
The results of calculation are shown in Fig. 5 with the corresponding magnetiza-
tion function: it is seen in the figures that the maximum Lyapunov exponent also
exhibits plateaus. Moreover, for the maximum Lyapunov exponent the location of
magnetization plateaus coincide with those of magnetization curves.

(22)

TiyYi

0.5
£ 00 =

-0.5¢ :

1.0, ‘ ]

~s00 A

Figure 5: Coincidence of magnetization plateaus and the maximum of Lyapunov
exponent.
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4. Thermal entanglement on a triangulated
Kagome lattice

The efforts aimed at better understanding of the aforementioned phenomena
stimulated an intensive search of two-dimensional geometrically frustrated topolo-
gies. From this perspective, the most interesting geometrically frustrated topologies
are the magnetic materials in form of two-dimensional isostructural polymeric coor-
dination compounds CugXs(cpa)g - nHoO (X = F, Cl, Br and cpa=carboxypentonic
acid) [16].

We consider the spin—% Ising-Heisenberg model on triangulated kagome lattice
(TKL) (Fig. 6) consisting of two types of sites (a and b). Since the exchange cou-
pling between Cu®* ions are almost isotropic, the application of the X X X Heisen-
berg model is more appropriate. There is a strong Heisenberg J,, exchange coupling
between trimeric sites of a type and weaker Ising-type one (Jy) between trimeric a
and monomeric b ones. Thus, the kagome lattice of the Ising spins (monomers) con-
tains inside of each triangle unit a smaller triangle of the Heisenberg spins (trimer).
The Hamiltonian can be written as follows:

H=Jua »_SISY — Jup Y _(S7)f- HZS [(S%)2 + SZ)] (23)
(i) (k1)

where S® = {S;,Sg,sg} is the Heisenberg spin—f operator, S? is the Ising spin.
Jua > 0 corresponds to antiferromagnetic Heisenberg coupling and .J,;, > 0 to ferro-
magnetic Ising-Heisenberg one. The first two summations run over a — a and a — b
nearest neighbors respectively and the last sum incorporates the effect of uniform
magnetic field (we have assumed that the total number of sites is 3NV).

Figure 6: A cross-section of TKL structure. Solid lines represent the intra-trimer
Heisenberg interactions J,,, while the broken ones label monomer-trimer Ising in-
teractions Jgp. The circle marks k-th cluster (Heisenberg trimer). Sg presents the

Heisenberg and S,gb_ the Ising spins.

Using Gibbs-Bogoliubov inequality [17]
F < Fy+ (H — Ho)o, (24)
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where H is the real Hamiltonian which describes the system and Hj is the trial one.
F and Fy are free energies corresponding to H and Hj respectively and (...)o denotes
the thermal average over the ensemble defined by Hy. Following [18] we introduce
the trial Hamiltonian in the following form:

Ho = > Hea, (25)

kEtrimers

Mw

Heo = Naa (S§,SE, +SE,S%, + S, S a9 + TSI - (26)

=1

Using the fact that in terms of (26) S® and S? are statistically independent, one
obtains (S%- 8% = (S%)¢ - (S*)g. Besides, taking into account that ((S?)*)g = my
(single a-site magnetization), ((S?)®)g = my (single b-site magnetization), we obtain
the following expression:

F< fot (Jaa — Aaa)(SE,SE, + SE, 3+SZISZ3>0

3Hm 3
—6Jpmaemy — 3HmMg — m, %2mb. (27)
Minimizing the RHS of (27) in order to 74, v and A, and using the fact, that
gfo = —3mg, g—f;(b’ = —3/2my, aBAfO = (S§,Sg, + Si,Si, + S¢St )0, we obtain

the following values for the variational parameters: )\aa = Jaa, Yo = 2Jupmpy + H,
Yy = 4Jypymg + H. Parameters 7y, and -y, which have a meaning of a magnetic field,
are interconnected, which is the consequence of its‘ apparent self-consistency.

As for defined above a- and b-single site magnetizations we obtain:

190, 13smh< )—1—2@ e smh( )—i—smh(lT)

Ma = —3 . (28)
397 6 cosh (3%) + 2e 2 cosh (L%) + cosh (;—,_C;,)
_ _Ofo, 1 0
my = o 2 tanh <2T> : (29)

We study concurrence C(p), to quantify pairwise entanglement [19], defined as
C(p) = ma:c{/\l — )\2 — )\3 — )\4, 0}, (30)

where \; are the square roots of the eigenvalues of the corresponding operator for
the density matrix

p = p1a(o] @ 03)piz(0] ® 03) (31)
in descending order. Since we consider pairwise entanglement, we use reduced den-
sity matrix p12 = Trgp. We can calculate the concurrence for each of them on cluster
level individually in effective magnetic field. In our case the density matrix has the
following form

M w) (Pl (32)

Ey, |¢¥r) and Zy, are taken from equations (7), (8) and (9) respectively. The con-
struction process of matrix (31) does not depend whether 7, is effective or real
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magnetic field, although the presence of effective field v, plays crucial role for the
self-consistent solution. Here we skip the specific details and provide the result of
final calculations of the matrix pq2, taking into account that the Hamiltonian H,, is
translationary invariant with a symmetry [S,, H.,] =0 (S, = Zi:l(SZ)%i)- Hence

2 O

P12 = ; (33)

S O O O

coocs
o<

*
ogw o

where u,v,w and y are some functions of 74, A\yq and 7. The concurrence C(p) of
such a density matrix has the following form:

2
Clp) = Zmax(ly| = vuv, 0). (34)
Finally, we consider transcendental equations (28) and (29) by taking into account
the values of variational parameters: Aoy = Jaa, Yo = 2Japmp+ H, 1 = 4Jgyme+ H,
and, therefore, one can use these parameters to calculate C'(p). First, we study the
behavior of C(p) at H = 0. The temperature dependence of C(p) is shown in figure
Ta.

030

025

020

C(p)

010

0.05-

0.00k . h T |
0.000 0.005 0.010 0.015 0.020

7
a)

Figure 7: a) Concurrence C(p) versus temperature field for J,, =1, o = 0.025 and H = 0,
b) Concurrence C(p) versus temperature T and external magnetic field H for J,, = 1,
o = 0.025.

Another important observation is that threshold temperature at which entan-
glement C(p) disappear is identical to the critical temperature T, of second order
phase transition between ordered and disordered phases. This implies that the con-
currence vanishes precisely at T, the same temperature of specific heat discontinuity.
This is the consequence of the fact that at 7T, the system undergoes order-disorder
phase transition and the second term in 4, vanishes, too (m; = 0, when H = 0 and
T > T.). This factor implies the strong relationship between magnetic and entan-
glement properties of the system. In figure 7b we present the three dimensional plot
of the concurrence as a function of the temperature and external magnetic field.
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Figure 8: Kagome lattice.

5. Magnetic properties and concurrence for *He

In the present section mean-field like approach, based on the Gibbs-Bogoliubov
inequality (24), was used to study entanglement and magnetic properties of a two
dimensional kagome lattice. The key result of the section is concentrated on the
comparison of specific (peaks and plateaus) features in magnetization, susceptibility
and thermal entanglement properties in the above mentioned model using variational
mean-field like Gibbs-Bogoliubov inequality.

According [6] the third layer of 3He system is kagome lattice (see Fig 8) and
Hamiltonian for kagome lattice can be written in the following form:

J2 _ J3 h z z z
H= Z [ 5 (oio; + o0 + 01L0}) — §(ai + o7 +07)|. (35)

Triangles

We introduce the trial Hamiltonian Hj as a set of noninteracting clusters (tri-
angles) on two sublattices in different external self-consistent fields:

Ho=Y H, (36)
AV

where
HY = X x (oo} + obal + ohol) — 7 x [(01)7 + (05)* + (05)7] |

where A\ and ~, variational parameters, and the index of summation A; labels dif-
ferent non-interacting rectangles (see Fig. 8 ) and

Yo =7 for sublattice (a),
Yo = for sublattice (b).

It should be emphasized that in trial Hamiltonian spins a',i of the A;-th triangle do
not interact with the spins o, of the A; triangle if ¢ # j, therefore these spins are
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statistically independent. The real Hamiltonian H (35) can be represented in the
following form

H=> HY, (37)
A;

where H® is the contribution of spins on the single triangle in real Hamiltonian
H and index of summation A; runs over the dlfferent trlangles (see Fig. 8, grey
triangles). Terms of real Hamiltonian ool +ayol+aiol must be included in H®),
but terms like 07 (see Fig. 8 tick lines) should be included both in H® and HU )
Consequently, H 0 has the following form:

FIENECRLLY ONEINS e e < gl o LY
a=1

a=2,3 a=1,3 a=1,2

where . o o o
a = olol + ohol + ol (39)

One can rewrite Gibbs-Bogoliubov inequality for each sublattice as follows:

fo < (fo)u+ (J2 ; s _ )\> (o) + J2 ; J36(27rLanb) — (h —7,) 6m,,.

Ya :h—(Jz—J3)mb, ’}/b:h—(JQ—Jg)ma. (40)

Minimizing the right hand side of (40) in order to 74,7 and A and using the fact,
9fo dfo
that a = <a>0 and 8’yv

parameters:

= —6m,, we obtain the following values for the variational

Jo —J
A= %; Yo =h—(J2 = J3)mp; v =h— (J2 — J3)ma. (41)
According to (41) the Hamiltonian of sublattice (a) depends on my, through 7, and

vice versa. For defined above magnetization we obtain the following expression:

| 3sinh (m) +sinh (22) + 2¢(T)sinh (%)
Mg = — * S , and 7, = h — (Jo — J3)my
6 cosh (?WL) + cosh (77“) + 2¢(F) cosh (WT“)

(42)
The dependance of magnetization m, from external magnetic field h can be found
by solving the this recursive equation for each value of magnetic field h. At relatively
high temperatures the recursive equation has one stable solution and therefore mag-
netization curves of sublattices (a) and (b) coincide (see Fig. 9(a)). With decreasing
temperature the solution of recursive equation ceases to be stable and, therefore, the
magnetization of different sublattices are no longer equal. The partially saturated
phase emerges in form of the magnetization plateaus (see Fig. 9(b) for " = 0.01 m K,
Joy =3 mK, J3 = 2.5 mK), which can be associated with a staggered magnetization
or short range antiferromagnetism (AF) in frustrated kagome geometry. Indeed, the
appearance of plateaus in magnetization curve at m = +1/6 can be explained as sta-

bility of trimeric states in available (17,711, 117) and (111, 7], T!]) configurations.
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Figure 9: Magnetization m, versus external magnetic field h for Jo = 3 mK, J3 =
2.5 mK. at a) T=0.15 mK b) T=0.01 mK.

It is curious to discuss some similarities of statistical and quantum characteristics
of our system. We consider magnetization as a statistical characteristic. In figure
10(a) plotted the magnetization as a function of the coupling constant Jo (for fixed
value of J3 = 2.5 mK) and the external field h, at a relatively high temperature
T = 0.2 mK. As a quantum characteristic we consider entanglement (concurrence
C(p)). In figure 10(b) the concurrence as a function of the Jy (J3 = 2.5 mK)
is shown for the same value of temperature. Our calculations show that the mag-
netic characteristics is similar to that of bipartite entanglement. Indeed, comparison
of figures 10(a) and 10(b) shows that regions corresponding to the magnetization
plateaus, coincide with the plateaus on concurrence plot.

Figure 10: Dependence for (a) magnetization m and (b) concurrence C(p) versus
the magnetic field h and the coupling constant Js at J3 = 2.5 mK and T' = 0.2 mK.
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6. Conclusions

A cyclic period-3 window has been studied in the antiferromagnetic Potts model
on the Bethe lattice. We have analyzed the mechanism of the transition from the
chaotic regime to the cyclic period-3 window through tangent bifurcation followed
by the doubling cascade 3 x 2"(n = 2,3,...). In the present paper the theory
of dynamical systems has been used to study magnetization on the kagome chain.
Exact recursion relations have been derived for the partition function. The magne-
tization curves for different temperatures and exchange parameters were obtained
and the kagome chain was observed to split into four sublattices with different mag-
netizations. A multidimensional mapping was deduced to study the maximum Lya-
punov exponent near the plateaus and it was shown that the location of plateaus
on the maximal Lyapunov exponent and for magnetization was the same. We found
strong correlations between magnetic properties and quantum entanglement in spin-
% Ising-Heisenberg model on triangulated kagome lattice, which has been proposed
to understand a frustrated magnetism of the series of CugXs(cpa)s - nH2O polymeric
coordination compounds. We also find strong correlations between magnetic prop-
erties and quantum entanglement in the Heisenberg model with two-, and three-site
exchange interactions in strong magnetic field on the kagome lattice, which corre-
spond to the third layer of fluid 2 He absorbed on the surface of graphite. We adopted
variational mean-field-like treatment (based on the Gibbs-Bogoliubov inequality) of
separate clusters in effective magnetic fields and studied magnetic properties and
concurrence as a measure of pairwise thermal entanglement. We have found, that in
the antiferromagnetic region behavior of the concurrence coincides with the magne-
tization one. The comparison of magnetization and concurrence shows that regions
corresponding to the magnetization plateaus, coincide with the plateaus on concur-
rence plot.
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Abstract

We determine the maximal work extractable via a cyclic Hamiltonian pro-
cess from a positive-temperature (T' > 0) microcanonical state of a N > 1 spin
bath. The work is much smaller than the total energy of the bath, but can
be still much larger than the energy of a single bath spin, e.g. it can scale as
O(VN1n N). Qualitatively same results are obtained for those cases, where the
canonical state is unstable (e.g., due to a negative specific heat) and the micro-
canonical state is the only description of equilibrium. For a system coupled to
a microcanonical bath the concept of free energy does not generally apply, since
such a system—starting from the canonical equilibrium density matrix pp at the
bath temperature T—can enhance the work exracted from the microcanonical
bath without changing its state pp. This is impossible for any system coupled
to a canonical thermal bath due to the relation betweem the maximal work and
free energy. But the concept of free energy still applies for a sufficiently large
T. Here we find a compact expression for the microcanonical free-energy and
show that in contrast to the canonical case it contains a linear entropy instead
of the von Neumann entropy.

1. Introduction

How much work can be extracted from a state of a physical system via cyclic
processes? This question governs our understanding of energy conversion and stor-
age, and hence is central for thermodynamics [1]-[8]. The basic answer, known as
the Thomson’s formulation of the second law, is that an equilibrium state cannot
yield work. This formulation is an axiom in thermodynamics, but its first-principle
derivations were given in literature for a canonical (Gibbsian) equilibrium state [2].
The main consequence of the Thomson’s formulation is that only non-equilibrium
states can be sources of work. The maximal work extractable from such states via
a cyclic process was studied both for macroscopic [1] and finite systems [4, 5, 6].

One instance of the maximal work is especially well-known, because it provides
the physical meaning of free energy [1]. Consider a quantum system with Hamil-
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tonian H and initial density matrix p. This system is in contact with a canonical
thermal bath at temperature T'. External fields act cyclically on the system + bath.
Assuming no system-bath coupling both initially and finally, the maximal work ex-
tracted by the fields reads [1, 9]

Winax = Flp] = Flpeq],  Flp] = tr(pH) + Ttr(pln p), (1)

where F[p] is the free energy and peq = e /T /tr[e /7] is the canonical equilibrium

state of the system, which is its final state after work-extraction [1]. The maximal
work is determined by the deviation of p from its canonical equilibrium value peq as
quantified by the free energy (1).

One notes however that all above results refer to a specific notion of equilibrium,
viz. the canonical state. Another concept of equilibrium is given by the micro-
canonical state, which describes an isolated system equilibrated due to its internal
mechanism [10], or an open system coupled weakly to its environment (so weak that
no energy is exchanged) [8, 11]. This is a more fundamental notion of equilibrium: (3)
under certain conditions the canonical state can be derived from it for a weakly cou-
pled subsystem [1]. (i) In contrast to the canonical state, whose preparation refers
to an external thermal bath, the microcanonical state can be applied to a closed
few-body system provided that it satisfies certain chaoticity features [12, 13]. (i)
Since local stability conditions of the canonical state are more demanding—a fact
closely related to the no work-extraction feature[l]—there are situations, where the
equilibrium can be described by the microcanonical state only, since the canonical
state for them is unstable [14]. For such systems, frequently realized via long-range
interactions, the entropy is a non-concave function of energy, and hence the notori-
ous macroscopic equivalence between canonical and microcanonical state is broken
[14]. Even if this macroscopic equivalence holds, it is by no means obvious that
in the argument around (1) one can substitute the canonical state of the thermal
bath by the microcanonical state [with the same temperature|, because in general
the work (1) is not a macroscopic quantity, i.e. it does not scale with the number of
bath particles. This is however widely done in literature, e.g., when introducing the
free energy as in (1) one basically never specifies the equilibrium state of the bath;
see, e.g. [1, 7).

We revisit the maximal work-extraction problem for a thermal bath in a quan-
tum microcanonical state. It was noted already some work can be extracted via a
cyclic Hamiltonian process from a few-particle microcanonical system [3]. Recent
papers studied to which extent the extraction of work from one-particle classical mi-
crocanonical system can be carried out by physically realistic Hamiltonians [15, 16].
Our purposes here are different:

e We focus on finding the maximal amount of work extractable from a macro-
scopic microcanonical state of N > 1 particle thermal bath.

e We also determine the work extracted via a system coupled to a microcanonical
thermal bath, and check whether the reasoning (1) generalizes at least qualitatively,
i.e. whether the concept of free energy applies to the microcanonical situation.
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The subject of work extraction via a system coupled to a thermal bath is an active
research topic. Refs. [16, 17, 18, 19, 20] discuss various set-ups for this problem:
quantum, classical, with or without state-dependent feedback etc. Recall that (1) is
at the core of relations between statistical thermodynamics and information theory
[7]. The term tr([p— peq) H ) in the right-hand-side of (1) is the energy extracted from
the system, while the remaining (entropic) part comes from the bath. If tr([p— peq| H )
is negligible (e.g., because H contains only few almost degenerate energy levels), the
work is extracted from the bath due to the difference between the initial entropy and
its canonical equilibrium value. This relation between the entropy and work is the
essential part of information driven engines (e.g., Szilard’s engine) [7]. In contrast,
various forms of fuel operate due to the initial non-equilibrium energy, i.e. the term

tr(p — peq H) in (1).

2. Microcanonical thermal bath

The microcanonical state is characterized by two parameters: energy E and
width o [1]. The corresponding density matrix is diagonal in the energy represen-
tation, all energies within the interval [E, E — o] have equal probabilities, all other
energies have probability zero. For a N > l-particle system the number d(E, o) of
energy levels within the interval [E, E — o] defines the microcanonical entropy [1]:

S(E) = Ind(E,o) = O(N), (2)

where the choice of ¢ should not influence the leading O(N) behavior of S(E).
Eq. (2) is the von Neumann entropy for the microcanonical density matrix (6);
see also [21]. For clarity we want to work with a specific model of a macroscopic
microcanonical system (bath). This is the basic model of the field: N > 1 uncoupled
two-level spins; each spin has energies 0 and 6 > 0 [8]. Some of our results extend
to more general bath models, as seen below.

The bath Hamiltonian reads (diag][...] means diagonal matrix in the energy rep-
resentation)

H = diag[0, 6, 25 ..., dN], (3)

where each element Jk is repeated dj times,

N!
dy = ——. 4
RN — k) )
Hence every energy shell ék is dp—degenerate. Denote
k
er=(1,...,1), 0z =(0,...,0), Dkzzmzodm, (5)

where ey (0y) is the vector of k 1’s (0’s).
For the present model of bath the microcanonical state is easy to define: all
energies 0M have equal probability ﬁ; all other energies have zero probability.
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Thus we put ¢ — 0, the minimal thermodynamically consistent width for this
model. Note that the degenerace of the energy levels is convenient, since it allows
to set ¢ — 0. It is however not essential: an effective degeneracy will be anyhow
regained for a small but finite o > 0, since the energy levels of a macroscopic system
are located very densely [1]. The bath initial state reads in representation (3)

1 .
0= @dlag[ODMq +€dpr, 0Dy —Dyy )- (6)
For N > 1 this microcanonical state does have desired features expected from ther-
modynamics, e.g. macroscopic equivalence with the canonical state, equilibration
of a small subsystem, third law [8]. The density matrix of a single bath spin is
Gibbsian o diag[1,e~%/T] with [8]

e T =m/(1—m), m=M/N. (7)
The same T is recovered as microcanonical temperature [1]
1/T =0S(E)/OE, E=0M, S(F)=Indy, (8)

where S(F) is the microcanonical entropy (2). This equivalence can be shown via
formula (17) that is proven below.

Note that although the spins are uncoupled, the microcanonical state does not
reduce to the tensor product of the separate spin states (otherwise it would amount
to the canonical state). It contains inter-spin correlations. Ultimately, this is the
reason why, as seen below, a microcanonical bath can yield work in a cyclic process.

We restrict ourselves with M /N < 1/2, i.e. positive temperatures. The case with
M/N > 1/2 is definitely less interesting, because now each spin of the bath is in a
state with a negative temperature. Such states are trivially active, i.e. they yield
work in a cyclic process.

3. Work extraction

At some initial time ¢ = 0 the bath Hamiltonian H(t) becomes time-dependent
due to interaction with sources of work. Consider a cyclic process

H(0) = H(7) = H, 9)

where 7 is the final time. The work extracted in this thermally isolated cyclic
Hamiltonian process is

W = tr(H[Q; — ) = OM — tr(HQ), Q = UQUT, (10)

. R T
where Q is the final state of the bath, and U = Te~(/7) o 4H(s). T means chronolo-
gization. Conversely, for a given unitary U one can construct a class of Hamiltonians
that generate U and satisfies (9) [5].
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Condition (9) is necessary for the system to be an autonomous carrier of energy
that should deliver work to another system (e.g., to a work-source) via an interaction
which switches on and off at well-defined times. Hence this is a cyclic Hamiltonian
process.

We now maximize the work W-—or minimize the final energy tr(H2)—over all
cyclic Hamiltonians, i.e. over unitary operators U. Note from (10) that

oN
tr(H%) =) EaCap(0lUlb), Cap = [(0|U]a)[?, (11)

)

2N 2N
Ca>0, Y Ca=), Ca=1 (12)

where {Ea}gil and {\a)}gil are, respecitively, the eigenvalues and eigenvectors of
H [see (3)], and the elements {<b|Qi|b)}§i1 are defined in (6). Three conditions
in (12) mean that the matrix Cy, is double-stochastic [22]. Conversely, every such
matrix can be represented as Cyp, = |(b|U|a)|? for some unitary U [22]. Every double-
stochastic matrix equals to a convex sum of permutation matrices I1[ (Birkhoft’s
theorem [22]): C' = 3" AJI, 37 N\, =1, Ay > 0, where each matrix M%) acting
on a column-vector z amounts to permuting (in a certain way) the elements of x.
Eq. (11) shows that tr(H ) is a linear function of the matrix C' = {Cy}. Hence its
minimum over the unitary operators U, that is its minimum over double-stochastic
matrices Cy, is reached for Cy, equal to some permutation matrix II. Tt is clear from
(11) that II, when acting on the vector (b|€]b) permutes its elements such that all
its non-zero [equal to each other| elements concentrate at lowest energies {Ea}gil
[5]. For the final state we have (a|Q|a) = Zbﬁab<lei\b>. Hence the lowest-energy
final state compatible with ; reads

..
Qf = 7(1 dlag[edM,ODN,dM]. (13)
M

Once II is found we can employ the standard procedure of constructing the cor-
responding unitary operator U and the cyclic Hamiltonian [5]. Note that II does
depend on the energy of the initial state £2;: II applied on a microcanonical state
with a different energy will not lead to the maximal work-extraction. This does not
differ from (say) the ordinary Carnot cycle, whose implementation also demands
knowing the initial state of the working body.

The maximal work Wiy reads from (13, 10): Wiax = 6M — %M[Zgiagkdk +

(M — ¢+ 1)(dp — Z]X:Bgdk)]. After summation by parts,

1 M—¢
Winax = 6 [e —1+ @Zk:o Dk] , (14)

where Dy, is defined in (5), and where integer ¢ = ¢(M) is found from

M—t+1 M—¢
Zk:o di, > dpy > zk:o dj;. (15)
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Eq. (14, 15) hold for any microcanonical state (3, 6); the specific form (4) is not
necessary.

We shall now calculate Wi« for two limits: T — oo and a finite N, and then
N — oo and a finite T'.

4. Doubly maximized work

We set the number of spins N to a large, but a finite number, and maximize
Winax(T') over all positive temperatures of the N-spin bath. The maximum is reached
for T = oo (or M = N/2 as (7) shows) and provides an upper bound for the
work extractable from the positive temperature bath. We now calculate Wiax(00).

. N_p N
Consider the sum) 2 (dp =7

m=~{

is m ~ £. We shall see below that / < N. Hence for (4) we use the Gaussian
2

dy . in (15). The dominant summation region
2

approximation dy = 2% ¢ N2 [23], change the sum to integral, and find ¢ from
2

z2
1= f;o dre N/2: [ = \/JZ In {4lng\f/4)] N(’) [lrllir(l](vj\/[ﬁ)] The second term under

square root is negligible if In N is large. Eq. (14) then implies (for N > 1):
oo 22 5
Wmax—5/ deze N2 =0l =~ 3 NInN. (16)
¢

This is a reachable upper bound for the work extractable from the N-spin micro-
canonical bath.

5. Finite temperatures and thermodynamic limit

We employ (4) and assume the standard thermodynamic limit: m = M/N < 1/2
(and hence T' > 0) in (7) is a fixed finite number for M, N — co. We note from (4)
and (7) that for any fixed finite numbers m, £ and N — oo,

ANm—t _ 5T 1
—_— = 1+0(=)]. 17
St = 9T [14.0()] (17)
Since the sums in (14, 15) are dominated by their largest terms, using (17) (with
m < 1 and integer ) amounts to calculating these sums via geometrical progression,
€8 7,7 Zﬁ/[ 0€+1 dp = poy 16_6k/T We get for £ and Wiax

Wnax(T) = 0 [e 1t (1— v)ﬂ , (18)
v=e T (= Fn(l—v)—‘ 7 (19)
Inv
where [z] is the ceiling (upper) integer part of z, e.g., [0.99] = 1, [—-0.99] = 0.
According to (19), ¢ grows to infinity with 7" E =1 for e9/T < 3.0 =2 for

etc.

> e /T > 1 0 =3for0.68232 > e%/T >

2
1+v5 1+\/5
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Wnax(T') is a continuous function of 7', but dvg% has jumps at the temperatures,
where ¢ changes, and one energy shell in the final density matrix (13) is completely
filled; see (15) and Fig. 1. Hence

Wax(T) = O(8) for N>>1 and T = O(9). (20)

The situation is symmetric with respect to different spins of the bath. Hence after the
work-extraction the initial energy of each bath spin changes negligibly = (’)(%) The
final state of each spin is diagonal in the energy representation and thus after work-
extraction it has a well-defined temperature that differs from the initial temperature
by O(%) Recall that the Gibbsian state as such cannot yield work in a cyclic process
(9) [2]. Hence the work is extracted due to inter-spin correlations present initially
in the microcanonical state.
Eq. (18) shows that Wiax(T) increases faster than T

Winax(T) =T {m (?) + 1] for T > 6, (21)

hl(l_v)-‘ ~ =) o (21) is practically good already for T' > 1.5 6.

where we used
Inv Inv

Now Whax can be much larger than the energy of a single bath spin. In the limit
T > ¢ this energy is equal to 6/2; see (7).

6. Microcanonical states not equivalent to the canonical one

Eq. (20) does not depend on the concrete form (4) of d;,. What is needed for (20)
is that the sum Zﬁ/lzodk: is dominated by its last term dp;. Then (15) implies £ =
O(1), and (14) leads to (20). Hence (20) generalizes the Thomson’s formulation of
the second law to the microcanonical situation. In particular, (20) holds for those dy,
where the macroscopic equivalence between microcanonical and canonical states is
violated. As an example consider (3, 6) with dy; = eN(M/N )*. This spectrum satisfies
all above conditions and leads to (20). Now the entropy Indys is a convex function
of energy 6 M. Hence the specific heat C' = [%]_1 calculated from (8) is negative,
and the macroscopic equivalence between canonical and microcanonical states is
clearly violated, because C' > 0 is an automatic consequence of the canonical state
[1]. Such convex-entropy spectra are realized in macroscopic long-range interacting
systems [14].

Another example of convex entropy and canonical-microcanonical non-equivalence

where still (20) holds, is the first-order microcanonical phase transition [1, 14], where
dS( ) dS

in the vicinity of some critical energy FE,
dS

1
has a jump: Nppr = T

] E—E.— l. This describes coex1stence of two phases Wlth dlfferent temper-
atures Slnce a more stable phase should have a larger entropy, we get T}, < 1;
[1]. The above non-equivalence is seen here, because at a canonical first-order phase
transition different phases have the same temperature [1]. Even though two phases
at different temperatures do co-exist, the extracted work has the same order of
magnitude (20) as for a homogeneous-temperature microcanonical state.
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7. System coupled to the bath

An important instance of the maximal work problem is the amount of work
extractable from a thermal bath in the presence of a smaller system coupled to it;
see (1). How much work can be extracted from a combined state of a two level system
with energies 0 and € > 0 and the microcanonical thermal bath? Answering this
question will alow us to understand to which extent the concept of the free energy
applies to the microcanonical situation. Before starting the analysis we should like
to stress again that so far the statistical physics literature does not distinguish
between canonical and microcanonical situations when introducing and applying
the free energy concept; see e.g. [1].

Let the initial density matrix of the two-level system be p;; its eigenvalus are
mo > m1. The spectrum of the overall initial state R; = p; ® €2; reads [see (6, 5)]

Spec[Ri] = @[ﬂ'oedM, T1€d,; s OQDN,QdM ], Y > 7. (22)
Both initially and finally the two-level system and bath do not interact. Hence the
overall Hamiltonian H reads

H = H(r)=Hs®1+1®H (23)
= diag[0, d,20..., 0N, €, €+9,...,e+IN], (24)

where H is given by (3), and Hg is the two-level Hamiltonian with energies 0 and
e. We recall that each symbol kd (or € + kd) in (24) is repeated dj times. Once
we consider unitary work-extraction processes, the final state of the overall system
will have the same eigenvalues (22). Recalling our discussion between (11) and (13)
it should be clear that the minimal final energy for the overall system is achieved
for the unitary operator that forces Ry to have the same eigenvectors as H and
permutes the eigenvalues (22) such that the largest eigenvalue is matched with the
smallest energy, next to the largest eigenvalue with the next to the smallest energy
and so on. Note that Spec|R;] is already ordered in a non-increasing way. It remains
to order (24) in a non-decreasing way and write the lowest final average energy as
scalar product of two vectors

tr(HR¢) = Spec|R;] - [0, 4,...,ad, ¢, (25)
(a+1)0, e+0,...,0N, e+ (N —a),...,e +0N],

where a = [§], and |z] is the floor (lower) integer part of z, e.g., [0.99] = 0,
|—0.99] = —1.

Consider the work extracted from the overall system that is maximized over all
unitary dynamic operators. Since the system and bath do not interact both initially

and finally, this work separates into two parts coming, respectively, from the system
and bath [see (10, 14)]:

tI‘(H[Ri — Rf]) = Whax + Weur + tI‘(HS [pi — pf]), (26)
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where tr(Hs[p; — pt]) is the energy change of the two-level system. Wiax + Waur
is the work coming from the bath. Here Wi,y is given by (14) (the maximal work
extracted from the bath alone) and we defined the surplus work Wy, (work extracted
from the bath, but due to the system).

Obviously, Wy +tr(Hs[pi — pr]) > 0, since tr(H[R; — Ry]) results from optimizing
over a larger set of parameters than Wy.x. Note that tr(Hg[pi — pt]) appears also in
the right-hand-side of (1), and there is some analogy between Wy, and the entropy
difference T'(tr[—peqIn peq + plnp]) in (1), which is the work extracted from the
canonical bath. There the work Wy« extracted from the canonical equilibrium
bath alone (without the system) is zero.

Scalar product (25) is calculated straightforwardly; for clarity we focus on the
thermodynamic limit regime (17):

Whax + Weur = 5[771F2 + (770 - 7T1)F1], (27)
tr(Hsps) = €[mPy + (mo — m1) P, (28)

where Wiax is given by (18) and we defined for k£ = 1,2:

1+ v 1 av®
b, = -1 fuk
b=k — 1) +v 1-v [1—1)—1_1—1—1)“]
ng 1 14+«
+avsign(fig — Lor) [k - “(1:’)} , (29)
Uelk-i—a ) ,Ufgk 1 + 'U1+a
P, = T~ + sign(f1x — lok) [k — (1_1))] ,
In <’ﬁ—”>) In (1’“(1;” )
e +olta
= | ——F bor = | — 2
1k lnwv rEk lnw (30)

Recall that sign(0) = 0, o = [ 5|, and that |z] and [z] are defined after (25) and
(18), respectively.

The final state ps of the two-level system is diagonal in its energy representation.
The eigenvalues of pg are read-off from (28). The excited state of ps is less populated
than the ground-state; otherwise it can still provide work via a cyclic process. In this
specific sense the two-level system partially equilibrates; recall that p; is arbitrary.

Fig. 1 displays Wiax(T) and W, (T') for a representative range of parameters.
It is seen that for a = 0, Wy > 0 and both Wi, and Wy, monotonically increase
with 7. For a > 0 the positivity of Wgy, is recovered only for a sufficiently high T
provided that mg # m1; see Fig. 1. For mg = 71, we always get Wy < 0.

Consider now € < 6 [i.e. a = 0 in (25)] and assume v = ¢~ %/T < 1/3 for
simplicity. Eqgs. (27-30) produce

Wer = v6(2m9—1) (1 —v)72, (31)
tr(Hsps) = e[lvmo+ (1 —3v)m](1—ov)"L. (32)
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Figure 1: Thick curve: Wi,ax given by (14) as a function of temperature T for 6 = 1.
Normal curves show Wy, given by (27) as a function of T for § = 1, m; = 0.3 and
(from top to bottom): a = [5| =0, 1, 2.

Eq. (31) shows that, in addition to Wguy + tr(Hs[pi — pe]) > 0, the work extracted
from the bath is enhanced, Wy, > 0, for any state of the two-level system besides
the completely mixed one, where my = m; = %

The energy difference tr(Hg[p; — pr]) can be positive or negative. Hence parame-
ters can be tuned such that it is zero, e.g., from (32) and for e =TIn2 < TIn3 < §
we get that initially canonical equilibrium two-level system, 79 = 1 — 7 = (1 +
e/ =1 = %, enhances the work extracted from the bath without changing its
marginal state: tr(Hgpr) = 0. Hence for enhancing the work extracted from the
microcanonical bath one needs that the system is ordered: its state should not be
completely mixed, while the maximal enhancing is achieved for a pure state. But
the state of the system need not change.

A non-equilibrium system coupled to canonical equilibrium bath can enhance
the work extracted from the bath only at the cost of changing (towards equilibrium)
its initially non-equilibrium state; see (1). The free energy measures this change.
For the microcanonical bath, the work can be enhanced already by an equilibrium
two-state system without changing its marginal state. We conclude that the concept
of the free energy does not generally apply to a system coupled to a microcanonical
bath.

But this concept applies in the high-temperature limit. For T >> §, € we get from
(27-30) and from (21):

Waur = (1 — 2m1)T In 2, (33)
tI‘(Hspf) = 6/2. (34)
Eq. (34) means that the final state of the two-level system is completely mixed, which

for the present high-temperature case coincides with the canonical equilibrium state.
Eq. (33) predicts work-enhancement only if initially the two-level system was out
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of equilibrium [recall that % > m]. Hence for T' > §,¢e we recover the logics of
the canonical-bath situation, but not its letter, because for a canonical bath Wy,
reduces to the difference between two von Neumann entropies that are logarithmic
functions of the initial eigenvalues 7y and 7y; cf. our remark after (26).
We shall show elsewhere that a for a u-level system in a state (density matrix)
p with eigenvalues ordered as mg > m1 > ... > 7,1, we can define the linear entropy
as
Ll =" ml(k + Dn(k + 1) — Kk, (35)
Generalizing (33), the surplus work Wy, extracted from a high-temperature mi-
crocanonical bath in contact with this system is then Wy, = T(lnpu — Llp]) =

T(E[i] — L[p]), where % is the maximally mixed state of the p-level system. For
the canonical situation this expression involves the von Neumann entropy —tr[pIn p]
instead of L[p]. Note that Inu > L[p] > 0: the upper (lower) limit is reached for the
maximally mixed (pure) p.

Hence for a system in initial state p and Hamiltonian Hg coupled to the high-
temperature microcanonical bath one can define the microcanonical free energy
Flp) = tr(Hsp) — TL[p], whose difference Flp] — Flpeq] (after adding to Wiax
extracted from the bath alone) defines the maximal work extracted from the sys-

tem-+bath.

8. Summary

We reformulated the Thomson’s formulation of the second law for a N > 1
particle equilibrium bath in a microcanonical state: if the bath temperature 7' is
finite, the maximal work extractable from the bath via a cyclic Hamiltonian process
is 2 d, where § is the energy of a single bath particle. The maximal work tends to
0V NIn N if N is large but fixed and 7' — oo. The reformulation applies equally
well to both ordinary microcanonical states, which are macroscopically equivalent to
canonical states, and convex-entropy microcanonical states for which no canonical
state can be defined, e.g., because of a negative specific heat [14]. The existence of
such states demonstrates that a viewpoint on a microcanonical state as emerging
from measuring the energy of the canonical state is not generally valid. Thermody-
namics of such systems can have peculiarities [24], but we saw that they satisfy the
same generalized Thomson’s formulation much in the same way as ordinary micro-
canonical states. The work extraction is possible, since the microcanonic state of
the bath is not Gibbsian, though each its constituent can be in a Gibbsian state.

It is widely known that only a non-equilibrium system can lead—at expense of
changing its state towards equilibration—to work extraction from a canonical bath
[1]. This work is given by the free energy difference (1). In contrast, a canonical
equilibrium system (having the same temperature as the bath) can enhance the work
extracted from the microcanonical bath without changing its marginal state. Hence
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the concept of free energy, in the sense of the maximal work, does not generally
apply to the microcanonical situation. The application of the concept is recovered
for T > §, but the canonical expression of the free energy is not restored, instead it
should be formulated via the linear entropy (35).
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M theory on AdSy x S” and AdS; x S7/Zy
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Abstract

We revisit Kaluza-Klein compactification of 11-d supergravity on S7 and
go to S7/Zy using group theory techniques. We show that there is no Higgs
mechanism responsible for the supersymmetry breaking. We analyze Kaluza-
Klein towers and compute their partition functions.

1. Some generalities on Superstring Theory

A theory of fundamental one-dimensional objects, strings, arose in the late 1960s
in an attepmt to understand the strong nuclear force [1]. String theory contains
open and closed strings. Open strings can end on a (p+ 1) dimensional hypersurface
called Dp-brane. In this theory specific particles correspond to specific oscillation
modes (or quantum states) of the string. One of the most important features of
string theory is that it contains general relativity. The graviton is in the spectrum
of closed string. Bosonic string theories are inconsistent. The consistency of the
theory requires supersymmetry. There ara five superstring theories- Type ITA, Type
IIB, Type I, Heterotic SO(32) and Heterotic Eg x Eg. They predict the spacetime
dimension in which they live to be ten. This means that the six dimensions must
be compactified on an internal manifold with the size of Planck lenght. String
theories are related via dualities. T-duality implies that in many cases two different
geometries for the extra dimensions are physically equivalent. It relates the two
Type II and the two Heterotic theories. Therefeore the Type ITA and Type 1IB
theories (also the two Heterotic theories) should be regarded as a single theory. The
S-duality relates the string coupling constant to its inverse. This duality connects
the Type I theory to the SO(32) Heterotic string theory and the Type IIB theory
to itself. Thus knowing the behaviour of these theories at small coupling limit, we
learn how they behave at strong coupling limit. This means that we know how Type
I, Type IIB and Heterotic SO(32) theories behave at strong coupling limit. At this
limit in the Type IIA and Heterotic Eg x Eg theories arises an eleventh dimension of
size g¢ (¢ is the string length, g is the coupling constant). This dimension is a circle
in the Type ITA case and a line interval in the Heterotic theory. When it is large
a new type of quantum theory in eleven dimensions arises. This is called M-theoy.
The low energy limit of this theory is 11-dimensional supergravity.
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Besides that string theories are related to each other, they are related also to
gauge theories via gauge theory/string theory duality. This important discovery
was made in the late 1990s [2], which gives a duality between conformally invariant
quantum field theories (CFT) and superstring theories or M-theory in special space-
time geometries. A collection of coincident branes produces a spacetime geometry
with a horizon. In the vicinity of the horizon, this geometry can be approximated by
an anti-de Sitter (AdS) space times a sphere. Gauge theory/String theory duality
states that string theory or M-theory in the near-horizon geometry of a collection of
coincident D-branes or M-branes is equivalent to the low energy worldvolume theory
of the corresponding branes, which is a conformal field theory. This duality is also
called AdS/CFT duality. In the duality when one description is weakly coupled, the
dual descripiton is strongly coupled. Using an information in the weakly coupled
theory allows to learn non trivial facts about strongly coupled dual theory. There are
three basic examples of AdS/CFT duality. They all have maximal supersymmetry
(32 supercharges). The three basic examples are the following:

e Superconformal field theory on the worldvolume of N parallel D3-branes cor-
responds to the type IIB theory on AdSs x S°.

e M-theory on AdS7 x 5% is dual to superconformal field theory on N M5-branes.

e M-theory on AdSy x S7 corresponds to superconformal field theory which lives
on the worldvolume of N parallel M2-branes.

In each case the sphere surrounds the branes. Each of these branes has one unit of the
appropriate type of charge. Thus, the background has nonvanishing antisymmetric
tensor gauge field with N units of flux. Gauss’s law requires that these fluxes pass
through the sphere.

2. Aspects of AdS, x S”

A stack of M2-branes has AdS; x S near-horizon geometry. M-theory on
AdS, x S7 is dual to three dimensional superconformal field theory. M-theory does
not contain a dilaton field, which means that there is no weak-coupling limit. Hence
the dual field theory is strongly coupled and as a result does not need to have a clas-
sical Lagrangian descripiton. One can think about this three dimensional conformal
field theory in the following way. Remember that the low energy effective theory
on the world-volume of N coincident D2-branes of type IIA superstring theory is a
maximally supersymmetric three dimensional Yang- Mills theory with gauge group
U(N). Yang-Mills coupling in three dimensions is dimensionful and introduces a
scale. This means this theory is not conformal. From the other side type IIA cou-
pling constant is proportional to the radius of a circle on which eleventh dimension
is compactified. When this coupling constant becomes large the gauge theory cou-
pling constant also increases. This corresponds to going to the infrared in the gauge
theory. Also the circular eleventh dimension is increasing. In the limit where the
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coupling constant becomes infinite one reaches the conformally invariant fixed-point
theory describing a stack of coincident M2-branes in 11 dimensions. This theory
has SO(8) R-symmetry which corresponds to the rotations in the eight dimensions
transverse to the M2-branes in 11 dimensions. The isometry group of AdS; x S*
metric is SO(3,2) x SO(8) = Sp(4) x Spin(8). SO(3,2) is the symmetry of AdSs and
in the dual theory it corresponds to the conformal symmetry group. The isometry
group SO(8) of S7 corresponds to the R-symmetry of the dual gauge theory. There
are 32 conserved supercharges (maximal supersymmetry). In the dual gauge theory
16 of these supersymmetries are realized linearly and the other 16 are conformal
supersymmetries. The isometry superalgebra becomes OSp(8|4) once these super-
symmetries are included. The 32 fermionic generators transform as (8,4) under

Spin(8) x Sp(4).

The ABJM model: Aharony, Bergman, Jafferis and Maldacena have conjec-
tured that 11-d supergravity on AdSy x S7/Zj, corresponding to the near horizon
geometry of N M2-branes at a C*/Z; singularity, be dual to ' = 6 Chern-Simons
(CS) theory in d = 3 with gauge group U(N )y x U(N)_j and opposite CS couplings
k1 =k = —kg [5]. The metric reads

1
dS%l = ZL2d8124dS + L2d5§7 (1)
for later use, note that Laqs = L/2 with L the radius of S7 and henceforth the

metrics of the subspaces are for unit curvature radii.
The Type ITA solution which corresponds to the ABJM model reads

L 1
ds%m L dx dm+4—dp + 12 dsCP3 — ZdeS?AdS +L2ds%P3 )

1/4
where L = (%) is the curvature radius in string units. The string coupling,

1/4
related to the VEV of the dilaton, is given by gs = L/k = (32W2N)

= . Thus the

perturbative Type ITA description should be valid for L >> 1 and g; << 1 i.e. for
NYb << k<< N. \= N/E is the 't Hooft coupling of the boundary CS theory.

When one goes from Type ITA on AdS, x CP3 to M-theory on AdSy; x ST an uplift
to 11 dimensions occur, the CP3 becomes the base of a Hopf fibration S” = CP3 x S*
whose metric reads

dsgr = dsgps + (dr + A)? (3)

with dA = 2Jcps, the Kihler form on CP3 normalized so that dV (CP3) = J A J A
J/6 and V(CP3) = 73/6. There are R-R fluxes

gsFo =2LJ , gsFy=6L%dV(AdS)) , gsFs=6L°dV(CP?). (4)

In the ABJM model B, = 0. When there are also fractional M2-branes one
has the ABJ model. In that case the boundary theory is ' = 6 CS theory with
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U(N)r x UN + k — 1), gauge group [6]. In this model By = Jl/k, with [ =
1. k—1.

The 11-d supergravity approximation should be valid in the double-scaling limit
k — 0o, N — oo with A = N/k fixed and large. The CFT description should instead
be valid when A << 1, i.e. Kk >> N. As A — 0 higher spin symmetry enhancement
takes place [3], [4].

N =6 d = 3 boundary CS theory: Three dimensional N' = 6 CS theories are
constructed from CS theories with A = 3 supersymmetry. These N = 3 theories
come from the N' = 4 case in three dimensions which in turn are obtained from
N =2ind = 3. d = 3 theories with N' = 2 supersymmetry are the dimensional
reductions of NV = 1 theories in four dimensions. The chain connecting these theories
is the following:

N =6(g=3) — N =34=3) — N =443y = N = 2(43) = N = 1(4—y) (5)
The field contents of the theories are the following:

d= 4,N =1 VN:1 = (A#,X,D) (S Adj QZ = (%%) c Ri
d:3>N:2 VNZQZ(Am7X7D7O) EAdj sz(ﬂﬁzﬂﬁz) ERZ (6)
d:3,N:4 VN:4:VN:2+(I)€Adj QiERZ‘,QiERZ’

The vector multiplet of N/ = 4 theory consists of an N/ = 2 vector multiplet
plus one chiral multiplet in the adjoint representation ® = ®,¢t* and there are
hypermultiplets ) and Q in the real (reducible) representations. Adding to the
N = 4 superpotential W = Q®Q the CS term, giving a mass m = g%Mﬁ to
the vectors, and a CS superpotential W = —%TT‘(I)Q breaks N' = 4 to N = 3.
Integrating out ® yields the superpotential

W= T (QrQ)QrQ) (7)

The resulting AN/ = 3 theory has SO(3) ~ SU(2) R-symmetry group.

The case of N’ = 6 is special. It comes from thex N' = 3 theory when one takes
the guage group to be G = U(N)g x U(N)_ and and 2 hypermultiplets in the
bifundamental representation H; = Q; + Q;, i = 1,2. The chiral superfiels Q; =
(A1, Ay) are in the bifundamental representation (N, N*) and Q; = (By, Bs) are in
the anti- bifundamental representation (N*,IN). In this case the superpotential (7)
becomes:

2 4
W = %U‘(AiBiAij - BZAZBJA]) == %tr(AlBlAQBQ - AlBQAQBl). (8)

This can be written in a more compact way:

2T b ai
W= ""e bettr( Ay By ApBy). (9)
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The N = 3 CS theory has a SU(2) x U(1) flavour symmetry. This SU(2) rotates
A’s and B’s together. (9) has a symmetry under SU(2) x SU(2) x U(1) g which acts
on A’s and B’s separately. This symmetry does not commute with R-symmetry
SO(3) ~ SU(2) under which A and B form doublets. Hence the N' = 3 CS theory
in this specific case has a larger SU(4) ~ SO(6) symmetry. This is the R-symmetry
group of N' = 6.

Compactification on S”: For the later use let us briefly review the mass spec-
trum of the Freund-Rubin solution of d = 11 supergravity on S7 [8-10]. The grav-
itino field as well as all the fermions are set to zero, the AdS;s Riemann tensor and
the three-form field strength are given by:

R;wpa = _4(gup( )gl/O' gua gl/p( )) (10)
,uz/pa = 3\/> —det g,uu E,uzzpo' (11)
where €g123 = —1. The metric and the three form field with mixed indices vanish:
Iua = Fuvpa = Fuvap = Fluapy =0 (12)
and also
FaﬂwS(y) =0 (13)
Rag = —69as(y) (14)

w,v,p=0,...,3 are d = 4 indices, «, 3,7 = 1, ..., 7 are internal indices.

Then one considers fluctuations around the Freund-Rubin solution. The lin-
earized field equations are obtained by replacing the background fields in the d = 11
field equations by background fields plus arbitrary fluctuations. An elegant and quite
general method to determine the complete mass spectrum on any coset manifold re-
lies on generalized harmonic expansion. In our case, one expands the fluctuations in
a complete set of spherical harmonics of S” = SO(8)/SO(7). The coefficient func-
tions of the spherical harmonics correspond to the physical fields in d = 4. In order
to diagonalize the linearized equations it turns out to be convenient to parameterize
the fluctuations as follows:

( ) +h,u1/(1"y) 15

(15)

(2,) = P (2,9) — 50 () (2, 9) (16)
gaﬁ(l‘,y) ( )+haﬁ($ y) (17)
Gpa(®,9) = hya(2,9) (1)
A;wp(ﬂfvy) A/Wp( )-i—aw,p(x,y) (19)

Guv (-Ta y)

Vx7

Iu
h
o
h
In particular the Weyl rescaled spacetime metric appears in (16) so as to put the

d = 4 Einstein action in the canonical form. The spherical harmonic expansions of
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Spin | Field SO(7) | SO(8) 4(ML)? A l

27 [ hf,, Ny (4,0,0,0) (¢ +6) A=Lt4+3]¢>0
7| ha Ny (£,1,0,0) 0 +2) =L+2[0>0
15 | Aupa Ny (0 —2,1,0,0) | ((+6)(l+4) |A=E5+4](>2
17 | Auags No (0—1,0,1,1) | (+2)(£+4) =L+3[0>1
07 | A, Ny (0+2,0,0,0)* [ ((+2)(f—4) [A=5+1]£>0
03 | haas PAy | M1 (£ —2,0,0,0) | (L+10)(f+4) | A=E+5|>2
03 | hp) Nay (0 —2,2,0,0) | £(¢+6) =s+3|(>2
0; | Aapy Nas (£,0,2,0) ((-2)(t+4) [A=L+2]0>0
0y | Aapy Nas (0 —2,0,0,2) | ((+8)(£+2) =L+4]0>2

Table 1: Bosonic KK towers after compactification on S”

the fluctuations of the metric and of the antisymmetric tensor fields are given by:
=> H (@)YNM(y)
hya(z,y) ZBM )Y (y) + B (2) Do Y M (y)
h(aﬁ) (z, y) =Y V(@)Y F(y) + 6" (@) DYy (y) + 6™ (2) Do DY V1 (y)
- S

uup CL' y) Za,uz/p YNl )

Appaey) = Yo (@)Y () + iil( DY)
A;wcﬁ(xay) ZaN21 YN2l(y) ( )D[(XY]}W
Ausy9) = 3 a5 (@)Y ) + Nﬂ( 2 DY (y) (20)

All superscripts Ny (r = 1,7,21,27,35) have infinite range, since they should pro-
vide a basis for arbitrary fields on the 7-sphere. The index r specifies the SO(7)
representation of the corresponding spherical harmonic. For example, Ya]\g’; is in the
third rank totally antisymmetric representation of SO(7) with dimension 35, while
Y@% is in the symmetric traceless 27-dimensional representation. Derivatives of Y's
appear in the expansions since any tensor can be decomposed into its transverse
and longitudinal parts. Then one has to fix all local symmeties and substitute the
resulting expansions into the d = 11 field equations. The coefficients of each inde-
pendent spherical harmonic will yield the d = 4 field equations. After diagonalizing
the bosonic field equations one obtains the mass spectrum summarized in Table 1.
The resulting bosonic spectrum includes the massless graviton, 28 massless vectors
of SO(8), corresponding to a combination of B, (in hu.) and C, (in Aua), 35,
scalars (A = 1) and 35, (A = 2) pseudoscalars with (M Laqs)? = —2. In the
supergravity literature [8-10] masses of scalars are often shifted by —R/6 so that
(ML zqs)? — (MLags)? = (MLags)?+2. The 70 (pseudo)scalars in the N = 8 su-
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Spin | SO(8) 4ML)? | A 1

()1 | (¢,0,0,1) (0 +2)? =L+3]>0
(3)2 | (6—1,0,1,0) | ((+42 |[A=L+L]0>1
(3)1 | ((+1,0,1,0)* | &2 =s+5 >0
(2)2 | (—1,1,1,0) | (¢ +2)? =i+ |e>1
(3)3 | (£—2,1,0,1) | (£+4)? =i+L]e>2
($)s | (6-2,0,0,1) | (£+6)? =f+2[0>2

Table 2: Fermionic KK towers after compactification on S”

pergravity multiplet are massless in the sense that (M L ags)? = 0. Moreover, there
are three families of scalars and two families of pseudoscalar excitations. Three of
them (O;, 0{{ and 05 ) contain only states with positive mass square and correspond
to irrelevant operators in the dual CFT. The remaining families Of and 0] contain
states with positive, zero and negative mass squared corresponding to irrelevant,
marginal and relevant operators, respectively.

A similar analysis can be performed for fermionic fluctuations. In Table 2 we
summarize the fermionic mass spectrum.

The KK spectrum does not include the states with % for £ = —1, since they
do not propagate in the bulk but live on the conformal boundary of AdSy;. They
correspond to the singleton representation of Osp(8|4) that consists of 8, bosons X*
with A = %, (ML)? = —% and 8, fermions 1® with A =1, ML = %, both at the
unitary bound.

3. From S7 to S"/Z; and CP? x S!

ST is a U(1) bundle over CP3. The CP?3 solution of the d = 10 theory can be
obtained from the S” solution of the d = 11 theory by Hopf fibration, i.e. keeping
only U(1) invariant states [7]. The compactification on CP? of the d = 10 theory
yields a four dimensional theory with N' = 6 supersymmetry and with gauge group
SO(6) x SO(2). In order to decompose KK harmonics on S7 = SO(8)/SO(7) into
KK harmonics on CP3 = U(4)/U(3) x U(1), we constructed an arbitrary represen-
tations of SO(8) in the space of polynomials of 12 variables. The latter are the
coordinates of the subgroup ZJSFO(S) generated by the raising operators of SO(8).
Then we developed a technique which allows to identify which of the above polyno-
mials correspond to highest weight states of representations of U(4) C SO(8). In
this case the number of variables reduces to 6 and in this case the polynomials will
depend on these six variables. The method we used is quite standard in represen-
tation theory of Lie groups (see e.g. Chapter 16 of [11]). The details can be found
in the original paper [3] or in the [4]. We just give the indicator system one has to
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solve for the highest weight states:

) f(a)

a13aa12 + a34aa24)£2+1 (a)

a148a13 + a24aa23)63+1 (a)
0.

Daga) ! fa) =

Solving these equations one can fully decompose KK harmonics on S7 into KK
harmonics of CP? x S! which is our next task.

In the following we will give only a couple of examples how KK towers of S”
decompose into KK towers of S7/Zj. For the decomposition of all towers see [3], [4].
For scalar spherical harmonics with Dynkin labels (¢, 0,0, 0) one finds as independent
polynomials {af} |m =0, ..., £}. Thus the following decomposition holds:

23045 + 02404,

I
o o o

(
(
(
( (21)

(¢,0,0,0) — ®[0,£ —m, m]p_om (22)

where the subscript is the SO(2) charge @ of the appropriate representation.

For vector spherical harmonics with SO(8) Dynkin labels (¢ —2,1,0,0) one gets
{a12al}, ag4aly, (a13a24 — ar4ag3)aly, aly|m =0, ..., £} as independent polynomials.
The SO(8) representation decomposes into SO(6) representations as:

(&170’0) - @[O,f—m, m](—Qm@ [O,E—m—k 1>m+1]€—2m
@[17€ —m, m]f—Qm—Q 2] [17 l— m, m]é—?m-‘y—? (23)

The zero charge spectrum i.e. the states which constitute the KK spectrum of Type
IIA supergravity on CP? can be easily identified in the decompositions.

The Zj, orbifold projection on S” gives S7/Z; ~ CP3 x S'. In this way the
supersymmetry breaks. It appears not to be spontaneous supersymmetry breaking.
Massless scalars, corresponding to marginal operators with A = 3 on the boundary,
only appear in higher KK multiplets, i.e. in the 840y, = (2,0,2,0) and 1386 =
(6,0,0,0). Nomne of these can play the role of Stiickelberg field for the 12 coset
vectors in the 619 + 6_5 of SO(8)/S0O(6) x SO(2).

Indeed, using the group theory techniques described in Section 3 the decompo-
sition of 840y = (2,0,2,0) under SO(8) — SO(6) x SO(2) reads

840.¢(2,0,2,0) — 84.,4[0,2,2] + 70420, 3,1] + 70,2[0,1,3] + 64, 5[1,1,1]
+84[0,2,2] + 45¢[1, 2, 0] + 45¢[1, 0, 2] (24)
+350[03 47 0] + 350[07 Oa 4} + 206 [27 07 O]
+84_4[0,2,2] + 70_2[0,3,1] + 70_2[0,1, 3] + 64_5[1,1,1]
This means that the massless scalars in the 840y,(2,0,2,0) cannot account for the

needed Stiickelberg fields in the 642 + 6_5. One can recognize massless scalars
neutral under SO(2) that survive in k¥ — oo limit and transform non-trivially under

SO(6).
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The same applies to the other massless scalars in the 1386(6,0,0,0). The de-
composition reads

1386(6,0,0,0) —  84.4[0,6,0] + 189.,4]0,5, 1] + 270,5[0, 4, 2]
130000, 3, 3]
+84_4[0,0,6] + 189_4[0,1,5] +270_5[0,2,4]  (25)

It is obvious that there are no 643 + 6_o. In this case, neutral fields appear in the
300 representation of SO(6). Thus, we see that there is no Higgs mechanism for
the breaking of SO(8) to SO(6) x SO(2).

One observes that in the large k limit only SO(2) singlets survive. Only states
with £ even on S7 give rise to neutral states. This means that the parent theory could
be either a compactification on S or on RP” = S7/Z,. Indeed both lead to SO(8)
gauged supergravity with the massless multiplet {g,., 8¢, 284,,, 56,357 + 357 ¢}.

4. KK towers

Let us now focus on the KK excitations. One can write the single-particle par-
tition function on S”, decompose it into super-characters and identify the SO(2)
charge sectors, relevant for the subsequent Zj projection i.e. compactification on
CP3.

Introducing a chemical potential for the charge @) (tQ), the super-character of
an ultra-short 1/2 BPS representation of Osp(8|4) reads:

X£1/2BPS (0.1) = S i;)iq:: =
x (1572 (12 = g)" = (~1+ %)) = 66 (-1 +12) (-1 + ¢)?
x (tﬁw (2 —q)* (=342 +q) + 2+ (-3 +09) (-1 + tzq)z)
+615+2 (12 — g)* (=35 + q(35 + (—9+ ¢)g) + 2t* (=5 + ¢?)
+t2(35 + q(—13 4+ (-7 +q)q))) — (2 (-5 + ¢) (26)
)
)

6 (-1+) (-1 +¢)°

+t1(=354+¢(35+ (-9 + q)q)) + *(35 + q(—13 + (=7 + q)q)))

X6 (=1 +29)° — £(=1 +q) (1572 (> — ¢) (—107 + (70 — 11¢)q
(AT 4 (=24 q)q) — 22(=T1 4+ ¢(22 4+ q))) + (1 + %)

X (47 = (=2 + q)q + 263(=T1 + q(22 + q)) + t*(107 + ¢(=70 + 11¢))))] -

For ¢ = 0, corresponding to the gauged supergravity multiplet, there is further
shortening (null descendants) due to the presence of conserved ‘currents’ i.e. stress-
tensor, SO(8) vector currents and 8, supercurrents. Taking this into account one
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finds the following super-character

x1/28PS 1 2 —2y 2

2(15t* + 10 + 6 + 10 + 15t~ 2)¢* +

(102 + 15 + 10t 2 4 3(6t% + 15 + 1 + 6t 2))q*
42+ 6+t2)g" — (662 + 15+ 1 — 5+ 6t 2)¢" +
2> + 6 +t72)q" — 3¢°]. (27)

The denominator takes into account derivatives (descendants). Quite remarkably
this formula coincides with the previous one when £ = 0.
After some algebra, putting ¢ = 1 (i.e. not keeping the track of SO(2) charge),
one finds
1/28Ps, ¢°(3¢> —7q* — Tq + 35)
XLy Tla) = 3
(1+9q)
A factor (1 — ¢q)? cancels between numerator and denominator meaning that not
only the number of bosons equals to the number of fermions and the sum with A'
vanishes but also the sum with A2 should vanish. This should be related to the
absence of quantum corrections to the negative vacuum energy, i.e. cosmological
constant in the bulk.
The 1/2 BPS partition function is given by

1/2BPs _ 35¢°
1/23135 = Z x)/ = a—e (29)

The simplicity of the result is due to miraculous cancellations between bosonic and
fermionic operators with the same scaling dimensions in different KK multiplets
i.e. with different ¢’s.

In order to perform the Zj, projection it is useful to decompose into SO(2) charge
sectors according to

ZN=SoN=6(, ) Cl(L+ ) Pa(t) — (g + @) Ps(t) + (¢* + ¢") Pa(t) — ¢*P5 (1))

(28)

1/2Brs (1—gt)* (1 — gt~ 1) (1 + g)? ’
(30)
where
Py(t) = 10tT2 + 15 + 10t 2
Py(t) = 20tT3 4+ 10672 4 64t 4+ 22 + 64t + 10t7% 4- 20t 73
Py(t) = 15t 4 873 + 104672 4 48T + 175 + 48t~ + 1042 + 873 + 15¢7*
Ps(t) = 4t + 2t 4 6473 4 40612 + 19617 + 88 +

+196t71 4+ 40672 4+ 6473 4+ 2t + 4470,
(31)

Depending on the choice of k one can recognize the surviving 1/2 BPS states
as those with Q = kn. In formulae one has to replace t with w” and sum over
r=0,...,k—1.
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5. Conclusions

We have re-analyzed the KK spectrum of 11 dimensional supergravity on AdSy X
S7 which is the low energy limit of M-theory on AdSy x S7. A compactification on
AdSy x S" 7y, with k — oo corresponds to the low energy limit of Type ITA theory on
AdSy x CP3. We presented group theoretical method showing how the R-symmetry
group of the theory on AdS; x CP? is embedded into the R-symmetry group of the
theory on AdS; x S7. This gives a very nice way to decompose the KK towers of
S7 into those of S7/Zj. Going from M-theory on AdS; x S7 to Type IIA theory
on AdS; x CP? the supersymmetry breaks. We show that this breaking is not
spontaneous. Massless scalars, corresponding to marginal operators with A = 3 on
the boundary, only appear in higher KK multiplets, i.e. in the 840y, = (2,0,2,0)
and 1386 = (6,0,0,0). We have shown that none of these can play the role of
Stiickelberg field for the 12 coset vectors in the 619+ 6_5 of SO(8)/SO(6) x SO(2).
In the last section we discussed KK excitations in details computing different super-
characters and partition functions.
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Casimir-Polder forces in the geometry of cosmic string
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Abstract

Combined effects on the Casimir-Polder potential due to a cosmic string
and coaxial metallic cylindrical shell are investigated. For the both regions
inside and outside the shell, the potential is decomposed into pure string and
shell-induced parts. In a special case of an isotropic polarizability tensor, the
Casimir-Polder force in the interior region is attractive with respect to the shell.
In the exterior region the force is attractive near the shell and repulsive at large
distances from the shell.

1. Introduction

The Casimir-Polder (CP) forces have attracted a great deal of attention because
of their important role in many areas of science, including material sciences, physical
chemistry, nanotechnology, and atom optics (for reviews see Refs. [1, 2]). In this
paper we present the results of the investigation of the CP forces due to the non-
trivial topology induced by a straight cosmic string and boundaries. Cosmic strings
are among the most interesting classes of topological defects which could arise as a
result of symmetry breaking phase transitions during the evolution of the early uni-
verse [3]. They are candidates for the generation of a variety of interesting physical
effects, including gravitational lensing, anisotropies in the cosmic microwave back-
ground radiation, the generation of gravitational waves, high-energy cosmic rays,
and gamma ray bursts.

The nontrivial topology of the cosmic string spacetime results in the distortion
of the zero-point vacuum fluctuations of quantized fields and induces non-zero vac-
uum expectation values for physical observables. Combined effects of topology and
boundaries on the quantum vacuum in the geometry of a cosmic string have been
investigated for scalar [4], vector [5, 6] and fermionic fields [7, 8], with boundary con-
ditions on cylindrical surfaces. The vacuum energy for massless scalar fields subject
to Dirichlet, Neumann and hybrid boundary conditions in the setting of the conical
piston has been analyzed in Ref. [9]. The vacuum polarization effects in a cosmic
string spacetime induced by a scalar field obeying Dirichlet or Neumann boundary
conditions on a flat boundary orthogonal to the string are considered in Ref. [10].
Here we consider the effects of cosmic string and coaxial metallic cylindrical shell on
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the CP force. The CP interaction potential of a microparticle with an ideal metal
cylindrical shell in background of Minkowski spacetime has been investigated in a
number of papers (see references in Ref. [11]). Recently, the exact potential for a
microparticle outside a cylindrical shell has been found in Ref. [11] using the Hamil-
tonian approach. The CP potential for both regions inside and outside an ideal
metal cylindrical shell is investigated in Ref. [12] using the Green function method.

The paper is based on Refs. [13, 14, 15] and is organized as follows. In the
next section the CP potential is investigated for a polarizable microparticle in a
boundary-free cosmic string geometry. The part in the CP potential induced by a
metallic cylindrical shell is studied in Sec. 3 for both interior and exterior regions.
The main results are summarized in Sec. 4.

2. Casimir-Polder potential in boundary-free
cosmic string geometry

For an infinitely long straight cosmic string the line element has the form
ds® = dt* — dr? — r?d¢?® — d2?, (1)

where 0 < 7 < 00, —00 < 2z < 400, 0 < ¢ < ¢p and the spatial points (7, ¢, z)
and (r,¢ + ¢o,2) are to be identified. For an infinite straight cosmic string the
line element (1) has been derived in Ref. [16] in the weak-field approximation. In
this approximation the planar angle deficit is small and it is related to the mass pg
per unit length of the string by 27 — ¢g = 87Gug, with G being the gravitational
constant. The validity of the line element (1) has been extended beyond linear
perturbation theory by several authors [17] (see also Ref. [3]). In this case the
planar angle deficit need not to be small. An interesting limiting case with ¢¢ < 27
has been discussed in Ref. [3].

First we consider the CP potential for a microparticle with the polarizability
tensor aj;(w) in the boundary-free cosmic string geometry. For a microparticle at a
point r, the potential is given by the expression [2]

Un(r) = = /0 g an(i&)GY) (x,mii6), (2)

:27T

where summation is understood over the indices j,1 = 1,2, 3,

GS) (r,r;w) = /

—00

+o0 )
dr {G;?) (x,2") — G;llv[) (:c,x/)] e, (3)

and z = (t,r), 2’ = (¢',v'), 7 =t—t'. In (3), Gg.(l)) (x,2') is the retarded Green tensor

for the electromagnetic field in the geometry of the cosmic string and G;llv[) (x,2")
is the corresponding tensor in the Minkowski spacetime. Outside the string core
the spacetime is flat and the renormalization is reduced to the subtraction of the
Minkowskian part.
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In the problem under consideration the off-diagonal components, GS)(I‘, r; i),
j # 1, vanish and for the diagonal components we have the expression:

la/2]

q . fi(2&r coshy, coshy)
; Ji28rsn, ok) = ™ 51n(q7r)/0 2 cosh(2qy) — cos(qr) |’ @

G (r,1;i¢) = 26 [

where g = 27 /¢y, [q/2] stands for the integer part of ¢/2 and
sk = sin(mwk/q). (5)

In (6), the function fi(u,v) is defined as

3
filu,v) = e b (0)uP 4, by(v) = b + b, (6)
p=1
with the coeflicients matrices
1 1 1 1 1 -1
= -2 —2 0 ).b) =11 -1]. (7)
1 1 1 0 0 O

The CP potential is evaluated by using the formula (2). By taking into account
(4) and introducing the notation

huply) = /O R ) (®)

the potential is expressed as

3 [ZQ/ by (s1) q

P .

Uo(T’) = ﬁ |: 3% hlp(zrsk) - ; Sln(qﬂ-)
l,p=1 - k=1

X/Oo hip(2r coshy)  byy(coshy)
o % ooh(2qy) — cos(am) coshly |’

(9)

The corresponding force is perpendicular to the string and is directed along the
radial direction. Expression (9) is simplified for integer values of the parameter ¢:

= 35 Z Z p 1p(27sE). (10)

k=11p=1

In (24), ay(i€) are the (physical) components of the polarizability tensor in the
cylindrical coordinates #! = (r, ¢, z). These components depend on the orientation of
the polarizability tensor principal axes. As a consequence, the CP potential depends
on the distance of the microparticle from the string and on the angles determining
the orientation of the principal axes. Let us introduce Cartesian coordinates 2/ =
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(',y',2’) with the 2’-axis along the string and with the particle location at (r,0,0)
and let 3, be the cosine of the angle between z’' and the n-th principal axis of
th?3 polz;rizability tensor. Omne has Zi;l ﬂfn = 1. Now we can 'Writ.e' ay(w) =
> B (w), where oy (w) are the principal values of the polarizability tensor.
The coefficients §;, can be expressed in terms of the Euler angles determining the
orientation of the principal axes with respect to the coordinate system z’. In the
isotropic case a,(w) = a(w) and we have oy (w) = a(w).
At large distances from the string to the leading order one finds

~ (¢* —1) (¢ +11)
Up(r) ~ 360712

[a11(0) — a22(0) + a33(0)] - (11)

with ay;(0) being the static polarizability of a particle. The force corresponding to
(11) can be either attractive or repulsive.

For an isotropic polarizability tensor, oj(w) = dja(w), we can explicitly sum
over [ and the expression for the CP potential is obtained from (9) by making the
replacement

3
> " bip(0)hup(2rv) = by(v)hy(2r0), (12)
=1

where we have defined hy(y) = [;° dz 2P~ e *a(iz/y) and
bi(v) = ba(v) = 202, b3(v) = 2 — 20 (13)

For the further transformation of the general expression (9) for the CP poten-
tial we need to specify the functional form of the polarizability tensor. For the
corresponding principal values we use the anisotropic oscillator model with

o (i6) = 3 (14)

;v e

and with w](.n) and g](-n) being the oscillator frequencies and strengths, respectively.
This model for the dynamic polarizability works well over a wide range of separa-
tions. Now for the function (8) one gets

3
hip(y) = >y > 95" B Bylye™). (15)
n=1 j
with .
00 Pl

The integral in (16) is expressed in terms of the functions Si(x) and Ci(z). As a
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result, for the CP potential in the oscillator model we find the following expression

2]

ne) = L3 T zﬁn,[jij W) g (sl

Inp=1 3 k=1 k

(n)
B 27"w cosh b h
—gsm q7r/ dy 4 u)_biy(coshy) :
¢

osh(2q ) — cos(qm) cosh?y (17)

The corresponding formula for the isotropic case is obtained from (17) by the re-
placement

Z Bt bip(v 2rvw( )) — by(v) Bp(2rvwj). (18)
l,n=1
The corresponding force is repulsive.
At small distances from the string, r < 1 /wj(-n), the dominant contribution in
(17) comes from the term with p = 1 in the leading order and to the leading order
we get

Uolr) wZZ " 62,101 95(a) + {91 () (19)

lm=1 3

where nj(. " = gj(n) w; (™) and

b9 = (1,-2,1), b = (1,1,0). (20)

In (19) we have defined the function

(q) = [(12/:2} —n_ 9 ( )/Ood cosh™"(y) o)
gn\q) = 2 S - m(qm ; ycosh(2qy) — Cos(qw)‘

With dependence of the orientation of the polarizability tensor principal axes and
(m

on the values of n; ), the corresponding force can be either repulsive or attractive.
In the isotropic case the asymptotic expression at large distance takes the from

Uo(r) ~ gég) Z Zﬂj (22)

and the corresponding force is repulsive.

The dependence of the CP potential on the orientation of the polarizability tensor
principal axes with respect to the string will also lead to the moment of force acting
on the particle. As a consequence, the influence of the cosmic string on the system
of particles with anisotropic polarizability results in the macroscopic polarization.
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3. Casimir-Polder potential for a metallic cylinder in cosmic string
spacetime

In this section we consider the CP potential for a microparticle inside and outside
a metallic cylindrical shell with radius a. The CP potential is presented in the
decomposed form (details will be presented in Ref. [15])

U(r) = Uo(r) + Up(r), (23)

where the term

Up(r) = _273 i/ Z 23:/00 d¢ ay (i€) (=€) /OO dy~y
T =0 x=0,1 1=1 70 3

(v* =€) Kpl(an) o
A ACL ECD

is induced by the presence of the cylindrical shell. In (24), I,(z), K,(z) are the

modified Bessel functions and the functions z'l()‘) (x,y) are defined as

.(0 .(0 .qm .(0 .

i @y) = @),y (@, y) = i Ly (@), 35" (2,) = gL (@),

. qgm . . .

7’51) (LU, y) = YIq\m\(x% Zgl) (1"7 y) = _ZI(II\m\(x)v 22(31) (.’E, y) = 07 (25)

and the prime on the summations sign means that the term m = 0 should be
taken with the coefficient 1/2. In the absence of the string we have ¢ = 1 and the
formula (24) is reduced to the expression for the CP potential for a cylindrical shell
in Minkowski spacetime derived in Ref. [12].

For the isotropic polarizability tensor the general expression (24) for the boundary-
induced part in the CP potential takes the form

Up(r) = —% Z::()/ /OOO d¢ a(i€) /:O ;dj =
Kgm(a) 2 _ 42 ” 212 ()] — o Kgm(a7) ,
[T 162 = ) Fanor) 49213, 7)) = € 32 By | (29

with the notation Fy,,(z) = I(’I%n(x) + (qm/aj)QIgm(x). The boundary-induced part of
the potential diverges on the cylindrical shell. The leading term in the corresponding
asymptotic expansion over the distance from the boundary coincides with the CP
potential for a metallic plate in Minkowski spacetime.

For the anisotropic oscillator model, Eq. (14), the expression for the potential
takes the from

¢ Ny (n) ©  Ep(a)
) = 2N S [T ar i)

m=0 n=1 j A=0,1 Lgm( 20)

X[/ 1472/ = 1] frgm (s /1 4+ 72 /w2, (27)
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where we have introduced the notations

Joam(z,y) = Bl (@) + 03, (%)213,”(@ + (1 + ;) B g (),
Pan(e) = =1 B (20 B(o) + Btz (o). (28)

In the isotropic case we have

A [ K@) Elor)
Ub( ) N 7Tm_ngjz/O d’Y’Y {Itlzm(CW) (7)[‘5)]( ) ]
_ Kon(ay) | Fym(yr) Iqu('yr)
Igm(ay) | sj(v) +1 " 5j(7) ]}7 )

with the notation

si(7) = /1 +72/w}. (30)

For the boundary-induced part in the CP force we have Fy, = F, ,n,, where n, is
the unit vector along the radial coordinate r and Fy,, = —0,Uy,(r). In the isotropic
case one has Fj,, > 0 and the boundary-induced part in the CP force inside the
cylindrical shell is directed toward the shell. The pure string part of the force has
the same direction and the total force in the isotropic case is repulsive with respect
to the string and attractive with respect to the shell.

Similar to the interior case, the CP potential for the exterior region is presented
in the decomposed form (23). The formulas for the boundary-induced part are
obtained from expressions (24), (26) and (29) by the interchange Iy, = Kgm,. At
large distances from the shell, to the leading order we find

qa11(0)
6mrtIn(r/a)

At large distances the CP potential is dominated by the pure string part and the
corresponding force in the isotropic case is repulsive.

In figure 1 we display the total CP potential U (r) (full curve) for both interior and
exterior regions as a function of r/a for ¢ = 2 and a/A\g = 1, with A\g = 27 /wp. The
dot-dashed and dashed curves correspond to the pure string (Up(r)) and boundary-
induced (Uy,(r)) parts in the potential, respectively. In the numerical evaluation the
single oscillator model is used with isotropic polarizability and with the parameters
g; = go and w; = wy. The potential is dominated by boundary-induced part near
the cylindrical shell and by the pure string part for points near the string and at
large distances from the cylindrical shell.

Up(r) = — (31)

4. Conclusion

We have presented the results of the investigation of the CP potential for a
microparticle with anisotropic polarizability tensor in the geometry of a straight
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Figure 1: CP potential as a function of r/a for a/Ag = 1 and ¢ = 2.

cosmic string with coaxial metallic cylindrical shell. For the both exterior and
interior regions of the shell the potential is decomposed into the boundary-free and
shell-induced part. The former dominates for points near the string and at large
distances from the shell, whereas the shell-induced part is dominant near the shell.
The potential depends on the distance of the microparticle from the string and on
the angles determining the orientation of the principal axes. In the anisotropic case,
with dependence of orientation, the corresponding forces can be either attractive or
repulsive. As a model for a polarizability tensor we have taken anisotropic oscillator
model which works well over a wide range of separations. Within this model, for
an isotropic polarizability tensor the boundary-free part of the CP force is repulsive
with respect to the cosmic staring for all distances and the shell-induced part is
attractive with respect to the shell. At large distances from the shell (retarded
regime), the dominant contribution to the CP potential comes from low frequencies
and it scales as 1/r*. At large distances from the shell, the shell-induced part
behaves as 1/[r*In(r/a)]. At distances from the string smaller than the relevant
transition wavelengths the potential behaves as 1/r® power law. In the case of
anisotropic polarizability, the dependence of the CP potential on the orientation of
the polarizability tensor principal axes will also lead to the moment of force acting
on the particle.
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B otBeT Ha mro6uMyto uctopuro J. UybapsHa
0 HecocrtosaBuieics cratbe C. ["ayncmura u
JIx. Ynenbeka o cimHe

1
B. M. Meixutapsa
Huemumym gpusuueckux uccnedosanuii HAH Apmenuu, Awmapax

A ucTopusi, KOTOPYIO JTHOOHIT paCCKa3bIBaTh YBAXKAEMBbIH FOOWIISIP, CISAYIOIAs:

B oxmsabpe 1925 200a Comioon I'ayocmum
(Samuel Goudsmit) u [Jorcoposrc Ynenbex (George
Uhlenbeck), monoowvie compyonuxu Ilayna Ipen-
gecma (Paul Ehrenfest), ssenu 6 ¢pusuxy konyen-
yuio cnuna. OHU NPeonoNCUNU PACCMAMPUSAMD
9eKMPOH KAK «8pawarowulicss 80140Ky», obaa-
oarowuti cO6CMEEHHbIM MEXAHUYECKUM MOMEH-
mom, pasuvim Hi/2, u cOOCMBEHHbIM MACHUMHBIM
MomeHmom, pagubim machemoHy bopa. Onu co-
obwunu o ceoeti eunomese JIpengpecmy, Komo-
pomy oHa noupasunacs. OH NPEONONHCUTL CBOUM
VUeHUKaM HAnUcamv HeOOIbUYI0 3aMemKy Ol
arcypnana Die Naturwissenschaften u noxkazamo ee Xenopuxy Jlopenyy.

Jlopeny npouszeen paod 6bMUCTEHUL INEKMPOMASHUMHBIX CEOUCME 8paAWaAIOwe20cs
91eKMPOHA U NPOOEMOHCPUPOBAT HENEeNOCHb 8bI80008, K KOMOPbIM NPUSOOUM WA 2U-
nomesa. Coanacho paciemam, OCHOBAHHLIM HA KAACCUYECKUX NOOX0OAX, CKOPOCMb HA NO-
6EPXHOCIU 1eKMPOHA OONIHCHA NPEGbIUAMb CKOpocmy ceema. Yaenbex u I ayocmum no-
cuumanyu 3a aydulee He nyOIUKOBAMb CBOI0 CMAMbIO, OOHAKO ObLIO NO30HO: Dpengpecm
yorce omocnan ee 6 newams”.

ITo smomy nosody Ipengecm s3amemun: "Bol 06a 0ocmamouno monoodel, umodsl no-
3801UMb cebe coenamv 00wy 2nynocmy!”.

Mps1 noBTOpUM "TIIyHOCTh" MOJNIOABIX, HO CAEJIAEM pacyeT B paMKaX pesiTUBU-
CTCKHUX NOAXO0J0B. [IpeAnonoxkuM, 4To BpalleHUIO JIEKTPOHA MOXKHO COIMOCTaBUTh
TBEPJOE BpPAIIEHHE 3apsKEHHON Chephl ¢ YIIIOBOH CKOPOCTHIO {2, ¥ KOTOPOTO y/ia-
JICHHAsi OTHOCUTEIBHO OCH BPAILLECHHS TOYKA MOBEPXHOCTH ABUIKETCA CO CKOpPO-
CTBIO CBCTA.

Opna u3 0cOOCHHOCTEH TpYIBI peacTaBieHus (ipeodpa3zoBanus) [Tyankape
B TOM, YTO MPEJICTABISIEMOE MPOCTPAHCTBO HE TOJBKO MEHSET METPUUECKUE CBOM-
CTBa, HO U MOKET OKa3aThCsl OTpaHUYECHHBIM B pasMepax. [IpeoOpa3oBanus ykasbl-
BaIOT HE TOJIBKO HAa U3MEHEHNUH METPHUKH, HO M HA TO, YTO IIPH BPAIICHUH ITPOCTpa-
HCTBO (T/I€ ONHUCHIBaeTCS PU3NYECKUN O0BEKT) caMO OTpaHHYeHO pasMepamu. T.e.
B O0IIEM Ciy4ae OHU OCYIIECTBIIIIOT 0TOOpakeHHe 0ECKOHEYHOr0, HEOrpaHNYEH-
HOTO B pazMepax UMIYJIBCHOTO ITPOCTPAHCTBA B OIPAHWUYCHHYIO B pasMepax Mmpo-
CTPaHCTBEHHYIO 00J1acTh. TakuM 00pa3oM, BCSIKOE BPAIICHUE OMUCHIBACTCS MIPEJIC-
TaBJICHUEM UMITYJILCHOTO IIPOCTPAHCTBA B KOOPAUHATHOM IMPOCTPAHCTBE KAK OTpa-
HUYEHHYIO 00JIacTb.

Jorcopoorc Yﬂen6e (cresa) u
Comroan ayocmum (cnpasa)

' Email: vm@jipr.sci.am
2 Uhlenbeck G. E., Goudsmit S.— Naturwissenchaften, 1925, Hf. 47, S. 953.
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OT0 0COOEHHO HATIISHO HA MPUMEPEe COOCTBEHHOTO BpalleHUs (PU3MUECKOro
00BEKTa WM BpallaoNIeiicss CUCTEMbI OTCYETa C YIIIOBOH CKOPOCTBHIO €2 BOKPYT
ocH Z. B 3ToM cirydae CKOpOCTh B TOUKE P MOXKHO TPEACTaBUTE Kak [Q2xp] u 0000-
HIeHHBIN uMmnynbe dP sneMeHTa o0beMa dv B TOUKE p C SHEPTUEH TOKOs de U UM-
MyJIECOM dP TIPEICTABUTCS B BUJIE

1 d
d8+;[ﬂxp]~dp dp0”+—8[9><p]

= , d oL T < )
NN S

TIe & U Po, COOTBETCTBEHHO, DPHEPTHS U UMITYJILC 0e3 Bpamenus. Kak BuanM, uM-
MyJIbCHOE TPOCTPAHCTBO OTOOPAXKEHO B OTPAHMUYCHHON OO0JIACTH KOOPIUHATHOTO
MPOCTPAHCTBA pazMepoM p. = ¢/ Ha TIoCcKOCTH (X, y). COOTBETCTBEHHO, MPH Bpa-
IIEHUH TIPOCTPAHCTBO OIMCAHUS YaCTHIIBI OTPAaHUYCHO INpeoOpa3oBaHHEM B 00-
nacteb p < p.=c/Q. T.e. BpaleHHe MPeJCTaBIACTCS Kak 0TOOpa)KeHHWE B OTpaHu-
YEHHOE TMPOCTPAHCTBO — OTPAHUUCHHOE MPeoOpa3oBaHUEM MPOCTPAHCTBO U €CTh
BpaIIaromiascs 9acTuia, GU3NIeCKuil 00BEKT, OMMUChIBAcMasi CUCTEMA.

Mo cyTH, BpalmieHne 3To Iepexo.l B IPyTryI0 CUCTEMY OTCUETA, I/Ie TIPOCTPAHCT-
BO OINHUCAHMS YaCTHUIBI YK€ MMECT JPYTHe pa3Mepbl OTOOPaKCHHSI U COOTBETCT-
BYIOIIYI0 METPUKY. [Ipu 53TOM "acTHIla BCEeria oJ{Ha U Ta ke, HO 0ToOpaxeHo (yma-
KOBaHO) B TIPOCTPAHCTBE MHBIX Pa3MEPOB.

PaccmoTrpum cHavana BOmpoc 00 SHEPruM COOCTBEHHOTO BpAIlCHUS YaCTHIIBI.
Ecnu yactuia He BpariaeTcs U UMeeT OCCKOHEUHBIC pa3Mephbl (HampuMep, dIIEKT-
POH), TO B COCTOSIHUM BpallleHHsT OHa (WIIM BpAIAIOIIAsCs YacTh) OyIeT ynakoBaHa
B KOHEUHBIX pazMmepax. T.e. Ipu BpalleHUU 00JIACTh BOBJICUYCHHUS PaBHA p. = ¢/Q U
KOJIMYECTBO BOBJICYCHHON MacChl paBHO my. KOHKpETHO, paccMOTPUM TBEpaOe
BpamcHUue 4aCTUIbl C SHGPFHCﬁ IIOKOs &y = MmoC, KOTOpas IpU Bpall€CHHUU YIIaKO-
BaHa B cepy paamycoM p. = c¢/Q. DHeprus de B dieMeHTe 00beMa dv B TOUKE p
BEIPaXaeTcs B BUJIC
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CrenaB 3aMeHy IEPEMEHHON W UHTETPUPYS, UMEEM
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Pesynprar BecbMa HEOXWAAHHBIM, TaK KaK YHEPTHS COOCTBEHHOTO BpaIleHUs
PESTUBUCTCKON YaCTUIIBI OKA3aJIOCh HE 3aBUCSIIMM OT YIVIOBOM CKOPOCTH Bpallie-
HUSI, @ OTHOCUTEJIBHO MOKOS OTIMYAETCS MOCTOSIHHBIM Kodduuuentom 3/2. Ecnu
paccMaTpuBaTh 4acTULy C OoJiee CIOKHBIM paclpelesieHHEM IIJIOTHOCTH Macchl,
BCE paBHO ObI MIMENN aHAIIOTUYHBIN Pe3yIbTaT C KaKOH-TO CpeIHeH MIIOTHOCTHIO U
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C IPYTHM TIOCTOSIHHBIM KO3 (QUIIMEHTOM. DTO 00YCIOBICHO XapaKTePOM BBIpaXKe-
HUSI HHTErpaia SHePTUH, IJI¢ TIOC)IC 3aMEHBI IEPEMEHHON HHTETPUPOBAHUS UCUe3a-
€T 3aBUCUMOCTD OT YTJIOBOI CKOPOCTH M MOJYy4aeTcs MOCTOSHHOE YUCIIO.

Takum 00pa3om, PeNSATUBUCTCKAsE SHEPTHsl COOCTBEHHOIO BpAICHUSI TPOCTpPa-
HCTBEHHOMW YACTHIIbI OTIUYACTCS OT SHEPTHUH TTOKOsI HA TIOCTOSHHOE YUCIIO, BHE 3a-
BUCHUMOCTH OT CKOPOCTHU BpalICHUA. 9t0 (byHlIaMeHTaIIBHOC CBOMCTBO MOJKHO BEI-
pasuTh CIeayIOUHMM 00pa3oM — JHEPTHUsl COOCTBEHHOTO BPAIICHUS YaCTHIIEI IMEET
TOJIBKO J[BA TUCKPETHBIX 3HAYCHHS M OMHCHIBACT BCETO JIUIIh KAYECTBO COCTOSHUS
— BpalllaeTcs WK HE BpaIllaeTcsl, 00JIaaeT CIUHOM HJIH HeT.

W3 moCTOSIHCTBA M JUCKPETHOCTH SHEPTHM COOCTBEHHOTO BPAICHHS CIICAYET
BeChMa CYIIECTBECHHBIN BBIBOJI — HENPEPBIBHBIN MEPEX0] BO BpaIaTeIbHOE COCTO-
SIHUE HE BO3MOJKEH, TaK KaK BpalaTejbHas HEPTHsI MOXKET UMETh OTHOCUTEIBHO
MOKOSI TOJILKO OTIPEJICIICHHY0, HE 3aBUCSIIYIO OT COCTOSIHHSI COOCTBEHHOTO Bpallle-
HUS, DHEPIHI0. DTO CBOMCTBO MOXXHO C(HOPMYJIUPOBATH U KaK WHBAPUAHTHOCTh
SHEPrHH COOCTBEHHOrO BpaIlleHUsI — B JIFO0O0H (M BpamaTeabHON) CUCTEME OTcueTa
OHEPrus COOCTBEHHOTO Bpal€HUs IMOCTOsSHHA.

Koneuno, pa3mepsl 0071acTH MPEACTABICHUS U CKOPOCTh BPAIIEHUS YaCTHUIIBI
COOTBETCTBEHHO MeHswTcsa. Ho mpu npeoOpaszoBanusix rpynmsl [lyankape pazme-
PBl M CKOPOCTb BpAIICHHS YACTHIIBI TIPEOOPA3yIOTCS TAKUM 00Pa30M, UTO SHEPTHS
COOCTBEHHOI'O BpaIlICHHUS OCTAeTCs MOCTOSTHHBIM. Korma ckopocTh BpallleHus yBell-
WYHMBAETCS, TO, COOTBETCTBCHHO, Pa3Mephl YACTHIIBI | MOMEHT MHEPIIMUA YMEHbIIIA-
IOTCSI, TIOITOMY ¥ SHEPrHs COOCTBEHHOTO BpAICHHS OCTACTCS HEU3MEHHOW. Bo3-
MOXKHOCTbH peJ’IfITHBHCTCKOﬁ JaCTUIBI IpH MOCTOSIHHOM OHEPruv UMETH PA3JINYHBIC
CKOpPOCTHU BpaAIlICHUA ABIIACTCA Q)YHHaMCHTaIIBHI)IM JJIA IIOHUMAaHHA HE3aBUCUMO-
CTH SHEPTUH YaCTHIIBI OT COCTOSIHUSI COOCTBEHHOTO BPAIIICHUS — CITUHA.

JIyis MOMEHTa UMITYJIbca COOCTBEHHOTO BPAIICHHS YaCTHIIBI HMEEM
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Tak xak HaIllpaBJIeHUE MOMEHTA § COBIAJIACT C HANPAaBJICHUEM BpalieHus 2, To
yYMHOXasl BIpaKE€HHE IS § HA €IMHUYHBIN BEeKTOp €2/C), momydnm
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Kak BuamuM, Bce Kak TO HEOXKHJAHHO, HO YK€ HE TakK INIyIo, Kak Ka3ajJoch B
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