




Practical Astronomy with your
Calculator or Spreadsheet
Fourth Edition

Now in its fourth edition, this highly regarded book
is ideal for those who wish to solve a variety of prac-
tical and recreational problems in astronomy using
a scientific calculator or spreadsheet.

Updated and extended, this new edition shows
you how to use spreadsheets to predict, with greater
accuracy, solar and lunar eclipses, the positions of
the planets, and the times of sunrise and sunset.
With clear, easy-to-follow instructions, shown along-
side worked examples, this handbook is essential for
anyone wanting to make astronomical calculations
for themselves. It can be enjoyed by anyone inter-
ested in astronomy, and will be a useful tool for
software writers and students studying introductory
astronomy.

• Gives easy-to-understand, simplified methods for
use with a pocket calculator.

• Covers orbits, transformations and general celes-
tial phenomena, for use anywhere, worldwide.

• High-precision spreadsheet methods for greater
accuracy are available at
www.cambridge.org/practicalastronomy.

Peter Duffett-Smith is a physicist by training and a radio
astronomer by trade. He is a Reader in Experimen-
tal Radio Physics at the Cavendish Laboratory, Uni-
versity of Cambridge, and is a Fellow of Downing
College, Cambridge and of the Royal Astronomical
Society.

Jonathan Zwart is a Postdoctoral Research Scientist at
the Columbia Astrophysics Laboratory in New York,
and a co-founder and former editor of Cambridge’s
science magazine, BlueSci.

http://www.cambridge.org/practicalastronomy


Practical Astronomy with your
Calculator or Spreadsheet

Fourth Edition

Peter Duffett-Smith
Downing College, Cambridge

Jonathan Zwart
Columbia University in the City of New York



cambridge university press

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521146548

© Cambridge University Press 1979, 1982, 1989
© Peter Duffett-Smith and Jonathan Zwart 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1979
Second edition 1982
Third edition 1989
Fourth edition 2011
Reprinted

 
2012

Printed and bound by CPI Group (UK) Ltd, Croydon CR0 4YY

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Duffett-Smith, Peter.
Practical astronomy with your calculator or spreadsheet / Peter Duffett-Smith, Jonathan Zwart. – 4th ed.

p. cm.
Rev. ed. of: Practical astronomy with your calculator / Peter Duffett-Smith. 3rd ed. 1988.
Includes bibliographical references and index.
ISBN 978-0-521-14654-8 (pbk.)
1. Astronomy – Problems, exercises, etc. 2. Calculators – Problems, exercises, etc. 3. Electronic spreadsheets in
education. I. Zwart, Jonathan. II. Duffett-Smith, Peter. Practical astronomy with your calculator. III. Title.
QB62.5.D83 2011
520.76 – dc22 2010041671

ISBN 978-0-521-14654-8 Paperback

Additional resources for this publication at www.cambridge.org/practicalastronomy

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521146548
http://www.cambridge.org/practicalastronomy


To our friends and
colleagues at MRAO





Contents

Preface to the fourth edition page xi
About this book and how to use it xiii
A word about spreadsheets – what are they? xv
The layout of spreadsheets in this book xviii
Calculations involving multiple sheets xix
Using our own functions xxi

Time 1
1 Calendars 2
2 The date of Easter 3
3 Converting the date to the day number 6
4 Julian dates 8
5 Converting the Julian date to the Greenwich calendar date 11
6 Finding the name of the day of the week 12
7 Converting hours, minutes and seconds to decimal hours 14
8 Converting decimal hours to hours, minutes and seconds 15
9 Converting the local time to universal time (UT) 16

10 Converting UT and Greenwich calendar date to local time and date 20
11 Sidereal time (ST) 22
12 Conversion of UT to Greenwich sidereal time (GST) 23
13 Conversion of GST to UT 24
14 Local sidereal time (LST) 27
15 Converting LST to GST 28
16 Ephemeris time (ET) and terrestrial time (TT) 30

Coordinate systems 33
17 Horizon coordinates 34
18 Equatorial coordinates 35
19 Ecliptic coordinates 37
20 Galactic coordinates 38
21 Converting between decimal degrees and degrees, minutes and seconds 39
22 Converting between angles expressed in degrees and angles expressed in hours 41
23 Converting between one coordinate system and another 42

vii



viii Contents

24 Converting between right ascension and hour angle 43
25 Equatorial to horizon coordinate conversion 47
26 Horizon to equatorial coordinate conversion 49
27 Ecliptic to equatorial coordinate conversion 51
28 Equatorial to ecliptic coordinate conversion 55
29 Equatorial to galactic coordinate conversion 56
30 Galactic to equatorial coordinate conversion 58
31 Generalised coordinate transformations 60
32 The angle between two celestial objects 66
33 Rising and setting 67
34 Precession 71
35 Nutation 76
36 Aberration 78
37 Refraction 80
38 Geocentric parallax and the figure of the Earth 83
39 Calculating corrections for parallax 85
40 Heliographic coordinates 88
41 Carrington rotation numbers 94
42 Selenographic coordinates 95
43 Atmospheric extinction 99

The Sun 101
44 Orbits 102
45 The apparent orbit of the Sun 103
46 Calculating the position of the Sun 103
47 Calculating orbits more precisely 107
48 Calculating the Sun’s distance and angular size 110
49 Sunrise and sunset 112
50 Twilight 114
51 The equation of time 116
52 Solar elongations 118

The planets, comets and binary stars 119
53 The planetary orbits 120
54 Calculating the coordinates of a planet 121
55 Finding the approximate positions of the planets 131
56 Perturbations in a planet’s orbit 132
57 The distance, light-travel time and angular size of a planet 136
58 The phases of the planets 137
59 The position-angle of the bright limb 138
60 The apparent brightness of a planet 140
61 Comets 143
62 Parabolic orbits 151
63 Binary-star orbits 155



Contents ix

The Moon and eclipses 161
64 The Moon’s orbit 162
65 Calculating the Moon’s position 164
66 The Moon’s hourly motions 170
67 The phases of the Moon 171
68 The position-angle of the Moon’s bright limb 175
69 The Moon’s distance, angular size and horizontal parallax 176
70 Moonrise and moonset 178
71 Eclipses 181
72 The ‘rules’ of eclipses 183
73 Calculating a lunar eclipse 184
74 Calculating a solar eclipse 190
75 The Astronomical Calendar 194

Glossary of terms 197
Symbols and abbreviations 205
Bibliography 208
A useful website 209
Index 210





Preface to the fourth edition

Practical Astronomy with your Calculator or Spreadsheet has been written for those who wish to calculate
the positions and visual aspects of the major heavenly bodies and important phenomena such as eclipses, ei-
ther for practical purposes or simply because they enjoy making predictions. We present recipes for making
calculations, where we have cut a path through the complexities and difficult concepts of rigorous mathe-
matics, taking account only of those factors that are essential to each calculation and ignoring corrections
for this and that, necessary only for very precise predictions of astronomical phenomena. Our simple meth-
ods, suitable for use with a pocket calculator, are usually sufficient for all but the most exacting amateur
astronomer, but they should not be used for navigational purposes. For example, the times of sunrise and
sunset can be determined to within 1 minute and the position of the Moon to within one fifth of a degree.
But new to this fourth edition are spreadsheets which offer much higher precision (see below).

The second edition included much more material in response to letters and requests from readers of the
first edition. Many errors were also corrected. The third edition continued the same process, adding four
new sections on generalised coordinate transformations, nutation, aberration and selenographic coordinates,
improving the sunrise/set and moonrise/set calculations so that they worked properly everywhere in the
world, including a rigorous method of calculating precession, taking account of the J2000 astronomical
system where appropriate, and correcting mistakes or clarifying obscurities wherever they were found in
the second edition.

The fourth edition has also been updated considerably; however the major change is that we have in-
cluded, for the first time, a spreadsheet for nearly every calculation. Each spreadsheet illustrates the cal-
culation, making it easier to get the right answer. But we have also written a library of powerful functions
which can carry out many of the calculations for you with much higher precision, so those people who wish
to use their computers can do so and obtain the benefits of greater accuracy. For example, use the simple
recipes and your calculator to find the times of moonrise and moonset to within a precision of 10 minutes
or so, or use the spreadsheet functions to obtain the results correct to within 1 minute. You will need to
visit our website (see page 209) to download the spreadsheets to your computer; the library of functions
will come automatically with the spreadsheets.

We are most grateful to those kind people who have taken the trouble to write in with their suggestions,
criticisms and corrections, in particular to Mr E. R. Wood, who kindly scanned the manuscript of the
third edition for errors, Mr S. Hatch, Mr S. J. Garvey, who supplied the nomogram for the solution of
Kepler’s equation, and Mr Anthony Ehrlich of Pittsburgh, Pennsylvania, who developed a rudimentary
scheme for calculating the circumstances of sunrise/set and moonrise/set into one that actually worked
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xii Preface

(superseded in this edition). We would also like to thank and acknowledge those authors whose books we
have read and whose ideas we have cribbed, mentioning particularly Jean Meeus (Astronomical Formulae
for Calculators) and W. Schroeder (Practical Astronomy). We have made extensive use of The Explanatory
Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac, as well as
the Astronomical Almanac and its predecessors.

Our thanks are also due to Dr Anthony Winter, who suggested writing the first edition of the book, to
Mrs Dunn who typed it, to Dr Guy Pooley who read the manuscript and made many helpful suggestions,
and to Dr Simon Mitton for taking so much trouble over the production of the book. Thanks for particular
help with the fourth edition go to William Lancaster, Sehar Tahir and our editor Vince Higgs.

We are most grateful to Gary Barnes, Allan Bell, Markus Böhm, Michael Coren, Mike Dworetsky, Errol
Glaze, Greg Halac, Ilja Heckmann, John Horsman, Stuart Lowe, Henry Nilsson, Graham Relf, J. Sapranidis
and Mike Trace for spotting errors in the initial versions of the text and in the spreadsheets and their
functions.

We hope you have as much fun with these recipes and spreadsheets as we have had! Please let us know
when you find an error. You can contact us via the book’s website (see page 209).



About this book and how to use it

How many times have you said to yourself, ‘I wonder whether I can see Mercury this month?’ or ‘What
will be the phase of the Moon next Tuesday?’ or even ‘Will I be able to see the solar eclipse in Boston?’
Perhaps you could turn to your local newspaper to find the information, or go down to your local library
to consult the Astronomical Almanac. You may even have an astronomical journal containing the required
information, or perhaps some computer software or a website that might do the trick. But you would
not, we suspect, think of sitting down and calculating it for yourself. Yet even though you may not find
mathematics particularly transparent, you can still do this for yourself. You can quite easily find the answer
to many astronomical questions using this book of calculation recipes. You use it just as you would a recipe
book in the kitchen – follow the recipe and produce a delicious dish! All you need in addition is a calculator,
a piece of paper, a ruler and a pencil. (For those of us with access to a computer, we can use that instead of
the calculator and carry out all the calculations in a spreadsheet program as further described below.)

Your calculator does not have to be a very sophisticated device costing a great deal of money; on the
other hand it should be a little better than a basic four-function machine. At a minimum, it must have
buttons for the trigonometric functions sine, cosine and tangent. It should also be able to find square
roots and logarithms. Such calculators generally describe themselves as ‘scientific calculators’. Features
other than these are not essential but can make the calculations easier. For example, having a number of
separately-addressable memories in which you can store intermediate results would be useful. If you have a
programmable calculator, you can write programs to carry out many of the calculations automatically with
a subsequent saving of time and effort.

When choosing a calculator, don’t be led astray by arguments about whether ‘reverse Polish notation’
(RPN) or ‘algebraic notation’ (AN) is the better system. Each has its advantages and the same complexity
of calculation may be made using either. It is important, however, to read the instructions carefully and
to get to know your calculator thoroughly, whatever system it uses. Make sure that you like the ‘feel’ of
the keypad, and that pressing a key once results in just one digit appearing in the display. Look out for
special functions that can help you, like a key that gives you π (the constant 3.141 592 654), a key that
converts between times or angles expressed as hours or degrees, minutes, and seconds, and their decimal
equivalents, a key that takes any angle, positive or negative, and returns its equivalent value reduced to
the range 0◦ to 360◦, and a key that converts between rectangular and polar coordinates (very useful for
removing the ambiguity of 180◦ on taking the inverse tangent of an angle).

When you go through the worked examples given with each calculation, do not be alarmed if your
figures do not match ours exactly. There are several reasons why they may not, including rounding errors
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xiv About this book and how to use it

and misprints. You should try to work with at least seven or eight significant figures. If you write your
own programs to carry out any of the calculations on a computer, make sure that you use variables having
sufficient resolution. Use double precision (eight-byte precision) everywhere if possible.

Having gathered together your writing materials, calculator and book, how do you proceed? Let us take
as an example the problem of finding the time of sunrise. Turn to the index and look up ‘sunrise’; you are
directed to page 112 where you will find a paragraph or two of explanation and a list of instructions with
a worked example in the form of a table. We have kept things brief on purpose and have made no attempt
to provide mathematical derivations. We have also simplified the calculations. As you work through each
step, write down the step number and the result in a methodical fashion. Take care here and it will save you
a lot of time later!

Many calculations require you to turn back and forth between different sections. For example, step 1 of
‘sunrise’ directs you to another section to calculate the position of the Sun. Make the calculations in that
section, and then turn back to carry on with step 2. You will find it useful to keep several slips of paper
handy as bookmarks.

This book is not intended to match the precision of the results found in the Astronomical Almanac. As we
have already mentioned, the calculations have deliberately been simplified although they are good enough
for most purposes. If you have your own computer, you can use the methods to write programs displaying
the evolving Solar System with a precision that is better than the resolution of the computer screen. But
those of us with simple pocket calculators can find great satisfaction in simply being able to work out the
stars for ourselves and to predict astronomical events with almost magical precision.



A word about spreadsheets – what are they?

In 1979, when the first edition of Practical Astronomy with your Calculator was published, very few people
had access to a computer. Although home computers were beginning to appear in the high street, they were
not the commonplace household accessory we see today. Calculations were made using a calculator, the
sophistication of which ranged from the simple four-function device to the versatile programmable reverse-
Polish scientific machine. You may already own a calculator that would be suitable for the recipes given
here, but you might also own a computer and wish to make the calculations using that instead. If you are
good at programming, you could consider using the methods described in this book as a basis for writing
your own astronomical software. But most of us don’t want to embark on such a project. How then can we
use our computers to make astronomical calculations?

One answer is to use a spreadsheet program such as Microsoft’s Excel, or OpenOffice Calc. The latter
is available at no cost, and described as fully compatible with the former, so if you do not already own a
commercial spreadsheet program, then Calc might be a good way to go. Once you have loaded the software
on to your machine, open the spreadsheet program. The screen display should then look something like
Figure I. (Here and throughout the book, toolbars, sidebars and many other features have been removed
from the spreadsheet views.)

Figure I. An empty spreadsheet.
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xvi A word about spreadsheets – what are they?

Figure II. Cell C5 carries the number 23.9, and cell D5 carries the label This is a number.

The spreadsheet consists of an array of cells, labelled A, B, C etc. across the top (these are the column
labels) and 1, 2, 3 etc. down the left-hand side (these are the row labels). Each individual cell is labelled by
its column letter and its row number, e.g. A1, B25 etc. The cell with the thick border around it in Figure I
is cell C5. You can write some text or numbers in any cell. In Figure II, the number 23.9 has been placed
in cell C5, and the label This is a number has been placed in cell D5. (Since cell E5 is empty, the program
has allowed the label to overwrite the space allocated to E5, although the entire content This is a number
remains in D5, and E5 remains empty.) The spreadsheet knows that something placed in a cell is a label
(i.e. text) if you begin the entry with a single apostrophe symbol ('). If you want to enter a number as a
number, just type it in. If you want the spreadsheet to treat the number as a label, put the apostrophe in front
of it.

We can obviously put labels and numbers in any of the cells, but the real power of the spreadsheet comes
from using formulas. A formula is a calculation which can use the contents of other cells. The result of
the calculation is displayed in the cell carrying the formula, so you are not usually aware of the calculation
that has gone on in the background since what is displayed is the result rather than the formula itself. A
formula is placed in a cell by typing the equals sign (=) followed by the formula. The spreadsheet knows
from the equals sign that it is to calculate the formula and display the result. For example, in Figure III, cell
C6 carries the entry =C5*C5. You will see that C6 now displays the result of multiplying the number in cell
C5 by itself (the star symbol * means ‘multiply’), i.e. the square of the number 23.9, which is the number
571.21. We have also placed the label This is its square in cell D6.
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Figure III. Cell C6 carries the formula =C5*C5 and hence displays the square of 23.9.

Let’s see what happens if now we change the number in cell C5 without making any other change to the
spreadsheet. In Figure IV the number in C5 has been changed to the number 4.0 and, hey presto, the square
of 4 (i.e. 16) is displayed in cell C6. You can begin to see that complex calculations can be performed for
you automatically with a spreadsheet program. With the right formulas placed in order in the spreadsheet,
the results can be calculated for any set of starting values. That is just what we want to do in this book. We
can hide the complications of the calculation of, say, the time of sunrise within the formulas and just enter
a date and geographical location in the correct cells at the top to obtain the result immediately.

Figure IV. Cell C5 now carries the number 4 and so cell C6 displays the number 4 multiplied by 4 which is 16.

We don’t need to explain much more about spreadsheets here, although we will note various techniques
as we go along. If you want to learn more about their powerful capabilities we suggest buying a book about
spreadsheets (see the Bibliography on page 208 for a suggestion). In this book, we have supplied you with
the spreadsheet and formulas for most calculations, so all you have to do is to type in the labels, numbers
and formulas as shown. The spreadsheet will then do its work automatically and give you the answer for
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any starting values you enter. (We have provided the spreadsheets ready-made on our website. Please look
in the section “A useful website” on page 209 for details.)

The layout of spreadsheets in this book

All of the spreadsheets in this book conform to the same general format (see Figure V). At the top, in cell
A1, is the title of the spreadsheet (in this case Converting decimal hours to hours, minutes and seconds). It
is best to use a slightly larger font size for this and to make it boldface as here. We have used Arial 16 point
for the title. Row number 2 is left blank (i.e. none of the cells has anything in it). In row 3, we have written
the label Input in A3 (Times New Roman font, italic face, 10 point) to remind us that the input values for
the spreadsheet are entered to the right of this cell. In the case shown in Figure V, there is only one input
value, the decimal hours (name label in B3, Arial font, bold face, 14 point), and it is entered in cell C3 (also
Arial font, bold face, 14 point). In spreadsheets which have more than one input value, the others have their
name labels in cells B4, B5 etc. and their corresponding values in C4, C5 etc.

Input name Input value

Step numbers

Variable names

Formula results

The formulas in the adjacent cells to the left

Spreadsheet title Output names Output values

Figure V. The layout of a spreadsheet.

The results of the calculations, i.e. the output values, are provided to the right of cell F3. We have written
the label Output in F3 (Times New Roman font, italic face, 10 point) to remind us that the output values
calculated by the spreadsheet appear to the right of this cell. In the case shown in Figure V there are three
output values, called hours, minutes, seconds. Their name labels appear in cells G3, G4, G5 (Arial font,
bold face, 14 point) and their values in H3, H4, H5 (also Arial font, bold face, 14 point) respectively. Just
to the right of the three output values, in column I, are shown the formulas (written as labels, i.e. with an
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apostrophe in front of the equals sign to stop the program calculating the formula) that are actually in the
output value cells. Thus cell H3 actually contains the formula =C14 (i.e. it will display the value of the cell
C14) and you will need to enter =C14 in the cell H3. Wherever you see a formula (anything beginning with
the equals sign) enter exactly that formula in the cell immediately to its left. In this case you would put
=C14 in cell H3, =C12 in cell H4, and =C10 in cell H5.

The calculations carried out by the spreadsheet begin on row 7 in Figure V. Each row corresponds to one
step in the calculation, in this case the calculation method of Section 8. In the method table shown in that
section there are just two steps, whereas in the spreadsheet there are eight. There is only a rough correspon-
dence between method steps and spreadsheet steps. This is partly because the spreadsheet calculations do
not have the benefit of human intelligence to assist them! For example, if you used your calculator to carry
out the steps of Section 8, and you found that the result was, say, 6h 35m 60s, you would automatically
write this as 6h 36m 0s. The spreadsheet would, however, quite happily report the result in the first format.
We get over the problem in the spreadsheet by first stripping out the sign, then converting to seconds, then
finding the seconds, minutes and hours in that order, and finally putting back the sign.

In the example shown in Figure V, you would enter the labels and formulas exactly as shown. Thus
on row 7 you place the label '1 in A7 (this is text, and the apostrophe tells the spreadsheet so), the label
'unsigned decimal in B7 and the formula in C7 shown immediately to its right, i.e. =ABS(C3). Do this for
each calculation row (7 to 14 in this case). Finally, rename the spreadsheet on the tab at the bottom (DHHMS
in this case). (You can probably do this by pointing at it with the mouse, pressing the right-hand mouse
button, and selecting the ‘rename’ option.)

Although the labels in columns A and B make no difference to the calculations, we recommend that you
put them in as they make the spreadsheet much easier to understand. This becomes more important if you
return to a spreadsheet some time after you constructed it.

One other note about spreadsheets that you might find useful concerns column widths. If the column
width is too narrow to display the content of a cell, you may just see something like ######## displayed
instead. You can adjust the column width by placing the mouse pointer on the division between the label
(A, B, C etc.) of the column you want to alter and the label of the column immediately to its right, holding
down the left-hand mouse button, and ‘dragging’ the column width left or right as needed.

Calculations involving multiple sheets

Some of the spreadsheet calculations, as in the example just given, use just one sheet. Most, however, use
several. For example, suppose that a first spreadsheet calculation results in a number expressed in decimal
hours but the answer has to be in the form hours, minutes and seconds. The first sheet passes its answer
(in decimal hours) to a second sheet which carries out the conversion and passes the converted result back
again to the first sheet.

A concrete example is illustrated by a spreadsheet for Section 14, reproduced in Figure VI. You will
see that there are three tabs in the bottom left-hand corner, corresponding to three sheets labelled GSTLST,
HMSDH and DHHMS. Only the top sheet, GSTLST is visible in the figure with the other two lying
‘underneath’ it. The input values to the calculation include the Greenwich sidereal time (GST) expressed in
hours, minutes and seconds (cells C3, C4 and C5). These must first be converted to the GST expressed in
decimal hours, a calculation covered in Section 7. The spreadsheet for that section, labelled HMSDH, must
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Figure VI. A spreadsheet with multiple sheets.

Figure VII. Illustrating cross-references between sheets.

be included in this spreadsheet file as an additional sheet – the tab HMSDH in Figure VI. Figure VII shows
the spreadsheet with the HMSDH sheet on top so it is visible.

The link between the sheets is accomplished by using the sheet name, followed by an exclamation mark
(!) and the cell reference. In Figure VII, the input value of hours (C3) is obtained from cell C3 of sheet
GSTLST by using the formula =GSTLST!C3. Similarly, the input value of minutes is obtained using the
formula =GSTLST!C4 in cell C4 of HMSDH, and the input value of seconds is obtained by using the formula
=GSTLST!C5 in cell C5. The result of the calculation by this sheet, the decimal hours, appears in cell H3
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of Figure VII. This is passed back to sheet GSTLST in cell C8 of Figure VI, which contains the formula
=HMSDH!H3.

Similarly, the result of the calculation of GSTLST, expressed in decimal hours, appears in cell C11 of
Figure VI. This needs to be converted to the format hours, minutes and seconds and it is passed to sheet
DHHMS (see Figure VIII) by using the formula =GSTLST!C11 in cell C3 of that sheet. Sheet GSTLST then
extracts the results from sheet DHHMS (H3, H4 and H5 of Figure VIII) using the formulas DHHMS!H3,
DHHMS!H4 and DHHMS!H5 respectively in cells C12, C13, and C14 of Figure VI.

Figure VIII. Illustrating cross-referencing between sheets.

Now you can proceed in this way if you wish, using multiple sheets to carry out specific calculations
as just described, but the result can be quite confusing when you have a complicated calculation requiring
many sheets. A better way to proceed is for us to define our own functions and use these instead to carry
out the calculations. This is the approach that we have adopted here.

Using our own functions

Microsoft Excel and OpenOffice Calc both come with an internal programming language called BASIC. We
don’t need to go in to any of the details of what this is and how it works, but suffice it to say that we have
written functions to carry out most of the calculations described in this book. All you have to do is to use
the functions in your spreadsheet exactly as if they were formulas. This has the advantage that you now
need only one sheet for any calculation with no cross-linking to multiple sheets, making the whole thing
easier to comprehend. Another advantage is that we have provided functions with much higher accuracy
than the simplified calculations of many of the sections. For example, you can use the method of Section 46
to calculate the Sun’s ecliptic longitude approximately, or you can use the function SunLong to calculate it
much more precisely.

Let us illustrate the use of functions instead of multiple sheets using the example above. Figure IX shows
the spreadsheet of Section 14 using functions instead of multiple sheets. Compare this with Figure VI. You
can see that in Figure IX there is now only one sheet, labelled GSTLST.
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Figure IX. Illustrating the use of functions instead of multiple sheets.

The results of the calculation, contained in cells H3, H4 and H5 in both Figures VI and IX, are identical,
but in place of the cross-references between sheets at C8, C12, C13 and C14 of Figure VI there are formulas
in the corresponding cells of Figure IX. In cell C8, for example, the formula =HMSDH(C3,C4,C5) converts
the hours, minutes and seconds (in cells C3, C4 and C5) to decimal hours, with the result shown in cell C8.
The contents of C3, C4 and C5 are passed to the function HMSDH as the references contained within the
brackets after the function. When the spreadsheet program sees a formula, in this case =HMSDH(C3,C4,C5),
it first looks through a list of its own formulas, and then checks to see if the function has been written in
BASIC. If it has, the spreadsheet then runs the BASIC program corresponding to the function, passing the
contents of the cells in the reference list to the BASIC program, in this case the contents of cells C3, C4 and
C5. The result of the calculation is then passed back to the spreadsheet where it appears in the same cell as
the function (C8).

Functions like this have been provided for most of the calculations in this book, and are described in the
corresponding sections. You will need to download the spreadsheets from the Cambridge University Press
website in order to obtain the functions (which are included invisibly with each sheet). Please look in the
section “A useful website” on page 209 for details.



Time
Astronomers have always been concerned with

time and its measurement. If you read any

astronomical text on the subject you are sure to

be bewildered by the seemingly endless range of

times and their definitions. There’s universal

time and Greenwich mean time, apparent

sidereal time and mean sidereal time, ephemeris

time, local time, mean solar time and atomic

time, to name but a few. Then there’s the

sidereal year, the tropical year, the Besselian

year and the anomalistic year. And be quite

clear about the distinction between the Julian

and Gregorian calendars! (See the Glossary for

the definitions of these terms.)

All these terms are necessary and have precise
definitions. Happily, however, we need concern
ourselves with but a few of them as the
distinctions between many of them become
apparent only when very high accuracy is
required.
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2 Time

1 Calendars

A calendar helps us to keep track of time by dividing the year into months, weeks and days. Very roughly
speaking, one month is the time taken by the Moon to complete one circuit of its orbit around the Earth,
during which time it displays four phases, or quarters, of one week each, and a year is the time taken for the
Earth to complete one circuit of its orbit around the Sun. In the Gregorian calendar, generally adopted in the
West, we assume the convention that there are seven days in each week, between 28 and 31 in each month
(see Table 1) and 12 months in each year. (Note that there are many other calendars, such as the Chinese
calendar, with different definitions or rules.) By knowing the day number, and the name of the month, we
are able to refer precisely to any day of the year.

January 31 July 31
February 28 (or 29 in a leap year) August 31
March 31 September 30
April 30 October 31
May 31 November 30
June 30 December 31

Table 1. The number of days in each month.

The problem with this method of accounting for the days in the year lies in the fact that, whereas there is
always a whole number of days in the civil year, the Earth actually takes about 365.2422 days to complete
one circuit of its orbit around the Sun. (This is the tropical year; see the Glossary for its definition.) If we
were to take no notice of this fact and adopt 365 days for every year, then the Earth would get progressively
more out of step with the civil calendar at a rate of 0.2422 days per year. After 100 years the discrepancy
would be about 24 days; after 1500 years the seasons would have been reversed so that summer in the
northern hemisphere would be in December. Clearly, this system would have great disadvantages.

Julius Caesar made an attempt to put matters right by adopting the convention that three consecutive years
have 365 days followed by a leap year of 366 days, the extra day being added to February whenever the
year number is divisible by four. On average, his civil year has 365.25 days in it, a better approximation to
the tropical year of 365.2422 days. Indeed, after 100 years the discrepancy is less than one day. This is the
Julian calendar and it worked very well for many centuries until, by 1582, there was again an appreciable
discrepancy between the seasons and the calendar date. Pope Gregory XIII (1502–1585) then improved
on the system by abolishing the days 5 October to 14 October 1582 inclusive so as to bring the civil and
tropical years back into line, and by missing out three days every four centuries. In his reformed calendar,
the years ending in two zeroes (e.g. 1700, 1800, 1900 etc.) are only leap years if they are also exactly
divisible by 400. Thus the year 2000 was a leap year, whereas 1700, 1800 and 1900 were not.

This system is called the Gregorian calendar and is the one in most general use today. According to it
400 civil years contain (400×365)+100−3 = 146097 days, so that the average length of the civil year is
146 097/400 = 365.2425 days, a very good approximation indeed to the length of the tropical year. In fact,
this calendar will not get out of step with the tropical year for many thousands of years!
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2 The date of Easter

Easter Day, which always occurs on a Sunday, is the day to which such moveable feasts as Whitsun and
Trinity Sunday in the Christian calendar are fixed, and is defined in The Explanatory Supplement to the
Astronomical Almanac (1992) as follows:

In the Gregorian calendar, the date of Easter is defined to occur on the Sunday following the ecclesiastical full moon
that falls on or next after March 21st.

The problem is that the ecclesiastical full Moon is not the same as the astronomical full Moon. The former
is based on a set of tables which do not take into account the complexity of the Moon’s motion. As a fair
guide, we may say that Easter Day is usually the first Sunday after the fourteenth day after the first new
Moon after 21 March. Several authors have provided algorithms for calculating the date of Easter. You
can, for example, use the methods and tables given in the Book of Common Prayer (1662) or that given in
the Explanatory Supplement. Here we describe a method devised in 1876 which first appeared in Butcher’s
Ecclesiastical Calendar, and which is valid for all years from 1583 onwards. It makes repeated use of
the result of dividing one number by another number, the integer part being treated separately from the
remainder. A calculator displays the result of a division as a string of numbers either side of a decimal
point. The numbers appearing before (i.e. to the left of) the decimal point constitute the integer part; the
decimal point and the numbers after (i.e. to the right of) the decimal point constitute the fractional part. The
remainder may be found from the latter (including the leading decimal point) by multiplying it by the divisor
(i.e. the number that you divided by) and rounding the result to the nearest integer value. For example,
2000/19 = 105.2631579. The integer part is 105, and the fractional part is 0.2631579. Multiplying the
latter by 19 gives 5.000000100 so the remainder is 5.

We shall illustrate the method by calculating the date of Easter Day in the year 2009. This will give us
practice for the sort of calculation we will be carrying out in the rest of this book.
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Method Example

Integer part Remainder
1. Divide the year by 19. a 2009

19 = 105.7368421
a = 14

2. Divide the year by 100. b c 2009
100 = 20.090000

b = 20
c = 9

3. Divide b by 4. d e d = 5
e = 0

4. Divide (b+8) by 25. f f = 1
5. Divide (b− f +1) by 3. g g = 6
6. Divide† (19a+b−d −g+15) by 30. h (19a+b−d −g+15) = 290

h = 20
7. Divide c by 4. i k i = 2

k = 1
8. Divide (32+2e+2i−h− k) by 7. l l = 1
9. Divide (a+11h+22l) by 451. m (a+11h+22l) = 256

m = 0
10. Divide (h+ l −7m+114) by 31. n p (h+ l −7m+114) = 135

n = 4
p = 11

11. The day of the month on which Easter
Day falls is p+1.

p+1 = 12

The month number is n (=3 for March,
=4 for April).

n = 4, so April

Therefore Easter Day 2009 is 12 April

†19a means 19 multiplied by a (19×14 = 266 in this example).

The spreadsheet for this calculation, called DOE (the acronym for Date Of Easter), is shown in Figure 1.
It makes repeated use of two spreadsheet functions, TRUNC and MOD. (These are all examples of built-in,
or intrinsic, spreadsheet functions; we will make use of many of the useful ones throughout this book.)
The former truncates the number at the decimal point, so gives you the integer part of the number. Thus
TRUNC(23.445) is 23. In cell C8 of the spreadsheet, the formula =TRUNC(C3/100) takes the number from
cell C3 (2009 in this case), divides it by 100, and returns the integer part of the result (20).

The MOD function has two arguments separated by a comma. (An argument is a number or a reference
within the brackets immediately following the function name. Two or more arguments are separated by
commas.‡) The first argument is divided by the second argument, and then the remainder of the result is
returned. Thus MOD(13,5) is 3 since 5 goes into 13 twice (2×5 = 10) leaving a remainder of 3 (i.e. 13−10).
In cell C7 of the spreadsheet, the formula =MOD(C3,19) takes the number from cell C3 (2009 in this case),
divides it by 19, and returns the remainder (14).

We have used the spreadsheet function IF in cell H4 to replace the month number, 3 or 4, with its name
equivalent, ‘March’ or ‘April’. The IF function takes three arguments. The first is the test argument, which
can be ‘true’ or ‘false’. In this case, the test argument is C22=3, i.e. if the number in cell C22 is equal to
3 the result of the test is ‘true’, and if not it is ‘false’. In this case, the number in cell C22 is 4 so the test
returns ‘false’. The IF function returns the second argument (March in this case) if the test returns ‘true’, or
the third argument (April in this case) if the test returns ‘false’, as here.

‡Some spreadsheet programs use different separators; check yours.
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Figure 1. Calculating the date of Easter Day 2009.

You can put any year after 1582 you like into cell C3 of the spreadsheet in place of 2009 and the date of
Easter Day for that year will be calculated for you automatically. Try 2012. The answer should be 8 April.
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3 Converting the date to the day number

In many astronomical calculations, we need to know the number of days in the year up to a particular date.
We shall choose our starting point as 0 hours on 0 January, equivalent to the midnight between 30 and 31
December of the previous year. This might seem to be a peculiar choice, but you will see that it simplifies
our calculations so is a good one to make. Midday on 3 January can then be expressed as January 3.5 since
precisely three and a half days have elapsed since January 0.0. This is illustrated in Figure 2. Finding the
day number from the date is then a simple matter. Proceed as follows:

1. For every month up to, but not including, the month in question add the appropriate number of days
according to Table 1. These totals are listed in Table 2.

2. Add the day of the month.

For example, what is the day number of 19 June (not a leap year)? The answer is day number = 151+19 =
170. If you own a programmable calculator, you may be able to use Routine R1 (at the end of this section)
to write a program to make this calculation automatically. We can also use the method of the section on
Julian day numbers (Section 4) as an alternative.

Later in this book we adopt the date 2010 January 0.0 as the starting point, or starting epoch, from
which to calculate orbital positions. Days elapsed since this epoch at the beginning of each year
(January 0.0) from 1990 to 2029 are tabulated in Table 3. To find the total number of days elapsed since
the epoch, simply add the number of days elapsed to the beginning of the year since the epoch (Table 3) to
the number of days elapsed since January 0.0 of the year in question (i.e. the result of the calculation of the
previous paragraph). For example, the number of days elapsed since the epoch at 6 pm on 19 June 2009 is
−365 + 170 + 0.75 = −194.25. The negative sign indicates that the epoch is after this date. The fraction
of the day to 6 pm is (18/24) = 0.75 since 6 pm is 18 h on a 24-hour clock, and there are 24 hours in the
day.

Figure 2. Defining the epoch.
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Ordinary year Leap year

January 0 0
February 31 31
March 59 60
April 90 91
May 120 121
June 151 152
July 181 182
August 212 213
September 243 244
October 273 274
November 304 305
December 334 335

Table 2. The number of days to the beginning of the month.

1990 −7305 ∗2000 −3653 2010 0 ∗2020 3652
1991 −6940 2001 −3287 2011 365 2021 4018

∗1992 −6575 2002 −2922 ∗2012 730 2022 4383
1993 −6209 2003 −2557 2013 1096 2023 4748
1994 −5844 ∗2004 −2192 2014 1461 ∗2024 5113
1995 −5479 2005 −1826 2015 1826 2025 5479

∗1996 −5114 2006 −1461 ∗2016 2191 2026 5844
1997 −4748 2007 −1096 2017 2557 2027 6209
1998 −4383 ∗2008 −731 2018 2922 ∗2028 6574
1999 −4018 2009 −365 2019 3287 2029 6940

∗Denotes a leap year.

Table 3. The number of days to the beginning of the year since the epoch 2010 January 0.0.
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Routine R1: Converting the date to the day number.

1. Key in the month number (e.g. 11 for November).
2. Is it greater than 2?

• If yes, go to step 8.
• If no, proceed with step 3.

3. Subtract 1 from the month number.
4. Multiply by 63 in an ordinary year, or 62 in a leap year.
5. Divide by 2.
6. Take the integer part.
7. Go to step 12.
8. Add 1 to the month number.
9. Multiply by 30.6.

10. Take the integer part.
11. Subtract 63 in an ordinary year, or 62 in a leap year.
12. Add the day of the month. The result is the day number.

4 Julian dates

It is sometimes necessary to express an instant of observation as so many days and a fraction of a day after
a given fundamental epoch. Astronomers have chosen this fundamental epoch as the Greenwich mean noon
of 1 January 4713 BC, that is midday as measured on the Greenwich meridian on 1 January of that year.
(You can look up the meaning of meridian and other technical terms in the Glossary at the back of the book
starting on page 197.) The number of days that have elapsed since that time is referred to as the Julian day
number, or Julian date†. It is important to note that each new Julian day begins at 12h 00m UT, half a day
out of step with the civil day in time zone 0. (See Section 9, or the Glossary, for the precise meaning of
UT.)

The term ‘Before Christ’, or BC for short, usually refers to the chronological system of reckoning
negative years. In this system, there is no year zero. The Christian Era begins with the year 1 AD (short
for Anno Domini); the year immediately preceding this is 1 BC. Some authors have adopted different
labels for the same things by referring to the Christian Era as the Common Era instead. They retain the
same numeric values for the days, but use the label CE (Common Era) instead of AD, and BCE (Before the
Common Era) instead of BC.

For astronomical purposes, we want to count the years logically without a gap. Thus the year immediately
preceding 1 AD is designated 0; the other years BC are denoted by negative numbers, each of which has
an absolute value (i.e. the number without its minus sign) which is one less than the BC value. Thus

†Sometimes the modified Julian date, MJD, is quoted. This is equal to the Julian date minus 2400000.5; MJD zero therefore
begins at 0h on 17 November 1858.
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10 BC corresponds to the astronomical year −9, and 4713 BC corresponds to −4712. We shall adopt the
astronomical way of counting throughout this book. Where you see a BC (or BCE) year, subtract one from
it and change its sign to negative before using it in any of the calculations. Similarly, if the result of a
calculation is a negative year, remove the minus sign, add one to the year number, and append the letters
BC (or BCE) after it.

The Julian date of any day in the Julian or Gregorian calendars may be found by the method given below.
Here, and throughout the book, the expression TRUNC refers to the integer part of the number (i.e. the part
preceding the decimal point). Thus TRUNC(22.456) is 22, and TRUNC(−3.914) is −3. You will need to
look carefully in the instruction book of your calculator to see what function is offered on your machine. On
ours, this is called INT (short for integer). Note that computer languages offer several truncation functions
such as INT, FIX, FLOOR and TRUNC. These do similar things with positive numbers, but beware what
they do with negative ones. For example, INT on some machines returns the largest (most positive) integer
whose value is less than or equal to the number. In this case, INT(−3.914) is −4. Beware! You can avoid
this worry by taking INT of the absolute value of the number, and then inserting a negative sign in front of
the result for a negative number.

A further complication, but an important one, is to distinguish between the local date, i.e. the calendar
date at your location, and the corresponding Greenwich date, i.e. the calendar date on longitude 0◦ with no
daylight saving. These are often not the same. For example, if you live in Sydney, Australia, your time
may be 10 or 11 hours ahead of the time at Greenwich depending on whether daylight saving time is in
operation. If it is 03:45 in the early morning in Sydney, and the time-zone correction is +10 hours with
daylight saving adding a further hour, the corresponding time at Greenwich is 11 hours behind, i.e. 16:45
the previous day. In this case, your local calendar date and the Greenwich date differ by 1 day. We therefore
need to be precise about what we mean by the ‘date’. Look to see whether it is the Greenwich date or the
local date that is required in a given calculation.

As an example, we shall calculate the Julian date corresponding to the Greenwich calendar date of 2009
June 19.75 (i.e. 6 pm on 19 June).

Method Example

1. Set y = year, m = month and d = day. y = 2009
m = 6
d = 19.75

2. If m = 1 or 2, set y′ = y−1 and m′ = m+12; y′ = 2009
otherwise y′ = y and m′ = m. m′ = 6

3. If the date is later than 1582 October 15 A = TRUNC(2009/100)
(i.e. in the Gregorian calendar) calculate:
(a) A =TRUNC(y′/100); so A = 20
(b) B = 2−A+TRUNC(A/4). B = 2−20+TRUNC(20/4)
Otherwise B = 0. so B = −13

4. If y′ is negative calculate C =TRUNC((365.25× y′)−0.75). C = TRUNC(365.25×2009)
Otherwise, C =TRUNC(365.25× y′). so C = 733 787

5. Calculate D =TRUNC(30.6001× (m′ +1)). D = TRUNC(30.6001×7)
D = 214

6. Find JD= B+C +D+d +1720994.5. JD = 2 455 002.25
This is the Julian date.
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The Julian date corresponding to our adopted starting epoch of 2010 January 0.0 is 2 455 196.5. We can
easily find the number of days that have elapsed since the epoch by subtracting this number from the Julian
date. Thus the number of days elapsed since the epoch to 2009 June 19.75 is 2455002.25−2455 196.5 =
−194.25, as found in the previous section.

The spreadsheet for the calculation of the Julian date is called CDJD (the acronym for Calendar Date
to Julian Date conversion) and is shown in Figure 3. We have also provided a spreadsheet function of the
same name, i.e. CDJD(GD,GM,GY), which takes three arguments GD, GM, and GY. These have exactly
the same values as the input values to the spreadsheet CDJD, and represent, respectively, the calendar day,
month and year at Greenwich. You could carry out exactly the same calculation as that shown in Figure 3
by deleting rows 7 to 16 entirely and replacing cell H3 with the formula =CDJD(C3,C4,C5). Why not try
this for yourself (but save a copy of the full spreadsheet first)?

Figure 3. Finding the Julian date corresponding to the Greenwich calendar date of 6 pm on 19 June 2009.
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5 Converting the Julian date to the Greenwich calendar date

It is sometimes necessary to convert a given Julian date into its counterpart in the Gregorian calendar,
i.e. the calendar date at Greenwich. As mentioned in the previous section, the calendar date at Greenwich
is not necessarily the same as the local calendar date where you are, but depends upon the local time, your
time-zone correction, and the number of hours (if any) of daylight saving in operation. We will discuss this
further in Section 9.

The method shown here works for all dates from 1 January 4713 BC†. For example, let us find the
calendar date at Greenwich corresponding to the Julian date JD = 2 455 002.25.

Method Example

1. Add 0.5 to JD. JD+0.5 = 2455002.75
Set I = integer part and F = fractional part. I = 2455002

F = 0.75
2. If I is larger than 2 299 160, calculate:

(i) A =TRUNC
(

I−1867216.25
36524.25

)
; A = 16.0

(ii) B = I +A−TRUNC(A/4)+1. B = 2455015.0
Otherwise, set B = I.

3. Calculate C = B+1524. C = 2456539.0

4. Calculate D =TRUNC
(

C−122.1
365.25

)
. D = 6725.0

5. Calculate E =TRUNC(365.25×D). E = 2456306.0

6. Calculate G =TRUNC
(

C−E
30.6001

)
. G = 7.0

7. Calculate d = C−E +F−TRUNC(30.6001×G). This is the d = 19.75
day of the month including the decimal part of the day.

8. Calculate m = G−1 if G is less than 13.5, or m = G−13 m = 6
if G is more than 13.5. This is the month number.

9. Calculate y = D−4716 if m is more than 2.5, or y = D−4715 y = 2009
if m is less than 2.5. This is the calendar year.

Hence the date at Greenwich in the Gregorian calendar is 2009 June 19.75, or 6 pm on 19 June of that year.
Figure 4 shows the spreadsheet for this calculation. The single input value is the Julian date, entered in
cell C3, and the three output values, the day (including the fraction), month and year of the corresponding
calendar date at Greenwich, appear in cells H3, H4 and H5 respectively.

The spreadsheet is called JDCD, corresponding to the acronym for Julian Date to Calendar Date con-
version. We have also supplied spreadsheet functions to carry out the same calculations as formulas
in a spreadsheet. There are three of them since a single function can only return a single value, and
we need three, i.e. the day, the month and the year. The function names are respectively JDCDay(JD),
JDCMonth(JD) and JDCYear(JD), and each takes the single argument JD which must be set equal to the
Julian date. You can replace the calculation part of the spreadsheet shown in Figure 4 with these three
functions by deleting rows 7 to 17 and replacing cells H3, H4, and H5 by the formulas =JDCDay(C3),
=JDCMonth(C3) and =JDCYear(C3) respectively. Try it for yourself, but remember to save the spreadsheet
first.

†See the previous section about the meaning of the term BC.
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Figure 4. Finding the calendar date at Greenwich corresponding to the Julian date of 2 455 002.25.

6 Finding the name of the day of the week

It is sometimes useful to know on what day of the week a particular date will fall. For instance, you might
want to know whether your birthday will be on Sunday next year, or – perhaps working out your holiday
entitlement around Christmas – which day of the week corresponds to Christmas Day. This can be found
easily from the Julian date using the following calculation in which we find the name of the day of the week
corresponding to 19 June 2009 at Greenwich as an example.
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Method Example

1. Find the Julian date corresponding to 2009 June 19.0
midnight at Greenwich (§4). JD = 2455001.5

2. Calculate A =
(

JD+1.5
7

)
. A = 350714.714286

3. Take the fractional part of A, multiply by 7,
and round to the nearest integer.a This is Fractional part = 0.714286
the weekday number n as follows: n = 5

Sunday n = 0
Monday n = 1
Tuesday n = 2
Wednesday n = 3
Thursday n = 4
Friday n = 5
Saturday n = 6

Friday

aThis may be done by taking TRUNC(fractional part+0.5).

The spreadsheet for this calculation, FDOW (Finding the Day Of the Week; Figure 5) selects the name
corresponding to the weekday number using a nested IF formula at row 7 (that is quite long and confusing
to read!). The test argument of the first IF is the first argument, C6=0. If this is true, then the formula returns
Sunday. If not, then a second IF statement takes the place of the third argument and the value of C6 is tested
against 1 (Monday), and so on until all seven possible values of n have been tested. If the formula has still
not been satisfied at that point, the text ** error is returned. This should never happen!

In row 5 we have used the INT function for finding the integer part of the argument. Since the Julian date
is always positive, there is no issue here about exactly how the INT function deals with negative values. We
make extensive use of INT throughout the book. Row 5 ensures that the fraction of the day after midnight
is removed from the Julian date before proceeding with the calculation.

We have also supplied a spreadsheet function called FDOW(JD) which does the same calculation. It
returns the text corresponding to the name of the day of the given Julian date (JD), or the text Unknown if
the calculation suggests n lies outside of the range 0 to 6 inclusive. You can delete rows 5 to 7 of Figure 5
and replace cell H3 with the formula =FDOW(C3). Don’t forget to save the spreadsheet first if you want to
try this out.

Figure 5. The Julian date 2 455 001.5 fell on a Friday at Greenwich.
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7 Converting hours, minutes and seconds to decimal hours

Most times are expressed as hours and minutes, or hours, minutes and seconds. For example, twenty to
four in the afternoon may be written as 3:40 pm, or 3h 40m pm, or on a 24-hour clock as 15h 40m. In
calculations, however, the time needs to be expressed in decimal hours on a 24-hour clock. The method of
converting a time expressed in the format hours, minutes and seconds into decimal hours is given below.
Some calculators have special keys to do this for you automatically. As an example, let’s convert the time
6h 31m 27s pm into decimal hours.

Method Example

1. Take the number of seconds and divide by 60. 27/60 = 0.450000
2. Add this to the number of minutes and divide by 60. 31.45/60 = 0.524167
3. Add the number of hours. +6.0 = 6.524167
4. If the time has been given on a 12-hour clock, and it is pm,

add 12.
+12.0 = 18.524 167 hours

The spreadsheet corresponding to this calculation is shown in Figure 6, and is called HMSDH (Hours
Minutes Seconds to Decimal Hours conversion). We have defined variable names A, B, C and D in column
B rows 7 to 10 for convenience. They have no counterparts in the method table above. Note that the
spreadsheet converts the time already expressed on a 24-hour clock, so be careful to add 12 hours, if
appropriate, to the number you enter in cell C3.

We have also supplied the spreadsheet function HMSDH(H,M,S) which will carry out this conversion
for you. The three arguments correspond to the hours, minutes and seconds parts of the time to be con-
verted to hours. You can delete rows 7 to 10 of the spreadsheet shown in Figure 6 and insert the formula
=HMSDH(C3,C4,C5) in cell H3. Save a copy of your spreadsheet first. Note that in many cases, as here,
you can use the function to convert partially-converted times. Thus =HMSDH(18,31,27) will give the same
result as =HMSDH(18,31.524167,0), where you have expressed the same time in hours and minutes format
(no seconds).

Figure 6. Converting a time expressed in HMS format into decimal hours.
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8 Converting decimal hours to hours, minutes and seconds

When the result of a calculation is a time, it is normally expressed as decimal hours, and we need to convert
it to hours, minutes and seconds. (This is the reverse of the calculation in Section 7.) The method of doing
so is given below. Again, some calculators have special keys to carry out this function automatically. We
express the time 18.524 167 h in hours, minutes and seconds format as our example.

Method Example

1. Take the fractional part and multiply by 60. The 0.524167×60 = 31.450020
integer part of the result is the number of minutes.

2. Take the fractional part of the result and multiply 0.450020×60 = 27.001200
by 60. This gives the number of seconds. 18h 31m 27s

The spreadsheet for this calculation is shown in Figure 7 and is called DHHMS (Decimal Hours to Hours
Minutes Seconds conversion). It has more steps and slightly greater complexity than the method in the
above table as it needs to deal automatically with cases in which the result of the calculation is an integer
number of minutes and/or seconds exactly equal to 60, such as 10h 45m 60s. In such cases, you would
increment the number of hours and/or minutes by 1, and set the number of minutes and/or seconds to zero.
Thus 10h 45m 60s is better expressed as 10h 46m 0s. The spreadsheet also rounds the number of seconds to
two decimal places using the spreadsheet intrinsic function ROUND in cell C9. The first argument of this
function is the number you wish to round, and the second argument is the number of decimal places.

We have also supplied three spreadsheet functions to carry out this calculation. We need to have three
as any function can only return one result, and so we need separate functions for the hours, minutes, and
seconds. These are DHHour(H), DHMin(H), and DHSec(H) respectively, where the argument in each case is
the time in decimal hours to be converted. Thus (having saved a copy first) you could delete rows 7 to 14
of the spreadsheet shown in Figure 7 and insert the formulas =DHHour(C3), =DHMin(C3) and =DHSec(C3)
in cells H3, H4 and H5 respectively to get the same result.
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Figure 7. Converting a time expressed in decimal hours to HMS format.

9 Converting the local time to universal time (UT)

The basis of civilian time-keeping is the rotation of the Earth. Universal time (UT) is related to the motion
of the Sun as observed on the Greenwich meridian, longitude 0◦. The Earth is not a perfect time-keeper,
however, and today a more uniform flow of time is available from atomic clocks. International atomic
time (TAI) is the scale resulting from analyses by the Bureau International de l’Heure, in Paris, of atomic
standards in many countries. A version of universal time, called coordinated universal time (UTC), is
derived from TAI in such a manner as to be within 0.9 seconds of UT and a whole number of seconds
different from TAI. (In June 2010, TAI−UTC = 34 s). This is achieved by including occasional leap seconds
in UTC (at the end of June or December – usually the latter). UTC is the time broadcast by some national
radio stations (the ‘time pips’) and by standard time transmission services such as DCF 77 (Mainflingen,
Germany), MSF 60 (Anthorn, UK) and WWV (Colorado, USA). It is now the basis of legal time-keeping
on the Earth. UTC is thus an atomic time standard (and hence as uniform as we know how to measure) but
with discontinuities to keep it in line with the irregular rotation of our planet.

Another time in common use today is GPS time. This is an atomic time kept by the US Naval Observa-
tory, and which is broadcast by the satellites of the global positioning system (GPS). GPS time was equal
to UTC on 1980 January 6 0.0, but, unlike UTC, is not adjusted by the insertion of leap seconds. Hence
GPS time is equal, in June 2010, to UTC + 15 seconds (kept to within a microsecond) and is the time you
can extract from your GPS navigation device.

The amateur astronomer need not be too concerned by all this complexity. For our purposes, we can
take UT = UTC = GMT without noticing the difference. (Note that in a pre-1925 definition Greenwich
Mean Time (GMT) started at midday, so was 12 hours out with respect to UT. However, this distinction
is usually overlooked and people refer to UTC and GMT as the same thing. For example, the BBC World
Service gives UTC times as GMT.) Where we need greater accuracy, we will use terrestrial time (TT) for
events after 1984 January 0.0, and ephemeris time (ET) before then. TT is equal to TAI + 32.184 seconds
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and took over from ET at the beginning of 1984 (see Section 16). (Note that TT was called terrestrial
dynamic time, TDT, until 1991, when it was renamed by the International Astronomical Union.) UT is
used as the local civil time in Britain during the winter months, but 1 hour is added during the summer to
form British summer time (BST) so that the working day fits more conveniently into daylight hours. Many
other countries adopt a similar arrangement; sometimes the converted time is known as daylight saving
time.

Countries lying on meridians east or west of Greenwich do not use UT as their local civil time. It would
be impractical to do so as the local noon, the time at which the Sun reaches its maximum altitude, gets earlier
or later with respect to the local noon on the Greenwich meridian as one moves east or west respectively.
The world is therefore divided into time zones, each zone usually corresponding to a whole number of hours
before or after UT, and small countries, or parts of large countries lying within a zone, adopt the zone time
as their local civil time (see Figure 8).



Figure 8. International time zones. This small-scale map can show only the general distribution of time zones around the world. If you are
unsure of your own zone correction, you can check it by looking on the Internet, or by tuning your short-wave radio to the BBC World Service
and comparing your watch with the time pips broadcast every hour from London.
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The starting point for many astronomical calculations is often the local time and date, that is the time on
your watch (assumed to be correct) on the date of the calendar on your wall. We will refer to your local
time as the local civil time, and the local date as the local calendar date. However, the algorithms for
calculating the positions of the heavenly bodies usually begin with the time on the Greenwich meridian,
universal time (UT), and the Greenwich calendar date. We therefore need to be able to convert times and
dates from your local position to Greenwich and vice-versa. For this you need to know your time-zone
correction (hours ahead of UTC) and whether or not there is daylight saving in operation.

The following method converts your local time and date into UT and Greenwich calendar date. As an
example we convert daylight saving time 3h 37m in time zone +4 hours on 1 July 2013.

Method Example

1. Convert local civil time to zone time 3h 37m − 1h = 2h 37m
by removing the daylight saving correction,
and convert to decimal hours (§7). Zone time = 2.616667 hours

2. Subtract the time-zone offset (time zones UT = 2.616667−4
W are negative). This is UT. = −1.383333 hours

3. Divide UT by 24 and add to the local G Day = 1− (1.383333/24.0) hours
calendar day. This is Greenwich calendar day. = 0.942361 hours

4. Find the Julian date corresponding to the G cal date = 2013 July 0.942 361
Greenwich calendar date (§4). JD = 2 456 474.442

5. Convert the Julian calendar date back G Day = 30.942361
into the Greenwich calendar date (§5). G Month = 6

G Year = 2013
6. The day of the Greenwich calendar date is GD = 30

TRUNC(G Day). Subtract this from G Day UT = 0.942361×24
and multiply the result by 24 to obtain = 22.616667
UT in the range 0 to 24 h. Convert to hours, = 22h 37m 0s
minutes and seconds if required (§8). G date = 2013 June 30

Steps 4 and 5 of the method table above may seem a bit unnecessary. What is the point of going through
the lengthy conversion from Greenwich calendar date in step 4 only to be told in step 5 to convert back
again? Actually, with your human mind carrying out this calculation you may be able to go directly from
step 3 to step 6 because you will be able to see that G Day = 0.942 361 is the same as G Day = 0+0.942361,
and the day therefore corresponds to the previous day’s date, i.e. 30 June, and the UT to 0.942361× 24.
Note that you have made quite a complicated calculation in doing this, and of course the year might have
changed as well. Steps 4 and 5, though cumbersome, take care of all of this, and are required in any case in
the spreadsheet (Figure 9).

The spreadsheet is called LCTUT, following the acronym for Local Civil Time to Universal Time con-
version. The spreadsheet functions corresponding to this calculation are LCTUT, LCTGDay, LCTGMonth
and LCTGYear, returning the universal time, and the day, month and year of the Greenwich calendar date
respectively. Each of them takes the same eight arguments: (H,M,S,DS,ZC,LD,LM,LY), in which H, M, S
are the local time (hours, minutes, seconds), DS and ZC are the daylight saving offset and zone correction
(hours), and LD, LM, LY are the day, month and year of the local calendar date.
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Figure 9. Converting local time and date to universal time and Greenwich date.

Having saved a copy of the spreadsheet of Figure 9, you could delete rows 12 to 19 and insert these spread-
sheet functions in cells H3 to H8 as follows:

=DHHour(LCTUT(C3,C4,C5,C6,C7,C8,C9,C10))
=DHMin(LCTUT(C3,C4,C5,C6,C7,C8,C9,C10))
=DHSec(LCTUT(C3,C4,C5,C6,C7,C8,C9,C10))
=LCTGDay(C3,C4,C5,C6,C7,C8,C9,C10)
=LCTGMonth(C3,C4,C5,C6,C7,C8,C9,C10)
=LCTGYear(C3,C4,C5,C6,C7,C8,C9,C10).

Note that the first three of these use nested functions, e.g. the function DHHour takes as its argument the
result of running the function LCTUT. You can nest functions in this way almost indefinitely, although the
resulting formula rapidly becomes unreadable as the nesting gets deeper.

10 Converting UT and Greenwich calendar date to local time and date

The result of an astronomical calculation can sometimes be a time and a date, usually the UT and calendar
date at Greenwich. The following method will convert to the corresponding local civil time and calendar
date appropriate to a point on the Earth in a given time zone, with or without daylight saving in operation.
As in the previous section, the local date and the Greenwich date may not be the same, and we need to
take account of differences in dates spanning month and/or year boundaries. Continuing with the previ-
ous example, what is the local civil time and local calendar date corresponding to 22h 37m UT when the
Greenwich calendar date is 30 June 2013, in time zone +4 h and with daylight saving in operation?
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Method Example

1. Convert UT to decimal hours (§7). 22h 37m = 22.616667 hours
2. Add the time zone offset (time zones W are negative) LCT = 22.616667+4+1

and the daylight saving offset. This is the local civil time. = 27.616667
3. Find the Julian date corresponding to the Greenwich LJD = 2 465 473.5

calendar date (§4) and add (LCT/24). + 27.616667/24
= 2 456 474.651

4. Convert this local Julian date back into the local calendar L Day = 1.150694
date (§5). Take the integer part to get the local day number. L date = 2013 July 1

5. Subtract the integer day from L Day and multiply the result LCT = 0.150694×24
by 24 to obtain the local civil time in the range 0 to 24 h. = 3.616667
Convert to hours, minutes and seconds if required (§8). = 3h 37m 0s

A word here about rounding errors. In the method examples of both this and the previous section, you
may have become aware of small differences in the last one or two decimal places between your calculated
values and those shown in the method tables. For example, if we put 0.150 694 into a calculator (step 5)
and multiply by 24, we get 3.616 656 instead of 3.616 667 as shown. This is because of rounding errors,
and there are two causes. First, the calculator maintains calculations accurate to about 11 or 12 significant
figures, but in steps 3 and 4 we ‘use up’ seven of those in specifying the integer part of the Julian date,
leaving only 4 or 5 for the fractional part. The calculator does its best, but the error on the last place creeps
in and shows itself as a discrepancy. The spreadsheet calculation usually has much higher precision so does
not suffer from this particular problem. We have shown full-precision results in the tables, rounded to six
decimal places. Second, we have displayed the results of each calculation only to six decimal places. The
truncation can make a small difference as here. With nine places of decimals, the value of LCT in step 5 is
0.150 694 444. Multiply this by 24 and round to six decimal places and you get 3.616 667 as shown.

As in the method of the previous section, you may be able to leave out steps 3 and 4 which are included to
make sure that the month and year boundaries are properly dealt with. You can see that the value of LCT in
the second step, 27.616 667 h, is equivalent to 1 day (24 h) plus 3.616 667 h. The local civil time is therefore
3.616 667 h = 3h 37m, and the local date is the Greenwich date plus one day, so 30 June 2013 becomes
1 July 2013.

The spreadsheet for this section is shown in Figure 10 and is called UTLCT (Universal Time to Local
Civil Time conversion). Not having the advantage of the intelligence of the human brain, the program has
to carry out the conversions to and from the Julian date (rows 15 and 16) for every calculation in order to
deal properly with the month and year boundaries. In this case, without these steps, the spreadsheet would
report the local date as 31 June 2013 – logically correct but not a recognised date for June which has only
30 days.

The corresponding spreadsheet functions are UTLCT, UTLCDay, UTLCMonth and UTLCYear, which re-
turn respectively the local civil time in hours, the day, the month, and the year of the local calendar date.
Each takes the same eight arguments (H,M,S,DS,ZC,GD,GM,GY) in which H, M and S are the universal
time (hours, minutes, seconds), DS and ZC are the daylight saving adjustment and zone correction (both in
hours), and GD, GM and GY are the day, month and year of the Greenwich calendar date.
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Figure 10. Converting universal time and Greenwich date to local civil time and local date.

You can therefore delete rows 12 to 20 (save a copy first) and insert the following formulas in cells H3 to
H8 respectively:

=DHHour(UTLCT(C3,C4,C5,C6,C7,C8,C9,C10))
=DHMin(UTLCT(C3,C4,C5,C6,C7,C8,C9,C10))
=DHSec(UTLCT(C3,C4,C5,C6,C7,C8,C9,C10))
=UTLCDay(C3,C4,C5,C6,C7,C8,C9,C10)
=UTLCMonth(C3,C4,C5,C6,C7,C8,C9,C10)
=UTLCYear(C3,C4,C5,C6,C7,C8,C9,C10).

Note that the first three of these use nested functions, e.g. the function DHHour takes as its argument the
result of running the function UTLCT. You can nest functions in this way almost indefinitely, although the
resulting formula rapidly becomes unreadable as the level of nesting increases.

11 Sidereal time (ST)

Universal time (UT), and therefore the local civil time in any part of the world, is related to the apparent
motion of the Sun around the Earth. Roughly speaking, we may take 1 solar day as the time between
two successive passages of the Sun across the meridian as observed at a particular place. Astronomers are
interested, however, in the motion of the stars; in particular they need to use a clock whose rate is such that
any star is observed to return to the same position in the sky after exactly 24 hours have elapsed according
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to the clock. Such a clock is called a sidereal clock and its time, being regulated by the stars, is called
sidereal time (ST). Solar time, of which UT is an example, is not the same as sidereal time because during
the course of 1 solar day the Earth moves nearly 1 degree along its orbit round the Sun. Hence, the Sun
appears progressively displaced against the background of stars when viewed from the Earth; turning that
around, the stars appear to move with respect to the Sun. Any clock, therefore, which keeps time by the
Sun does not do so by the stars.

There are about 365.25 solar days in the year†, the time taken by the Sun to return to the same position
with respect to the background of stars. During this period, the Earth makes about 366.25 revolutions around
its own axis; there are therefore this many sidereal days in the year. Each sidereal day is thus slightly shorter
than the solar day, 24 hours of sidereal time corresponding to 23h 56m 04s of solar time. Universal time and
Greenwich sidereal time agree at one instant every year at the autumnal equinox (around 22 September).
Thereafter, the difference between them grows in the sense that sidereal time runs faster than universal time,
until exactly half a year later the difference is 12 hours. After 1 year, the times again agree.

The formal definition of sidereal time is that it is the hour angle of the vernal equinox (see Section 18).

12 Conversion of UT to Greenwich sidereal time (GST)

This section describes a simple procedure by which the UT may be converted into GST. It is accurate to
better than one tenth of a second. For example, what was the GST at 14h 36m 51.67s UT on Greenwich
date 22 April 1980?

Method Example

1. Find the Julian date corresponding to JD = 2444351.5
0h on this Greenwich calendar date (§4).

2. Calculate S = JD−2 451 545.0. S = −7193.5
3. Calculate T = S/36 525.0. T = −0.196947
4. Find T 0 = 6.697 374 558 + (2 400.051 336 ×T ) T 0 = −465.986246

+ (0.000025862×T 2). Reduce the result to the + 24×20
range 0 to 24 by adding or subtracting multiples of 24. T 0 = 14.013754

5. Convert UT to decimal hours (§7). UT = 14.614353
6. Multiply UT by 1.002 737 909. A = 14.654366
7. Add this to T 0 and reduce to the range 0 to 24 if necessary + 14.013754

by subtracting or adding 24. This is the GST. GST = 4.668120
8. Convert the result to hours, minutes and seconds (§8). GST = 4h 40m 5.23s

The spreadsheet for this calculation is shown in Figure 11 and is called UTGST (an acronym for UT to
GST conversion). The step of reducing to the range 0 to 24 is achieved, for example in row 14, by subtract-
ing (24×INT(C13/24)) from C13. The INT function returns the whole number of times that 24 goes into the
value of C13, and this is multiplied by 24 before being subtracted from the value in C13, just as is done in
step 4 of the method table. This trick is used in many spreadsheets throughout the book.

We have also supplied the spreadsheet function UTGST(H,M,S,GD,GM,GY) which takes six arguments
H, M, S (UT in hours, minutes and seconds) and GD, GM, GY (Greenwich calendar date as days, months,
and years). It returns the GST in hours corresponding to the values of the arguments.

†See the definition of the year given in the Glossary.
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Figure 11. Converting universal time and Greenwich date to Greenwich sidereal time.

You can try this for yourself by deleting rows 10 to 21 (after saving a copy) and inserting the following
formulas in cells H3, H4 and H5 respectively:

=DHHour(UTGST(C3,C4,C5,C6,C7,C8))
=DHMin(UTGST(C3,C4,C5,C6,C7,C8))
=DHSec(UTGST(C3,C4,C5,C6,C7,C8)).

13 Conversion of GST to UT

Here we deal with the reverse problem of the previous section, namely that of converting a given GST into
the corresponding UT. The problem is complicated, however, by the fact that the sidereal day is slightly
shorter than the solar day so that on any given calendar date a small range of sidereal times occurs twice.
This range is about 3m 56s long, the sidereal times corresponding to UT 0h to 0h 3m 56s occurring again
from UT 23h 56m 04s to midnight (see Figure 12). The method given here correctly converts sidereal times
in the former interval, but not in the latter.

The accuracy of this method is the same as that of Section 12, namely better than one tenth of a second.
Continuing our previous example, at GST = 4h 40m 5.23s on Greenwich date 22 April 1980, what was
the UT?
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Method Example

1. Find the Julian date corresponding to JD = 2 444 351.5
0h on this Greenwich calendar date (§4).

2. Calculate S =JD−2 451 545.0. S = −7193.5
3. Calculate T = S/36 525.0. T = −0.196947
4. Find T 0 = 6.697 374 558 + (2 400.051 336 ×T ) T 0 = −465.986246

+ (0.000 025 862 × T 2). Reduce the result to the + 24×20
range 0 to 24 by adding or subtracting multiples of 24. T 0 = 14.013754

5. Convert GST to decimal hours (§7). GST = 4.668119
6. Subtract T 0 and reduce to the range A = −9.345635

0 to 24 if necessary by subtracting or adding 24. B = 14.654365
7. Multiply B by 0.997 269 566 3. The result is the UT. UT = 14.614353
8. Convert the result to hours, minutes and seconds (§8). UT = 14h 36m 51.67s

22 Apr 201521

13h 58m 57s 13h 58m 57s

14h 02m 53s 14h 02m 53s

0h 03m 56s 23h 56m 04s

23

0h

UT

GST

0h 

Figure 12. UT and GST for 22 April 2015. The hatched intervals of GST occur twice on the same day.
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Figure 13 shows the corresponding spreadsheet, labelled GSTUT (an acronym for GST to UT conver-
sion). It follows the method given in the table quite closely, but incorporates an extra step in row 22.
This step tests to see whether the UT lies in the range 0h 0m 0s to 0h 3m 56s. If it does, it may not be
the desired conversion since an equally-valid range of UT for this date corresponding to the given GST is
23h 56m 04s to 0h 0m 0s. There is insufficient information for us to be able to determine, on the GST and
Greenwich calendar date alone, which is the desired result. The IF function in row 13 therefore issues a
status flag, actually a word of text. This is OK if there is no ambiguity in the conversion, and Warning if
there is.

The associated spreadsheet functions are:

GSTUT(H,M,S,GD,GM,GY) and

eGSTUT(H,M,S,GD,GM,GY),

where the arguments H, M, S represent the hours, minutes and seconds of the GST, and GD, GM, GY rep-
resent the day, month, year of the Greenwich calendar date. GSTUT returns the UT in hours corresponding
with the argument values. You can use the other function, eGSTUT, to determine whether or not the con-
version is ambiguous, and it returns status text OK or Warning as appropriate. Thus rows 10 to 22 can be

Figure 13. Converting Greenwich date and Greenwich sidereal time to universal time.
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deleted in the spreadsheet of Figure 13 (but save a copy first) and the following formulas inserted into cells
H3 to H6 respectively:

=DHHour(GSTUT(C3,C4,C5,C6,C7,C8))

=DHMin(GSTUT(C3,C4,C5,C6,C7,C8))

=DHSec(GSTUT(C3,C4,C5,C6,C7,C8))

=eGSTUT(C3,C4,C5,C6,C7,C8).

Why not try this for yourself?

14 Local sidereal time (LST)

The Greenwich sidereal time discussed in the previous sections is the sidereal time correct for observations
made on the Greenwich meridian, longitude 0◦. It is in fact the local sidereal time (LST) for the Greenwich
meridian. As you move west or east from longitude 0◦, however, the local sidereal time gets earlier or later
respectively because the hour angle of the vernal equinox, which defines the local sidereal time, changes.
You can calculate your local sidereal time, given the Greenwich sidereal time, very easily as the difference
between the two times in hours is simply the geographical longitude in degrees divided by 15. Longitudes
west give local sidereal times earlier than GST, and longitudes east later. You should express longitudes E
as positive numbers, and longitudes W as negative numbers. Take the example: what is the local sidereal
time on the longitude 64◦ W when the GST is 4h 40m 5.23s?

Method Example

1. Convert GST to decimal hours (§7). GST = 4.668119 h
2. Convert the geographical longitude in degrees to its equivalent −64◦ = −4.266667 h

in hours by dividing by 15. Note that longitudes W are negative.
3. Add this to the GST. Bring the result into the range 0 to 24 by adding

or subtracting 24 if necessary. This is the local sidereal time (LST). LST = 0.401453 h
4. Convert LST to hours, minutes and seconds (§8). LST = 0h 24m 5.23s

The spreadsheet labelled GSTLST (an acronym for GST to LST conversion) is shown in Figure 14. The
corresponding spreadsheet function is GSTLST. This takes four arguments with the Greenwich sidereal
time in the first three arguments expressed as hours, minutes and seconds, and the geographical longitude
of the observer in decimal degrees in the fourth argument. It returns the local sidereal time in decimal hours.
Hence rows 8 to 14 of the spreadsheet shown in Figure 14 could be deleted (after saving a copy) and the
following spreadsheet formulas inserted consecutively into cells H3, H4 and H5:

=DHHour(GSTLST(C3,C4,C5,C6))

=DHMin(GSTLST(C3,C4,C5,C6))

=DHSec(GSTLST(C3,C4,C5,C6)).



28 Time

Figure 14. Converting Greenwich sidereal time to local sidereal time.

15 Converting LST to GST

This problem is the reverse of that treated in Section 14, namely, given the local sidereal time at a particular
place, what is the corresponding Greenwich sidereal time? As an example, we shall calculate the GST when
the LST on longitude 64◦ W is 0h 24m 5.23s.

Method Example

1. Convert the LST to decimal hours (§7). LST = 0.401453 h
2. Convert the geographical longitude in degrees to its equivalent −64◦ = −4.266667 h

in hours by dividing by 15. Note that longitudes W are negative.
3. Subtract this from the LST. Bring the result into the

range 0–24 by adding or subtracting 24 if necessary. GST = 4.668119 h
This is the GST.

4. Convert GST to hours, minutes and seconds (§8). GST = 4h 40m 5.23s

The spreadsheet labelled LSTGST (an acronym for LST to GST conversion) is shown in Figure 15. The
corresponding spreadsheet function is also called LSTGST. This takes four arguments with the local sidereal
time in the first three arguments expressed as hours, minutes and seconds, and the geographical longitude
of the observer in decimal degrees in the fourth argument. It returns the Greenwich sidereal time in decimal
hours. Hence rows 8 to 14 of the spreadsheet shown in Figure 15 could be deleted (after saving a copy) and
the following spreadsheet formulas inserted consecutively into cells H3, H4 and H5:

=DHHour(LSTGST(C3,C4,C5,C6))
=DHMin(LSTGST(C3,C4,C5,C6))
=DHSec(LSTGST(C3,C4,C5,C6)).
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Figure 15. Converting local sidereal time to Greenwich sidereal time.
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16 Ephemeris time (ET) and terrestrial time (TT)

Universal and sidereal times are both tied directly to the period of the rotation of the Earth about its polar
axis. The Earth is being used in effect as the balance wheel of a cosmic clock whose tick defines the
length of the day. With the advent of extremely accurate atomic clocks, however, it has become apparent
that the Earth’s rotation is not strictly uniform but shows small erratic fluctuations which are not well
understood. UT and ST, being reckoned by this irregular cosmic clock, are therefore not strictly uniform
either. Astronomers need a system of time that is uniform since the theories of celestial mechanics assume
that such a quantity exists. For example, two solid bodies in orbit about one another far away from any
external influences should have an unchanging orbital period when measured on a regular clock. Before
1984, astronomers adopted ephemeris time (ET) for this purpose. It was calculated from the motion of the
Moon and assumed to be uniform. Nowadays, atomic clocks provide the most uniform measure of time, and
since 1984 terrestrial time (TT) has been used instead of ET. (In fact TT was called TDT, for terrestrial
dynamic time, until renamed and slightly redefined by the International Astronomical Union in 1991.) TT
is tied to the atomic time scale, TAI (see Section 9), by the equation:

TT = TAI+32.184s.

The constant offset of 32.184 seconds was chosen to make TT equal to ET at the beginning of 1984. ET
itself was chosen to agree as nearly as possible with the measure of universal time during the nineteenth
century, and it is unlikely that TT will differ by more than a few minutes in the twenty-first.

The primary unit of ET was the length of the tropical year at 1900 January 0.5 ET which contained
31 556 925.974 7 ephemeris seconds. The primary unit of TAI, and hence TT, is the SI second, defined to be
the duration of 9 192 631 770 periods of the radiation corresponding to the transition between two hyperfine
levels of the ground state of the caesium 133 atom. We need not be too concerned by all this since very
high accuracy is not the aim of the book. In almost every case we can take ET = TT = UT without noticing
the difference. Only when calculating the motion of the Moon, and predicting eclipses (Section 71), will it
pay us to take account of the difference between ET/TT and UT. In January 2010 this was 66.07 seconds,
UT being behind TT; that is

TT−UT = ∆T = 66.07 seconds.

Figure 16 shows how ∆T has varied since 1620; we can predict that its value in the year 2020 might be
around 70 seconds, but only direct observations at that time will confirm this.

Pulsars with very stable rates of spin have been discovered which appear to be even more precise than
our best atomic clocks. TAI may well lose its place as the fundamental measure of time during this century,
and be replaced by another scale based on the pulsars – GBT (galactic barycentric time) perhaps.
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Figure 16. The variation of ∆T since 1620.





Coordinate systems
To fix the position of any astronomical object,
we must have a frame of reference, or
coordinate system, which assigns a different
pair of numbers to every point in the sky. The
two numbers, or coordinates, usually refer to
‘how far round’ and ‘how far up’, just as do the
longitude and latitude of an object on the
Earth’s surface. There are several such
coordinate systems which you may meet, and we
shall be concerned with four of these, namely
the horizon system, the equatorial system, the
ecliptic system and the galactic system. Each
system takes its name from the fundamental
plane which it uses as a reference; for instance,
the ecliptic coordinate system makes all its
measurements with respect to the plane of the
ecliptic, the plane of the Earth’s orbit about the
Sun. In the next few sections, we shall find how
to convert any position given in one system into
the equivalent coordinates of another system.
We shall also find how to describe positions on
the surfaces of the Sun and Moon, how to deal
with the problems of calculating the time of
rising and setting, and with the effects of the
Earth’s precession, nutation, aberration,
atmospheric refraction, and parallax on the
apparent position of a celestial body.

33
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17 Horizon coordinates

The horizon coordinates, azimuth and altitude, of an object in the sky are referred to the plane of the
observer’s horizon (see Figure 17). Imagine an observer standing at point O; then his or her horizon is the
circle NESW, where the letters refer to the north, east, south and west points of the horizon respectively.
The direction north, by the way, relates to the direction of the north pole on the Earth’s rotation axis and
not to the magnetic north pole. You must imagine the stars as fixed on the surface of the hemisphere with
the observer at the centre as in Figure 17; the whole sphere of which this hemisphere is part is called the
celestial sphere. The point Z directly over the observer’s head is called the zenith; the direction OZ is the
direction defined by a plumb line held by the observer. Now consider a star X and imagine a great circle
(i.e. a circle drawn on the surface of the sphere whose centre is the same as that of the sphere) going through
Z and X; it meets the horizon at point B. The altitude, a, of the star is then the angle subtended at O by
the points X and B. The azimuth, A, is the angle subtended by the points N and B. Hence, the altitude is
‘how far up’ in degrees (negative if below the horizon) and the azimuth is ‘how far round’ from the north
direction, also measured in degrees. A increases from 0◦ to 360◦ as you go around in the sense NESW, N
being 0◦, S being 180◦, etc.

The altitudes and azimuths of all heavenly bodies except geostationary satellites are continually changing
with time as the Earth rotates. This coordinate system then, marvellous for setting the direction of your
telescope, is not much good for fixing the positions of the stars. Another frame of reference, independent
of the Earth’s motion, is needed to do that. It is described in the next section.

Figure 17. Horizon coordinates.
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18 Equatorial coordinates

As their name suggests, these coordinates are referred to the plane of the Earth’s equator (see Figure 18(a)).
The observer (assumed to be in the northern hemisphere) is at O and the plane containing the circle NESW
is again the horizon with Z the zenith point. You are to imagine now that the figure represents the view
obtained at a vast distance from the Earth. The Earth, with the observer standing on it, has shrunk to a tiny
dot at the centre of the diagram, but the plane of the equator has been extended to cut the celestial sphere
along the circle EàRW. This is the equatorial plane and is inclined at the angle 90◦ − φ to the horizon,
where φ is the observer’s geographical latitude. For observations at latitude 52◦ N this angle is 38◦. At
right angles to the equatorial plane along the line OP lies the axis of rotation of the Earth; it intersects the
celestial sphere at P, the north celestial pole, or north pole for short. Since this is the line about which the
Earth spins, all the stars appear to describe circles in the sky about P.

Figure 18(b) shows the situation as seen by the observer O looking up into the sky. The south point, S, of

Figure 18. Equatorial coordinates: (a) on the celestial sphere, and (b) as seen from the ground.
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the horizon is marked and so is the imaginary trace of the equator, CàRD. The arc extending down through
R and S is the great circle which goes through NPZRS in Figure 18(a). The arc extending down through
XC is another great circle, not marked in Figure 18(a), which goes through PXC. Consider the star at X.
The arc CX, or the angle subtended at O by the points C and X, is called the declination, δ , of X, defining
‘how far up’ from, or north of, the equator. The other coordinate, ‘how far round’, is defined with respect
to a fixed direction in the sky, marked by the symbol à. This direction, called the vernal equinox or the
first point of Aries, lies along the line of the intersection of the plane of the Earth’s equator with that of
the Earth’s orbit around the Sun. But we needn’t worry about such definitions at the moment. All we need
to know is that the direction à remains fixed with respect to the stars (except for the effects of precession
and nutation – see Sections 34 and 35), and that we measure the other coordinate with respect to it. This
coordinate is called the right ascension, α , and is the angle subtended at O by the points à and C.

Throughout the course of the day the star X moves steadily westwards along a circle centred on P, com-
pleting one revolution in 24 hours of sidereal time (see Section 11 for a description of sidereal time). Since
this circle is a circle parallel to that of the equator the declination does not change. Furthermore, since the
directionà is fixed in the heavens, it appears to move along the equator at exactly the same rate as X moves
along the circle. Hence the right ascension does not change either. Thus α and δ are ideal coordinates for
describing the positions of the stars and other ‘fixed’ heavenly bodies.

Related to the right ascension is another ‘how far round’ coordinate called the hour angle, H (see Figure
18(b)). For the star Y it is defined as the angle subtended at O by the points R and D and is a measure of
how far the star has travelled along the equator from the southern point R, that is a measure of the time
since it crossed the meridian. H increases uniformly as the day proceeds; when H is zero, the star crosses
the great circle NPZRS (Figure 18(a)). This circle is called the meridian and the star is said to transit or
culminate. Its altitude (Section 17) is then maximum and its azimuth† is 180◦ (provided that its declination
is less than the geographical latitude).

The declination is measured in degrees, positive north of the equator and negative south of it. The hour
angle and the right ascension may also be measured in degrees, 0◦ to 360◦. α is measured in the sense that
it increases as you move east from à; the point à itself is at 0◦. (Note that this is in the opposite sense
to that in which H is measured.) More commonly, however, these two coordinates H and α are measured
in hours, minutes and seconds of time from 0 to 24 hours. One complete revolution, 360◦, corresponds to
24 hours of sidereal time; thus 1 hour is equivalent to 15◦. The two statements ‘the right ascension of X is
90◦’ and ‘the right ascension of X is 6 h’ are entirely equivalent. To convert from one to the other simply
multiply or divide by 15.

A useful result of measuring the right ascension in time is that the star transits when the local sidereal
time is equal to the right ascension.

†Some authors measure azimuth from the south point rather than the north point, in which case A = 0◦ at transit.
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19 Ecliptic coordinates

The plane containing the Earth’s orbit around the Sun is called the ecliptic and the other planets in our Solar
System also move in orbits close to this plane. When making calculations on objects in the Solar System
it is therefore often convenient to define positions with respect to the ecliptic, that is, to use the ecliptic
coordinate system. This system, like the equatorial system described in Section 18, also uses the vernal
equinox, à, as its reference direction. Figure 19, which is similar to Figure 18(b), shows how it goes.

The imaginary traces of the planes of the equator and the ecliptic are drawn on the sky, and their point
of intersection is the vernal equinox, à. The two planes are inclined to each other at an angle of about
23.5 degrees, called the obliquity of the ecliptic and given the symbol ε . (See Section 27 for a formula
for calculating ε .) This angle is the tilt of the Earth’s NS axis from the perpendicular to the plane of the
ecliptic. Also marked in Figure 19 is a planet, V. Part of the trace of the imaginary great circle from the
pole of the ecliptic (i.e. the point where the line drawn through the Sun perpendicular to the ecliptic meets
the celestial sphere) down through V is marked and this cuts the ecliptic at F. Then the ecliptic longitude,
λ , of V is defined to be the angle subtended by the points à and F, and the ecliptic latitude, β , the angle
subtended by the points F and V.

As with equatorial coordinates, β is positive if the planet is above (i.e. north of) the ecliptic and negative
if it is below it. The sense of λ is such that λ increases as you move eastwards along the ecliptic. Both λ
and β are usually measured in degrees.

During the course of the year the Sun moves eastwards along the trace of the ecliptic. By definition,
its ecliptic latitude is always zero. On about 21 March, it is at the position à and its right ascension
and declination are both zero. Its ecliptic longitude is also zero. Thereafter, its ecliptic longitude steadily
increases until three months later it is 90◦, midsummer in the northern hemisphere. After the course of 1
year, the Sun has returned to its starting position having traversed 360◦ of ecliptic longitude.

Figure 19. Ecliptic coordinates as seen from the ground (northern hemisphere).
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20 Galactic coordinates

Astronomers occasionally need to describe the relationships between stars or other celestial objects within
our own Galaxy and to do so it is convenient to use the galactic coordinate system. This time, the fundamen-
tal plane is the plane of the Galaxy and the fundamental direction is the line joining our Sun to the centre
of the Galaxy. Figure 20 describes the situation. The point marked S represents the Sun, G is the centre of
the Galaxy, and X a star which does not lie in the galactic plane. In equatorial coordinates, the position of
G is α = 17h 42.4m and δ = −28◦ 55′. The lines SG and SX′ both lie in the plane of the Galaxy; the point
X′ is the projection of the star’s position onto the plane. The galactic longitude is defined to be the angle l
measured in the plane, and the galactic latitude is defined to be the angle b measured perpendicular to it.
The longitude increases from 0◦ to 360◦ in the same direction as increasing right ascension, and the latitude
ranges from 0◦ to 90◦ north of the plane and from 0◦ to −90◦ south of it. These coordinates may be used,
for example, to express the position of a star in the Milky Way.

Figure 20. Galactic coordinates.
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21 Converting between decimal degrees and degrees, minutes and seconds

Angles are often expressed as degrees, minutes and seconds; the minutes and seconds are called minutes and
seconds of arc to distinguish them from time. Calculations are best done, however, with decimal degrees
and the methods of conversion between these two forms are exactly the same as the methods for conversion
between hours, minutes and seconds and decimal hours (Sections 7 and 8).

As an example, the angle 182◦ 31′ 27′′ is equal to 182.524 167 degrees, seen as follows:

Method Example

1. Take the number of seconds and divide by 60. 27/60 = 0.450000
2. Add this to the number of minutes and divide by 60. 31.45/60 = 0.524167
3. Add the number of degrees. +182.0 = 182.524167

Going the other way is equally straightforward. Continuing our example, express the angle 182.524 167
in degrees, minutes and seconds form.

Method Example

1. Take the fractional part and multiply by 60. The 0.524167×60 = 31.450 020
integer part of the result is the number of minutes.

2. Take the fractional part of the result and multiply 0.450020×60 = 27.001 200
by 60. This gives the number of seconds.
Add the number of degrees. 182◦◦◦ 31′′′ 27′′′′′′

The spreadsheets shown in Figures 21 and 22, DMSDD, short for Degrees, Minutes and Seconds to
Decimal Degrees conversion, and DDDMS, short for Decimal Degrees to Degrees, Minutes and Seconds
conversion, will carry out these calculations, as will also the corresponding spreadsheet functions
DMSDD(D,M,S), and DDDeg(D), DDMin(D), and DDSec(D). The first of these, DMSDD(D,M,S), takes three
arguments D, M, S corresponding to the angle expressed in degrees, minutes and seconds, and returns the
equivalent angle expressed in decimal degrees. Thus you could delete rows 7 to 10 of the spreadsheet shown
in Figure 21 (save a copy) and insert the formula =DMSDD(C3,C4,C5) into cell H3.

The three functions DDDeg(D), DDMin(D), and DDSec(D) return the degrees part, the minutes part and
the seconds part respectively of the angle given by the argument, D, expressed in decimal degrees. You can
therefore delete rows 7 to 14 of the spreadsheet shown in Figure 22 (having saved a copy) and insert the
following formulas into cells H3, H4 and H5 respectively:

=DDDeg(C3)
=DDMin(C3)
=DDSec(C3).

Why not try this for yourself?
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Figure 21. Converting angles expressed in degrees, minutes and seconds into decimal degrees.

Figure 22. Converting angles expressed in decimal degrees into degrees, minutes and seconds.
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22 Converting between angles expressed in degrees and angles expressed in hours

It is common astronomical practice to express the hour angle or right ascension of a star in hours, minutes
and seconds of time rather than in degrees. We can transform one to the other by noting that 360◦ of Earth’s
rotation takes place in 1 day, or 24 hours. Thus 360◦ is equivalent to 24 hours or 15◦ to 1 hour. Table 4
illustrates this equivalence more completely. To convert between angles expressed in decimal hours and
angles expressed in decimal degrees, simply multiply or divide by 15. For example, the right ascension
9h 36m 10.2s is equivalent to 144◦ 02′ 33′′.

Unit of time Equivalent angle

1 day 360 degrees
1 hour 15 degrees
1 minute 15 arcmin
1 second 15 arcsec

Unit of angle Equivalent time

1 radian 3.819 719 hours
1 degree 4 minutes
1 arcmin 4 seconds
1 arcsec 0.066 667 seconds

Table 4. Expressing angles in degrees or units of time.

We have not included spreadsheets for such simple calculations, but we have provided the spreadsheet
functions DDDH(D), short for Decimal Degrees to Decimal Hours conversion, and DHDD(H), short for
Decimal Hours to Decimal Degrees conversion. Each takes a single argument giving the angle expressed
in decimal degrees or decimal hours respectively. The following spreadsheet formulas will carry out the
example given above:

=DDDeg(DHDD(HMSDH(9,36,10.2))), which returns 144◦;
=DDMin(DHDD(HMSDH(9,36,10.2))), which returns 02′; and
=DDSec(DHDD(HMSDH(9,36,10.2))), which returns 33′′.

Here we have nested several spreadsheet functions together. To work out how these work, always start from
the middle and work outwards. Thus, in the first of the formulas above, HMSDH(9,36,10.2) returns the time
9h 36m 10.2s expressed in decimal hours. This value becomes the argument for the function DHDD that
converts the decimal hours to decimal degrees. Its result is then the argument for the outer function DDDeg
that returns the degrees part of the angle expressed as degrees, minutes and seconds. To convert the other
way round you could write:

=DHHour(DDDH(DMSDD(144,2,33))), which returns 9h;
=DHMin(DDDH(DMSDD(144,2,33))), which returns 36m; and
=DHSec(DDDH(DMSDD(144,2,33))), which returns 10.2s.
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23 Converting between one coordinate system and another

It is very often necessary to convert the coordinates of a heavenly body expressed in one coordinate system
into the equivalent coordinates of another system. This is the case when, for example, you have found
the position of a planet in ecliptic coordinates and you then wish to convert to horizon coordinates to see
where to look in the sky. The formulas for conversion between the equatorial system and any of the other
three systems, horizon, ecliptic, or galactic, are relatively straightforward. The conversion, therefore, is
often best done via the equatorial system, as illustrated in Figure 23. The arrows indicate the conversions
treated explicitly in this book in the section specified by the number. For example, to convert from galactic
coordinates to horizon coordinates, first convert to equatorial coordinates (Section 30) and then to horizon
coordinates (Section 25).

An alternative to using explicit formulas for each conversion, as in Sections 25 to 30, is to adopt the
matrix method of generalised coordinate transformation. This is described in Section 31, and may be used
to convert from any system to any other system directly, once you have worked out the appropriate matrix.

Figure 23. Converting between coordinate systems.
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24 Converting between right ascension and hour angle

The hour angle, H, and the right ascension, α , are related by the simple formula

H = LST−α,

where LST is the local sidereal time. All quantities must be expressed in the same units, i.e. as degrees or as
hours. Let us take as an example the problem of finding the local hour angle of a star whose right ascension
is α = 18h 32m 21s, at a point whose longitude is 64◦ W, in time zone −4 h when daylight saving was not
in operation, on local calendar date 22 April 1980 at local civil time 14h 36m 51.67s.

Method Example

1. Find the UT and Greenwich calendar date corresponding UT = 18.614353
to the local time and date (§9). GDay = 22

GMonth = 4
GYear = 1980

2. Find the corresponding Greenwich sidereal time (§12). . . GST = 8.679071
3. . . . hence find the local sidereal time (§14). LST = 4.412404
4. Express the right ascension α in decimal hours (§7). α = 18.539167 hours
5. Subtract this from the LST. If the answer is H1 = −14.126763

negative, add 24. This is the hour angle. H = 9.873237 hours
6. Convert to hours, minutes and seconds form (§8). H = 9h 52m 23.66s

Figure 24 shows the spreadsheet for this calculation. We have made use of several spreadsheet functions,
such as LCTUT, LCTGDay etc., to carry out much of the work. These functions are defined in their corre-
sponding sections. The spreadsheet is called RAHA (Right Ascension to Hour Angle conversion). We have
also provided a spreadsheet function of the same name with 12 arguments:

RAHA(RH,RM,RS,LH,LM,LS,DS,ZC,D,M,Y,GL).

RH, RM, RS are the right ascension in hours, minutes and seconds respectively, LH, LM, LS are the local civil
time in hours, minutes, and seconds respectively, DS and ZC are the daylight saving and zone correction
in hours, D, M, Y is the local calendar date as day, month, year, and GL is the geographical longitude in
degrees, west negative. Having saved a copy, you can delete rows 16 to 24 of the spreadsheet and insert the
following formulas in cells H3, H4, and H5 respectively:

=DHHour(RAHA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))
=DHMin(RAHA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))
=DHSec(RAHA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))

to achieve the same result with a lot less typing!
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Figure 24. Converting right ascension to local hour angle.
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Converting an hour angle back to its equivalent right ascension is a very similar process. Continuing
the example, what was the right ascension of the star whose local hour angle was 9h 52m 23.66s on lo-
cal calendar date 22 April 1980 when observed in time zone −4 h from longitude 64◦ W at local time
14h 36m 51.67s, when daylight saving was not in operation?

Method Example

1. Find the UT and Greenwich calendar date corresponding UT = 18.614353
to the local time and date (§9). GDay = 22

GMonth = 4
GYear = 1980

2. Find the corresponding Greenwich sidereal time (§12). . . GST = 8.679071
3. . . . hence find the local sidereal time (§14). LST = 4.412404
4. Express the hour angle H in decimal hours (§7). H = 9.873239 hours
5. Subtract this from the LST. If the answer is α1 = −5.460835

negative, add 24. This is the right ascension. α = 18.539165 hours
6. Convert to hours, minutes and seconds form (§8). α = 18h 32m 21s

The spreadsheet for making this calculation is shown in Figure 25 and is called HARA (for Hour Angle
to Right Ascension conversion). We have also provided a spreadsheet function with the same name which
takes 12 arguments as follows:

HARA(HH,HM,HS,LH,LM,LS,DS,ZC,D,M,Y,GL).

The first three, HH, HM, HS take the hours, minutes and seconds of the hour angle, the next three, LH, LM,
LS take the hours, minutes and seconds of the local civil time, then DS and ZC take the daylight saving
and zone correction values in hours, D, M, Y take the day, month and year of the local calendar date, and
finally GL takes the observer’s geographical longitude in degrees, west negative. You can use this function
to replace rows 16 to 24 of Figure 25 (save a copy first). Delete those rows and insert the following formulas
into cells H3, H4, and H5 respectively:

=DHHour(HARA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))
=DHMin(HARA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))
=DHSec(HARA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14)).

As usual, the arguments are references to cells in the spreadsheet which contain the relevant values. Thus
the first argument, which is the hours part of the hour angle expressed as hours, minutes, seconds, points to
cell C3 which actually contains that number.
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Figure 25. Converting local hour angle to right ascension.
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25 Equatorial to horizon coordinate conversion

The formulas describing the relationships between hour angle, H, declination, δ , azimuth, A, and altitude,
a, are:

sina = sinδ sinφ + cosδ cosφ cosH,

cosA =
sinδ − sinφ sina

cosφ cosa
,

where φ is the observer’s geographical latitude. (The hour angle may be found from the right ascension
by the method of Section 24.) These may be dealt with in the following way using the example ‘what are
the altitude and azimuth of a star whose hour angle is 5h 51m 44s and declination is +23◦ 13′ 10′′?’. The
observer’s latitude is 52◦ N.

Method Example

1. Convert hour angle to decimal hours (§7). H = 5.862 222 hours
2. Multiply by 15 to convert H to degrees (§22). H = 87.933 333 degrees
3. Convert δ into decimal degrees (§21). δ = 23.219 444 degrees
4. Find sina = sinδ sinφ + cosδ cosφ cosH. sina = 0.331 080
5. Take inverse sin to find a. a = 19.334 345 degrees

6. Find cosA = sinδ−sinφ sina
cosφ cosa . cosA = 0.229 558

7. Take inverse cos to find A′. A′ = 76.728 973
8. Find sinH. sinH = 0.999 350

If negative, the true azimuth is A = A′. (positive)
If positive, the true azimuth is A = 360−A′. A = 283.271 027 degrees

9. Convert a and A to degrees, minutes a = 19◦◦◦ 20′′′ 3.64′′′′′′

and seconds (§21). A = 283◦◦◦ 16′′′ 15...70′′′′′′

Step 8 is necessary because calculators can only return inverse trigonometrical functions correctly (inverse
sin, inverse cos and inverse tan, which we will denote sin−1, cos−1 and tan−1 respectively) over half the
range of 0◦ to 360◦. For example, try cos 147◦. The answer is −0.8387 which reverts to 147◦ when you
take inverse cos. But now try cos 213◦. The answer is again −0.8387 which, when you take inverse cos,
gives 147◦. Hence, whenever the inverse is taken an ambiguity arises that has to be cleared up by another
means.

As an alternative to steps 6 to 8 you can calculate

tanA′ =
y
x

=
−cosδ cosφ sinH
sinδ − sinφ sina

.

The azimuth is then found in the correct quadrant by using the rules (i) if x is negative, add 180◦ to A′, and
(ii) if x is positive but y is negative, add 360◦ to A′.

Note that negative angles can be transformed back into the range 0◦ to 360◦ by simply adding 360. An
example is −87.23 degrees which is the same as 360−87.23 = 272.77 degrees.

The spreadsheet for converting from Equatorial coordinates (right ascension and declination) to Horizon
coordinates is called EQHOR and is shown in Figure 26. Note that, in spreadsheet trigonometric formulas,
the angles must be expressed in radians rather than degrees. We make extensive use of the functions
RADIANS(D) and DEGREES(R) which convert, respectively, D given in degrees into radians, and R given
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in radians into degrees. Examples can be found in rows 13 and 19. Another trick is to use the built-in
function ATAN2(x,y) to find the inverse tangent of y/x (row 22). In this case, the values of x and y are
given explicitly in the two arguments, and the function returns the angle in its correct quadrant (in radians),
thus overcoming the ambiguity on taking inverse tan. Some calculators also have a special key to do this.
On ours, it is labelled (y,x) → (θ ,R). This is for converting the Cartesian coordinates of a point in two-
dimensional space, (x,y), into its equivalent polar coordinates (R,θ). Don’t worry about the details. Suffice
it to say that if you use the key on the values of x and y you get the angle, θ , in its correct quadrant.

The spreadsheet functions are EqAz(H,M,S,DD,DM,DS,GP) and EqAlt(H,M,S,DD,DM,DS,GP). Both
take the same seven arguments H, M, S, the hour angle expressed as hours, minutes and seconds, DD, DM,
DS, the declination expressed as degrees, minutes, seconds, and GP, the observer’s geographical latitude
in decimal degrees (S negative). EqAz returns the azimuth, and EqAlt returns the altitude, both in decimal
degrees. You can try these functions for yourself by first saving a copy of the spreadsheet EQHOR (in case

Figure 26. Converting equatorial to horizon coordinates.
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you want it again), second deleting rows 11 to 24 inclusive, and third inserting the following formulas into
cells H3 to H8:

=DDDeg(EqAz(C3,C4,C5,C6,C7,C8,C9))

=DDMin(EqAz(C3,C4,C5,C6,C7,C8,C9))

=DDSec(EqAz(C3,C4,C5,C6,C7,C8,C9))

=DDDeg(EqAlt(C3,C4,C5,C6,C7,C8,C9))

=DDMin(EqAlt(C3,C4,C5,C6,C7,C8,C9))

=DDSec(EqAlt(C3,C4,C5,C6,C7,C8,C9)).

The calculations of rows 11–24 are carried out by the BASIC programs behind the spreadsheet functions,
and should return precisely the same values as the spreadsheet in Figure 26.

26 Horizon to equatorial coordinate conversion

This problem is the reverse of that of the preceding section, namely given a star’s altitude, a, and azimuth,
A, what are its declination, δ , and hour angle, H? The appropriate formulas are:

sinδ = sinasinφ + cosacosφ cosA,

cosH =
sina− sinφ sinδ

cosφ cosδ
,

where φ is the observer’s geographical latitude. Notice that these formulas are exactly the same as those
given in Section 25 except that δ and H have been substituted for a and A and vice-versa. This fact is
useful when writing a program for a programmable calculator since exactly the same program can be used
to convert δ , H to a, A or a, A to δ , H.

Let us take the following example: a star is observed by an observer at latitude 52◦ N to have an altitude
of 19◦ 20′ 03.64′′ and an azimuth of 283◦ 16′ 15.7′′. What are its hour angle and declination? If the observer
is on the Greenwich meridian and the GST is 0h 24m 05s, what is the right ascension?

Method Example

1. Convert azimuth to decimal degrees (§21). A = 283.271 028 degrees
2. Convert altitude to decimal degrees (§21). a = 19.334 344 degrees
3. Find sinδ = sinasinφ + cosacosφ cosA. sinδ = 0.394 254
4. Take inverse sin to find δ . δ = 23.219 444 degrees

5. Find cosH = sina−sinφ sinδ
cosφ cosδ . cosH = 0.036 062

6. Take inverse cos to find H ′. H ′ = 87.933 334 degrees
7. Find sinA. sinA = −0.973 295

If negative, the true hour angle is H = H ′. (negative)
If positive, the true hour angle is H = 360−H ′. H = 87.933 334 degrees

8. Convert H into hours by dividing by 15 (§22). H = 5.862 222 hours
9. Convert H and δ into minutes and H = 5h 51m 44s

seconds form (§§8 and 21). δ = 23◦◦◦ 13′′′ 10′′′′′′

Again, step 7 is necessary to remove the ambiguity introduced by taking the inverse of cos. Alternatively,
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calculate the hour angle from

tanH ′ =
y
x

=
−cosacosφ sinA
(sina− sinφ sinδ )

.

H is then found in the correct quadrant by adding 180◦ to H ′ if x is negative, or 360◦ to H ′ if x is positive
and y is negative.

The spreadsheet for converting Horizon to Equatorial coordinates is called HOREQ and is shown in
Figure 27. Please see the notes in the previous section about converting between degrees and radians, and
about using the ATAN2 function to remove the ambiguity on taking the inverse of a trigonometric quantity.

The spreadsheet functions

HorHa(AZD,AZM,AZS,ALD,ALM,ALS,GP) and
HorDec(AZD,AZM,AZS,ALD,ALM,ALS,GP)

will convert the azimuth expressed as degrees, minutes and seconds (AZD, AZM, AZS) and altitude also

Figure 27. Converting horizon to equatorial coordinates.
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expressed as degrees, minutes and seconds (ALD, ALM, ALS) into the corresponding hour angle in decimal
hours and declination in decimal degrees respectively. The last argument, GP, is the observer’s geographical
latitude in decimal degrees (south negative). You can try these functions for yourself by first saving a copy
of the spreadsheet HOREQ (in case you want it again), second deleting rows 11 to 24 inclusive, and third
inserting the following formulas into cells H3–H8:

=DDDeg(HorHa(C3,C4,C5,C6,C7,C8,C9))
=DDMin(HorHa(C3,C4,C5,C6,C7,C8,C9))
=DDSec(HorHa(C3,C4,C5,C6,C7,C8,C9))
=DDDeg(HorDec(C3,C4,C5,C6,C7,C8,C9))
=DDMin(HorDec(C3,C4,C5,C6,C7,C8,C9))
=DDSec(HorDec(C3,C4,C5,C6,C7,C8,C9)).

The second part of the problem, converting the hour angle into the right ascension, was covered in Sec-
tion 24. By applying the method shown there, you should obtain the result that the right ascension is
18h 32m 21s. Looking in our star atlas (see Bibliography on page 208), we find a sixth-magnitude star in
the constellation of Hercules listed near this position.

27 Ecliptic to equatorial coordinate conversion

The ecliptic longitude, λ , and the ecliptic latitude, β , may be converted into right ascension, α , and decli-
nation, δ , using the formulas:

α = tan−1
{

sinλ cosε − tanβ sinε
cosλ

}
,

δ = sin−1 {sinβ cosε + cosβ sinε sinλ} ,

where ε is the obliquity of the ecliptic, the angle between the planes of the equator and the ecliptic. This
angle changes slowly with time and for high accuracy the appropriate value should be used. If, for example,
α and δ are referred to the standard epoch of 2000.0 (see Section 34), then ε should have its 2000.0 value.
In the examples given here and in the following section, we make the calculation for a given Greenwich
calendar date. Since the value of ε changes so slowly, it is often sufficient to find its value in the middle of
a given year and use that in all calculations for that year. The method of calculating the mean obliquity of
the ecliptic for any date is given by the equation

ε = 23◦ 26′ 21.45′′ −46.815′′T −0.0006′′T 2 +0.00181′′T 3,

where T is the number of Julian centuries since epoch 2000 January 1.5 (Julian date 2 451 545.0). For
example, what was the mean obliquity of the ecliptic on Greenwich calendar date 6 July 2009?
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Method Example

1. Calculate the Julian date (§4). JD = 2 455 018.5
2. Subtract 2 451 545.0 (= JD for 2000 January 1.5). MJD = 3 473.5 days
3. Divide by 36 525.0. The result is T . T = 0.095 099 247 centuries
4. Calculate DE = 46.815T +0.0006T 2 −0.00181T 3. DE = 4.452 075 122 arcsec
5. Divide by 3600 to convert to degrees. DE = 0.001 236 688 degrees
6. Subtract DE from 23.439 292 to find ε . ε = 23.438 055 31 degrees
7. If necessary, convert to degrees, minutes and seconds (§21). ε = 23◦◦◦ 26′′′ 17′′

The spreadsheet Obliq, Figure 28, will make this calculation. We have also provided the spreadsheet
function Obliq(D,M,Y), which returns the mean obliquity of the ecliptic calculated for the Greenwich cal-
endar date, D days, M months and Y years. Whenever you need the obliquity in a spreadsheet, you could
therefore insert the formula =Obliq(C3,C4,C5) where, for example, the day, month and year were in the cells
C3, C4, C5 respectively. For very precise calculations, you also want to make allowance for nutation (see
Section 35) by adding the result of the function NutatObl(D,M,Y). The spreadsheet function Obliq already
adds in this correction for you so you do not need to do so separately.

Having obtained the value of the obliquity of the ecliptic, we are now in a position to convert ecliptic
coordinates into equatorial coordinates. Our example this time is: what were the right ascension and the
declination of a planet whose ecliptic coordinates were longitude 139◦ 41′ 10′′ and latitude 4◦ 52′ 31′′ on 6
July 2009?

Figure 28. Calculating the mean obliquity of the ecliptic.
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Method Example

1. Convert λ and β into decimal degrees (§21). λ = 139.686 111 degrees
β = 4.875 278 degrees

2. Find sinδ = sinβ cosε + cosβ sinε sinλ sinδ = 0.334 383
(with ε = 23.438 055 degreesa).

3. Take inverse sin to find δ in decimal degrees. δ = 19.535 003 degrees
4. Find y = sinλ cosε − tanβ sinε . y = 0.559 666
5. Find x = cosλ . x = −0.762 512
6. Find α ′ = tan−1

( y
x

)
. α ′ = −36.277 799 degrees

7. We have to remove the ambiguity which arises from taking x negative
the inverse tan. The rule is that α should lie in the y positive
quadrant indicated by the signs of x and y in Figure 29. ∴ α = α ′ +180.0
Add or subtract 180 or 360 to α ′ to bring it into the correct = 143.722 173 degrees
quadrant, unless it is already there, in which case α = α ′.

8. Convert α to hours by dividing by 15 (§22). α = 9.581 478 hours
9. Convert α and δ to minutes and α = 9h 34m 53.32s

seconds form (§§21 and 8). δ = 19◦◦◦ 32′′′ 6...01′′′′

aIncludes the nutation correction.

The spreadsheet for carrying out this calculation is shown in Figure 30 and is called ECEQ, short for
Ecliptic coordinates to Equatorial coordinates conversion. The corresponding spreadsheet functions are
EcRA and EcDec, returning the right ascension and declination in decimal degrees respectively. Each
function takes the same nine arguments which are the ecliptic longitude as degrees, minutes, seconds, the
ecliptic latitude as degrees, minutes, seconds, and the Greenwich calendar date as day, month, year. Thus
you could replace the calculation part of the spreadsheet shown in Figure 30 using this function as follows.
Save a copy of the spreadsheet, then delete rows 13 to 27 inclusive, and finally insert the following formulas
into cells H3 to H8 respectively:

=DHHour(DDDH(EcRA(C3,C4,C5,C6,C7,C8,C9,C10,C11)))
=DHMin(DDDH(EcRA(C3,C4,C5,C6,C7,C8,C9,C10,C11)))
=DHSec(DDDH(EcRA(C3,C4,C5,C6,C7,C8,C9,C10,C11)))
=DDDeg(EcDec(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDMin(EcDec(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDSec(EcDec(C3,C4,C5,C6,C7,C8,C9,C10,C11)).
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y positivey positive
x positive

x positive

0° (360°)(–180°) 180°
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x negative

x negative
y negative y negative

Figure 29. Removing the ambiguity on taking tan−1 (y/x).

Figure 30. Converting from ecliptic to equatorial coordinates.
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28 Equatorial to ecliptic coordinate conversion

The reverse problem of the previous section is to find the celestial longitude and latitude, λ and β , given
the right ascension and declination, α and δ . The formulas are:

λ = tan−1
{

sinα cosε + tanδ sinε
cosα

}
,

β = sin−1 {sinδ cosε − cosδ sinε sinα} ,

where ε is the obliquity of the ecliptic (see Section 27). These formulas are very nearly identical to those of
the previous section with λ , β in place of α , δ and vice-versa; the symmetry is not quite complete, however,
as the sign appearing in each formula is reversed.

Consider the example: what are the ecliptic coordinates of a planet whose right ascension and declination
are given as α = 9h 34m 53.32s and δ = 19◦ 32′ 6.01′′ when the Greenwich calendar date is 6 July 2009?

Method Example

1. Convert α and δ into decimal degrees δ = 19.535 003 degrees
(§§21, 22 and 7). α = 143.722 167 degrees

2. Find sinβ = sinδ cosε − cosδ sinε sinα sinβ = 0.084 987
(with, in 2009, ε = 23.438 055 degreesa).

3. Take inverse sin to find β in decimal degrees. β = 4.875 276 degrees
4. Find y = sinα cosε + tanδ sinε . y = 0.684 007
5. Find x = cosα . x = −0.806 157
6. Calculate λ ′ = tan−1

( y
x

)
. λ ′ = −40.313 894 degrees

7. We have to remove the ambiguity which arises from taking x negative
the inverse tan. The rule is that λ should lie in the y positive
quadrant indicated by the signs of x and y in Figure 29. ∴ λ = λ ′ +180
Add or subtract 180 or 360 to bring it into the correct = 139.686 106 degrees
quadrant, unless it is already there, in which case, λ = λ ′.

8. Convert λ and β to minutes and λ = 139◦◦◦ 41′′′ 9...98′′′′′′

seconds form (§§21 and 8). β = 4◦◦◦ 52′′′ 30...99′′′′′′

aIncludes the nutation correction.

Figure 31 shows the spreadsheet for this conversion, called EQEC (Equatorial to Ecliptic conversion).
The corresponding spreadsheet functions are EqElong and EqElat returning, respectively, the ecliptic longi-
tude and the ecliptic latitude, both in decimal degrees. They each take the same nine arguments, namely the
right ascension in hour, minutes, seconds, the declination in degrees, minutes, seconds, and the Greenwich
calendar date as day, month, year. You could therefore delete rows 13 to 26 inclusive of the spreadsheet
shown in Figure 31 (having saved a copy), and insert into cells H3 to H8 respectively the following formu-
las:

=DDDeg(EqElong(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDMin(EqElong(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDSec(EqElong(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDDeg(EqElat(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDMin(EqElat(C3,C4,C5,C6,C7,C8,C9,C10,C11))
=DDSec(EqElat(C3,C4,C5,C6,C7,C8,C9,C10,C11)).
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Figure 31. Converting from equatorial to ecliptic coordinates.

29 Equatorial to galactic coordinate conversion

Occasionally we need to know the position of a star in relation to the rest of the stars in our Galaxy and to
do this we can use the galactic coordinate system. The conversion formulas are:

b = sin−1 {cosδ cos(27.4◦)cos(α −192.25◦)+ sinδ sin(27.4◦)} ,

l = tan−1
{

sinδ − sinbsin(27.4◦)
cosδ sin(α −192.25◦)cos(27.4◦)

}
+33◦.

The numbers come from the following facts about our Galaxy: north galactic pole coordinates are
α = 192◦ 15′, δ = +27◦ 24′; ascending node of the galactic plane on equator l = 33◦.

The example is: what are the galactic coordinates of a star whose right ascension and declination are
α = 10h 21m 00s and δ = 10◦ 03′ 11′′?
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Method Example

1. Convert α , δ into decimal form δ = 10.053 056 degrees
(§§21 and 7). α = 10.350 000 hours

2. Convert α into degrees by multiplying by 15 (§22). α = 155.250 000 degrees
3. Find sinb = cosδ cos(27.4)× sinb = 0.778 487

cos(α −192.25)+ sinδ sin(27.4).
4. Take inverse sin to find b in degrees. b = 51.122 268 degrees
5. Find y = sinδ − sinbsin(27.4) and y = −0.183 700

note its sign. (negative)
6. Find x = cosδ sin(α −192.25)× cos(27.4) x = −0.526 097

and note its sign. (negative)
7. Divide y by x. y/x = 0.349 174
8. Take inverse tan. Now we have to remove the tan−1

( y
x

)
= 19.247 881 degrees

ambiguity which arises from taking the inverse tan. From Fig. 29:
To do so, look at Figure 29 and add or subtract 180 + 180.0
or 360 to bring the result into the correct quadrant,
unless it is already in the correct quadrant.

9. Add 33 to get l. + 33.0
l = 232.247 881 degrees

10. Convert l and b into minutes and seconds form (§21). l = 232◦◦◦ 14′′′ 52′′′′′′

b = 51◦◦◦ 07′′′ 20′′′′′′

Figure 32 shows the spreadsheet, named EQGAL (Equatorial to Galactic conversion), which will carry
out this conversion. We have also provided spreadsheet functions EqGlong and EqGlat which return the
galactic longitude and latitude respectively, both in decimal degrees. Each function takes the same six
arguments, namely the right ascension in hours, minutes, seconds, and the declination in degrees, minutes,
seconds. The spreadsheet in Figure 32 could be modified to use these functions instead of the calculation
part. To do this, save a copy of the spreadsheet, delete rows 10 to 20, then insert the following formulas
into cells H3 to H8 inclusive:

=DDDeg(EqGlong(C3,C4,C5,C6,C7,C8))
=DDMin(EqGlong(C3,C4,C5,C6,C7,C8))
=DDSec(EqGlong(C3,C4,C5,C6,C7,C8))
=DDDeg(EqGlat(C3,C4,C5,C6,C7,C8))
=DDMin(EqGlat(C3,C4,C5,C6,C7,C8))
=DDSec(EqGlat(C3,C4,C5,C6,C7,C8)).
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Figure 32. Converting from equatorial to galactic coordinates.

30 Galactic to equatorial coordinate conversion

Given the galactic coordinates, l and b, of a star, what are the corresponding equatorial coordinates, α and
δ? To answer this question we need the conversion formulas:

δ = sin−1 {cosbcos(27.4◦)sin(l −33◦)+ sinbsin(27.4◦)} ,

α = tan−1
{

cosbcos(l −33◦)
sinbcos(27.4◦)− cosbsin(27.4◦)sin(l −33◦)

}
+192.25◦,

where both α and δ are expressed in degrees. As an example we shall find the right ascension and declina-
tion of the star whose galactic coordinates are l = 232◦ 14′ 52′′ and b = 51◦ 07′ 20′′.
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Method Example

1. Convert l and b into decimal form (§21). b = 51.122 222 degrees
l = 232.247 778 degrees

2. Find sinδ = cosbcos(27.4)× sinδ = 0.174 560
sin(l −33)+ sinbsin(27.4).

3. Take inverse sin to find δ in degrees. δ = 10.053 087 degrees
4. Find y = cosbcos(l −33) and y = −0.592 576

note its sign. (negative)
5. Find x = sinbcos(27.4)− cosbsin(27.4)sin(l −33) x = 0.786 373

and note its sign. (positive)
6. Divide y by x. y/x = −0.753 556
7. Take inverse tan. We have to remove the tan−1

( y
x

)
= −37.000 075

ambiguity which arises from taking the inverse tan. (already in correct
To do so, look at Figure 29 and add or subtract 180 quadrant)
or 360 to bring the result into the correct quadrant,
unless it is already there.

8. Add 192.25 to find α in degrees. + 192.25
α = 155.249 925 degrees

9. Divide by 15 to find α in hours (§22). α = 10.349 995 hours
10. Convert α and δ to minutes and α = 10h 21m 00s

seconds form (§§21 and 8). δ = 10◦◦◦ 03′′′ 11′′′′′′

The spreadsheet, GALEQ (Galactic to Equatorial conversion), for this calculation is shown in Figure 33.
We have also provided the spreadsheet functions GalRA and GalDec which return the right ascension in
decimal degrees and the declination in decimal degrees respectively. These functions each take the same
six arguments, being the galactic longitude in degrees, minutes and seconds, and the galactic latitude in
degrees, minutes and seconds. If you wish, you can delete rows 10 to 21 of the spreadsheet shown in Figure
33 and insert the following formulas in cells H3 to H8 respectively.

=DHHour(DDDH(GalRA(C3,C4,C5,C6,C7,C8)))
=DHMin(DDDH(GalRA(C3,C4,C5,C6,C7,C8)))
=DHSec(DDDH(GalRA(C3,C4,C5,C6,C7,C8)))
=DDDeg(GalDec(C3,C4,C5,C6,C7,C8))
=DDMin(GalDec(C3,C4,C5,C6,C7,C8))
=DDSec(GalDec(C3,C4,C5,C6,C7,C8))

Don’t forget to save a copy of the original spreadsheet first.
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Figure 33. Converting from galactic to equatorial coordinates.

31 Generalised coordinate transformations

The methods described in Sections 24 to 30 for converting between one coordinate system and another are
quite satisfactory for normal use where you wish to make a single calculation. However, if you have a
computer, or a programmable calculator that can handle matrices, you may be interested in a more general
method of converting between one system and another. You can then write a single program that converts
between any two systems, for example directly from galactic to horizon coordinates, or from horizon to
ecliptic coordinates. The method makes use of matrices, ordered sets of numbers set out in rows and
columns. The method of manipulation of these numbers by the computer is always the same. Conversion
between different coordinate systems is achieved merely by changing the numbers in the matrices.

The matrices which we shall have to deal with are of size 3×3, that is they consist of nine numbers set
out in three rows of three like this:

⎛
⎝a b c

d e f
g h i

⎞
⎠ ,

where each of the letters represents a number. We can specify the whole matrix by an upper-case letter in a
bold sans-serif typeface. Let A represent the above matrix. For example, if b, c, d, f , g and h are all zero,
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and a, e, i are all 1, then

A =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ .

The coordinates of the point that we wish to convert are specified by means of a column vector. This is
really just a simple case of a matrix which has three rows with a single number in each row. If x, y and z are
the elements of the vector, we can write it as

vvv =

⎛
⎝x

y
z

⎞
⎠ ,

where the bold-face, italic lower-case letter vvv represents the vector. Our program simply has to put the
correct numbers into A and vvv, and then multiply them together to form a new column vector www. We can
then extract the new coordinates from www. In symbols we can write this as

www = A . vvv.

The multiplication of vvv by A follows a strict set of rules. Let the elements of www be m, n and p. Then we
have⎛

⎝m
n
p

⎞
⎠ =

⎛
⎝a b c

d e f
g h i

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

where m = ax+by+ cz, n = dx+ ey+ f z and p = gx+hy+ iz. You can remember the rules as follows. To
find the value of the element of the resultant column vector (e.g. n), point with a finger of your left hand to
the first element of the corresponding row in the matrix (in this case d) and point with a finger of your right
hand to the first element of the column vector (x). Multiply the elements together and add up the products
as you move your left hand across the row, and your right hand down the column. All this sounds a bit
complicated, but you’ll soon get the hang of it, and remember that the computer or your calculator will be
doing the manipulating in any case.

Matrices for conversion between (H,δ ) and (A,a), (α,δ ) and (H,δ ), (α,δ ) and (λ ,β ) and between
(l,b) and (α,δ ) are all given in Table 5. If you wish to make transformations between other combinations
of coordinates, say (A,a) and (λ ,β ), either you can do so by repeated operations using the given matrices,
or you can form a new matrix first, and then use it. For example, let us convert from ecliptic coordinates
(λ ,β ), represented by vvv, to horizon coordinates (A,a), represented by www. This can be written as

www = A . B . C′ . vvv.

You would carry out the operations as follows. First multiply C′ and vvv to form a new column vector sss. Then
multiply B and sss to form a second column vector rrr. Finally, multiply A and rrr to find www. Note that the order
in which you carry out the operations is important. A . B is not necessarily the same as B . A.

The alternative method of proceeding is first to make a new matrix E that is the product of A . B . C′, and
then use it in a single stage of calculation:

www = E . vvv.
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The rules for multiplying two matrices are similar to those for multiplying a matrix and a column vector.
Let the elements of A be a, b, c, d, e, f , g, h, i as before, and of B, j, k, l, m, n, o, p, q and r. Then we have

F =

⎛
⎝a b c

d e f
g h i

⎞
⎠ .

⎛
⎝ j k l

m n o
p q r

⎞
⎠ .

Think of F as being made up of three column vectors. Then the first column vector of F is the product of A

and the first column of B, and so on like this:

F =

⎛
⎝(a j +bm+ cp) (ak +bn+ cq) (al +bo+ cr)

(d j + em+ f p) (dk + en+ f q) (dl + eo+ f r)
(g j +hm+ ip) (gk +hn+ iq) (gl +ho+ ir)

⎞
⎠ .

To find E you would need to make two matrix multiplications of this sort.
The other things which we need to know in order to perform all this magic are, first, how to convert a given

pair of coordinates (µ ,ν) into the column vector vvv. Let (µ ,ν) represent any pair, e.g. (A,a) or (l,b), etc.
Then, having done the matrix operations to find www, how do we convert back to the new coordinates (θ ,ψ)?
The procedure is quite simple and is as follows. If (µ ,ν) represent the coordinates to be transformed, then
the column vector vvv is given by

vvv =

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝cos(µ)cos(ν)

sin(µ)cos(ν)
sin(ν)

⎞
⎠ .

Having found www, the new coordinates (θ ,ψ) are extracted from its elements m, n and p using the formulas

www =

⎛
⎝m

n
p

⎞
⎠ ; θ = tan−1

( n
m

)
and ψ = sin−1 (p) .

Let us clarify the methods by means of an example: what are the azimuth (A) and altitude (a) of a planet
whose ecliptic coordinates are longitude 97◦ 38′ 17.228′′ and latitude −17◦ 51′ 28.688′′ for an observer at
geographical latitude 52◦ 10′ 31.0′′ at local sidereal time 5h 9m 21.103s? We shall assume that the obliquity
of the ecliptic is 23◦ 26′ 46.45′′. We do this first by successive matrix multiplications, and then repeat the
calculation using one matrix formed from several others.
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A :

⎛
⎝m

n
p

⎞
⎠

H,δ

=

⎛
⎝−sin(φ) 0 cos(φ)

0 −1 0
cos(φ) 0 sin(φ)

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

A,a

A :

⎛
⎝m

n
p

⎞
⎠

A,a

=

⎛
⎝−sin(φ) 0 cos(φ)

0 −1 0
cos(φ) 0 sin(φ)

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

H,δ

B :

⎛
⎝m

n
p

⎞
⎠

H,δ

=

⎛
⎝cos(ST) sin(ST) 0

sin(ST) −cos(ST) 0
0 0 1

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

α,δ

B :

⎛
⎝m

n
p

⎞
⎠

α,δ

=

⎛
⎝cos(ST) sin(ST) 0

sin(ST) −cos(ST) 0
0 0 1

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

H,δ

C :

⎛
⎝m

n
p

⎞
⎠

λ ,β

=

⎛
⎝1 0 0

0 cos(ε) sin(ε)
0 −sin(ε) cos(ε)

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

α,δ

C′ :

⎛
⎝m

n
p

⎞
⎠

α,δ

=

⎛
⎝1 0 0

0 cos(ε) −sin(ε)
0 sin(ε) cos(ε)

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

λ ,β

where φ is the geographical latitude, ST is the local sidereal time (expressed in radians or degrees) and ε is the
obliquity of the ecliptic. The matrices for converting between galactic and equatorial coordinates are constant and
best expressed by decimal numbers as follows:

D :

⎛
⎝m

n
p

⎞
⎠

l,b

=

⎛
⎝−0.0669887 −0.8727558 −0.4835389

0.4927285 −0.4503470 0.7445846
−0.8676008 −0.1883746 0.4601998

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

α,δ

D′ :

⎛
⎝m

n
p

⎞
⎠

α,δ

=

⎛
⎝−0.0669888 0.4927285 −0.8676008
−0.8727557 −0.4503469 −0.1883746
−0.4835389 0.7445846 0.4601998

⎞
⎠ .

⎛
⎝x

y
z

⎞
⎠

l,b

The column vector x, y, z is formed from the coordinates (µ ,ν) as follows:

vvv :

⎛
⎝x

y
z

⎞
⎠

µ,ν

=

⎛
⎝cos(µ)cos(ν)

sin(µ)cos(ν)
sin(ν)

⎞
⎠ .

The new coordinates (θ ,ψ) are extracted from the column vector m, n, p by means of the equations:

θ = tan−1
( n

m

)
; ψ = sin−1 (p) .

Table 5. Matrix conversions.
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First method Example

1. Convert λ and β into decimal λ = 97.638 119 degrees
form (§§7 and 21). β = −17.857 969 degrees

2. Form the column vector vvv using
the equations given in Table 5. vvv =

⎛
⎝−0.126512

0.943374
−0.306658

⎞
⎠

3. Convert ε to degrees and construct ε = 23.446 236 degrees
the matrix C′ (see Table 5).

C′ =

⎛
⎝1.0 0.0 0.0

0.0 0.917434 −0.397888
0.0 0.397888 0.917434

⎞
⎠

4. Multiply C′ and vvv to form
column vector sss. sss =

⎛
⎝−0.126512

0.987499
0.094019

⎞
⎠

5. Convert the local sidereal time into ST = 5.155 862 hours
hours, and then into degrees by ST = 77.337 930 degrees
multiplying by 15. Construct the
matrix B (see Table 5).

B =

⎛
⎝0.219200 0.975680 0.0

0.975680 −0.219200 0.0
0.0 0.0 1.0

⎞
⎠

6. Multiply B and sss to form
column vector rrr. rrr =

⎛
⎝ 0.935752
−0.339895

0.094019

⎞
⎠

7. Convert the geographical latitude
to degrees and construct the φ = 52.175 278 degrees
matrix A (see Table 5).

A =

⎛
⎝−0.789890 0.0 0.613248

0.0 −1.0 0.0
0.613248 0.0 0.789890

⎞
⎠

8. Multiply A and rrr to find column
vector www. www =

⎛
⎝−0.681485

0.339895
0.648113

⎞
⎠

9. Find the azimuth, A, and altitude, a, tan−1
( n

m

)
= −26.508 056 degrees

from the elements of www (see Table 5). + 180.0 (from Fig. 29)
Remove the ambiguity on taking ∴ A = 153.491 944 degrees
inverse tan: look at Figure 29 and a = sin−1 (p)
add or subtract 180 or 360 to bring = 40.399 444 degrees
the result into the correct quadrant.

10. Convert A and a into degrees, A = 153◦◦◦ 29′′′ 31′′′′′′

minutes and seconds form (§21). a = 40◦◦◦ 23′′′ 58′′′′′′
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Second method Example

1. Convert λ and β into decimal λ = 97.638 119 degrees
form (§§7 and 21). β = −17.857 969 degrees

2. Form the column vector vvv using
the equations given in Table 5. vvv =

⎛
⎝−0.126512

0.943374
−0.306658

⎞
⎠

3. Convert ε to degrees and construct ε = 23.446 236 degrees
the matrix C′ (see Table 5).

C′ =

⎛
⎝1.0 0.0 0.0

0.0 0.917434 −0.397888
0.0 0.397888 0.917434

⎞
⎠

4. Convert the local sidereal time into ST = 5.155 862 hours
hours, and then into degrees by ST = 77.337 930 degrees
multiplying by 15. Construct the
matrix B (see Table 5).

B =

⎛
⎝0.219200 0.975680 0.0

0.975680 −0.219200 0.0
0.0 0.0 1.0

⎞
⎠

5. Multiply B and C′ to form a new
matrix F.

F = B . C′ =

⎛
⎝0.219200 0.895122 −0.388212

0.975680 −0.201102 0.087217
0.0 0.397888 0.917434

⎞
⎠

6. Convert the geographical latitude
to degrees and construct the φ = 52.175 278 degrees
matrix A (see Table 5).

A =

⎛
⎝−0.789890 0.0 0.613248

0.0 −1.0 0.0
0.613248 0.0 0.789890

⎞
⎠

7. Multiply A and F to form a new
matrix E.

E = A . F =

⎛
⎝−0.173144 −0.463044 0.869259
−0.975680 0.201102 −0.087217

0.134424 0.863220 0.486602

⎞
⎠

8. Multiply E and vvv to find column
vector www. www =

⎛
⎝−0.681485

0.339895
−0.648113

⎞
⎠

9. Find the azimuth, A, and altitude, a, tan−1
( n

m

)
= −26.508 056 degrees

from the elements of www (see Table 5). + 180.0 (from Fig. 29)
Remove the ambiguity on taking ∴ A = 153.491 944 degrees
inverse tan: look at Figure 29 and a = sin−1 (p)
add or subtract 180 or 360 to bring = 40.399 444 degrees
the result into the correct quadrant.

10. Convert A and a into degrees, A = 153◦◦◦ 29′′′ 31′′′′′′

minutes and seconds form (§21). a = 40◦◦◦ 23′′′ 58′′′′′′

We have not included a spreadsheet or spreadsheet functions to carry out generalised coordinate trans-
formations.
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32 The angle between two celestial objects

Sometimes it is of interest to know what is the angle between two objects in the sky, and this can be
calculated very easily provided their equatorial coordinates (α,δ ) or ecliptic coordinates (λ ,β ) are known.
The formula is:

cosd = sinδ1 sinδ2 + cosδ1 cosδ2 cos
(
α1 −α2

)
or

cosd = sinβ1 sinβ2 + cosβ1 cosβ2 cos
(
λ1 −λ2

)
,

where d is the angle between the objects whose coordinates are α1, δ1 (or λ1, β1) and α2, δ2 (or λ2, β2).
These formulas are exact and mathematically correct for any values of α , δ or λ , β . However, when d
becomes either very small, or close to 180◦, your calculator may not have enough precision to return the
correct answer, in which case a better expression is

d =
√

(cosδ ×∆α)2 +∆δ 2

or

d =
√

(cosβ ×∆λ )2 +∆β 2,

where ∆α , ∆δ (or ∆λ , ∆β ) are the differences in the two coordinates (i.e. ∆α = α1 −α2, etc.). These
expressions may be used for values of d within about 10 arcmin of 0◦ or 180◦. Both ∆α (∆λ ) and ∆δ (∆β )
must be expressed in the same units (e.g. arcseconds) and d will then be returned in those units.

For example, what is the angular distance between the stars β Orionis (α = 5h 13m 31.7s;
δ = −8◦ 13′ 30′′) and α Canis Majoris (α = 6h 44m 13.4s; δ = −16◦ 41′ 11′′)?

Method Example

1. Convert both sets of coordinates to α1 = 5.225 472 hours
decimal form (§§7 and 21). δ1 = −8.225 000 degrees

α2 = 6.737 056 hours
δ2 = −16.686 389 degrees

2. Find α1 −α2, and convert to degrees α1 −α2 = −1.511 583 hours
by multiplying by 15 (§22). = −22.673 750 degrees

3. Calculate cosd = sinδ1 sinδ2+ cosδ1 cosδ2 cos
(
α1 −α2

)
. cosd = 0.915 846

4. Take inverse cos to find d. Convert to d = 23.673 850 degrees
minutes and seconds form if required (§21). = 23◦◦◦ 40′′′ 26′′′′′′

The spreadsheet, labelled Angle, is shown in Figure 34. It can use coordinates expressed either in equa-
torial or ecliptic form, specified via a switch in cell C15. Set this to H (as here) if the coordinates are α , δ
(i.e. α is in Hours, minutes and seconds) or D if the coordinates are λ , β (i.e. λ is in Degrees, minutes and
seconds). The corresponding spreadsheet function is also called Angle, and it takes the same 13 arguments
as entered in the spreadsheet in cells C3 to C15, i.e. the right ascension/longitude of the first object ex-
pressed in hours/degrees, minutes, seconds, the declination/latitude of the first object expressed in degrees,
minutes and seconds, the same again for the second object, and finally the character H or D specifying the
coordinate format.
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Figure 34. Finding the angle between two celestial objects.

Thus you could delete rows 17 to 29 of the spreadsheet shown in Figure 34 (having saved a copy), and
insert into cells H3, H4 and H5 the following formulas:

=DDDeg(Angle(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15))

=DDMin(Angle(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15))

=DDSec(Angle(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15)).

33 Rising and setting

During the course of a sidereal day, the stars and other ‘fixed’ celestial objects appear to move in circles
about the rotation axis of the Earth, making one complete revolution in 24 hours. At the moment, there
is a star called Polaris very close to the north pole of the Earth’s axis so that stars in the northern sky
appear to revolve about Polaris. There is nothing special about this star, however, and no corresponding
object exists for the south pole. In any case, the poles are gradually changing their positions in the sky
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because of precession (see the next section) so that Polaris will no longer be the pole star in a few thousand
years.

The apparent radius of a star’s rotation depends, of course, on the angular separation, or polar distance,
between it and the pole; those stars with a small enough polar distance never dip below the horizon during
the course of their rotation. Such stars are called circumpolar. As the polar distance increases, however, a
point comes when the star just touches the horizon at some time during the day. Stars with polar distances
greater than this spend part of their time below the horizon, out of sight to the observer. When the star
crosses the horizon on the way down it is said to set and as it reappears it is said to rise.

There are several effects, including atmospheric refraction (Section 37) and parallax (for bodies relatively
close to the Earth: Sections 38 and 39), that shift an object’s apparent position and this may alter the
apparent times of rising or setting by several minutes. The situation at rising or setting is shown in Figure
35. The celestial body appears to cross the horizon at B, although its ‘true’ position, as calculated from its
uncorrected coordinates, is at A. Provided we know the vertical shift†, v, we can include its effects on the
circumstances of rising and setting.

The local sidereal times of rising and setting, and the azimuths at which they occur, can be calculated
using the formulas

cosH = − (sinv+ sinφ sinδ )
cosφ cosδ

,

LSTr = α −H,

LSTs = α +H,

cosAr =
sinδ + sinvsinφ

cosvcosφ
,

As = 360◦ −Ar,

Figure 35. The true and apparent positions of a celestial object at rising or setting.

†v is positive if the star stays longer above the horizon.
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where the subscripts r and s correspond to rising and setting respectively, A is the azimuth, LST is the local
sidereal time in hours, α is the right ascension, δ is the declination, φ is the observer’s geographical latitude
and H is the hour angle. The value of cosH can be used as an indicator of whether the star never rises, or is
circumpolar. If cosH is greater than 1, the star is permanently below the horizon and never rises. If cosH
is more negative than −1, the star is permanently above the horizon and never sets (i.e. is circumpolar).

The LST can be converted to UT and hence to the local civil time by the methods given in Sections 15,
13 and 10. Hence, all the circumstances of a star’s rising and setting can be calculated. However, there
is a difficulty that you may need to overcome if you live far away from the Greenwich meridian. In order
to convert the Greenwich sidereal time into the UT, you need to know the calendar date at Greenwich on
which the rising or setting occurs. But in order to find this from your local calendar date you need to know
the UT at which the rising or setting occurs. This difficulty is easily overcome however. If you take the date
at Greenwich to be the same as your local calendar date, the times of rising and setting will usually not be
more than a few minutes out. You can then use those times to recalculate the calendar date(s) at Greenwich
and iterate until there are no further changes.

As an example, let us calculate the UTs of rising and setting over a sea horizon of a star whose equatorial
coordinates are α = 23h 39m 20s and δ = 21◦ 42′ 00′′ on 24 August 2010, and find the corresponding az-
imuths. The geographical latitude is 30◦ N, and the longitude is 64◦ E, and the value of v due to atmospheric
refraction is 34 arcmin.

Method Example

1. Convert α and δ into decimal form α = 23.655558 hours
(§§7 and 21). δ = 21.700000 degrees

2. Find cosH = − (sinv+sinφ sinδ )
cosφ cosδ . cosH = −0.242047

3. If cosH is between −1 and +1, take the inverse cos H = 6.933827 hours
to finda H.

4. Find LSTr = α −H. Restore to the range 0 to 24 LSTr = 16.721728 hours
by adding or subtracting 24.

5. Find LSTs = α +H. Restore to the range 0 to 24 LSTs = 6.589383 hours
by adding or subtracting 24.

6. Find Ar = cos−1
{

sinδ+sinvsinφ
cosvcosφ

}
. Restore to the range Ar = 64...362348 degrees

0 to 360 by adding or subtracting 360.
7. Find As = 360−Ar. As = 295...637652 degrees
8. Convert the LST values to GST values, then to UTr = 14.271670 hours

universal times (§§15 and 13). UTs = 4.166990 hours
9. Finally, express the times as hours, minutes and seconds UTr = 14h 16m

(§8). UTs = 4h 10m

aIf the star’s declination is such that it never rises above the horizon, or if it is circumpolar, then you will find that you
will be trying to take inverse cos of a number greater than 1 or less than −1. This is impossible and your calculator
should respond with ‘error’.

Note that the UTs you calculate are appropriate for the date you have applied. As here, the setting time on
a given date may be earlier than the rising time.

Figure 36 shows the spreadsheet for making this lengthy calculation. We have used several techniques
that are worthy of note. First, in rows 29 and 30, we have used the trick of adding 30 s (= 0.008 333 hours)
to the UTs so that, when displayed as hours and minutes, the time will be rounded correctly to the nearest
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Figure 36. Finding the circumstances of rising and setting.

minute. If the seconds part is less than 30, then adding 30 s will not take the result over the minute boundary
and the minutes part will be unaffected. If the seconds part is 30 or more, then adding 30 s will cause the
minutes part to increment by 1, as required when rounding to the nearest minute.

Second, we have used cosH as an indicator of whether the star is circumpolar, or never rises. In cell
H3, we use an IF formula to return a status word. This is OK if the star rises and sets, ** never rises if it
is permanently below the horizon, and ** circumpolar if it never sets. We then test the status word in cells
G4 to G7, and H4 to H7, not displaying anything in these cells unless the status word is OK. This avoids
rather ugly error messages appearing in the output cells when there is no rising and setting. Note that the
formulas in cells G4 to G7 are displayed in cells H9 to H12. Finally, we have used the spreadsheet formula
=CONCATENATE(a,b,c,. . . ) in cells H4 and H5 to display the time formatted as hh:mm. The formula
interprets each of its arguments a, b, c,. . . as text, strings them all together without any spaces in between,
and displays the result. Thus =CONCATENATE(DHHour(C29),'':'',DHMin(C29)) displays the hour part of
the time contained in cell C29, then a colon, then the minute part.

There are five spreadsheet functions provided for this calculation. Each takes eight arguments corre-
sponding to the right ascension in hours, minutes, and seconds, the declination in degrees, minutes and
seconds, the vertical shift in decimal degrees, and the geographical latitude in decimal degrees. The func-
tions are RSLSTR, RSLSTS, RSAZR, RSAZS and eRS, returning respectively the local sidereal times of
rising and setting in hours, the azimuths of rising and setting in degrees, and a status word of OK, ** never
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rises, or ** circumpolar as appropriate. Parts of the spreadsheet of Figure 36 could therefore be replaced
with these functions as follows (save a copy first). Delete rows 16 to 21 inclusive, and row 24. Insert the
following spreadsheet formulas into the cells which were C22, C23, C25 and C26:

=RSLSTR(C3,C4,C5,C6,C7,C8,C14,C13)
=RSLSTS(C3,C4,C5,C6,C7,C8,C14,C13)
=RSAZR(C3,C4,C5,C6,C7,C8,C14,C13)
=RSAZS(C3,C4,C5,C6,C7,C8,C14,C13).

Finally, you need to insert =eRS(C3,C4,C5,C6,C7,C8,C14,C13) into cell H3. Try this for yourself.

34 Precession

In Section 18 we found that equatorial coordinates were ideal for fixing the positions of the stars because
they were independent of the Earth’s motion and therefore constant. This is true to quite a high accuracy,
but we find that the coordinates do in fact change slowly with time. This is because of a gyrating motion
of the Earth’s axis. Rather as the rotation axis of a quickly-spinning top revolves slowly about a vertical
line, so the rotation axis of the Earth rotates slowly about a fixed direction in space. The motion is called
luni-solar precession, or precession of the equinoxes, and it is caused by the gravitational effects of the
Moon and Sun on the Earth. We need not be worried by the details. It is sufficient to say that the effect is
small over periods of a few years, the north pole of the Earth making one complete circuit in 25 800 years,
but for high precision we must be able to allow for it. In this section you will find two methods of doing
so. The first, which is suitable for most purposes (i.e. precession over periods of a few tens of years), is an
approximate method that is quite easy to apply. The second is a rigorous method, correct for long or short
periods, which uses matrices (see Section 31 for a description of the use of matrices).

Low-precision method

The coordinates α and δ of the stars and galaxies are given in catalogues correct at some particular time
or epoch. The ones you are quite likely to see at present will be correct at the epoch 1950.0 (strictly 1950
January 0.923) or 2000.0 (2000 January 1.5). For example, you can convert coordinates from their 1950.0
values to the values they will have at some other date using the formulas:

α1 = α0 +
(
3s.07327+1s.33617sinα0 tanδ0

)
×N,

δ1 = δ0 +
(
20′′.0426cosα0

)
×N,

where N is the number of years since 1950.0, α0 and δ0 are the coordinates at 1950.0, and α1 and δ1 are the
new coordinates. These formulas may not work well for regions around the north and south poles where
the magnitude of tanδ tends towards infinity. You must use the rigorous method (see below) in such cases.

To convert from coordinates given at an epoch other than 1950.0, use the following formulas with the
values of m, n and n′ given in Table 6:

α1 = α0 +
(
m+nsinα0 tanδ0

)
×N,

δ1 = δ0 +
(
n′ cosα0

)
×N.
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m n n′

Epoch (seconds) (seconds) (arcsec)

1900.0 3.072 34 1.336 45 20.046 8
1950.0 3.073 27 1.336 17 20.042 6
2000.0 3.074 20 1.335 89 20.038 3
2050.0 3.075 13 1.335 60 20.034 0

Table 6. Precessional constants.

For our example we shall work out the 1979.5 coordinates of a star whose 1950.0 coordinates were α0 =
9h 10m 43s and δ0 = 14◦ 23′ 25′′.

Method Example

1. Convert α0, δ0 into decimal form (§§21 and 7). αh
0 = 9.178 611 hours

δ0 = 14.390 278 degrees

2. Convert α0 to degrees by multiplying by 15 (§22). αd
0 = 137.679 167 degrees

3. Find S1 =
(
3.07327+1.33617sinαd

0 tanδ0

)
×N S1 = 97.470 656 seconds

(where N = 1979.5−1950.0 = 29.5).

4. Divide by 3600 to convert to hours. Sh
1 = 0.027 075 hours

5. Add Sh
1 to αh

0 to get αh
1 . αh

1 = 9.205 686 hours
6. Convert to hours, minutes and seconds (§8). α1 = 9h 12m 20s
7. Find S2 =

(
20.0426cosαd

0

)
×N. S2 = −437.167 123 arcsec

8. Divide by 3600 to convert to degrees. Sd
2 = −0.121 435 degrees

9. Add Sd
2 to δ0 to get δ1. δ1 = 14.268 842 degrees

10. Convert to degrees, minutes and seconds (§21). δ1 = 14◦◦◦ 16′′′ 08′′′′′′

Figure 37 shows the spreadsheet for carrying out the low-precision method, called Precess1. It differs
slightly from the method given in the table in that it calculates the precession constants explicitly in rows
19 and 20 rather than looking them up in the table. The small differences in the answers are also in part
caused by rounding errors. The spreadsheet functions provided for this section use the rigorous method (see
below).

Rigorous method

The rigorous reduction of coordinates from one epoch to another makes use of matrices. These were
described in Section 31, and if you are not familiar with them, you should read and understand that section
first.

The method proceeds in two parts. First, we convert the given coordinates α1, δ1, which are appropriate
to date (or epoch) number 1, into the corresponding coordinates of 2000.0, i.e. 2000 January 1.5, epoch 0.
Second, we convert from epoch 0 to the required date, epoch 2.
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Figure 37. Low-precision precession.

We begin by calculating the precessional variables ζA, zA and θA, for the date at which the coordinates
are specified (epoch 1). These are given in degrees by the following formulas:

ζA = 0.6406161T + 0.0000839T 2 + 0.0000050T 3,

zA = 0.6406161T + 0.0003041T 2 + 0.0000051T 3,

θA = 0.5567530T − 0.0001185T 2 − 0.0000116T 3,

where T is the number of Julian centuries of 36 525 days at epoch 1 since the epoch J2000.0. The value of
T may be calculated from

T =
(JD1−2451545)

36525
,

where JD1 is the Julian date of epoch 1. We then construct the matrix P′ which allows us to convert the
coordinates from epoch 1 to epoch 0. The matrix P′ is given by

P′ =

⎛
⎝ CX ·CT ·CZ −SX ·SZ CX ·CT ·SZ +SX ·CZ CX ·ST
−SX ·CT ·CZ −CX ·SZ −SX ·CT ·SZ +CX ·CZ −SX ·ST

−ST ·CZ −ST ·SZ CT

⎞
⎠

where CX = cosζA, SX = sinζA, CZ = coszA, SZ = sinzA, CT = cosθA, and ST = sinθA. We next calculate
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the column vector, vvv, corresponding to the coordinates at epoch 1, α1 and δ1, from

vvv =

⎛
⎝x

y
z

⎞
⎠

α1,δ1

=

⎛
⎝cosα1 cosδ1

sinα1 cosδ1
sinδ1

⎞
⎠ .

Now we multiply P′ and vvv to form the column vector sss corresponding to the epoch-0 coordinates,

sss = P′ . vvv.

The second part of the process is to convert from epoch 0 to the epoch at which the coordinates are actually
required, epoch 2. We need to repeat the above procedure, calculating values for ζA, zA and θA using T
appropriate to epoch 2 (i.e. use JD2 instead of JD1). Then we construct the matrix P, which is just the
transpose of P′, from

P =

⎛
⎝CX ·CT ·CZ −SX ·SZ −SX ·CT ·CZ −CX ·SZ −ST ·CZ

CX ·CT ·SZ +SX ·CZ −SX ·CT ·SZ +CX ·CZ −ST ·SZ
CX ·ST −SX ·ST CT

⎞
⎠ .

The transpose of a 3×3 matrix is found by interchanging the rows and columns, ‘flipping’ them about the
diagonal. For example, the transpose of⎛

⎝a b c
d e f
g h i

⎞
⎠ is

⎛
⎝a d g

b e h
c f i

⎞
⎠ .

Now, the column vector, www, corresponding to the coordinates at epoch 2, can be found by multiplying P

and sss:

www = P . sss.

Finally, we extract the new coordinates, α2, δ2, from the elements of www using

α2 = tan−1
( n

m

)
and δ2 = sin−1 (p) .

Let us clarify this procedure by repeating the example used for the low-precision method.
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Method Example

1. Find the Julian date corresponding to JD1 = 2 433 282.5
epoch 1 (1,1,1950; §4).

2. Find T = (JD1−2451545)/36525. T = −0.500 000
3. Calculate ζA, zA and θA for JD1 using ζA = −0.320 288 degrees

the formulas given above. zA = −0.320 233 degrees
θA = −0.278 405 degrees

4. Construct the matrix P′.

P′ =

⎛
⎝0.999926 −0.011179 −0.004859

0.011179 0.999938 −0.000027
0.004859 −0.000027 0.999988

⎞
⎠

5. Convert α1 and δ1 into decimal α1 = 137.679 167 degrees
degrees (§§21 and 22). δ1 = 14.390 278 degrees

6. Construct the column vector vvv. x = −0.716 188
y = 0.652 157
z = 0.248 526

7. Multiply P′ and vvv to find sss (§31). sss =

⎛
⎝−0.724633

0.644104
0.245025

⎞
⎠

8. Find the Julian date corresponding to JD2 = 2 444 025.5
epoch 2 (1,6,1979; §4).

9. Calculate T = (JD2−2451545)/36525. T = −0.205 873
10. Now find new values of ζA, zA and θA, ζA = −0.131 882 degrees

appropriate to JD2. zA = −0.131 873 degrees
θA = −0.114 625 degrees

11. Construct the matrix P.

P =

⎛
⎝ 0.999987 0.004603 0.002001
−0.004603 0.999989 −0.000005
−0.002001 −0.000005 0.999998

⎞
⎠

12. Multiply P and sss to find www, m = −0.721 169
corresponding to the coordinates at n = 0.647 432
epoch 2 (§31). p = 0.246 471

13. Find the new coordinates using α2 = −41.916 009 degrees
α2 = tan−1

( n
m

)
and δ2 = sin−1(p). + 180.0

Remove the ambiguity on taking α2 = 138.083 991 degrees
tan−1 by adding or subtracting 180 or δ2 = 14.268 792 degrees
360 according to Figure 29.

14. Convert α2 and δ2 to minutes and α2 = 9h 12m 20.16s
seconds form (§§21 and 22). δ2 = 14◦◦◦ 16′′′ 7.65′′′′′′

You can see that the low-precision method gave quite a good result in this case.
We have not provided a spreadsheet for this calculation. Manipulation of matrices in spreadsheets is

possible, but is a complication that is instead carried out more easily in the background by the spreadsheet
functions Precess2RA and Precess2Dec, which return the right ascension in decimal hours and the dec-
lination in decimal degrees respectively, each corrected for precession using the rigorous method. Both
functions take the same 12 arguments, being the right ascension in hours, minutes and seconds, the declina-
tion in degrees, minutes and seconds, the calendar date at which those coordinates were specified (epoch 1)
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as day, month, year, and finally the calendar date to which the coordinates must be precessed (epoch 2) as
day, month, and year.

We can now simplify the spreadsheet Precess1 and, at the same time, make it more accurate by replacing
the calculation part by these functions. Save a copy of the spreadsheet shown in Figure 37 and delete
rows 16–22 and 24. In the cells which were C23 and C25 (now C16 and C17 after the deletion) insert the
following spreadsheet formulas respectively:

=Precess2RA(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14)

=Precess2Dec(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14).

You should also change the title of the spreadsheet (cell A1) to Rigorous precession and rename the spread-
sheet Precess2.

35 Nutation

The combined gravitational fields of the Sun and the Moon acting on the non-spherical Earth cause the
direction of the Earth’s rotation axis to gyrate slowly with a period of about 25 800 years. We saw how to
allow for this effect, called precession, in Section 34. Superimposed on the regular motion there are also
small additional periodic terms caused by the varying distances and relative directions of the Moon and Sun,
which continuously alter the strength and direction of the gravitational field. This slight wobbling motion
is called nutation, and can be taken into account by calculating its effects on ecliptic longitude, ∆ψ , and on
the mean obliquity of the ecliptic, ∆ε .

The method described here uses the pre-1984 theory of nutation. We consider only the most important
terms to achieve an accuracy of about half an arcsecond. We first calculate the number of Julian centuries,
T , on the date in question since 1900 January 0.5 using

T =
JD−2415020.0

36525
,

where JD is the Julian date. Note that this definition of T is different from that in other parts of the
book where the fundamental epoch 2000 January 1.5 is used. Next, we find the values of the Sun’s mean
longitude, L, and the longitude of the Moon’s ascending node, �, from the formulas

L = 279.6967+360.0× (A− INT(A)) degrees,

where

A = 100.002136×T,

and

� = 259.1833−360.0× (B− INT(B)) degrees,

where

B = 5.372617×T.

(See Section 4 about the meaning of INT.) The effects of nutation on the ecliptic longitude and obliquity of
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the ecliptic are then given by

∆ψ = −17.2sin(�) − 1.3sin(2L) arcsec,
∆ε = 9.2cos(�) + 0.5cos(2L) arcsec.

As an example we calculate the nutation on l September 1988.

Method Example

1. Find the Julian day number for this calendar date. JD = 2 447 405.5
2. Calculate T = (JD−2 415 020.0)/36 525.0. T = 0.886 667
3. Find A = 100.002136T . A = 88.668 560
4. Calculate the Sun’s mean longitude L = 160.378 686 degrees

L = 279.6967+360.0(A− INT(A)).
Reduce to the range 0 to 360 if necessary by
adding or subtracting multiples of 360.

5. Find B = 5.372617T . B = 4.763 720
6. Calculate the Moon’s node � = 344.243 954 degrees� = 259.1833−360.0(B− INT(B)).

Reduce to the range 0 to 360 if necessary by
adding or subtracting multiples of 360.

7. Calculate nutation in longitude ∆ψ = 5.5′′′′′′

∆ψ = −17.2sin(�)−1.3sin(2L).
8. Calculate nutation in obliquity ∆ε = 9.2cos(�)+0.5cos(2L). ∆ε = 9.2′′′′′′

The Astronomical Almanac gives the values ∆ψ = 5.1′′ and ∆ε = 9.2′′ for this date, so we are well within
the accuracy claimed for this method of half an arcsecond. ∆ψ must be added to the ecliptic longitude, and
∆ε to the mean obliquity, to allow for nutation.

The spreadsheet for making this calculation is shown in Figure 38. It gives the small amounts to be
added to the ecliptic longitude and the mean obliquity of the ecliptic in degrees in cells H3 and H4. The
corresponding quantities in arcseconds are in cells C18 and C19. We have also provided the spreadsheet
functions NutatLong(D,M,Y) and NutatObl(D,M,Y) giving, respectively, the nutation amount to be added in
ecliptic longitude and in mean obliquity, both in degrees. Both functions take the calendar date as arguments
expressed as day, month and year (strictly, the calendar date at Greenwich, although your local calendar
date will usually do). Note that when you use the function Obliq (Section 27), the nutation term is already
included in the result so you will hardly ever need to use NutatObl explicitly.

You can use these two functions to simplify the spreadsheet shown in Figure 38. Save a copy in case you
want it later (or you make a mistake and need to start again), then delete rows 7 to 19 (the calculation part),
and insert the following formulas into cells H3 and H4:

=NutatLong(C3,C4,C5)
=NutatObl(C3,C4,C5).
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Figure 38. Calculating nutation in ecliptic longitude and obliquity.

36 Aberration

There are several small effects which must be taken into account to improve the accuracy of our calculations.
One of them is called aberration, and is caused by the speed of the Earth in its orbit around the Sun. Since
light does not travel at infinite speed, the motion of the Earth causes the apparent direction of a celestial body
to be shifted slightly from its true direction, just as rain falling vertically downwards appears to come at an
angle to a cyclist moving through it. The correction is small, amounting to a maximum shift of 20.5 arcsec
(0.000 569 degrees). We can find its effect on the ecliptic longitude, ∆λ , and on the ecliptic latitude, ∆β ,
using the formulas

∆λ = −20.5cos
(

λ�−λ
)/

cosβ arcsec

and

∆β = −20.5sin
(

λ�−λ
)

sinβ arcsec,

where λ and β are the true ecliptic longitude and latitude, and λ� is the ecliptic longitude of the Sun (see
Section 46). The apparent longitude and latitude are then given by

λ ′ = λ +∆λ and β ′ = β +∆β .
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Corrections to the true right ascension, ∆α , and to the declination, ∆δ , of a body can be calculated using
the formulas

∆α = −20.5
cosα cosλ� cosε + sinα sinλ�

cosδ
arcsec,

∆δ = −20.5
[
cosλ� cosε (tanε cosδ − sinα sinδ )+ cosα sinδ sinλ�

]
arcsec,

where α and δ are the true coordinates and ε is the obliquity of the ecliptic (see Section 27). These
corrections must be added to the true coordinates to find the apparent coordinates.

Let’s take as an example the effect of aberration on the position of Mars on 8 September 1988. Its true
ecliptic coordinates were λ = 352◦ 37′ 10.1′′ and β = −1◦ 32′ 56.4′′. The longitude of the Sun on that day
(at 0h TT) was 165◦ 33′ 44.1′′.

Method Example

1. Convert λ , β and λ� to decimal degrees (§21). λ = 352.619 472 degrees
β = −1.549 000 degrees

λ� = 165.562 250 degrees

2. Calculate ∆λ = −20.5cos
(

λ�−λ
)

/cosβ . ∆λ = 20.352 128 arcsec

3. Calculate ∆β = −20.5sin
(

λ�−λ
)

sinβ . ∆β = 0.068 084 arcsec

4. Convert ∆λ and ∆β to degrees by dividing by 3600. ∆λ = 0.005 653 degrees
∆β = 0.000 019 degrees

5. Add the corrections to λ and β to find the λ ′ = 352.625 126 degrees
apparent coordinates. β ′ = −1.548 981 degrees

6. Convert back to minutes and seconds (§21). λ ′ = 352◦◦◦ 37′′′ 30.5′′′′′′

β ′ = −1◦◦◦ 32′′′ 56.3′′′′′′

Notice that ∆β is negligible (much less than 1 arcsecond) for ecliptic latitudes close to zero, as in this case.
Our spreadsheet for this calculation is shown in Figure 39 and is called Aberration. Of special note is

that we have anticipated the method of Section 46 for calculating the ecliptic longitude of the Sun and have
used the spreadsheet function SunLong in row 18. Here, we have also supplied the spreadsheet functions
AbLong and AbLat which return, respectively, the ecliptic longitude in degrees corrected for the effect of
aberration (Aberration in Longitude) and the ecliptic latitude in degrees corrected for the effect of aberration
(Aberration in Latitude). They both take 12 arguments, these being the universal time in hours, minutes and
seconds, the Greenwich calendar date as day, month, year, the true ecliptic longitude in degrees, minutes
and seconds, and the true ecliptic latitude in degrees, minutes and seconds. If you wish, you can therefore
simplify the spreadsheet of Figure 39 (save a copy first) by deleting rows 16 to 22 inclusive, and inserting
the following spreadsheet formulas into cells H3 to H8 inclusive:

=DDDeg(AbLong(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))

=DDMin(AbLong(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))

=DDSec(AbLong(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))

=DDDeg(AbLat(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))

=DDMin(AbLat(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14))

=DDSec(AbLat(C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14)).
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Figure 39. Correcting ecliptic coordinates for the effects of aberration.

37 Refraction

In all our calculations so far, we have assumed that the light from distant objects reaches us by the most
direct route, a straight line. This is not actually the case (except for observations made at the zenith) as the
Earth’s atmosphere bends the light a little, making the rays reach the ground at a slightly different angle
from that which they would have had if the atmosphere had not been there (see Figure 40). This is called
atmospheric refraction and its effect is to make the star appear to be closer to the zenith than it really
is. The amount of refraction depends on the zenith angle or zenith distance (90◦ − altitude) and on the
atmospheric conditions, particularly the temperature and pressure. If we observe a star with zenith angle ζ
from the surface of the Earth, its true zenith angle, z, is given by z = ζ +R, where R is the refraction angle.
An approximate expression for R that is suitable for altitudes above 15◦ is

R = 0.00452P tanz/(273+T ) degrees,

where T is the temperature in degrees centigrade and P is the barometric pressure in millibars, both mea-
sured at the observation point. This formula is usually accurate to about 6 arcsec for altitudes greater than
15◦. At lower altitudes, better results can be obtained using the approximate formula

R =
P

(
0.1594+0.0196a+0.00002a2

)
(273+T )(1+0.505a+0.0845a2)

degrees,

where a is the altitude in degrees.†

†Strictly, a is the apparent altitude as measured through the atmosphere, rather than the true altitude as measured with no atmosphere.
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Figure 40. Atmospheric refraction.

The effect of refraction on true equatorial, ecliptic and galactic coordinates is best computed by first
converting to horizon coordinates, increasing the altitude by adding R, and then converting back to the
original coordinate system to find the apparent position. We will now illustrate this by calculating the
refraction for a star whose true hour angle is 5h 51m 44s and true declination +23◦ 13′ 10′′ as observed at a
geographical latitude of 52◦ N. The temperature is 13◦C and the pressure is 1008 mbar.

Method Example

1. Calculate the true altitude and azimuth of the star (§25). a = 19.334 345 degrees
A = 283.271 027 degrees

2. Find the refraction angle R from the formula appropriate z = 70.665 655 degrees
to the altitude: a > 15◦, R = 0.00452P tanz/(273+T ). R = 0.045 403 degrees

3. Add R to the altitude to find the apparent altitude a′. a′ = 19.379 748 degrees
4. Convert A and a′ back into equatorial coordinates (§26). H ′ = 5h 51m 36s

δ ′ = 23◦◦◦ 15′′′ 14′′′′′′

The magnitude of R right at the horizon is usually assumed to be 34 arcmin. (Its actual value may be
different depending on atmospheric conditions.) Since its effect is to increase the apparent altitude, the
times of rising and setting will be earlier and later, respectively, than they would have been without the
atmosphere. The effective length of the day, therefore, is increased by atmospheric refraction. We can
calculate its effects on the azimuths and times of rising and setting by the method given in Section 33.
Alternatively, we can calculate the effect on the hour angle, H, at rising or setting by

∆H =
34

15cosφ cosδ sinH
minutes of time,

where ∆H is the amount by which the true hour angle is reduced.
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The spreadsheet for calculating the effects of refraction is labelled Refract and is shown in Figure 41.
It goes some way beyond the method given in the method table above in that it handles conversion from
apparent to true coordinates as well as from true to apparent, it converts right ascension and declination,
and it makes use of the spreadsheet function Refract to do the refraction calculation. This function, used
in row 26, takes four arguments, the altitude to be corrected for the effect of refraction, a switch which
is set to TRUE or APPARENT depending on the altitude type, the atmospheric pressure in millibars, and
the atmospheric temperature in degrees centigrade. In the example shown in the spreadsheet, the true right
ascension and declination are converted to the apparent right ascension and declination, this direction being
specified by the text in cell C9. You can check that the conversion in the reverse direction is working
properly by writing down the corrected coordinates on a piece of paper, then inserting them into cells C3
to C8 in place of the true coordinates, and changing the text in cell C9 to APPARENT (actually, anything
which does not begin with T or t will do as the function only looks at the first character). You should see
that the true coordinates appear in the output, cells H3 to H8, correct to the second decimal place in the
seconds part.

Figure 41. Correcting equatorial coordinates for the effects of refraction.
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38 Geocentric parallax and the figure of the Earth

In later sections of this book we calculate the coordinates of the Sun, the Moon and other members of our
Solar System. These coordinates are the ones which would be observed from the centre of the Earth, called
geocentric coordinates, and if the celestial body is at a very great distance from the Earth, they are also the
coordinates which would be measured by anyone on the Earth’s surface. However, objects relatively close
at hand like the Sun, and especially the Moon, appear to be at slightly different positions depending upon
the exact viewpoint of the observer. This is illustrated in Figure 42 where two observers, O1 and O2, are
viewing the Moon, M, from the surface of the Earth, E. Each measures the angle between the Moon and a
very distant star in the direction S. Since this star is so far away the lines of sight to the star, O1S and O2S,
are parallel so that both observers see it in the same place in the sky relative to other stars. However, they do
not measure the same angles, a1 and a2, and hence do not agree about the Moon’s apparent position. If a0
represented, say, the right ascension of the Moon as calculated from the Earth’s centre, then each observer
would have to add a different correction to a0 to get a1 or a2, the apparent right ascension at each place.
This apparent shift of position is known as geocentric parallax and we often need to be able to correct for
it as, for example, when we wish to calculate the circumstances of an eclipse.

The problem is complicated slightly by the fact that the Earth is not quite spherical, but is, instead,
more like a spheroid of revolution, being flattened along the line joining the north and south poles. A
cross-section through the Earth along any line of longitude would be approximately elliptical, while a
cross-section along any line of latitude would be circular. We have to take account of the figure of the
Earth, its deviation from a perfect sphere, if we are to make precise corrections for parallax. The situation
is shown much exaggerated in Figure 43 where the Earth, E, is drawn with its north and south poles, N and
S. An observer at O locates his zenith by means of a plumb line to be along the dashed line OZ; the angle
this makes with the equator defines his geographical or astronomical latitude, φ . Since the Earth is not

Figure 42. Geocentric parallax.
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quite spherical, his geocentric vertical, EZ′, is slightly different and so too is his geocentric latitude, φ ′.
In calculations of the effect of parallax, we need to know the quantities ρ sinφ ′ and ρ cosφ ′, where ρ is the
distance of the observer from the centre of the Earth in units of the Earth’s equatorial radius. For a place
whose height above sea-level is h metres, we have

ρ sinφ ′ = 0.996647sinu+
h

6378140
sinφ ,

ρ cosφ ′ = cosu+
h

6378140
cosφ ,

where

u = tan−1 {0.996647tanφ} .

φ must be reckoned as positive in the northern hemisphere and negative in the southern hemisphere. For
example, let us calculate the values of ρ sinφ ′ and ρ cosφ ′ for an observer whose height above sea-level is
60 metres at longitude 100◦ W and latitude 50◦ N.

Method Example

1. Calculate u = tan−1 {0.996647tanφ}. φ = +50.0 degrees
u = 49.905217 degrees

2. Calculate h′ = h
6378140 . h = 60.0 metres

h′ = 0.000009
3. Calculate ρ sinφ ′ = 0.996647sinu+h′ sinφ . ρ sinφ ′ = 0.762422
4. Calculate ρ cosφ ′ = cosu+h′ cosφ . ρ cosφ ′ = 0.644060

In Figure 43, it is the angle p which is formally called the geocentric parallax. This is the angle between
the observer and the Earth’s centre as seen by the celestial body in question. If the observer views the body
right at his horizon (i.e. the zenith angle = 90◦), then p is called the horizontal parallax. Further, if the
observer is also on the equator, this angle becomes the equatorial horizontal parallax, and is given the
symbol P. (We will meet parallax again in Section 69.) The spreadsheet for parallax calculations is given
in the next section (Figure 44).

Figure 43. Allowing for the figure of the Earth.
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39 Calculating corrections for parallax

If a body has geocentric hour angle, H, and geocentric right ascension, α , then its apparent hour angle, H ′,
and right ascension, α ′ (taking account of parallax), are given by

H ′ = H +∆,

α ′ = α −∆,

with

∆ = tan−1
{

ρ cosφ ′ sinH
r cosδ −ρ cosφ ′ cosH

}
,

where ρ cosφ ′ is the quantity calculated in Section 38 and r is the distance of the body from the centre of
the Earth measured in units of (equatorial) Earth radii, 6378.14 km. If r′ is this distance in kilometres, then

r =
r′

6378.14
.

r can also be found from the equatorial horizontal parallax of the body, P. Thus

r =
1

sinP
.

The formula for finding the apparent declination, δ ′, from the geocentric declination, δ , is

δ ′ = tan−1
{

cosH ′ r sinδ −ρ sinφ ′

r cosδ cosH −ρ cosφ ′

}
.

Again, ρ sinφ ′ and ρ cosφ ′ can be found by the method described in Section 38.
As an example, let us calculate the apparent right ascension and declination of the Moon on 26 February

1979 at 16h 45m UT when observed from a location 60 metres above sea-level on longitude 100◦ W and
latitude 50◦ N. The geocentric coordinates were α = 22h 35m 19s and δ = −7◦ 41′ 13′′, and the Moon’s
equatorial horizontal parallax was 1◦ 01′ 09′′.



86 Coordinate systems

Method Example

1. Convert UT to GST and hence to UT = 16h 45m
LST by the methods of §§12 and 14. GST = 3.145 778 hours

LST = 20.479 111 hours
2. Convert α and δ to decimal form α = 22.588 611 hours

(§§7 and 21). δ = −7.686 944 degrees
3. Find the hour angle, H (§24), H = −2.109 500 hours

and convert to degrees (§22). = −31.642 500 degrees
4. Find ρ cosφ ′ and ρ sinφ ′ (§38). ρ cosφ ′ = 0.644 060

ρ sinφ ′ = 0.762 422
5. Find r = (1/sinP) (remember to P = 1.019 167 degrees

convert P to decimal degrees first (§21)). r = 56.221 228 Earth-radii

6. Calculate ∆ = tan−1
{

ρ cosφ ′ sinH
r cosδ−ρ cosφ ′ cosH

}
. ∆ = −0.350 915 degrees

7. Find H ′ = H +∆. H ′ = −31.994 414 degrees
8. Convert ∆ to hours by dividing by 15 (§22). ∆ = −0.023 394 hours
9. Subtract ∆ from α to find α ′. α ′ = 22.612 005 hours

10. Calculate δ ′ = tan−1
{

cosH ′ r sinδ−ρ sinφ ′

r cosδ cosH−ρ cosφ ′

}
. δ ′ = −8.538 165 degrees

11. Convert α ′ and δ ′ to minutes α ′ = 22h 36m 43s
and second form (§§8 and 21). δ ′ = −8◦◦◦ 32′′′ 17′′′′′′

Such lengthy calculations are strictly only necessary for the Moon which has a very large parallax. The
Sun, planets and comets usually have much smaller values, enabling us to simplify the formulas slightly
without serious loss of accuracy. Let r again denote the distance of the body from the centre of the Earth,
but this time measured in astronomical units (AU). Then

π =
8.794

r
arcsec

and

α ′ = α − π sinH ×ρ cosφ ′

cosδ
,

δ ′ = δ −π
(
ρ sinφ ′ cosδ −ρ cosφ ′ cosH sinδ

)
.

π is the symbol often used for parallax. Take care to distinguish its use for parallax from its use to represent
the circular constant 3.141 592 654.

Let us now calculate the apparent position of the Sun when observed by the same observer at the same
time as in the previous example. The geocentric right ascension of the Sun was 22h 36m 44s and its decli-
nation was −8◦ 44′ 24′′. Its distance was 0.9901 AU.
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Method Example

1. Calculate π = 8.794
r . π = 8.881 931 arcsec

2. Convert to degrees by dividing by 3600. π = 0.002 467 degrees
3. Convert to hours by dividing by 15 (§22). π = 0.000 164 hours
4. Convert UT to GST and hence to GST = 3.145 778 hours

LST by the methods of §§12 and 14. LST = 20.479 111 hours
5. Convert α and δ to decimal form α = 22.612 222 hours

(§§7 and 21). δ = −8.740 000 degrees
6. Find ρ cosφ ′ and ρ sinφ ′ (§38). ρ cosφ ′ = 0.644 060

ρ sinφ ′ = 0.762 422
7. Find the hour angle, H, and H = −2.133 111 hours

convert to degrees (§§24 and 22). = −31.996 666 degrees

8. Calculate ∆1 = π sinHρ cosφ ′

cosδ (π expressed in hours). ∆1 = −0.000 051 hours
9. Subtract from α to get α ′. α ′ = 22.612 279 hours

10. Find ∆2 = π (ρ sinφ ′ cosδ −ρ cosφ ′ cosH sinδ ) ∆2 = 0.002 064 degrees
(π expressed in degrees).

11. Subtract from δ to get δ ′. δ ′ = −8.742 064 degrees
12. Convert α ′ and δ ′ to minutes and α ′ = 22h 36m 44s

seconds form (§§8 and 21). δ ′ = −8◦◦◦ 44′′′ 31′′′′′′

Note that the correction for parallax has had hardly any effect in this case. Except for the Moon, geocentric
parallax can often be ignored. Note also that the Sun and Moon have almost the same apparent positions in
this example; we have chosen the moment of a total solar eclipse (see Section 74).

The calculations of Sections 38 and 39 have been swept up into just one spreadsheet, called Parallax,
shown in Figure 44. Rather than carrying out all the calculations of the last three method tables explicitly,
we have put them into two spreadsheet functions called ParallaxHA and ParallaxDec, returning respectively
the corrected hour angle in decimal hours and the corrected declination in decimal degrees. Each takes
the same ten arguments, these being the hour angle as hours, minutes, seconds, the declination as degrees,
minutes, seconds, a text word set to TRUE or APPARENT specifying whether the hour angle and declination
are true coordinates or are apparent coordinates, the geographical latitude in degrees, the height above sea-
level in metres, and the horizontal parallax in degrees. These functions are used in rows 24 and 26 of the
spreadsheet. The example given in Figure 44 is the same as that of the first method table of this section,
except that the local civil time has been specified for time zone −6 h; the result is the same.

Although the usual calculation is to find the apparent coordinates given the true coordinates (setting the
switch in cell C9 to TRUE), the spreadsheet also allows the calculation to be done the other way around.
Try this for yourself. Write down the apparent coordinates and then enter them into the spreadsheet in cells
C3 to C8, setting also cell C9 to APPARENT (or anything which does not begin with T or t). You should
find the true (geocentric) coordinates returned in cells H3 to H8 correct to within the second decimal place
in the seconds part.
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Figure 44. Correcting equatorial coordinates for the effects of parallax.

40 Heliographic coordinates

Heliographic coordinates enable us to define the position of any point (such as a sunspot) on the surface
of the Sun. As with any other set of astronomical coordinates, latitudes are referred to a fundamental
plane and longitudes to a fixed point in that plane. In this case the fundamental plane is taken to be the
solar equator, inclined at an angle I = 7◦ 15′ to the ecliptic, and the fixed point is the present position of
the point occupied by the ascending node of the solar equator on the ecliptic at noon on 1 January 1854
(JD 2 398 220.0). There are no permanent features on the Sun’s disc by which we can locate this point, so
we have to work out its position assuming a rotation period of 25.38 days.

The situation is illustrated in Figure 45. The sphere represents the surface of the Sun and the great circle
ONJ the solar equator. PNC is the rotation axis of the Sun and any point on the equator rotates in the
direction from O to N. The plane of the ecliptic intersects the Sun’s surface along the great circle àEN;
the point N is therefore the ascending node of the solar equator on the plane of the ecliptic. Imaginary lines
drawn from the centre of the Sun, C, towards the Earth and towards the vernal equinox cut the Sun’s surface
at E and à respectively. O is the point which, at midday on 1 January 1854, was at N. A sunspot at X
has heliographic latitude B (positive north of the equator, negative south of it) and heliographic longitude
L, reckoned in the same sense as the solar rotation and measured along the equator from O.

When we observe the Sun (which, to avoid permanent injury to the eye, must only be by projection onto
a screen, or using proper solar filters) we see a flat disc, the centre of which is the point E. This is shown
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in Figure 46, together with the point PN, the north pole of the Sun’s rotation axis, and X, the position of the
sunspot. The dashed line N′S′ represents the projection of the Earth’s axis of rotation, NS, onto the disc.
We define the position of X by the coordinates ρ1 and θ . The trick is to turn ρ1 and θ into B and L.

Rotation

Ecliptic
E

C

Towards the
vernal equinox

Towards the
Earth

O

Solar
equator

J

B

L

M

I

X

N

PN

Figure 45. Defining heliographic coordinates.

Figure 46. The Sun’s disc.



90 Coordinate systems

To do this we need first to calculate the heliographic coordinates, B0 and L0, of the centre of the disc, E.
The equations are:

L0 = tan−1

⎧⎨
⎩

sin
(�−λ�

)
cos I

−cos
(�−λ�

)
⎫⎬
⎭+M,

B0 = sin−1
{

sin
(

λ�−�)
sin I

}
,

where λ� is the geocentric ecliptic longitude of the Sun, I is the inclination of the solar equator to the plane
of the ecliptic (= 7◦ 15′), � is the longitude of the ascending node (the angle àN in Figure 45), and M is
the angle between O and N (Figure 45; here and elsewhere the angles on the celestial sphere are subtended
at the centre C, and measured along the corresponding great-circle arcs.). � is given by

� = 74◦22′ +84′T,

where T is the number of Julian centuries since the epoch 1900 January 0.5†. M is given by

M = 360−M′,

with

M′ =
360

25.38
(JD−2398220.0) ,

where JD is the Julian date. M′ must be reduced to the range 0 to 360 by subtracting integral multiples of
360.

For example, let us calculate the heliographic coordinates of the centre of the solar disc on 1 May 1988.
The geocentric longitude of the Sun, λ�, can be found by the method described in Section 46; its value at
0h UT on this day was 40◦ 50′ 37′′.

†Note that this definition of T is different from that used elsewhere in the book.
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Method Example

1. Find the Julian date (§4). JD = 2 447 282.5
2. Subtract 2 415 020 and divide by 36 525 to find T = 0.883299 centuries

T in centuries since 1900 January 0.5.
3. Calculate ∆ = 84T . Divide by 60 to ∆ = 74.197125 arcmin

convert to degrees. = 1.236619 degrees
4. Convert 74◦ 22′ to decimal degrees � = 75.603285 degrees

(§21) and add to ∆ to find �.
5. Convert λ� to decimal degrees (§21). (You λ� = 40.843611 degrees

can calculate λ� by the method of §46.)

6. Find y = sin
(�−λ�

)
cos I �−λ� = 34.759674 degrees

(I = 7.25 degrees). y = 0.565577

7. Find x = −cos
(�−λ�

)
. x = −0.821551

8. Find A′ = tan−1
( y

x

)
. We have to remove the A′ = −34.544552

ambiguity introduced by taking inverse tan. To do y positive
so, look up Figure 29 and add or subtract 180 or 360 x negative
until A′ is in the correct quadrant. If it is already + 180.0
in the correct quadrant, A = A′. A = 145.455448

9. Calculate M′ = 360
25.38 (JD−2398220). M′ = 695 921.985 816

Subtract multiples of 360 to bring it − 360×1933
back into the range 0 to 360. = 41.985816 degrees

10. Find M = 360−M′. M = 318.014184 degrees
11. Add M to A to find L0. Subtract 360 if more than 360. L0 = 103.47 degrees

12. Calculate B0 = sin−1
{

sin
(

λ�−�)
sin I

}
. B0 = −4.13 degrees

The Astronomical Almanac lists these values as L0 = 103.47 degrees and B0 = −4.12 degrees.
In addition to B0 and L0 we also need the position-angle of the Sun’s rotation axis, the angle P in

Figure 46. This is given by

P = θ1 +θ2,

with

θ1 = tan−1
{
−cosλ� tanε

}

and

θ2 = tan−1
{
−cos

(�−λ�
)

tan I
}

,

where ε is the obliquity of the ecliptic (see Section 27).
For example, what was the value of P on 1 May 1988?

Method Example

Referring to the previous example for values of λ�, � and I: λ� = 40.843611 degrees� = 75.603285 degrees
I = 7.25 degrees

1. Calculate θ1 = tan−1
{
−cosλ� tanε

}
(with ε = 23.442 degrees). θ1 = −18.160747 degrees

2. Calculate θ2 = tan−1
{
−cos

(�−λ�
)

tan I
}

. θ2 = −5.966575 degrees

3. Find P = θ1 +θ2. P = −24.127321 degrees
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The Astronomical Almanac gives P = −24.11 degrees.
We are now in a position to calculate the heliographic coordinates of the sunspot X, given its position-

angle, θ (see Figure 46), and ρ1, the angle subtended at the Earth by X and E. The formulas are as follows:

B = sin−1 {
sinB0 cosρ + cosB0 sinρ cos(P−θ)

}
,

L = sin−1
{

sinρ sin(P−θ)
cosB

}
+L0,

with

ρ = sin−1
{ρ1

S

}
−ρ1,

where S is the angular radius of the Sun.
Continuing our example, what were the heliographic coordinates of a sunspot measured at position-angle

θ = 220◦ and displacement ρ1 = 10.5 arcminutes on 1 May 1988? The angular radius of the Sun was
15′ 52′′.

Method Example

1. Calculate L0, B0 and P (see previous examples). L0 = 103.47 degrees
B0 = −4.13 degrees
P = −24.11 degrees

2. Find sin−1
(

ρ1
S

)
(remember to S = 15.867 arcmin

convert S to decimal arcminutes first). sin−1
(

ρ1
S

)
= 41.435 degrees

3. Convert ρ1 to decimal degrees (§21) ρ1 = 0.175 degrees
and subtract to find ρ . ρ = 41.260 degrees

4. Calculate B = sin−1 {
sinB0 cosρ+ (P−θ) = −244.127 degrees

cosB0 sinρ cos(P−θ)
}

. B = −19.945 degrees

5. Calculate A = sin−1
{

sinρ sin(P−θ)
cosB

}
. A = 39.141 degrees

6. Add L0 to find L; subtract 360 if L is greater than 360. L = 142.611 degrees

All of the calculations of this section are made in one spreadsheet called Heliographic (see Figure 47). It
makes a forward reference to finding the position of the Sun, and uses the spreadsheet function SunLong
referred to in Figure 47 (row 12). The small differences between the answers calculated by the spreadsheet
and those calculated in the method table above are caused by rounding errors, and by the difference be-
tween the solar longitudes calculated by SunLong (higher precision) and the method of Section 46 (lower
precision). We have also provided spreadsheet functions HeliogLong and HeliogLat to carry out the calcula-
tion. These return, respectively, the Heliographic Longitude and the Heliographic Latitude, both in degrees.
Each function takes the same five arguments. They are the heliographic position angle in degrees, the heli-
ographic displacement from the centre of the Sun’s disc in arcminutes, and the Greenwich calendar date as
day, month and year. You can simplify the spreadsheet by using these functions instead of the calculation
part. Save a copy, and then delete rows 9 to 29 inclusive. Insert the following spreadsheet formulas into
cells H3 and H4:

=ROUND(HeliogLong(C3,C4,C5,C6,C7),2)
=ROUND(HeliogLat(C3,C4,C5,C6,C7),2).
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Figure 47. The calculation of heliographic coordinates.
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41 Carrington rotation numbers

Solar rotations are numbered by the Carrington rotation number, CRN, the first of which began on 9 Novem-
ber 1853. One rotation is the period during which the value of L0 (Section 40) decreases by 360◦, and its
mean length is 27.2753 days. We can calculate CRN quite accurately by noting from the Astronomical
Ephemeris that rotation number 1690 began on 1979 December 27.84. Thus

CRN = 1690+
[

JD−2444235.34
27.2753

]
,

where JD is the Julian date. Round the result to the nearest integer. You may be in error by ±1 just at the
point where the rotation number changes.

For example, what was the CRN on 27 January 1975?

Method Example

1. Calculate the Julian date (§4). JD = 2 442 439.50

2. Find CRN = 1690+
[

JD−2444235.34
27.2753

]
, CRN = 1624

rounding the result to the nearest integer.

The spreadsheet for this straightforward calculation is shown in Figure 48. We have also provided the
spreadsheet function CRN which returns the Carrington Rotation Number for the given Greenwich calendar
date specified in the three arguments as day, month, and year. Thus you could, if you wished, get the same
result by deleting rows 7 and 8 of the spreadsheet and inserting the following formula in cell H3 (save a
copy of the spreadsheet first!):

=CRN(C3,C4,C5).

Figure 48. Carrington rotation number calculation.
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42 Selenographic coordinates

The position of any point on the surface of the Moon can be described by means of a pair of selenographic
coordinates. As with all other astronomical systems, latitudes are referred to a fundamental plane, and
longitudes to a fixed point in that plane. In this case, the plane is taken to be the Moon’s equator, inclined
at an angle of I = 1◦ 32′ 32.7′′ to the plane of the ecliptic. However, there is a problem with defining a fixed
point of zero longitude because the Moon wobbles about so much. In particular, the rotation axis of the
Moon oscillates about its mean position, an effect known as physical libration, and the mean position itself
does not have a fixed sidereal direction, but is subject to a regular precession with a period of 18.6 years.
Nevertheless, we can identify a point on the lunar surface which has an average position exactly in the
centre of the apparent disc as it would be seen from the centre of the Earth. This is the reference point for
measuring longitudes. The actual centre of the apparent lunar disc at any time may be as much as 8◦ in
longitude and 6◦ in latitude away from the average position.

The selenocentric celestial sphere (i.e. the celestial sphere centred on the Moon) is shown in Figure 49.
The traces of the planes of the ecliptic and the lunar equator are drawn, and they intersect with one another
at angle I. The point P0 represents the pole of the equator, and M is the mean centre of the Moon’s apparent
disc as observed from the centre of the Earth. The great circle through P0 and M is the prime meridian,
longitude 0◦. Point R is a crater on the surface of the Moon, and the great circle through P0 and R cuts the
equator at X. Then the selenographic longitude of R is the angle l measured from M along the equator to X,
and the selenographic latitude is the angle b subtended at the centre of the Moon by X and R. Longitudes
increase to the west (towards Mare Crisium) and latitudes to the north, as seen on the apparent disc.

P0

R

Lunar
equator

Ecliptic

X

M

b

Il

Figure 49. Selenographic coordinates.
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The point which, at any moment, is in the centre of the apparent lunar disc is called the sub-Earth point.
Its selenographic coordinates, le, and be, may be calculated from the equations

be = sin−1 [−cos I sinβ + sin I cosβ sin(�−λm)] ,

le = tan−1
{
−sinβ sin I − cosβ cos I sin(�−λm)

cosβ cos(�−λm)

}
−F,

where λm and β are the apparent geocentric coordinates of the Moon, � is the longitude of the ascending
node of the Moon’s mean orbit on the ecliptic, and F = L−�, where L is the mean longitude of the Moon.
� and F can be found from the approximate relations

� = 125.044522−1934.136261T degrees,

F = 93.271910+483202.0175T degrees,

where T is the number of Julian centuries of 36 525 days since the epoch 2000 January 1.5, i.e.

T = (JD−2451545.0)/36525.

The position-angle, C, of the pole of the lunar equator (P0) is measured in the same way as position-
angles on the surface of the Sun, i.e. anticlockwise from the north point of the apparent lunar disc. We can
calculate it from the following set of equations:

C = C1 +C2,

C1 = tan−1
{

cos(�−λm)sin I
cosβ cos I + sinβ sin I sin(�−λm)

}
,

C2 = tan−1
{

sinε cosλm

sinε sinβ sinλm − cosε cosβ

}
,

where ε is the obliquity of the ecliptic (Section 27).
We shall find as an example of these calculations the values of le, be and C on 1 May 1988. The Moon’s

geocentric longitude was 209.12◦, and latitude −3.08◦. The obliquity was 23.4433◦.
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Method Example

1. Convert the date to the Julian day number (§4). JD = 2 447 282.5
2. Calculate T = (JD−2451545.0)/36525. T = −0.116701
3. Find the value of � using the equation given in � = 350.759945 degrees

this section. Reduce to the range 0 to 360 if necessary by
adding or subtracting multiples of 360.

4. Find the value of F using the equation F = 223.166514 degrees
given in this section. Reduce to the range 0 to 360.

5. Find sinbe = (−cos I sinβ + sin I cosβ sin(�−λm)). sinbe = 0.070391
6. Take the inverse sine to find be. be = 4.04 degrees
7. Find, and note the sign of, y = −0.618034

y = (−sinβ sin I − cosβ cos I sin(�−λm)). (negative)
8. Find, and note the sign of, x = −0.782994

x = cosβ cos(�−λm). (negative)
9. Take A = tan−1

( y
x

)
. Consult Figure 29 and add A = 38.284805 degrees

or subtract 180 or 360 to bring the result into the + 180.0
quadrant specified by the signs of x and y. A = 218.284805 degrees

10. Subtract F from A and reduce the result to the range le = −−−4.88 degrees
−180 to +180 by adding or subtracting 360. This is le.

11. Calculate the values of C1 and C2 using the equations C1 = −1.212401 degrees
given in this section. There is no need to worry about C2 = 20.993347 degrees
ambiguities of 180◦ when taking inverse tan since, in this
case, the results will always be in the correct quadrants.

12. Add C1 and C2 to find the position angle C. C = 19.78 degrees

The Astronomical Almanac gives values of le = −4.918, be = 4.051 and C = 19.761, having taken account
also of physical libration.

The spreadsheet for finding the coordinates of the sub-Earth point and the position-angle of the equator
is shown in Figure 50, labelled Selenographic1. It steals spreadsheet functions from Section 65 to find the
Moon’s longitude and latitude (rows 12 and 13), but otherwise follows the method given in the method
table. We have not provided a corresponding spreadsheet function.

The selenographic coordinates of the Sun (strictly, the sub-solar point) can also be found quite easily.
We can use the same equations as for calculating le and be, but with λm and β replaced by the heliocentric
ecliptic coordinates of the Moon, λ ′

m, and β ′. Their values may be found by the approximations

λ ′
m = λ�+180+

⎧⎨
⎩

26.4cosβ sin
(

λ�−λm

)
πR

⎫⎬
⎭ degrees,

β ′ =
0.14666β

πR
degrees,

where π is the equatorial horizontal parallax of the Moon (see Section 69) expressed in arcminutes, R is
the Sun–Earth distance in astronomical units (Section 48), and λ� is the true geocentric longitude of the
Sun (Section 46). Note that the Sun’s selenographic longitude is often expressed as the (selenographic)
colongitude, which is just 90◦ − longitude (reduced to the range 0 to 360 by adding or subtracting 360).
If we know the colongitude of the Sun, then the selenographic longitude of the morning terminator (the
division between night and morning on the Moon) is approximately 360◦ − colongitude of the Sun, and the
selenographic longitude of the evening terminator is approximately 180◦ − colongitude of the Sun.
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Figure 50. Calculating the selenographic coordinates of the sub-Earth point and the position angle of the lunar equator.

Continuing our previous example: what were the selenographic coordinates of the Sun on 1 May 1988
at 0h UT? The equatorial horizontal parallax of the Moon was 55.952 arcminutes, the Sun–Earth distance
was 1.0076 AU, and the true geocentric longitude of the Sun was 40.8437◦.

Method Example

1. Find the values of λ ′
m and β ′ using the expressions given above. λ ′

m = 220.749 degrees
β ′ = −0.008 degrees

2. Repeat the calculations in steps 1–10 in the previous bs = 1.19 degrees
example, using λ ′

m and β ′ instead of λm and β . y = −0.766
x = −0.643
A = 229.978 degrees
ls = 6.811 degrees

3. Subtract ls from 90 and reduce to the range 0 to 360 colong. = 83.19 degrees
by adding or subtracting 360. This is the colongitude.

The Astronomical Almanac gives the coordinates as colongitude = 83.16◦ and latitude = 1.2◦.
The spreadsheet for calculating the selenographic coordinates of the sub-solar point is shown in Figure

51, called Selenographic2. It follows the method given in the method table above except that it makes use
of five spreadsheet functions defined in later sections to obtain the Sun’s longitude (row 12; Section 47),
the Moon’s equatorial horizontal parallax (row 13; Section 65), the distance between the Sun and the Earth
(row 14; Section 48), and the Moon’s latitude and longitude (rows 15 and 16; Section 65). We have not
provided a corresponding spreadsheet function for this calculation.
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Figure 51. Calculating the selenographic coordinates of the Sun.

43 Atmospheric extinction

The light that reaches us on the surface of the Earth from heavenly bodies first has to pass through the at-
mosphere where some of it is scattered by dust, electrons, oxygen and nitrogen molecules, and other sundry
particles. The amount of this Rayleigh scattering depends on the physical conditions in the atmosphere (it
will be enhanced, for example, by extra dust from a volcanic eruption) and on the wavelength of the light.
In general, the shorter wavelengths (blue) are scattered much more than the longer wavelengths (red); for
this reason, the sky looks blue (we see the scattered light) and the apparent colour of a star observed from
the Earth’s surface is reddened. If we take the visual wavelengths as a whole, we can make a rough estimate
of the amount of absorption to expect when the atmosphere is clear, from

∆m =
0.2

cosz
magnitudes,

where ∆m is the quantity to be added to the magnitude, and z is the zenith angle (z = 90◦− altitude). For
example, a planet whose altitude is 15◦ may appear dimmer by about 0.8 magnitudes in good conditions
when the atmosphere is clear; in general this will be an underestimate since there are additional causes of
absorption. The formula breaks down for zenith angles greater than about 85◦.





The Sun
The nearest star to the Earth is the Sun, being
some 91 million miles distant at its closest
approach. The sunlight reaching us is already 8
minutes old when we see it, having taken this
long to travel the radius of the Earth’s orbit. Yet
despite this distance the Sun is so huge that it
appears as one of the largest celestial objects in
the sky, equalled only by the Moon which, by
coincidence, has more or less the same angular
size. It is certainly the brightest. It dominates
the Solar System, controlling the motions of the
planets and supplying the energy needed for life
on Earth. Although we always know by
experience approximately where the Sun is in
the sky, we often need to know its position more
accurately as, for example, when we wish to
calculate an eclipse or the orientation of a
sundial. The next few sections deal with
methods for calculating the Sun’s orbit, distance
from the Earth, apparent angular size, the times
of sunrise and sunset, the solar elongations of
other celestial bodies, the equation of time
which you will need if you wish to set your
watch by your sundial, and the duration of
twilight.

101



102 The Sun

44 Orbits

The motions of the planets around the Sun, and of the satellites about their planets, are all controlled by
the action of gravity, that is by the mutual force of attraction between the masses. One of the conse-
quences of the way this force varies with distance is that the planetary orbits trace out the forms of ellipses
(Figure 52), geometrical shapes with well-known mathematical properties which enable us to calculate a
planet’s course precisely. You can imagine an ellipse as a squashed circle; in fact, a circle is a special case
of an ellipse where the two foci or focuses, S and S′, have moved together into the middle. The amount of
squashing is measured by the eccentricity, e; for a circle, e = 0, and the most flattened ellipses have values
of e approaching 1. Most planetary orbits have eccentricities less than 0.1, so that their deviations from
circular orbits are small. This is fortunate as it enables us to calculate planetary positions quite accurately
by relatively simple methods.

All of the planetary orbits have the Sun at one focus, S. In Figure 52 the planet V moves in the direction
of the arrow around the ellipse, its distance from the Sun varying from a minimum at A to a maximum at
B. These points are called perihelion and aphelion respectively. The line joining the planet to the Sun, r,
is called the radius vector, and the angle, l, it makes with a fixed direction in space defines the position
of the planet in its orbit at any time. The size of the ellipse is completely defined by the semi-major axis,
a, and the eccentricity. The length of the semi-minor axis, b, is obtained from these two quantities by the
equation

b2 = a2 (
1− e2) .

Figure 52. An orbital ellipse.
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45 The apparent orbit of the Sun

During the course of a year, the Earth moves in its own elliptical orbit around the Sun, making one complete
revolution in about 365 1

4 days. Viewed from the Earth, it seems to us that the Sun is moving in orbit around
the Earth and for the purposes of calculating the Sun’s position it is convenient to regard this as the case.
Hence we now assume that it is we who are at the focus and the Sun describes an ellipse about us. When
the Sun is closest to the Earth, we say it is at perigee and when it is farthest away it is at apogee.

Since the plane which contains the Sun–Earth orbit defines the plane of the ecliptic, it is particularly easy
to calculate the Sun’s apparent motion as we do not have to worry about deviations from the ecliptic. Once
we have calculated the ecliptic longitude, we have defined the Sun’s position as the ecliptic latitude is zero.

46 Calculating the position of the Sun

The first thing to do is to define the epoch on which we shall base our calculations; we choose 2010 January
0.0 (JD = 2 455 196.5). The Sun’s mean ecliptic longitude at the epoch is εg = 279.557 208 degrees; this
is the position it would have had if it had been moving in a circular orbit rather than an ellipse. The value
of εg represents our starting point. We simply have to add on the correct number of degrees moved by the
Sun since then (which may be negative if we are making the calculation for a date before the epoch), and
to make due allowance for its elliptical motion, to find where it is at any other time. To do so we need
two other constants: ϖg = 283.112 438 degrees, the longitude of the Sun at perigee, and e = 0.016 705, the
eccentricity of the Sun–Earth orbit. If you wish to find these values for any other epoch, you can do so by
using the equations

εg = 279.6966778 + 36000.76892T + 0.0003025T 2 degrees,
ϖg = 281.2208444 + 1.719175T + 0.000452778T 2 degrees,
e = 0.01675104 − 0.0000418T − 0.000000126T 2,

where T = (JD−2415020.0)/36 525 and is the number of Julian centuries since 1900 January 0.5. Note
that this is a different definition of T from that used in some other parts of the book.

We now imagine that the Sun moves in a circle around the Earth at a constant speed, rather than along
the ellipse that it actually traces. We can easily calculate the angle, M�, called the mean anomaly, through
which this fictitious mean Sun has moved since it passed through perigee by

M� =
360

365.242191
d degrees,

where d is the number of days since perigee, because during the course of one tropical year of 365.242 191
days the Sun completes a circle of 360◦. But rather than basing our calculations on the moment of perigee,
we have decided for convenience to use the epoch 2010.0. Then if D is the number of days since the epoch,
the mean anomaly is given by (Figure 53):

M� =
360

365.242191
D+ εg −ϖg degrees,

where εg and ϖg are the mean longitudes of the Sun at the epoch and perigee respectively (values given in
Table 7).
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εg (ecliptic longitude at epoch 2010.0) = 279.557208 degrees
ϖg (ecliptic longitude of perigee at epoch 2010.0) = 283.112438 degrees
e (eccentricity of orbit at epoch 2010.0) = 0.016705
r0 (semi-major axis) = 1.495985×108 km
θ0 (angular diameter at r = r0) = 0.533128 degrees

Table 7. Details of the Sun’s apparent orbit at epoch 2010.0.

M� refers to the motion of a mean Sun moving in a circle. We actually need the true anomaly, ν , which
applies for the true motion of the Sun in an ellipse. This can be found from the equation of the centre,
which is (to a sufficient accuracy for our purposes; see Figure 68):

ν = M�+
360
π

esinM�,

where ν and M� are expressed in degrees and π = 3.141 592 7. Having found ν , we simply add ϖg

(see Figure 53) to get the longitude of the Sun, λ�. Hence

λ� = ν +ϖg,

or

λ� =
360

365.242191
D+

360
π

esin

{
360

365.242191
D+ εg −ϖg

}
+ εg.

Having calculated λ� the method given in Section 27 may be used to find the right ascension and declination
(remembering that the ecliptic latitude is zero because the Sun is in the ecliptic).

Figure 53. Defining the apparent orbit of the Sun.
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Let us clarify all this by working out an example: what were the right ascension and declination of the
Sun at 0 h UT on Greenwich date 27 July 2003?

Method Example

1. Find the number of days since January 27th July = 181 + 27
0.0 at the beginning of the year (§3). = 208

2. Add 365 days for every year since 2010 − 2 557
plus 1 extra day for every leap year (see Table 2). D = −2 349 days
The result is D. (Note that we subtract
the total in this case as 2003 is before 2010.)

3. Calculate N = 360
365.242191 D; subtract (or add) N = 204.714 360 degrees

multiples of 360 until N lies in the range 0 to 360.
4. Find M� = N + εg −ϖg (Table 7). If the M� = 201.159 131 degrees

result is negative, add 360.
5. Find Ec = 360

π esinM� Ec = −0.690 967 degrees
(π = 3.141 592 7 and e from Table 7).

6. Find λ� = N +Ec + εg. If the result is λ� = 123.580 601 degrees
more than 360, subtract 360. This is the
Sun’s geocentric ecliptic longitude.

7. Now convert to right ascension and α� = 8h 23m 34s
declination (§27). Remember that β� = 0. δ� = 19◦◦◦ 21′′′ 10′′′′′′

The Astronomical Almanac gives α = 8h 23m 33s and δ = 19◦ 21′ 16′′ so our result is really quite accurate.
In general, we should find that we can calculate α to within about 10 s and δ to within a few arcminutes by
this method. The inaccuracies arise because we have only used the first term in the equation of the centre,
and we have not taken account of all sorts of tiny perturbations due to the influences of the other planets in
the Solar System.

Figure 54 shows the spreadsheet for this calculation, called SunPos1. It follows the method outlined
above, but we have cheated slightly in that we have defined the spreadsheet functions SunElong, SunPeri,
and SunEcc to calculate the values of εg, ϖg, and e respectively using the formulas given above for the
Greenwich calendar date supplied in the three arguments as day, month, year. In particular, we have used
the values of ϖg and e for 27 July 2003 (see rows 20 and 22) and not the values given in Table 7, so the
result is a bit more accurate. In the next section, we will see how to get even better accuracy.



106 The Sun

Figure 54. Finding the position of the Sun by an approximate method.
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47 Calculating orbits more precisely

In this section we discover how to find the true anomaly, ν , by a slightly more accurate method.† For
most purposes the accuracy of the simpler method given in Section 46 will suffice, but if you have a good
programmable calculator, or access to a computer, you may find this section useful.

As before, we find the mean anomaly, but this time we use the equations for εg and ϖg given in the
previous section. This requires us to find the number of Julian centuries since 1900 January 0.5, T , and to
use that value in the formulas. We calculate the mean anomaly from

M� = εg −ϖg,

where M�, εg and ϖg are all expressed in degrees. Then we find the eccentric anomaly, E, which is defined
in Figure 55. E is given by Kepler’s equation, named after the famous German astronomer, Johannes
Kepler (1571–1630), who made a detailed study of the planets:

E − esinE = M� radians,

where this time E and M� are expressed in circular measure, or radians. Unfortunately, this equation is not
easily solved, but with the aid of an iterative routine a numerical solution may be reached. Such a routine
is given in Routine R2 and is appropriate for values of e less than about 0.1 (but see Section 61 for comets,
which have larger values of e). You can recast the equation to use degrees rather than radians by noting that
1 radian is 180/π degrees, so if E and M� are expressed in degrees, we have

E − 180
π

esinE = M� degrees.

The value of e for the Sun’s orbit is given in Table 7.
Having found a solution to Kepler’s equation, we can find the true anomaly, ν , from

tan
(ν

2

)
=

√
1+ e
1− e

tan
E
2

,

and then, as in the previous section, the ecliptic longitude is given by

λ� = ν +ϖg degrees.

†Figure 68 (Section 56) shows the error introduced by using only the first term in the equation of the centre.
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Figure 55. True and eccentric anomalies.

Routine R2: To find a solution to Kepler’s equation E − esinE = M for small values of e. All angles are
expressed in radians.

1. First guess, put E = E0 = M.
2. Find the value of δ = E − esinE −M.
3. If† |δ | ≤ ε go to step 6.

If |δ | > ε proceed with step 4.
ε is the required accuracy (= 10−6 radians).

4. Find ∆E = δ/(1− ecosE).
5. Take new value E1 = E −∆E. Go to step 2.
6. The present value of E is the solution, correct to within ε of the true value.

†|δ | is the absolute value of δ .
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Let us use this method to solve another example: what were the right ascension and declination of the
Sun on Greenwich date 27 July 1988 at 0 h UT?

Method Example

1. Find the Julian date (§4). JD = 2 447 369.5
2. Subtract 2 415 020.0 and divide by 36 525. The result is T . T = 0.885 681 centuries
3. Find εg, ϖg and e using the formulas given in the previous εg = 124.895 390 degrees

section. Reduce to the range 0 to 360 by adding or ϖg = 282.743 840 degrees
subtracting multiples of 360. e = 0.016 714

4. Find M� = εg −ϖg. Add or subtract 360 to bring into M� = 202.151 550 degrees
the range 0 to 360. Multiply by π

180 to convert to radians. M� = 3.528 210 radians
5. Use Routine R2 to find the eccentric anomaly. E = 3.522 004 radians

Divide by π
180 to convert to degrees. E = 201.795 968 degrees

6. Find tan ν
2 =

√
1+e
1−e tan E

2 . tan ν
2 = −5.281 459

7. Take the inverse tan and multiply by 2 to find ν . ν = 201.443 110 degrees
Add 360 if negative.

8. Find λ� = ν +ϖg. If the result is more than 360, subtract λ� = 124.186 950 degrees
360. This is the Sun’s geocentric ecliptic longitude.

9. Now convert to right ascension and declination (§27). α� = 8h 26m 4s
Remember that β� = 0. δ� = 19◦◦◦ 12′′′ 43′′′′′′

The Astronomical Almanac gives α = 8h 26m 3s and δ = 19◦ 12′ 52′′.
The spreadsheet for a more precise calculation of the position of the Sun is shown in Figure 56. It

incorporates the method given above, together with many correction terms for slight perturbations to the
Earth’s orbit, all of which are calculated by a single spreadsheet function SunLong (row 15). This returns the
Sun’s ecliptic longitude as seen at a given local calendar date and local civil time. It takes eight arguments,
namely the local civil time in hours, minutes and seconds, the daylight saving correction and time zone
offset, both in hours, and the local calendar date as day, month and year.
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Figure 56. Finding the position of the Sun by a more precise method.

48 Calculating the Sun’s distance and angular size

Having found the true anomaly, ν , by the method of Sections 46 or 47, we can easily calculate the Sun–Earth
distance, r, and the Sun’s angular size (i.e. its angular diameter), θ . The formulas are:

r = r0

(
1− e2

1+ ecosν

)
,

θ = θ0

(
1+ ecosν

1− e2

)
,

where r0 is the semi-major axis, θ0 is the angular diameter when r = r0, and e is the eccentricity of the
orbit. These constants are given in Table 7. Continuing the example of Section 47 we can find r and θ for
the Sun on Greenwich date 27 July 1988 at 0 h UT.

Method Example

1. Find the true anomaly, ν (§§46 or 47). ν = 201.443 110 degrees
2. Find f = 1+ecosν

(1−e2) . (See Table 7 for e.) f = 0.984 726

3. Then r = r0
f . (See Table 7 for r0.) r = 1.519189×××108 km

4. And θ = f θ0. (See Table 7 for θ0.) θ = 0◦◦◦ 31′′′ 30′′′′′′

The Astronomical Almanac gives θ = 0◦ 31′ 30′′ and, in general, we should be within a few arcseconds
of the correct value. It is interesting to note that the Sun’s light took r/c seconds to reach us, where
c = 3×105 km s−1. In this case the light travel time was 506 seconds, during which interval the Sun moved
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about 21 arcseconds. Strictly speaking, we should subtract this from the calculated position to find the
Sun’s apparent position.

Spreadsheet Sundist (Figure 57) also shows how to make this calculation. We have cheated a bit by using
a function, called SunTrueAnomaly (row 15), to find the Sun’s true anomaly without going through the fuss
of solving Kepler’s equation etc. separately. This function takes the following arguments: the local civil
time in hours, minutes and seconds, the daylight saving correction and time zone offset in hours, and the
local calendar date as day, month and year. We have also used the function SunEcc (row 17; defined in
Section 46) to get the eccentricity of the Sun’s apparent orbit about the Earth.

We have provided spreadsheet functions SunDist and SunDia to make these calculations more simply. The
functions return the values of the Sun’s distance from the Earth in astronomical units (multiply by r0 to get
kilometres), and the Sun’s angular diameter in decimal degrees respectively. Both functions take the same
arguments as SunTrueAnomaly (see above). Thus, having saved a copy, you could modify the spreadsheet
Sundist as follows: delete rows 12 to 20 inclusive, and insert the following spreadsheet formulas into cells
H3 to H6:

=1.495985E8*SunDist(C3,C4,C5,C9,C10,C6,C7,C8)†

=DDDeg(SunDia(C3,C4,C5,C9,C10,C6,C7,C8))
=DDMin(SunDia(C3,C4,C5,C9,C10,C6,C7,C8))
=DDSec(SunDia(C3,C4,C5,C9,C10,C6,C7,C8)).

Figure 57. Finding the Sun’s distance and angular size.

†1.495985E8 is the number 1.495 985 ×108
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49 Sunrise and sunset

In Section 33 we found how to calculate the rising and setting times of any celestial object whose equatorial
coordinates were known. We have calculated the right ascension and declination of the Sun (Sections 46
and 47) so that we can apply the same method to find the times of sunrise and sunset. The problem is
complicated, however, by the fact that the Sun is in continual motion along the ecliptic, and its equatorial
coordinates are therefore continuously changing. The values of α and δ we have calculated are correct only
for the time we have chosen. (In the example of Section 46, this time was the midnight between 26 July
and 27 July. By the time the Sun had risen the next morning it had moved by about a quarter of a degree
from its midnight position, and by sunset about three quarters of a degree.) Provided that we do not require
high accuracy in our calculations, we can ignore the Sun’s motion and simply take the position at midday
as correct for both sunrise and sunset. The results are then within a few minutes of their correct values.

Further refinements include taking account of refraction by the Earth’s atmosphere (Section 37) and
geocentric parallax (Section 38). We must also consider the finite diameter of the Sun’s disc; times of
sunrise and sunset are usually quoted as those appropriate to the upper limb.

For our example, let us calculate the times of sunrise and sunset (upper limb) over a level horizon at
sea-level on 10 March 1986, as observed from Boston, Massachusetts, at longitude 71.05◦ W and latitude
42.37◦ N. We shall take the Sun’s angular diameter to be 0.533 degrees, its horizontal parallax to be
8.79 arcseconds, and the refraction due to the atmosphere as 34 arcminutes and, having added on half of the
Sun’s angular diameter and a small correction for parallax, we arrive at a total vertical shift at the horizon
of the upper limb of 0.833 333 degrees. The time zone correction (Section 9) is −5 hours.

Method Example

1. Calculate the Sun’s position at midday α� = 23.375999 hours
(§§46 or 47; we’ve used SunPos1). δ� = −4.034153 degrees

2. Calculate the corresponding rising and setting times UTr = 11h 6m
(§33; we’ve used RiseSet). UTs = 22h 43m

3. Convert these times to local civil times (§10). LCTr = 6h 6m
LCTs = 17h 43m

The Old Farmer’s Almanac (see the Bibliography on page 208) lists these times as ESTr = 6h 5m am, and
ESTs = 5h 45m pm. In general, we should be within a few minutes of the actual times using this approximate
method.

The spreadsheet shown in Figure 58, called SunRS, performs this calculation rather more precisely.
It uses the five spreadsheet functions called SunriseLCT, SunsetLCT, SunriseAz, SunsetAz and eSunRS,
which calculate the local civil times of sunrise and sunset, their azimuths, and a status word respectively.
Each has the same seven arguments, namely the local calendar date as day, month, year, the daylight saving
correction and time zone offset (both in hours), and the geographical longitude and latitude (both in de-
grees). These functions start out by performing the calculation based on the Sun’s position at midday, but
then use the calculated times of sunrise and sunset to find new positions for the Sun at those times, before
recalculating the times of sunrise and sunset using the new Sun positions. The result should be accurate to
within a minute of time. If an error is detected, such that the Sun never rises or never sets, as can happen
near the poles (try a latitude of + or − 89◦), the function eSunRS returns the status word ** never rises, or
** circumpolar, respectively, otherwise it returns with OK. If not OK, the other functions return with −99, a
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disallowed value of time (0 to 24 hours) or angle (0 to 360 degrees). The result of eSunRS is used to gate
the writing of the output values in cells H3 to H8 so that numerical results only appear if they are valid. You
can see that the times of rising and setting calculated by spreadsheet SunRS agree with the values given in
the Old Farmer’s Almanac in this example.

Figure 58. Calculating the circumstances of sunrise and sunset.
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50 Twilight

Whenever the Sun is less than a certain amount below the horizon, after sunset or before sunrise, the light
scattered by the upper atmosphere illuminates the Earth. The intensity of the scattered sunlight falls sharply
as the Sun dips lower below the horizon, and is almost negligible by the time the Sun’s zenith angle reaches
108◦, i.e. 18◦ below the horizon. The period after sunset or before sunrise during which the Sun’s zenith
angle is less than an agreed amount is called twilight: 96◦ for civil twilight, 102◦ for nautical twilight,
and 108◦ for astronomical twilight.

We can calculate the duration of morning or evening twilight quite simply. We first find the hour angles,
H, of the Sun at rising or setting by

cosH = − tanφ tanδ ,

where φ is the geographic latitude and δ is the Sun’s declination. Then we calculate its hour angle, H ′, at
the point when its zenith angle is θt = 96, 102, or 108 degrees using

cosH ′ =
cosθt − sinφ sinδ

cosφ cosδ
.

Then the duration of twilight in sidereal hours is simply

t =
H ′ −H

15
hours.

We should multiply this by 0.9973 to obtain the equivalent time interval in terms of normal (UT) hours.
During the course of one year the Sun’s declination ranges from about −23.5◦ to +23.5◦. Latitudes north

of +48.5◦ or south of −48.5◦ will therefore experience a twilight which lasts all night during the summer.
For example, on the latitude 60◦ N the twilight lasts all night from about 23 April until 22 August. When

this is so, the value of cosH ′ lies outside its allowed range of −1 to +1, and your calculator should respond
with ‘error’ if you attempt inverse cos. For example, let us calculate the beginning of morning astronomical
twilight and the end of evening astronomical twilight on 7 September 1979 for an observer at latitude
52◦ N and longitude 0◦.

Method Example

1. Calculate the declination of the Sun; its value δ� = 6.189592 degrees
at midday will do as this is not a very precise
calculation. We have used SunPos1.

2. Find the Sun’s hour angle at setting from H = 97.979045 degrees
H = cos−1 {− tanφ tanδ}.

3. Find the Sun’s hour angle at z = 108◦ from H ′ = 130.066840 degrees

H ′ = cos−1
{

cos108−sinφ sinδ
cosφ cosδ

}
.

4. Calculate t = H ′−H
15 hours and multiply t = 2.133411 UT hours

by 0.9973 to convert to interval of UT.
5. Add or subtract this from the time of UTs = 18.582658 hours

sunset or sunrise respectively to find UTr = 5.338170 hours
the end of evening twilight or the evening twilight ends
start of morning twilight. at 20h 43m UT
We used SunRS. morning twilight begins

at 3h 12m UT
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The Astronomical Ephemeris gives these times as 3h 17m and 20h 37m, having taken due account of the
Sun’s changing coordinates throughout the day, as well as refraction and parallax.

You can make a more-accurate estimate of the time of the start or end of twilight using the spreadsheet
Twilight shown in Figure 59. To do this, we need to take account of the change in the Sun’s position
between the start of morning twilight and end of evening twilight, in effect treating the problem in the same
way as for sunrise and sunset. In the spreadsheet we have used the spreadsheet functions TwilightAMLCT,
TwilightPMLCT and eTwilight to carry out the calculation behind the scenes, returning respectively the local
civil times of the start of morning twilight, the end of evening twilight, both in hours, and a status word
(really a string) of OK, ** lasts all night, or ** Sun too far below horizon. All three functions take the same
eight arguments which are the local date as day, month, year, the daylight saving correction and time zone
offset in hours, the geographical longitude and latitude in degrees (W and S are negative), and a switch in
the form of the single character C, N, or A to specify whether civil, nautical, or astronomical twilight is to
be calculated respectively. You can see that the result produced by the spreadsheet agrees exactly with the
Astronomical Ephemeris in this case.

Figure 59. Calculating twilight.
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51 The equation of time

The apparent motion of the Sun along the plane of the ecliptic is not regular. This is rather surprising at
first because we are used to thinking of the Sun as a time-keeper by which we can set our watches. In fact,
it is really quite a bad time-keeper by quartz-crystal watch standards; it can at any moment in the year be as
much as 16 minutes out compared with a regular clock whose time increases at a uniform rate. The Sun’s
non-uniform motion is caused by two effects:

(a) The Earth’s orbit is not circular but elliptical. Its speed therefore varies throughout the year, being
maximum at perihelion and minimum at aphelion. Viewed from the Earth, the Sun’s speed in its
apparent orbit varies from a maximum at perigee to a minimum at apogee.

(b) The Earth’s axis is tilted at an angle to the perpendicular of the plane of the ecliptic. The angle is the
same as the obliquity of the ecliptic, ε = 23◦ 26′ (Section 27). The Earth acts as a huge gyroscope
keeping its rotation axis in a fixed direction in space, making the Sun’s altitude at noon vary throughout
the year from a maximum at midsummer to a minimum at midwinter. This variation in altitude has a
small effect on the time of transit of the Sun.

To take account of the Sun’s apparent aberrations from perfect time-keeping we imagine a fictitious Sun,
called the mean Sun, which moves at a uniform rate along the equator. Noon is defined to be the instant
when the mean Sun crosses the meridian, and two successive passages of the mean Sun across it define the
length of the day. Time measured by the mean Sun corresponds to UT.

The difference between the real Sun time and the mean Sun time is called the equation of time. Hence

∆t = RST−MST,

where ∆t is the value of the equation of time, MST is the mean Sun time and RST is the real Sun time. It is
plotted in Figure 60.

We can calculate the equation of time on any day quite easily by first finding the Sun’s right ascension
at noon and then, remembering that the right ascension is the sidereal time at transit, converting the right
ascension to UT. The result is the UT at which the real Sun transits; by subtracting 12h 00m from this, the
UT at which the mean Sun transits, we have the value of the equation of time.

For example, what was the value of the equation of time on 27 July 2010? (Remember that noon is
July 27.5.)

Method Example

1. Calculate the right ascension of the Sun in decimal α� = 8.446350 hours
hours. We have used SunPos2 (§47) to do this.

2. Taking this as the GST, convert it to UT (§13). UT = 12.108755 hours
3. Subtract 12 and convert to hours, minutes and seconds ∆t = 6m 32s

(§8). This is the value of the equation of time.

If you have a sundial, you will need the equation of time to convert the sundial’s reading into mean time
(UT).

Figure 61 shows the spreadsheet for finding the value of the equation of time. We have also provided a
spreadsheet function called EqOfTime which calculates this value in hours for the Greenwich date specified
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in the three arguments as day, month and year. Using this function, you could delete rows 7–10 of the
spreadsheet of Figure 61 and insert the following two spreadsheet formulas into cells H3 and H4:

=DHMin(EqOfTime(C3,C4,C5))

=DHSec(EqOfTime(C3,C4,C5)).

Remember to save a copy first in case you need it later.
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Figure 60. The equation of time. This diagram was made in Excel using the functions described in this section.

Figure 61. Finding the value of the equation of time.
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52 Solar elongations

The solar elongation of a planet (or other celestial object) is the angle between the lines of sight from the
Earth to the Sun and from the Earth to the planet. It is quite often necessary to find the value of this angle,
as it tells us how close to the Sun we should look to see the planet and hence whether it will be visible. The
formula for the solar elongation, ε , is

ε = cos−1
{

sinδp sinδ�+ cos
(

αp −α�
)

cosδp cosδ�
}

degrees,

where α� and δ� are the right ascension and declination of the Sun, and αp and δp are the right ascension
and declination of the planet.

On Greenwich date 27 July 2010 at 8 pm UT, the equatorial coordinates of the planet Mercury were found
to be αp = 10h 6m 45s and δp = 11◦ 57′ 27′′. What was the solar elongation?

Method Example

1. Calculate the right ascension and declination of the Sun in α� = 127.022544 degrees
decimal degrees. We have used SunPos2 to do this (§47). δ� = 19.092414 degrees

2. Convert αp and δp into decimal degrees (§§7 and 21). αp = 151.687500 degrees
δp = 11.957500 degrees

3. Find ε = cos−1
{

sinδp sinδ�+ cos
(

αp −α�
)

cosδp cosδ�
}

. ε = 24.78 degrees

The spreadsheet for making this calculation is shown in Figure 62. You will see that, in cell C9, we
have specified the day part of the date as 27.833 333 to represent 8 pm on the 27th. We have not supplied a
spreadsheet function to make the same calculation.

Figure 62. Finding the solar elongation.



The planets, comets
and binary stars

An observer looking up at the night sky from the
surface of the Earth sees an unchanging pattern
of stars revolving slowly about the pole as the
Earth spins on its axis. So great are the
distances to the stars that the changing position
of the Earth as it travels along its orbit around
the Sun causes hardly any movement in the
pattern, even in the course of six months. There
are a few objects, however, which do appear to
move a great deal with respect to this fixed
background of stars. The objects are members
of our Solar System, the planets, the asteroids
and the comets. Eight major planets have been
identified so far which, in order of increasing
distance from the Sun, are Mercury, Venus,
Earth, Mars, Jupiter, Saturn, Uranus, and
Neptune. (Pluto was originally classified as a
planet, but is now considered the largest
member of another grouping of objects called
the Kuiper belt.) These, together with other
members of the Solar System, are all bound by
the gravitational field of the Sun so that instead
of moving off into space in different directions
they are constrained to follow elliptical orbits
about it. Their apparent motions in the sky are
complicated because they are relatively close to
us so that the position of the Earth in its own
orbit needs to be taken into account. The next
few sections contain methods for calculating the
positions, angular sizes, distances, phases and
brightnesses of the major planets. There are
also sections describing how to calculate the
orbit of a comet and the orbit of a binary star.
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53 The planetary orbits

Each planet in our Solar System describes an elliptical orbit about the Sun with the Sun at a focus of the
ellipse. We discovered how to calculate the Sun–Earth orbit in Sections 44 to 47. This was a particularly
simple case since the plane of the orbit defined the plane of the ecliptic; the ecliptic latitude was therefore
always zero and the fundamental direction, the first point of Aries, was in the orbital plane. The other
planets, however, do not move in the plane of the ecliptic but describe orbits inclined at small angles to it.
Figure 63 shows the situation.

The Sun, S, is at the centre of the diagram and you are to imagine that you are looking at the path of
a planet around the Sun from a great distance. The orbit of the planet is the small shaded ellipse N1AP.
The perihelion is marked A and the planet’s present position is marked P. That part of the orbit which lies
above the ecliptic is shown with solid lines, while that lying below it is shown with dashed lines. The large
sphere is centred on the Sun and the plane of the planet’s orbit is projected to cut the sphere along the circle
N′

1A′P′N′
2. Here A′ is the projection of A onto the sphere, P′ the projection of P and so forth. Also shown in

the diagram is the plane of the ecliptic àN′
1N′

2, which contains the direction of à, the first point of Aries.
The planet moves along its orbit in the direction of the arrow. The point N1 where it rises out of the plane

of the ecliptic is called the ascending node. N2, the point where it descends below the plane of the ecliptic,
is called the descending node. Angles in the orbital plane are measured from the ascending node while
longitudes are reckoned from the direction à which is not in the orbital plane. Thus the perihelion is at an
angle ω to the node (the ‘argument’ of the perihelion) and the present position of the planet is at an angle
ω +ν . The corresponding longitudes are ω +� and ω +ν +�, where � is the longitude of the ascending
node. Note that longitudes are the sum of two angles in different planes.

Figure 63. Defining the orbit of a planet.
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54 Calculating the coordinates of a planet

Our calculation will proceed in three steps. The first is to calculate the position of the planet in its own
orbital plane exactly as we did for the Sun–Earth orbit in Section 46. In the second step we will project the
planet’s calculated position onto the plane of the ecliptic and hence find its ecliptic longitude and latitude
referred to the Sun (heliocentric coordinates). The third step will involve transforming from the Sun to the
Earth to find the ecliptic coordinates referred to the Earth, from which we can find the right ascension and
declination by the method given in Section 27.

As before, we choose our starting point, the epoch, as 2010.0. Having calculated the number of days, D,
since the epoch, we find the mean anomaly, M, by the formula

M =
360

365.242191
× D

Tp
+ ε −ϖ degrees,

where Tp is the orbital period of the planet in tropical years, ε is the mean longitude of the planet at the
epoch, and ϖ is the longitude of the perihelion. These constants are listed for the planets in our Solar
System in Table 8. This table is extracted from a list of osculating elements published on the web by the
US Naval Observatory (see page 209).

Being osculating elements, they change with time and are valid only over a relatively short period. We
can use the values in Table 8 for low-precision calculations, but should use the more-precise spreadsheet of
Section 56 for extrapolations into the past or future of more than a few tens of years from 2010, or where
higher accuracy is needed.

The mean anomaly refers to the motion of a fictitious planet, P1, moving in a circle at constant speed
with the same orbital period as the real planet (see Figure 64). We really want to know the value of the true
anomaly, ν , which is the angle the real planet actually makes with the line joining the Sun to the perihelion.
We can find ν from M using the equation of the centre:

ν = M +
360
π

esinM degrees,

where e is the eccentricity of the orbit (Table 8) and π = 3.141 592 7. Once again, this formula is an
approximation that is good enough for most purposes; if you wish to make more precise calculations you
can find the value of ν by solving Kepler’s equation via the method of Section 47.
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Figure 64. Mean and true anomalies.
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Tp
(tropical years)

ε
(degrees)

ϖ
(degrees)

e a
(AU)

i
(degrees)

�
(degrees)

θ0
(arcsec)

V0

Mercury 0.24085 75.5671 77.612 0.205627 0.387098 7.0051 48.449 6.74 −0.42
Venus 0.615207 272.30044 131.54 0.006812 0.723329 3.3947 76.769 16.92 −4.40
Earth 0.999996 99.556772 103.2055 0.016671 0.999985
Mars 1.880765 109.09646 336.217 0.093348 1.523689 1.8497 49.632 9.36 −1.52
Jupiter 11.857911 337.917132 14.6633 0.048907 5.20278 1.3035 100.595 196.74 −9.40
Saturn 29.310579 172.398316 89.567 0.053853 9.51134 2.4873 113.752 165.60 −8.88
Uranus 84.039492 356.135400 172.884833 0.046321 19.21814 0.773059 73.926961 65.80 −7.19
Neptune 165.84539 326.895127 23.07 0.010483 30.1985 1.7673 131.879 62.20 −6.87

1 AU = 149.6×106 km.
Tp: period of orbit; ε: longitude at the epoch; ϖ : longitude of the perihelion; e: eccentricity of the orbit; a: semi-major axis of the orbit; i: orbital inclination;�: longitude of the ascending node; θ0: angular diameter at 1 AU; V0: visual magnitude at 1 AU.

Table 8. Elements of the planetary orbits at epoch 2010.0.
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The next step is to calculate the heliocentric longitude, l, and this is simply given by

l = ν +ϖ ,

or

l =
(

360
365.242191

× D
Tp

)
+

360
π

esin

(
360

365.242191
× D

Tp
+ ε −ϖ

)
+ ε degrees.

We also need the length of the radius vector, r, calculated from

r =
a
(
1− e2

)
1+ ecosν

,

where a is the semi-major axis of the orbit (Table 8).
The above calculations which you have made for the planet have to be repeated for the Earth as well. We

shall denote the values derived for the planet by small letters and use capital letters for the Earth’s values.
Thus, we arrive at the figures for l and r for the planet and L and R for the Earth. In addition, we need the
heliocentric latitude of the planet:

ψ = sin−1 {sin(l −�)sin i} ,

where i is the inclination of the orbit and � is the longitude of the ascending node (Table 8). The heliocentric
latitude of the Earth is, of course, zero.

Now we need to project our calculations for the planet onto the plane of the ecliptic to find the projected
heliocentric longitude, l′, and the projected radius vector, r′. These are given by the formulas

l′ = tan−1 {tan(l −�)cos i}+�,

r′ = r cosψ.

The final step in the process is to refer the calculations to the Earth to find the geocentric ecliptic latitude,
β , and longitude, λ , of the planet. Figure 65(a) describes the situation for an outer planet, whose orbit
lies outside that of the Earth (i.e. Mars, Jupiter, Saturn, Uranus and Neptune), and Figure 65(b) is for an
inner planet (the inner planets are Mercury and Venus). The plane of the paper represents the plane of the
ecliptic. S is the Sun, E is the Earth and P1 is the position of the planet projected onto the ecliptic. The first
point of Aries is taken to be at a distance from the Solar System so large that the directions Eà and Sà are
parallel. Then by application of a little simple geometry we have for the outer planets

λ = tan−1
{

Rsin(l′ −L)
r′ −Rcos(l′ −L)

}
+ l′ degrees,

and for the inner planets

λ = 180+L+ tan−1
{

r′ sin(L− l′)
R− r′ cos(L− l′)

}
degrees,

Figure 66 gives the diagram for calculating the latitude. Again, using simple geometry we find

β = tan−1
{

r′ tanψ sin(λ − l′)
Rsin(l′ −L)

}
degrees,

true for inner and outer planets alike.
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Figure 65. Ecliptic geometry: (a) outer planet, (b) inner planet.
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Figure 66. Projecting onto the ecliptic.
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Let us consolidate these rather lengthy calculations with two examples, one for an outer planet, Jupiter,
and the other for an inner planet, Mercury. For each of these two planets we shall calculate its right ascension
and declination on 22 November 2003. For Jupiter (outer planet):

Method Example

1. Find the number of days since 2010 22 November = 304+22
January 0.0 (§3). The total is D. = 326

−2 557
D = −2231 days

For the planet, Jupiter:
2. Calculate Np = 360

365.242191 ×
D
Tp

. Np = 174.555932 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

3. Find Mp = Np + ε −ϖ . Mp = 497.809764 degrees
4. Calculate νp = Mp + 360

π esinMp degrees. νp = 141.573600 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

5. Find lp = νp +ϖ . lp = 156.236900 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

6. Calculate r =
a(1−e2)

1+ecosνp
. r = 5.397121 AU

Now do the calculations for the Earth:
7. Calculate NE = 360

365.242191 ×
D
TE

. NE = 321.011952 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

8. Find ME = NE + εE −ϖE. ME = 317.363223 degrees
9. Calculate νE = ME + 360

π eE sinME. vE = 316.069248 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

10. Find L = νE +ϖE. L = 59.274748 degrees
Add or subtract multiples of 360 to
bring the result into the range 0 to 360.

11. Calculate R =
aE(1−e2

E)
1+eE cosνE

. R = 0.987847 AU
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Method (continued) Example

More calculations for the planet:
12. Calculate ψ = sin−1 {

sin
(
lp −�)

sin i
}

. ψ = 1.076 044 degrees
13. Find y = sin

(
lp −�)

cos i. y = 0.825 313
14. Find x = cos

(
lp −�)

. x = 0.564 363
15. Find tan−1

( y
x

)
and remove the ambiguity tan−1

( y
x

)
= 55.634 991

by referring to Figure 29, adding or subtracting y and x both positive so the
180 degrees as indicated by the signs of x and y result is in the right quadrant
so that the result lies in the correct quadrant.

16. Add � to get l′ l′ = 156.229 991 degrees
(check: l′ should be nearly equal to lp).

17. Find r′ = r cosψ . r′ = 5.396 170 AU
Combine the calculations:

18. Calculate λ = tan−1
{

Rsin(l′−L)
r′−Rcos(l′−L)

}
+ l′. λ = 166.310 510 degrees

Bring the result into the range 0 to 360 by adding
or subtracting 360. This is the planet’s geocentric
ecliptic longitude.

19. Find β = tan−1
{

r′ tanψ sin(λ−l′)
Rsin(l′−L)

}
. β = 1.036 466 degrees

This is the planet’s geocentric ecliptic latitude.
20. Finally, convert λ and β to right α = 11h 11m 14s

ascension and declination (§27). δ = 6◦◦◦ 21′′′ 25′′′′′′
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The Astronomical Almanac gives the apparent coordinates of Jupiter for this day as α = 11h 10m 30s and
δ = 6◦ 25′ 56′′. The error due to our approximation in counting only the first term of the equation of the
centre could be reduced by solving Kepler’s equation using the method in Section 47. We will see how to
make more exact calculations in Section 56. For Mercury (inner planet):

Method Example

1. We proceed exactly as we did in the previous lp = 288.012 253 degrees
example, calculating lp, vp, r, ψ , l′ and r′ vp = 210.400 253 degrees
for Mercury, and L, vE and R for the Earth. r = 0.450 657 AU

ψ = −6.035 842 degrees
l′ = 287.824 406 degrees
r′ = 0.448 159 degrees
L = 59.274 748 degrees

vE = 316.069 248 degrees
R = 0.987 847 AU

2. Now calculate λ = 180+L+ tan−1
{

r′ sin(L−l′)
R−r′ cos(L−l′)

}
. λ = 253.929 758 degrees

Add or subtract multiples of 360 to bring
the result into the range 0 to 360.

3. Find β = tan−1
{

r′ tanψ sin(λ−l′)
Rsin(l′−L)

}
. β = −2.044 057 degrees

4. Finally, convert λ and β to right ascension α = 16h 49m 12s
and declination (§27). δ = −−−24◦◦◦ 30′′′ 09′′′′′′

The Astronomical Almanac gives the apparent coordinates of planet Mercury as α = 16h 52m 02s and δ =
−24◦ 38′ 41′′. We should generally expect an error in α of a few minutes at most and in δ of a quarter of
a degree, but the errors may be more for Mercury, for which e = 0.2. The inaccuracies arise because we
have used only the first term in the equation of the centre, we have not allowed for the light travel time, and
because of the slight perturbations to the orbits from other planets in the Solar System (see Section 56). We
could reduce the error from the first cause by using the longer method of Section 47; see Figure 68 for a
graph of the error incurred by the shorter method.

The spreadsheet for this calculation, called PlanetPos1, Figure 67 (three panels), uses a technique which
we have not met previously in this book. The parameters of the orbits of the planets are presented in a table
in a separate spreadsheet called Planet data (third panel). This table reproduces most of the data in Table 8,
but note that the order of the planets is now alphabetical. The planet name is in column A and is used as
the key to the corresponding row of data contained in columns C to I inclusive. If we number the columns
in the table, then column 1 contains the planet name, 3 contains the orbital period, 4 the longitude at the
epoch and so on. We can obtain any element of the data using the spreadsheet function VLOOKUP (e.g. row
17 of the first panel of Figure 67). This takes four arguments, which are the planet name (upper or lower
case, or a mixture), the range of the table from top-left-hand corner to bottom-right-hand corner
(e.g. 'Planet data'!A3:I10), the column number containing the required element (e.g. 3 for the orbital period,
4 for the longitude at the epoch), and a switch which is set to TRUE to find either an approximate or an
exact match with the planet name in column 1, or FALSE if an exact match is required (as here). Using this
formula makes it easy to change the orbital parameters without affecting the main spreadsheet calculation.
Simply fill in the Planet data table with new numbers, and the spreadsheet will use those instead. The
formulas contained in cells G3 to G8 are shown in cells G10 to G15 to save space.
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Figure 67. Finding the position of a planet by an approximate method; panels one and two show the main spreadsheet,
and the third shows the data table (continued on the next page). The formulas contained in cells G3 to G8 are shown in
cells G10 to G15 to save space.
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Figure 67. (Continued.)
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55 Finding the approximate positions of the planets

The method of finding the equatorial coordinates of the planets given in the previous section is quite accu-
rate but involves lengthy calculations. An amateur astronomer often only wants to know the approximate
position of a planet so that he or she knows where to look for it in the sky, and does not want to have to
spend 20 minutes beforehand submerged in a sea of figures obtaining the information. In that case it is
usually sufficient to assume that the planets describe circular orbits about the Sun which all lie in the plane
of the ecliptic. This leads to considerable simplifications in the calculations.

The heliocentric longitude, l, does not have to be corrected by the equation of the centre so that we may
write

l =
360

365.242191
× D

Tp
+ ε degrees.

We repeat this calculation for the Earth as before (giving L). Since the orbits are assumed to be circular
with the Sun at the centre, the radius vector is constant. Hence

r = a.

The heliocentric (and therefore the geocentric) latitude of the planet is zero since we have assumed that the
orbit lies in the ecliptic plane. Our final calculation is therefore

λ = tan−1
{

sin(l −L)
a− cos(l −L)

}
+ l,

for the outer planets and

λ = 180+L+ tan−1
{

asin(L− l)
1−acos(L− l)

}
,

for the inner planets, since we have assumed that R = 1 (the Earth’s orbital radius is taken to be unity). This
is the geocentric longitude of the planet from which the right ascension and declination can be found using
the formulas of Section 27 (remember β = 0):

α = tan−1 {tanλ cosε} ,

δ = sin−1 {sinλ sinε} ,

where ε here is the obliquity of the ecliptic (about 23.5 degrees; see Section 27). In some cases it may even
be possible to ignore the fact that the plane of the ecliptic is inclined at an angle to the plane of the equator
and to write

α = λ .

As an example, we will calculate again the coordinates of Jupiter on 22 November 2003 using this approx-
imate method.
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Method Example

1. Find the number of days since 2010 January 0.0 22 November = 304+22
(§3). The total is D. = 326

− 2 557
D = −2 231 days

2. Calculate l =
(

360
365.242191 ×

D
Tp

)
+ ε . l = 152.47 degrees

Add or subtract multiples of 360 to bring the
result into the range 0 to 360.

3. Repeat step 2 for the Earth to find L. L = 60.57 degrees

4. Calculate λ = tan−1
{

sin(l−L)
a−cos(l−L)

}
+ l. Bring the λ = 163.28 degrees

result into the range 0–360 by adding or subtracting
360. This is the planet’s geocentric ecliptic longitude.

5. Finally, convert λ and β (= 0) to right α = 10h 58m
ascension and declination (§27). δ = 6◦◦◦ 34′′′

56 Perturbations in a planet’s orbit

Throughout the calculations to find the coordinates of a planet (Section 54), we assumed that its motion
was controlled entirely by the gravitational field of the Sun so that the influences of other members of the
Solar System were negligible. This is true to quite a high accuracy, but for more precision we need to take
account of these perturbations, especially for the orbits of Jupiter and Saturn where the effects can be as
large as 1 degree in longitude. The usual method of doing so is to apply a series of correction terms to the
quantities calculated in Section 54. We have to make similar adjustments for the Moon in Section 65. Here,
we shall consider only the most important terms in the orbits of Jupiter and Saturn where the corrections
amount to more than about 0.04 degrees in longitude.

We must first calculate the time, T , in Julian centuries since the epoch 1900 January 0.5. This is given by

T =
JD−2415020.0

36525
,

where JD is the Julian date (Section 4).† Then we calculate the quantities:

A =
T
5

+0.1,

P = 237.47555+3034.9061T degrees,

Q = 265.91650+1222.1139T degrees,

V = 5Q−2P, and

B = Q−P.

†Note that this definition of T differs from that used in other parts of the book.
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The principal terms for Jupiter and Saturn are then:

Jupiter : ∆l = (0.3314−0.0103A)sinV −0.0644AcosV degrees.
Saturn : ∆l = (0.1609A−0.0105)cosV +(0.0182A−0.8142)sinV − 0.1488sinB

−0.0408sin2B+0.0856sinBcosQ+ 0.0813cosBsinQ degrees.

The value of ∆l must be added to the mean longitude l before proceeding with the calculation of Section 54.
Let us now recalculate the position of Jupiter on 22 November 2003, solving Kepler’s equation properly

(Section 47) and allowing for these principal terms of perturbation.

Method Example

1. Calculate the Julian date (§4). JD = 2 452 965.5 days
2. Find T = JD−2415020.0

36525 . T = 1.038 891 centuries
3. Find A =

( T
5

)
+0.1. A = 0.307 778 centuries

4. Calculate P = 237.◦47555+3034.◦9061T . P = 3 390.412 183 degrees
5. Find Q = 265.◦91650+1222.◦1139T . Q = 1 535.559 632 degrees
6. Find V = 5Q−2P. V = 896.973 792 degrees
7. Calculate ∆l = (0.3314−0.0103A)sinV −0.0644AcosV . ∆l = 0.037 121 degrees
8. Now proceed as in the example of §54 to find Mp. Mp = 497.809 764 degrees
9. Use the method of §47 to find νp. Ep = 2.436 915 radians

νp = 141.407 886 degrees
10. Find lp = νp +ϖ . Add or subtract multiples of lp = 156.071 186 degrees

360 to bring the result into the range 0 to 360.
11. Add ∆l to get a better estimate of lp. lp = 156.108 307 degrees
12. Calculate L, νE and R for the Earth EE = 5.527 600 radians

also using the method of §47. νE = 316.049 185 degrees
L = 59.254 685 degrees
R = 0.987 847 AU

13. Now proceed with the calculations r = 5.396 627 AU
of §54 to find α and δ . ψ = 0.018 751 degrees

l′ = 156.101 386 degrees
r′ = 5.395 678 AU
λ = 166.188 415 degrees
β = 1.035 198 degrees
α = 11h 10m 47s
δ = 6◦◦◦ 24′′′ 12′′′′′′

The error incurred in considering only the first term of the equation of the centre is plotted as a function
of the mean anomaly, M, in Figure 68 for two values of the eccentricity, e.

The spreadsheet for finding the positions of the planets by a more precise method is called PlanetPos2
and is shown in Figure 69. We have used a full numerical model of the orbits of the planets in the two
spreadsheet functions PlanetLong and PlanetLat which return, respectively, the named planet’s ecliptic lon-
gitude and latitude in degrees. These functions appear in rows 20 and 21. They each take nine arguments,
namely the local civil time expressed as hours, minutes, and seconds, the daylight saving correction and
zone time offset in hours, the local calendar date expressed as day, month, year, and the full name of the
planet as a string in upper or lower case. The example shown is for Jupiter on the 22 November 2003, and
you can see that this method has provided the position correct within about 1 second in right ascension, and
within a few arcseconds in declination. The formulas in cells G3 to G8 are shown in cells H10 to H15 to
save space.
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Figure 68. The error, ∆, incurred by taking ν = M +(360/π)esinM as an approximation to elliptical motion. The true
anomaly should be ν −∆.
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Figure 69. Finding the position of a planet by a more precise method.
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57 The distance, light-travel time and angular size of a planet

During the course of our calculations in Section 54 to determine the position of a planet we found the
distances r and R of the planet and the Earth, respectively, from the Sun. We can quite easily use these
values together with the heliocentric longitudes l and L to calculate the planet’s distance, ρ , from the Earth.
The situation is drawn in Figure 70. The planet, P, does not lie in the plane of the ecliptic, so its heliocentric
latitude, ψ , must be taken into account. The formula is

ρ2 = R2 + r2 −2Rr cos(l −L)cosψ.

It is usual to express r and R in astronomical units (AU) where 1 AU is the semi-major axis of the Earth’s
orbit. ρ is then the distance of the planet from the Earth measured in AU.

Having calculated ρ , it is then an easy matter to find the light-travel time, τ , the time taken for the light
to reach us from the planet. When we view a planet now, we see it in the position it occupied τ hours ago,
given by

τ = 0.1386ρ hours,

where ρ is expressed in AU.
We can also find the apparent angular diameter, θ , of the planet given by

θ =
θ0

ρ
,

where ρ is again expressed in AU and θ0 is the angular diameter of the planet when it is at 1 AU from the
Earth. Values of θ0 are given in Table 8.

We shall calculate the distance, the light-travel time and the apparent angular diameter of Jupiter on
22 November 2003.

Method Example

1. Find r, R, lp, L and ψ as in §54. r = 5.397 121 AU
R = 0.987 847 AU
lp = 156.236 900 degrees
L = 59.274 748 degrees
ψ = 1.076 044 degrees

2. Calculate ρ2 = R2 + r2 −2Rr cos
(
lp −L

)
cosψ . ρ2 = 31.397 037 AU2

3. Take the square root to find ρ . ρ = 5.603 AU
4. Multiply by 0.1386 to find τ; convert τ = 46m 36s

to minutes and seconds (§8).

5. Find θ from θ = θ0
ρ . θ = 35.1 arcsec

The Astronomical Almanac quotes ρ = 5.60 AU, τ = 46m 34s and θ = 35.0′′ for Jupiter on this day.
The spreadsheet for this calculation is called PlanetVis and includes other calculations to do with the

visual aspect of a planet. It is given in Section 60, Figure 72. The corresponding spreadsheet functions are
defined there too.
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Figure 70. Finding the distance of a planet.

58 The phases of the planets

At any point in the orbit of a planet, the hemisphere which faces towards the Sun is brightly illuminated
while the other half of the planet’s surface is dark. The fraction of the surface that we can see from the Earth,
however, is that part lying on the hemisphere facing the Earth which usually overlaps both the bright and
the dark sides. We are presented therefore with a view of the planet’s disc that is not uniformly illuminated
but which contains a bright segment, the rest of the disc being dark and usually invisible. As the relative
positions of the Earth, the planet and the Sun vary, so the area of the visible disc that is illuminated changes.
The phase is defined to be the fraction of the visible disc that is illuminated.

In Figure 70, the angle (λ − l) at P is the solar elongation of the Earth as measured at the planet. We
represent this angle by d. Thus

d = λ − l.

The phase, F , is related to d by the formula

F =
1
2

(1+ cosd) .

F always lies in the range 0 to 1. When F = 0, the whole of the dark side of the planet is towards the Earth.
This can only happen for the inner planets Mercury and Venus. When F = 1, the whole of the bright side
faces the Earth.

We shall find the phases of Mercury and Jupiter on 22 November 2003 as our example.
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Method Example

1. Calculate d = λ − l using the method Mercury: d1 = −34.082◦

outlined in §54 to find λ and l. Jupiter: d2 = 10.736◦

2. Find F = 1
2 (1+ cosd). Mercury: F1 = 0.91

Jupiter: F2 = 0.99

The Astronomical Almanac gives phase values of 0.90 and 0.99 for Mercury and Jupiter respectively.
The spreadsheet for this calculation is called PlanetVis and includes other calculations to do with the

visual aspect of a planet. It is given in Section 60, Figure 72. The corresponding spreadsheet functions are
defined there too.

59 The position-angle of the bright limb

Figure 71 shows the appearance of a planet whose phase is about F = 0.7. The dashed outline is of that
part of the disc which is invisible, and the line NS is the projection of the Earth’s axis onto the disc. The
terminator, the line dividing night from day, is the curve AB. Position-angles are measured anticlockwise
from the north. Thus points A and B are at position-angles θ1 and θ2. The point C, halfway between A and
B on the circumference of the disc, is the midpoint of the bright side and it defines the position-angle, χ , of
the bright limb. Hence

χ =
1
2

(
θ1 +θ2

)
.

We can easily calculate χ provided we know the equatorial coordinates of the planet (α,δ ) and of the Sun(
α�,δ�

)
. Then

χ = tan−1

{
cosδ� sin

(
α�−α

)
cosδ sinδ�− sinδ cosδ� cos

(
α�−α

)
}

.

For example, what was the position-angle of the bright limb of Mercury on 22 November 2003?
The Sun’s coordinates were α� = 15h 48m 13s, δ� = −19◦ 59′ 32′′, and Mercury’s coordinates were
α = 16h 52m 02s, δ = −24◦ 38′ 41′′.
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Method Example

1. Find the right ascension and declination of the planet (§54). α = 16h 52m 02s
δ = −24◦ 38′ 41′′

2. Find the coordinates of the Sun (§46). α� = 15h 48m 13s
δ� = −19◦ 59′ 32′′

3. Convert both sets of coordinates to decimal form (§§7 and 21). α = 16.867222 hours
δ = −24.644722 degrees

α� = 15.803611 hours
δ� = −19.992222 degrees

4. Find ∆α = α�−α . Convert to degrees by multiplying by 15 (§22). ∆α = −15.954165 degrees
5. Find y = cosδ� sin∆α . y = −0.258304
6. Find x = cosδ sinδ�− sinδ cosδ� cos∆α . x = 0.066018
7. Find χ = tan−1

( y
x

)
. Remove the ambiguity from χ = −75.663043 degrees

taking inverse tan using the signs of x and y, referring to (already in correct quadrant; add
Figure 29, and adding or subtracting 180 360 to bring into the range 0–360)
if necessary to bring the result into the correct quadrant. χ = 284.3 degrees

The spreadsheet for this calculation is called PlanetVis and includes other calculations to do with the
visual aspect of a planet. It is given in Section 60, Figure 72. The corresponding spreadsheet functions are
defined there too.

Figure 71. The position-angle of the bright limb.
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60 The apparent brightness of a planet

Our calculations so far have given us the position, the solar elongation (Section 52), the distance from the
Earth, the apparent angular diameter, the phase, and the position-angle of the bright limb of a planet. We
need only add the apparent brightness to the list to obtain all the important parameters of the planet’s visual
aspect.

Brightness is usually measured in magnitudes, m, on a non-linear scale such that decreasing brightness
goes with increasing magnitude. The brightest stars have a magnitude of about 1 while the faintest stars just
visible with the unaided eye are of magnitude 6. The ratio in the light power flux between one magnitude
and the next is about 2.5. The Sun, very bright at the Earth, has a visual magnitude of −26.74 while the
Moon’s magnitude at opposition is −12.73. The planets range from about m = −4 for Venus at its most
brilliant to m = +14 for Pluto (strictly no longer classified as a planet) at its brightest.

The variation in a planet’s brightness is caused by several factors. First the Sun’s light flux on the planet
varies inversely as the square of its distance, r, from the Sun. Then the amount of that light reradiated
towards the Earth depends on the phase, F , and a ‘brightness factor’, V0, the latter being a measure of the
reflectivity of the planet combined with the area of the planet’s disc. The larger the planet’s area, the more
light it intercepts from the Sun and hence the more it radiates towards the Earth. Finally, the light flux
received from the planet varies inversely as the square of the planet’s distance, ρ , from the Earth.

We can obtain an approximate value for the apparent magnitude of a planet from the formula

m = 5log10

(
rρ√

F

)
+V0,

where r and ρ are measured in AU. The values of V0 are listed in Table 8.
As an example, let us calculate the apparent magnitude of Jupiter on 22 November 2003.

Method Example

1. Find the values of r, ρ and F using the methods given in §§54, 57 and 58. r = 5.397 AU
ρ = 5.603 AU
F = 0.99

2. Calculate m = 5log10

(
rρ√

F

)
+V0. r and ρ must both be expressed in AU. m = −−−2

The value of m given in the Astronomical Almanac for Jupiter on 22 November 2003 is m = −1.9. In
general, our calculations should be correct to within a magnitude or so. No account has been taken of
atmospheric extinction (see Section 43), which can increase the apparent magnitude of a star or planet
near the horizon by 2 or 3. Nonetheless, our calculations will provide a fair guide of what to expect.

The distance, light time, angular diameter, phase, position-angle of the bright limb, and the approxi-
mate magnitude of a planet are all parts of its visual aspect (i.e. its appearance when viewed from Earth)
and these calculations are swept up into one spreadsheet called PlanetVis, Figure 72. As in PlanetPos1
(Section 54), we make use of the spreadsheet function VLOOKUP to extract data from a table contained
on a second spreadsheet (rows 22 and 31). We have also defined three additional spreadsheet functions to
make life easier. The first of these to appear in the spreadsheet (row 20) is PlanetDist, taking nine arguments
which are the local civil time expressed as hours, minutes, and seconds, the daylight saving and time zone
offsets in hours, the local calendar date expressed as day, month, year, and the planet full name as a string
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(upper or lower case, or a combination). This function returns the Earth–planet distance in AU. The next
new spreadsheet function to appear is called PlanetHLong1 (row 23) which returns the planet’s heliocentric
orbital longitude in degrees. It takes the same nine arguments as PlanetDist. The third new spreadsheet
function is called PlanetRVect (row 30) and, as its name suggests, it returns the distance of the planet from
the Sun (i.e. the length of its radius vector) in AU; it has the same nine arguments as PlanetDist.
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Figure 72. Calculating some visual aspects of a planet. The upper panel shows the main spreadsheet, and the lower
panel shows the data table.
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61 Comets

In earlier sections we discovered how to calculate the orbit of any solid body moving around a central
massive object, and we applied the method to the major planets of our Solar System. All we needed to
know were the orbital elements of each planet. Likewise, we can calculate the position of a periodic comet
given its orbital elements but the method needs to be modified slightly for two reasons:

(i) The longitude of the comet is not usually specified at a particular epoch. Rather, the epoch is given
when the comet is at perihelion, the point of its closest approach to the Sun.

(ii) The eccentricity, e, of a comet is usually much more than 0.1 so that the equation of the centre does not
apply. Instead, we have to solve Kepler’s equation properly.

The orbital elements of some periodic comets are given in Table 9. Note that, as in the case of the
planetary elements, we have specified ϖ , the longitude of the perihelion. Sometimes the argument of the
perihelion is given instead. It has the symbol ω (very confusing) and is related to ϖ by ϖ = ω +�.

We begin, as before, by finding the mean anomaly, M, of the comet given by the formula

M =
360

365.242191
× D

Tp
+ ε −ϖ ,

where D is the number of days since the epoch, Tp is the orbital period in years, ε is the longitude of the
comet at the epoch and ϖ is the longitude of the perihelion. In this case, however, the epoch is the moment
of perihelion so that ε = ϖ . Further, we do not need to specify the date in terms of days since the epoch.
Rather, we can work in decimal years. Hence, M may be found from

M =
360Y

Tp
,

where Y is the number of tropical years since perihelion.
Next we have to solve Kepler’s equation

E − esinE = M,

where e is the eccentricity and E is the eccentric anomaly. Both E and M are expressed in radians. A
method of doing this was given in Section 47, Routine R2, in which the eccentricity was assumed to be
less than 0.1 so that the first guess at the solution, E = M, was good enough for an accurate solution to
be reached after only one or two iterations. Here, the eccentricity is much larger and although the routine
would always converge eventually, many iterations might be needed. We can speed up the process if we
begin with an approximate solution that is better than E = M. Kepler’s graphs, Figure 73, are provided for
this purpose. Given any value of e between 0 and 1 and the value of M (expressed in radians), you choose
the corresponding value of ∆ from the graphs. Then, in place of the first guess E = E0 = M, use instead
E = E0 = M +∆ and proceed with the rest of Routine R2 as before. You should find that only two or three
iterations are needed whatever the values of e and M.

Alternatively, you may like to use the nomogram of Figure 74 (kindly provided by Mr S. J. Garvey)
to find ∆. Place a ruler across the diagram joining the value of M (in radians) on the right-hand vertical
scale with the value of e on the left-hand vertical scale. The point of intersection with the curve gives the
magnitude of ∆/e. Multiply this by e to find ∆ and give it the sign shown on the right-hand scale. For
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example, the line joining M = 5.6 with e = 0.46 cuts the curve at |∆/e|= 0.9. Thus |∆|= 0.9×0.46 = 0.41
and its sign is negative, giving

∆ = −0.41.

(Vertical bars either side of a quantity signify the absolute value.) Having found E, we can calculate the
true anomaly, ν , from

tan
ν
2

=
√

1+ e
1− e

tan
E
2

(remember that you have found E in radians), and then carry on with the rest of the calculations of Section
54. If we find that r′ is less than R, we must use the formula at the end which is appropriate for an inner
planet, while if r′ is greater than R, we must use the formula for an outer planet. In these calculations,
bear in mind that the epoch for the comet and the epoch for the Earth are usually different.
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Comet name
P ϖ

(degrees)
�
(degrees)

Tp
(years)

a
(AU)

e i
(degrees)

Encke 1974.32 160.1 334.2 3.30 2.209 0.847 12.0
Temple 2 1972.87 310.2 119.3 5.26 3.024 0.549 12.5
Haneda–Campos 1978.77 12.016 131.700 5.37 3.066 0.641 52 5.805
Schwassmann–Wachmann 2 1974.70 123.3 126.0 6.51 3.489 0.386 3.7
Borrelly 1974.36 67.8 75.1 6.76 3.576 0.632 30.2
Whipple 1970.77 18.2 188.4 7.47 3.821 0.351 10.2
Oterma 1958.44 150.0 155.1 7.88 3.958 0.144 4.0
Schaumasse 1960.29 138.1 86.2 8.18 4.054 0.705 12.0
Comas Sola 1969.83 102.9 62.8 8.55 4.182 0.577 13.4
Schwassmann–Wachmann 1 1974.12 334.1 319.6 15.03 6.087 0.105 9.7
Neujmin 1 1966.94 334.0 347.2 17.93 6.858 0.775 15.0
Crommelin 1956.82 86.4 250.4 27.89 9.173 0.919 28.9
Olbers 1956.46 150.0 85.4 69.47 16.843 0.930 44.6
Pons–Brooks 1954.39 94.2 255.2 70.98 17.200 0.955 74.2
Halley 1986.112 170.011 0 58.154 0 76.008 1 17.943 5 0.967 3 162.238 4

P: epoch of the perihelion; ϖ : longitude of the perihelion; �: longitude of the ascending node; Tp: period of the orbit; a: semi-major axis of the orbit;
e: eccentricity of the orbit; i: inclination of the orbit.

Table 9. The orbital elements of some periodic comets.
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Figure 73. Kepler’s graphs. Use the left-hand and upper M scales for values of M (in radians) between 0 and 3.14, and
the right-hand and lower M scales for values of M between 3.14 and 6.28.
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Figure 74. Nomogram to calculate ∆. Vertical bars around ∆/e signify its absolute value.
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The method of finding the position of a comet is best clarified by an example. Let us calculate the position
of comet Halley at the beginning of the year 1984.

Method Example

The calculations for the comet
1. Find the number of years since the epoch. Y = 1984.0−1986.112

= −2.112
2. Find Mc = 360Y

Tp
degrees. Mc = 349.996 856 degrees

Subtract multiples of 360 to bring the result
back into the range 0 to 360, or if negative add 360.

3. Convert Mc to radians by multiplying by Mc = 6.108 598 radians
π

180 (π = 3.141 592 7).
4. Now we solve Kepler’s equation by the routine E0 = M +(−0.8)

R2 (§47). First guess (from Kepler’s graphs). = 5.31 radians
5. Find a more accurate solution using R2. E = 5.307 696 radians

6. Calculate tan ν
2 =

√
1+e
1−e tan E

2 (all angles in radians). tan ν
2 = −4.114 741

7. Take inverse tan and double to get ν . ν = −152.680 599 degrees
8. Find l = ν +ϖ . l = 17.330 401 degrees

9. Find r =
a(1−e2)
1+ecosν . r = 8.210 480 AU

10. Calculate ψ = sin−1 {sin(l −�)sin i}. ψ = −11.503 378 degrees
11. Find y = sin(l −�)cos i. y = 0.622 572
12. Find x = cos(l −�). x = 0.756 726
13. Find tan−1

( y
x

)
and remove the ambiguity by tan−1

( y
x

)
= 39.444 727 degrees

comparing the signs of x and y with Figure 29. If not
in the correct quadrant, add or subtract 180 or 360.

14. Add � to find l′. l′ = 97.598 727 degrees
15. Find r′ = r cosψ . r′ = 8.045 555 AU

Now do the calculations for the Earth
16. Find NE = 360

365.242191 ×
D
TE

, where D is the D = −2192
number of days since 1990.0 (see Table 3). NE = −2160.452 587
Subtract multiples of 360 to bring = 359.547 413 degrees
the result into the range 0 to 360.

17. Calculate ME = NE + ε −ϖ (see Table 8). ME = 356.182 293 degrees
18. Find L = NE + 360

π esin
(
ME

)
+ ε (π = 3.141 592 7). L = 98.823 197 degrees

If the result is more than 360, subtract
360. If the result is negative, add 360.

19. Calculate νE = L−ϖ . νE = −3.945 223 degrees

20. Find R =
a(1−e2)

1+ecosνE
. R = 0.983 325 AU

21. If r′ is less than R, calculate λ by using equation (a); r′ > R; use equation (b)
if r′ is more than R, use equation (b):

(a) λ = 180+L+ tan−1
{

r′ sin(L−l′)
R−r′ cos(L−l′)

}
,

(b) λ = tan−1
{

Rsin(l′−L)
r′−Rcos(l′−L)

}
+ l′. λ = 97.428 255 degrees

Add 360 to the result if negative.

22. Find β = tan−1
{

r′ tanψ sin(λ−l′)
Rsin(l′−L)

}
. β = −13.052 959 degrees

23. Calculate the right ascension and declination α = 6h 29m
using the method given in §27. δ = 10◦◦◦ 12′′′

24. Find the distance using the formula given in §57. ρ = 8.13 AU
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The Astronomical Almanac gives these values as α = 6h 29m, δ = 10◦ 13′ and ρ = 7.2 AU. We must not
expect great precision when dealing with comets as the orbital elements change all the time because of the
perturbations to the comet’s orbit by the gravitational fields of the planets.

The spreadsheet for this calculation, called Comets, is shown in Figure 75. Once again, we have made
use of the spreadsheet function VLOOKUP (e.g. row 16) to look up data in a table contained on a sepa-
rate page (here simply called Table). We have also provided the spreadsheet formula called TrueAnomaly
(row 20) which solves Kepler’s equation and returns the value of the true anomaly in radians. Its two
arguments are the mean anomaly in radians, and the eccentricity.
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Figure 75. Finding the position of a comet. The upper panel shows the main spreadsheet, and the lower panel shows
the data table.
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62 Parabolic orbits

In preceding sections, we have calculated the orbits of members of the Solar System which are gravita-
tionally bound to the Sun, like the planets and the periodic comets. These objects move in (more or less)
elliptical orbits with the Sun at a focus of the ellipse, and in the absence of perturbations from other mem-
bers of the Solar System or from external influences, would continue to move indefinitely along the same
elliptical paths. However, some comets do not seem to be bound to the Sun. If unperturbed they would ap-
pear once and shoot off into space never to return again. Their orbits are often defined in terms of parabolic
motion and we have to use a slightly different procedure for calculating their positions, given the parabolic
orbital elements:

t0 = the epoch of the perihelion (a calendar date);
q = perihelion distance (AU);
i = inclination of the orbit (degrees);

ω = argument of the perihelion (degrees; ω = ϖ −�); and
� = longitude of the ascending node (degrees).

The calculations proceed on much the same lines as for an elliptical orbit; once we have found the true
anomaly, ν , and radius vector, r, we can use exactly the same method as in Section 61 to calculate the
position of the comet. However, the calculations of ν and r are slightly different.

First, we find the value of the quantity W (in radians) from

W =
0.0364911624

q
√

q
×d,

where d is the number of days since the comet passed through perihelion. Next we have to solve the
equation

s3 +3s−W = 0.

This can be done by means of the iterative method shown in Routine R3 below. Finally, calculate ν and r
from

ν = 2tan−1 s,

r = q
(
1+ s2) .

(Note that s is in radians.) For example, the International Astronomical Union issued the following data on
comet Kohler (designated 1977m; IAU circular number 3137):

t = 1977 November 10.5659
q = 0.990 662 AU
i = 48.719 6 degrees

ω = 163.479 9 degrees
� = 181.817 5 degrees (hence ϖ = ω +� = 345.2974 degrees).

The values of i, ω and � quoted here were referred to the standard equinox of 1950.0. Strictly, we should
refer all our calculations to the same equinox, but we shall ignore the small error introduced by not doing
so. Let us calculate the position of the comet on Christmas Day 1977, assuming no perturbations to its orbit.
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Method Example

1. Calculate the number of days since the 10 Nov. 1977: JD1 = 2 443 457.5
epoch of perihelion. This can be done 25 Dec. 1977: JD2 = 2 443 502.5
(for example) by subtracting the Julian JD2 − JD1 = 45 days
date (§4) of the epoch from the Epoch = November 10.5659
Julian date of the day in question. ∴ d = 44.4341 days

2. Find W = 0.0364911624
q
√

q ×d. W = 1.644 432

3. Solve s3 +3s−W = 0 by using Routine R3. First guess s = 0.548 144
s = 0.505 171

4. Find ν = 2tan−1 s and r = q
(
1+ s2

)
. ν = 53.603 189 degrees

r = 1.243 477 AU
5. Carry on at instruction 8 (ignoring l = 398.900 589 degrees

instruction 9) of §61 to find α and δ . ψ = −26.944 536 degrees
l′ = 28.320 864 degrees
r′ = 1.108 492 AU

For the Earth: D = −736 days
NE = −725.407 420 degrees

= 354.592 580 degrees
L = 93.120 810 degrees
R = 0.983 503 AU
r′ > R; use equation (b)
λ = 336.099 109 degrees
β = −26.585 505 degrees

Here is the result: α = 23h 17m
δ = −−−33◦◦◦ 41′′′

Comet Kohler was in the constellation of Sculptor on Christmas Day 1977.
Routine R3: To solve the equation s3 +3s−W = 0.

1. First guess put s = s0 = W/3.
2. Calculate δ = s3 +3s−W .
3. If |δ | < ε , go to step 6.

Otherwise proceed with step 4.
ε is the required accuracy (e.g. 10−6 degree).

4. Calculate s1 = 2s3+W
3(s2+1) (note that s3 can be calculated from s× s2).

5. Set s = s1 and go to step 2.
6. The current value of s is within ±ε of the correct value.

The spreadsheet for finding the position of a comet in a parabolic orbit is called Pcomets and is shown
in Figure 76. Once again, we have used the spreadsheet function VLOOKUP to select an item of data from
a table (e.g. row 17). In this case, the table contains data for only one comet, but you can easily extend it
and add more data. Note that the comets need to be listed alphabetically in column A, and that the second
argument (at present Table!A4:I4) needs to be altered so that the reference after the colon is to the bottom
right-hand cell of the table. For example, if you add two more comets, the second argument would become
Table!A4:I6. Do this for every instance of VLOOKUP in the main spreadsheet. We have also provided a



Parabolic orbits 153

new spreadsheet function called SolveCubic (row 23) that takes one argument, namely the value of W (in
radians) as defined above and that returns the value of s (also in radians).

Figure 76. Finding the position of a comet in a parabolic orbit. The upper panel shows the main spreadsheet, and the
lower panel shows the data table.
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You can, if you prefer, simplify the main spreadsheet by using three other spreadsheet functions that we
have provided for you. They are PcometLong, PcometLat and PcometDist, returning the geocentric ecliptic
longitude (degrees), the geocentric ecliptic latitude (degrees) and the distance of the comet from Earth (AU)
respectively. Each of them takes the same 15 arguments, namely the local civil time expressed as hours,
minutes and seconds, daylight saving and time zone offsets in hours, the local civil date as day, month and
year, the Greenwich epoch of perihelion expressed as day, month and year, the perihelion distance in AU,
the inclination of the orbit in degrees, the argument of the perihelion in degrees, and finally the longitude
of the ascending node in degrees. You will need to use the VLOOKUP function to obtain the arguments
corresponding to the orbital elements (we suggest doing this first), and you will also need rows 40 and 41 to
convert the ecliptic coordinates into right ascension and declination, but the spreadsheet should look much
less complex as a result of using these functions. One example is shown in Figure 77.

Figure 77. Finding the position of a comet in a parabolic orbit using the Pcomet spreadsheet functions.
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63 Binary-star orbits

Quite often an astronomer sees a pair of stars very close together in the telescope. This apparent closeness
may be just because two quite unrelated stars happen to lie near to the same line of sight. Sometimes,
however, the stars are actually close to one another in space and they may then form a binary star in which
each is bound to the other by mutual gravitational attraction. The stars describe elliptical orbits about one
another, just as Jupiter describes an elliptical orbit about the Sun. The brighter of the two stars is generally
called the primary and the fainter is called the companion; we shall consider that the companion orbits
about the primary which is fixed in space, although really both stars orbit about their common centre of
mass.

Figure 78 shows the appearance of a binary star. A is the primary, B the companion, and the line NAS is
the observer’s meridian through A; AN therefore defines the direction north. The line joining A to B is at
position-angle θ (measured anticlockwise as shown) and of length ρ . Provided that we know the elements
of the binary orbit, we can calculate the values of θ and ρ and hence we can predict the appearance of the
binary star at any time.

A binary-star orbit is drawn in Figure 79. The sphere is centred on the primary star, A, and its companion,
B, describes an orbit about it shown by the small hatched ellipse in the centre. The great circle NL′DM′

shows where the plane through A perpendicular to the line of sight cuts the sphere. This plane is the plane
of the sky as seen from the Earth. The line AN defines the direction north as in Figure 78. The great circle
L′P′B′M′ shows where the plane of the true binary orbit cuts the sphere. The point L′ is the projection of
the ascending node, L, onto the sphere, M′ the projection of the descending node, M, and P′ the projection
of the point of closest approach, P, the periastron. The companion star is at B. Longitudes are reckoned
from the ascending node, L, and the true anomaly, ν , is the angle between B and the periastron. We need
the following elements to calculate the orbit:

T = the period of revolution;
t = the epoch of periastron;
e = the eccentricity of the orbit;
a = the semi-major axis of the orbit;
i = the inclination of the orbit to the plane of the sky;

�= the position-angle of the ascending node; and
ω = the longitude of the periastron.

All angles are measured in the direction of motion. The elements for some binary stars are listed in
Table 10.
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Figure 78. A binary star seen from the Earth.

Figure 79. A binary-star orbit.
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Name
Tp
(years)

t ω
(degrees)

e a
(arcsec)

i
(degrees)

�
(degrees)

η Coronae Borealis 41.623 1934.008 219.907 0.2763 0.907 59.025 23.717
γ Virginis 171.37 1836.433 252.88 0.8808 3.746 146.05 31.78
η Cassiopeiae 480 1889.6 268.59 0.497 11.9939 34.76 278.42
ζ Orionis 1508.6 2070.6 47.3 0.07 2.728 72.0 155.5
α Canis Majoris (Sirius) 50.09 1894.13 147.27 0.5923 7.500 136.53 44.57
δ Geminorum 1200 1437 57.19 0.1100 6.9753 63.28 18.38
α Geminorum (Castor) 420.07 1965.3 261.43 0.33 6.295 115.94 40.47
α Canis Minoris (Procyon) 40.65 1927.6 269.8 0.40 4.548 35.7 284.3
α Centauri 79.920 1955.56 231.560 0.516 17.583 79.240 204.868
α Scorpionis (Antares) 900 1889.0 0.0 0.0 3.21 86.3 273.0

Tp: period; t: epoch of periastron; ω: longitude of periastron; e: eccentricity; a: semi-major axis of orbit; i: inclination of orbit; �: position angle of
ascending node.

Table 10. The orbital elements of some binary stars.
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The calculation of a binary-star orbit proceeds in much the same way as that of a planetary orbit. We first
find the mean anomaly, M, from

M =
360Y

T
degrees,

where Y is the number of years since the epoch of periastron. Next we must solve Kepler’s equation

E − esinE = M radians,

using the method given in Section 61. The true anomaly, ν , and radius vector, r, can then be found from

ν = 2tan−1

{√
1+ e
1− e

tan
E
2

}
,

and

r = a(1− ecosE) ,

(remembering that E has been found in radians). Finally, θ is given by

θ = tan−1
{

sin(ν +ω)cos i
cos(ν +ω)

}
+� degrees,

and ρ from

ρ =
r cos(v+ω)
cos(θ −�)

degrees.

For example, let us calculate the visual aspect of the binary system η Coronae Borealis at the beginning
of 1980.
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Method Example

1. Find the number of years since the epoch. Y = 1980.0−1934.008
= 45.992 years

2. Find M = 360Y
T . Subtract multiples of 360 M = 397.787 762 degrees

to bring the result into the range 0 to 360. = 37.787 762 degrees
3. Convert to radians by multiplying by M = 0.659 521 radians

π
180 (π = 3.141 592 7).

4. Solve Kepler’s equation E − esinE = M First guess E0 = 0.86 radians
by the method outlined in §61. Solution is E = 0.870 858 radians

5. Find ν = 2tan−1
{√

1+e
1−e tan E

2

}
, ν = 1.106 803 radians

all angles in radians.
6. Multiply by 180

π to convert to ν = 63.415 137 degrees
degrees (π = 3.141 592 7).

7. Find r = a(1− ecosE), remembering that r = 0.745 568 arcsec
E is expressed in radians.

8. Calculate y = sin(ν +ω)cos i. y = −0.500 814
9. Calculate x = cos(ν +ω). x = 0.230 426

10. Find tan−1
( y

x

)
and remove the ambiguity by tan−1

( y
x

)
= −65.292 744

reference to Figure 29. Add or subtract 180 + 360
or 360 to bring the result into the correct quadrant, = 294.707 256 degrees
unless it is already in the correct quadrant.

11. Add � to find θ . Subtract 360 if more than 360. θ = 318.424 degrees
Add 360 if negative.

12. Find ρ = r cos(ν+ω)
cos(θ−�) . ρ = 0.411 arcsec

Figure 80 shows the spreadsheet for the binary-star calculation. As before, we have put the orbital
elements of some binary stars into a data table on a separate page. This table reproduces the data of
Table 10, but it represents only a small fraction of the known binary stars. You can add to the table as
you wish. The VLOOKUP function (e.g. row 8) is used to select each item from the table as needed. If
you extend the table, remember (i) to order the stars in alphabetical order, and (ii) to make sure that the
cell reference after the colon in the second argument is to the bottom right-hand cell of the table. We have
defined and used a new spreadsheet function EccentricAnomaly (row 13). This solves Kepler’s equation and
returns the value of the eccentric anomaly in radians for the two arguments, namely the mean anomaly in
radians, and the eccentricity. We have already met the function TrueAnomaly (Section 61), which takes the
same pair of arguments but returns the true anomaly.
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Figure 80. Calculating a binary-star orbit. The upper panel shows the main spreadsheet, and the lower panel shows the
data table.



The Moon and eclipses
Of all the heavenly bodies visible in the night

from the Earth, the Moon is the most

spectacular. It far outshines even the most

brilliant planet, moves so quickly that you can

see its motion against the stars, and provides a

wealth of detail in the shadowy features of its

disc. Yet its motion is the most difficult to predict

and it is for that reason we have left it until last.

It is, of course, in orbit about the Earth but the

Sun and other members of the Solar System

perturb that orbit to such an extent that many

corrections are needed to calculate the Moon’s

position accurately.

In the next few sections we use a simple method
to find the position of the Moon. The method
takes account only of the principle
perturbations to the orbit yet gives results which
are accurate enough for most purposes. (We
have also provided spreadsheet functions which
have much higher accuracy.) We calculate the
times of moonrise and moonset, the phases of
the Moon, and the circumstances of both solar
and lunar eclipses. Finally, we show how to
construct an astronomical calendar, bringing
together the changing positions of all the
Solar-System objects over the course of one
year onto a single page. The calculations are
lengthy but the satisfaction you feel when you
predict, for example, the occurrence of a lunar
eclipse, cannot be denied.

161
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64 The Moon’s orbit

To an Earth-bound observer, the Moon appears to be in orbit about the Earth, making one complete revo-
lution with respect to the background of stars in 27.321 7 days. This period is called the sidereal month.
During this time the Earth moves on along its own orbit so that the Sun’s position changes with respect to
the stars. Hence the Moon has some extra distance to make up to regain its position relative to the Sun. The
interval defined by the time taken for the Moon to return to the same position relative to the Sun is called
the synodic month and is equal to 29.530 6 days. The direction of motion of the Moon in its orbit about
the Earth is prograde; that is, it is in the same sense as that of all the planets about the Sun.

A celestial observer viewing the Solar System from a great distance would not, however, see the Moon
making loops in space about the Earth. Rather, he or she would describe the situation by saying that the
Moon is in orbit around the Sun, as is the Earth, and that the effect of the Earth’s influence is to make the
Moon’s orbit wiggle a little as the relative positions of Earth and Moon change (Figure 81). This is because
the Sun’s gravitational force on the Moon is much greater than that of the Earth, even though the latter is
nearer. It is hardly surprising that the orbit of the Moon is so complicated to calculate since it is regulated
by two bodies, not one, and the two bodies are themselves tied in orbit about each other.

For the purposes of our calculations, we are going to imagine that both the Sun and the Moon are in orbit
about the Earth. We have already calculated the position of the Sun by these means in Section 46. We
will need those calculations in the next few sections to find the magnitude of some of the corrections to the
Moon’s orbit.

There are three main effects of the perturbations caused by the Sun on the Moon’s apparent orbit round
the Earth. The first of these is called evection in which the apparent value of the eccentricity of the Moon’s
orbit varies slightly. The second is due to the variation of the Earth–Sun distance as the Earth travels in
its own ellipse about the Sun. This correction is called the annual equation. The third inequality takes
account of the motion of the Moon in the Sun’s gravitational field. When the Moon is on one side of the
Earth it is nearer the Sun so that the Sun’s gravitational attraction is slightly more than when the Moon is
on the other side of the Earth. This correction is called the variation. These corrections alone, together
with the usual correction called the equation of the centre, can make up to 9◦ difference in the Moon’s
mean anomaly, so it is important that they be taken into account. We shall make six corrections in all to

Figure 81. The Moon’s orbit, much exaggerated. The Moon is much closer to the Earth than suggested by this diagram;
in particular, its orbit is everywhere concave towards the Sun.
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find the position of the Moon to within one fifth of a degree. (See spreadsheet MoonPos2 for more precise
calculations using spreadsheet functions that employ a better numerical model of the Moon’s orbit.)

The apparent motions of the Moon and the Sun about the Earth are drawn in Figure 82. This diagram is
similar to that of Figure 63 except that here the Earth is at the centre and both the Sun and the Moon describe
ellipses about the Earth. Once again you are to imagine that you are looking at the Solar System from a
great distance and, further, that you are moving in such a manner that the Earth appears to be stationary in
your view. The large sphere is centred on the Earth, E, and the planes of the orbits of Sun and Moon are
projected to cut the sphere along the circles à N′

1S′N′
2 and N′

1P′m′N′
2 respectively. S′ is the projection of

the Sun onto this sphere and its longitude, measured from the first point of Aries, à, is denoted by λ�.
The Moon’s orbit is inclined to the ecliptic at an angle i; N′

1 and N′
2 are the projections of the ascending

and descending nodes, P′ is the projection of the Moon’s perigee, and m′ is the projection of the present
position of the Moon. The longitude of the ascending node is �, the longitude of the perigee is �+ω and
the Moon’s true anomaly is ν .

There are two principal effects of the perturbations mentioned above. The first is that the perigee of the
Moon’s orbit, unlike the (nearly) stationary perihelia of the planets’ orbits, advances (prograde) at such a
rate that it makes one complete revolution in about 8.85 years. The second is that the line joining the nodes,
N′

1N′
2, moves backwards (retrograde) around the ecliptic so that it makes one complete revolution in about

18.61 years. Yet another month can be defined by the time it takes the Moon to return to its ascending node.
This is the draconic or nodal month and it is equal to 27.212 2 days.

Figure 82. Defining the Moon’s orbit.
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65 Calculating the Moon’s position

The steps involved in the process of finding the position of the Moon are much the same as those involved
in calculating the position of a planet, except that (i) correction terms have to be applied at every step and
(ii) the longitudes of the ascending node and perigee cannot be regarded as constant. We first determine the
Moon’s mean anomaly, Mm, which refers to the position of a fictitious Moon in uniform circular motion
about the Earth. Then we find the longitude, and, by referring it to the plane of the ecliptic, the geocentric
ecliptic coordinates λm and βm. Finally, we convert to right ascension and declination using the method
given in Section 27.

Once again we choose the epoch 2010 January 0.0 as our starting point. We calculate the number of days,
D, since the epoch to the required date and time, counting the time of day as a fraction of a day. For slightly
better accuracy we should use terrestrial time, TT, rather than the universal time, UT (see Section 16). Then
we find:

(a) the Sun’s ecliptic longitude, λ�, and mean anomaly, M�, by the method given in Section 46;
(b) the Moon’s mean longitude, l, given by

l = 13.1763966D+ l0;

(c) the Moon’s mean anomaly, Mm, given by

Mm = l −0.1114041D−P0;

(d) the ascending node’s mean longitude, N, given by

N = N0 −0.0529539D.

The symbols l0, P0 and N0 represent the mean longitudes at the epoch.
Next we calculate the corrections for evection, Ev, the annual equation, Ae, and a third correction, A3:

Ev = 1.2739sin(2C−Mm) ,

Ae = 0.1858sin
(
M�

)
,

A3 = 0.37sin
(
M�

)
,

where C = l −λ�. With these corrections we can find the Moon’s corrected anomaly, M′
m:

M′
m = Mm +Ev −Ae −A3.

We can now find the correction for the equation of the centre:

Ec = 6.2886sin
(
M′

m

)
.

Yet another correction term must be calculated:

A4 = 0.214sin
(
2M′

m

)
.

Now we can find the value of the Moon’s corrected longitude, l′, from

l′ = l +Ev +Ec −Ae +A4.
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The final correction to apply to the Moon’s longitude is the variation, V , given by

V = 0.6583sin2
(
l′ −λ�

)
.

Then the Moon’s true orbital longitude, l′′, is just

l′′ = l′ +V.

Referring the longitude to the ecliptic allows us to calculate the ecliptic latitude, βm, and longitude, λm.
Thus

λm = tan−1
{

sin(l′′ −N′)cos i
cos(l′′ −N′)

}
+N′,

and

βm = sin−1 {
sin

(
l′′ −N′)sin i

}
,

where N′ is the corrected longitude of the node, and it is given by

N′ = N −0.16sin
(
M�

)
.

This is a lengthy calculation! Let us illustrate it with an example: what was the position of the Moon on
1 September 2003 at 0h UT? The values of l0, P0, N0, i, and some other parameters of the Moon’s orbit are
listed in Table 11.

Moon’s mean longitude at the epoch l0 = 91.929336 degrees
mean longitude of the perigee at the epoch P0 = 130.143076 degrees
mean longitude of the node at the epoch N0 = 291.682547 degrees
inclination of Moon’s orbit i = 5.145396 degrees
eccentricity of the Moon’s orbit e = 0.0549
semi-major axis of Moon’s orbit a = 384 401 km
Moon’s angular diameter at distance a from the Earth θ0 = 0.5181 degrees
Moon’s parallax at distance a from the Earth π0 = 0.9507 degrees

Table 11. Elements of the Moon’s orbit, epoch 2010.0.
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Method Example

1. Find the number of days since 1 September = 243+1
2010 January 0.0 (§3). = 244
Remember to count the hours, minutes and − 2 557 days
seconds as a fraction of a day. The total is D. D = −2313 days

2. Find λ� and M� using the method of §46. λ� = 158.171 829 degrees
M� = 238.533 547 degrees

3. Find l = 13.1763966D+ l0. Adjust to the range l = 214.924 000 degrees
0 to 360 by adding or subtracting multiples of 360.

4. Find Mm = l −0.1114041D−P0. Mm = 342.458 607 degrees
Adjust to the range 0 to 360.

5. Find N = N0 −0.0529539D. N = 54.164 917 degrees
Adjust to the range 0 to 360.

6. Ev = 1.2739sin(2C−Mm), where C = l −λ�. Ev = 0.960 757 degrees
7. Find Ae = 0.1858sin

(
M�

)
and Ae = −0.158 477 degrees

A3 = 0.37sin
(
M�

)
. A3 = −0.315 590 degrees

8. Find the corrected anomaly: M′
m = 343.893 432 degrees

M′
m = Mm +Ev −Ae −A3.

9. Calculate Ec = 6.2886sin(M′
m). Ec = −1.744 614 degrees

10. Calculate A4 = 0.214sin(2M′
m). A4 = −0.114 077 degrees

11. Find l′ = l +Ev +Ec −Ae +A4. l′ = 214.184 544 degrees
12. Find V = 0.6583sin

[
2
(
l′ −λ�

)]
. V = 0.610 256 degrees

13. Hence find the true longitude l′′ = l′ +V . l′′ = 214.794 800 degrees
14. Find N′ = N −0.16sin

(
M�

)
. N′ = 54.301 389 degrees

15. Find y = sin(l′′ −N′)cos i . . . y = 0.332 570
16. . . . and x = cos(l′′ −N′). x = −0.942 603
17. Calculate tan−1

( y
x

)
. Remove the ambiguity by tan−1

( y
x

)
= −19.433 905

reference to Figure 29, adding or subtracting + 180
180 or 360 to bring the result into the correct = 160.566 095 degrees
quadrant unless it is already there.

18. Add N′ to find λm. λm = 214.867 503 degrees
19. Find βm = sin−1 {sin(l′′ −N′)sin i}. βm = 1.716 074 degrees
20. Finally, convert λm and βm to right ascension and αm = 14h 12m 42s

declination (§27). δm = −11◦◦◦ 31′ 38′′′′′′

In step 2 of the method table above, using a calculator one obtains a value of M� = 236.642435 degrees.
As noted elsewhere, sometimes we have cheated and employed a spreadsheet: in this case we have used
MoonPos1 (see below) to calculate M�, giving instead 238.533 547 degrees, or 4.163 196 radians, as in cell
C18 of Figure 84.

The Astronomical Almanac gives the apparent coordinates of the Moon at 0h TT as α = 14h 12m 10s and
δ = −11◦ 34′ 52′′. We may generally expect an error of about a quarter of a degree in ecliptic coordinates
(but see MoonPos2 below for a more precise spreadsheet method). This is illustrated in Figure 83 where
the error, ∆, between λm calculated by this method and that calculated by MoonPos2 is drawn as a function
of the date for early 2011.
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Figure 83. The error, between the ecliptic coordinates of the Moon as calculated by the method given here and those
calculated by MoonPos2, for early 2011.

The spreadsheet, labelled MoonPos1 for this calculation, is shown in Figure 84. We have used cells I12
to I15 for the relevant orbital elements of the Moon, rather than having a table on a separate worksheet,
since only one body (the Moon) is involved in this case. There is no need, either, to use the VLOOKUP
function in this case. We have also cheated a bit by defining new spreadsheet functions SunMeanAnomaly
(row 18) and UnwindDeg (e.g. row 19). The former takes eight arguments, which are the local civil time
expressed as hours, minutes and seconds, the daylight saving and time zone offsets in hours, and the local
civil date as day, month, and year. It returns the Sun’s mean anomaly for the given instant in radians. The
other function, UnwindDeg, takes a single argument of an angle in degrees and returns the equivalent angle
in the range 0 to 360 degrees.

We have provided three additional spreadsheet functions called MoonLong, MoonLat, and MoonHP, re-
turning respectively the Moon’s geocentric ecliptic longitude, latitude and horizontal parallax (Section 69)
in degrees. All three take the same eight arguments as SunMeanAnomaly above. The algorithms behind the
functions use a full numerical model to calculate the respective values, and are accurate to within approx-
imately 10, 5 and 0.5 arcseconds respectively over many hundreds of years. These have been used in the
spreadsheet MoonPos2 (Figure 85), which also calculates the Earth–Moon distance in kilometres, and the
Moon’s horizontal parallax in degrees. Note that these are related (row 21) as

distance =
6378.14

sin(horizontal parallax)
,

so in fact the Moon’s orbital parameters a and e are not actually required. The number 6378.14 represents
the radius of the Earth in kilometres. Also of note is the correction in row 19 for the effects of nutation in
longitude.
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Figure 84. Finding the approximate position of the Moon.
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Figure 85. Finding the position of the Moon using a more precise method.
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66 The Moon’s hourly motions

The calculation which we have to do to find the position of the Moon is a lengthy affair and needs great
care in its execution to avoid making mistakes. It may be that you require the position at several different
times during one day and, rather than repeat the calculation several times, it is sufficient to find the position
once and then extrapolate to the other times using the values for the hourly motions of the Moon in ecliptic
latitude and longitude. These motions are given by the formulas

∆β = 0.05cos
(
l′′ −N′) degrees/hour,

∆λ = 0.55+0.06cos
(
M′

m

)
degrees/hour,

where ∆β is the hourly motion in latitude and ∆λ is the hourly motion in longitude. Given a position λ0,
β0 at time t0, the position t hours later is simply

β = β0 +∆β t,

λ = λ0 +∆λ t.

Continuing the previous example, what were the Moon’s ecliptic coordinates at 3h 30m TT on 1 September
2003?

Method Example

1. Write down λ0, β0, (these are the values of λ0 = 214.867 503 degrees
λm, βm at time t0), l′′, N′, M′

m at t0 (§65). β0 = 1.716 074 degrees
l′′ = 214.794 800 degrees
N′ = 54.301 389 degrees

M′
m = 343.893 432 degrees
t0 = 0.0 hours

2. Calculate ∆β = 0.05cos(l′′ −N′) ∆β = −0.047 130 degrees/hour
and ∆λ = 0.55+0.06cos(M′

m). ∆λ = 0.607 645 degrees/hour
3. Find t in hours: t = new time −t0, t = 3.5 hours

both times expressed in decimal hours.
4. Find the coordinates at the new time:

β = β0 +∆β t, β = 1.551 118 degrees
λ = λ0 +∆λ t. λ = 216.994 260 degrees

We have not provided a spreadsheet for this straightforward calculation because, if you are using a spread-
sheet to find the Moon’s position, you will probably want to calculate the Moon’s position directly for every
instance rather than use the calculation given above.
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67 The phases of the Moon

The relative positions of the Sun and the Moon as viewed from the Earth change during the course of one
month. It is always the hemisphere of the Moon facing towards the Sun which is brightly illuminated but
we on the Earth see only that half which faces us. Unless the Moon is in opposition to the Sun, the time of
full Moon, our half is not uniformly illuminated but overlaps both the bright and dark sides; hence we see
only a segment of the disc. The area of the segment expressed as a fraction of the whole disc is called the
phase.

The variation of phase with the Moon’s position is illustrated in Figure 86, showing a plan view of the
Moon’s orbit about the Earth, E. The Moon is drawn in five positions marked 1 to 5. At 1, the whole of the
dark side is turned towards us so that unless the Moon is illuminated by sufficient earthshine it is invisible.
This is the new Moon. One week later the Moon has reached position 3 and is said to be in quadrature.
This is the first quarter. Position 4 is the full Moon, the point of opposition with the Sun. At position 5,
the Moon is again in quadrature; this is the third quarter. Between positions 3 and 5 more than half of the
Moon’s face is illuminated and the Moon is said to be gibbous.

In Figure 86, the angle D is called the age of the Moon, varying from 0◦ to 360◦ as the Moon completes
one cycle of its orbit. Sometimes this angle is expressed in days, 1 day being equivalent to about 13◦. The
phase, F , is given by

F =
1
2

(1− cosD) .

We have already made most of the calculations to find D in Section 65. Referring again to Figure 86, we
find

D = l′′ −λ� degrees.

Continuing the example of Section 65, we will find the phase of the Moon at 0h TT on 1 September 2003.

Method Example

1. Find the values of λ� and l′′, using the λ� = 158.171 829 degrees
methods of §§46 and 65. l′′ = 214.794 800 degrees

2. Find D = l′′ −λ�. D = 56.622 971 degrees
3. Calculate F = 1

2 (1− cosD). F = 0.225

The Astronomical Almanac reports the fraction of the disc which is illuminated (the phase) as 0.226 for this
time.

The spreadsheet MoonPhase, Figure 87, provides a spreadsheet version of this calculation. The relevant
rows are 12 to 18, the rest (19 to 26) being to do with calculating the position-angle of the bright limb of
the Moon (next section). We have also provided a (slightly more accurate) spreadsheet function to calculate
the phase explicitly. It is called MoonPhase and it takes eight arguments, namely the local civil time as
hours, minutes and seconds, the daylight saving and time zone offsets in hours, and the calendar date as
day, month, year. Thus, having saved a copy of the spreadsheet, you could delete rows 12 to 18, and place
the following spreadsheet formula in cell H3:

=ROUND(MoonPhase(C3,C4,C5,C6,C7,C8,C9,C10),2).

You can play a similar trick with rows 19 to 26 (see the next section).
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Figure 86. The phases of the Moon.

One of the important steps in calculating an eclipse of the Sun or Moon (Sections 71–74) is to find
the times of new Moon and full Moon, that is the moments when the Moon is in conjunction or opposi-
tion to the Sun respectively. To help you to do this, we have provided a spreadsheet called MoonNewFull
(Figure 88), and spreadsheet functions called NewMoon and FullMoon. These functions are used in the
spreadsheet at rows 16 and 17, and each takes five arguments, namely the daylight saving and time zone
offsets in hours, and the calendar date as day, month, year. The functions return the Julian dates of the in-
stances of new Moon and full Moon associated with the lunar cycle (the lunation) in progress on the given
date. The rest of the spreadsheet, rows 18 to 29, turns the Julian dates into local civil times and calendar
dates.
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Figure 87. Finding the phase and position-angle of the bright limb of the Moon.
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Figure 88. Finding the instances of new Moon and full Moon.
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68 The position-angle of the Moon’s bright limb

In Section 59 we saw how to calculate the position-angle, χ , of the bright limb of a planet. χ is defined to
be the angle of the midpoint of the illuminated limb measured eastwards from the north point of the disc
(see Figure 71). We can do the same for the Moon. χ is given by

χ = tan−1

⎧⎨
⎩

cosδ� sin
(

α�−αm

)

cosδm sinδ�− sinδm cosδ� cos
(

α�−αm

)
⎫⎬
⎭ ,

where α�, δ� and αm, δm are the equatorial coordinates of the Sun and Moon respectively.
For example, what was the position-angle of the Moon’s bright limb on 1 September 2003 at 0h TT? The

coordinates of the Sun and Moon that day were α� = 10h 39m 17s, δ� = 8◦ 30′ 21′′, αm = 14h 12m 10s,
and δm = −11◦ 34′ 58′′. (These can be calculated by the methods given in Sections 46 and 65.)

Method Example

1. Convert α� and αm first to decimal hours α� = 10.654 722 hours
(§7) and then to degrees (§22). = 159.820 833 degrees

αm = 14.202 778 hours
= 213.041 667 degrees

2. Convert δ� and δm to decimal degrees (§21). δ� = 8.505 833 degrees
δm = −11.582 778 degrees

3. Find y = cosδ� sin
(

α�−αm

)
. . . y = −0.792 170

4. . . . and x = cosδm sinδ�− sinδm cosδ� cos
(

α�−αm

)
. x = 0.263 794

5. Find χ = tan−1
( y

x

)
. Remove the ambiguity by χ = −71.582 151 degrees

referring to Figure 29, adding or subtracting 180 (already in the right quadrant)
to bring the result into the correct quadrant if not χ = −−−71.58 degrees
already there, according to the signs of x and y.

As mentioned in the previous section, the spreadsheet MoonPhase (Figure 87) also performs this calcu-
lation. We have provided a spreadsheet function called MoonPABL and it takes eight arguments, namely the
local civil time as hours, minutes and seconds, the daylight saving and time zone offsets in hours, and the
calendar date as day, month, year. Thus, having saved a copy of the spreadsheet, you could delete rows 19
to 26, and place the following spreadsheet formula in cell H4:

=ROUND(MoonPABL(C3,C4,C5,C6,C7,C8,C9,C10),2).

Note that the angles −71.58 and 360 +(−71.58) = 288.42 are equivalent to each other (all expressed in
degrees).



176 The Moon and eclipses

69 The Moon’s distance, angular size and horizontal parallax

During the course of one complete circuit of its orbit, the Moon’s distance, ρ , from the Earth varies quite
considerably. Its point of closest approach, the perigee, is about 356 000 km from the Earth while the
furthest point, the apogee, is at a distance of 407 000 km. We can calculate its distance at any other point
quite easily, as it is given by the formula

ρ =
a
(
1− e2

)
1+ ecos(M′

m +Ec)
,

where M′
m is the corrected anomaly, Ec is the correction for the equation of the centre (defined in

Section 65), e is the eccentricity (about 0.054 900) and a is the semi-major axis of the Moon’s orbit (see
Table 11). We usually wish to express the distance as a fraction of a so we write

ρ ′ =
ρ
a

=

(
1− e2

)
1+ ecos(M′

m +Ec)
.

The units of ρ are the same as those of a; if a is expressed in kilometres, so is ρ .
The Moon’s apparent angular diameter, θ , follows directly from the value of ρ ′. It is given by

θ =
θ0

ρ ′ ,

where θ0 is the Moon’s apparent angular diameter when it is at a distance a from Earth. The value of θ0 is
given in Table 11 (approximately 0.518 1 degrees).

The Moon’s horizontal parallax is defined to be the angle subtended at the Moon by the Earth’s radius.
In Figure 89 it is given by the symbol π (not to be confused with the constant 3.141 592 7). The formula is

π =
π0

ρ ′ ,

where π0 is the horizontal parallax at distance a from the Earth (Table 11; about 0.950 7 degrees). Note that
we have provided a spreadsheet function, MoonHP (see Section 65) that calculates the value of π directly.
From this you can calculate ρ , given the radius of the Earth (6378.14 km):

ρ =
6378.14
sin(π)

.

For example, what were the values of ρ ′, θ and π on 1 September 1979 at 0h UT?

Method Example

1. Find M′
m and Ec by the methods in §65. M′

m = 343.893 432 degrees
Ec = −1.744 614 degrees

2. Calculate ρ ′ = ρ
a = 1−e2

1+ecos(M′
m+Ec)

. ρ ′ = 0.947 474

3. Find θ = θ0
ρ ′ . θ = 0.546 822 degrees

= 32′ 49′′

4. Find π = π0
ρ ′ . π = 1.003 405 degrees

= 1◦◦◦ 00′ 12′′
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We have provided spreadsheet functions to make these calculations rather more accurately. They are
called MoonDist, which returns the distance between the Earth’s centre and the Moon’s centre in kilometres,
MoonSize, which returns the angular diameter of the Moon as seen from the centre of the Earth, in degrees,
and MoonHP, which gives us the Moon’s horizontal parallax in degrees. Each of them takes the same set
of eight arguments, namely the local civil time as hours, minutes and seconds, the daylight saving and time
zone offsets in hours (W negative), and the local calendar date as day, month and year. We have used these
in a spreadsheet called MoonDist (Figure 90). The Astronomical Almanac gives the values of the distance,
angular diameter and horizontal parallax respectively as 367 948 km, 32′ 29′′ and 0◦ 59′ 36′′. Note that the
apparent angular size of the Moon will be slightly different depending on where you are on the Earth, being
largest when you are nearest to it, i.e. when the Moon is directly overhead.

Figure 89. Lunar parallax.

Figure 90. Finding the Moon’s distance, diameter and horizontal parallax.



178 The Moon and eclipses

70 Moonrise and moonset

In Section 33 we found how to calculate the times of rising or setting of a star given its equatorial coor-
dinates. We can apply the same method to the Moon to find the times of moonrise and moonset but the
problem is complicated by three factors. One is that the Moon is in rapid motion so that its right ascension
and declination are continually changing. To find the time of moonset, for instance, we require the coor-
dinates of the Moon at that time; but to find these coordinates we need the time of moonset, and so we go
round in a circle.

The second problem is also associated with the Moon’s rapidly changing position. In order to find the
circumstances of moonrise and moonset at a given location on the Earth for a given calendar date, we need
to know the corresponding Greenwich dates. We adopt an iterative scheme here, in which we find the
position of the Moon at, say, midday, use that position to calculate the times of moonrise and moonset, then
recalculate the Moon’s positions at those times, then recalculate the times of moonrise and moonset, and so
on until the changes are small enough for us to ignore. We need to take account of the fact that the calendar
date might change, and that the conversion from Greenwich sidereal time to UT (an essential step) might
be ambiguous (see Section 13). And then there is the fact that the Moon might not rise or set on a particular
date!

The third major complication with the Moon is that it is, astronomically speaking, very close to the Earth.
The coordinates which we work out are correct for the centre of the Earth, but when we observe from the
Earth’s surface the apparent coordinates change slightly; this effect is called parallax (see Section 38). In
the case of the Moon the parallax can be as much as a whole degree. Taking this into account, together with
the corrections for atmospheric refraction and the finite size of the Moon’s disc (times quoted are for the
upper limb), we can find the times of moonrise and moonset correct to within a minute or two of time.

Let us clarify all this with an example: what were the times of moonrise and moonset on 6 March 1986
as observed from Boston, Massachusetts, longitude 71◦ 03′ W and latitude 42◦ 22′ N, time zone −5 hours?
The Old Farmer’s Almanac (see Bibliography on page 208) lists these times as EST rising = 4h 20m am and
EST setting = 1h 08m pm.

The calculation is lengthy, even for one iteration, so we use spreadsheets straight away. The first of
these, Figure 91, is called MoonRiseSet1 and it provides a sort of do-it-yourself iterative method. The
local calendar date and a time (called the starting time – cell C11) are first converted to the Greenwich
calendar date (rows 14 to 16), and then the Moon’s position and horizontal parallax are calculated (rows 17
to 21). The right ascension and declination, and the vertical displacement (row 22), are used to find the local
sidereal times (rows 23 to 24) and then the Greenwich sidereal times (rows 26 and 27) of both rising and
setting. The times are converted to universal times in rows 28 to 31. Note that by this time we have already
acquired two status flags, one to do with rising and setting (row 25) and the other to do with conversion
from Greenwich sidereal time to universal time (rows 29 and 31). Finally, the universal times are converted
to local calendar dates and times (rows 32 to 39) and the azimuths calculated (rows 40 and 41).

Figure 91 shows the results of carrying out this series of calculations using a starting time of midday, 12
o’clock (cell C11). Comparing the time of moonrise, say, with that given in the Old Farmer’s Almanac,
we see that our result (4h 36m) is some 16 minutes later than the quoted time. We can now realise the
power of the spreadsheet by inserting this time back into cell C11 as the starting time. Figure 92 shows
what happens. The time of moonrise is now found to be 4h 21m, within a minute of the Old Farmer’s
calculation. We would need to repeat this exercise for the time of moonset, substituting 13.066 7 (13h 4m)
into the cell C11.



Moonrise and moonset 179

Figure 91. A manual method of calculating moonrise and moonset.

Figure 92. Another iteration in the calculation of moonrise.
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We have also provided spreadsheet formulas to carry all this out behind the scenes. Each of them makes
many iterations, and should generally work, though they may break down in particularly pathological cir-
cumstances. The formulas are MoonRiseLCT, MoonRiseLCDay, MoonRiseLCMonth, MoonRiseLCYear,
MoonRiseAz, eMoonRise for moonrise, returning, respectively, the local civil time of moonrise in hours,
the local calendar date, month and year, the azimuth, and a status string telling us about any error condi-
tions. The string is set to OK if everything is fine, but if not it will tell us about Greenwich sidereal time
conversion uncertainties as well as conditions under which the Moon never rises or never sets. Each func-
tion takes the same seven arguments, namely the local calendar date as day, month, year (but note that the
functions may give you the result for the day before or after), the daylight saving and time zone offsets
in hours (W negative), and the geographical longitude (W negative) and latitude (S negative) in degrees.
There is an equivalent set of functions for moonset, identical in every respect except that the word Set
replaces the word Rise in the name, e.g. MoonSetAz etc. A spreadsheet which uses these functions, called
MoonRiseSet2, is shown in Figure 93. You can see that it delivers results which are very close to those
quoted in the almanac.

Note that in Figures 91 to 93, the contents of cells H4 to H12 are shown below in cells H15 to H23 in order
to save space. The contents of cell G3 is shown in cell H14. Some of these cells use the CONCATENATE
function which joins together strings from various parts of the spreadsheet. Thus, in cell H6, we have

=CONCATENATE(TEXT(C22,##),''/'',TEXT(C23,##),''/'',TEXT(C24,####))

to produce the date in the format dd/mm/yyyy. The function TEXT converts a number (first argument) into
a text string containing the number of digits identified in the second argument by the identifiers ## (for
two digits) and #### for four digits. Then CONCATENATE produces just one string with all its arguments
joined together with no spaces.

Figure 93. An automatic method of calculating moonrise and moonset using spreadsheet functions.
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71 Eclipses

Both the Earth and the Moon cast long shadows into space. The Earth’s shadow lies exactly in the plane
of the ecliptic opposite the Sun whereas that of the Moon may be above or below the ecliptic depending
on the position of the Moon (Figure 94). The shadows are always present but we are usually unaware of
them since we cannot see them from the Earth. Occasionally, however, one of the bodies passes through
the shadow of the other and then we observe an eclipse: if the Moon passes through the Earth’s shadow it
is an eclipse of the Moon, or a lunar eclipse; when the Moon casts its shadow upon the Earth, we see the
Sun partially or totally obscured and it is then a solar eclipse.

An eclipse of the Moon can only happen at full Moon and an eclipse of the Sun at new Moon. We do
not see an eclipse on every such occasion, however, since the Moon’s orbit does not lie in the plane of the
ecliptic. Only when the Moon is also near one of its nodes can an eclipse occur.

A lunar eclipse begins with the penumbral phase when the Moon enters the penumbra of the Earth’s
shadow, and the Moon’s disc becomes a little fainter. You probably wouldn’t notice this unless you were
looking for it. As the Moon enters the umbra the partial phase begins; when it has all moved inside the
umbra the Sun’s light is entirely cut off and the total phase begins. The only light reaching the Moon
is then that refracted round the edges of the Earth, giving the Moon a coppery hue. The Earth’s shadow
extends well beyond the Moon’s orbit so that it is always possible for a total lunar eclipse to occur, if other
circumstances are favourable (Figure 95(a)).

A solar eclipse begins with the partial phase when the Earth enters the penumbra of the Moon’s shadow.
We see a ‘bite’ missing out of the Sun’s disc and as the eclipse progresses the size of the bite increases.
If you are favourably situated, you will see the Moon eventually cover the whole Sun. The eclipse is then
total. Since the Moon is so much smaller than the Earth, its umbra extends a much shorter distance into
space, in fact only just far enough to reach the Earth when the conditions are right (Figure 95(b)). The tip of
the umbra casts a small shadow on the face of the Earth which moves across it as the Moon and Sun change
their relative positions. Never is the umbra sufficiently large to engulf the whole Earth. Consequently any
total eclipse can only be seen along a narrow strip of the Earth’s surface.

Sometimes, however, the umbra does not reach the Earth at all (Figure 95(c)). In this case an annular
eclipse can occur with the Moon not quite obscuring the whole of the Sun’s disc at maximum eclipse but
leaving a ring of light round its edge.

Figure 94. Shadows cast by the Moon and the Earth.
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Figure 95. (a) Lunar eclipse, (b) total solar eclipse and (c) annular solar eclipse.
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72 The ‘rules’ of eclipses

Here is a summary of the most important ‘rules’ which appear to govern the occurrence of eclipses.

(a) A lunar eclipse can only occur at full Moon and a solar eclipse at new Moon. There is not an eclipse
every month.

(b) At least two solar eclipses occur every year, and never more than five. There is a maximum of three
lunar eclipses in a year. The highest total number of eclipses in a year, lunar and solar, is seven.

(c) Eclipses tend to go in pairs or threes: solar–lunar–solar. A lunar eclipse is always preceded or followed
by a solar eclipse (with two weeks in between them).

(d) The pattern of eclipses tends to recur in cycles of 18 years 11 days and 8 hours, the so-called ‘Saros’
cycle. The pattern is not repeated exactly.

(e) At the moment of greatest eclipse the Sun and Moon are nearly in opposition or conjunction. If the
angle between the line of nodes and the Sun or Moon is greater than 12◦ 15′ a total lunar eclipse is not
possible, while if it is less than 9◦ 30′ a lunar eclipse must occur. If the angle is more than 18◦ 31′ a
solar eclipse cannot happen, while if it is less than 15◦ 31′ a solar eclipse must occur.

(f) In a lunar eclipse, the total phase can last for a maximum time of 1 hour 40 minutes, and the umbral
phase, partial–total–partial, for a maximum time of 3 hours 40 minutes. The maximum time of total
solar eclipse (at the equator) is 7 minutes 40 seconds and an annular eclipse can last at most for 12
minutes and 24 seconds.

A total solar eclipse is a special event in the history of the Earth, for the Moon is gradually moving away
from the Earth as tidal forces are continuously transferring angular momentum from the Earth to the Moon’s
orbit. Right now we live at a particular time when the Sun and the Moon just happen to have more-or-less
the same angular size in the sky. A very long time in the future will see the Moon and Earth locked together
so that the period of the Moon’s orbit around the Earth is exactly the same as the time for the Earth to spin
once on its axis. The length of the day will then be nearly two months of present time and the Moon will
be much smaller than the Sun in the sky so that total solar eclipses will never occur.
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73 Calculating a lunar eclipse

There are two questions to be asked before proceeding with the calculation of an eclipse. The first is, ‘Is an
eclipse likely to occur?’ If the answer is yes, the second is, ‘Will I be able to see it?’ You may predict an
eclipse of the Moon at a certain time, but if the Moon hasn’t risen or has already set you won’t be able to
see it!

First, then, to spot the likely time of occurrence of a lunar eclipse. From rule (a) above there must be
a full Moon, that is the angle λm −λ� = 180◦. From rule (e) the angle between the line of nodes and the
Moon must be within 12◦ 15′ of 0◦ or 180◦ at that time. This is the angle l′′ −N′ in the calculations of
Section 65.

For example, is there a lunar eclipse associated with the full Moon on 4 April 2015? In order to find
out, we need to calculate the time of opposition, that is when the Moon and Sun are opposite each other in
ecliptic longitude, and then we need to find the Moon’s distance from the line of nodes. Using spreadsheet
MoonNewFull (Section 67), we see that the UT of the full Moon on this date is 12.118 660 h (12h 07m).
Hence we find, using the spreadsheet MoonPos1 of Section 65, that

λ� = 14.407 degrees,
λm = 194.400 degrees,

(hence λm −λ� = 179.993 degrees), and

l′′ = 194.419 degrees,
N′ = 189.824 degrees,

(hence l′′ −N′ = 4.595 degrees). We see that λm −λ� is very nearly 180◦ so that we are almost at the point
of full Moon, and that l′′ −N′ = 4.595 degrees, well within the limit of 12◦ 15′. There is indeed a total lunar
eclipse that day.

We have also provided a spreadsheet function called LEOccurrence which tests the angle between the
Moon and the nearest node and returns with one of the string messages Lunar eclipse certain, Lunar eclipse
possible, or No lunar eclipse depending on its magnitude. The function takes five arguments which are the
daylight saving and time zone offsets in hours, and the local calendar date as day, month, year. It tests the
full Moon of the lunation in progress on the date you specify. Use the function FullMoon to find the time
and date of the full Moon. Spreadsheet LunarEclipseOccurrence, Figure 96, shows how it goes.

Having predicted the occurrence of an eclipse, the second question is, can you see it? The answer
obviously depends on your position on the Earth. We can calculate, using Section 70, the times of moonrise
and moonset on the day of the eclipse for an observer on the Greenwich meridian at latitude 52◦ N. We find
that the Moon does not rise until 18h 49m UT while the eclipse is in progress at 10h 41m UT. Our observer
cannot therefore see the eclipse. However, repeating the calculation for someone in Sydney, Australia,
shows that moonrise is at 17h 39m local time, in time zone +10 hours, while the eclipse is in progress at
midday+10 = 22h local time, giving Sydney dwellers an excellent view if the night is clear.

To calculate the circumstances of an eclipse we need to know the Moon’s position at some particular time
near to full Moon, its hourly motions in longitude and latitude, its angular distance from the Sun (the angle
λm −λ�, its angular diameter, and the angular radius of the Earth’s shadow at the distance of the Moon’s
orbit. This last is given by the following simple formulas with sufficient accuracy for our purposes:

Sp = radius of penumbra = π +0.27 degrees,
Su = radius of umbra = π −0.27 degrees,
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Figure 96. Predicting a lunar eclipse.

where π is the Moon’s horizontal parallax (Section 69). Let us now calculate the circumstances of the lunar
eclipse on 4 April 2015. First, we write down all the details:

2015 April 4 at 12h 07m TT:

λm = 194.400 degrees;
βm = 0.412 degrees;
λ� = 14.407 degrees;
∆λ = 0.500 degrees/hour;
∆β = 0.050 degrees/hour;
π = 0.907 degrees;
Sp = π +0.27 = 1.177 degrees;
Su = π −0.27 = 0.637 degrees;
θm = 0.494 degrees.

Add to this the fact that the Sun is also moving in longitude at a rate of 360/(365.2422×24) degrees/hour,
that is at 0.041 degrees/hour.

Next, we calculate the precise point of opposition. This is the moment when the angle λm −λ� = 180◦.
At 12h 07m TT the angle is 194.400− 14.407 = 179.993 degrees, just 0.007 degrees short of 180◦. The
Earth’s shadow, always directly opposite the Sun, moves at the same rate and in the same direction as
the Sun. The Moon is moving at a rate of 0.500 degrees/hour, also in the same direction, and the Earth’s
shadow at 0.041 degrees/hour. Thus the Moon is catching up on the shadow at a rate of 0.500− 0.041 =
0.459 degrees/hour, so that it takes 0.007/0.459 hours to catch up by 0.007 degrees, that is almost 1 minute.
Opposition (in ecliptic coordinates) is therefore at 12h 08m TT.

Now we are in a position to construct the eclipse diagram, Figure 97. Draw a horizontal line to represent
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the plane of the ecliptic. Below this, draw a parallel line and, choosing a suitable scale (say 1 hour = 2 cm),
mark it in hours. Find the position on the scale corresponding to the moment of opposition and mark it
(point P) on the ecliptic line. (This is near the moment of maximum eclipse.) Next draw circles to scale
centred on P to represent the umbra and the penumbra. Their radii should correspond with the angular
radii of the shadows they represent. For example, we found above that Sp = 1.177 degrees. The difference
between the hourly motions in longitude of the Earth’s shadow and the Moon was 0.459 degrees/hour.
Thus, on our scale of 1 hour: 2 cm, 0.459 degrees also equals 2 cm. Hence the scale factor between degrees
and centimetres is 1 degree = 2/0.459 = 4.357 cm, and we should draw a circle of radius 1.177× 4.357 =
5.129 cm to represent the penumbra. The radius of the circle marking the umbra should be 0.637×4.357 =
2.775 cm.
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Figure 97. The lunar eclipse of 4 April 2015.
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Now we are ready to plot the path of the Moon through the Earth’s shadow. First, we mark the position,
Q, of the Moon at 12h 07m TT for which we have calculated its ecliptic coordinates. This position lies
at βm = 0.412 degrees above the ecliptic, corresponding to 0.412× 4.357 = 1.795 cm on the scale of our
diagram. Then we calculate the Moon’s position at some other time, say 2 hours later at 14h 07m TT. Mark
this point R. You can use the spreadsheet MoonPos1 to find the Moon’s ecliptic latitude (giving βm = 0.502
degrees). Alternatively, you can use the Moon’s hourly motions to find its approximate position as

βm = β0 +∆β t = 0.412+(0.050×2) = 0.512 degrees.

The difference of 0.01 degrees between the two calculations corresponds to a difference of about 4 mm on
the diagram, so for best accuracy you should always use the spreadsheet results if you have them. Using
1 degree = 4.357 cm, we need to mark point R at 0.502× 4.357 = 2.187 cm above the ecliptic line at the
14h 07m on our horizontal timescale. Joining Q and R with a straight line gives the path of the Moon.

Finally, we simply have to draw circles centred on the line RQ to represent the Moon at any point. The
radii of these circles must correspond with the calculated angular radius of the Moon, θm = 0.247 degrees
or 1.08 cm on the scale of the diagram. We mark two such positions: M1 represents the point where the
Moon enters the umbra, and M2 where the Moon leaves the umbra. The corresponding times may be found
from the scale below. They are:

Calculated

M1 at 10h 22m
M2 at 13h 44m

We have provided spreadsheet functions to calculate these times automatically with higher precision than
you can obtain from using pencil and paper. The functions are

UTFirstContactLunarEclipse,
UTStartUmbralLunarEclipse,
UTStartTotalLunarEclipse,
UTMaxLunarEclipse,
UTEndTotalLunarEclipse,
UTEndUmbralLunarEclipse,
UTLastContactLunarEclipse, and
MagLunarEclipse.

Each of these takes the same set of five arguments, namely the local calendar date expressed as day, month,
year, and the daylight saving and time zone offsets in hours. All but the last of them return the universal
times, respectively, of first contact (when the Moon first touches the penumbra), the start of the umbral phase
(M1 on our diagram), the start of the total phase (M2), mid-eclipse (when the eclipse is at its maximum), the
end of the total phase (M3), the end of the umbral phase (M4) and the end of the eclipse (when the Moon
leaves the penumbra). The last function, MagLunarEclipse, returns the magnitude of the eclipse, that is the
fraction of the lunar diameter obscured by the Earth’s shadow at the moment of greatest eclipse, measured
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along the common diameter. Its value is 1 or greater if the eclipse is total. These functions will return a
value of −99 if the particular phenomenon does not occur. For example, UTEndUmbralLunarEclipse returns
−99 if there is no umbral phase.

We have drawn all these functions together in the spreadsheet LunarEclipseCircumstances (Figure 98).
This calculates the local civil date and universal times of an eclipse, if one occurs, for the lunation in
progress on the specified local calendar date. We have used time zone 10 for Sydney, Australia. It would
be a small task to modify the spreadsheet so that local civil times were displayed instead of universal times.
Try it for yourself. You will need to use the function UTLCT. Note that the contents of cells G3, and H3 to
H11, are shown respectively in cells H13 to H22 in order to save space.

Figure 98. Calculating the circumstances of a lunar eclipse.
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74 Calculating a solar eclipse

A solar eclipse is rather more difficult to calculate than a lunar eclipse. If you look up a solar eclipse in
the Astronomical Almanac you will find a map of the world showing the path and duration of the eclipse at
each point; we shall not attempt such detail here. Our simple calculations will be made for just one location
but will give a good guide of what to expect.

Once again we need to answer the question ‘Is an eclipse likely?’ Rule (a) in Section 72 tells us that we
have to be at new Moon, that is the angle λm −λ� equals 0◦ (or equivalently 360◦). Rule (e) tells us that
the angle between the Sun or the Moon and a node must be within 18◦ 31′ of 0◦ or 180◦ at that time; this is
the angle λ�−N′ or l′′ −N′. We can find the time of new Moon using spreadsheet NewMoon (Section 67),
but we have also provided a spreadsheet function called SEOccurrence which tests the angle between the
Moon and the nearest node and returns with one of the string messages “Solar eclipse certain”, “Solar eclipse
possible”, or “No solar eclipse” depending on its magnitude. The function takes five arguments which are
the daylight saving and time zone offsets in hours, and the local calendar date as day, month, year. It tests
the new Moon of the lunation in progress on the date you specify. Spreadsheet SolarEclipseOccurrence,
Figure 99, shows how to use both of these functions to search for a solar eclipse. Note that the contents of
cells G3 and H4 are shown in cells H6 and H7 respectively, moved here in order to save space.

We see from Figure 99 that there is a solar eclipse on 20 March 2015. We shall illustrate the method
by working out the circumstances of that eclipse, as observed by someone on longitude 0◦ and at latitude
68◦ 39′ N.

First, we must work through the calculations of Sections 65, 66 and 69. The results for the time of new
Moon (Figure 99), 9.648 h = 9h 39 m TT (taken to be equal to UT) on 20 March 2015 are as follows (we
have used spreadsheet functions to find these values):

Figure 99. Predicting a solar eclipse.
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λ� = 359.461 degrees;

λm = 359.473 degrees;

(λm −λ� = +0.012 degrees);

βm = 0.964 degrees;

∆λ = 0.608 degrees/hour;

∆β = −0.049 degrees/hour;

θm = 0.556 degrees;

π = 1.021 degrees; and

hourly motion of the Sun = 0.041 degrees/hour.

We now have to take account of geocentric parallax. The coordinates λm and βm that we have just calculated
are those that would be observed at the centre of the Earth. We are observing from the surface of the Earth
at longitude 0◦ and at latitude 68◦ 39′ N, and we see slightly different ecliptic coordinates which can be
calculated as follows (values from spreadsheet functions):

Method Example

1. Transform λm and βm to equatorial coordinates (§27). αm = 23.942 hours
δm = 0.675 degrees

2. Find the apparent right ascension and declination after allowing α ′
m = 23.957 hours

for the effects of geocentric parallax (§39). Use the value of π for P. δ ′
m = −0.274 degrees

3. Convert α ′
m and δ ′

m back to ecliptic coordinates (§28). λ ′
m = 359.301 degrees

β ′
m = 0.005 degrees

Next we calculate the precise moment of conjunction in ecliptic coordinates when λ ′
m−λ� = 0◦. Strictly,

we ought to apply the correction for parallax to the Sun’s coordinates as well, but we shall ignore this small
correction here. At 09h 39m TT, λ ′

m −λ� = −0.160 degrees so that the Moon has still a little distance to
catch up with the Sun. Its speed in longitude is ∆λ = 0.608 degrees/hour so it is gaining on the Sun at
0.608− 0.041 = 0.567 degrees/hour. The difference of 0.160 degrees is made up in 0.160/0.567 hours =
0.282 hours = 17 minutes. Conjunction therefore occurs at 09h 56m TT. At this moment the Sun’s longitude
is 359.461+(0.282×0.041) = 359.473 degrees.

Now we are ready to construct the eclipse diagram (Figure 100). We proceed exactly as we did for the
lunar eclipse, drawing two horizontal lines, one to represent the ecliptic and the lower one to represent time.
Choosing a suitable scale (say 2 cm = 1 hour) we mark off the lower line in hours such that the time of
conjunction is roughly in the middle of the diagram. Next we find point P on the ecliptic corresponding to
conjunction and we draw a circle centred on P of the correct radius to represent the Sun. In this calculation,
we assume that the angular radius of the Sun is 0.268 degrees. (We can find this value using spreadsheet
SunDist, Section 48.) The relative motion between Sun and Moon in this case is 0.567 degrees/hour. Thus
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2 cm on our scale, which represents 1 hour, also represents 0.567 degrees. Hence 1 degree = 2/0.567 =
3.527 cm. The Sun’s radius converts to 0.268×3.527 = 0.945 cm on the scale of the diagram.

Next we plot the position of the Moon which we have calculated, using the corrected value β ′
m. We find

the point corresponding to 09h 39m TT and β ′
m = 0.005 degrees (= 0.526 cm), and mark it Q. Then we find

the Moon’s position, say, 2 hours later, preferably using spreadsheets to repeat the calculation of finding
the apparent position corrected for parallax, or approximately (but more easily) using the hourly motion in
latitude:

β ′
m = 0.005− (0.049×2) = −0.093 degrees = −0.33 cm.

Mark this point R. Joining Q and R by a straight line gives the path of the Moon relative to the Sun. We need
only mark off circles centred on the line of the correct radius (θm/2) to represent the Moon to determine the
aspect of the eclipse at any time. In Figure 100 we have marked two positions, M1 and M2, corresponding
to the start and end of the eclipse. The circles are of radius (0.556/2)× 3.527 = 0.98 cm. Here are the
results:

Calculated

M1 at 08h 59m
M2 at 10h 54m

You will notice from Figure 100 that the eclipse was total. Comparison of our calculated times with those
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Path of Moon
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Figure 100. Solar eclipse of 20th March 2015 as observed from longitude 0◦ and latitude 68◦ 39′ N.
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deduced from a more-accurate program shows that we are within a few minutes of the correct results. Even
our comparatively simple method allows us to make quite accurate predictions of what is surely the heavens’
most awe-inspiring phenomenon.

As in the previous section, we have provided spreadsheet functions to make these calculations more
accurately and with a lot less effort. The functions are:

UTFirstContactSolarEclipse,

UTMaxSolarEclipse,

UTLastContactSolarEclipse, and

MagLunarEclipse.

The first three functions return the universal times of first contact (i.e. the moment when the limbs of
the Sun and Moon first intersect with each other), mid-eclipse (which may or may not be total), and last
contact (when the limbs no longer intersect). The last function provides the magnitude of the solar eclipse,
defined to be the fraction of the solar diameter obscured by the Moon at the moment of greatest eclipse,
measured along the common diameter. Total eclipses have magnitudes greater than 1, as in this case.
All four functions take the same seven arguments, namely the local calendar date as day, month, year,
the daylight saving and time zone offsets in hours, and the geographical longitude and latitude in degrees
(W and S negative). The functions return the value −99 if an eclipse does not occur.

A spreadsheet called SolarEclipseCircumstances (Figure 101) shows how to make use of these functions.
For our observer on the Greenwich meridian, the universal times are also the local times. For other ob-
servers, it would be useful to display local civil times, and you can do this quite easily using the spreadsheet
function UTLCT. Note that the contents of cells G3, and H3 to H7, are shown respectively in cells H9 to
H14 in order to save space.

Figure 101. Calculating the circumstances of a solar eclipse.
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75 The Astronomical Calendar

It is often useful to have a chart that shows, at a glance, the relative configurations of the Sun, Moon
and planets and the likely times of occurrence of eclipses. The astronomical calendar is just such a chart,
displaying the right ascension of each heavenly body for every day in the year; the chart for 2015 is drawn
in Figure 102.

It is convenient (though not essential) to construct the chart on graph paper. Mark the vertical axis in days
(1 to 365 or 366) on a scale to make best use of the paper, and the horizontal axis in hours (0 to 24) such that
time increases towards the left; this is a convention often adopted by astronomers as the chart then more
nearly represents the relative positions of the bodies in the sky as seen from the Earth. Lines representing
the times of the Sun and midnight may now be drawn. To do so it is necessary only to calculate the right
ascension (RA) of the Sun on two days of the year several months apart by the method of Section 46, and to
join the points by a straight line. Where the line goes off the edge of the chart (as at A and B in Figure 102)
it should be continued from the points exactly opposite (A′ and B′). The resulting lines should slope down
towards the right; mark them with the symbol � to represent the Sun. The tracks of midnight, marked by
the symbol �, are parallel to those of the Sun but displaced by 12 hours on the RA scale.

Next, the track of the Moon should be marked in. Again, this can be done by calculating the Moon’s
right ascension on two days (a week or so apart) every month using the method of Section 65 and joining
the points by straight lines. However, the calculations are lengthy and somewhat tedious unless you have a
programmable calculator, or you use spreadsheets, so you may like to cheat a bit. The position of the Moon
is given for every hour of the year in the Astronomical Almanac which you can consult in your local library,
but it can also be deduced from the information given in most diaries, the dates of new Moon and full Moon.
We know that when the Moon is full it is in opposition to the Sun and, conversely, it is in conjunction with
the Sun at new Moon. We have already marked the tracks of conjunction (�) and opposition (�) so that
we can easily plot the Moon’s position from the dates of new Moon and full Moon. For example, our diary
(in 2009) indicated that new and full Moons occurred on 22 July and 6 August, so if we were making an
astronomical calendar for 2009 we would be able to deduce that the right ascension of the Moon was the
same as that of the Sun on 22 July and the same as midnight on 6 August. Join these two points with a
straight line to mark the track of the Moon.

Next we must mark in the tracks of the Moon’s ascending node (�) and descending node (�). The mean
longitude of the former is given by the value of N in Section 65, and of the latter by N + 180. Find these
values on two days separated by six months or so and convert to right ascension by the method of Section
27 (setting β = 0). Join each pair of points by a straight line.

We are now in a position to make predictions about eclipses. As explained in Section 72, an eclipse can
only occur when the Moon is near one of its nodes at full Moon (lunar eclipse) or new Moon (solar eclipse).
We must therefore find points on the chart where the tracks of the Moon, Sun or midnight, and either node
pass close to one another. In Figure 102 these points are marked ‘+’ together with the dates on which the
eclipses occur as follows:

20 March 2015: eclipse of the Sun;
4 April 2015: eclipse of the Moon;

13 September 2015: eclipse of the Sun;
28 September 2015: eclipse of the Moon.
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To complete the chart, we can mark on the tracks of the major planets: Mercury (�), Venus (♀), Mars
(♂), Jupiter (�), Saturn (�), Uranus (	) and Neptune (
). Their positions can be calculated by the method
given in Section 54.
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Figure 102. The astronomical calendar for 2015.
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aberration: the apparent angular displacement of a celestial object from its geometric position, caused by
the motion of the observer with respect to the object, and the finite speed of light.

age of Moon: the angle between the Sun and the Moon measured at the Earth.

altitude: the angle up from the horizon.

annual equation: a correction of the Moon’s orbital motion due to the variation of the Sun–Earth distance
as the Earth travels in its own ellipse about the Sun.

anomaly: the angle at the focus or the centre of an orbital ellipse between the major axis and the orbiting
body or its projection. The eccentric anomaly, E, is defined in Figure 55 (page 108), while the mean
anomaly, M, and true anomaly, ν , are defined for the Sun in Figure 53 (page 104).

apastron: the point in an orbit about a star that is furthest from the star.

aphelion: the point in an orbit about the Sun most distant from the Sun.

apogee: the point in an orbit about the Earth most distant from the Earth.

Astronomical Almanac: a collection of tables predicting the positions and circumstances of astronomical
phenomena. This title replaced both the American Ephemeris and Nautical Almanac and the Astronom-
ical Ephemeris, beginning with the 1981 edition.

Astronomical Ephemeris: see Astronomical Almanac.

astronomical latitude: the angle between the astronomical zenith and the equator.

astronomical unit: approximately equal to the length of the semi-major axis of the Earth’s orbit about the
Sun, 1.496 × 1011 metres.

atmospheric refraction: the apparent shift in the position of a celestial object due to the bending of light
rays by the atmosphere.

azimuth: the angle round from the north point measured on the horizon in the sense NESW.

binary star: a pair of stars bound together by their mutual gravitational attraction, both in orbit about their
common centre of mass.

calendar: system of accounting the days in the year. The Julian calendar, introduced by Julius Caesar,
divides the year into 365 days except for every fourth year which has 366. The Gregorian calendar,
introduced by Pope Gregory XIII (1502–1585) in 1582 and accepted in England in 1752, is the one
generally in use in the West today. It reduced the errors in the Julian calendar by removing three days
every four centuries; if the year ends in two noughts it is only a leap year if it is divisible by 400. So, for
example, 2000 was a leap year, but 1700, 1800 and 1900 were not. 2100 will not be a leap year either.
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celestial sphere: an imaginary sphere, usually centred on the Earth, of arbitrarily large radius on the surface
of which the stars can be considered to be fixed.

circumpolar stars: stars whose angular distances from the north or south celestial pole are sufficiently
small that they never dip below the horizon.

comet: a diffuse member of the Solar System, usually with a highly elongated orbit, which becomes visible
near the Sun. It has a bright head and one or more diffuse tails of variable length.

companion star: the fainter of the pair of stars in a visual-binary star system.

conjunction: the moment when two celestial bodies occupy the same position in the sky or share a common
coordinate when viewed from a particular place. Thus heliocentric conjunction, and conjunction in
right ascension.

coordinate systems: frames of reference by means of which the position of any point can be uniquely
specified. In astronomy, the systems take their names from the fundamental planes on which they are
based. Thus the ecliptic coordinate system measures longitude round from the first point of Aries, à,
in the plane of the ecliptic and latitude northwards from it. The equatorial coordinate system measures
right ascension round from à in the plane of the Earth’s equator, and declination northwards from it. In
the horizon coordinate system, the azimuth is measured round from the north point in the sense NESW
and the altitude is the angle up from the horizon. The galactic coordinate system specifies position by
longitude measured in the galactic plane round from the direction of the galactic centre and by latitude
measured perpendicular to the plane. Heliographic coordinates enable the position of an object on the
surface of the Sun to be specified with respect to the solar equator and a fundamental meridian assumed
to rotate at a uniform rate. Selenographic coordinates define positions on the surface of the Moon with
respect to the lunar equator and the mean sub-Earth point.

coordinated universal time (UTC): the time scale available from broadcast time signals. It differs from
International atomic time (TAI) by a whole number of seconds, and is maintained within 0.9 s of
universal time (strictly UT1) by the insertion of leap seconds, usually at the ends of June or December.

culmination: the moment at which a celestial body crosses the observer’s meridian. Circumpolar stars
cross the meridian above the horizon twice in one day, giving upper culmination and lower culmina-
tion.

day: the interval between two successive transits across the observer’s meridian of a fixed star (sidereal
day), of the Sun (solar day), or of a fictitious body called the mean Sun which moves at a uniform rate
along the equator (mean solar day).

daylight saving time: see time.

declination: in the equatorial coordinate system, the angle measured perpendicular to the equator (north
positive, south negative).

dynamical time: the family of time scales introduced in 1984 that replaces ephemeris time. See time.

earthshine: light reflected from the Earth which sometimes illuminates the dark portion of the Moon’s
disc, making it visible.

eccentricity: a measure of the degree of elongation of an ellipse, equal to the ratio of the distance of the
focus from the centre to the length of the semi-major axis.

eclipse: the passage of the Moon through the Earth’s shadow (lunar eclipse) or parts of the Earth through
the Moon’s shadow (solar eclipse). If, at the moment of greatest eclipse, the Moon or Sun is only partly
obscured it is a partial eclipse; if completely obscured it is a total eclipse. If during a solar eclipse the



Glossary of terms 199

Moon obscures the central part of the Sun’s disc but leaves an unobscured ring around its edge, then it is
an annular eclipse.

ecliptic: the plane containing the orbit of the Earth about the Sun.
ellipse: a type of regular closed curve, oval in shape, of which a circle is a special case. It is traced by a

point moving in such a manner that it keeps constant the sum of its distances from two fixed points, each
of which is called a focus of the ellipse. The longest diameter of the ellipse, which goes through both
foci and the centre, is called the major axis, the portion from the centre to the curve in either direction
being called the semi-major axis.

ephemeris time (ET): see time.
epoch: a particular moment specified as the reference point from which time is measured. The dates 1950.0

(strictly 1950 January 0.923) and 2000.0 (2000 January 1.5) are often used as standard epochs.
equation of the centre: a relation between the true and mean anomalies which is an approximation to

Kepler’s equation. In its simplest form it is

ν = M +2esinM,

where ν and M are expressed in radians, useful for values of e less than about 0.1.
equation of the equinoxes: apparent sidereal time minus mean sidereal time, taking account of the effect

of nutation on the positions of the equinoxes.
equation of time: the difference between the real solar time and the mean solar time.
equator: the plane through the centre of the Earth which is perpendicular to the spin axis.
equinox: the moment at which the Sun crosses the celestial equator. This occurs on about 21 March when

its right ascension is zero (the vernal equinox) and about 22 September when its right ascension is 12 h
(the autumnal equinox). The positions of the equinoxes on the celestial sphere lie along the line of the
intersection of the planes of the equator and the ecliptic.

evection: a correction to the Moon’s orbital motion taking account of slight variations in the apparent value
of the eccentricity of its orbit.

extinction: the attenuation and colouring of light as it travels through a medium; in particular, atmospheric
extinction.

figure of the Earth: the true shape of the Earth. It is often approximated by a spheroid of revolution, a
geometrical shape in which any cross-section parallel to the equator is a circle, while any cross-section
through the north–south axis is an ellipse with the minor axis coincident with the diameter joining the
north and south poles.

first point of Aries: the position on the celestial sphere of the vernal equinox.
focus of an ellipse: see ellipse.
geocentric coordinates: coordinates measured with respect to the centre of the Earth. Hence the geocen-

tric latitude is the angle between the equator and a point on the surface of the Earth, as measured at the
centre of the Earth.

geocentric parallax: the angle subtended at a heavenly body by the centre of the Earth and the point of
observation on the Earth’s surface.

geostationary satellite: a body orbiting the Earth in the plane of the equator in such a direction and at such
a height that its orbital period equals 1 day so that it keeps constant position with respect to the Earth’s
surface.
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GPS time: an atomic time kept by the US Naval Observatory and broadcast by the satellites of the global
positioning system. GPS time was equal to UTC on 1980 January 6 0.0, but, unlike UTC, is not adjusted
by the insertion of leap seconds. Hence GPS time is equal, in June 2011, to UTC + 15 seconds (kept to
within a microsecond) and is the time you can extract from your GPS navigation device.

gravity: the mutual force of attraction between any two bodies which is proportional to the product of their
masses and inversely proportional to the square of their separation.

great circle: any circle drawn on the surface of a sphere whose centre is the same as that of the sphere.
Greenwich mean time (GMT): this is ambiguous and is not now used in the Astronomical Almanac. Its

meaning in civil life is usually the same as UTC, though previously it has been used to mean UT. Before
1925 it was reckoned from Greenwich mean noon (12 h UT).

Greenwich meridian: that half of the great circle on the surface of the Earth passing through the north
and south poles and through the reference point in Greenwich, England. It is taken as the line of
longitude 0◦.

horizontal parallax: the geocentric parallax when the celestial body is on the observer’s horizon; hence
equatorial horizontal parallax when the observer is also on the equator.

hour angle: the difference between the local sidereal time and the right ascension.
inclination of orbit: the angle between the plane of the orbit and the plane of the ecliptic.
inner planet: a planet whose semi-major axis is smaller than that of the Earth; that is the planets Mercury

and Venus.
international atomic time (TAI): see time.
Julian date: the number of Julian days that have elapsed since the fundamental epoch Greenwich mean

noon of 1 January 4713 BC. For 2010 January 0.0 its value is 2 455 196.5. The Julian day number is
the integer part of the Julian date. See also modified Julian date (MJD).

Kepler’s equation: the relation between the mean and eccentric anomalies, M and E,

E − esinE = M,

where the angles are expressed in radians.
latitude: the coordinate expressing the angle (north positive, south negative) perpendicular to a fundamen-

tal plane, hence ecliptic latitude and galactic latitude. On the Earth, the geographical latitude is mea-
sured with respect to the equator. The ecliptic latitude can be measured either at the Earth (geocentric)
or at the Sun (heliocentric).

librations: variations in the orientation of the Moon’s surface with respect to an observer on the Earth.
light time: the time it takes light signals from a celestial body to reach an observer.
longitude: the coordinate expressing the angle round from a fixed direction measured in a fundamental

plane, hence ecliptic longitude and galactic longitude. On the Earth, the geographical longitude is
measured at the equator. The ecliptic longitude can be measured either at the Earth (geocentric) or at
the Sun (heliocentric).

lunation: the period between two successive new Moons.
luni–solar precession: the slow retrograde motion of the first point of Aries along the equator caused by

the combined effects of the Sun and the Moon on the slightly non-spherical Earth.
magnitude: (i) the unit defined on a logarithmic scale which measures the brightness of a celestial object

considered as a point.
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(ii) in a lunar eclipse, the fraction of the lunar diameter obscured by the shadow of the Earth at the
moment of greatest eclipse, measured along the common diameter.

(iii) in a solar eclipse, the fraction of the solar diameter obscured by the Moon at the moment of greatest
eclipse, measured along the common diameter.

mean Sun: a fictitious heavenly body that moves at a uniform rate along the equator making one complete
circuit in the same time (1 year) as the real Sun takes to make a complete circuit.

meridian: that half of a great circle which is terminated at the north and south poles. On the Earth a
meridian is a line of longitude. On the celestial sphere, the meridian which passes through the zenith is
called the observer’s meridian.

modified Julian date (MJD): the number of Julian days elapsed since 1858 November 17.0.
month: the period taken by the Moon to make one complete circuit of its orbit from reference point to

reference point. The draconic month or nodal month takes the ascending node as the reference and is
equal to 27.212 2 mean solar days. The sidereal month is reckoned against the background of stars and
is equal to 27.321 7 mean solar days. The Sun is used as the reference for the synodic month of 29.530 6
mean solar days, and the perigee for the anomalistic month of 27.554 6 mean solar days.

nadir: the point on the celestial sphere diametrically opposite the zenith.
node: a point on the celestial sphere where the great circle representing the orbit cuts the great circle

representing the plane of the ecliptic. The point where the orbiting body is moving from below (south
of) to above the ecliptic is called the ascending node; the other is the descending node.

noon: the instant at which the Sun crosses the observer’s meridian.
north celestial pole: the point at which the projection of the Earth’s rotation axis through the north pole

intersects the celestial sphere.
nutation: a small periodic wobbling motion of the Earth’s rotation axis.
obliquity of the ecliptic: the angle at which the plane of the ecliptic is inclined to the plane of the equator.
opposition: the moment when two celestial bodies occupy opposite positions in the sky, or have longitudes

different by 180◦, when viewed at a particular place.
orbit: the path through space taken by a body gravitationally attracted to another body.
orbital elements: the quantities which need to be known in order to specify an orbit uniquely.
osculating elements: the elements describing the elliptical orbit followed by a body if all perturbing influ-

ences vanish. Since perturbations disturb the true orbit of any member of the Solar System, the osculating
elements are constantly changing.

outer planet: those planets having semi-major axes larger than that of the Earth. The major outer planets
are Mars, Jupiter, Saturn, Uranus and Neptune. In 2006, Pluto was reclassified as a dwarf planet by the
International Astronomical Union.

parabolic orbit: an orbit in which the velocity at any point is equal to the escape velocity.
parallax: the amount by which the apparent position of a celestial object shifts as the point of observation

is changed.
penumbra: the outer portion of a shadow where the light is only partially cut off.
periastron: the point in an orbit about a star that is nearest to the star.
perigee: the point in an orbit about the Earth which is nearest the Earth.
perihelion: the point of closest approach to the Sun in an orbit about the Sun.
period of orbit: the time taken by the orbiting body to make one complete circuit.
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perturbations: deviations from true elliptical motion caused by the gravitational fields of other members
of the Solar System.

phase: (i) of Moon or planet: the fraction of the area of the disc which is illuminated. When the dark side
of the Moon faces the Earth, the phase is zero and it is new Moon. At the first quarter and the
third quarter, the phase is equal to a half and the Moon is in quadrature. Full Moon has a
phase equal to one. Whenever the phase is greater than a half, the Moon is described as gibbous.

(ii) of an eclipse: the stage of a lunar or solar eclipse during which the eclipsed body is partly
obscured (partial phase) or totally obscured (total phase). During a lunar eclipse, the Moon is
in the penumbra of the Earth’s shadow during the penumbral phase and partially or totally in
the umbra during the umbral phase. The partial and total phases occur during the umbral phase.

planet: a solid body in closed orbit about a star. In our own Solar System, the major planets are (in order
of increasing distance from the Sun) Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
Pluto, formerly recognised as a planet, was reclassified as a dwarf planet in 2006.

polar distance: the angle on the celestial sphere from the celestial pole.
pole: the point on a sphere which is perpendicular to a given plane. Hence pole of the ecliptic and pole of

the equator (each has two poles called north and south poles for short).
position-angle: a celestial angle measured from 0◦ to 360◦ eastwards from the north.
precession: see luni-solar precession.
primary star: the brighter of the pair of stars in a visual-binary system.
prograde motion: motion in the same sense as that of all the planets about the Sun. When looking down

on the Solar System from the north celestial pole, prograde motion is counter-clockwise.
radian: a natural unit used to measure angles, equal to 1/2π revolutions and 180/π degrees.
radius vector: the line joining the principal focus to the position of the orbiting body on its orbital ellipse.
reflectivity of planet: a measure of a planet’s ability to reflect sunlight; a factor affecting its apparent

brightness.
refraction: see atmospheric refraction.
retrograde motion: motion in the opposite sense to that of all the planets about the Sun. When looking

down on the Solar System from the north celestial pole, retrograde motion is clockwise.
right ascension: in the equatorial coordinate system the angle measured round from the first point of Aries

in the plane of the equator, in the sense NWSE.
rising: the moment when a celestial body crosses the horizon on the way up.
Saros cycle: the period of 18 years 11 days and 8 hours after which the pattern of lunar and solar eclipses

tends to repeat.
second (SI second): the unit of time for the international atomic time (TAI) scale defined to be exactly

9 192 631 770 cycles of radiation corresponding to the transition between two hyperfine levels in the
ground state of caesium 133.

semi-major axis: see ellipse.
setting: the moment when a celestial body crosses the horizon on the way down.
solar elongation: the angle between the lines of sight to the Sun and to the celestial body in question.
Solar System: the Sun and all the bodies, planets, comets and asteroids in closed orbits about it.
solstice: the points at which the apparent longitude of the Sun is 90◦ and 270◦, or the moments at which

the Sun is at either of these points. These occur around 21 June and 21 December.
sub-Earth point: the point on a celestial body (especially the Moon) where the line joining the centre of

the Earth and the centre of the body intersects the surface of the body.
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synodic period: the time between successive conjunctions in longitude.

terminator: the line marking the boundary between the dark and sunlit hemispheres of a member of the
Solar System.

terrestrial dynamical time (TDT): see time.

terrestrial time (TT): see time.

time: (i) atomic time: time measured with respect to the natural period of oscillations of an atomic system.
Caesium beam clocks currently constitute the most precise time-keepers available, and the SI unit
of atomic time is defined in terms of the caesium 133 atom (see second). International atomic
time (TAI) is the continuous scale resulting from analyses by the Bureau International des Poids
et Mesures of atomic time standards in many countries, starting from the epoch 1958 January 1.
Coordinated universal time (UTC) is the time scale distributed by standard time services and is
tied to both TAI and UT in such a manner that (a) it differs from TAI by a whole number of
seconds, and (b) it is never more than 0.9 s different from UT (strictly UT1). This is achieved by
the introduction of leap seconds into UTC from time to time. UTC constitutes the basis for legal
time keeping in most parts of the world. Terrestrial time (TT) (called terrestrial dynamic time
(TDT) until 1991) is used as the argument in theories of celestial dynamics and in the compilation
of the Astronomical Almanac. It is equal to TAI +32.184 s. TDT had replaced ephemeris time
(ET) in 1984, which was itself derived from analyses of the Moon’s motion.

(ii) solar time: time measured with respect to the motion of the Sun or a fictitious body, no longer
used, called the mean Sun (mean solar time). Universal time (UT) is, broadly speaking, the
mean solar time as measured on the Greenwich meridian. It is formally defined by a mathematical
formula as a function of sidereal time (see below), and is thus determined from observations of
the stars. A direct application of the formula gives UT0; with a small correction for polar motion
the scale UT1 is obtained. Whenever the term UT is used, UT1 is usually implied. British
summer time (BST) is 1 hour ahead of UT and is an example of daylight saving time in which
the time is adjusted to make the working day fit more conveniently into the daylight hours.

(iii) sidereal time: time measured with respect to the apparent motion of the stars. The local sidereal
time at any place is equal to the hour angle of the first point of Aries; local sidereal time on
the Greenwich meridian is called Greenwich sidereal time. The difference between apparent
sidereal time and mean sidereal time is called the equation of the equinoxes, and takes account
of nutation. It may be as much as 1.2 seconds.

time zone: a longitudinal strip on the surface of the Earth in which the zone time, usually a whole number
of hours before or after UT, is adopted as the local civil time by national or international
agreement.

transit: the moment at which a celestial body crosses the observer’s meridian.

twilight: that period of semi-darkness after sunset or before sunrise during which the sun’s zenith distance
is more than 90◦ but less than some agreed figure. This figure is 108◦ for astronomical twilight and
102◦ for nautical twilight, while for civil twilight it is 96◦.

umbra: the inner portion of a shadow where the light is completely obscured.

universal time: see time.

variation: a correction to the Moon’s orbital motion about the Earth that takes account of the changing
solar gravitational field.

vernal equinox: see equinox.
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year: the interval between two successive passages of the Sun through a reference point. A particular point
among the stars is used as reference in the sidereal year, equal to 365.2564 mean solar days. The tropi-
cal year, 365.242 191 mean solar days, uses the first point of Aries as its reference. When no qualifying
adjective is used with the word ‘year’, it is usually the tropical year that is meant. Perturbations to the
Earth’s orbit by the other planets cause small changes in the Earth’s orbital elements. The anomalistic
year, 365.2596 mean solar days, is the interval between two successive passages of the Sun through
perigee. The Besselian year, not used since 1984, is the period of one complete revolution in right
ascension of the fictitious mean Sun as defined by the astronomer Simon Newcomb (1835–1909). It is
almost the same as the tropical year, but begins when the right ascension of the Sun is exactly 240◦; this
instant falls very near the beginning of the civil year.

zenith: the point directly overhead at the observer. The zenith angle or zenith distance of a star is the
angle between the star and the zenith.

zone correction: the number of hours that needs to be added to or subtracted from UT to get the zone time.



Symbols and abbreviations

� Sun Å Jupiter� midnight Æ Saturn
Á Moon Ç Uranus
Â Mercury È Neptune
Ã Venus à first point of Aries
Ê Earth � ascending node
Ä Mars � descending node

= Begin a spreadsheet formula in a cell
* Multiply two values together in a spreadsheet formula
' Treat the contents of this spreadsheet cell as a label
#### Column width is too narrow in a spreadsheet
! Use to link to a cell of another spreadsheet
, Argument separator (delimiter) in Excel
; Argument separator (delimiter) in Calc
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α right ascension
β geocentric ecliptic latitude
δ declination
∆ difference; error
∆λ Moon’s hourly motion in ecliptic longitude
∆β Moon’s hourly motion in ecliptic latitude
∆A correction to azimuth
∆T ET – UT
∆t value of equation of time
ε elongation; obliquity of the ecliptic; longitude of planet at epoch
εg geocentric longitude of Sun at epoch
ζ apparent zenith angle
θ angular diameter; displacement; general coordinate
θt twilight zenith angle
λ geocentric ecliptic longitude
µ general coordinate
ν true anomaly; general coordinate
π parallax; constant = 3.141 592 654
ϖ heliocentric longitude of perihelion
ϖg geocentric longitude of Sun’s perigee
ρ distance
τ light-travel time
φ geographical latitude
φ ′ geocentric latitude
χ position-angle
ψ heliocentric ecliptic latitude; angle at the horizon; general coordinate� longitude of ascending node
ω to argument of perihelion
A azimuth
A, etc. matrix
a altitude; semi-major axis
AD Anno Domini
Ae annual equation
A3 third correction to Moon’s mean anomaly
A4 fourth correction to Moon’s mean anomaly
AU astronomical unit
B heliographic latitude
b galactic latitude
BC Before Christ
BCE Before the Common Era; Before the Christian Era
BST British summer time
CRN Carrington rotation number
CE Common Era; Christian Era
DEC declination
D age of Moon or planet; number of days since an epoch
d number of days; angle
E eccentric anomaly
E east point of horizon
e eccentricity
Ec correction applied in the equation of the centre
Ev evection
EST eastern standard time
ET ephemeris time
F phase
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GBT galactic barycentric time
GMT Greenwich mean time
GST Greenwich sidereal time
H hour angle
I inclination of Sun’s equator
i inclination
JD Julian days
L heliocentric longitude of Earth or heliographic longitude
l galactic longitude; Moon’s orbital longitude; heliocentric longitude of planet
LST local sidereal time
M mean anomaly
m magnitude; precession constant
MJD modified Julian date or day number
N north point of horizon; longitude of ascending node
n precession constant
NCP north celestial pole
P equatorial horizontal parallax; angle
p (horizontal) parallax
q perihelion distance
R refraction angle; distance of Earth from Sun
r radius vector
r0 semi-major axis of orbit
RA right ascension
S south point on horizon
Sp radius of Earth’s penumbra
Su radius of Earth’s umbra
SCP south celestial pole
ST sidereal time
T period of orbit
t, t0 epoch
TAI International atomic time
TDT terrestrial dynamic time
TT terrestrial time
UT universal time
V variation
v vertical shift
vvv, etc. column vector
V0 planet’s brightness factor
W west point on horizon
Y years
z real zenith angle
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A useful website

Point your browser to

www.cambridge.org/practicalastronomy

to find all of the spreadsheets and spreadsheet functions mentioned in Practical Astronomy with your
Calculator or Spreadsheet. You will need your copy of this book to access the software.

On our website we have also included links to other websites and sources of data that we hope will be of
interest to you.
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aberration, 78–9, 197
adjusting column width of spreadsheet, xvii
advance of Moon’s perigee, 163
age of Moon (phase), 171–2, 197, 202
algebraic notation, xi
altitude, 34, 197

effect of refraction on, 80
effect of refraction on, 81

ambiguity on taking inverse sine, cosine or tangent, 47, 54
angle between two objects, 66
Anno Domini (AD), 8
annual equation, 162, 197
annular eclipse, 181, 199
anomalistic month, 201
anomalistic year, 204
anomaly, 197

eccentric anomaly, 107, 108, 143, 197
mean anomaly, 103, 107, 121, 122, 143, 164, 197
true anomaly, 103, 107, 108, 121, 122, 144, 197

apastron, 197
aphelion, 102, 197
apogee, 103, 104, 197
apparent brightness of a planet, 140–1
apparent orbit of

Moon, 162, 163
Sun, 103–4, 163

apparent sidereal time, 203
argument of perihelion, 120, 143
Aries, first point of, 35, 36, 37, 199
ascending node, 120, 201
astronomical calendar, 194–7
astronomical latitude, 83, 197
astronomical twilight, 114–15, 203
astronomical unit, 136, 197
ATAN2, spreadsheet function, 48, 50
atmospheric extinction, 99, 199
atmospheric refraction, 80–2, 197

effect on altitude, 80, 81
effect on hour angle, 81
effect on right ascension and declination, 81
effect on rising and setting, 68, 81

atomic time, 16, 30, 203
autumnal equinox, 23, 199
azimuth, 34, 36, 197

at rising and setting, 67–71

BASIC, programming language, xix
before the Common Era (BCE), 8
before Christ (BC), 8
Besselian year, 204
binary star, 197
binary-star orbits, 155–9

orbital elements of, 157
bright limb, position-angle of

for Moon, 175
for planet, 138–9

brightness of a planet, 140–1
British summer time (BST), 17, 203
built-in spreadsheet functions, 4

Calc, spreadsheet software, xiii, xix
calculations, using spreadsheets for, xv
calculator, choosing, xi
calendar, 2, 197

astronomical, 194–7
Gregorian, 2, 197
Julian, 2, 197

Carrington rotation number, 94
celestial sphere, 34, 198
cell label, of spreadsheet, xiv
cell, of spreadsheet, xiv
centre, equation of the, 104, 121, 199

error incurred by, 134
choosing a calculator, xi
Christian Era (CE), 8
circumpolar stars, 68, 69, 198
civil twilight, 203
civil year, 2
colongitude, Sun’s selenographic, 97
colouring of starlight by the atmosphere, 99
column, of spreadsheet, xiv
column width, adjusting in spreadsheet, xvii
comet, 143–54, 198

calculating the position of, 143–54
orbital elements of, 145
parabolic orbit of, 151–4, 201

Common Era (CE), 8
companion (of binary star), 155, 198
CONCATENATE, spreadsheet function, 180
conjunction, 198
coordinate systems, 33–99, 198
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converting between one system and another, 42
ecliptic, 37, 198
ecliptic to equatorial conversion, 51–3
equatorial, 35–6, 198
equatorial to ecliptic conversion, 55
equatorial to galactic conversion, 56–8
equatorial to horizon conversion, 47–9
galactic, 38, 198
galactic to equatorial conversion, 58–9
generalised coordinate conversions, 42, 60–5
heliographic, 88–92, 198
horizon, 34, 198
horizon to equatorial conversion, 49–51
selenographic, 95–8, 198

coordinated universal time (UTC), 198
coordinates, geocentric, 83, 199
corrections to Moon’s orbit, 162, 164, 165
culmination, 36, 198

date to days conversion, 6
routine for, 8
via Julian date, 10

day, 198
length of, 23, 116
name of day of week from Julian date, 12–13
sidereal day, 23, 198
solar day, 22, 198

daylight saving time, 17, 203
days

in month, 2, 162, 163, 201
in year, 2, 204
to beginning of month, 7
to beginning of year, 7

declination, 35, 36, 198
effect of aberration on, 78–9
effect of precession on, 71–6
effect of refraction on, 81

degrees (decimal)
conversion to degrees, minutes and seconds, 39
conversion to hours, 41
conversion to radians, 109, 202

DEGREES, spreadsheet function, 47
descending node, 120, 201
divisor, 3
double precision, xii
draconic month, 163, 201
dynamical time, 16, 30, 198, 203

Earth
as a cosmic clock, 30
as a gyroscope, 116
distance from the Sun, 110
figure of, 83–4, 199
orbital elements of, 123
radius of, 85
radius of shadow of, 184, 186
rotation axis of, 35, 71

earthshine, 171, 198
Easter, date of, 3–5
eccentric anomaly, 107, 108, 143, 197
eccentricity, 102, 198
eclipse, 181–93, 198, 199

annular, 181, 199
diagram, 185, 187, 192
duration of, 183
lunar, 181, 198

calculation of, 184–9
magnitude of, 188
number in year, 183
partial, 181, 198, 202
penumbral, 181, 202
phase of, 202
prediction from astronomical calendar, 194
rules of, 183
solar, 181, 198
total, 181, 198
umbral, 181, 202

ecliptic
latitude, 37, 200
longitude, 37, 200
obliquity of, 37, 51, 201
pole of, 37, 202

ecliptic (plane of the), 37, 199
ecliptic coordinates, 37, 198

to equatorial conversion, 42, 51–3
elements, orbital, 201

of binary stars, 157
of comets, 145
of Moon, 165
of planets, 123
of Sun, 103, 104
parabolic, 151

ellipse, 102, 199
elongation (solar), 118, 202
ephemeris time (ET), 16, 30, 203
epoch, 6, 8, 9, 199

fundamental epoch for Julian date, 8
Julian date of epoch 2010 January 0.0, 9
starting point for calculations, 6, 8, 9

equation of the
centre, 104, 121, 199
error incurred by, 134
equinoxes, 199, 203
time, 116–17, 199

equator, 35, 199
pole of, 202

equatorial coordinates, 35–6, 198
to ecliptic coordinates conversion, 55
to galactic coordinates conversion, 56–8
to horizon coordinates conversion, 47–9

equatorial horizontal parallax, 84, 200
equinox, 199

autumnal, 23, 199
precession of the, 71–6, 200
vernal, 36, 37, 199

evection, 162, 199
Excel, spreadsheet software, xiii, xix
extinction, 99, 199

figure of the Earth, 83–4, 199
first point of Aries, 36, 37, 199
first quarter of Moon, 171, 202
FIX, spreadsheet function, 9
FLOOR, spreadsheet function, 9
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focus of an ellipse, 102, 199
formulas, in spreadsheets, xiv
fractional part of a number, 3
full Moon, 171, 202
functions

ATAN2, 48, 50
built-in to spreadsheet, 4
CONCATENATE, 180
DEGREES, 47
FIX, 9
FLOOR, 9
IF, 4, 26
INT, 9, 13, 23
intrinsic to spreadsheet, 4
MOD, 4
nested, 20
RADIANS, 47
ROUND, 15
TEXT, 180
TRUNC, 4, 9

galactic coordinates, 38, 198
to equatorial conversion, 58–9

galactic latitude, 200
galactic longitude, 200
Galaxy

ascending node of plane on equator, 56
centre, 38
plane, 38
pole, 56

generalised coordinate transformations, 42, 60–5
geocentric coordinates, 83, 199
geocentric latitude, 84, 199, 200
geocentric longitude, 200
geocentric parallax, 83–7, 199
geographical latitude, 83, 200
geographical longitude, 200
geostationary satellite, 34, 199
gibbous Moon, 171, 202
global positioning system (GPS) time, 16, 200
gravity, 102, 119, 162, 200
great circle, 34, 200
Greenwich mean time (GMT), 16, 200
Greenwich meridian, 16, 27, 69, 200
Greenwich sidereal time (GST), 23–7, 203

to local sidereal time (LST) conversion, 27
to UT conversion, 24–7

Gregorian calendar, 2, 197

Halley, comet, 148
orbital elements of, 145

heliocentric latitude, 200
heliocentric longitude, 200
heliographic coordinates, 88–92, 198

of centre of the Sun’s disc, 88–92
horizon coordinates, 34, 198

to equatorial coordinate conversion, 49–51
horizontal parallax, 84, 200

equatorial, 84, 200
of Moon, 176–7

hour angle, 35, 36, 200
at rising or setting, 68

effect of refraction on, 81
to right ascension conversion, 45

hourly motions
of Moon, 170
of Sun, 185, 191

hours, conversion to
degrees, 41
or from minutes and seconds form, 14,

15–16
radians, 41

IF, spreadsheet function, 4, 26
inclination of

lunar equator, 95
lunar orbit, 163
orbit, 200
planetary orbit, 124
solar equator, 90

inner planet, 124, 200
INT, spreadsheet function, 9, 13, 23
integer part of a number 3, 9

FIX, 9
FLOOR, 9
INT, 9, 13
TRUNC, 9

international atomic time (TAI), 16, 30, 203
intrinsic spreadsheet functions, 4
iteration to solve

cubic equation, 151, 152
Kepler’s equation, 107, 108, 143

Julian calendar, 2, 197
Julian date, 8–10, 200
Julian day number, 200

modified Julian date or day number (MJD), 8,
201

to Greenwich calendar date conversion, 11
Jupiter, orbital elements of, 123

Kepler’s equation, 107, 143, 158, 159, 200
iterative routine to solve, 108, 143
nomogram for first guess, 147

Kepler’s graphs, 143, 146

label, of spreadsheet cell, xiv
latitude, 200

astronomical, 83, 197
ecliptic, 37, 200
galactic, 38, 200
geocentric, 84, 199, 200
geographical, 83, 200
heliographic, 88
selenographic, 95

leap year, 2
length of day, 23, 116
libration, 95, 200
light flux from Sun

variation with distance, 140
light time, 200
light travel time from

planet, 136
Sun, 101, 110
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linking spreadsheets, xviii
local civil time, 16–20, 22

to UT conversion, 16–20
local noon, 17, 116, 201
local sidereal time (LST), 27, 43, 203

at rising or setting, 67–71
to GST conversion, 28–30

longitude, 200
ecliptic, 37, 200
galactic, 38, 200
geocentric, 200
geographical, 200
heliocentric, 200
heliographic, 88
selenographic, 95

lunar eclipse, 181, 198
calculation of, 184–9
duration of, 183

lunation, 172, 200
luni-solar precession, 71–6, 200

magnitude, 140, 200
of eclipse, 188, 200
of Moon, 140
of planet, 140–1
of Sun, 140

major axis of ellipse, 102, 199
Mars, orbital elements of, 123
matrices, 60–2
mean anomaly, 103, 121, 122, 143, 197
mean motion of

Moon, 164, 170
Sun, 112, 185, 191

mean sidereal time, 203
mean solar time, 203
mean Sun, 103, 116, 201
Mercury, orbital elements of, 123
meridian, 36, 201

Greenwich meridian, 16, 27, 69, 200
observer’s meridian, 201

Microsoft Excel, xiii, xix
minor axis of ellipse, 102
MOD, spreadsheet function, 4
modified Julian date or day number (MJD), 8, 201
month, 2, 201

anomalistic, 201
draconic, 163, 201
nodal, 163, 201
sidereal, 162, 201
synodic, 162, 201

Moon, 161–80
age of (phase), 171–2, 197, 202
angular diameter of, 176–7
calculating the position of, 164–7
corrections to orbit of, 162, 164–5
distance of, 176–7
eclipse of, 181, 198
error in calculating position of, 166, 167
hourly motions of, 170
magnitude of, 140
orbit of, 162–3
orbital elements of, 165

parallax of, 176–7, 178
perigee, advance of, 163
phases of, 171–2, 202
position-angle of bright limb, 175
quarters of, 2, 171–2, 202
rising and setting of, 178–80
selenographic coordinates, 95–8, 198

moon anomaly, 164
moonrise, 178–80
moonset, 178–80
movement of stars about pole, 35, 36, 67–9

nadir, 201
nautical twilight, 203
Neptune, orbital elements of, 123
nested spreadsheet functions, 20
new Moon, 171, 202
nodal month, 163, 201
node, 120, 201
nomogram for first guess in iterative solution of Kepler’s

equation, 147
noon, 17, 116, 201
north celestial pole, 35, 201
notation

algebraic, xi
reverse Polish (RPN), xi

nutation, 76–7, 201, 203

obliquity of the ecliptic, 37, 51, 201
observer’s meridian, 36, 201
OpenOffice Calc, xiii, xix
opposition, 201
orbit, 102, 201

of binary stars, 155–9
of comets, 143–51
of Moon, 162–3
of planets, 120
parabolic, 151–4, 201
period, 201
perturbations to, 132–4, 202
Sun (apparent), 103

orbital elements, 201
of binary stars, 157
of comets, 145
of Moon, 165
of planets, 123
of Sun, 103–4
parabolic, 151

osculating elements, 201
outer planet, 124, 201

parabolic orbits, 151–4, 201
parallax, 83–7, 201

effect on rising and setting, 68
equatorial horizontal parallax, 84, 200
geocentric parallax, 83–7
horizontal parallax, 84, 200
of Moon, 176–7, 178

partial eclipse, 181, 198, 202
penumbra, 201

size of Earth’s, 184
penumbral phase of eclipse, 181, 202
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periastron, 155, 201
perigee, 103, 104, 201

advance of Moon’s, 163
perihelion, 102, 201

argument of, 120, 143
period

of Moon’s nodes, 163
of Moon’s perigee, 163
of orbit, 201
synodic, 203

perturbations, 202
to planet’s orbit, 132–4, 202

phase, 202
of Moon, 171–2, 202
of planets, 137–8, 202

phase of eclipse, 181, 202
duration of, 183
partial, 181, 202
penumbral, 181, 202
total, 181, 202
umbral, 181, 202

physical libration, 95, 200
pi, value of, 206
plane of the ecliptic, 37, 199

obliquity of, 37, 51, 201
planet, 119–41, 202

angular diameter of, 136
brightness of, 140–1
calculating approximate position of,

131–2
calculating more exact position of,

121–8
distance of, 136
inner, 124, 200
light-travel time, 136
magnitude, 140–1
orbit of, 120
orbital elements of, 123
outer, 124, 201
perturbations to orbit of, 132–4, 202
phase of, 137–8, 202
position-angle of bright limb of, 138–9
reflectivity of, 202

polar distance, 68, 202
Polaris, 67
pole, 35, 37, 56, 202

of the ecliptic, 37, 202
of the equator, 202

position-angle, 202
position-angle of bright limb of

Moon, 175
planet, 138–9

precession (of the equinoxes), 71–6, 200
precision, double, xii
primary (of binary star), 155, 202
prograde motion, 162, 202

of Moon’s perigee, 163

quadrants of a circle, 53, 54
quadrature phase of Moon, 171, 202
quarters of Moon, 2, 171–2, 202

radians, 202
conversion to degrees, 109, 202
conversion to hours, 41

RADIANS, spreadsheet function, 47
radius vector, 102, 202
reflectivity of planet, 202
refraction, 80–2, 197

effect on altitude, 80, 81
effect on hour angle, 81
effect on right ascension and declination, 81
effect on rising and setting, 68, 81

remainder, 3
renaming a spreadsheet, xvii
retrograde motion, 163, 202

of Moon’s nodes, 163
reverse Polish notation (RPN), xi
right ascension, 36, 202

conversion to hour angle, 43–5
effect of aberration on, 78–9
effect of precession on, 71
effect of refraction on, 80–2

rigorous precession, 72–6
rising, 67–71, 202

effect of parallax on, 68
effect of refraction on, 68, 81
of Moon, 178–80
of Sun, 112–13

rotation axis of
Earth, 35, 71
Sun, 88

ROUND, spreadsheet function, 15
routines

R1 (converting the date to the day number), 8
R2 (finding a solution to Kepler’s equation),

108
R3 (to solve cubic equation), 152

row, of spreadsheet, xiv
rules of eclipse, 183

Saros cycle, 183, 202
satellite, geostationary, 34, 199
Saturn, orbital elements of, 123
second (SI), 202
selenographic coordinates, 95–8, 198
semi-major axis of ellipse, 102, 198, 199
semi-minor axis of ellipse, 102
setting, 67–71, 202

effect of parallax on, 68
effect of refraction on, 68, 81
of Moon, 178–80
of Sun, 112–13

shadow of Earth or Moon, 181–2
angular radius of, 184, 186

sidereal clock, 23
sidereal day, 23, 198
sidereal month, 162, 201
sidereal time (ST), 22–3, 30, 203

Greenwich sidereal time (GST), 23–7, 203
local sidereal time, 27, 43, 203

sidereal year, 204
software, spreadsheet, xix
solar day, 22, 198
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solar eclipse, 181, 198
calculation of, 190–3
duration of, 183

solar elongation, 118, 202
Solar System, 119, 202
solar time, 203
solstice, 202
spheroid of revolution, 83, 199
spreadsheet, xiii–xx

adjusting column width of, xvii
calculations with multiple, xvii–xix
cell, xiv
cell label, xiv
column, xiv
column width, xvii
formulas, xiv
functions, xix–xx

instead of multiple sheets, xix
layout of in this book, xvi–xvii
linking, xviii
renaming, xvii
row, xiv
software (BASIC, Calc, Excel), xix
tabs, xvii
using for complex calculations, xv
using functions as formulas, xix
what they are, xiii–xvi

spreadsheet functions
ATAN2, 48, 50
built-in, 4
CONCATENATE, 180
DEGREES, 47
FIX, 9
FLOOR, 9
IF, 4, 26
INT, 9, 13, 23
intrinsic, 4
MOD, 4
nested, 20
RADIANS, 47
ROUND, 15
TEXT, 180
TRUNC, 4, 9

starting point for calculations, 6, 8, 9
sub-Earth point, 202

on Moon, 95, 198
sub-solar point (on Moon), 97
Sun, 101–18

angular diameter of, 110–11
apparent orbit, 103
as a time-keeper, 116
calculating the position of, 103–5
Carrington rotation numbers, 94
distance of, 110–11
eclipse of, 181, 198
heliographic coordinates, 88–92, 198
hourly motion of, 185, 191
light-travel time, 101, 110
magnitude of, 140
mean, 103, 116, 201
mean rotation period of, 88
motion along the ecliptic, 37, 112

non-uniform apparent motion, 116
observation of, 88
orbital elements of, 103–4
position-angle of rotation axis, 91
rising and setting, 112–13
rotation axis of, 88
speed in apparent orbit, 116

sundial, 116
sunrise, 112–13
sunset, 112–13
synodic month, 162, 201
synodic period, 203

tabs, of spreadsheet, xvii
terminator, 138, 203

selenographic longitude of, 97
terrestrial dynamic time (TDT), 17, 30,

203
terrestrial time (TT), 30, 203
TEXT, spreadsheet function, 180
third quarter of Moon, 171, 202
time, 1–30, 203

apparent sidereal time, 203
atomic time, 16, 30, 203
British summer time (BST), 17, 203
daylight saving time, 17, 203
dynamical time, 16, 30, 203
ephemeris time (ET), 16, 30, 203
equation of, 116–17, 199
global positioning system (GPS) time, 16,

200
Greenwich mean time (GMT), 16, 200
Greenwich sidereal time (GST), 23–7, 203

to local sidereal time conversion, 27
to UT conversion, 24–7

international atomic time (TAI), 16, 30, 203
local civil time, 16–20, 22

to UT conversion, 16–20
local sidereal time (LST), 27, 43, 203

to GST conversion, 28–30
mean sidereal time, 203
mean solar time, 203
sidereal time (ST), 22–3, 30, 203
solar time, 203
terrestrial dynamic time (TDT), 17, 30, 203
terrestrial time (TT), 16, 30, 203
to decimal hours conversion, 14
to degrees conversion, 41
to hours, minutes and seconds conversion,

15
to radians conversion, 41
transmission services, 16
universal time (UT), 16–20, 23, 30, 203

to GST conversion, 23–4
to local civil time conversion, 20–2

zone time, 17–20
time zones, 17–20, 203
total eclipse, 181, 198
transit, 36, 203
tropical year, 2, 204
true anomaly, 103, 107, 108, 121, 122, 144,

197
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TRUNC, spreadsheet function, 4, 9
twilight, 114–15, 203

umbra, 203
size of Earth’s, 184

umbral phase of eclipse, 181, 202
universal time (UT), 16–20, 23, 30, 203
Uranus, orbital elements of, 123

variation, 162, 203
Venus, orbital elements of, 123
vernal equinox, 35–7, 199, 203
visible disc of planet, 137

website, xx, 209

year, 204
anomalistic, 204
Besselian, 204
civil, 2
leap, 2
sidereal, 204
starting point for calculations, 6, 8,

9
tropical, 2, 204

zenith, 34, 204
zenith angle (or distance) 80, 204

effect of refraction on, 80
zone correction, 17–19, 204
zone time, 17–20
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