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FOREWORD

This book is a translation of Les Mathématiques infinitésimales du IXe

au XIe siècle, vol. V: Ibn al-Haytham. Astronomie, géométrie sphérique et
trigonométrie. The French version, published in London in 2006, also
included critical editions of all the Arabic mathematical texts that were the
subjects of analysis and commentary in the volume.

The whole book has been translated, with great scholarly care, by
Dr J. V. Field. The translation of the primary texts was not simply made
from the French; I checked a draft English version against the Arabic. This
procedure converged to give an agreed translation. The convergence was
greatly helped by Dr Field’s experience in the history of the mathematical
sciences and in translating from primary sources. I should like to take this
opportunity of expressing my deep gratitude to Dr Field for this work.

Very special thanks are due to Aline Auger (Centre National de la
Recherche Scientifique), who helped me check the English translations
against the original Arabic texts, prepared the camera ready copy and
compiled the indexes.

         Roshdi Rashed
Bourg-la-Reine, November 2013



http://taylorandfrancis.com


PREFACE

This volume of Les Mathématiques infinitésimales du IXe au X Ie siècle
includes the editio princeps and the first translation of five works by Ibn al-
Haytham, together with mathematical and historical commentary on them.
The works are on astronomy and ancillary disciplines such as spherical
geometry, trigonometry and studies of instruments. The reader might
reasonably inquire whether the title of the volume gives a fair description of
its contents: why should a book on the history of infinitesimal geometry
contain works by Ibn al-Haytham on astronomy and subjects related to it? One
might also ask why we present these five treatises rather than all Ibn al-
Haytham’s works on astronomy, and even why, after all, we present the works
of Ibn al-Haytham rather than those of some other scholar.

We need to provide a brief explanation of what we are trying to achieve
and the means we propose to adopt.

Like its predecessors, this volume is intended to establish the corpus of
Arabic texts on infinitesimal geometry and to give an account of its history.
We need to carry out this programme if we are to understand the emergence
and development of ideas about analysis, not only in geometry but also in
algebra, in the form in which we find it in the work of Sharaf al-Dîn al-™ºsî in
the twelfth century. In short, we proceeded in this way in order to shed light
on the origins of analytico-algebraic mathematics from the ninth century
onwards. But this procedure ran up against several obstacles, of various
origins. The most serious obstacles arose from the lack of historical writing on
Arabic mathematics, a lack which is the more noticeable because between the
ninth and twelfth century, that is, in the period that concerns us here,
mathematical activity is prodigiously abundant.

It is well known that very few Arabic mathematical texts have been
edited; and even fewer texts have been established in a properly scholarly
manner. It is also the case that in this area historical studies worthy of the
name can be counted on the fingers of one hand; and this dearth of historical
research extends equally to the history of texts as well as that of concepts. It
requires little experience in the history of Arabic mathematics before one
comes to recognize that, even today, this area has hardly been explored at all.
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The lack of historical writings (on the one hand) and (on the other) the
great abundance of mathematical activity to write about, make for a situation
that is inevitably awkward for any historian concerned to rely upon something
other than empiricism. Plucking one flower in every field, juxtaposing names
of mathematicians and the titles of their writings, and so on, have never got
anyone anywhere. So a proper strategy needed to be worked out for exploring
this continent of Arabic mathematics, or (at least) one of its provinces. In this
book, as in the other books we have written on algebra, on number theory, on
Diophantine analysis, and so on, the strategic principle is to ensure that there
is the closest possible connection between investigation of the history of texts
and the investigation of conceptual structures. But the great quantity of the
material to which this strategy was to be applied made it necessary for us to
start by determining what was the high point of mathematical activity in each
of the chosen areas. For infinitesimal geometry, it is Ibn al-Haytham whose
work represents that high point. He is the one who went furthest in
investigating curved surfaces and curved solids; he is also the one who wrote
the most important text on lunes, the one who provided the first coherent
treatment of the solid angle, and so on. Having determined the highest point,
we worked backwards, trying to reconstruct the tradition that led up to this
point. We needed to go back to the Banº Mºsæ, in the ninth century, to enable
us to reconstruct the tradition, which we could then follow as far as Ibn al-
Haytham, in the eleventh century. The first two volumes of Les Mathéma-
tiques infinitésimales were entirely concerned with that reconstruction.

Elucidating the structures of the proofs and the texts of the works that
make up that tradition, and teasing out relationships between the texts, has
revealed their main features. We may note, among other examples, that there
are close connections between two ancient traditions, that of Archimedes and
that of Apollonius; there is a far more frequent use of geometrical transfor-
mations than we find in Hellenistic mathematics; that the use of numerical
calculation is carried much further than it is in the Archimedean tradition, and
so on. A mere reconstruction of this tradition of infinitesimal geometry
obviously does not provide a deep understanding of the formation and
development of this branch of mathematics. We needed to look further afield,
not only to find out what conditions made this branch of mathematics
possible, but also to identify its applications. It is, in fact, often under the
pressure provided by an application that new concepts are introduced and old
ones modified. To understand such changes required us to set research in
infinitesimal geometry within the framework of the research methods
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employed by the representatives of the tradition whose outlines we had
established, that is by the Banº Mºsæ, Thæbit ibn Qurra, al-Mæhænî, Ibræhîm
ibn Sinæn, al-Khæzin, al-Qºhî, Ibn Sahl and al-Sijzî, up to Ibn al-Haytham.
This is the task to which we devoted the third and fourth volumes of Les
Mathématiques infinitésimales, as well as other works.1 In the present volume
we have tried to set infinitesimal geometry in historical perspective,
examining it not only in the context of Ibn al-Haytham’s other work in geome-
try, but also in the context of contributions made by other mathematicians in
the same tradition, such as Ibn Sinæn, al-Qºhî, and al-Sijzî, notably in regard
to the geometry of conic sections. Our investigations led us to consider the
conditions that made it possible for this tradition to emerge.

We also needed to examine the theoretical and technical advances that
resulted from employing this type of mathematics. Adopting the same strategy
as before, here we again began by examining the works of Ibn al-Haytham,
before going back to look at the works of his predecessors. For Ibn al-
Haytham, who was also eminent in the study of physics, was the
mathematician best equipped to confront problems of applying mathematics.
And he did, indeed, make magisterial contributions to the principal disciplines
in applied mathematics of the time: optics, statics, astronomy and work on
scientific instruments. The only exception, it seems, was acoustics.

We have already examined Ibn al-Haytham’s writings on optics in several
other works,2 and we shall not return to them here. As for his statics, we are
less lucky, since his writings on the subject are lost and all we have is a single
reference to them, by al-Khæzinî.3 That leaves astronomy and instruments.

It is well known that in ancient and Hellenistic culture astronomy was
strongly privileged as an area for applying mathematical learning. This use of
mathematics, required for constructing models of celestial motions, for
making sundials and for other purposes, led to much new mathematics. We
may, for example, point to spherical geometry, or methods of interpolation. So
our investigation of the history of infinitesimal geometry in this period, in

1 See R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn. Logique et géométrie au Xe siècle,
Leiden, 2000; R. Rashed, Œuvre mathématique d’al-Sijzî. Vol. I: Géométrie des coniques
et théorie des nombres au Xe siècle, Les Cahiers du Mideo, 3, Louvain/Paris, 2004 and id.,
Geometry and Dioptrics in Classical Islam, London, 2005.

2 See R. Rashed, Optique et mathématiques: Recherches sur l’histoire de la pensée
scientifique en arabe, Variorum Reprints, Aldershot, 1992 and Geometry and Dioptrics.

3 Al-Khæzinî, Kitæb Mîzæn al-Ìikma, Hyderabad, 1941; see also F. Bancel, ‘Les centres
de gravité d’Abº Sahl al-Qºhî’, Arabic Sciences and Philosophy, 11.1, 2001, pp. 45–78.
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particular the work of Ibn al-Haytham, necessarily led us to study his writings
on mathematical astronomy. But there considerable surprises again awaited
us, for several different reasons.

It is not unusual for historians of astronomy to mention Ibn al-Haytham, to
stress the importance of his work and the crucial part he played in the criticism
of Ptolemy’s astronomy. However, on looking into the matter in more detail,
one cannot but be disconcerted by the general ignorance that surrounds his
works. Of the roughly twenty-five treatises that Ibn al-Haytham wrote on
astronomy, only one short essay on the direction of Mecca has been the
subject of a critical edition and a serious commentary;4 his important treatise,
Doubts concerning Ptolemy, has been the subject of an edition that can at best
be described as provisional,5 and as yet there has been no worthwhile
commentary on it. Finally, the treatise on Resolution of Doubts concerning the
Winding Motion has been published without any analysis or commentary.6

Thus Ibn al-Haytham’s work in astronomy remains effectively unknown.
And this ignorance has provided a basis for serious misapprehensions. In
writing about Ibn al-Haytham’s astronomy, most historians in fact rely upon a
treatise called The Configuration of the Universe, or on another one, the
Commentary on the Almagest. But, as we shall see, The Configuration of the
Universe is an apocryphal work, while the Commentary on the Almagest is not
by al-Îasan ibn al-Haytham but by a philosopher with a similar name,
MuÌammad ibn al-Haytham.7 Thus, even today, studies of Ibn al-Haytham’s
astronomy are being based on an apocryphal text, or a book that is not by him,
or again on the less than solid foundation provided by the edition of the
Doubts concerning Ptolemy to which we have already referred. The image of
Ibn al-Haytham’s astronomy that emerges thus contains contradictions: on the
one hand it is a strictly Ptolemaic astronomy, and on the other hand, in the
Doubts, it makes criticisms of Ptolemy. Curiously, this contradiction has not
been noticed by many of those who have written about Ibn al-Haytham’s

4 A. Dallal, ‘Ibn al-Haytham’s universal solution for finding the direction of the Qibla
by calculation’, Arabic Sciences and Philosophy, 5.2, 1995, pp. 145–93.

5 Al-Shukºk ‘alæ Ba†lamiyºs, ed. A. I. Sabra and N. Shehaby, Cairo, 1971.
6 A. I. Sabra, ‘Maqælat al-Îasan ibn al-Haytham fî Ìall shukºk Ìarakat al-iltifæf’,

Journal for the History of Arabic Science, 3.2, 1979, pp. 183–212, 388–92.
7 Les Mathématiques infinitésimales du IXe au X Ie siècle. Vol. II: Ibn al-Haytham,

London, 1993, pp. 1–17, 490–1 and 511–38. English translation: Ibn al-Haytham and
Analytical Mathematics. A History of Arabic Sciences and Mathematics, vol. 2, Culture
and Civilization in the Middle East, London, 2012, pp. 11–26, 364–81.
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astronomy, possibly because the contradiction was obscured by the fog of
cosmological considerations that separates these scholars from the reality of
Ibn al-Haytham’s astronomy.

It is accordingly more than ever necessary to establish texts of the corpus
of Ibn al-Haytham’s writings on astronomy and write scholarly commentaries
on them. At the moment this must remain a plan for the future, and our present
purpose is a more limited one: we shall consider only his treatises on
mathematical astronomy and ancillary subjects, to allow us to examine the
interactions between astronomy and mathematics, specifically infinitesimal
geometry and spherical geometry. We shall show that Ibn al-Haytham’s work
in astronomy takes place in at least two phases. In the first, where he is
criticizing Ptolemy’s astronomy, he also makes investigations in several
subsidiary fields and already raises some new problems. This as it were
preparatory phase is followed by a different phase, in which Ibn al-Haytham
works out his new astronomy. It is at this time that, contrary to normal
practice, the problem of the height of the heavenly body in the course of its
motion becomes the leading problem in astronomical research. Working out
this astronomy required a new investigation in infinitesimal geometry. Ibn al-
Haytham considers variations of magnitudes and ratios, makes use of
calculations of finite differences, and so on. This new research is described in
a substantial treatise – one of Ibn al-Haytham’s last works – whose importance
is comparable to that of his Book on Optics: The Configuration of the Motions
of the Seven Wandering Stars.

The present volume contains the editio princeps of the part of this treatise
that has come down to us. To put it in context and give a measure of the
distance Ibn al-Haytham had travelled since the first phase, we have also
given the editio princeps of his treatise On the Variety of Heights of the
Wandering Stars, which Ibn al-Haytham himself later declared to be out of
date.

Among Ibn al-Haytham’s works in ancillary fields there is a treatise On
the Hour Lines, which brings to completion the tradition of work on this
subject, a tradition that was initiated by Thæbit ibn Qurra, who was followed
by Ibræhîm ibn Sinæn and then al-Sijzî. Ibn al-Haytham also wrote a book on
Horizontal Sundials, addressed to artisans, as well as a treatise on Compasses
for Large Circles.

This volume does not contain all of Ibn al-Haytham’s works on
astronomy, but it has three purposes: to complete the preceding volumes by
making it clear what Ibn al-Haytham’s astronomical researches contributed to
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mathematics; to show how much more advanced his work on hour lines was in
comparison with that of his predecessors; and, above all, to examine his new
concept of astronomy. Thus we shall be able to observe both of the two
directions taken by his research following his critique of Ptolemy: one path led
to the construction of other configurations, which avoid the contradictions in
Ptolemy, such as those of NaÒîr al-Dîn al-™ºsî and then of Ibn al-Shæ†ir and
those of their successors; the other path led to proposing a celestial kinematics
expressed entirely in geometrical terms, which is Ibn al-Haytham’s distinctive
contribution to astronomy.

Throughout the years in which this volume was in preparation, I have
benefited from the unfailing support of Christian Houzel, Emeritus Director of
Research at the Centre National de la Recherche Scientifique. I should like to
express here my sincere gratitude for the encouragement he gave me, and
thank him also for his critical reading of my text, and the corrections he made
to my historical and mathematical commentary. I also express my warmest
thanks to Badawi El Mabsout, Professor Emeritus at the University of Paris
VI, who revised the text of The Configuration of the Motions of the Seven
Wandering Stars and proposed several improvements to it. In addition, I am
grateful to the Reverend Father Régis Morelon, Director of Research at the
Centre National de la Recherche Scientifique, for his friendly support and his
constant willingness to discuss the ideas I put forward. I also thank Professors
Boris Rosenfeld, Mariam Rozhanskaya and Sergei Demidov, who facilitated
my access to the manuscript of The Configuration of the Motions of the Seven
Wandering Stars. Last but not least, I express my immense gratitude to Aline
Auger, Ingénieur d’Études at the Centre National de la Recherche Scienti-
fique, who prepared this book for the press and constructed the indexes.

Roshdi Rashed
Bourg-la-Reine, June 2006



NOTE

< > Text between these brackets is an addition to the Arabic text that is
necessary for understanding the English text.

[ ] Text between these brackets is an addition to the French text that is
necessary for understanding the English text.

In the mathematical commentaries, we have used the following
abbreviations: meas.: measure of the angle subtended by an arc; sect.:
sector; tr.: triangle.
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CHAPTER I

THE CELESTIAL KINEMATICS OF IBN AL-HAYTHAM

1.1. INTRODUCTION

1.1.1. The astronomical work of Ibn al-Haytham

From Pierre Duhem onwards, at least, historians of astronomy have
been agreed on the importance of Ibn al-Haytham’s contribution to the
study of celestial kinematics. Some have paid particular attention to his cri-
ticisms of Ptolemy, criticisms that gave rise to the construction by his suc-
cessors of new planetary models. But Ibn al-Haytham is not seen as having
participated in this work, merely as having made the criticisms. Other histo-
rians have seen his contribution as synthesizing the Almagest with an Aristo-
telian cosmology. But a careful historical reading of Ibn al-Haytham’s wri-
tings, including some new texts that have not previously been taken into
consideration, shows that these two pictures of him are inaccurate. We find
that Ibn al-Haytham tried to carry out a reform of astronomy, excluding any
consideration of cosmology and developing the study of celestial kinematics.

However, such a reading requires us to consider Ibn al-Haytham’s
astronomical work as a whole, so as to define the limits of his concerns and
to exclude the writings that have been incorrectly ascribed to him, which
distort any assessment of his contribution.

The early bio-bibliographers – al-Qif†î, Ibn Abî UÒaybi‘a and an ano-
nymous predecessor – tell us that Ibn al-Haytham wrote twenty-five astro-
nomical works,1 which means that a quarter of the eminent mathematician’s
works were concerned with astronomy. Further, that is to say that he wrote
twice as many works on this subject as he did on optics, the field with which
his name will always be associated. The number of writings alone indicates
the huge size of the task accomplished by Ibn al-Haytham and the impor-
tance of astronomy in his life work.

1 The first critical examination of what is known about Ibn al-Haytham and his
writings is given in R. Rashed, Ibn al-Haytham and Analytical Mathematics. A
History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in the
Middle East, London, 2013, together with a summary in the form of a table listing all his
works, including those on astronomy (pp. 392–427).
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From the writings that have come down to us it becomes clear that,
even if the author’s primary concerns are theoretical and mathematical,
there was no part of astronomy that he neglected. Several treatises relate to
technical applications of astronomy, others to methods of astronomical cal-
culation, others again to procedures for making astronomical observations,
and so on. One can nevertheless divide his writings into four groups, on the
basis of surviving texts or, for lost texts, from titles mentioned in the books
of early bibliographers.

The first group consists of about ten treatises in which Ibn al-Haytham is
concerned with technical problems: On the Hour Lines (Fî khu†º† al-sæ‘æt),
On the Horizontal Sundials (Fî al-rukhæmæt al-ufuqiyya),2 < T h e
Determination> of the Azimuth of the Qibla by Calculation (Fî samt al-
qibla bi-al-Ìisæb),3 The Determination of the Height of the Pole with the
Greatest Precision (Fî istikhræj irtifæ‘ al-qu†b ‘alæ ghæyat al-taÌqîq), The
Determination of the Meridian with the Greatest Precision (Fî istikhræj
kha†† niÒf al-nahær ‘alæ ghæyat al-taÌqîq), The Correction of Astrological
Operations (Fî taÒÌîÌ al-a‘mæl al-nujºmiyya),4 and so on.

The second group is made up of two treatises on astronomical observa-
tion: conditions for making observations, the errors that may occur in
observation, and so on.

The third group of writings is concerned with various questions and
ranges of problems such as those relating to parallaxes, to the Milky Way
and so on.

The fourth group is concerned with astronomical theory and can in turn
be divided into three subgroups:

In the writings in the first of these, Ibn al-Haytham discusses the work of
Ptolemy. We have three books, which are of great historical and theoretical
interest:

1. Doubts concerning Ptolemy (Fî al-shukºk ‘alæ Ba†lamiyºs)5

2. Corrections to the Almagest (Fî tahdhîb al-Majis†î)
3. Resolution of Doubts concerning the Almagest (Fî Ìall shukºk fî

kitæb al-Majis†î).
Of these three books, only the first and the third have come down to us.

2 See below, Part II, Chap. I and II.
3 See  A. Dallal, ‘Ibn al-Haytham’s universal solution for finding the direction of the

Qibla by calculation’, Arabic Sciences and Philosophy, 5.2, 1995, pp. 145–93.
4 See below, Appendix.
5 Al-Shuk‚k ‘al Bafllamiy‚s (Dubitationes in Ptolemaeum), ed. A. I. Sabra and

N. Shehaby, Cairo, 1971.
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In the writings in the second subgroup Ibn al-Haytham examines
individual celestial motions:

1. The Winding Motion (Fî Ìarakat al-iltifæf)
2. Resolution of Doubts concerning the Winding Motion (Fî Ìall

shukºk Ìarakat al-iltifæf)6

3. The Motion of the Moon (Fî Ìarakat al-qamar)
In this subgroup, only the last two texts survive.

The third subgroup includes four titles:
1. On the Variety that Appears in the Heights of the Wandering Stars

(Fî mæ ya‘ri≈ min al-ikhtilæf fî irtifæ‘æt al-kawækib)
2. The Ratios of Hourly Arcs to their Heights (Fî nisab al-qusiyy al-

zamæniyya ilæ irtifæ‘ætihæ)
3. The Configuration7 of the Motions of Each of the Seven Wandering

Stars (Fî hay’at Ìarakæt kull wæhid min al-kawækib al-sab‘a)
4. The Configuration of the Universe (Fî hay’at al-‘ælam)
The first of these texts has come down to us, while the second has been

lost. A part of the third survives;8 the fourth is not to be identified with the
apocryphal text of the same title.9

This simple summary shows very clearly that this major body of astro-
nomical work is far from being well known, apart from The Configuration
of the Universe (whose authenticity is doubtful), the treatise On the Variety
that Appears in the Heights of the Wandering Stars, and The Configuration
of the Motions of Each of the Seven Wandering Stars.

We also notice that in the three books in which Ibn al-Haytham
mentions Ptolemy or the Almagest he does so in order to criticize the work.
He indeed speaks of ‘Doubts’, of ‘Corrections’, of ‘Resolution of doubts’. If
to that we add the criticism of Ptolemy put forward in The Resolution of
Doubts concerning the Winding Motion, it is no exaggeration to describe
Ibn al-Haytham’s researches as explicitly and deliberately designed as
criticism and projects for reform. It remains to be seen when this project of
reform was actually conceived, and what its outcome was. Here our task is
made harder by the fact that some treatises have been lost, and because it is

6 A. I. Sabra, ‘Maqælat al-Îasan ibn al-Haytham fî Ìall shukºk Ìarakat al-iltifæf’,
Journal for the History of Arabic Science, 3.2, 1979, pp. 183–212, 388–92.

7 The Arabic hay’a could be translated equally by ‘configuration’ or ‘model’.
8 See below, Part I.
9 See R. Rashed, ‘The Configuration of the Universe: a Book by al-ºasan ibn al-

Haytham?’, Revue d’histoire des sciences, t. 60, no. 1, 2007, pp. 47–63 and Ibn al-
Haytham and Analytical Mathematics, pp. 362–81.
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difficult to date the writings that have survived. We know that The Doubts
concerning Ptolemy was promised at the end of The Resolution of Doubts
concerning the Winding Motion. We also know that The Resolution of
Doubts concerning the Almagest was completed after August 1028, the
date when Ibn al-Haytham finished The Halo and the Rainbow, which he
cites.10 Lastly, we know that these four books must have been composed at
different times. So the order of composition is: The Winding Motion, The
Resolution of Doubts concerning the Winding Motion and, finally, The
Doubts concerning Ptolemy. Like The Resolution of Doubts concerning the
Almagest, these three treatises were all composed before 1038, as we learn
from the list of Ibn al-Haytham’s writings up to that date. So it seems that
around 1028, and certainly before 1038, Ibn al-Haytham was actively
engaged with astronomy.

Although we cannot speak for the content of the Corrections to the
Almagest, because the text is lost, the titles of these works make it obvious
that Ibn al-Haytham took a critical stance. It is clear that this critical attitude
is common to all the titles we have mentioned so far. Even in his book The
Motion of the Moon, also composed before 1038, where he makes a point
of explaining the difficulties in Ptolemy as the result of a first reading, Ibn al-
Haytham does not completely abstain from making criticisms. That is to say
that his criticisms, far from being merely incidental, are an expression of
dissatisfaction with Ptolemy’s astronomy. To get a measure of how radical
these criticisms of Ptolemy are, by way of example we shall look at what
Ibn al-Haytham says in reply to an anonymous scholar who had criticized
his treatise The Winding Motion:

From the statements made by the noble Shaykh, it is clear that he believes in
Ptolemy’s words in everything he says, without relying on a demonstration
or calling on a proof, but by pure imitation (taqlîd); that is how experts in
the prophetic tradition have faith in Prophets, may the blessing of God be
upon them. But it is not the way that mathematicians have faith in
specialists in the demonstrative sciences. And I have taken note that it gives
him (i.e. noble Shaykh) pain that I have contradicted Ptolemy, and that he
finds it distasteful; his statements suggest that error is foreign to Ptolemy.
Now there are many errors in Ptolemy, in many passages in his books.
Among others, what he says in the Almagest: if one examines it carefully
one finds many contradictions. He (i.e. Ptolemy) has indeed laid down
principles for the models he considers, then he proposes models for the

10 In fact, Ibn al-Haytham himself transcribed his book The Halo and the Rainbow
(Fî al-hæla wa-qaws quzaÌ) in the month of Rajab 419 of the Hegira, that is at the
beginning of August 1028. Ibn al-Haytham refers to this book and to his Optics in his
Resolution of Doubts concerning the Almagest (Fî Ìall shukºk fî kitæb al-Majis†î); see
ms. Aligarh, ‘Abd al-Îayy no. 21, fol. 12r and ms. Istanbul, Beyazit, 2304, fol. 8v.
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motions that are contrary to the principles he has laid down. And this not
only in one place but in many passages. If he (i.e. noble Shaykh) wishes me
to specify them and point them out, I shall do so.

I resolved to write a book to establish the truth in the science of
astronomy; in it I show the contradictory passages in the Almagest, then the
correct passages, and I show how to correct the [faulty] passages.

He made many mistakes in the Book on Optics, one of which was a
mistake in the proof concerning the shape of mirrors, which shows how
uncertain his grasp was.

As for his Book on Hypotheses, if one examines the notions he
propounded in the second chapter and the models he put forward using
spheres and parts of spheres, the demonstration [of the models] is
immediately seen to be refuted and flawed. In my reply I have shown his
error in regard to the two parts of the sphere, which he postulated for the
epicycle, and I have explained with an irrefutable demonstration; and I have
shown that, whatever cases one postulates for the [two] parts of spheres,
one obtains an indefensible impossibility.11

This radical critique has led many historians to believe that Ibn al-
Haytham’s purpose was merely the limited one of criticism, or as it is

11 Ms. St. Petersburg, B1030/1, fol. 19v:
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sometimes called ‘aporetic’.12 However, this is not so. During this same
period, that is before 1038, Ibn al-Haytham had done some work on a
problem that was later to prove fundamental: the heights of planets in the
course of their motion. Moreover, in all his other critical writings apart from
Doubts concerning Ptolemy, Ibn al-Haytham tries to resolve particular
problems encountered in the Almagest, notably those that are not connected
with the work’s theoretical structure. In other words, even at this stage, the
criticism is also a heuristic strategy. This will become still more apparent
when we look at the consequences. It is in the course of these researches,
and after carrying out further work to bring them to maturity, that Ibn al-
Haytham conceived the idea of writing his monumental book The
Configuration of the Motions of Each of the Seven Wandering Stars, in
which he sets out the details of his new astronomy. That is to say that this
last book – in which he again takes up the problem of heights – is the
ultimate result of his critical and inventive researches carried out during at
least two decades before 1038, and which was very probably not published
until shortly after that date.

Now, by an ironic chance, there has recently been a confident
attribution to our mathematician, al-ºasan  ibn al-Haytham, of a
Commentary on the Almagest, written in strictly Ptolemaic terms, and

12 Because of this intention to criticize, which is clearly stated, some historians have
followed S. Pines in believing that Ibn al-Haytham can be seen as belonging to an ancient
aporetic tradition. Thus we find the mathematician placed in the same category as the
eminent physician al-Rz¬, the author of the famous Doubts concerning Galen. This is to
overlook an important difference that specifically separates Ibn al-Haytham, al-Ræzî and
many others in a very wide range of disciplines, from this so-called aporetic tradition.
Indeed, it is one thing to raise difficulties and criticize solutions, quite another to criticize
for constructive purposes. For innovative research, of whatever kind, criticism is an
integral part of the heuristic procedure. For instance, Ibn al-Haytham’s doubts and
criticisms were not put forward as arguments for a principle, but as statements the
mathematician strove to prove mathematically and with the help of disciplined
observations. More importantly still, these doubts and criticisms cannot be understood
except in the light of what is in some sense Ibn al-Haytham’s final work: The
Configuration of the Motions of Each of the Seven Wandering Stars. It is thanks to his
endeavours to provide a firmer footing for Ptolemy’s astronomy by ridding it of its
internal inconsistencies that Ibn al-Haytham discovers that to prepare the way for this
reformulation he needs to separate an account of the motions – that is celestial kinematics
– from cosmology. In short, in the case of Ibn al-Haytham, it is not possible to separate
doubts and criticisms from a conscious aim to make fundamental reforms. See S. Pines,
‘Ibn al-Haytham’s critique of Ptolemy’, in Actes du dixième Congrès international
d’histoire des sciences, 1, no. 10, Paris, 1964, pp. 547–50 and id., ‘What was original
in Arabic science’, in A. C. Crombie (ed.), Scientific Change, Leiden, 1963, pp. 181–
205.
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composed by someone of the same name, a philosopher with an interest in
the sciences, but not himself a mathematician, called MuÌammad ibn al-
Haytham.13 Confusion naturally reaches a peak when this text is cited by
way of introduction to a deliberately critical book such as the Doubts. Such
confusion necessarily creates a false impression and makes it impossible to
understand al-ºasan ibn al-Haytham’s astronomy.

But, as we have already seen, Ibn al-Haytham is the subject of another
misapprehension, on the part of historians of astronomy. For centuries he
has been supposed to be the author of the book called On the Configuration
of the Universe (Fî hay’at al-‘ælam). This book, which is cited by early bio-
bibliographers, was translated into Hebrew and into Latin.

Y. T. Langermann, who edited and translated the text, says about it:
‘Many of the sharp criticisms of Ptolemy which are developed in the Doubts
can, in fact, be directed equally well at On the Configuration, which
faithfully mirrors the astronomical theory of the Almagest’.14 I have added
some further observations that cast doubt on the attribution of such a work
to Ibn al-Haytham.15

To escape from so flagrant a contradiction, one is tempted to claim that
this is an early work. But there is no evidence to support such a conjecture.
On the contrary. In fact, even in regard to much less significant matters,
when Ibn al-Haytham returns to a subject he has treated before, he is in the
habit of referring back to his first treatment and warning the reader that it is
now superseded by the present one.16 One would therefore, a fortiori,
expect a similar gesture here, particularly since he would be in the process
of criticizing the theses defended in the first treatment. But it does not
happen.

13 In the introduction to the printed edition of al-Shukºk (note 5), A. Sabra believes it
is possible to shed light on the critical text of this book by calling upon the Commentary
on the Almagest of MuÌammad ibn al-Haytham, a book which follows Ptolemy to the
letter. This strange enterprise stems from the long-standing confusion between
MuÌammad  ibn al-Haytham and al-Îasan ibn al-Haytham. On this matter, see
R. Rashed, Ibn al-Haytham and Analytical Mathematics, vol. 2, pp. 11–25; Ibn al-
Haytham’s Theory of Conics, Geometrical Constructions and Practical Geometry. A
History of Arabic Sciences and Mathematics, vol. 3, Culture and Civilization in the
Middle East, London, 2013, pp. 729–34 and Les Mathématiques infinitésimales du
IXe au XIe siècle, vol. IV: Méthodes géométriques, transformations ponctuelles et
philosophie des mathématiques, London, 2002, pp. 957–9.

14 Y. T. Langermann, Ibn al-Haytham’s On the Configuration of the World, New
York/London, 1990, p. 8.

15 See R. Rashed, Ibn al-Haytham and Analytical Mathematics, pp. 362–81.
16 See for example Ibn al-Haytham, The Exhaustive Treatise on the Figures of

Lunes, in R. Rashed, Ibn al-Haytham and Analytical Mathematics, p. 107; also
below, p. 260.
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So our present knowledge of Ibn al-Haytham’s astronomical work is:
some people see no difficulty in attributing to him a thoroughly traditional
Commentary on Ptolemy, or a treatise that conforms strictly to Ptolemy,
and ignore the contradiction with Ibn al-Haytham’s Doubts and his
criticisms. Others, with good reason, note the contradiction, but stop there.
Others still, of much earlier date, concentrate on the Doubts and express
regret that Ibn al-Haytham was satisfied merely to criticize Ptolemy, without
proposing another ‘astronomy’. Thus the astronomer al-‘Ur≈î (who died in
1266) writes:

No one came after him (Ptolemy) to bring that art (astronomy) to completion
in a correct manner; no modern scholar has added anything at all to his
work or subtracted anything from it, instead, all have followed him. Some
among them have raised doubts, but without contributing more than the
expression of doubts, such as Ibn al-Haytham and Ibn AflaÌ of Andalusia.17

If we simply take them at face value, these words of al-‘Ur≈î are surprising
for several reasons. They would seem to ignore what was achieved by
Thæbit ibn Qurra (826–901) and likewise all the other contributions which
were made in the course of three centuries of mathematical astronomy; they
would seem to place very little value on the secure observational results
obtained by astronomers since the beginning of the ninth century, and they
likewise seem to pass over work on instruments; they would also seem to
reflect a mistaken outlook, one that had become more extreme in our time,
according to which there existed an independent tradition of mathematical
astronomy dedicated to criticizing errors in Ptolemy; finally, they would
seem to indicate that al-‘Ur≈î knew no other astronomical text by Ibn al-
Haytham apart from the Doubts concerning Ptolemy. Now, all this is very
improbable, coming as it does from an astronomer like al-‘Ur≈î, the more
so since his future ‘boss’ at Marægha, NaÒîr al-Dîn al-™ºsî knew, at least,
Ibn al-Haytham’s book The Winding Motion, in which Ibn al-Haytham
proposes a model of this motion that combines kinematics with some

17 Mu’ayyad al-D¬n al-‘Ur¥¬: Kitb al-Hay’ah, edition with English and Arabic
introductions by G. Saliba, Tr¬kh al-‘ul‚m ‘ind al-‘Arab 2, Beirut, 1990, p. 214:
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cosmology.18 Everything points to the explanation being that al-‘Ur≈î
wanted to emphasize that Ibn al-Haytham had not proposed a model of the
universe based jointly on the two traditions – that of the Almagest and that
of the Planetary Hypotheses – a model in which celestial kinematics and a
cosmology are combined in such a way that the resulting planetary theory is
coherent and capable of making predictions that are as accurate as possible;
in other words a configuration/model (hay’a), like the one that al-‘Ur≈î
thought he had constructed in his own book.19

And in fact al-‘Ur≈î’s criticism, which in one sense misses the point, is
in another sense justified. Ibn al-Haytham did indeed write an Astronomy,
which will be discussed below. In this Astronomy, Ibn al-Haytham has
understood that a genuine reform does not consist of constructing a model
in the sense in which this was understood by al-‘Ur≈î, but in establishing a
kinematic system, on a solid mathematical basis, before thinking about any
kind of dynamics.

18 According to what is reported by Na◊¬r al-D¬n al-fi‚s¬, on the basis of a text by
Ibn al-Haytham that is now lost (see F. J. Ragep, Na◊¬r al-D¬n al-fi‚s¬: Memoir on
Astronomy – al-Tadhkira fî ‘ilm al-hay’a, 2 vols, New York, 1993, vol. 1, pp. 215–
17), the matter concerned is the deviation of the apogee and perigee of the epicycle as well
as the two points on the epicycle at mean distance. Ibn al-Haytham seems to intend to
construct a model using solid orbs as the mechanism for the motion. In this model, Ibn
al-Haytham adds three solid orbs for the epicycles of the superior planets and five solid
orbs for the inferior planets, so as to take account of the various deviations noticed by
observers.

19 Later, Ibn al-Shflir expressed a more qualified opinion than that of al-‘Ur¥¬. This
can be found in The New Z¬j (al-Z¬j al-jad¬d, ms. Oxford, Bodleian Library, Arch.
Seld. A30, fol. 2r):

‘I have noticed that eminent modern scholars, such as al-Majr¬fl¬, Ab‚ al-Wal¬d al-
Maghrib¬ [Averroes], Ibn al-Haytham, Na◊¬r al-fi‚s¬, Mu’ayyid al-D¬n al-‘Ur¥¬, Quflb al-
Sh¬rz¬ and Ibn Shukr al-Maghrib¬, have expressed doubts about the model of the orbs of
the planets, that is, the system of Ptolemy, doubts that contest the geometrical and
physical principles [he] established, and they [the scholars] have then proceeded to work
to put in place principles adequate to [explain] the motions in longitude and in latitude,
among those that do not contest what these principles demand. They have not succeeded
in this and have admitted as much in their books’.
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1.1.2. The Configuration of the Motions of Each of the Seven
Wandering Stars

Ibn al-Haytham’s Configuration of the Motions of Each of the Seven
Wandering Stars is a monumental achievement.20 It deals with the ‘model’,
or the ‘structure’ (hay’a), that is to say with a new astronomy or a new
theory of the planets. The book, whose mathematical content is at the
cutting edge of the science of its time, and which describes work that is both
innovative and important, has come down to us in a single manuscript,
which is in a pitiful state: a substantial part of it has been cut away, the
leaves are out of order, damp has made some parts illegible and the hand-
writing is hard to decipher.21

The Configuration of the Motions of Each of the Seven Wandering
Stars (henceforth The Configuration of the Motions) was originally in three
books: the first was mathematical astronomy, in which Ibn al-Haytham gives
details of his planetary theory; the second was devoted to astronomical
calculation or, as he writes, ‘all the operations of calculation’; and the third
was concerned with an astronomical instrument, one that was easy to
manipulate, and designed for precise calculation of the heights of the sun
and the planets. Of this complete volume, only the planetary theory has
come down to us. The bulk of this first section is a reminder of the original
size of the work before so much of it was lost, and allows us to grasp
something of the magnitude of the task Ibn al-Haytham undertook. It is very
probable that he wanted this book to take in all parts of astronomy, just as
his Book on Optics had taken in all parts of that subject. But, equally, it also
shows us that, at this time, a book about the configuration/model (hay’a)
would cover several areas of investigation, not only one: a planetary theory,
a study of the procedures used in the astronomical calculations needed for
compiling tables showing the parameters required for calculating positions of
planets (the zîjs); and research on astronomical instruments.

The first book, which has come down to us, is on the theory of
planetary motion; it also includes the introduction to the work as a whole, in
which Ibn al-Haytham explains the organisation of the work and the style of
presentation. In this introduction Ibn al-Haytham states that the style is that
of demonstration, and that The Configuration of the Motions supersedes all
the works he has previously written on the same subjects. This introduction
is followed by mathematical text that takes up slightly less than half the
section. This work deals with fifteen propositions which feature as lemmas in
the construction of the planetary theory. This latter working appears in the

20 See below.
21 Ms. St. Petersburg, 600 (formerly Kuibychev, Library V.I. Lenin).
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last part of the surviving text. We note that in the first part Ibn al-Haytham
breaks new ground in the mathematics of infinitesimals since he is explicitly
concerned with variations, variations of elements of a figure as a function of
other elements, variations of ratios and variations of trigonometrical
relationships. In this new area of research Ibn al-Haytham employs
infinitesimal geometry and compares finite differences. This work on
variable quantities, set in train by the needs of astronomy, made them a part
of the geometry of infinitesimals.

Once he has completed this mathematics, Ibn al-Haytham is in a position
to construct his planetary theory. But the length of the treatment and the
deep nature of the mathematics in this part of the work are indicative of one
of the motives that drive Ibn al-Haytham in his astronomical research: he
wants to make planetary theory even more, and much more systematically,
mathematical. Here, as in other disciplines, Ibn al-Haytham is following the
procedure laid down by his predecessors, from Thæbit ibn Qurra onwards,
but going more deeply into things and more widely and pushing on further.
If we forget this purpose we shall not understand The Configuration of the
Motions.

But for this further mathematization to be possible, in a framework that
continues to be geometric, and so that it can take place without running up
against the inconsistencies in Ptolemy that have already been censured in the
Doubts, Ibn al-Haytham is compelled to rethink the fundamental tenets of
Ptolemaic astronomy. Thus in his eyes this systematic mathematization, far
from being a merely instrumental or linguistic task, was an undertaking that
truly engaged with theory. That is how Ibn al-Haytham came to devise a
new planetary theory – one that does not concentrate on anomalies – by
starting by separating kinematics from cosmology.

In the Doubts, Ibn al-Haytham comes to the conclusion that ‘the
configuration (hay’a) Ptolemy assumes for the motions of the five planets is
a false one’.22 A few lines further on he continues: ‘The order in which
Ptolemy had placed the motions of the five planets conflicts with the theory
<that he proposes>’.23 A little later he states:

The configurations that Ptolemy assumed for the <motions of> the five
planets are false ones; he decided on them knowing they were false,
because he was unable <to propose> other ones. For the motions of the

22 Al-Shuk‚k ‘al Bafllamiy‚s, ed. Sabra and Shehaby, p. 34:

23 Ibid., pp. 33–4:



14 CHAPTER I

planets there is a true configuration to be found in (i.e. from) the actual
bodies, a configuration Ptolemy did not obtain and which he did not arrive
at.24

After making remarks such as these, and many others like them in several
places in his writings, a mathematician of Ibn al-Haytham’s stature, one who
had infinite respect for Ptolemy, as is proved by other comments, had no
option but to construct a planetary theory of his own, on a solid
mathematical basis, and free of the internal contradictions found in his
predecessor. It was precisely the realization of this programme for which Ibn
al-Haytham intended his treatise The Configuration of the Motions.

Most of the serious contradictions that Ibn al-Haytham censures set the
Almagest against the Planetary Hypotheses. If we wish to describe the
irreducible inconsistencies that, according to Ibn al-Haytham, vitiate
Ptolemy’s astronomy, we may say that they arise from the lack of fit
between a mathematical theory of the planets and a cosmology. Ibn al-
Haytham had experience of similar, though of course not identical, situations
when, in optics, he encountered the inconsistency between geometrical
optics and physical optics as understood by philosophers. In reforming
optics he as it were adopted ‘positivism’ (before the term was invented): we
do not go beyond experience, and we cannot be content to use pure
concepts in investigating natural phenomena. Understanding of these cannot
be acquired without mathematics. Thus, once he has assumed light is a
material substance, Ibn al-Haytham does not discuss its nature further, but
confines himself to considering its propagation and diffusion. In his optics
‘the smallest parts of light’, as he calls them, retain only properties that can
be treated by geometry and verified by experiment; they lack all sensible
qualities except energy. That is to say, we begin by insisting on making
optics geometrical, or on reforming geometrical optics, leaving aside the
‘why’ questions that have to do with teleological physics, but prepared to
introduce them later when we come to physical optics. It can be shown that
this imposition of geometry led Ibn al-Haytham to study the propagation of
light in kinematic – mechanical – terms.25 Ibn al-Haytham adopts a similar
approach in astronomy: in The Configuration of the Motions he deals with

24 Al-Shuk‚k ‘al Bafllamiy‚s, ed. Sabra and Shehaby, p. 42:

25 R. Rashed, ‘Optique géométrique et doctrine optique chez Ibn al-Haytham’,
Archive for History of Exact Sciences, 6.4, 1970, pp. 271–98; repr. Optique et
Mathématiques: Recherches sur l’histoire de la pensée scientifique en arabe,
Variorum reprints, Aldershot, 1992, II.
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the apparent motions of the planets, without ever raising the question of the
physical explanation of these motions in terms of dynamics. It is not the
causes of celestial motions that interest Ibn al-Haytham, but only the
observed motions in space and time. Thus, to proceed with the systematic
mathematical treatment, and to avoid the obstacles encountered by Ptolemy,
he first needed to break away from any kind of cosmology. And, in fact, in
this treatise Ibn al-Haytham does not call upon the theory of material
spheres, which had appeared in his Resolution of Doubts concerning the
Winding Motion and in the Doubts concerning Ptolemy. Thus the purpose
of Ibn al-Haytham’s Configuration of the Motions is clear: to construct a
geometrical kinematics.

Ibn al-Haytham’s second intention is implied by the first one: to avoid
the difficulties found in Ptolemy’s astronomy. In the Resolution of Doubts
concerning the Almagest, he states that ‘in the Almagest as a whole there
are doubts (aporias) too numerous for one to list them’.26 All the same, in
the Doubts concerning Ptolemy he distinguishes between doubts that can be
resolved without modifying the structure of the theory and those whose
elimination requires the theory to be subjected to radical reform.27 One of
the best examples of the latter type is the concept of the equant, exposed as
an error in the Doubts and banished from The Configuration of the
Motions. Ibn al-Haytham rejects the idea because one cannot, at the same
time, suppose that a sphere rotates uniformly on its axis and suppose that
this same rotation takes place about a line that is not a diameter of the
sphere. In rejecting the equant, Ibn al-Haytham is already distancing himself
very considerably from Ptolemy.

26 Fî Ìall shukºk al-Majis†î, ms. Istanbul, Beyazit 2304, fol. 195r:

27 Al-Shuk‚k ‘al Bafllamiy‚s, ed. Sabra and Shehaby, p. 5:

‘We shall not mention in this book all the doubts contained in his works, but shall
only mention the passages that contradict one another and the mistakes that cannot be
rectified; the ideas he has put in place, and the motions of the planets he has arrived at,
collapse if we cannot obtain true methods or uniform models or <correcting> these
passages and these errors. As for the remaining doubts, they do not impute error to the
established principles and they can be resolved without any of these principles being
overturned or altered’.
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As the author of two books on astronomical observation and the errors
to which it is subject, and moreover as one who is well informed regarding
the wealth of observations built up over two centuries, Ibn al-Haytham’s
third intention in writing The Configuration of the Motions is to construct a
planetary theory which explains these observations.

These three intentions: mathematization, avoiding Ptolemy’s contradic-
tions and accounting for the observations, work together to fulfil Ibn al-
Haytham’s overall purpose for The Configuration of the Motions, that is, to
set up a completely geometrical celestial kinematics. But in order to achieve
this, he needed to find a way of measuring time. To this end, he introduced
a new concept, that of ‘required time’, that is, a period of time measured by
an arc.

A close examination of the way he organizes his exposition of his
planetary theory shows that Ibn al-Haytham begins by proposing simple
models – that is simple descriptive models – of the motions of each of the
seven planets. As the exposition progresses, he makes the models more
complicated and increasingly subordinates them to the discipline of
mathematics. This increasingly mathematical formulation led him to regroup
the motions of several planets as a single model. And it is precisely the
mathematical nature of the model which makes this regrouping possible,
specifically starting from Proposition 24. This step obviously has the effect
of privileging a property that is common to several motions. In this way Ibn
al-Haytham opens up the way to achieving his principal objective: to
establish a system of celestial kinematics, this without as yet formulating the
concept of instantaneous speed, but with the help of the concept of mean
speed, represented by a ratio of arcs.

Here we shall explain the principal results Ibn al-Haytham obtained.28

1.2. THE STRUCTURE OF THE CONFIGURATION OF THE MOTIONS

The first section of The Configuration of the Motions, the section that
has come down to us, divides into two parts. The first, which is
mathematical and chiefly devoted to the study of variable quantities,
comprises 15 propositions. The second part deals with planetary theory.

28 See below, Part I.
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1.2.1. Studies of variations

The fifteen propositions with which the section begins may be separated
into several groups. The first consists of the first four propositions, which

deal with the variation of trigonometrical functions such as 
  

sin x
x

. Ibn al-

Haytham gives rigorous proofs of the following propositions:

1. If the measures in radians of the arcs α and α1 of a circle are such

that α α+ ≤1  π
2

 and α > α1, then

α
α

α
α1 1

> sin
sin

  and  α α
α

α α
α

+ >
+( )1

1

1

1

sin

sin
.

2. If the measures in radians of the arcs α and α1 of a circle and of the

arcs β and β1 of a different circle are such that

β β α α π+ < + <1 1 2
  and  α

α
β
β1 1

1= =
k

 (where k < 1),

then
sin
sin

sin
sin

α
α

β
β1 1

<   or  sin
sin

sin
sin

α
α

β
βk k

< .

As a corollary to this proposition, Ibn al-Haytham proves that

sin

sin

sin

sin

α α
α

β β
β

+( ) <
+( )1

1

1

1

  or  sin
sin

sin
sin

1 1+ k

k

k

k
( ) < +( )α

α
β

β
.

Ibn al-Haytham had proved this proposition in his treatise On the Hour
Lines.29
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29 See below, Part II.
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The second group is made up of the following three Propositions – 5, 6
and 7 – which also deal with variations of quantities and of ratios. In the first
two – 5 and 6 – Ibn al-Haytham considers variations in the angular position
of a point on a quadrant of a circle. In Proposition 7, he examines variations
in right ascension. In the course of these propositions he compares finite
differences, calls upon ideas about the geometry of infinitesimals and makes
use of the sine rule (which was known to mathematicians of the time such as
Abº al-Wafæ’ al-Bºzjænî and Ibn ‘Iræq).30

In Propositions 5 and 6, Ibn al-Haytham considers a sphere with centre
ω on which positions are described with respect to a great circle ABC of
diameter AC, its pole K and the great circle KC orthogonal to ABC (Fig.
1.1).

A great circle of diameter AC cuts the arc KB in the point D. With any
point, such as H, on the arc CD there is associated a great circle KH that
cuts the arc CB in the point P, and a circle through H parallel to (ABC)
which cuts the arc KC in the point U, we have PH CU= . The arcs PH and

30 M.-Th. Debarnot, Al-B¬r‚n¬: Kitb maql¬d ‘ilm al-hay’a. La Trigonométrie
sphérique chez les Arabes de l’Est à la fin du Xe siècle, Institut Français de Damas,
Damascus, 1985.
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CP are, respectively, the inclination (the declination if the reference circle is
the equator) and the right ascension of the point H with respect to the circle
ABC.
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Fig. 1.1

First of all, Ibn al-Haytham considers how the inclination of PH  varies
when the point H describes the arc CD.

Let the (rectilinear) dihedral angle between the planes ABC and ADC be
α, we have B Dω̂  = α, so BD = α. Let us put CH  = x and PH CU=  = y,

we have 0 ≤ x ≤ π
2

, 0 ≤ y ≤ α.

The proposition is in two parts which can be summarized as follows
(Fig. 1.2):

C

B

D

K

I

I
I

J
J

J i

2

1

i

21

nJ  = J

Fig. 1.2

a) The arc CD is divided into n equal parts at the points with spherical

abscissae xi, 0 ≤ i ≤ n, x0 = 0 and xn = π
2

. For ∆x = xi – xi–1 = π
2n

 we have

∆y = yi – yi–1. We show that ∆y decreases when i increases from 1 to n. In
other words, y is a concave function of x.
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b) We consider two equal arcs with a common endpoint, with xi < xj <
xk and xj – xi = xk – xj.

We show that from (a), we have yj  – yi > yk – yj. This result may be
expressed in the form

xk − x j

x j − xi

>
yk − yj

yj − yi

,

or as
yk − yj

xk − x j

<
yj − yi

x j − xi

,

which is to say that the gradient of the graph of y as a function of x
decreases as x increases.

Proposition 6 extends this result to unequal arcs, such as arcs IJ and JK,
where xi < xj < xk and xj  – xi ≠ xk – xi.

• If the two arcs in question that have an endpoint in common are
commensurable, the result follows from a) and b).

• In the case where the same two arcs are incommensurable, Ibn al-
Haytham gives a reductio ad absurdum argument to show that it is
impossible to have

xk − x j

x j − xi

≤
yk − yj

yj − yi

.

We note that after proving the required inequality holds when the
magnitudes are commensurable, Ibn al-Haytham proves the general case by
‘extension by continuity’ giving a rigorous abductive (apagogic) proof, and
by applying his extension of Proposition 1 of Elements X.

So we have an argument based on infinitesimals for extending by conti-
nuity an inequality for which we have, as yet, no earlier example. We also
note that Ibn al-Haytham is treating arcs and angles as magnitudes to which
one can apply the theory of proportions.

Let us now return to his discussion of the variation of the inclination and
show that his results are correct:

Let us put y = PH  as a function of CP = x. We have y = f(x).
In the spherical triangle CHP, the arcs PH and PC are orthogonal, so

P̂ = π
2

, and the angle between arcs CP and CH is that between their tan-

gents and it is equal to B Dω̂ , so we have Ĉ = α .
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If in this expression we take:

• xm – xk = xj – xi = π
2n

, we recover the result for a).

• xm – xk = xj – xi, we recover the result for case b), for equal arcs.
• xm – xk ≠ xj – xi, we recover the result for case c), for unequal arcs.

If xj = xk, the arcs concerned are contiguous.
If xj < xk, the arcs concerned are disjoint.
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In the seventh proposition (Fig. 1.3), Ibn al-Haytham considers the right
ascension CP when the point H describes the arc CD.

We put CH  = x and CP = z for 0 ≤ x ≤ π
2

, 0 ≤ z ≤ π
2

, we have:

a) As in considering the inclination, we divide the arc CD into n equal
parts at points with spherical abscissa xi. For the increment ∆x = xi – xi–1 the

corresponding increment in the right ascension, ∆z = zi – zi–1, and using

Menelaus’ theorem for the arcs of great circles, we show that ∆z increases

when i increases from 1 to n.
b) Ibn al-Haytham next says that, as in the treatment of the inclination,

one can generalize this result by considering two arcs lying on the arc CD,
arcs that are equal to one another or unequal, contiguous or disjoint, and
commensurable or incommensurable. Thus, for arcs IiIj and IkIm with xi < xj

≤ xk < xm, one will have
x x

x x

z z

z z
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−
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.

In other words, z is a convex function of x.
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Let us return to his discussion of the right ascension.
Considering z = CP as a function of x = CH , when H describes the arc

CD, z = g(x).
The four circles involved are all great circles, and Menelaus’ theorem

gives
sin
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So we have
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which gives
tan z = cos α · tan x.

z = Arc tan (cos α · tan x) = g(x).

So we have
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So for 0 < x < π
2

, we have z′ > 0, z increases from 0 to π
2

. We also have

z″ > 0, z′ = g′(x) increases from 0 to 1
cosα

, hence the result Ibn al-Haytham

obtained for the increment ∆z.

As in the discussion of the inclination, Ibn al-Haytham indicates that his
result can be extended to give an inequality involving differences of the right
ascensions for unequal arcs, first in the case where these arcs are commen-
surable, then in the general case by using an argument of extension by
continuity.

The third group is made up
of Propositions 8 and 9. Ibn al-
Haytham considers a circle (D,
DC), that is, with centre D and
radius DC , and a point E  on
DC, as well as the equal arcs
AB, BH, HI such that we have
the chord AB < EC and he
shows that AEB BEH HEIˆ ˆ ˆ< <
(Fig. 1.4).
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If we put ADBˆ = θ , where θ ∈[ , ]0 π  and AEBˆ = ϕ , we see that Ibn al-
Haytham is considering how ϕ varies as a function of θ.

In Proposition 9 he considers the sense of its variation.

The fourth group is concerned with the variation of ratios, in cases that
become more and more complicated. This work is done in Propositions 10,
11, 12, 14 and 15. Proposition 13 is a lemma to do with technique. In this
group, although Proposition 10 does not raise the complicated question of
the range of the variations, Propositions 11 and 12, on the one hand, and
Propositions 14 and 15, on the other, all require a long discussion, which is
given in our commentary.31

In Proposition 10, Ibn al-Haytham considers two perpendicular planes P
and Q, two points A and C on their line of intersection, a semicircle of dia-
meter AC lying in the plane P, and a circular arc whose chord is AC, an arc
smaller than a semicircle in the plane Q  (Fig. 1.5).

We are trying to prove that there exists a point D such that DE AC⊥
and EB AC⊥  (where B lies on the semicircle) and such that we have
DB

DC
k> > 1, which is the given ratio.

We first show that there exists a unique point K  on AC  such that
KA

CK
k= 2.
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Fig. 1.5

We then draw a circle of diameter CK in the plane Q and we show that
any point D on the circle yields the ratio.

In Propositions 11 and 12, we consider the meridian circle ABC for a
given place G, the celestial poles A and C, a circle with centre O parallel to
the horizon for G and which cuts the meridian circle in D and E, a circle of

31 See below, Part I.
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centre Q parallel to the equator and which cuts the meridian circle in H, the
horizontal circle in L and the plane of the circle with centre Q cuts DE in X
(Fig. 1.6).
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Ibn al-Haytham shows that when the point X moves along DE from D
towards E, the point L describes the parallel circle with centre O and the

ratio HL

HD
 decreases and tends to 0.

In Proposition 12, we assume that the pole A is above the horizon, and
that GOz the vertical at G; we have DXH DOzˆ ˆ= , angle independent of the
position of X (Fig. 1.7). Ibn al-Haytham shows that: when X moves along

DE, the arc HE decreases, sin ˆHDX  decreases and HX

DH

HDX

DXH
= sin ˆ

sin ˆ  conse-

quently also decreases from D to E.

Finally, Propositions 14 and 15 involve the celestial sphere for a given
place, its axis, the two poles π and π′, the meridian and horizontal planes for
the place – the pole π is assumed to lie on or above the horizon.

In Proposition 14, Ibn al-Haytham considers ADB the meridian for an
arbitrary place, and ABC a horizontal circle; two circles parallel to the equa-
tor cut the meridian in E and D, the circle ABC in I and C and a great circle
with diameter ππ′ in I and K (Fig. 1.8). Ibn al-Haytham proves that:

if BE BD ADB< ≤ 1
2

, then IE

EB

CD

DB

CK

KI
> > .

We are in fact concerned with how IE

EB
 varies as a function of BE ; that

is to say, we want to show that this ratio decreases when E moves from B
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towards F along the chord of the meridian (where F is the midpoint of the
arc AB).
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Proposition 15 is a generalization of the preceding one. The two propo-
sitions show that Ibn al-Haytham, using the geometrical means at his dispo-
sal, investigated the variation of certain trigonometrical ratios; an investiga-
tion he could not complete but which sets some new mathematical research
in train, as will be shown in our commentary on the translation.

1.2.2. The planetary theory

Once he has proved these fifteen mathematical propositions, Ibn al-
Haytham immediately moves on to consider the apparent motions of the
seven planets. He deals with the apparent motion on the celestial sphere, as
seen from a given place, of a planet that is carried round by the diurnal
rotation of the world about its axis, in the case where the planet in question
has rising and setting points on the horizon of the given place of observa-
tion. Throughout his investigation, the place in question is in the northern
hemisphere. From the first propositions, and starting from the results
Ptolemy obtained for the orbs of the planets and for the different motions of
the planets, Ibn al-Haytham shows that the observed trajectory of each of
the planets, as seen on the celestial sphere, is different from the hour circle
passing through a point of that trajectory, that is to say, it is different from
the circle parallel to the equator swept out by a star whose position coin-



THE CELESTIAL KINEMATICS OF IBN AL-HAYTHAM 27

cides, at a given moment, with that of the planet.32 He deals in turn with the
moon, the sun and the five planets, and, for the motion of these last along
their orbs,33 he distinguishes direct motion, retrograde motion and the
planet’s stations.

From this investigation, Ibn al-Haytham draws out and defines two new
concepts: ‘the required time’ (al-zamæn al-muÌaÒÒal), and ‘the inclination
proper to the required time’ (al-mayl alladhî yakhuÒÒu al-zamæn al-
muÌaÒÒal). The ‘required time’ corresponds to two known positions of the
planet in the course of a motion of known duration. It is measured by an arc
of the hour circle, and it is equal to the difference of the right ascensions of
the two observed positions. The inclination proper to the ‘required time’ is
equal to the difference of their inclinations. We may note that, since the
celestial sphere rotates uniformly, so that physical time can be represented
by an arc of the hour circle, this concept of ‘required time’ is essentially a
geometrical one. It is precisely in this way that Ibn al-Haytham represents
physical time, and this has the further effect of permitting him to call upon
the theory of proportions when time is involved.

Ibn al-Haytham then shows that, in all possible configurations, there
exists a ratio greater than the ratio of the required time to the inclination for
that time. Thanks to this property he proves that, for each of the planets
observed from a given place, the planetary position whose height above the
local horizon is a maximum does not correspond to the point of the planet’s
meridian transit, which is unlike the situation for a star. For a planet, the
maximum height is greater than that of its meridian transit and, depending
on the position of the planet in its trajectory, maximum altitude will be

32 In his treatise on The Variety that Appears in the Heights of the Wandering
Stars, composed earlier, Ibn al-Haytham writes as if the trajectory of this apparent motion
could be identified with an hour circle (see below, Part I, Text no. 2).

33 In Arabic astronomy, the word falak designates the orb as defined in the
Almagest, i.e. the spherical shell within which the planet moves. Every planet has its
own orb. For example, Thbit ibn Qurra (d. 901) wrote in his Almagest simplified: ‘The
orb in which the moon moves is the nearest orb to the earth and it is thick (lahu sumk).
The moon moves sometimes in its upper part, sometimes in its lower part, and sometimes
between them. The same happens for all the other planets’ (Thbit ibn Qurra, Œuvres
d’astronomie, ed. R. Morelon, Paris, 1987, p. 5, for Arabic text with French
translation). This was the conventional meaning of the word in the Arabic tradition of
Ptolemy, and it is also the sense in which Ibn al-Haytham employed the word in the
works he wrote before The Configuration of the Motions. In this last book, Ibn al-
Haytham used the word falak in a new – and unconventional – meaning, indeed so
unconventional that the word ‘orb’ seems in places inappropriate. The right translation, as
we shall see later, would be ‘trajectory’, ‘path’, or even simply ‘orbit’. But, as Ibn al-
Haytham himself continued to use the same word, though with a new meaning, we have
no choice but to follow his example.
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reached either before meridian transit, and thus to the east of the meridian,
or after meridian transit, to the west of the meridian.

The investigation of the apparent motion of a planet, when it is above
the horizon, ends with a discussion of the case where the geographical
latitude of the place from which observations are made is equal to the
complement of the maximum declination of the observed axis, or is very
close to it. Ibn al-Haytham shows that, for places like these, the planet may
set in the east and then rise in the east, or rise in the west and then set in the
west.

In the course of this work, whose main lines have been sketched here,
we encounter a concept of astronomy that is new in several respects. Ibn al-
Haytham sets himself the task of describing the motions of the planets
exactly in accordance with their paths on the celestial sphere. He is not
trying to save the appearances, that is, to explain the irregularities in the
assumed motion by means of artifices such as the equant – a notion he
criticizes in his Doubts concerning Ptolemy – nor is he willing to account
for the observed motions by appealing to underlying mechanisms whose
nature is hidden. He wants to give a rigorously exact description of the
observed motions in terms of geometry. The only mechanical device
involved in the description of the motions of the planets (other than the sun
and the moon) is an epicycle, which is employed to account for retrograde
motions and the variable speeds near apogee and perigee. Ibn al-Haytham
doubtless knew that using an epicycle and deferent was equivalent to using
an eccentric circle, and also knew the precise conditions for this equivalence.

What Ibn al-Haytham proposes – and the proposal takes him a little
further away from the Ptolemaic tradition – is thus to give a description of
the motion in two dimensions on the celestial sphere. He considers the
motion appears to be composed of two elementary motions along great
circles of the celestial sphere. The free parameters are the speeds of the
elementary motions, considered to be independent of one another. But for
planets whose trajectory has a variable inclination to the ecliptic, Ibn al-
Haytham nevertheless calls upon an epicycle to account for the variation in
the inclination, thus (for the moment) returning to a model in a three-
dimensional space. That indeed puts him in the Ptolemaic tradition, but
without recourse to an equant.

So the guiding principle of Ibn al-Haytham’s description is clear: to use
Ptolemy’s mechanisms as sparingly as possible. In considering the apparent
motions of the planets on the celestial sphere, always with respect to the
horizon, Ibn al-Haytham picks out four reference points: those of rising,
meridian transit, setting and maximum altitude. He shows that this last point
is unique and may lie to the east or to the west of the point of meridian
transit.
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The new astronomy no longer aims at constructing a model of the
Universe, but only at describing the apparent motion of each planet, a
motion composed of elementary motions, and, for the inferior planets, also
of an epicycle. Ibn al-Haytham considers various properties of this apparent
motion: localisation and kinematic properties of the variations in speed. In
the last part of The Configuration of the Motions, he considers the apparent
motion of the planet on the celestial sphere in the course of a day and
proves that the planet attains its maximum height once and only once, and
that any height less than the maximum is reached twice, once on each side
of the maximum height. For heights greater than that of meridian transit,
the two points where such a height is reached are on the same side of the
meridian. Taken together, these discussions make twenty-one propositions.

In this new astronomy, as in the old one, every observed motion is
circular and uniform, or composed of motions that are circular and uniform.
Ibn al-Haytham considers three basic motions: diurnal motion parallel to the
equator; motion of the oblique orb relative to the axis (the line joining the
two poles of the ecliptic); and motion of the nodes of the proper orb. The
observed motion of a planet is composed of these three motions plus, for the
five planets (excluding the sun and moon), a motion on an epicycle. For the
sun, only the first two basic motions are involved. To find these motions Ibn
al-Haytham makes use of various systems of spherical coordinates:
equatorial coordinates – required time and proper inclination for it – which
are the first coordinates; horizon coordinates – altitude and azimuth; and
ecliptic coordinates.

The use of equatorial coordinates marks a break with Hellenistic
astronomy. In the latter, the motion along the orbs was measured against
the ecliptic, and all coordinates were referred to the ecliptic (latitude and
longitude). Thus analyzing the motion of the planets from their apparent
motions changes the reference system for the data; we are now dealing with
right ascension and declination. This book by Ibn al-Haytham takes us into a
different system of analysis.

Ibn al-Haytham then considers how the speed of change in the
inclination varies for any planet, measuring it as the mean speed over an
interval that is itself variable. He looks at the change in height of the planets
between their rising and setting. These investigations are all carried out
rigorously, using the mathematical propositions proved in the first part and
rely upon considerations involving infinitesimals (which make repeated
appearances). The geometrical proofs that are employed assume only that
the motion of the planet is from east to west, and that it is monotonic along
the north-south axis.

When the geometry is conceptualized in this way, the question of a
possible motion of the earth does not arise, because we are concerned only
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with the motion of the planet on the celestial sphere as it appears to a
terrestrial observer. In other words, we have a kind of phenomenological
description of the motions of the planets, which however can be given only
in terms of spherical geometry, infinitesimal geometry and trigonometry.
There is nothing surprising about this since Ibn al-Haytham is concerned to
ensure that his description employs only minimal hypotheses about the
properties that characterize the motions: variation of speed and day by day
variation of height.

Let us briefly summarize the various chapters of this astronomical part.

I. The apparent motion of the planets
In the first part of the section devoted to astronomy, Ibn al-Haytham

starts from results Ptolemy proved for each of the seven planets (the three
fundamental motions) and introduces definitions of the ‘required time’, the
inclination of the motion of the planet and the inclination of the ascending
node. He investigates in turn: 1. The motion of a planet between rising and
meridian transit; 2. Motion of known duration between two points of known
position.

1.1 The apparent motion of the moon between rising and meridian
transit
Ibn al-Haytham begins by citing the results proved by Ptolemy in

relation to the inclined orb of the moon, and the position of this orb in
relation to the circle of the ecliptic and to the nodes, that is to the points of
intersection of these two orbs. Ibn al-Haytham considers the dihedral angle
between the plane of the inclined orb and the plane of the ecliptic to be
fixed. In fact, this angle is almost constant and remains close to 5°. The orb
of the moon would thus lie within the Zodiac.

Ibn al-Haytham then reminds us that the motion of the moon on its orb
is in the direction of the signs of the Zodiac (direct motion, motion in
consequence) and that each of the nodes has a uniform motion round the
ecliptic in the direction opposite to that of the signs of the Zodiac
(retrograde motion, motion in precedence). Thus the north pole of the orb
of the moon, X, describes on the celestial sphere a circle centred on the pole
of the ecliptic, P, and each point of the orb of the moon describes a circle
parallel to the ecliptic (in retrograde motion). Now, the angle between the
circle of the ecliptic and the circle of the equator is constant; but because the
nodes move, the inclination of the orb of the moon to the equator of the
celestial sphere will vary. The inclination will be equal to the arc of the great
circle HX, where H is the north pole of the celestial equator.
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Ibn al-Haytham investigates in minute detail how this arc varies as the
node N makes a complete circuit around the ecliptic. In this preliminary
investigation, he ignores the precession of the equinoxes (in his terms, the
retrograde motion of the equinoxes), which is very slow. He treats the
planes of the celestial equator, of the ecliptic and of the circle through the
poles of the celestial sphere as if they were all fixed with respect to one
another. He does the same thing later on, making it explicit, when he is
considering the extreme (maximum and minimum) inclinations of the orb of
each of the seven planets to the equator. He behaves as if he were
deliberately first constructing a simple model and intended to make it more
complicated later.

Ibn al-Haytham then defines the most northerly and the most southerly
points of the lunar orb with respect to the equator. These points are the
midpoints of the semicircles into which the orb is divided by the diameter,
that is, its line of intersection with the plane of the equator. They accordingly
lie on the great circle HX that passes through the poles of the Lunar orb and
those of the equator; their inclination to the equator is equal to HX and is
thus variable (Fig. 1.9).

Ibn al-Haytham then investigates the apparent motion of the moon, in
relation to a horizon ABCD, between its rising at B and its meridian transit
at a point N (Fig. 1.10, where ABC is the east half of the circle of the
horizon); he first considers the case in which the motion along its orb is
from north to south, then the case in which it is from south to north. He
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points out that his argument does not involve the horizon, and is
consequently applicable to the motion of the moon between any point B on
its trajectory (where B lies to the east of the meridian) and the point of its
meridian transit. This is the moment at which Ibn al-Haytham introduces the
following three definitions:

Required time: the time a fixed star takes to travel from a point B to a point
I on the meridian; this is the arc BI. It is also the difference of the two
right ascensions, δ (B, N), the difference between the right ascension of
the moon’s initial position, B, and the right ascension of its final position,
N. This arc BI will also be called the right ascension of the motion.

Inclination of the motion of the moon: IN B N= ( )∆ , , the difference
between the inclinations of the initial position, B, and the final position,
N.

Inclination of the motion of the ascending node: IQ.

Q
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This investigation of the apparent motion of the moon from its rising to
its meridian transit is interrupted by a discussion of the relative positions of
two circles through B, whose poles are the pole of the equator and the pole
of the ecliptic. Finally, Ibn al-Haytham considers the motion of the moon
between its meridian transit and its setting, for which he makes use of the
concepts he has already defined.

We note that, in this geometrico-kinematic model, Ibn al-Haytham does
not introduce an epicycle since, as he says, ‘the epicycle of the moon does
not depart from the plane of the orb, so the centre of the moon does not
depart from the plane of the inclined orb’.34

34  See below, p. 334; Arabic text in Rashed, Les mathématiques infinitésimales,
V, p. 429, 23–25.
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1.2. The apparent motion of the sun between its rising and its meridian
transit
Ibn al-Haytham works through the same stages as in the previous

investigation: he begins by reminding us of what is known about the orb of
the sun – the ecliptic – and the sun’s proper direct motion through the signs
of the Zodiac. He defines the points of the orb that are called equinoxes and
solstices. He then deals with two examples, referred to a horizon ABCD,
concerned with the apparent motion of the sun between its rising at B and
its meridian transit. In the first case, the motion of the sun along its orb is
from north to south, in relation to the equator; and in the second case from
south to north. In each example, Ibn al-Haytham finds the arcs that
represent ‘the required time’ and the inclination of the motion of the sun.

This investigation is simpler than the one he carried out for the motion
of the moon, which required one to take account of the motion of the node
along the ecliptic.

1.3. The apparent motion of each of the five planets between rising and
meridian transit
Here, as in previous cases, Ibn al-Haytham begins by reminding us of

what was established by Ptolemy. He also tells us that his investigation will
not take account of the motion of the node, since, he writes, it is ‘a slow
motion that does not become perceptible’.35 We should recollect that Ibn al-
Haytham has always maintained that, unlike in mathematics, where
reasoning is exact, in physics we always allow a certain amount of
approximation. And, here, the inclination of the plane of the epicycle to that
of the orb is variable. Accordingly, its variation must be taken into account
when investigating the motion of each of the five planets towards the
meridian circle. Ibn al-Haytham does exactly this when he considers the
motion of a planet between its rising, at a point B on the horizon, and its
meridian transit. He distinguishes three cases: when the planet’s motion is
direct; when it is retrograde; and finally when the planet is stationary. Ibn al-
Haytham’s investigation ends with a conclusion on the planets as a whole,
concerning the ‘required time’ and the ‘inclination of the motion’.

2. In the previous part of the work, the two positions considered for
each of the seven planets were rising, at the point B, and meridian transit, at
the point N; or sometimes the motion considered was from point N to
setting. In this part of his work, Ibn al-Haytham investigates, for each of the
seven planets, an apparent motion of known duration, between two points A

35  See below, p. 334; Arabic text in Rashed, Les mathématiques infinitésimales,
V, p. 429, 2.
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and B, whose position on the celestial sphere is known. He shows that the
‘required time’ and the ‘inclination of the motion’ are then known.

Ibn al-Haytham begins by dealing briskly with the case of the sun, which
is simple because his model does not take account of the precession of the
equinoxes. Thus if A and B are respectively the starting and end points of
the motion, we at once have: ‘required time’: δ (A, B), the difference of the
right ascensions of the two points A and B; ‘inclination of the motion’:
∆ (A, B), the difference of the declinations of the two points A and B, that is,
the difference of their inclinations to the equator.

The investigation of the motion of the moon must, however, take
account of the motion of the ecliptic and the motion of the node of the orb
of the moon.36 Here, as in the case of the sun, the motion is described in
equatorial coordinates: ‘required time’ and ‘proper inclination’.

For each of the inferior planets (Venus and Mercury), the ecliptic
coordinates – ecliptic latitude and longitude – depend on the inclination of
the epicycle to the orb.37 All the same, if at some known time the ecliptic
coordinates are known, we use them to find the equatorial coordinates. Ibn
al-Haytham continues his investigation in the same way as he did in the case
of the moon.

For the superior planets (Mars, Jupiter and Saturn), the motion of the
nodes is very slow, and insensible over the course of a day. As a result, the
arc that corresponds to arc KG, which is parallel to the ecliptic in the case of
the moon, is insensibly small; the point G merges with the point K and thus
lies on the hour circle AD (Fig. 1.11).

Fig. 1.11

36 See below, Mathematical commentary on Proposition 20.
37 I.e. the circle on which the epicycle moves (circulus deferens). We shall find this

formulation more than once.
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Ibn al-Haytham concludes by taking the five planets together: if the
motion of the planet along its orb is direct, ‘the required time’ δ (A, B) is
less than the known time, as happens for the sun and the moon; and if the
motion of the planet is retrograde, the ‘required time’ is then greater than
the known time.

II. The inclination of the planets to the equator
Ibn al-Haytham begins by discussing the sun, next the moon and then

the five planets. As ever, he first of all reminds us of Ptolemy’s results. Here,
Ibn al-Haytham further determines, in each case, the ecliptic coordinates of
the point I, the most southerly point of the orb with respect to the equator.

In the case of the sun, the dihedral angle α between the plane of its path
(the ecliptic), and the plane of the equator is constant (α = 23°27′). This
angle α is the maximum inclination of points on the ecliptic with respect to
the equator, and corresponds to the solstices. The two points of maximum
inclination are thus the first point of Cancer to the north of the equator, and
the first point of Capricorn to the south.

In the case of the moon, the dihedral angle β between the orb of the
moon and the circle of the ecliptic is constant, but the orb of the moon
rotates about the axis of the ecliptic. Accordingly, the dihedral angle δ
between the orb of the moon and the plane of the equator is variable; it
depends on the position of the ascending node. If the ascending node is at
the point γ (Spring equinox) we have δ = α + β. But if the descending node
is at the point γ, the ascending node is then at the point γ′, the Autumn
equinox, and we have δ = α − β. In either case, the positions of the extreme
north and south points of the inclined orb are known.

In the case where the ascending node is not at an equinoctial point, Ibn
al-Haytham embarks on a very detailed investigation using spherical
trigonometry, in which he applies Menelaus’ theorem four times, and shows
that, if we know the position of a node on the ecliptic, we can calculate the
maximum inclination of the inclined orb with respect to the equator, and
find the position, with respect to the ecliptic, of the most northerly or most
southerly point of the inclined orb with respect to the equator.

For the superior planets, the procedure is the same as for the moon,
since the inclinations of their orbs to the plane of the ecliptic are more or
less constant: for Mars, 1°51′, for Jupiter 1°19′ and for Saturn 2°30′. On the
other hand, the inclination of the orb of each of the inferior planets to the
ecliptic is variable. Ibn al-Haytham accordingly devotes many pages to the
investigation of this problem.
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He begins by examining the inclination as a function of the position of
the planet in its orb, a position for which there is a corresponding point on
the eccentric. He shows that this inclination is known at any known time.

He goes on to investigate the case where the nodes occur at the
equinoctial points. The most northerly and most southerly points of the orb
relative to the equator, and when related to the ecliptic, are the points of the
solstices. We calculate the inclination relative to the equator as we did for the
moon. Ibn al-Haytham next considers the case where the nodes are not the
points of the equinoxes. The positions of the extreme north and south points
relative to the equator are found from the extreme north and south points
relative to the ecliptic, and the same method is then employed as before.

Ibn al-Haytham goes on to describe – still for the inferior planets – the
oscillating motion of the plane of the inclined orb about the line of nodes.
The motion of the line of nodes is very slow and for the purposes of this
calculation the line is accordingly assumed to be fixed. So any point I of the
orb describes a circle with the nodes as its poles, and the point will have a
to-and-fro motion along an arc of the orb. With this point I there is
associated a point L that represents its position in regard to the ecliptic; this
point L will also have a to-and-fro motion along an arc of the ecliptic. In his
investigation of the motion of the points I and L, Ibn al-Haytham takes the
point I as lying, successively, on each of the four arcs into which the orb is
divided by the nodes and the extreme northern and southern points. He
assumes that the initial position of the orb is when its inclination to the eclip-
tic is at a maximum, and he calls the two points in question I and L.38 He
first describes the motion of the points I and L. Next he shows that the
circular arc described by the point I in a known time is known; finally, he
shows that the arc of the ecliptic described by the point L in a known time is
known.

III. From Proposition 24 to the end of the book, Ibn al-Haytham
proposes general models for the planets, models that are constructed with
the help of the mathematical propositions he has already proved. His work,
explicitly analytical and employing infinitesimals, concerns itself with some
kinematic properties of the motion. This time, we cannot follow Ibn al-
Haytham’s procedure without examining his demonstration in detail, which
we do in the commentary of his text.39 Here we shall merely present a
general outline.

In the first four propositions – 24 to 27 – Ibn al-Haytham investigates

38 The great circle through the pole cuts the orb in I and the ecliptic in L. The points
I and L have the same ecliptic longitude.

39 See below, Part I.
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the variation of the mean speed of a planet. He expresses the mean speed as

the inverse ratio 
    

δ

∆

X Y

X Y

,

,

( )
( ) , where X and Y are two general known positions of

a planet in its orb, δ (X , Y) is the ‘required time’ and ∆  (X , Y) is the

difference between the inclinations of the points X and Y with respect to the
equator. Ibn al-Haytham proves that, if we consider the four arcs into which
the orb is divided by the diameter, that is, the line of intersection of the
planes of the orb and the equator, and the extreme northern and southern
points of the path with respect to the equator, and if we take two positions
X and Y on one of these arcs, then there always exists a ratio k such that

    

k
X Y

X Y
>

( )
( )

δ

∆

,

,
.

We may note that the known time is a real interval that can be
measured by the motion of the planet. Ibn al-Haytham’s idea of comparing
‘required time’, an equatorial coordinate, to this known time, looks like the
beginnings of a kinematic description of the motion.

In the following group of propositions, Ibn al-Haytham investigates the
apparent motion of a planet above the horizon of a given place. The
observed motion depends on the place and on the date of the observation.
In the course of this investigation Ibn al-Haytham makes use of the planet’s
equatorial coordinates, and consequently of its position on its trajectory, of
the inclination of the orb to the equator and of the inclination of the equator
to the horizon; that is to say, he uses the geographical latitude of the place
where the observation is made. Throughout this investigation, Ibn al-
Haytham assumes that the celestial sphere is inclined to the south; the
observation site thus has a northern latitude. The case of the sphaera recta,
that is to say, the case where the observer is on the terrestrial equator,
appears as a special case. Ibn al-Haytham assumes that the planet’s meridian
transit takes place between the zenith and the southern horizon, which
means that the geographical latitude of the place where the observation is
made must be greater than the declination of the planet for the date in
question. He also assumes that the latitude of the observation site is smaller
than the complement of the declination. Ibn al-Haytham makes a detailed
study of the part played by the latitude, which leads him to consider the
cases in which meridian transit occurs at the zenith or north of the zenith,
and finally the case of places whose latitude is equal to the complement of
the maximum declination of the planet.

So, in two propositions, 28 and 29, Ibn al-Haytham investigates heights
of a planet above the horizon. Let us suppose that the planet rises at the
point B and crosses the meridian at D. The arc BD which it describes is to
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the east of the meridian plane. Let the height of the planet above the
horizon be h (Fig. 1.12). Ibn al-Haytham shows that on arc BD there exist

• points of height h > hD (the height of point D). Let M be one of these
points;

• at least one point X on the arc BM such that hX = hD;
• at least two points with the same height h with hD < h < hM, one on

the arc XM and the other on the arc MD.
He also shows that, after it crosses the meridian at D , the planet

continues its motion towards the western horizon and its height h decreases
from hD to 0. Any height h < hD is thus reached at least once.

B

X

Y

W M
Z

D

Fig. 1.12

Ibn al-Haytham also shows that, if hm is the maximum height, the planet
will reach this height only once, say at a point W; and that height hD will be
reached once and only once at a point X ≠ D, such that X BW∈ .

In Proposition 29, Ibn al-Haytham investigates the movement of the
planet from the most southerly to the most northerly points of its trajectory.
The planet crosses the meridian at G and sets at D. The arc GD that it
describes is to the west of the meridian (Fig. 1.13).

G

Z
M

W Y

X

DB

Fig. 1.13

Ibn al-Haytham shows that there exist on the arc GD:
• points with height h > hG, let M be one of them;
• at least one point X, on the arc MD, such that hX = hG;
• two points with the same height h, where hG < h < hM, one of which is

on the arc XM and the other on the arc MG.
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He also shows that, between the planet’s rising in the east, at B, and
when it crosses the meridian at G, the height h increases from 0 to hG and
that any height h < hG is reached at least once.

Later on Ibn al-Haytham returns to this investigation to calculate the
heights reached by the planet to the west of the meridian. He shows that, if
hm is the maximum height, the planet reaches that height only once  – let it
be at point W; and that the height hG which is that of the planet’s meridian
transit is reached once and only once at a point other than G – let it be at
point X on the arc WD; that any height h < hG is reached once and only
once, at a point between X  and D ; and that any height h  such that
hG < h < hM is reached at two points and at only two points – one on the arc
GW and the other on the arc WX.

In Proposition 30, Ibn al-Haytham proves that the point at which
maximum height is reached is unique; he then, in Proposition 31, returns to
the investigation of heights to the east of the meridian. In these two
propositions, Ibn al-Haytham once again introduces innovations in
infinitesimal geometry. He is in fact developing a new and entirely original
method of working in spherical geometry: he considers infinitesimal
curvilinear triangles on the sphere (triangles whose sides are not necessarily
arcs of great circle) – constructs a sequence of such triangles whose sides
tend to zero  – and he handles these triangles as if they were infinitesimal
rectilinear triangles. What we are encountering here is in effect a geometry
of infinitesimals like what will be used later in the differential geometry.

In order to sum up some results Ibn al-Haytham established in his
investigation of the point D where the planet crosses the meridian (that is, in
this group of Propositions 28 to 36 where he is investigating the heights of a
planet), let us consider the meridian plane, with pole Z, and the equator,
whose north pole is N (Fig. 1.14).
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Fig. 1.14: α λ π α< < −
2
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Let the latitude of the place be λ, the declination of the planet at

meridian transit δ and the maximum value of the declination α; we have

AN XZ= = λ , XD = δ , XD XD1 1= ′ = α .

We consider only places in the northern hemisphere, and we use the sun
as our example, so α = 23°27′.

We may summarize the investigation of the position of D, as a function
of the geographical latitude λ and the date, in the form of a table. Let us

assume that α λ π α< < −
2

.

latitude date position of D

λ = 0
terrestrial
equator

• Spring and Autumn equinoxes
• Summer solstice
• Winter solstice
• Spring and Summer
• Autumn and Winter

D = Z = X
D = D1 to the north of Z
D = ′D1  to the south of Z
D between Z and D1, north of Z
D between Z and  ′D1 , south of Z

λ = α
tropic of
Cancer

• day of the Summer solstice δ = λ

• any other day δ < λ

D = D1 = Z

D lies on the arc ZD′1  south of Z

0 < λ < α
northern
tropical
zone

• day of the Summer solstice δ = α,
so δ > λ.
The declination δ = λ will be reached
once in the Spring and once in the Summer
on these two dates
between these two dates
for any other day of the year

D at D1 to the north of Z

D is at Z
D lies on the arc ZD1 north of Z
D lies on the arc ZD′1  south of Z

λ > α for any day of the year D lies south of Z

λ=0
C

D

Z=X

D

A=N

1 1
′

Fig. 1.15.1
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λ=α
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In the case of the sphaera recta, whether meridian transit is north or
south of the zenith Z, we can apply the method employed in Proposition 28
or Proposition 29 and show that the planet will have equal heights h at pairs
of points (for h > hD) either to the east of the meridian, or to the west of it.

In the case where the point D, the point of meridian transit, is at the
zenith Z,40 the maximum height of the planet is hD, and any height h < hD

will be reached once and only once to the east, and the same will apply in
the west.

So far, Ibn al-Haytham has considered places north of the equator with

latitude λ < π
2

 – α, α being the inclination of the orb to the equator; to

complete his investigation of the trajectory of a planet seen above the

horizon, he considers places with northern latitude λ = π
2

 – α or λ ≅ π
2

 – α
and shows that in such places, and on particular dates, the planet in question
may set in the east and rise in the east and that, on other dates, it may set in
the west and rise in the west.

Let BHID  (Fig. 1.16) be the
meridian plane for some place, BD
the diameter of the horizon, EG the
diameter of the equator, H the pole

of the equator BH  = λ  = π
2

 – α ,

HZ �=α . If we draw BI || EG  and

DI′ || EG, we have BG EI ED= = =

GI ′ = α , so the circles with
diameters BI  and DI ′ touch the

horizon of the place in question at B
and  D  respectively. The trajectories

D
S

E

N
I

Z H

B
J

G

I

north

′

Fig. 1.16

of the planet’s diurnal motion therefore lie between these two circles.

40 See below, p. 249.
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We have assumed that: the planet reaches point B, the north cardinal
point of the horizon in question, ABCD, at the time it gets to the most
northerly point of its trajectory, that is to say at the moment when its
declination is a maximum and equal to α. So after that the declination
decreases and the trajectory of the planet moves away from the circle BI
and begins to cut the meridian again at the point N above the horizon.

Ibn al-Haytham then defines:
• a point L that lies on this trajectory and is above the horizon ABCD

and to the east of B;
• a horizon circle with diameter JS, at latitude λ + ε which shares the

same meridian and is such that the point L is above the horizon.
But the points B and N are above this horizon JS, so when the planet

moves from B  towards L it sets at a point on the eastern part of this
horizon, and when it moves from L towards N it rises at a point which is
likewise on the eastern part of this horizon.

At the other extreme, the planet is assumed to be at the most southerly
point of its trajectory, at the point B of the hour circle BQI (Fig. 1.17), and
this point B is the south cardinal point of the horizon in question, which has

latitude λ = π
2

 – α. So after that the declination increases and the trajectory

of the planet moves away from the circle BQI and begins to cut the
meridian again at a point N above the horizon. The method is accordingly
the same as in the previous part. Ibn al-Haytham defines:

• a point L that lies on this trajectory and is above the horizon ABCD
and to the west of B;

• a horizon circle AJCS at latitude λ – ε which shares the same meridian
and is such that the point L is above it.
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Fig. 1.17
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When the planet moves from B towards L it rises at a point on the
western part of this horizon, and when it moves from L towards N it sets at
a point on the western part of this horizon.

Ibn al-Haytham has thus shown that on the day that a planet reaches its
maximum northern declination, α , there exist places in the northern

hemisphere, with latitude λ = π
2

 – α + ε, on whose horizons the planet sets

and rises in the east, and that on the day when the planet reaches its
maximum southern declination, α, there exist places in the northern

hemisphere, with latitude λ = π
2

 – α – ε, on whose horizons the planet rises

and sets in the west.
In both cases, the points at which the planet rises and sets are very close

to one another.

We have sketched the principal results that Ibn al-Haytham obtains in his
Configuration of the Motions. Our aim was not so much to expound all the
results in detail, which we do later, but rather to give an overview of what
he was trying to do in his book. All the way through The Configuration of
the Motions he directs his efforts to constructing a descriptive
phenomenological theory of the celestial motions, as they are seen by an
observer on the earth. This theory, as one can easily assure oneself, does not
incorporate any idea of a teleological physics, though it does not conflict
with what Aristotle calls the most physical parts of mathematics, which here
is geometrical optics, a subject reformed by Ibn al-Haytham himself. When
Ibn al-Haytham is constructing his astronomy his obvious concern is, as we
have noted, to adopt at each stage the least possible number of hypotheses.

Thus his theory for the motion of the planets calls upon no more than
observation and conceptual constructs susceptible of explaining the data,
such as the eccentric circle and in some cases the epicycle. However, this
theory does not aim to describe anything beyond observation and these
concepts, and in no way is it concerned to propose a causal explanation of
the motions. In this respect, The Configuration of the Motions is both in the
astronomical tradition that Ibn al-Haytham inherited and in a tradition that
continues after Ibn al-Haytham as far as Kepler. To sum it up, in The
Configuration of the Motions Ibn al-Haytham’s purpose is purely kinematic;
more precisely, Ibn al-Haytham wanted to lay the foundations of a
completely geometrical kinematic tradition.

Carrying out such a project involves first of all developing some
branches of geometry required for solving new problems that arise from this
kinematic treatment: Ibn al-Haytham took a huge step forward in spherical
geometry as also in plane and spherical trigonometry. To get a measure of
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how far he has advanced beyond the Greeks, one need only compare The
Configuration of the Motions with Chapters 9 to 16 of the first book of
Ptolemy’s Almagest; and to appreciate the distance that separates him from
his contemporaries one may compare The Configuration of the Motions
with, for example, the Almagest of Abº al-Wafæ’ al-Bºzjænî. As we have
seen, Ibn al-Haytham considers the changes in infinitesimal magnitudes that
necessarily arise in astronomical research.

In astronomy, there are two major processes that are jointly involved in
carrying through this project: freeing celestial kinematics from cosmological
connections, that is, from all considerations of dynamics, in the ancient sense
of the term; and to reduce physical entities to geometrical ones. The centres
of the motions are geometrical points with no physical significance; the
centres to which speeds are referred are also geometrical points with no
physical significance; even more radically, all that remains of physical time is
the ‘required time’, that is, a geometrical magnitude. In short, in this new
kinematics, we are concerned with nothing that identifies celestial bodies as
physical bodies. All in all, though it is not yet that of Kepler, this new kine-
matics is no longer that of Ptolemy nor of any of Ibn al-Haytham’s prede-
cessors; it is sui generis, half way between Ptolemy and Kepler. It shares
two important ideas with ancient kinematics: every celestial motion is com-
posed of elementary uniform circular motions, and the centre for observa-
tions is the same as the centre of the Universe. On the other hand, it has in
common with modern kinematics the fact that the physical centres of
motions and speeds are replaced by geometrical centres.

There remains a major question, that of the relation of this kinematics to
the celestial dynamics of the day, that is to say, to cosmology. The question
is relevant here only if we come across evidence that Ibn al-Haytham had
intended to write on cosmology once he had completed The Configuration
of the Motions. In that case, one would expect a new cosmology to go with
the new kinematics. In fact none of the titles that have come down to us,
none of the manuscripts of Ibn al-Haytham’s undoubtedly authentic
astronomical works, gives grounds for affirming that such a cosmology,
based on the new kinematics, ever existed. The only cosmology text known
to have been composed by Ibn al-Haytham (that is of well-attested
authenticity) is earlier than The Configuration of the Motions since it forms
part of his treatise on the winding motion. When, in his Resolution of
Doubts concerning the Winding Motion, he himself mentions this work,
which is now lost, he writes:

The winding motion to which Ptolemy referred, and from which arise the
motions in latitude of the five planets, can only be according to the
configuration that I demonstrated and according to the account that I gave.
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It is a configuration that is not subject to any impossibility or any absurdity.
From this motion is generated a motion of the planet which, by the motion
of its centre, produces a curve imagined as if the planet were wound round
on the body of the small sphere which moves the body of the planet. It is
because of the winding of this curve round the body of the epicycle that
this motion has been called the winding motion, and for no other reason.41

That leaves no room for doubt: Ibn al-Haytham had indeed, in his treatise on
the winding motion, proposed a model for the motions in latitude of the
epicycles of the five planets, a model in which he considered the physical
‘small spheres’ that moved the celestial bodies; in other words, he had
proposed a cosmology. Many other passages of the treatise confirm this.

Now, from the order of composition of Ibn al-Haytham’s writings that
we have already established, we know that, of these writings, the two books
on the winding motion were composed before the Doubts concerning
Ptolemy. Moreover, while in the first two books he makes use of the idea of
an equant, in the last one he criticizes it, and eventually ends up completely
excluding it from The Configuration of the Motions. Furthermore, since Ibn
al-Haytham emphasizes in the introduction to The Configuration of the
Motions that the results described in this work supersede any different ones
to be found in all his other writings, we may safely conclude that The
Configuration of the Motions was written after the Doubts concerning
Ptolemy and, a fortiori, after the two books about the winding motion. Thus
Ibn al-Haytham’s contribution to cosmology is (as it were) local, since it
relates only to a particular motion and antedates the Doubts and The
Configuration of the Motions. We proved elsewhere that The Configuration
of the Motions is also later than his treatise on The Variety that Appears in
the Heights of the Wandering Stars.42

Another argument in favour of this historical and conceptual sequence is
drawn from the language used in The Configuration of the Motions. The
book not only contains new concepts such as ‘required time’ and ‘proper
inclination for the required time’, but also terms from ancient astronomy
whose meaning has changed. For example let us consider a concept central
to traditional astronomy, that of falak. It is well known that in traditional

41 F¬ Ωall shuk‚k Ωarakat al-iltiff, ms. St. Petersburg, B1030/1, fols 15v–16r:

42 See below, Part I.
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astronomy this term signifies ‘orb’. It refers to the various solid bodies
attached to a specific planet. These solid bodies move with uniform circular
motions, and the sum of these motions constitutes the apparent motion of
the planet concerned, as seen from the earth, which is at the centre of the
world. In this system, a planet does not have a motion of its own, it is
moved by something else, and one cannot speak of the motion of a planet
along its particular orbit, but only of its apparent motion resulting from the
composition of the motions of its various spheres. This same word falak is
also used in the same context to designate the (plane) circles that are the
lines on the sky that correspond to the solid bodies in question.

In fact, Ibn al-Haytham uses this term falak in these senses in all the
works we have cited above, except in The Variety that Appears in the
Heights of the Wandering Stars, where he has no need of it. On the other
hand, in The Configuration of the Motions, the term falak no longer has the
same meaning. In this book it refers mainly to the apparent trajectory of a
particular planet across the celestial vault, and everything else derives from
the analysis of this apparent motion, without reference to solid bodies that
might move the planet in question. This semantic difference, taken together
with the new concepts, shows that The Configuration of the Motions was
composed after the books we referred to earlier. This difference alone also
shows that this treatise cannot be placed within a purely Ptolemaic tradition.
One might almost translate the term as the ‘orbit’ of a planet43 since the
apparatus of the orb, in the sense in which the term was conventionally
understood, no longer comes into it.

In the Doubts we have seen a turning point in Ibn al-Haytham’s
thoughts about astronomy. There is every indication that The Configuration
of the Motions is the most substantial result produced by this change. The
book gives us a new astronomy even though it retains a geocentric
framework within which all motions are circular and uniform. We have a
break with tradition despite the background of continuity.

We need to know the reasons for such a change. On this matter the
available texts are silent. We may, however, offer the following hypothesis.
In the absence of a theory of gravitation, the mathematician-astronomer was
faced with two alternatives: either abide by the traditional principle whereby
the motion of each planet is due to a cause specific to that body, and thus
construct a cosmology of material spheres; or accept the necessity of
abandoning that route and instead start by constructing a kinematic account,
thus acknowledging the primacy of kinematics in any investigation of
dynamics. In many of his astronomical writings, Ibn al-Haytham had been

43 However, we do not do this in the translation, preferring to keep to period usage.
We simply need to alert the reader here.
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tempted by the first alternative. But, once he had engaged upon mathemat-
izing astronomy and had noted not only the internal contradictions in
Ptolemy, but doubtless also the difficulty of constructing a self-consistent
mathematical theory of material spheres using an Aristotelian physics, he
turned to the second alternative, that of giving a completely geometrized
kinematic account. His experience in optics perhaps helped him to take this
step: here kinematics and cosmology are entirely separated to effect a
reform of astronomy, just as in optics work on the propagation of light is
entirely separated from work on vision to effect a reform of optics; in the
one case as in the other Ibn al-Haytham arrived at a new idea of the science
concerned.
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CHAPTER II

MATHEMATICAL COMMENTARY

2.1. GEOMETRY AND TRIGONOMETRY, PLANE AND SPHERICAL

2.1.1. Plane trigonometry

Proposition 1. — Let there be three points A, B, C that lie on a circle such
that

AB > BC  and AB + BC  ≤ π ⇒ AB

BC
 > 

AB

BC
.

By hypothesis BACˆ  + BCAˆ  ≤ π
2

, so ABCˆ  ≥ π
2

. Let D be such that

CBDˆ  = BACˆ , CBDˆ  < CBAˆ , so D lies on [CA]. Triangles CBD and CAB
are similar, we have

 AB

BC
= BD

DC
; CDBˆ  ≥ π

2
 and CD < CB.

A

B

C
D

E

G

H

I
K

Fig. 2.1

Moreover
BCA

BAC

AB

BC

ˆ

ˆ = ,

so
BCD

CBD

AB

BC

ˆ

ˆ = .

The circle (C, CB) cuts CA in G, so CD < CG < CA.



50 CHAPTER II

Let E be a point on BD such that ECD CBDˆ ˆ= , the straight line CE
cuts the arc BG in H, so

GB

GH

BCD

DCE

BCD

CBD

AB

BC
= = =

ˆ

ˆ

ˆ

ˆ .

Let us draw HK || BD; triangles CBD, CED and CHK are similar and
CB = CH, so

BD

DC
= CD

DE
= BC

CE
= CH

CE
= HK

DE
;

therefore HK = CD.
The straight line BH cuts AC in I, we have

BI

IH
= BD

HK
= BD

DC
= AB

BC
.

We also have
BI

IH
= tr.(CBI)

tr.(CHI)

and
AB

BC

GB

GH
= = sect.(BCG)

sect.(HCG)
.

But
sect.(CBH) > tr.(CBH),
sect.(CHG) < tr.(CHI);

so
sect.
sect.

tr.
tr.

CBH

CHG

CBH

CHI
( )
( )

> ( )
( )

;

which gives us

 
sect.
sect.

tr.
tr.

CBG

CHG

CBI

CHI
( )
( )

> ( )
( )

and consequently
AB

BC
 > 

BI

HI
,
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hence
AB

BC
 > 

AB

BC
.

Note: If we put AB = 2α, BC  = 2α1 where α > α1, 
π
2

 > α + α1, we have

AB = 2R sin α, BC = 2R sin α1, if R is the radius of the circle ABC.

AB

BC
 > 

AB

BC
 ⇔ 

α
α1

> sinα
sinα1

α > α1, 
π
2

 > α + α1, ⇒ 
α
α1

> sinα
sinα1

.

In other words, sin sinα
α

α
α

< 1

1

, that is, the function 
  
α α

α
a

sin  decreases

over the interval 0
2

< ≤α π .

Corollary:
ABC

CB
 > 

AC

CB
.

We know that AB

BC
 > AB

BC
, which gives us

ABC

CB
 > AB + BC

BC
> AC

BC
.

Note: Using the lettering of the previous note, if α > α1 and α + α1 < π
2

α α
α

α α
α

+ >
+( )1

1

1

1

sin

sin

or
sin sinα α

α α
α

α
+( )

+
<1

1

1

1

.
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The arcs in question belong to two circles, which may be equal or
unequal. The assumptions concerning these arcs can be expressed by
equalities or inequalities involving their measures in radians.

For example, in Proposition 2, the text has: ‘the arc ABC is greater than
the arc similar to the arc DEG’. We can write

meas. ABC  > meas. DEG or ABC  > DEG,

where ‘meas.’ indicates the measure of the angle that subtends the arc.

Proposition 2. — Let there be two arcs ABC and DEG belonging to the
same circle or to different circles such that

π ≥ ABC > DEG, AB > BC  and DE EG> ;

if

 AB

BC

DE

EG
= > 1,

then

 DE

EG
> AB

BC
.

Let AIB be an arc similar to the arc DE, it lies inside the segment
defined by the arc AB and its chord.

A

B

C

P
S

K

H

MI

N

O R
Q

G

E

D

Fig. 2.2

The circle (B, BC) cuts the given arc AB in H, the arc similar to DE in I
and the straight line AB in O. The straight line HI cuts AB in R.
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We have B H  = BI  and BHI BIHˆ ˆ=  < π
2

, hence BIRˆ  > π
2

 and

ARI BIRˆ ˆ> . The circle (A, AI) cuts AH in M and AB in N. We have

sect.(BHI) > tr.(BHI)

and
sect.(BIO) < tr.(BIR);

so
sect.(BHI)
sect.(BIO)

> tr.(BHI)
tr.(BIR)

;

therefore
sect.(BHO)
sect.(BIO)

> tr.(BHR)
tr.(BIR)

,

hence

(1) HBA

IBA

ˆ

ˆ  > HR

RI
.

Moreover tr.(AHI) > sect.(AMI) and tr.(AIR) < sect.(AIN); so we have

tr.(AHI)
tr.(AIR)

> sect.(AMI)
sect.(AIN)

;

therefore
tr.(AHR)
tr.(AIR)

> sect.(AMN)
sect.(AIN)

,

hence

(2) HR

IR
 > HAB

IAB

ˆ

ˆ .

From (1) and (2), we get
HBA

IBA

ˆ

ˆ  > HAB

IAB

ˆ

ˆ

or
HBA

HAB

IBA

IAB

ˆ

ˆ

ˆ

ˆ> ,
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hence
HA

HB

AI

IB
> .

From which we get
AHB

HB

AIB

IB
> .

So there exists a point K on the arc BI, BK BI< , such that

 AIB

BK

AHB

HB
= (fourth proportional).

On the circle (AIB) we take the point S such that BS BK= , then we
have

AIB

BS

AHB

HB

AHB

BC

DE

EG
= = = .

But AIB is similar to DE, so BS  is similar to EG  and ABS  is similar to
DEG. So we have

AB

BS
= DE

EG
;

but BS = BK < BI = BC, so
AB

BC
< DE

EG
.

If we put AB = 2Rα, BC  = 2Rα1, DE = 2rβ, EG  = 2rβ1, we have by

hypothesis β + β1 < α + α1 < π
2

 and β
β

α
α1 1

= ; the conclusion can be written

sin
sin

sin
sin

β
β

α
α1 1

> ;

or, putting λ α
α

= 1 ,

 sin
sin

sin
sin

λα
α

λβ
β

>

for β < α < π
2

 and 0 < λ  < 1.
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In other words, the proposition means that the function 
  
α λα

α
a

sin
sin

increases over the interval 0 < α < π
2

. Indeed, its derivative can be written

λ α λα λα α
α

sin cos sin cos
sin

−
2

and it is positive if we have the inequality λ tan α > tan λ α, that is, if the

function 
  
α α

α
a

tan  increases over the same interval.1

Corollary: With the same hypotheses

 AB

BC
 = DE

EG
⇒ DG

EG
> AC

CB
.

D

A

B

C

K

H

O
R

Q

T

S
P I

E

G

Fig. 2.3

We produce BS to the point P such that BP = BC. We draw QS || AP,
where Q lies on AB, we have

BPC BCPˆ ˆ=  and BPC APC BCP APCˆ ˆ ˆ ˆ> ⇒ > ;

but ACP BCPˆ ˆ> , hence ACP APCˆ ˆ>  and it follows that AP > AC, hence

1 See R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005,
pp. 1045–7 and pp. 1051–2. See also Supplementary note [1].
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AP

BP
> AC

BC
.

Moreover, ABS  < 1
2

 circle, so ABSˆ  is obtuse. Angle AQS is an exterior

angle of triangle QBS , hence AQS ABSˆ ˆ> , so AQSˆ  is obtuse. Thus
AS > QS, hence

AS

SB
> QS

SB
.

But
QS

SB
= AP

BP
,

so
AS

SB
> AP

BP
> AC

CB
.

Moreover
AS

SB
= DG

GE
,

so
DG

GE
> AC

CB
.

Note: Using the lettering of the previous note, the conclusion can be written

sin

sin

sin

sin

β β
β

α α
α

+( ) >
+( )1

1

1

1

,

that is, that 
  
α λ α

λα
a

sin

sin

1 +( )  decreases over the interval 0
2 1

< <
+( )α π

λ
.

If ′ = +( )α λ α1  and µ λ
λ

=
+1

, this statement is equivalent to 
 
′ ′

′
α µα

α
a

sin
sin

increasing over the interval 0
2

< ′ <α π , where 0
1

1
2

< =
+

<µ λ
λ

.

Proposition 3. — If π ≥ ABC  > DEG and AC

CB
= DG

GE
, then AB > DE and

 AB

BC
 > DE

EG
.
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B is a point on the arc AC, so BC  < AC , hence BC < AC.
The arc AIC, similar to DEG, lies inside the segment defined by the arc

AC (as in Proposition 2). The circle (C, CB) cuts AC in H and the arc AIC in
I. The circle (A, AI) cuts the straight line AC in K and the straight line AB in
N. The straight line CI cuts the arc ABC in M and the straight line BI cuts
AC in L.

G
E

D A

B

C I

MN

K
H

L

Fig. 2.4
We have

AC

CI
= AC

CB
= DG

GE
,

and since AIC is similar to ABC, the arcs AI and IC are similar to the arcs
DE and EG respectively. But the arcs AI and AM are similar, so the arc AM
is similar to the arc DE, and DE < AB.

We have CB = CI, so BICˆ  < 1 right angle and BIMˆ  > 1 right angle,
and consequently AIBˆ  > 1 right angle, LICˆ  > 1 right angle and ALIˆ  >
1 right angle; therefore BA > AI > AL. We have

sect.(CBI) > tr.(CBI), sect.(CIH) < tr.(CIL),

so
sect.(CBI)
sect.(CIH)

> tr.(CBI)
tr.(CIL)

,

hence
sect.(CBH)
sect.(CIH)

> tr.(CBL)
tr.(CIL)

;

from which we obtain
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(1)  ACB

ACI

ˆ

ˆ  > BL

IL
.

In the same way, we have

tr.(ABI) > sect.(AIN), tr. (AIL) < sect.(AIK),

hence
tr.(ABI)
tr.(AIL)

> sect.(AIN)
sect.(AIK)

,

hence
tr.
tr.

sect.
sect.

( )
( )

( )
( )

BAL

AIL

NAK

IAK
>

and we obtain

(2) BL

IL
 > CAB

CAI

ˆ

ˆ .

From (1) and (2) we get
ACB

ACI

ˆ

ˆ  > CAB

CAI

ˆ

ˆ ,

hence
ACB

CAB

ˆ

ˆ  > 
ACI

CAI

ˆ

ˆ

and consequently
AB

BC
 > AI

CI
.

But
AI

CI
 = 

DE

EG
,

hence the conclusion
AB

BC
 > DE

EG
.
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If the arc ABC is greater than the arc similar to the arc DEG, their
measures satisfy the inequality ABC  > DEG.

Note: Using the same lettering as before, the assumption made for this
proposition can be written

β + β1 < α + α1 < π
2

 and 
sin

sin

sin

sin

α α
α

β β
β

+( ) =
+( )1

1

1

1

.

The conclusion is then that α > β and α
α

β
β1 1

> .

Putting sin (α + α1) = z, sin α1 = x, sin (β + β1) = u and sin β1 = y, we

have
z

x

u

y
= = λ ,

let z = λx, u = λy and we wish to prove that

Arc sin z – Arc sin x > Arc sin u – Arc sin y

and

 Arc Arc 
Arc sin 

Arc Arc 
Arc 

sin sin sin – sin
sin

z x

x

u y

y

− > ,

making the assumption that y < x and z = λx, u = λy (λ > 1).

So this conclusion indicates that   x x xa Arc Arc sin sinλ −  and

  
x

x

x
a

Arc 
Arc 

sin
sin

λ  are increasing functions over the interval 0 < x < 1
λ

. The

derivative of the first of these functions is λ
λ1

1

12 2 2−
−

−x x
, which is

clearly positive since λ > 1. The derivative of the second function has the

same sign as λ λ λ1 12 2 2− ⋅ − −x x x xArc Arc sin sin . This last
expression is positive because it is zero at 0 and its derivative

λ λ
λ

λx
x

x
x

x
1

1

12 2 2−
−

−






Arc Arc sin sin  remains positive. In fact, if we put

α = Arc sin x and γ = Arc sin λx, the expression in parentheses comes to
γ γ

α γ
α

α α
γ γ α αsin

sin cos cos sin
− = −( )1

tan tan  where γ  > α  and the function

  α α αa tan  is obviously increasing.
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Proposition 4. — Let there be two arcs ABC and DEG such that

π > ABC  > DEG.

A

B

C

I

D

E
G

Fig. 2.5

<a> AB > BC, DE > EG and AB

BC
= DE

EG
 ⇒ AB

BC
 > DE

EG
.

Argument by reductio ad absurdum, using Proposition 2.

• If AB

BC
 = DE

EG
, then DE

EG
> AB

BC
, from Proposition 2; now DE

EG
= AB

BC
.

• If AB

BC
 < DE

EG
, then ABC

BC
 < DEG

EG
; so there exists a point I on the arc

BC such that AIC

CI
 = DEG

EG
, hence AI

CI
 = DE

EG
; then, from Proposition 2,

DE

EG
> AI

CI
.

But AI > AB  and CI < CB , so AI

CI
> AB

CB
 and consequently DE

EG
> AB

CB
;

which is contrary to the original hypothesis.
Conclusion:

AB

BC
 > 

DE

EG
.

<b> AB

BC
> DE

EG
 ⇒ AB

BC
 > DE

EG
.

There exists a point I′  between A and B such that

AI

I C

DE

EG

′
′

=
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(since the ratio AJ

JC
 increases from 0 to AB

BC
 as the point J moves along the

arc AB from A to B), and from 4<a>, we then have

AI

I C

′
′

 > 
DE

EG
;

A

B

C

I
I′

Fig. 2.6

but
AB

BC
 > AI

I C

′
′

,

so
AB

BC
 > DE

EG
.

Note: If we keep the same lettering as in Proposition 2, the hypotheses can

be written β + β1 < α + α1 ≤ π
2

, α1 < α, β1 < β and sin
sin

sin
sin

α
α

β
β1 1

≥ .

The conclusion from <a> and <b> means that α
α

β
β1 1

> .

<c> AC

CB
= DG

EG
 ⇒ ABC

CB
 > DEG

EG
.

• If ABC

CB
 = DEG

EG
, then DG

GE
> AC

CB
, from the corollary to Proposition 2;

which is contrary to the original hypothesis.

• ABC

CB
 < DEG

EG
. In this case, there exists a point I such that
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CI  < BC   and  ABC

CI
 = DEG

EG

and in this case DG

EG

AC

CI
> , from the corollary to Proposition 2, so DG

EG

AC

BC
> ;

which is contrary to the original hypothesis.

Conclusion: ABC

CB
 > DEG

EG
.

<d> AC

CB
> DG

EG
 ⇒ ABC

CB
 > DEG

EG
 is proved in the same way as <b>.

Ibn al-Haytham summarizes the two paragraphs <c> and <d>.

If π > ABC  > DEG,

AC

CB
≥ DG

EG
 ⇒ ABC

BC
 > DEG

GE
.

Note: Using the same lettering, the hypotheses for <c> and <d> are: β + β1

< α + α1 ≤ π
2

, α1 < α, β1 < β and 
sin

sin

sin

sin

α α
α

β β
β

+( ) ≥
+( )1

1

1

1

. The conclusion is

α α
α

β β
β

+ > +1

1

1

1

 or α
α

β
β1 1

> .

<e> If the arcs ABC and DEG are similar, we know that their measures
ABC = DEG, where π > ABC  = DEG, and we obtain

AC

CB
> DG

GE
 ⇒ ABC

CB
 > DEG

EG
.

If  ABC

CB
 = DEG

EG
, the arcs CB and EG are proportional to the arcs ABC

and DEG, so they are similar and we have in this case

AC

CB
= DG

GE
;

which is contrary to the original hypothesis.
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If AC

CB
> DG

GE
, then CB < CI, if I is the point on the arc AC such that

ABC

CI
 = DEG

EG
, that is, such that the arcs CI and EG are proportional to the

arcs ABC and DEG.

But CB < CI implies CB < CI , and consequently ABC

CB
 > DEG

EG
.

Note: The case <e> is a special case of <c>.

Corollary of 4 <a> and <b>:

ABC > π, DEG > π
AB > BC , DE > EG , DE ≤ π and AB ≤ π
AB ≥ arc similar to DE.

A

B

C

C

E

D

G

G
′

′

Fig. 2.7

If AB

BC

DE

EG
> , then AB

BC
 > DE

EG
.

Let C′ be a point such that BC  = BC′  and G′ such that EG  = EG′,
then we have

AB

BC

AB

BC
=

′
 and DE

EG

DE

EG
=

′
,

so
AB

BC

DE

EG′
>

′
.

So, from Proposition 4<b>, we have AB

BC′
 > DE

EG′
, hence AB

BC
 > DE

EG
.
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Notes:

1) If AB

BC

DE

DG
= , by using 4<a>, we show that AB

BC
 > 

DE

EG
, so that

AB

BC

DE

DG
≥  ⇒ AB

BC
 > 

DE

EG
.

2) The hypotheses are α + α1, β + β1 > π
2

; π
2

 ≥ α  > α1; π
2

 ≥ β  > β1;

α ≥ β and sin
sin

sin
sin

α
α

β
β1 1

≥ . The conclusion is α
α

β
β1 1

> .

The first four propositions are matters of plane trigonometry. In them,
Ibn al-Haytham compares inequalities between ratios of arcs to the
corresponding inequalities between the ratios of chords. The properties he
establishes in this way can be expressed by considering the changing values

of functions such as sinα
α

 or sin λα
α

.

2.1.2. Spherical geometry and trigonometry

Proposition 5. — Inclination: Let there be on a sphere two great circles
ABC and ADC with common diameter AC. Let K and L be their respective

poles where KL < 1
4

 circle and AB = BC  = AD = DC  = 1
4

 circle.

C M
N

P

Q

B

E

G

H

I

D

S
O
U

F

J

A

K

L

ω

Fig. 2.8
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a) We divide the arc CD into equal parts; let E, G, H, I be the points of
division. The great circles KE, KG, KH, KI, KD cut the circle ABC in M, N,
P, Q and B.

Through the points of division of the circles we draw parallels to the
circle ABC that cut the circle KC in S, O, U, F, J; so we have ME CS= ,
NG CO= , PH CU= , QI CF=  and BD CJ= .

We may note that if the circle CAB is the equator, the arcs BD, QI, PH,
NG and ME are respectively the inclinations of the points D, I, H, G and E.2

If we put ∆(D, I) = inclination of D – inclination of I, we have

∆(D, I) = JF ;

similarly
∆(I, H) = FU , ∆(H, G) = UO, ∆(G, E) = OS  and ∆(E, C) = SC.

We prove that if DI  = IH HG GE EC= = = , then

∆(D, I) < ∆(I, H) < ∆(H, G) < ∆(G, E) < ∆(E, C).

All the circles we consider, apart from the ones that are parallels, are
great circles. The arcs KM and KB are equal and are orthogonal to the arc
CMB; we thus have

(1) sin
sin

sin
sin

EC

CD

EM

DB
= (by the sine rule),3

2 When the circle ABC  is the celestial equator, the arcs BD , QI  are called
declinations. But in the part concerned with astronomy the circle ABC can be the
equator, the ecliptic or the horizon. It is accordingly preferable to keep to the term
inclination.

3 In a triangle ABC formed by arcs of great circles on a unit sphere with centre O, we
have

sin ˆ

sin

sin ˆ

sin

sin ˆ

sin

BOC

A

COA

B

AOB

C
= =

or again
sin

sin

sin

sin

sin

sin

BC

A

CA

B

AB

C
= = .

In the curvilinear triangles ECM and BCD
(see Fig. 2.8), we thus have

sin

sin

sin

sin

EC

M

EM

C
=  and sin

sin

sin

sin

CD

B

BD

C
= ;

now sin M = sin B = 1, hence the equality (1).

O

A

C

B

Fig. 2.9
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so
sin
sin

sin
sin

EC

CD

CS

CJ
=

because EM CS=  and DB CJ= .
Similarly

sin
sin

sin
sin

CG

CD

CO

CJ
= (by the sine rule),

therefore

(2) sin
sin

sin
sin

CG

CE

CO

CS
= (by the sine rule).

We have π
2

 = CD > CE , so sin CD > sin CE . From (1), we then

deduce that EC > EM , because CD > DB since CD is a quarter of a
circle, so EC > CS . In the same way we have CG > CO.

Moreover CG > CE  > CS  (because CG = 2CE ). From (2) we get
CO> CS; if we apply Proposition 3 to the triangles formed by the arcs that
are double CE , CG and CS , CO, we obtain

CG – CE  > CO – CS

and

 CG CE

CE

CO CS

CS

− > − ,

hence
GE

CE

OS

CS
> .

But GE  = CE , hence OS  < CS , so ∆(G, E) < ∆(E, C).

In the second part, Ibn al-Haytham constructs a second figure (Fig. 2.10)
connected with the first one (Fig. 2.8), but with different lettering.

Let there be a semicircle ACB with the same diameter as the given
sphere, and let AC  = CB; we divide the arc AC into five equal parts at the
points E, G, H, K. The points A, E, G, H, K, C in this figure are homologous
to the points D, I, H, G, E, C in Fig. 2.8.
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On AB we draw an arc ADB similar to double the arc CJ of the first
figure; it is implicit that we suppose the arc CJ is less than a quarter of a
circle. The circle (B, BG) cuts the arc ADB at the point D, so BG = BD.

AB

C
K

H

I G

E

D

M

L

Fig. 2.10

We have AG = 2 AE  and ACB = 2 AC , so BCG  = 2CE  and
consequently

AB

BG
= AB

BD
 = sin

sin
AC

CE
(Fig. 2.10);

and if we turn back to the arcs in Fig. 2.8, the ratio is equal to

sin
sin

sin
sin

sin
sin

CD

CI

DB

QI

CJ

CF
= = (by the sine rule),

from the analogue to (1) for the point I; so

AB

BD
 = 

sin
sin

CJ

CF
.

Now, by hypothesis, ADB  is similar to 2CJ , so BD is similar to 2CF ;
there remains AD in Fig. 2.10 which is similar to 2 JF  of Fig. 2.8.

On BG we draw an arc equal to the arc DB and we take on BG the
point I such that GI AD= . We then have

BCK  = BCG  – GK  = BCG  – AG,

hence

(1) BGK BAG ABGˆ ˆ – ˆ= .
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Moreover
BIG  = BD  and  GI AD= ,

hence
BI  = BD – AD;

thus we have

(2) IGB BAD ABDˆ ˆ ˆ= − .

From (1) and (2), it follows

KGI GAD GBDˆ ˆ ˆ= − .

Let M be such that AD = AM and DAM GBDˆ ˆ= , then we have GAMˆ

= KGIˆ . The point M lies inside the triangle AGD, so AGM AGDˆ ˆ< .
Triangles GAM and GKI are equal, because GK GA= , so GK = GA,

AD GI=  and GI = AD = AM; it follows that AGM GKIˆ ˆ= , so GKI AGDˆ ˆ< .
We have BCG BCA< , hence BKG BGAˆ ˆ> ; then

BKG GKI BGA AGDˆ ˆ ˆ ˆ− > − ,

hence BKI BGDˆ ˆ> .
Moreover, we have AG GK=   and  AD GI= , hence

ABG KBGˆ ˆ=   and  ABD GBIˆ ˆ= ,

and therefore DBG KBIˆ ˆ= .
In triangle BKI, we have

BKI KBI KIBˆ ˆ ˆ+ + = π ,

and in triangle DBG, we have

BGD DBG BDGˆ ˆ ˆ+ + = π .

From this we get BDG KIBˆ ˆ> , hence BGD KIBˆ ˆ>  (isosceles triangle
BGD); and consequently BKI KIBˆ ˆ> , hence BI > BK.
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So the circle (B, BK) cuts the arc BIG; say at point L, which will be
such that GL  > GI ; so GL  > AD.

We know that BCG  = 2CE  and KG  = 2GE , so BCK  = 2CG; we
then have

BG

BL
= BG

BK
=

 
sin
sin

CE

CG

and, if we return to the arcs of the first figure, the previous ratio can be
written

sin
sin

CI

CH
 = sin

sin
CF

CU
(the sine rule).

But the arc BLG (equal to the arc BD) is similar to the arc 2CF; so the
arc BL is similar to the arc 2CU and the arc LG is similar to the arc 2UF.

We have seen that AD is similar to 2 JF  and that AD < LG , so
JF  < FU  or ∆(D, I) < ∆(I, H).

Using the same method, we can prove that

 FU < UO  and  UO < OS .

So we have the stated result:

∆(D, I) < ∆(I, H) < ∆(H, G) < ∆(G, E) < ∆(E, C).

Comment: We locate each point P of the sphere (Fig. 2.8) by drawing
through P a circle parallel to the equator UPH; the coordinates of P are
then the inclination CU  (arc of the great circle KC) and the right ascension
CH  (arc of the great circle ADC).

If we divide the arc CD into n
equal parts at the points I1, I2, … Ii

… In = D , where I0 = C , to each
point Ii of the arc CD there corres-
ponds a point Ji of the arc CK such

that CJi  is the inclination of the

point Ii; let us put CIi  = xi and CJi

= yi.
C

B

D

K

I

I
I

J
J

J i

2

1

i

21

nJ  = J

Fig. 2.11
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For x ∈ [0, π
2

], y increases from y0 = 0 which corresponds to the point

C up to yn = CJ  which corresponds to the point D; y is a monotonically
increasing function of x.

By hypothesis, for all i from 1 to n, the difference xi – xi-1 = ∆x is

constant, but y1 – y0 > y2 – y1 … yi – yi-1 > yi+1 – yi, so (∆y)i = yi – yi–1

decreases as xi increases.

b) The proof for two successive arcs – such as CE  and EG  in the first
part, or DI  and IH  in the second, then IH  and HG  – involves only
equality of arcs taken two at a time, but does not involve either the fact that

each of them is equal to CD

5
 or more generally to CD

n
, nor the fact that one

or the other of these arcs has an endpoint at C or D.

C

B

D

K

G

H

I

Fig. 2.12

The preceding proof can consequently be generalized to consider two
successive arcs that are equal, whether or not each of them is com-
mensurable with a quarter of the circle.

Let us assume we have G, H, I such that GH  = HI . If xG < xH < xI, we
have

∆x = xH – xG = xI – xH  and  ∆(G, H) > ∆(H, I),

so

 HI

GH
 > ∆ H, I( )

∆ G, H( )
.

Using an alternative notation xH = x, xG = x – h and xI = x + h, we have
yI – yH < yH – yG. If we put y = f(x), then
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f x h f x h
f x

−( ) + +( ) < ( )
2

;

we know that this inequality and the fact that the function f is continuous
imply that the function is concave for all x in the interval and for all h > 0.
In what follows, Ibn al-Haytham gives a proof that uses the method of
abduction to establish a property of exactly this kind.

We may note that this investigation can essentially be interpreted, in
other terms, as one of considering the variation of functions by comparing
finite differences.

This proposition is equivalent to Proposition 5 of Theodosius’
Sphaerica, but with a more elegant proof that uses the sine rule.

Proposition 6. — More generally, let there be two general arcs, equal or
unequal, contiguous or disjunct; the arcs can be commensurable or
incommensurable.

D
I
E

G

A

H
B

M
C

L K

<O>

<O >′

<Q>

Fig. 2.13

Let O be the point of intersection of the given great circles; let A, B, C
be three points such that OA OB OC> > ; let D, E, G be the points of the
arc OQ such that OD, OE  and OG  are the inclinations of A, B and C
respectively.

a) AB and BC  commensurable.
They can be divided into equal parts, p parts in AB and q parts in BC .

We then have p unequal parts in DE and q unequal parts in EG; these parts
become smaller and smaller the greater their distance from G  (from
Proposition 5)
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p

q
 = AB

BC
;

but
p

q
 > DE

EG
,

so
AB

BC
 > 

DE

EG
  or  AB

BC
 > 

∆ A, B( )
∆ B,C( )

.

So if xA > xB > xC, we have

AB

BC
 > 

∆ A, B( )
∆ B,C( )

.

b) AB and BC  incommensurable.
Ibn al-Haytham gives an argument by reductio ad absurdum to prove

that we again have
AB

BC
 > ∆ A, B( )

∆ B,C( )
.

He first proves that the hypothesis AB

BC
 = DE

EG
 is absurd.

Let us suppose that AB is divided into equal p parts, AB = p α; and let

H be a point on AB such that HB = q α (q < p) and let us suppose HB <

BC .4 Let I be the point associated with H, the difference of the inclinations
of the points H and B is the arc IE and we have IE  < EG . From the above,
we have

AH

HB
 > DI

IE
,

hence

 AB

BH
 > DE

IE
  or  IE

DE
 > BH

AB
.

4 The division can be carried out with p = 2k, so it can be constructed; the condition

HB < BC  can be met thanks to Lemma X.1 of the Elements, as it was reformulated by
Ibn al-Haytham (see R. Rashed, Ibn al-Haytham and Analytical Mathematics. A
History of Arabic Sciences and Mathematics, vol. 2, Culture and Civilization in the
Middle East, London, 2013, pp. 235–8, 382–90).
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But by hypothesis DE

EG
= AB

BC
, so we have

IE

EG
 > BH

BC
.

Let K be such that
IE

EG
 = HB

BK
,

so BC  > BK  > BH . Then we have qα < BK  < BC . There are then two

possible cases:
1) α < KC . In this case, there exists an integer m such that

(q + m) α < BC  < (q + m + 1) α ;

and if we put BM  = (q + m) α, we have MC  < α.

2) α > KC , we divide the arc α into equal parts, making them smaller

and smaller until we obtain a part α′ < KC , and we then have a point M

that lies between K and C and is such that BM  = n α′  and MC  < α′.
So in both cases we have found a point M such that the arcs HB and

BM are commensurable; we associate with the point M the point L (L lies
between E and G) which has the corresponding inclination; then we have

HB

BM
 > IE

EL
.

But we had
IE

EG
 = BH

BK
 > BH

BM
,

so
IE

EG
 > IE

EL
,

hence EG  < EL ; which is impossible.
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Note: The text does not specify which of the arcs AB and BC is the greater.
If we have AB > BC  and q such that q α < BC  < (q + 1) α, we put BH  =

q α and we define K as before; K lies between B and C, so KC  < α ; which

corresponds to case 2.
Ibn al-Haytham then proves that the hypothesis

(1) AB

BC
 < DE

EG

is also absurd.
Taking H and I as in the previous paragraph, we have

(2) IE

ED
 > BH

BA
.

From (1) and (2), we get
IE

EG
 > 

HB

BC
.

We then define the point K lying between B and C by

BH

BK
 = 

IE

EG

and we complete the proof as in the first case.

Note: So we could prove that AB

BC
 ≤ DE

EG
 is absurd without distinguishing

the two cases.

In Propositions 5 and 6, Ibn al-Haytham investigated the inclination of
points lying on a quadrant of a great circle, the inclination being measured
with respect to a great circle with pole K.

In Proposition 7, he investigates the right ascension of points on the
quadrant of the first great circle with respect to the second one, which acts
as the equator.

The proposition thus follows immediately from Proposition 5 in the case
where the arcs AB and BC are commensurable; Ibn al-Haytham moves on
to the general case by means of an argument involving infinitesimals that
uses Archimedes’ axiom and a reductio ad absurdum.
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We may interpret the result as establishing that declination is a concave
function of the position of a point on the circle ACO measured from C.

Proposition 7. — Right ascension: The great circle ADC with diameter AC
and pole K represents the equator. Let there be a great circle ABC, with
diameter AC, whose plane makes an angle α with the plane ADC. We

assume AB = BC  = AD = DC .

A B

K

Q
P

N
M

C E G H
I

D

Fig. 2.14

a) We divide BC  into equal parts; let M , N , P , Q  be the points of
division. The great circles KM, KN, KP, KQ cut the arc CD at the points E,
G , H , I. The arcs CE , CG , CH , CI  and CD  are the respective right
ascensions of the points M, N, P, Q, B.

If we put, for example,

δ (M, N) = right ascension of N – right ascension of M,

we have
δ (C, M) = CE , δ (M, N) = EG , δ (N, P) = GH ,

δ (P, Q) = HI  and δ (Q, B) = ID.

If CM MN NP PQ QB= = = = , then

δ (C, M) < δ (M, N) < δ (N, P) < δ (P, Q) < δ (Q, B).

The circles in question are all great circles and the great circles that pass
through K are orthogonal to the circle CDA.
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From Menelaus’ theorem we have

sin
sin

sin
sin

sin
sin

CM

MN

CE

EG

KG

KN
= ⋅ ;

K

M

N

C

E

G

Fig. 2.15

but CM MN=  and KG  = π
2

; so sin sinCE EG< , hence CE EG< .

We also have
sin
sin

sin
sin

sin
sin

CN

NP

CG

GH

KH

KP
= ⋅

and
sin
sin

sin
sin

sin
sin

CN

MN

CG

EG

KE

KM
= ⋅ .

But
sin sinNP MN= , sin sinKH KE= = 1 and sin sinKP KM< ,

so
sin sinGH EG>

and consequently
EG GH< .

In the same way, we can prove that

GH HI<  and HI ID< ,

hence the conclusion.
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The investigation of the right ascension is carried out much more rapidly
than that of the inclination, and without recourse to infinitesimals, because
Menelaus’ theorem can be applied to each pair of great circles passing
through K.

Generalizing this to the case of n equal parts on the arc CB is clearly
immediate. Let I0 = C, I1 … Ii … In = B be the points of division, K1, Ki, Kn

= D the points that define the right ascensions.

If we put CIi  = xi and CKi  = zi, for x ∈ [0, π
2

], z increases from 0 to

π
2

 and z1 – z0 < z2 – z1 < … zi – zi–1 … < zn – zn–1, so (δz)i = zi – zi–1

increases as xi increases.

B

KC

D
I

I

K

K

i

i
1

1

Fig. 2.16

b) Ibn al-Haytham next says that, as in the case of the differences in
inclination, we can deduce from the result that has been proved for the

differences in right ascensions, as regards arcs equal to π
2n

:

• the result for equal arcs, whether consecutive or not, whether com-
mensurable or not;

• then the result for unequal arcs. So if M, N, P, Q are points lying in
that order on the arc CB, we shall have

(*) MN

PQ
 > δ M, N( )

δ P,Q( )
.

So, taking into account Propositions 6 and 7, we have:

∆ M, N( )
∆ P,Q( )

 > MN

PQ
 > δ M, N( )

δ P,Q( )
.
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C

M

N

P

Q
∆

∆

δ

δ

Fig. 2.17

This proposition is equivalent to Proposition 6 of Theodosius’
Sphaerica. We can express this by saying that the right ascension is a
convex function of the position of a point on the circle ABC measured from
C. Let us put xM = CM , xN = CN , xP = CP and xQ = CQ and let the right

ascension of the point R such that CR = x be called g(x). The inequality (*)
can be written:

x x

x x

g x g x

g x g x
N M

Q P

N M

Q P

−
−

> ( ) − ( )
( ) − ( ) ,

that is,
g x g x

x x

g x g x

x x
Q P

Q P

N M

N M

( ) − ( )
−

> ( ) − ( )
−

,

which indicates that the function g is convex.

2.1.3. Plane geometry

Proposition 8.5 — Let there be a circle with centre D and diameter AC.
We consider a point E on the segment DC, and, on the circle, equal arcs AB,
BH, HI; if the chords AB = BH = HI < EC, then AEB BEH HEIˆ ˆ ˆ< < .

Triangles ADB, BDH, HDI are isosceles and equal. So we have

5 Proposition 8 should be compared with Theorems 1 and 2 of Treatise 4 by Thæbit
(Œuvres d’astronomie, ed. and transl. R. Morelon, Paris, 1987, p. 73); the theorems
are summarized in R. Morelon, ‘Eastern Arabic astronomy between the eighth and the
eleventh century’, in R. Rashed (ed.), Encyclopedia of the History of Arabic Science,
3 vols, London/New York, 1996, vol. I, pp. 20–57, pp. 34 ff.
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DAB DBA DBH DHB DHI DIHˆ ˆ ˆ ˆ ˆ ˆ= = = = = .

But EHB DHBˆ ˆ> , so
EHB EABˆ ˆ> .

The quadrilateral ABHC  is convex and inscribed in the circle, so
CAB CHBˆ ˆ+  = 2 right angles; now CHB EHBˆ ˆ> , so EAB EHBˆ ˆ+  < 2 right
angles.

Let K be such that EBK EABˆ ˆ=  and E K  = EB , so we have EKBˆ

= EABˆ , hence EKB EHBˆ ˆ+  < 2 right angles. We draw the circle EKB.

A

B

C
DE

G

H

K

N

I

Fig. 2.18

If an inscribed angle that intercepts the arc BKE is called α, we have

BKEˆ  + α = 2 right angles;

but BKEˆ  + = +EHB EAB EHBˆ ˆ ˆ  < 2 right angles, so α > EHBˆ . Moreover

EHBˆ  > EABˆ , so EHBˆ  > BKEˆ ; the arc of the circle (EKB) intercepted by
an angle equal to EHBˆ  would thus be greater than the arc EB and smaller
than the arc EKB; let it be the arc EBN. We have

ENB EKB EBKˆ ˆ ˆ= =  and EBN EBKˆ ˆ> ,

hence ENB EBNˆ ˆ<  and EB < EN.
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If we draw the circumcircle of triangle EHB, the chord EB cuts off in
this circle a segment similar to the segment EBN cut off by EN in the circle
(EKB); now EB < EN, so we have

circle (EHB) < circle (EKB).

From the equality EABˆ  = EKBˆ  it follows that the circumcircle of EKB
is equal to the circumcircle of EAB (these circles would be symmetrical with
respect to the straight line EB). So

circle (EHB) < circle (EAB).

From EC < EA it follows that EA > EB > EH > EI > EC. In fact, we
have EBA DBA EABˆ ˆ ˆ> = ; EHB DHB DBH EBHˆ ˆ ˆ ˆ> = > , and so on, and
moreover by hypothesis AB < EC; so EA > EB > AB, hence

EBA EAB AEBˆ ˆ ˆ> > ,

hence AEBˆ  < 1 right angle. Similarly, BEHˆ  < 1 right angle and HEIˆ  <
1 right angle.

In the circle (EAB), the angle AEB intercepts the arc AB and, in the
circle (EHB), the angle BEH intercepts the arc BH; we have

circle (EAB) > circle (EHB) and AB = BH (chords),

so AEBˆ  < BEHˆ .
The straight line BE cuts the circle with centre D  again in G . The

quadrilateral BHIG inscribed in this circle is convex, so

HBG HIGˆ ˆ+  = 2 right angles;

now HIE HIGˆ ˆ< , so
EBH HIEˆ ˆ+  < 2 right angles.

Moreover
EIH DIHˆ ˆ> , DIH DBHˆ ˆ=  and DBH EBHˆ ˆ> ,

so
EIH EBHˆ ˆ> .
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The hypotheses for the triangles BEH and HEI are thus the same as for
the triangles AEB and BEH; so we shall have

BEH HEIˆ ˆ< ,

hence the conclusion
AEBˆ  < BEH HEIˆ ˆ< .

Note: We can give a quicker proof by appealing to trigonometry. We have
EHB DHBˆ ˆ> , hence EHB EABˆ ˆ> .

In the triangles AEB and BEH, we have (sine rule in the plane)

AB

AEB

EB

EABsin ˆ sin ˆ=   and  BH

BEH

EB

EHBsin ˆ sin ˆ= ;

now AB = BH and sin ˆ sin ˆEAB EHB< , therefore sin ˆ sin ˆAEB BEH< , hence
AEB BEHˆ ˆ< .

In triangles BEH and HEI, we have

BH

BEH

EH

EBHsin ˆ sin ˆ=   and  HI

HEI

EH

EIHsin ˆ sin ˆ=   (where EBH EIHˆ ˆ< );

now BH = HI and sin ˆ sin ˆEBH EIH< , so sin ˆ sin ˆBEH HEI< , and conse-
quently BEH HEIˆ ˆ< .

This trigonometrical argument, which treats sines as (numerical) func-
tions of angles, does not require the use of several circles, but it is foreign to
the mathematics of the period. We can, however, catch a hint of it in the
reasoning of Ibn al-Haytham.

Ibn al-Haytham points out that the proof of the inequality of the angles
with vertex E that intercept the equal arcs AB, BH and HI does not involve
the ratio of the arc AB to the semicircumference ABC. The proof remains
valid whether this ratio is rational or not; but it is clear that he is taking it for
granted that the sum of the arcs in question is less than the semi-
circumference.
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Notes:
If we draw the circle (E, EA), the straight lines BE, HE, IE cut it in B′,

H′, I′.

A
DE

CA

B

H

I

I
H

B

′

′

′

′

Fig. 2.19

The result AEBˆ  < BEH HEIˆ ˆ<  implies ′ ′A EBˆ  < ′ ′ < ′ ′B EH H EIˆ ˆ  and
these angles at the centre of the circle (E, EA) intercept unequal arcs

′ ′ < ′ ′ < ′ ′A B B H H I ;

so
AB BH HI A B B H H I= = ⇒ ′ ′ < ′ ′ < ′ ′ .

In this proposition, Ibn al-Haytham is investigating changes in certain
elements of a figure because of other elements: here angles with vertex E,
like angle BEH, changing because of angles with vertex D (the centre of the
circle), like angle BDH. Through these geometrical arguments, we are
looking at the increase and convexity of the angle AEB considered as a
function of the angle ADB.

Let us establish these two properties analytically:
Let ADBˆ  = θ ∈ [0, π] and AEBˆ  = ϕ. We have

tan
sin

cos
ϕ θ

θ
=

+
r

r a
,

where r is the radius of the circle ABC and a = DE < r = DA.
Differentiation gives,

1 02
2+( ) = +

+( )
>tan ϕ ϕ

θ
θ

θ
d

d
r

r a

r a

cos
cos

,

which shows the increase. Now
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1
22

2 2

2+ = + +
+( )

tan ϕ θ
θ

r ar a

r a

cos
cos

;

so we have
d

d
r

r a

r ar a

ϕ
θ

θ
θ

= +
+ +

cos

cos2 22

a decreasing function of cos θ. As cos θ is a decreasing function of θ, we
indeed conclude that ϕ is convex. Further we verify that

d

d

ar r a

r ar a

2

2

2 2

2 2 2
2

0
ϕ

θ
θ

θ
=

−( )
+ +( )

>
sin

cos

on ]0, π[.

This is the direction of the increase of the angles AEB, BEH, HEI.

Proposition 9. — We return to the circle with centre D and diameter AC,
and a point E on the segment DC; we draw the circle (E, EA). Three
general straight lines that pass through E cut the circle (D, DA) in the points
B, K, M and the circle (E, EA) in the points I, H, N; we have

BK

KM

IH

HN
> .

G C E
D

A

B

K

M

I

H

N

Fig. 2.20
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• If BK and KM  are commensurable, there exists an arc α such that

BK = pα and KM  = qα. Angles BEK and KEM are then dissected into p

angles and q angles respectively, all unequal and increasing in size as we
move away from B. The same will be true for angles IEH and HEN which
are the angles at the centre that intercept the arcs IH and HN. Each of the
arcs IH and HN is then dissected, to become the sum of unequal arcs

IH  = α i
i=1

p
∑ ,  HN  = α i

i p

p q

= +

+

∑
1

 where αi < αi+1.

So we have
pα1 < IH  < pαp and qαp+1 < HN  < qαp+q;

but αp < αp+1, hence

 qαp < HN  < qαp+q ,

and consequently
IH

HN
 < 

pα p

qα p

,

so
IH

HN
  < p

q
  or  IH

HN
 < BK

KM
.

• BK  and KM  incommensurable.
Ibn al-Haytham says that the proof is carried out as in Proposition 6 (see

p. 72). It is proved, by a reductio ad absurdum, that we cannot have either

IH

HN

BK

KM
=   or  IH

HN

BK

KM
> .

Notes:
1) Special case: If BK  = KM , we have seen that IH  < HN , so we have

BK

KM

IH

HN
> .

So, in all cases, we have
BK

KM

IH

HN
> .
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This proposition may also be expressed in the form: if ϕ0, ϕ1, ϕ2

correspond to three values θ0, θ1, θ2 of θ such that θ0 < θ1 < θ2, we have

ϕ ϕ
ϕ ϕ

θ θ
θ θ

1 0

2 1

1 0

2 1

−
−

< −
−

.

This states that ϕ is a convex function of θ. Ibn al-Haytham proves it by

first assuming that the ratio θ θ
θ θ

1 0

2 1

−
−

 is rational, a case in which he applies

Proposition 8; he then extends the inequality by considerations of continuity,
as we have seen him do earlier.

It is clear that Ibn al-Haytham is developing a method of analysis whose
stages can be expressed as follows:

We want to establish that a function ϕ θ= ( )f  increases and is convex.
Ibn al-Haytham begins by proving it increases, then proves the inequality:

f h f f f hθ θ θ θ+( ) − ( ) > ( ) − −( ),

which is a special case of convexity. In a second stage he deduces from this
that

f f

f f

θ θ
θ θ

θ θ
θ θ

2 1

1 0

2 1

1 0

( ) − ( )
( ) − ( ) > −

−

in the case where this ratio is rational; to do this, we divide the intervals
θ θ0 1,[ ] and θ θ1 2,[ ] into p and q intervals each equal to the same quantity α

and we proceed as for the previous stage. Extending this to the case in

which the ratio θ θ
θ θ

2 1

1 0

−
−

 is irrational is accomplished by reductio ad absurdum

in the classical manner of infinitesimal methods (using Archimedes’ axiom).
In modern terms, this is an extension by an argument of continuity.

2) We find these inequalities again in the astronomical part of Ibn al-
Haytham’s work. The circle (E, EA) is taken as the inclined orb of a planet
and the circle (D, DA) as its eccentric circle. The preceding inequalities are
obtained if we suppose the movement is from the apogee A towards the
perigee C.

If the displacement is from C towards A passing through the points P, Q
(to which points P1, Q1 correspond), we shall have GEP CDPˆ ˆ

1 > , hence
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CP

PQ

GP

PQ
< 1

1 1

,  
PQ

QM

PQ

Q M
< 1 1

1 1

or
CP

GP

PQ

PQ

QM

Q M1 1 1 1 1

< > .

Proposition 10. — Let there be a segment AC on the line of intersection of
two perpendicular planes, a semicircle ABC with diameter AC in one of the
planes and a segment of a circle AD that is less than a semicircle in the other
plane.

We consider a ratio k = HG

HP
> 1 (this ratio is defined by a point P on a

segment HG).
We want to find, on the arc ADC, a point D such that, if DE ⊥ AC in

the plane ADC and EB ⊥ AC in the plane ABC, we have

BD

DC
> GH

HP
> 1.

H

M

P

G

I
A

B

C

D

E
K

L N

Fig. 2.21

We define the points M  and I on the straight line HPG by making
HG

HP
= HP

HM
 (with M between H and P) and GI = HM (I beyond G); we then

have IM = GH.

Let K be a point on AC such that AK

KC
= IM

MH
= GH

MH
> 1, so AK > KC and

AK

KC
k= >2 1.

The semicircle with diameter CK in the plane ADC cuts the arc ADC at
the point D. The point E such that CEDˆ  = 1 right angle satisfies CE < CK.
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Let there be, on AC, points L and N defined by AL = KC and AN = CE, we
have NE > LK. But

LK

KC

AK AL

KC

AK CK

KC

GH MH

MH

GM

MH
= − = − = − = ,

so
NE

KC
> GM

MH
.

We have
NE

KC

NE EC

KC EC
= ⋅

⋅
;

but

NE · EC = AE · EC – AN · EC = EB2 – EC2,  KC · EC = DC2,

so
NE

KC
= EB2 − EC2

DC2
> GM

MH
.

But

EB2 – EC2 = EB2 – (CD2 – ED2) = EB2 + ED2 – CD2 = BD2 – CD2,

so
BD2 − CD2

CD2
> GM

MH
,

hence
BD2

CD2
> GH

MH
;

but
GH

MH
= GH2

MH.GH
= GH2

HP2
,

so we have
BD

CD
> GH

HP
> 1.
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Commentary: By hypothesis
HG

HP
= k = HP

HM
,

so
HG

HM
= k2 > 1.

A

B

C

D

E
K

Q

P

Fig. 2.22

We are given a semicircle of diameter AC in a plane P. On AC there

exists a unique point K such that KA

CK
= k2.

We draw in the plane Q, perpendicular to P, a semicircle of diameter
CK; to any point D on this semicircle there correspond a point E on AC
such that DE ⊥ AC and a point B on the semicircle in the plane P such that
BE ⊥ AC. Then we have

BE CE EA ED CE EK2 2= ⋅ = ⋅,    ;

from which it follows that

BD BE ED CE EA EK CE EK KA2 2 2 2= + = ⋅ +( ) = ⋅ +( ) .

Moreover
CD CE CK2 = ⋅ ,

so we have
BD2

CD2
=

2EK + KA( )
CK

.
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Assuming that CA is orientated from C to A, we have CK > 0, KA > 0
and KA CK> , CK CE> > 0, hence EK > 0. So we have

    
BD2

CD2
> KA

CK
 with 

KA

CK
= k2 ,

so
BD

CD
k> .

• Any point D taken on the semicircle of diameter CK thus provides a
solution to the problem, and to each point D there corresponds, in the plane
Q, an arc of the circle ADC that is less than a semicircle.

• If the arc less than a semicircle is given, we have on this arc a unique
point D that provides a solution to the problem, the point being constructed

in this way, that is, with KA

CK
k= 2.

But, as the condition for the problem is an inequality, all points D on a
certain arc of the circle ADC must be suitable. We can find that arc in the
following way:

In the plane of the circle ADC, we take coordinate axes CA and CT; the

coordinates of the centre Ω are ( d

2
, h) and those of A are (d, 0).

A

D

C

Ω

h

y

x

T

E

Fig. 2.23.1

If D = (x, y) is a point on the circle, we have

 x
d

y h
d

h−



 + −( ) = +

2 4

2
2

2
2 ,

or
x x d y y h−( ) + −( ) =2 0.
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Now BD 2 = BE 2 + ED 2 = x(d – x) + y2 and CD 2 = x2 + y2. The
condition for the problem can thus be written

y(y – 2h) + y2 > k2 (dx + 2hy),
or

k2dx < 2y2 – 2hy – 2k2hy;

which means that the point D must lie outside the parabola with equation

k2dx = 2y2 – 2h(1 + k2)y, which has axis y = h

2
 (k2 + 1) and whose vertex

has coordinates −
+( )

+( )










1

2 2
1

2 2 2

2
2

k h

k d

h
k, .

The point C, the origin of the coordinates, lies on the parabola, while the
point A = (d, 0) lies inside it; in fact the straight line with equation y = 0 cuts
the parabola at C, to the left of A. The parabola cuts the circular arc ADC in
a unique point D0 and the required point D must lie on the arc CD0. We find
D0 from an equation of degree 3.6

Let us consider the same problem with DECˆ  acute.
Let D be the point we obtain, and as in the previous case, we associate

with it points S and O such that DS ⊥ AC and OS ⊥ AC, so we have

DO

DC
> k .

Let E be a point on [CA] such that DECˆ  is acute ( DECˆ  < DSCˆ , hence
CE > CS) and let B be a point on the given semicircle such that EB ⊥ AC.

We want to prove that
BD

DC
> k .

6 x0 (x0 – d) = y0(y0 – 2h)  and  k2d · x0 = 2y0 [y0 – (1 + k2)h], hence

 x d

k d

h y

y k h
0

2
0

0
2

2

2 1

− = −
− +( ( ) )

  and  x d
y k h

y h k
0

0
2

0
2

2 2

2 1
=

−( ) −

− +( )( ) ;

then we have
k2d2 (y0(2 – k2) – 2h) = 4y0 (y0 – h(1 + k2))2.
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A

B

C

D

E
S

O

Fig. 2.23.2

Commentary:

Let us put CS  = x0, CE  = x, CA = d, SD = a, with x0 < d

2
 and d > x >

x0. We then have:

(1) OD2 = OS2 + SD2 = x0 (d – x0) + a2 = a2 + dx0 – x0
2

DE2 = DS2 + SE2 = a2 + (x – x0)
2, BE2 = x(d – x)

BD2 = DE2 + BE2 = a2 + (x – x0)
2 + x(d – x)

(2) BD2 = a2 + dx – x0 (2x – x0).

From (1) and (2)

BD2 > OD2 ⇔ d(x – x0) – 2x0 (x – x0) > 0
⇔ (d – 2x0) (x – x0) > 0.

This inequality is satisfied because x > x0 and d > 2x0. So we have
BD > OD, hence the conclusion

BD

CD
k> .

Note: We also have AD > BD, because we can write

AD2 = a2 + (d – x0)
2 = a2 + x0

2 + d(d – 2x0),

BD2 = a2 + x0
2 + x(d – 2x0),    d – 2x0 > 0,
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and we have x < d. So, when the point E describes [SA], x increases from x0

to d, the point B describes the arc OA and the length BD increases; we have
OD < BD < AD.

Ibn al-Haytham then considers arcs constructed on OD or BD, assuming
that each of these arcs is part of a circle equal to the circle ADC; he comes
back to the same result from considering the circle ADC and putting into it
two chords DO′ and DB′ such that DO′ = DO and DB′ = DB. We thus have

DC < DO′ < DB′ < DA,

hence
DC DO DB DA< ′ < ′ <

and

DC DO CD DA+ ′ < +  < 1
2

 circle

and in the same way

DC DB+ ′   < 1
2

 circle.

Hence, from the first proposition

DO

DC

DO

DC
k

′ > ′ > ,  DB

DC

DB

DC
k

′ > ′ > .

The conclusion remains the same if we consider arcs DO or DB that are
parts of a circle smaller than the circle ADC.

AC

D
O

B

B

D

R

R

ω ω′′

′

′

Fig. 2.24
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Let there be a chord BD and two circles (ω, R) and (ω′, R′) that pass
through B and D where R′ < R. The arc BD of the circle centre ω′ lies
outside the circle centre ω, so the length of the arc is greater than that of the
arc BD of the circle centre ω. So we have

DB

DC

DB

DC
k> > .

Note: In Proposition 10, the axis of the circle ABC is the perpendicular
bisector of AC in the plane ADC. The centre of the circle ADC lies on this
perpendicular bisector, so it is the centre of a sphere whose surface contains
the two circles ABC and ADC. The property established in Proposition 10 is
used several times in the part that deals with astronomy (see pp. 381, 393).

Propositions 11 and 12: These two propositions are concerned with a
property of points on a parallel on the celestial sphere. Let ABC be a
meridian circle, A and C the celestial poles, DNE a circle parallel to the
horizon and ED its diameter.

Proposition 11. — We suppose that A and C lie on the horizon (so the
place we are considering in this case is on the terrestrial equator). The circle
of the equator, which has centre G, cuts the meridian in B and GB cuts DE
in O. Three circles parallel to the equator with centres Q, S, F, respectively
cut the meridian in H, I, K and the horizontal circle (DNE) in L, M and P,
and their planes cut the straight line DE at the points X, J, U. We suppose
that DX < DJ < DO < DU < DE, thus

LH

HD
> MI

ID
> NB

BD
> PK

KD
.

The plane of the meridian (ABC) is perpendicular to the plane of the
equator and to the planes of the circles that are parallels. The inequalities DX
< DJ < DO imply OX > OJ, hence LX < MJ, because LX2 = LO2 – OX2 =
OD2 – OX2 and MJ2 = MO2 – OJ2 = OD2 – OJ2.

Moreover QX = SJ and QXL SJMˆ ˆ=  = 1 right angle, so XQL JSMˆ ˆ< . In

the same way we have JSM OGNˆ ˆ< . We have XQL HLXˆ ˆ= 2 , because, in

the circle with centre Q, XQLˆ  is an angle at the centre that intercepts the

arc LH and HLXˆ  is an angle at the circumference that intercepts an arc
equal to the arc LH (an arc symmetrical with LH with respect to QX). In the
same way we have JSM IMJˆ ˆ< 2  and OGN ONBˆ ˆ= 2 , hence
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HLXˆ  > IMJ ONBˆ ˆ<

and consequently
LHX MIJ NBOˆ ˆ ˆ> > .

Let the point R on the segment LX be such that XHRˆ  = MIJˆ ; triangles
HXR and IJM are right-angled and similar, so we have

RH

HX
= MI

IJ
.

But HL > HR, so
HL

HX
> MI

IJ
.

In the same way we can show that

MI

IJ
> NB

BO
.

A
FGSQ

C

D

L M N P

U EOJXU

H
I

B

K

D

R

′

′

′H

Fig. 2.25
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We have HDX IDJ BDOˆ ˆ ˆ> >  and consequently DHX DIJ DBOˆ ˆ ˆ< < .
Let the point U ′ on the straight line D X  be such that ′ =U HX DIJˆ ˆ

(HU′ || ID); we have
HX

H ′U
= IJ

ID
;

but HU′ > HD, so we have
HX

HD
> JI

ID
;

and we have seen that
HL

HX
> MI

IJ
,

so
HL

HD
> MI

ID
,

and in the same way we have
MI

ID
> NB

BD
.

For the circle (F, FK), we can show in the same way that KU < BO,
UP < NO, KP < BN; now KD > BD, so

NB

BD
> KP

KD
;

therefore
HL

HD
> MI

ID
> NB

BD
> KP

KD
.

We may note that HX

DH
HDX= sin ˆ , where the angle HDX , which

intercepts the arc HE, decreases as X moves along DE from D to E, with
limits of the angle θ between the tangent at D and DE when X is at D; and

zero when X is at E.
When X goes from D to O, LX increases; so angle LQX increases since

the distance QX = GO remains constant. Therefore HLXˆ = 1
2

LQXˆ  also

increases and the same is true of HX

HL
= sin HLXˆ . Thus
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HL

HD

HL

HX

HX

DH
= ⋅

decreases when DX increases from zero to DO.

Note: If DE coincides with AC, GO = 0 and angle HLX remains constant

and equal to π
4

, then HL

HX
 also remains constant.

When X goes from O to E, HL decreases while DH increases and the

ratio HL

DH
 consequently decreases.

Proposition 12. — We suppose that the pole A lies between the horizon
and the zenith. The circle (G, GB) is no longer the circle of the equator but,
as in Proposition 11, its plane passes through O, the midpoint of DE. In fact,
in this case, G is defined as the orthogonal projection of O, the midpoint of
DE, on the diameter AC and B is the point of the meridian on GO produ-
ced. There are three cases:

1) AC cuts DE beyond E, at the point Ω ;

2) AC cuts DE at the point E (Ω = E = A);

3) AC cuts DE between E and O, O being the midpoint of DE.

D

H

I
B K

X J O U E

L
M N

N

P

C

Q
S

G

F

A
Ω

′

z

Fig. 2.26
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In case 1, as before, we have the straight lines HQ, IS, BG and KF
perpendicular to AC, hence XQ > JS > OG > UF; and the straight lines LX,
MJ, NO, PU perpendicular to the meridian, so perpendicular to DE;

DXL DJM DON DUPˆ ˆ ˆ ˆ= = =  = 1 right angle;

LXH MJI NOB PUKˆ ˆ ˆ ˆ= = =  = 1 right angle.

Moreover, ON is a semi-diameter of the circle DLMNPE, so XL < MJ <
NO and NO > UP. We have XQ > JS and XL < MJ, so

XQ

XL
> JS

MJ
,

that is cotan LQXˆ  > cotan MSJˆ , so LQXˆ  < MSJˆ .
In the circle (Q, QH), the angle at the circumference HLX intercepts an

arc equal to the arc HL and the angle at the centre LQH intercepts the arc
HL, so

HLXˆ  = 1
2

LQHˆ ;

similarly

IMJˆ = 1
2

MSJˆ   and  ONBˆ  = 1
2

NGBˆ ,

so HLXˆ  < IMJˆ ; and similarly IMJˆ  < ONBˆ .
Then we have

 sin HLXˆ  = HX

HL
  and  sin IMJˆ  = IJ

IM
.

So we have
HL

HX
> IM

IJ
;

in the same way, we can prove that

IM

IJ
> BN

BO
.

The proof is completed as in Proposition 11. We have
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HX

HDX

DH

DXHsin ˆ sin ˆ=

with an angle DXH DOzˆ ˆ=  (where GOz is the vertical of the place) that is
independent of the position of X when X moves along DE; the angle HDX
intercepts the arc HE which decreases when DX increases, so its sine
decreases and the same is true for

 
HX

DH

HDX

AOz
= sin ˆ

sin ˆ .

So for the circles with centres Q, S and G we have the double inequality

HL

HD
> MI

ID
> NB

BD
.

For these three circles, the proof is the same in cases 1, 2 and 3, because
in every version of the figure we have

XQ > JS > OG and XL < JM < ON,

and consequently

LQXˆ  < MSJˆ  < NGOˆ  < 
π
2

,

hence we can conclude that

HLX IMJ BNOˆ ˆ ˆ< <  < 
π
4

.

Investigation of a circle such as (F, FK)
In case 1 (Fig. 2.26) or case 2 when E and A are the same point, we

have OG > UF and ON > UP; we can draw no conclusions about the ratios
OG

ON
 and UF

UP
. We can have

a) OG

ON
 < 

UF

UP
  ⇒ > ⇒ >OGN UFP ONB UPKˆ ˆ ˆ ˆ ;

b) OG

ON
 = UF

UP
 ⇒ <ONB UPKˆ ˆ ;

c) OG

ON
 > UF

UP
 ⇒ <ONB UPKˆ ˆ .
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In case 3, where Ω is between O and E, we can have:

• U between O and Ω  ; in this case, U lies between K and F and we

have KPUˆ  < π
4

; and there are three possibilities a, b, c.

• U at point Ω ; in this case, U = F = Ω and we have KPUˆ  = π
4

.

• U between Ω and E; in this case, F lies between K and U, thus we

have KPUˆ  > π
4

, so KPUˆ  > BNOˆ  (case c).

K

UF

P

F
U

K K

U

P F

P

Fig. 2.27

In cases a and b, KPUˆ  ≤ BNOˆ ; the circle (KP) is smaller than the circle
(BN), because both of them lie between the equator and the pole A, and the
circle (KP) is nearer the pole. So we have KP < BN.

Moreover, KD > BD, so
BN

BD
> PK

KD
.

In case c, we have KPUˆ  > BNOˆ  and we have PKU NBOˆ ˆ< .
We have a point N′ on ON such that OBN PKUˆ ˆ′ =  and triangles OBN′

and PKU are right-angled and similar; we have

KP

KU
= B ′N

BO
< BN

BO
.

Moreover
BO

BD
> UK

KD
,

so
NB

BD
> PK

KD
.



100 CHAPTER II

If a circle (K′P′) is nearer the pole A than the circle (KP), we have

KP

KD
> ′K ′P

′K D
.

So in all cases we have

LH

HD
> MI

ID
> BN

BD
> KP

KD
.

G

F

U=F
U EOD

B
K

A
Ω

K
K

U
F

C

Fig. 2.28

Commentary on Propositions 11 and 12:
Let us now give an analytical proof of Propositions 11 and 12 taken

together.
Let us consider a sphere with axis AC and centre K, and a small circle

DLE of diameter DE in the meridian plane ABC (Fig. 2.29.1); in the case of
Proposition 11, the diameter DE is parallel to the axis AC, and in the case of
Proposition 12 meets it in a point Ω. Let F be the midpoint of the arc DE
and O the midpoint of the straight line DE.

We suppose that the pole A lies between the horizon (a great circle
parallel to DLE) and the zenith (the pole F of the circle DLE). Let HLH′ be

a variable circle with axis AC; its diameter HH′, in the plane ABC, meets DE

in X; we want to establish that the ratio HL

HD
 decreases monotonically when

X moves along DE from D towards E, that is, when H moves along the arc
DE ′ where E ′ = E  if E  is above AC  and, if it is not, if E ′ is the point

symmetrical with E with respect to AC.
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Ω

C

Q
K

G

A

E = E

H’

O
Z

L

D
X

H

Y

B F

z

x

y

′

Fig. 2.29.1

Let us use α to denote the colatitude of F, the midpoint of the arc DE,

let α  = AKFˆ , and use β to denote the angle EKF, the difference of the

colatitudes of E and F. Let θ be the difference of the colatitude of F and

that of H: θ = HKFˆ , which varies from –β (when H is at D) to β if α ≥ β
or to 2α – β if α < β (when H is at E′ ). In fact, in the latter case, when X is

at E, HX the perpendicular to AK is E′E, so the point H is at E′ (see Fig.

2.29.2).

C

K

A

E = XD

Fz
x

′H = E

α
β

Ω

Fig. 2.29.2

We then have

θ β= ′( ) = ′( ) + ( ) + ( ) = ( ) +KE KF KE KA KA KE KE KF KA KE, , , , ,2 ;
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now KA KE KA KF KF KE, , ,( ) = ( ) + ( ) = −α β , so θ = 2α – β.

The equation of the diameter DE is:

(1) x cos α + z sin α = r cos β.

By hypothesis 0 < α, β ≤ π
2

, and x, the abscissa of the point X, is equal

to KQ = r cos(α – θ), like the abscissa of H, so its z coordinate is

z = r

sin
cos cos cos

α
β α α θ− −( )( ).

We have HL2 = HX · HH′ (circle HLH′) with

HH′ = 2r sin(α – θ),

HX r z= − − =sin( )α θ r

sin
sin sin cos cos cos

α
α α θ α α θ β−( ) + −( ) −( ).

(2) HX r r= − =

− +
cos cos

sin

sin sin

sin
θ β

α

β θ β θ

α
2 2 2 .

Further

(3) HD r= +
2

2
sin

β θ

since this chord subtends the angle HKD = β + θ at the centre. Thus

(4) HL

HD
r r

r

2

2 2 2
2 2 2 2

1

4
2

=

− +

⋅ −( ) ⋅ +

sin sin

sin
sin

sin

β θ β θ

α
α θ β θ

        =
−( ) −

+

sin sin

sin sin

α θ β θ

α β θ
2

2

.
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We have7 β α β θ β−( ) ≤ − ≤+

2
 and 0

2
≤ + ≤ ( )β θ α βinf , ; thus sin

β θ−
2

 is a

decreasing function of θ and sin
β θ+

2
 is an increasing function of θ.

The function sin(α – θ), where |α – β| ≤ α – θ ≤ α + β, increases of θ if

θ ≤ α – π
2

 and decreases if θ ≥ α – π
2

.

Let Y be the point where the axis Kz meets DE; if the point X lies

between Y and E, we have θ ≥ α – π
2

, so the ratio HL

HD

2

2  decreases. This

conclusion is sufficient if Y lies beyond D outside the sphere, that is, if

α + β ≤ π
2

.

If this is not so, that is, where α + β > π
2

, Y lies between D and E and

we need to give another proof for the case where X lies between D and Y.
From (2), HX increases for θ ≤ 0, that is, when X lies between D and the

point Z with the same abscissa (r cos α) as the zenith F (H at F).

We have
HL

HD

HH

HX

HX

HD

2

2

2

2= ′ ⋅ ,

where
HH

HX

r

r z

z

r z

′ = −( )
−( ) −

= +
−( ) −







2
2 1

sin
sin sin

α θ
α θ α θ

which decreases between D and Z, because z decreases and HX = r sin (α –

θ) – z increases.

Further

(5) HX

HD
=

−
sin

sin

β θ

α
2

which decreases from D to E when X moves along DE from D to E; thus
HL

HD

2

2  continues to decrease from D to Z when X moves along EZ from E to

Z. If Z lies beyond E outside the sphere, that is, if 2α ≤ β, this conclusion is

7 We use the notation x+ = sup(x, 0) the positive part of a number x.
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sufficient. If not, since α – π
2

 ≤ 0, Y is to the left of Z and the two proofs are

complementary; HL

HD
 decreases from D to E when X moves along DE from

D to E.

Notes:
1) Ibn al-Haytham is here undertaking an investigation of the variation

of a ratio in a case that is much more complicated than the ones he
considered earlier.

As we have shown above, he employs different arguments in two
intervals over which X varies: between O and E, then between D and O,
where O is the midpoint of DE. We may note that O, which has abscissa
r cos α cos β, always lies between Y and Z.

2) In expression (5) we have the angles β θ−
2

 = HDXˆ  and α  = HXDˆ ;

the first is the angle at the circumference which subtends the arc HE and the

second is constant. Ibn al-Haytham arrives at the same expression for HX

HD
by using the fact that the sines of the angles are proportional to the opposite
sides in triangle HDX.

3) Proposition 11 concerns the case in which α = π
2

; this simplifies the

calculations because sin α = 1 and cos α = 0, so that z = r cos β is constant

and HX = r (cos θ – cos β). In this case, the points Y, O and Z coincide.

4) Ibn al-Haytham interprets HL

HX
 as 1

sin ˆHLX
; so

HH

HX

HL

HX

′ =
2

2  = 
1

2sin ˆHLX
.

Now HLXˆ  = 1
2

LQXˆ  (angle in the circle HLH′); he finds the direction of

variation of HH

HX

′  from that of angle LQXˆ . Now LXQˆ  is a right angle, so

 tan LQXˆ  = 
LX

XQ
.

In the case considered in Proposition 11, XQ = r cos β is constant, so

LQXˆ  increases or decreases with LX. In the general case considered in
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Proposition 12, XQ = z always decreases and LX increases for X between D
and O.

5) If Ω  lies between O  and E , that is, if α  ≤ β , Ibn al-Haytham

distinguishes the case in which X lies between O and Ω from those in which

X lies between Ω and E. The use of analytical notation allows us to ignore

that distinction; we simply have z < 0 when X lies between Ω and E.

6) Let us calculate the limits of HL

HD
 when X is at D and at E. In expres-

sion (4) we can see that HL

HD

2

2  tends to infinity when X tends to D, and θ

becomes equal to –β.

If α ≥ β, for X at E we have θ = β, so HL

HD

2

2  = 0; if on the other hand

α < β, we have θ = 2α – β and HL

HD

2

2

2

2=
−( )sin

sin

β α
α

, or HL

HD
=

−( )sin

sin

β α
α

, a

finite limit.

7) We can also investigate the variation of HL

HD

2

2  by looking at the sign of

its derivative; we need only to look at the sign of the numerator of the
derivative of

sin sin

sin

α θ β θ

β θ

−( ) −

+
2

2

.

The value of this numerator is:

− −( ) − + − −( ) − + −

−( ) − −

cos sin sin sin cos sin

sin sin cos

α θ β θ β θ α θ β θ β θ

α θ β θ β θ
2 2

1
2 2 2

1
2 2 2

= − −( ) − −( ) + −( )[ ]1
2

cos cos cos cos sin sinα θ θ α θ β β α θ

= + −( ) − −( )( )1
2

cos cos cosα β θ α θ θ .

So we need to investigate the sign of cos cos cosα β θ α θ θ+ −( ) − −( ) ,
whose derivative is:
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(6) sin sin cos cos sinα β θ α θ θ α θ θ+ −( ) − −( ) + −( ) =

sin sin sin cosα β θ θ α β θ α β θ+ −( ) + −( ) = + + −



2 2

2
3

2

As we know that sin
β θ+ ≥

2
0, it is enough to determine the sign of

cos α β θ+ −





3
2

. We can check that, in all cases, 0
3

2
3
2

≤ + − ≤α β θ π ; so the

cosine is positive if α β θ π+ − ≤3
2 2

 and negative if α β θ π+ − >3
2 2

. Thus the

derivative (6) is positive if θ α β π≥ + −2
3

 and negative otherwise.

If α β π+ <2
2

, we always have

θ β α β π≥ − > + −2
3

,

so cos cos cosα β θ α θ θ+ −( ) − −( )  increases monotonically up to

cos cos cos sin sinα α β β α β β− −( ) = − −( )
if α > β; or

cos cos cos

sin cos sin sin

2 2

2

β α α β α β

β α β α α β

−( ) − −( ) −( ) =

− −( ) −( ) +( )

if α < β; in both cases, this quantity is negative, so

cos cos cosα β θ α θ θ+ −( ) − −( )

always remains negative. Thus, in this case, HL

HD

2

2  decreases.

If β α π− >
4

, we have

θ α β α β π≤ − < + −
2

2
3

,

so cos cos cosα β θ α θ θ+ −( ) − −( )  decreases monotonically from

cos cos cos sin sinα β α β β β α β+( ) − +( ) = − +( ) <2 0.
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We can see that, in this case also, HL

HD

2

2  decreases monotonically.

Finally, if α β π≥ −
4

 and α π β≥ −
2

2 , the expression

cos cos cosα β θ α θ θ+ −( ) − −( )

goes through a minimum for θ α β π= + −2
3

. Its extreme values are:

 cos cos cos sin sinα β α β β β α β+( ) − +( ) = − +( ) ≤2 0
and

cos cos cos sin sinα α β β β α β− −( ) = − −( ) ≤ 0

if α ≥ β, because α – 2β ≥ – α ; respectively

cos cos cos

sin sin sin cos

2 2

0

β α β α α β

β α β α β α

−( ) − −( ) −( ) =

− −( ) + −( )( ) ≤
if β ≥ α.

In all cases HL

HD

2

2  decreases when X moves along DE from D to E.

Proposition 13. — Let (ABC) be the circle of the horizon, D its pole,
(ADC) the meridian and (EH) a circle parallel to the horizon. Two circles
parallel to the equator cut the meridian circle in N and L and the circle (EH)
in M and G. If the points on the meridian circle are in the order C, E, N, L,
D, then the arc LG is greater than the arc similar to the arc NM.

a) The sphere is at right angles to the horizon (and is called ‘the right
sphere’). That is, the equator passes through D and has A and C as its poles.
The plane of the equator is a plane of symmetry for all circles with diameter
AC and for the horizontal circle EGH, which it cuts in X, the midpoint of
the arc EH.

The circle (CMA) cuts the circle (EGH) again in a point K and cuts the
arc LG in the point S between G and L. The arc cut off on LG is similar to
the arc MN. So we have MN  similar to LS and consequently LG is greater
than the arc similar to MN.
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Fig. 2.30

b) The sphere is oblique. Let O be its visible pole; O can lie between A
and H, O can be at H or O can lie between H and D.

α) First, let O lie between A and H. We draw through O a great circle to
touch (EGH) at K and to cut the horizon at B. We have OC > OB. This is so
because, since O lies on the meridian circle (which is perpendicular to the
horizon), the point O′, the projection of O on the plane of the horizon lies on
AC and is closer to A than to C; it follows that all the segments O′B joining
O′ to a point B on the horizon circle are smaller than or equal to O′C and
similarly for OB and OC.

So ODC OKB>  (arcs of great circles).

E

N
L D

I

H

OM

S

G

K

C
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A

<K >

<ω>

′

′

′O

<D >

Fig. 2.31
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We consider the great circle (DK); it is orthogonal to the circle (ABC)
and to the circle (OKB), so its pole is the point B, and the arc BK is a
quadrant of a great circle. But the arc DC is also a quadrant of a great circle,
so OD OK> . We draw through K an arc of a circle parallel to the equator;
let it be the arc KI. We have OK OI= , so I lies between D and H. The two
great circles (OM) and (OG) cut the arc IK in two distinct points.

The point M lies between G and E; so the plane of the great circle OM
lies between the plane of the great circle OG and that of the meridian.

Commentary:
We can regard this proposition as a lemma. From the information about

the positions of the points C, E, N, L, D given in the statement, the result is
obvious:

For all cases, if O is the pole of the equator (O = A or O ≠ A), the plane
of the great circle (OM) lies between the plane of the great circle (OG) and
the plane of the meridian; so the arc OM cuts the arc LG in S, the arcs LS
and MN are similar; consequently LG is greater than the arc similar to MN .

                Fig. 2.32         Fig. 2.33
β) The pole is at the point H (H = 0)          γ) The pole O lies between H and D

In cases β and γ, the circle (OM) lies between the meridian and the circle

(OG).

Proposition 14. — Let there be two circles parallel to the equator cutting
the meridian circle in D and E respectively, the circle ABC parallel to the
horizon in I and C, and a circle through the axis of the world in I and K.

If BE < BD ≤ 1
2

ADB , then IE

EB

CD

DB

CK

KI
> > .
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If we suppose the plane ABC is above that of the horizon and if the
visible pole of the circle of the equator is called Π, we may have Π on the
horizon, Π between the horizon and the point A, Π at the point A, or Π
between A and the zenith.

In the special case where ABC is the horizon and the pole Π is at the
point A, the parts of the circles EI and CD that are above the horizon are
semicircles (the case of the right sphere).

A) Circle EI smaller than the circle CDL.

B

E
S

H

I

D

L

N

P

K

U

C

M

< M  >

G
Q

O

A

Π

Π′

equator

′

F

Fig. 2.34: The visible pole Π is above the horizon, BD ≤ 
1
2

ADB .

D lies on the equator or alternatively E and D lie between the equator
and the point B. The point O, the centre of circle CKD, is alternatively
either on the horizon or above the horizon. The centre of the circle EI is
above the horizon.

We have DG ⊥ CG, EH ⊥ HI. We draw KM ⊥ CG and MN || DK, thus

we have KM = DN and MN = DK.
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Fig. 2.35: Special case: right sphere.

The pole Π is on the horizon and BD ≤ 
1
2

ADB

The centres of all the parallel circles thus lie on the horizon.

Z
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Π
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′G

Fig. 2.36: The pole Π is above the horizon, BD ≤ 
1
2

ADB .

E and D lie on opposite sides of the equator.
The centre of the circle EI is above the horizon.
The centre of the circle CKD is above the horizon.
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The arcs EI and DK are similar, but the circle CDL is greater than the
circle EI, so DK > EI and MN > EI. Triangles EHI and NGM are similar, so
NG > EH.

We draw EP || BG, so PG = EH; so N lies between P and D, and P lies
between N and G. The straight line DB cuts EP in S, we have

DSP DBHˆ ˆ=  < 1 right angle.
So DSEˆ  is obtuse and DE > DS.

– If the circle CDL is the circle of the equator or if it is closer to the
hidden pole than the equator is, the arc CDL is less than a semicircle.

– If the circle CKD lies between the equator and the visible pole, it is
closer to the equator than the circle EI is.

• If the sphere is right, the part of the circle CDL above the horizon is
equal to a semicircle, so the arc CDL and a fortiori the arc KDL are less
than a semicircle.

• If the sphere is oblique, the part of the circle CDL that is above the
horizon is greater than a semicircle.

If we denote by X the arc of the circle DKC that is above the plane
ABC, the arc X is greater than the arc similar to 2 EI ; in fact, the arc is
greater than the part of the circle DKC above the horizon and the part of
the circle EI above the plane ABC is smaller than the part of that circle
above the horizon; so we have X > 2 DK .

We have seen that X > 2 DK , so

X CK DK CK+ > +2

X CK DK CD+ > + ;

now CD DL= , so

X CK LK+ >

But X CK LK+ +  is the complete circle, so LK  is smaller than a
semicircle.
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So, in all forms of the figure, we have KCL  < 1 right angle and
KM ⊥ CG gives a point M between C and G. The straight line DC cuts KM

in U. We draw through K the straight line KM′ || DC, we have MM′ > MC,

so KM′ > KC, hence
K ′M

KM
> KC

KM
,

so
CU

UM
> KC

KM
;

but
CU

UM
= CD

DG
,

so

(α) CD

DG
> KC

KM
.

L

D

K

M
C M

U

N

Z

G
′

        Fig. 2.37

Moreover, DE > DS and ND < PD, so

PD

DS
> ND

DE
.

But
PD

DS
= DG

DB
  and  ND = MK,
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(β) DG

DB
> MK

DE
.

From (α) and (β), we obtain
CD

DB
> KC

DE

or again by permutation
CD

CK
> DB

DE
 or CD

CK
> DB

KI
      (because DE = KI).

• If the sphere is right, we have DG  ⊥  AB ; but, by hypothesis,

DB ≤ 1
2

ADB; consequently AG ≥ GB, so AG ≥ 1
2

AB. But GC ≤ 1
2

AB, so

AG  ≥ GC , hence AD  ≥ DC ; from which we obtain DAGˆ  ≤ DCGˆ ,
hence DB is less than or equal to the arc similar to DL. Now DL = DKC,
so the arc similar to DKC is at least equal to DB.

• If the sphere is oblique, if DG′ ⊥ AB, then G′ lies between G and B

and G′A ≥ 1
2

AB:

– If DB = 1
2

ADB , then G′A = 1
2

AB and GA < 1
2

AB, so GC < 1
2

AB

and GD > G′D. Now we have

 tan DCGˆ  = DG

GC
  and  tan DABˆ  = ′

′
G D

G A
,

hence
DCGˆ  > DABˆ ,

so DL is greater than or equal to the arc similar to DB or DKC is greater
than or equal to the arc similar to DB.

– If DB < 1
2

ADB , then G′A > 1
2

AB; but GC ≤ 1
2

AB, so G′A > GC and

G′D < GD, we also have DCGˆ  > DABˆ , hence DKC is greater than or

equal to the arc similar to DB.
So in all cases DKC is greater than or equal to the arc similar to DB.
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We have proved that CD

CK
> BD

DE
; so from Proposition 4 (for two different

circles) we have:
CKD

CK

BED

DE
> .

By permutation, we have

CKD

BED

CK

DE

CK

KI
> = ;

from which we obtain8

CKD CK

BED DE

KD

EB

CKD

BED

CK

DE

−
−

= > > .

If we take into account that KD is similar to EI  and DE = KI , then

EI

EB

CD

BD

CK

KI
> > .

Here Ibn al-Haytham replaces KD by the similar arc EI ; now, in the
case under consideration, we have EI  <  KD since we have assumed that
the radius of the circle CKD is greater than that of the circle EI. Since the
arcs EI and KD subtend the same angle in the different circles, it seems
possible that Ibn al-Haytham was thinking in terms of angles while
expressing the argument in terms of arcs, hence the confusion. This method
cannot lead to a conclusion. We are left with the inequality

CD

BD

CK

KI
> .

Ibn al-Haytham points out that the proof is the same if the circle ABC is
the circle of the horizon.

8  
a

b
> c

d
⇔ bc < ad ⇔ ab − bc > ab − ad ⇔ b(a − c) > a(b − d) , so 

a

b
> c

d
 and

b > d, a > c ⇒  
a − c

b − d
> a

b
> c

d
.
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A

C
I

B
H G

E

D

Fig. 2.38

In the special case where the sphere is right, the poles are the points A
and B.

A general great circle passing through A and B cuts two circles parallel
to the equator and does not cut the circle ABC. The latter circle passes
through the points I and C and the point K is then identical with the point C.
The arcs IE and CD are similar and by hypothesis we have EB < DB; so
we have

IE

EB

CD

BD
> .

In fact
EI

CD

EH

DG

BE

BD

BE

BD
= = >sin

sin
.

B) We suppose that the circle (IE) is equal to the circle (CD).
The two circles are thus symmetrical with respect to the plane of the

equator.
If, as before, we let X denote the arc of the circle (DC) that is below the

plane ABC, we have X > arc similar to 2 EI , so X  > 2 DK , whether the
sphere is right or oblique. So we have

X CK LK+ > ;

and consequently KCGˆ  < 1 right angle and M lies between C and G.
The arcs EI and DK are equal, so EI = DK and EI || DK; we also have

MN = EI and MN || EI. From this we obtain NG = EH. So a line through E
parallel to AB passes through N, P = N, PD = KM.

We have DE > DS, because angle DSE is obtuse, so

PD

DS
> PD

DE
.
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N=P
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SE
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B
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Fig. 2.39

But
PD

DS
= DG

DB
, PD

DE
= KM

KI
     (because DE = KI);

so we have
DG

DB
> KM

KI
.

But further

        
CD

DG
> CK

KM
 DCG KCMˆ ˆ<( ),

so we have
CD

DB
> CK

KI
.

The proof is completed as before and we have

EI

EB

CD

BD

CK

KI
> > .

Ibn al-Haytham considers two special cases:
• If (ABC) is a horizon and if the sphere is oblique, and we let D ′

designate the point on the circle CDL diametrically opposite D, then

CD IE KD′ = = .
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L

G

P

D

K

C

D′

Fig. 2.40

So KC || DD′, KCLˆ  = 1 right angle; and LD C CK LDK′ + = , we then have

C = M, so KC = PD and

KC

KI
= PD

KI
= PD

DE
.

But
PD

DE
< DG

DB
< CD

DB
,

so
CD

DB
> KC

KI
,

and we complete the proof as before.

• If (ABC) is a horizon and if the sphere is right, we have IE DC=  and
EB DB< , so

EI

EB

DC

DB
> .

In this case the circle ΠIΠ′ passes through C (K = C).

C) We suppose that the circle (EI) is greater than the circle (CD), and
the sphere is inclined towards B. This is possible in three cases:

• The circle (EI) is the circle of the equator.
• The two circles lie on opposite sides of the equator with (EI) closer to

the equator than (CD).
• The two circles lie between the equator and the visible pole.
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In all three cases we assume as before that DB ≤ 1
2

ADB.

The straight line DB cuts EH in J; we suppose EH

HJ
≥ d1

d2

, d1 and d2 being

the diameters of the circles (EI) and (CD) respectively (d1 > d2).

• If LDC  ≤ 1
2

 circle, then LDK  < 1
2

 circle and we arrive at the

conclusion
EI

EB

CD

BD

CK

KI
> > .

B

E

D

A

I
C

L

H
K

M

G

U

N

P

J

Fig. 2.41

In fact we are returning to the conditions on page 113: KCLˆ  acute, M
between C and G, U between K and M; we have

CU

UM
> CK

KM

with CU

UM
= CD

DG
 and KM = ND, hence

CD

DG
> CK

KM
= CK

ND
.

• If LDC > 1
2

 circle, if X designates the part of the circle below ABC,

X < 1
2

 circle, if we draw CS || DG, we have DS = 1
2

X (it is symmetrical

with the half of arc X with respect to the centre of the circle CDL).
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We suppose IE  ≤ arc similar to X, that is, IE ≤ arc similar to 2 DS .9

Now IE and DK  are similar arcs. So we suppose DK  ≤ 2 DS. There
are three possible cases:

EI  < arc similar to DS   ⇒ DK  < DS  (a)

EI  = arc similar to DS   ⇒ DK  = DS  (b)

EI  > arc similar to DS   ⇒ DK  > DS   (c)

a) DK  < DS , so K lies between S and D. KCGˆ  is acute and M lies
between G and C. We have

CD

DG
> CK

KM
 and KM = ND,

hence
CD

DG
> CK

ND
.

9 See Supplementary note [4].
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S

C LGM

D

K

N

Fig. 2.43

b) DK  = DS , K = S, M = C, ND = KM = CK,

CK

KM
= CK

ND
 = 1, CD

DG
> CK

KM
 or CD

DG
> CK

ND
.

LG

D

N

K=S

C=M

Fig. 2.44

c) DK  > DS , K lies between S and C. But EI  is similar to the arc
DK  ≤ 2 DS , so SK SD≤ , SCK SCDˆ ˆ≤ , hence SCK CDGˆ ˆ≤ .

We draw KM ⊥ CG, then M lies beyond C; we have MG > CG and

K M  < G D . We draw M N  || K D , we have K M  = N D  and MKCˆ =
KCS CDGˆ ˆ≤ .

If KCS CDGˆ ˆ= , then CD

DG
= CK

KM
.

If KCS CDGˆ ˆ< , then CD

DG
> CK

KM
.
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Fig. 2.45

So we have
CD

DG
≥ CK

ND
.

Conclusion in all three cases a, b, c: we have

CK = ND  or  CD

DG
≥ CK

ND
.

Arcs DK and EI are similar and the circle EI is greater than the circle
DK, so DK < EI and

EI

DK
= d1

d2

.

We have MN = DK, and consequently MN < EI. Triangles MNG and
EIH are similar, so NG < EH.

Moreover EP  || AB , hence PG  = EH , so we have NG  < PG  and
consequently ND > PD. But

EI

DK
= EI

MN
= EH

NG
= d1

d2

;

now by hypothesis EH

HJ
≥ d1

d2

,  so

EH

HJ

EH

NG
≥ ,

hence HJ ≤ NG.
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α) If HJ = NG, then NJ || GH and ND

DJ
= DG

DB
.

In that case
EH

HJ
= d1

d2

,

hence
EH

EJ
= d1

d1 − d2

.

β) If NG  > HJ , we draw NF  || GH ; we have NG  = HF  > HJ; the

straight line NF cuts DJ in the point X between J and D. We have

ND

DX

GD

DB
=   and EH

HF

d

d
= 1

2
  and EH

EF

d

d d
=

−
1

1 2
.

We draw DW ⊥ EH, then d1 – d2 = 2EW (because DW is parallel to the

line through the poles, that is the axis of the circles EI and DC).
In case α, we have EJ < 2EW (because EH < d1).

• If EH  = 1
2

d1, then EJ = EW , J = W , then we have DJ ⊥  EH , so

DJ < DE.

• If EH < 1
2

d1, then EJ < EW, so DJEˆ  is obtuse and we again have

DJ < DE.

• If E H  > 1
2

d1, then EJ  > E W , DJEˆ  is acute; but EJ  < 2EW , so

WJ < WE and DJ < DE, so in all cases DJ < DE.
Then we have

ND

DJ
> ND

DE
;

but
ND

DJ
= DG

DB
,

so
GD

DB
> ND

DE
.
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In case β, EH < d1 implies EF < 2EW, so for EF (as for EJ in case α)

there are three possibilities:

EF = EW,  EF < EW,  2EW > EF > EW;

and in all three cases we can show that DE > DF; but DXFˆ  is obtuse, so
DF > DX, so we have DE > DX and consequently

ND

DX

ND

DE
> .

Now
ND

DX

GD

DB
= ,

so we have
GD

DB

ND

DE
> .

So in part C, we have proved that, if d1 > d2 and EH

HJ
≥ d1

d2

, then

CK = ND or CK

ND
≤ CD

DG
 and ND

DE
< GD

DB
.

But DE = KI, so

• If CK = ND, we have ND

DE
= CK

KI
, hence GD

DB
> CK

KI
; now CD > DG, so

we have CD

DB
> CK

KI
.

• If CK

ND
≤ CD

DG
 and ND

DE
< GD

DB
, then CK

DE
< CD

DB
, so CD

DB
> CK

KI
.

So in all cases we have obtained

CD

CK
> DB

DE
,

hence
CD

CK

DB

DE
>   or  CD

DB

CK

DE
> ;
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but DE KI= , hence
CD

DB

CK

KI
> ;

therefore
CD CK

BD DE

CD

DB

−
−

> ,
10

or
KD

EB

CD

DB
> ;

but KD EI< , hence
EI

EB

CD

DB

CK

KI
> > .

Commentary:
In this proposition Ibn al-Haytham also examines the way a ratio varies

in more difficult cases. He is concerned to prove

a) that the ratio EI

EB
 decreases when E moves from B towards F (the

midpoint of the arc AB) along the meridian circle AEB;

B

E

I

D F

K

C

G A

V
W

E

Π

Ω′

ω

H Ω

Π′

′

Fig. 2.46

10 See above, footnote 8.
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b) that DC

DB

CK

KI
≥ , where K is the point of intersection of the circle DKC

(like EI parallel to the equator) and the meridian circle ΠKI that passes

through I (Fig. 2.46).
Putting EVIˆ  = ψ  and E Fω̂  = θ (measured in the opposite sense to α

and β), we have Πω̂E  = α – θ, hence

(1) cos
sin

cos cos cos
sin sin

ψ
α θ

β α α θ
α α θ

= =
−( )

= − −( )
−( )

VH

EV

z

r

where z  is the height of H  (α  the colatitude of F , β  = A Fω̂ , see

commentary on Propositions 11 and 12).

If α π=
2

, cos
cos
cos

ψ β
θ

= ;  if β π=
2

, cosψ
α α θ

= −
−( )

1
tan  tan

.

We have –β ≤ θ ≤ inf (β, 2α – β), or | α – β| ≤ α – θ ≤ α + β, so there

exists on the sphere of unit radius a triangle with sides α, β and α – θ;

equation (1) means that ψ is the angle opposite β in the triangle ABΓ (see

Fig. 2.47).

Β

α α−θ

Γ
Αβ

ψ

  Fig. 2.47

Since EI  = r ψ sin (α – θ) and EB = r (β + θ), we have

(2) EI

EB
 = ψ

β θ
α θ ξ

+
−( ) =sin .

Moreover, if Ψ = DWCˆ  and Θ = D Fω̂ , in the same way we have
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DC  = r Ψ sin (α – Θ), DK  = r ψ sin (α – Θ),

hence
CK  = r (Ψ – ψ ) sin (α – Θ); KI  = DE = r (Θ – θ),

so that
CK

KI
 = Ψ

Θ
Θ−

−
−( )ψ

θ
αsin  and DC

DB
 = Ψ

Θ
Θ

β
α

+
−( )sin .

So inequality b) can be written

 
Ψ

Θ
Ψ
Θβ

ψ
θ+

≥ −
−

,

which is equivalent to

 
Ψ

Θβ
ψ

β θ+
≤

+
,

because a

b

a c

b d
≥ −

−
 can be written ab – ad ≥ ba – bc, or bc ≥ ad or again

a

b

c

d
≤ . If we put

(3) η ψ
β θ

=
+

where ψ is defined by equation (1), then the statement b) means that η is a
decreasing function of θ.

Notes:
1) Ibn al-Haytham considers ratios of arcs of circles (possibly with

different radii) rather than ratios of angles. So he cannot formulate b) in
terms of the decrease of η. Using his notation, the transformation that is
carried out leads to

DC

DB

DK

BE
≤ .

2) We have ξ η α θ= −( )sin ; if α β π+ ≤
2

, sin (α – θ) is a decreasing

function of θ, so a) follows from b). However, if α β π+ >
2

, sin (α  – θ)
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increases for − ≤ ≤ −β θ α π
2

, then decreases for α π θ β α β− ≤ ≤ −( )
2

2inf ,  ;

then b) follows from a) in the first interval and a) follows from b) in the
second.

First part: investigation of angle ψ
Let us consider a fixed arc BΓ = α on the unit sphere; A, the third

vertex of the triangle ABΓ, is the point of intersection of the circle with
centre Γ and radius β and the circle with centre B and radius α – θ, which
varies within the interval [|α – β|, α + β]. We need to distinguish two cases,
according to whether α ≥ β or α < β; in the first case, B lies outside the
circle γ with centre Γ and radius β (or on the circle if α = β), whereas in the
second case B lies inside the circle.

1) For α ≥ β: there exists a great circle through B and touching the

circle γ at a point Am. When θ increases from –β to β, α – θ decreases from

α + β to α – β and the angle ψ = ΓΒΑˆ  increases from 0 to ψm = ΓΒΑˆ
m

(between 0 and π
2

), then decreases from ψm to 0. Since ΒΑ Γˆ
m = π

2
, we

have, from spherical trigonometry: sin
sin sin

ψ
β α
m = 1 , or sin

sin
sin

ψ β
αm =  (see Fig.

2.48) and this value of ψ is reached when cos
cos
cos

cosα θ α
β

µ−( ) = = , or θ  =

α – µ (0 ≤ µ < α). If α = β, µ = 0 and ψ π
m =

2
; otherwise, α – µ < β and

ψ π
m <

2
.

Γ

Β

Α

α
α−θ

α−µ

β

ψ

m

m

A

Fig. 2.48
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For a given value of ψ ∈ [0, ψm[, there are two possible values θ+(ψ)

and θ–(ψ), with θ–(ψ) < α – µ < θ+(ψ).

2) For α < β. When θ increases from –β to 2α – β, α – θ decreases

from α + β to β – α and ψ increases from 0 to π.

For a given value of ψ ∈ [0, π], only one value θ–(ψ) ∈ [–β, 2α – β] is

possible, because α – θ ≥ 0 (see Fig. 2.49).

Α

Β

Γ

α

β

α−θ

Fig. 2.49

Notes:
1. The abscissa of Ω  measured along BA  from its midpoint is

r cos β tan α; the abscissa is greater than 1
2

BA = r sin α in the first case (α ≥

β), which means that Ω lies outside the sphere. r

sin
cos cos cos

α
α θ α β−( ) −( ),

the abscissa of H, becomes r sin
cos

2 β
α βtan  

 when θ = α – µ; the corresponding

position of H, say Ω′, is thus the harmonic conjugate of Ω with respect to A

and B (Fig. 2.46).

2. In the second case (α < β), ψ passes through the value π
2

 when

θ = α – µ′, where cos
cos
cos

′ =µ β
α

, that is, when H is at Ω; we have µ′ ≤ α if

cos β ≥ cos2α, that is, if sin sinα β≥ 2
2

.
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For what follows, we need to investigate the convexity of ψ  as a

function of θ. Differentiating (1), we find

(4) ′ = − −( )
−( )

ψ ψ α β α θ
α α θ

sin
cos cos cos

sin sin2 ,

where ′ =ψ ψ
θ

d

d
.

Notes:

1. If α = β (Ω at A), we can simplify (4) by 2
2

2sin
α θ−  and we then

obtain ′ = −ψ ψ
α α θsin

cos

1

2
2

2tan  
.

2. For θ = –β, ψ = 0 and ′ =
+( )ψ ψ β

α α β
sin

sin
sin sin

, hence ψ′ = +∞. For

θ = inf(β, 2α – β), α ≠ β, we have ψ = 0 or π and ′ =
−( )ψ ψ β

α β α
sin

sin
sin sin

,

hence ψ′ = sgn(β – α) · ∞. For α = β and θ = α, ψ = π
2

 and ′ =ψ
α

1
2tan

. If

θ = –β + u, ψ β
α α β

2 2≈
+( )

u sin
sin sin

 when u tends to 0. In the same way, if

θ = inf(β, 2α – β) – u (α ≠ β) and ψ = v, respectively π – v (depending on

whether α > β or α < β), we find that v
u2 2≈

−
sin

sin sin
β

α α β
.

3. For θ = α – µ′, we find that ′ =ψ ψ
α

sin
1

tan
.

By differentiating (4), we obtain

(5) ′′ + ′ =
−( ) − + −( )( )

−( )
ψ ψ ψ ψ

α α θ β α θ

α α θ
sin cos

cos cos cos cos

sin sin
2

2

3

2 1
.

Let us put A = cos α, B = cos β and X = cos (α – θ); we have:

(1′) cos
sin sin

ψ
α α θ

= −
−( )

B AX
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(4′) ′ = −
−( )

ψ ψ
α α θ

sin
sin sin

A BX
2

(5′) ′′ + ′( ) −( ) = − +( )ψ ψ ψ ψ α α θsin cos sin sin2 3 22 1AX B X .

From (1′) we get

cos

sin
sin sin

ψ
ψ

α α θ2 2 2 21 1
= −

−( ) −( ) − −( )
−( )B AX

A X B AX

         = −
− − − +

−( )B AX

A B X ABX1 22 2 2 sin sinα α θ

and (4′) then gives

′ −( ) = −( ) −( )
− − − +

ψ ψ α α θ2 3
2

2 2 21 2
cos sin sin

A BX B AX

A B X ABX
.

Finally

(6) ′′ −( ) =ψ ψ α α θsin sin sin3

2 1
1 2

2
2

2 2 2AX B X
A BX B AX

A B X ABX

P X

Q X
− +( ) − −( ) −( )

− − − +
= ( )

( )

with

(6′) P X BX A B X A BX A A B X B B( ) = − +( ) + − + −( ) + −4 2 3 2 2 2 2 32 3 2 2

and
Q X A B X ABX( ) = − − − + ≥1 2 02 2 2 .

The sign of ψ″ is that of P(X), which we shall examine for cases where

cos(α + β) ≤ X ≤ cos (α – β). We have

P cos cos cos cos cos cosα β β α β α β α β±( )( ) = ±( ) − ±( ) −4 2 3

2 33 2 2cos cos cos cos cosα α β α β α β±( ) + ±( ) +
2 2 3 2cos sin cos cos cos cos sinα β α β α α β β β±( ) − ±( ) − =
− ±( )sin sin sin2 3β α α β ;
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thus P(cos(α + β)) < 0 and P(cos(α – β)) has the sign of β – α (zero if

α = β).

Calculation gives us

′ = − +( ) + − + −( )P X BX A B X A BX A A B( ) 4 3 2 6 2 23 2 2 2 2 2

and
′′ = − +( ) +( ) = −( ) −( )P X BX A B X A B X AB BX A( ) 6 2 2 6 22 2 2 ;

′ ±( )( ) = ±( ) − ±( ) −P cos cos cos cos cos cosα β β α β α β α β4 33 2 2

6 6 22 2 2 3cos cos cos cos cos cos sin cosα α β α β α β α β α±( ) + ±( ) + − =

  

5
2

2
3
5

2sin sin sin sinβ α β α β β±( ) ±( )



m .

Thus P′(cos(α + β)) > 0 is equivalent to sin(2α + β) > 3
5

sin β. If α > β,

P′(cos(α – β)) > 0 and if α = β, P′(1) = 0; if α < β, P′(cos(α – β)) > 0 is

equivalent to sin(β – 2α) > 3
5

 sin β.

Note: sin(β + 2α) – sin(β – 2α) = 2cosβ sin 2α ≥ 0, so sin(β – 2α) >
3
5

 sin β implies sin(β + 2α) > 3
5

 sin β.

The second derivative P″(X) is negative for AB
X

A

B2
≤ ≤ , positive

elsewhere. We have

′

 = − + − − +P

AB A B A B
A B AB A A

2 2
3

4
3
2

2 2
3 4 3 4

3 2 2 3

                  = −( ) + −( ) −( )( ) >A
A B B A B

4
2 4 2 1 02 2 2 2 2

and

′

 = − − + − − + = −( ) −( )P

A

B

A

B
A

A

B
A AB A A

A

B
B B A

4
3

6
6 2 2

2
1

3

2
3

3

2
3 2 3

2
2 2 2 ,

with the sign of α – β (zero if α = β). We may note that
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AB

2
1
2

= < −( )cos cos cosα β α β  and A

B
= > +( )cos

cos
cos

α
β

α β

since cosα – cosβ cos(α + β) = sinα sin(α + β) > 0.

The inequality

AB

2
≥ +( )cos α β  (respectively A

B
≤ −( )cos α β )

can be written
cosα cosβ ≥ 2cos(α + β),

or 3cos(α + β) ≤ cos(α – β) (respectively cosα ≤ cosβ cos(α – β)), or

sinβ sin(α – β) ≥ 0 where again α ≥ β.

N o t e : If α  = π
2

, AB A

B2
0= =  and elsewhere P ″ (X ) ≥ 0. If α  = β ,

A

B
= = −( )1 cos α β  and AB

2
2≥ +( ) =cos cosα β α  is equivalent to cos2

1
3

α ≤ , or

α ≥ 0.615479709 (a little less than π
5

). If β π=
2

, AB

2
0=  and A

B
= +∞ .

There are four cases:
1) α ≥ β and 3cos(α + β) ≤ cos(α – β); then

cos cosα β α β+( ) ≤ < ≤ −( )AB A

B2
.

We have A

B
= cos µ  and we put cos cos cosν α β= =AB

2
1
2

; we see that

P″(X) ≤ 0 for α – ν ≤ θ ≤ α – µ and P″(X) > 0 elsewhere. We may note

that ν > α.

2) α ≥ β and 3cos(α + β) > cos(α – β), then

AB A

B2
< +( ) < ≤ −( )cos cosα β α β

and P″(X) ≤ 0 for –β ≤ θ ≤ α – µ, that is, H lying between B and Ω′.

3) α < β and 3cos(α + β) ≤ cos(α – β); then
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cos cosα β α β+( ) ≤ < −( ) <AB A

B2

and P″(X) ≤ 0 for α – ν ≤ θ ≤ 2α – β.

4) α < β and 3cos(α + β) > cos(α – β); then

AB A

B2
< +( ) < −( ) <cos cosα β α β

and P″(X) always stays negative.

The tables of variation of P′(X) are as follows, for the four cases:

1)   X cos(α + β) AB

2
              

A

B
cos(α – β) 

P′(X)

P′(cos(α + β))

+

  +

+

2)   X cos(α + β)                          
A

B
cos(α – β) 

P′(X) P′(cos(α + β))
+

+

3)    X cos(α + β)                              
AB

2
cos(α – β) 

P′(X)

P′(cos(α + β) )

+

 P′(cos(α – β))
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4)   X cos(α + β)                                          cos(α – β)

P′(X)

       P′(cos(α – β))

In case 1, P ′(X ) stays positive if P ′(cos(α  + β)) ≥ 0, that is, if

sin sin2 3
5α β β+( ) ≥  and it goes from negative to positive for a value

X1 = cos(α – θ1) ∈ ]cos(α + β), 1
2

 cosα  cosβ[, or –β  < θ1 < α – ν  if

sin sin2 3
5α β β+( ) < .

Note: If α = β, the inequality sin sin3 3
5α α<  is equivalent to sinα > 3

5 , or

α > 0.886077124 (between π
4

 and π
3

).

In case 2, P′(X) always stays positive. In case 3, P′(X) stays positive if

sin sinβ α β−( ) ≥2 3
5 ; if sin sin sinβ α β β α−( ) < ≤ +( )2 23

5 , P′(cos(α + β))

≥ 0 and P′(cos(α – β)) < 0, so P′(X) goes from positive to negative for a

value X 2  =  c o s ( α  – θ 2 ), α  – ν  < θ 2  < 2α  – β . Finally, if

sin sinβ α β+( ) <2 3
5 , P′(cos(α ± β)) < 0, so P′(X) goes from negative to

positive at X1 = cos(α – θ1), –β < θ1 < α – ν, then from positive to negative

at X2 = cos(α – θ2), a – ν < θ2 < 2α – β.

In case 4, P′(X) stays positive if sin sinβ α β−( ) ≥2 3
5 , as in case 3; if

sin sin sin( )β α β β α−( ) < ≤ +2 23
5 , P′(X) goes from positive to negative at

X2 = cos(α – θ2), α – ν < θ2 < 2α – β. Finally, if sin sinβ α β+( ) <2 3
5 ,

P′(X) stays negative; but we can check that this does not occur, because it is

incompatible with 3cos(a + β) > cos (α – β).

In cases 1 and 2, which correspond to α ≥ β, we can see that P(X)

increases up to P(cos(α – β)) ≤ 0, so P(X) stays negative and ψ is a concave

function of θ.
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In cases 3 and 4, corresponding to α  < β , P (X ) increases from

P(cos(α + β)) < 0 to P(cos(α – β)) > 0 if sin sinβ α β−( ) ≥2 3
5 ; so it goes

from negative to positive for a value X0 = cos(α – θ0). Since

P
AB A B A B

B
A B A B

A B B B
2 16 8

2
3

4 2
2 2

4 5 4 3
2

4 3 2
2 2 3



 = − +( ) + − + −( ) + −

          = − − −( ) −( ) +( ) ≤A B B
B A

4 5
2 2 2

16 2
1 1 1 0,

we can see that α – ν ≤ θ0 < 2α – β. If sin sin sin( )β α β β α−( ) < ≤ +2 23
5 ,

P(X) decreases to P(cos(α – β)) > 0 after an interval, –β ≤ θ ≤ θ2 , in which
it increases; thus P(X) goes from negative to positive at a value X0 =
cos(α – θ0) as under the previous conditions. We have α – ν ≤ θ0 ≤  θ2.

Finally, if sin sinβ α β+( ) <2 3
5 , P(X) increases only for X1 ≤ X ≤ X2 and

goes from negative to positive at X0 = cos(α – θ0) where α – ν ≤ θ0 ≤ θ2, as

above.
To summarize, ψ is concave if α ≥ β; however, if α < β, ψ is concave

for –β ≤θ ≤ θ0 and convex for θ0 ≤ θ ≤ 2α – β. The angle θ0 is determined

from the equation P(cos(α – θ0)) = 0. We have

cos
cos
cos

′ = =µ β
α

B

A
  and  P

B

A

B A B A

A




 =

−( ) −( )
≥

1
0

2 2 2

4 ;

this shows that cos µ′ ≥ cos(α – θ0), or θ0 ≤ α – µ′.

Note: For θ = α – π
2

, X = cos(α – θ) = 0 and P(X) = B3 – B ≤ 0, which

proves that θ0 ≥ α – π
2

.

Thus the point of inflexion in the graph of ψ occurs before ψ goes

through the value π
2

. If β = π
2

, θ0 = α – π
2

.

If α ≤ β
2

, θ0 < 2α – β ≤ 0. If α > β
2

, the inequality θ0 ≥ 0 is equivalent

to P(cosα) ≤ 0, or
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(7) (3 – B) A4 – 2(1 + B) A2 + B(1 + B) ≥ 0,

because
            P(cos α) = A4B – A4 (B2 + 2) + 3A4B – A2(A2 + 2B2 – 2) + B3 – B

            = (B – 1)((3 – B)A4 – 2(1 + B)A2 + B (1 + B)).

Let us put Π(x) = (3 – B)x2 – 2(1 + B) x + B(1 + B); we have

Π(1) = (1 – B)2 > 0, Π cos2 2

2
1

4
1 0

β



 = − + −( ) <B

B

and
 Π(cos2β) = B(1 – B)2 (1 + B – B2) > 0,

so Π has a root between cos2β and cos2 β
2

 and another root between cos2 β
2

and 1. If we assume α ≥ β
2

, condition (7) is equivalent to

A
B B B

B
2 2

2

2

1 1 1
3 2

2
2

2

1
2

= ≤ + − ( ) + =
−

+
cos

–
–

cos
cos sin

sin
α β

β β

β ,

or α ≥ α1 (β) where α1 (β) is defined by

(8) cos ( ) cos
cos sin

sin

2
1

2

22
2

2
2

1
2

α β β
β β

β=
−

+

or

tan
tan

2
1

2

2

2

2

2 2
2

2
2

2

2 2

2
2

2

α β

β

β

β

β β

β β

β
( )

sin

cos

cos

cos sin

sin

cos
=

+





−





=
−

,

which shows that α1 is increasing.

We can see that α1(0) = 0; for β close to 0, we have
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α β β β
1

2
2 2

4 1
2

2

4
2 2( ) ≈

−






= +( ) ,

that is,

 α β β1
2 2

2
( ) ≈ +

or

 β α β≈ ( ) −( ) + = −( ) =








1 2 2 2

2 2
2

0 923879533 2 2 2 1 17157288. , . .

When β π α π π= 



 =

2 2 21, ; putting β π ν α π= − = −
2 21, u , we have

1 4 2 4 2

4 2
2

2

2tan

tan

u v
=

−



 −





−



 −

sin

cos

π ν π ν

π
,

hence u
v2

2
≈  and d

d

β
α α π1

21

0
=

=  (see Fig. 2.50).

α
α

α

α

π/2

β=2α
α=β

0
1

2

3

Fig. 2.50
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Second part: investigation of η ψ
β θ

=
+

We have ′ =
+( ) ′ −

+( )
η β θ ψ ψ

β θ 2 , with the sign of (β + θ)ψ′ – ψ. If θ = –β +

u, we know that ψ ≈ C u  when u tends to 0, where C =
+( )

2sin
sin sin

β
α α β

;

so η ψ
β θ

=
+

≈ C

u
 tends to +∞ when θ tends to –β, because β + θ = u. By

(4) we know that ψ′ sin ψ tends to sin
sin sin

β
α α β+( ) = C2

2
, so

′ ≈ψ C

u2
  and  β θ ψ ψ+( ) ′ − ≈ − <C

u
2

0.

The derivative of β θ ψ ψ+( ) ′ −  is β θ ψ+( ) ′′ , with the sign of ψ″; so

β θ ψ ψ+( ) ′ −  decreases and stays negative while ψ″ ≤ 0. We conclude that

η decreases for –β ≤ θ ≤ β in the case where α ≥ β, and for –β ≤ θ ≤ θ0 in

the case where α < β.

If α < β, let us put θ = 2α – β – u and ψ = π – ν; we have seen that

ν ≈ ′C u
 
when u tends to 0, with

     ′ =
−( )C

2sin
sin sin

β
α β α

    (see Note 2, p. 130).

The formula (4) gives

lim sin
sin

sin sin
′ =

−( ) = ′ψ ψ β
α β α

C 2

2
,

so ′ ≈ ′ψ C

u2
 and consequently β θ ψ ψ αψ α+( ) ′ − ≈ ′ ≈ ′

2
C

u
, which tends to

+∞; ′ ≈ ′η
α
C

u4
 also tends to +∞. Thus β θ ψ ψ+( ) ′ − , which increases for

θ0 ≤ θ ≤ 2α – β, becomes zero and then positive for a value of θ in the

interval θ3 ≥ θ0 ≥ α – π
2

 (see Fig. 2.61). Accordingly, η decreases in the

interval –β ≤ θ ≤ θ3, then increases in the interval θ3 ≤ θ ≤ 2α – β.
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We can see that the decrease of η when θ ≤ 0 requires θ3 ≥ 0. We thus

have 2α – β > 0, that is α > β
2

 and the value βψ ψ′ −0 0  of β θ ψ ψ+( ) ′ −

for θ = 0 must be negative. Now

cos
cos cos

sin

sin

sin
ψ β α

α

β

α0

2

2

2

21 2 2= − = − ,

that is,

sin
sin

sin
ψ

β

α
0

2
2=   and  ′ = − =ψ ψ α β

α

α β

α0 0 3

2

3
1 2

2sin cos
cos

sin

cos sin

sin
.

So the condition βψ ψ′ ≤0 0  can be written

 βψ ψ β
α β

α
β

ψ

α
ψ ψ′ = = ≤0 0

2

3

2 0

0 02 2 2 2sin
cos sin

sin

sin
sin

tan
,

that is,

(9) β
α

ψ
ψtan tan

≤ 0

0

2

.

We define a function α2(β) by the implicit equation β
α

ψ
ψtan tan2

0

0

2

=

β α β
2

≤ ≤



 ; in fact β

αtan
 is a decreasing function of α so long as ψ

ψ
0

0

2
tan

 is

an increasing function of α. To put it more precisely, β
α

ψ
ψtan tan

− 0

0

2

 increases

as a function of β and decreases as a function of α; the result is that α2

increases as a function of β and that the statement b) (that η decreases) is

true for α ≥ α2 (β). When β = 0, we have α2 (0) = 0 because α2 (β) ≤ β.

Further, sin
ψ β

α λ
0

2 2
1

2
≈ =  where λ α

β
= lim 2 ; so

tan
ψ

λ
0

22
1

4 1
=

−
 and 4 tan2λ

λ λ
−

−
=1

1

2 4 1
1

2
,
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which gives λ = 0.667618851 or d

d

β
α α2 2 0

1 49786064
=

= . .

For β = π
2

, sin
sin

ψ
α

0

2
1

2
= , hence

tan
ψ

α
0

2
1

2
=

− cos
 and π

α
α

α2
2 2

1
22

2
2tan

Arc tan= −
−

cos
cos

,

which gives α 2  = 0.933682485 – a little less than 3
10
π  – and

α
β

α
π

2 22
0 594400731= = . .

Note: If we make α2 = λβ in (9), sin
sin

sin
ψ

β

λβ
0

2
2= , that becomes an increasing

function of β for a fixed value of λ ≥ 1
2

 (Proposition 2), so

1
2 2

1

2
2

0

λ
ψ

πλ≤ ≤sin
sin

.

Since ψ
ψ
0

0

2
tan

 is a decreasing function of ψ0, we obtain

2
1

2

2 4 1
1

1
0

0

2−
−

≤ ≤ −
−

cos
cos

πλ
πλ

ψ
ψ λ

λ
Arc tan

tan
 Arc tan

4 2
;

however β
λβtan

, a decreasing function of β, is bounded by π
πλ

2
2

tan
 and 1

λ
.

So we must have

2
1 1−

−
≤cos

cos
πλ

πλ λ
 Arc tan

and

 

π
πλ λ

λ2
2

2 4 1
1

1
2

tan
 Arc tan

4 2
≤ −

−
,

inequalities that can be expressed by
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0.579590352 ≤ λ ≤ 0.706698767.

But we can prove that α
β

2  is a decreasing function of β, so that 0.594 ≤

α
β

2  ≤ 0.668 (see Fig. 2.50).

Third part: investigation of ξ ψ
β θ

α θ=
+

−( )sin

We have

ξ = ⋅EI

EH

EH

EB
 = 

ψ
ψ

θ β
β θ α1 −

⋅ −
+( )cos

cos cos
sin

.

Since

cos cos
sin

sinθ β
β θ

β θ
β θ

β θ
−
+

= − ⋅

+

+2

2
2

is a decreasing function of θ, it is sufficient to establish that ψ
ψ1 − cos

decreases in order to prove that statement a) is true. Now ψ is an increasing

function of θ if α ≥ β and θ ≤ α – µ or if α < β; so we still need to see

whether ψ
ψ1 − cos

 is a decreasing function of ψ. We have

d

dψ
ψ

ψ
ψ ψ ψ

ψ ψ
ψ

ψ1
1

1

1

2
2

1

2

2
2−

= − −
−( )

= −












cos

cos sin

cos sin tan
,

so ψ
ψ1 − cos

 decreasing is equivalent to ψ ψ≥ tan
2

, that is ψ ≤ δ where δ is

defined by δ δ= tan
2

 (0 < δ ≤ π); we find δ = 2.33112237 radians (a little less

than 3
4
π ).

In the case where α ≥ β, ψ ψ π δ≤ ≤ <m 2
, so ξ decreases in the interval

–β ≤ θ ≤ α – µ. The same is also true in the interval α – µ ≤ θ ≤ β where ψ
is a decreasing function of θ; in fact
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ξ = ⋅ ⋅EI

EI

EI

EB

EB

EB
 = 

ψ
ψ

β θ

β θsin

sin

2

2
2⋅ ⋅

+

+
EI

EB
,

where the last two ratios decrease, by Propositions 4, 11 and 12, and where
the first ratio decreases if θ ≥ α – µ. Thus, in the case where α ≥ β, ξ is a

decreasing function of θ throughout the interval [–β, β].

Let us now consider the case where α < β: ξ decreases in the interval

–β ≤ θ ≤ ε where ε is defined by cos cos cos
sin sin

cos
β α α ε

α α ε
δ− −( )

−( )
= 

 
.

Since δ π>
2

, ψ goes through the value π
2

 before reaching δ and α – µ′

< ε. If θ = 2α – β – u,

ξ′ = η′ sin (α – θ) – η cos (α – θ) ≈ ′ ( )C

u4α
β αsin –

when u tends to 0; so we see that ξ′ tends to +∞ when θ tends to 2α – β.

Thus ξ′ must become zero somewhere between ε and 2α – β; if θ4 is the

first value of θ that makes ξ′ zero, ξ decreases for θ ≤ θ4 but increases after

that. Since θ α π
3 2

≥ –  (p. 139), we have α θ π− ≤
2

 for θ ≥ θ3 and from this θ4

≥ θ3. It can be established that θ4 is unique and that ξ increases for θ4 ≤ θ ≤
2α – β (see Fig. 2.61). So statement a) is true only if θ4 ≥ 0, which requires

α β≥
2

. Now θ4 ≥ 0 means that ξ′ ≤ 0 for θ = 0, that is

′ − = ′ − − ≤η α η α βψ ψ
β

α ψ
β

α0 0
0 0

2
0 0sin cos sin cos

or again

β ψ
ψ

β
α

′ − ≤0

0

1
tan

which can be expresses as

(10) β
β α

ψ
ψ+

≤
tan tan

0

0

2

.
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We define a function α β3 ( ) by

β
β α

ψ
ψ+

=
tan tan3

0

0

2

,

where

  sin
sin

sin
ψ

β

α
0

32
2= ,   where 

β α β
2 3≤ ≤ .

We see that α3 increases and that α3 ≤ α2; statement a) is true for

α ≥ α3 (β).

When β = 0, α3 (0) = 0; if α β λ β3 ( ) ≈  for β tending to 0, sin
ψ 0

2
 tends

to 1
2λ

, tan
ψ 0

2
 to 1

4 12λ −
 and we have

4 1
1

2 1 4 1
12

2
λ

λ λ
−

+( ) −
=tan ,

hence λ = 0.5152252767, or d

d

β
α

α3 03

1 94089856
=

= . .

For β π=
2

,

sin
sin

ψ
α

0

2
1

2
= , tan

ψ
α

0

2
1

2
=

− cos
and

−
+



 −

=cos
cos

2
1

2
4

2
13

3 3

α

π
α α

tan
 tan 

,

hence

α π
3 2

0 8099378632



 = . , between π

4
 and 4

15
π , and α

β
α
π

3 32
0 515622458= = . .
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Note: β
β λβ λβ

β
+

=
+tan tan

1

1
 is again a decreasing function of β and it is

bounded by 1

1
2

2
+

π
πλ

tan
 and 1

1 + λ
. So if α3 = λβ in (10), we have

2
1 1

1
−

−
≤

+
cos

cos
πλ

πλ λ
 Arc tan

and
1

1
2

2

2 4 1
1

4 1
2

2
+

≤ −
−

π
πλ λ

λtan
Arc tan .

These inequalities give 0.51 ≤ λ ≤ 0.52.

But it can be established that α
β

3  is an increasing function of β, so that

0.5152 ≤ λ ≤ 0.516 (see Fig. 2.50).

Taking axes of coordinates with origin ω, respectively perpendicular to

ωF (that is, parallel to BA) and along ωF, the coordinates of the point Ω,

the point of intersection of Π′Π and AB, are r cosβ tanα and r cosβ. Since

the functions αj (β) (j = 1, 2, 3) increase, the conditions α ≥ αj (β) mean that

Ω lies to the right of the curve with index number j in Fig. 2.51.

AB

F

Ω

Π

ω

0

1
2

3β=2α

β=α

Fig. 2.51

In the position ωΠ, Proposition 14 is true, but only for the second

inequality.
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Fourth part: Examples

In all these examples, we have made β π=
3

; the corresponding values of

αj (β) (j = 1, 2, 3) are respectively:

α π
1 3

0 932458266



 = . ,  sin sinα β= 2

2
 for α π=

4
,

α π
2 3

0 659224289



 = .   and  α π

3 3
0 53978010008



 = . .

For α π≥
3

, ξ and η decrease in the interval − ≤ ≤π θ π
3 3

 and ψ  is a

concave function of θ. We have drawn the graphs of ξ and η for α π= 5
12

(Fig. 2.52) and for α π=
3

 (Fig. 2.53).

0

η
ξ

π/3−π/3

0

η

ξ

π/3−π/3

Fig. 2.52: α π= 5
12

Fig. 2.53: α π=
3

For 0.932458266 ≤ α < π
3

, ψ is concave in the interval – π
3

 ≤ θ ≤ 0 and

ξ and η decrease in that interval (Fig. 2.54, where α = 1).
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0

η

ξ

π/3−π/3 2−

Fig. 2.54: α = 1
θ3 = 0.72055, min of η = 0.935784028
θ4 = 0.9500790346, min of ξ = 0.0700698854

For π
4

 ≤ α < 0.932458266, ψ ceases to be concave for a value θ0 < 0

of θ but remains ≤ π
2

 while θ ≤ 0; ξ and η decrease in the interval – π
3

 ≤ θ

≤ 0 (Fig. 2.55, where α = 0.8). For 0.659224289 ≤ α < π
4

, ξ and η still

decrease in the interval – π
3

 ≤ θ ≤ 0, but ψ ceases to be concave in θ0 < 0

and reaches the value π
2

 at θ = α – µ′ < 0 (Fig. 2.56, where α = 0.75).

For 0.53978010008 ≤ α < 0.659224289, ξ decreases in the interval – π
3

≤ θ ≤ 0, but η goes through a minimum for a value θ3 < 0 (Fig. 2.57, where

α π=
5

 and Fig. 2.58, where α = 0.55).

Finally, for α < 0.53978010008, ξ and η both have a minimum for

negative values of θ, θ4 and θ3 respectively (Fig. 2.59, where α = 0.524). If

α < β
2

, θ always remains negative (Fig. 2.60, where α π=
12

).
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η

ξ

−π/3 1,6−π/30  

η

ξ

−π/3 0 1,5−π/3

Fig. 2.55: α = 0.8 Fig. 2.56: α = 0.75
θ3 = 0.24483,          θ3 = 0.15413,

min of η = 1.40613647 min ofη = 1.5403285
θ4 = 0.537776499,    θ4 = 0.4346042281,

min of ξ = 0.452137244 min of ξ = 0.576095779

η

ξ

−π/3 0 π/15            
−π/3

η

ξ

1,1−π/3
0

Fig. 2.57: α π=
5

Fig. 2.58: α = 0.55

θ3 = –0.0503, θ3 = –0.17463,

min of η = 1.9362108 min of η = 2.27086432
θ4 = 0.1831447956, θ4 = 0.021138879,

min of ξ = 0.949376423 min. of ξ = 1.2654303
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In Fig. 2.61, we have drawn the graphs of θ = 2α – β, θ4(α), θ3(α),

α – µ′ and θ0(α) as a function of α ∈ ]0, β] for β = π
3

. The angle θ is

constrained to vary from –β to 2α – β, so only the area below the diagonal

θ = 2α – β is useful. The statement a) is true below the curve θ4 and the

statement b) above the curve θ3.

           
Fig. 2.59: α = 0.524 Fig. 2.60: α π=

12
Fig. 2.61

θ3 = –0.21518, θ3 = –0.620835,

min of η = 2.40218858 min of η = 5.099228
θ4 = –0.03261719, θ4 = –0.566379471,

min of ξ = 1.3887698 min of ξ = 3.83612407

The fact that this long discussion is so complex shows that an exact
determination of the conditions for the proposition to be valid was far
beyond the scope of the mathematics of Ibn al-Haytham’s time, and indeed
that of the mathematics of any period before the end of the eighteenth
century.

Proposition 15. — Our assumptions about the circles ABC, EI, DC are the
same as before: (ABC) is the horizon, (EI) and (DC) are circles parallel to
the equator (three cases).

The circle ADEB is the meridian circle and we suppose BD ≤ 1
2

 BDA.
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Further, we consider another great circle that passes through the poles;
this great circle cuts the circle ABC in O and H, the arc EI in U and the arc
DC in L.11

With these assumptions, we have

UI

UO

CL

LO

CK

KI
> > .

We want to prove that the result established for the meridian BED
applies to a great circle such as OUL. The position of the meridian BED is
special because it is perpendicular to the horizon; we replace it by a general
meridian; so this proposition is a more general version of the preceding one.

B

E

D

A
H

Q
O

U

I

<Π>

<Π′>

T
M

C

K
S

G

L

J
P

H′

<ω>

N
F

Fig. 2.62

The circle DLC has its centre ω on the line through the poles, the planes
of the great circles IKQ and OUL thus cut DLC along two diameters
through KT and LS.

We first suppose that the part of DLC  above ABC  is less than a
semicircle, so we have ω below the plane ABC.

We have DGCˆ  = 1 right angle, LSCˆ  is acute, KTCˆ  is acute. With the
diameter from K, we associate a right-angled triangle TGω and with the

diameter from L a triangle SGω which lies inside the preceding one. So we

have LSCˆ  >  ST̂ω , hence LSCˆ  > KTCˆ .
We draw KM || LS, we have M between T and C and KM < LS; we

draw MN || KL, then we have KL = MN and KM = NL.

11 The point L has a significance different from what it had before.
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C

K

L

D

O M

X

N

F

S G
T

ω
′

      

I

U

E

J

P
H′

Fig. 2.63.1 Fig. 2.63.2

The arc KL is similar to the arc IU, so

IU

KL
= d1

d2

= IU

MN
.

Let UP be the diameter from U in the circle EI, we have LS || UP,
SC || IP, hence LSCˆ  = UPIˆ .

We draw KF || CG, we have LKFˆ  = UIPˆ  (because the arcs KL and LD
are respectively similar to the arcs IU and UE). Then we have UIPˆ  = NMSˆ ,
so triangles NMS and UIP are similar and consequently

IU

MN
= UP

NS
= d1

d2

.

1) So if d1 < d2, we have UP < NS and if d1 = d2, we have UP = NS.

By an argument like the one in the previous proposition, we prove that

SL

LO
> KM

KI
;

now KM = NL and KI = LU, so we have

SL

LO
> NL

LU
.

2) If d1 > d2, and if UP

PJ
≥ d1

d2

, we also prove that

SL

LO
> NL

LU
  or  SL

LO
> KM

KI
.
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We have seen that KMCˆ  = LSCˆ  is acute; if from K  we drop a
perpendicular to CG, its foot lies between M and C. The straight line LC
cuts KM at the point X, we draw XO′ || KC. By hypothesis, KCMˆ  is acute

and KCMˆ  = XO M′ˆ , so XO C′ˆ  is obtuse, hence XC > XO′; consequently

CX

XM
> ′O X

XM
.

But
CX

XM
= CL

LS
  and  ′O X

XM
= CK

KM
,

so we have
CL

LS
> CK

KM
.

Moreover
LS

LO
> KM

KI
,

so
CL

LO
> CK

KI

and consequently
CL

LO

CK

KI
> ,

if we use the corollary to Proposition 4. Unfortunately, the conditions for
this corollary to be applicable are not always satisfied (see below).

If the part of the circle CLD above the plane (ABC) is a semicircle, then
ω = G, and GC = GD. In this case, the visible pole Π is above the plane
ABC. The point G lies on the axis joining the poles, G is both in the plane
ABC and in each of the planes HLO and QKI; so the straight lines AB, HO
and QI intersect at the point G (G = S = T); we have GK = GL = GC as
radii of the circle CLD, KC is a chord, so KCGˆ  is acute.

If we produce CK beyond K, it meets GL, because it meets GD. We
draw KM || LG; the point M lies between C and G and KM < LG. We draw
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MN  || KL; CL  cuts KM  in X; we draw XO ′ || KC; XO C′ˆ  is obtuse, so

XC > XO′.

D
L

K

C

X

O M

N

S=G′

E

U

I

J

P

Fig. 2.64.1          Fig. 2.64.2

But
CL

LG
= CX

XM
  and  X ′O

XM
= CK

KM
,

so
CL

LG
> CK

KM
.

Triangle GNM is similar to triangle IUP and

IU

MN
= UP

NG
= d1

d2

.

So if d1 ≤ d2, we have UP ≤ NG and as before we have

GL

LO
> NL

LU
.

If d1 > d2 and if UP

PJ
≥ d1

d2

, we again have GL

LO
> NL

LU
 and consequently

GL

LO
> MK

KI
.

Now
CL

LG
> CK

KM
,
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so we have
CL

LO
> CK

KI
,

and consequently
CL

LO

CK

KI
> ,

as in the first case.
From this result we deduce that

CL CK

LO KI

CL

LO

−
−

> ,

CL CK LK− =  similar to UI ,12  LO KI LO LU UO− = − = , so we have

UI

UO

CL

LO

CK

KI
> > .

G

N

MOC

K

L

D

X

′

Fig. 2.64.3

We consider another great circle, with diameter ΠΠ′, which cuts ACB in
X and the arc IE in R, and the circle parallel to the circle IE that passes
through O; it cuts the arc XR in V.

The argument in the previous section concerning the great circles IKH
and OLQ cutting the parallel circles IE and CD can be applied here to the
two great circles OLQ and XRZ cutting the parallel circles IE and OV; and
we obtain the result

12 Ibn al-Haytham writes here of the equality of the arcs LK and UI; but these similar
arcs belong to different circles. So the conclusion is not so general: we cannot draw the
conclusion unless LK UI≥ , that is unless d1 ≥ d2. Here again, the arcs LK and UI
subtend the same angle in two different circles and we might wonder whether Ibn al-
Haytham was thinking about the angles while referring to the arcs.
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OV

VX

IR

RX

IU

UO
> > .

B

E
D

X
V

O

R

U

I

L
K

C

H

Q
Z

A

Π′

Π

’

Fig. 2.6513

Commentary:
We shall continue to use the notation employed in the commentary on

Proposition 14, with an additional variable λ = DWLˆ , which defines the

meridian plane OUL, whose equation is y = z tan λ. We have 0 ≤ λ ≤ Ψ, the

limiting positions of OUL being the plane BED (λ = 0) and the meridian

plane of C (λ = Ψ) (Fig. 2.66).

If ϕ  = L Oω̂  and Πω̂O = α  – Θ  + ϕ , the coordinates of O are

x = r cos (α – Θ + ϕ), y = r sin λ sin (α – Θ + ϕ), z = r cos λ sin (α – Θ +

ϕ). The equation of the plane ABC gives x cos α + y sin α = r cos β, and

the point O lies in the plane ABC, hence

(1) cos α cos (α – Θ + ϕ) + cos λ sin α sin (α – Θ + ϕ) = cos β,

an equation that gives two values of ϕ ∈ [0, π], corresponding to the points

O and O′; the point O corresponds to the greater of these values of ϕ.

The angle LWC is equal to Ψ  – λ, so CL  = r(Ψ  – λ ) sin (α  – Θ )

 and we have LO = rϕ; thus

13 The letter O has already been used.
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CL

LO
 =

Ψ Θ− −( )λ
ϕ

αsin .

CI
O

B

K

L

D

N G

SM

A
O

W
V

Π′

Π

ω

F

U

E

Ω′

Fig. 2.66

When D is at E, this ratio becomes IU

UO
 and we can see that the first

inequality means that ψ λ
ϕ

α θ− −( )sin  is a decreasing function of θ for a fixed

value of λ. When L is at K, the same ratio becomes CK

KI
 and the second

inequality means that ψ λ
ϕ

α θ− −( )sin  is a decreasing function of λ for a fixed

value of θ.

First part: investigation of angle ϕ
Equation (1) gives θ – ϕ = θ– (λ), that is ϕ = θ – θ– (λ) where θ– is the

function that is the reciprocal of   θ ψ θa ( ) defined on p. 128. Now θ– is an

increasing function, going from –β to θ – µ for 0 ≤ λ ≤ ψm if α ≥ β and

from –β to 2α – β for 0 ≤ λ ≤ π if α < β. In the case where α ≥ β, θ– is

convex; in the case where α < β, θ– is convex until it reaches the value θ0

(defined by P(cos(α – θ0)) = 0), and then concave (see p. 135). As a result ϕ
is a decreasing function of λ, from θ + β to θ – α + µ for 0 ≤ λ ≤ ψm if
α ≥ β and from θ + β to θ – 2α + β for 0 ≤ λ ≤ π if α < β. In the case
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where α ≥ β, ϕ is concave; the same is true in the case where α < β, if we

remain within the interval 0 ≤ λ ≤ λ0 where λ0 is such that θ– (λ0) = θ0.

We have

cos cos
cos cos cos

sin sin
cos cos cos

sin sin
λ ψ β α α θ ϕ

α α θ ϕ
β α α θ

α α θ
− =

− − +( )
− +( ) − − −( )

−( )
=

1
sin sin sinα α θ α θ ϕ−( ) − +( ) × cos sin( ) sinβ α θ α θ ϕ−( ) − − +( )( ) +

cos cos sin sin cosα α θ α θ ϕ α θ α θ ϕ−( ) − +( ) − −( ) − +( )( ) =

1
2

2 2sin sin sin
cos sin cos cos sin

α α θ α θ ϕ
β ϕ α θ ϕ α ϕ

−( ) − +( ) − − +



 +





=

2
2

2 2

sin

sin sin sin
cos cos cos cos

ϕ

α α θ α θ ϕ
α ϕ β α θ ϕ

−( ) − +( ) − − +











=

2
2

2 2 2

sin

sin sin sin

cos cos cos cos cos sin sin

ϕ

α α θ α θ ϕ

α ϕ β α θ ϕ ϕ α θ ϕ ϕ

−( ) − +( )

− − +( ) + − +( )











=

2
2

2 2

sin

sin sin

cos cos cos

sin
cos cos sin

ϕ

α α θ
α β α θ ϕ

α θ ϕ
ϕ β ϕ

−( )
− − +( )

− +( ) −






,

that is,

(2) cos cos sin
cos cos sin

sin sin
λ ψ ϕ

ϕ β ϕ

α α θ
− =

−

−( )
2

2
2 2

t

with

(3) t =
− − +( )

− +( )
cos cos cos

sin

α β α θ ϕ
α θ ϕ

.

Now
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t2
2 2 2

2
2

=
− − +( ) + − +( )

− +( )
=

cos cos cos cos cos

sin

α α β α θ ϕ β α θ ϕ
α θ ϕ

cos

cos sin cos cos sin sin sin2 2 2 2 2 2 2λ α α β β α λ+ − = − ;

we can see that t = 0 makes sin
sin
sin

λ β
α

= , which is possible only when α ≥ β;

then we have λ = ψm (λ ≤ ψm ≤ π
2

), and thus also ψ = ψm and θ = α – µ.

So we can see that t does not become zero in the interval 0 ≤ λ < ψ; so it

keeps the same sign. For λ = 0, α – θ + ϕ = α + β and t = sin β > 0; thus t

remains positive and we have

(4) t = −sin sin sin2 2 2β α λ .

We may note that, if we make ϕ = θ – θ– (λ) in (3), the numerator

becomes cos α – cos β cos (α – θ– (λ)), which is always positive if α < β
and also if α ≥ β, since by definition θ– (λ) ≤ α – µ.

For λ = ψ, we have 2
2 2 2

0sin cos cos sin
ϕ ϕ β ϕ

t −



 =  and ϕ  = θ  – θ– (λ)

with θ = θ– (ψ) if α < β or if α ≥ β and θ ≤ α – µ, but θ = θ+ (ψ) if α ≥ β
and θ ≥ α – µ. Thus ϕ = 0 if α < β or α ≥ β and θ ≤ α – µ; if α ≥ β and

θ > α – µ, ϕ = θ+(ψ) – θ– (ψ) > 0, so tan
ϕ

β2
= t

cos
.

Equation (4) in the commentary on Proposition 14 gives

′ =
− ( )( )

− ( )( ) −
−

−
ϕ

λ α α θ λ
β α θ λ αλ

sin sin sin

cos cos cos

2

, where ′ =ϕ ∂ϕ
∂λλ .

We can check that this quantity is negative. It becomes infinite if α ≥ β and

λ = ψ = ψm, because we then have α θ ψ µ− ( ) =− m . Let us make ψ = ψm,

let θ = α – µ and θ– (λ) = θ – ϕ = α – µ – ϕ; we have

′ =
+( )

+( ) −
ϕ λ α µ ϕ

β µ ϕ αλ
sin sin sin

cos cos cos

2

.
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The denominator

cos cos cos cos cos cos cos sin sin cosβ µ ϕ α β µ ϕ β µ ϕ α+( ) − = − − =

− +



2

2 2 2
sin cos sin cos cos sin

ϕ β µ ϕ α ϕ

is equivalent to –ϕ cosβ sinµ when ϕ tends to 0, while the numerator tends

to sinβ sin2 µ; thus

′ ≈ −ϕ β µ
ϕλ

tan sin
.

Now, from (3),

t =
− +( )

+( ) ≈
cos cos cos

sin
cos

α β µ ϕ
µ ϕ

ϕ β ;

if λ ψ= −m u, we have

t u um m
2 2 2 2= − −( ) =sin sin sin cos cos sinβ α ψ ψ

2 22 2 2sin sin sin sin cos sin sinβ α β β µ−( ) +u u ,

because cos
cos
sin

sinψ β
α

µm = . Thus

t u2 2≈ ⋅sin cos sinβ β µ

when u tends to 0; this gives

ϕ β µ≈ 2utan sin

and finally

(5) ′ ≈ −ϕ β µ
λ

tan
2

sin
u

for λ ψ= −m u, u tending to 0.
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Second part: investigation of η ψ λ
ϕ

= −  as a function of λ

We have
∂

∂λ
ψ λ

ϕ
ϕ ψ λ ϕ

ϕ
λ− =

− − −( ) ′
2

with a sign opposite to that of ϕ ψ λ ϕλ+ −( ) ′  and

∂
∂λ

ϕ ψ λ ϕ ψ λ ϕλ λ+ −( ) ′( ) = −( ) ′′2

with the same sign as ′′ϕ
λ2  because λ ≤ ψ. We have seen that ′′ϕ

λ2  ≤ 0 for

α  ≥ β  or for α  < β  and λ  ≤ λ0 (where θ λ θ− ( ) =0 0), while ′′ϕ
λ2  > 0 for

α < β and λ > λ0.

So if α ≥ β, ϕ ψ λ ϕλ+ −( ) ′  decreases from its initial value ϕ = β + θ

(for λ = 0, where ′ϕλ  = 0) to its final value ϕ  = 0 or 2 0Arc tan
t

cosβ
> ,

depending on whether θ α µ≤ −  or θ α µ> −  (for λ = ψ).

In fact, for λ = ψ, ψ λ ϕλ−( ) ′ = 0 even in the case where ′ϕλ  is infinite,

because if λ ψ= −m u ,
 

ψ λ ϕ β µ β µ
λm u

u

u−( ) ′ ≈ − ⋅ = −tan tansin sin
2 2

 which

tends to 0 with u. As a result ϕ ψ λ ϕλ+ −( ) ′  remains positive and ψ λ
ϕ
−

decreases monotonically. Ibn al-Haytham’s second inequality is thus true in
this case, and that holds for –β ≤ θ ≤ β, 0 ≤ λ ≤ ψ.

If α  < β , ϕ ψ λ ϕλ+ −( ) ′  decreases from β + θ to a minimum that is

reached for λ = λ0, then increases for λ0 ≤ λ ≤ ψ; the final value is ϕ = 0, so

the minimum is negative and there exists a unique λ1 ∈ ]0, λ0[ where

ϕ ψ λ ϕλ+ −( ) ′  is zero. We have ϕ ψ λ ϕλ+ −( ) ′  ≥ 0 for 0 ≤ λ  ≤ λ 1 and

ϕ ψ λ ϕλ+ −( ) ′  ≤ 0 for λ1 ≤ λ ≤ ψ; we put θ1 = θ–(λ1). We see that ψ λ
ϕ
−

decreases as long as λ ≤ λ1 but increases for λ > λ1.

For λ = λ1, ϕ = θ – θ1, so we have ψ λ θ θ
θ λ

− = −
′ ( )−

1
1

1

; which means that

(θ1, λ1) is the point of contact of the tangent to the graph of ψ as a function

of θ drawn from the point (θ, ψ) of the graph (see Figs 2.70–71). We have
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θ1 ≤ θ0 and the fact that ψ  is concave for θ  ≤ θ0 proves that θ1 is a

decreasing function of θ; for θ = θ0, θ1 = θ0.

Note: Let p denote the value of the derivative d

d

λ
θ

1

1
 when θ = θ0, that is the

slope of the tangent at the point of inflexion. Let θ = θ0 + u and ψ = λ0 + pu

+ qu3 + … the corresponding value of ψ where u tends to 0 and where q is

the value of 1
6

3
1

1
3

d

d

λ
θ

 at θ = θ0. The tangent to the graph of ψ through the

point (θ, ψ) touches the curve at a point (θ1, λ1) where θ1 = θ0 – v, λ1 = λ0 –

pv – qv3 – … and d

d

λ
θ

1

1
= p + 3qv2 + …; we have

λ1 + 
d

d

λ
θ

1

1
 (θ – θ1) = λ0 + pu + 3quv2 + 2qv3 + … = ψ = λ0 + pu + qu3 + …

So we have u3 = 3uv2 + 2v3, which gives v

u
= 1

2
; thus the derivative of

λ1 with respect to θ has the value − p

2
 for θ = θ0.

For θ = 2α – β, θ1 has a minimum value θ1,m and λ1 has a minimum

value λ 1,m . If θ  = 2α  – β  – u , we have seen that ψ  = π  – v  where

v
u≈

−( )
2 sin

sin sin
β

α β α
 when u  tends to 0. If to θ  = 2α  – β  – u  there

corresponds θ1 = θ1,m + w, we have

λ λ λ1 1 1
2= + ′ + + …, ,m mw qw  and ′ = ′ + + …λ λ1 1 2,m qw ,

so
ψ λ λ λ α β θ= + ′ + + + ′ + + …( ) − − − −( )1 1

2

1 12 2, , , ,...m m m mw qw qw u w

  

= + ′ − −( ) − ′ + − −( ) − +λ λ α β θ λ α β θ1 1 1 1 12 2 2 2, , , , , ( )m m m m mu qw qw u w

= − ′ + − −( ) + …π λ α β θ1 12 2, ,m mu qw ;

thus

v
u

qw m≈
−( ) ≈ − − −( )2

2 2 1
sin

sin sin ,
β

α β α
α β θ ;
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we see that q < 0 and that

λ λ
λ

λ
α β θ

β
α β α

1 1
1

1

12 2

−
−

≈ − ′ ≈
′

− −( ) −( )
,

,
,

,

sin
sin sin

m
m

m

mu

w

u q u

tends to –∞ when u tends to 0. So the tangent to the limiting curve is
vertical for θ = 2α – β.

To ensure the second inequality is satisfied, we may make θ0 ≥ 0 in the

case where α < β. We have seen (in the commentary on Proposition 14)

that this is equivalent to α ≥ α1 (β) where

cos cos
cos sin

sin

2
1

2

22
2

2
2

1
2

α β β
β β

β( ) =
−

+
.

If α < α1 (β), the second inequality is satisfied if θ ≤ θ0 < 0, or if θ > θ0

and λ ≤ λ1 < ψ.

Third part: investigation of ξ ψ λ
ϕ

α θ= − −sin( ) as a function of θ

We have

ξ = = ⋅CL

LO

CL

LS

LS

LO

where

LS = LW – SW = r sin
cos
cos

α θ ψ
λ

−( ) −



1

because SW cos λ = WG = r sin(α – θ) cos ψ. Thus

(6)  ξ ψ λ
λ ψ

λ ψ
ϕ

α θ= −
−

⋅ − −( )
cos cos

cos cos
sin .

The value of the second factor is

2
2 2 2

sin cos cos sin

sin

ϕ

ϕ

ϕ β ϕ

α
⋅

−t
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from equation (2); this is clearly a decreasing function of ϕ = θ – θ– (λ), and

thus also of θ (bearing in mind that t ≥ 0). So we now need to look at the

first factor ψ λ
λ ψ

−
−cos cos

; we have

∂
∂ψ

ψ λ
λ ψ

λ ψ ψ λ ψ
λ ψ

−
−

=
− − −( )

−( )cos cos

cos cos sin

cos cos 2 .

So ψ λ
λ ψ

−
−cos cos

 is a decreasing function of ψ provided that

(7)  (ψ – λ) sin ψ + cos ψ – cos λ ≥ 0;

we need to investigate this inequality for λ ≤ ψ ≤ π (λ being fixed). Now

 
∂

∂ψ
ψ λ ψ ψ λ ψ λ ψ−( ) + −( ) = −( )sin cos cos cos

has the same sign as cos ψ: the first term of (7) increases for λ ≤ ψ ≤ π
2

,

then decreases for π
2

 ≤ ψ  ≤ π . If λ  ≥ π
2

, the conditions of the second case

always apply and as the first term of (7) is zero for ψ = λ, it stays negative:

(7) cannot be satisfied and ψ λ
λ ψ

−
−cos cos

 increases with ψ. On the other hand,

if λ < π
2

, the first term of (7) increases from 0 to a maximum value π
2

 – λ –

cosλ > 0, which is reached when ψ = π
2

, then decreases to –1 – cosλ =

–2cos2 λ
2

 < 0, a value reached for ψ = π. So there exists a (unique) value

f(λ) ∈ [ π
2

, π[ of ψ which makes (ψ – λ) sinψ + cosψ – cosλ zero and (7) is

satisfied for λ ≤ ψ ≤ f(λ), but not for ψ > f(λ).

Let us examine the function f(λ), defined by

(8) (f(λ) – λ) sin f(λ) + cos f(λ) – cos λ = 0, π
2

 ≤ f(λ) < π,
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where 0 ≤ λ  ≤ π
2

; for λ  = 0, f(0) sin f(0) + cosf(0) – 1 = 0; let

f
f

0
0

2
( ) = ( )

tan , which gives f(0) = δ = 2.33112237 radians (see commentary

on Proposition 14); for λ = π
2

,

f f f
π π π π
2 2 2 2

0



 −









 + 



 =sin cos ,

or

f f
π π π π
2 2 2 2





 − = 



 −





tan ,

which has only one solution in the interval π π
2

,




, namely f

π π
2 2





 = .

Differentiating (8), we have

(f′(λ) – 1) sin f(λ) + {(f(λ) – λ) cos f(λ) – sin f(λ)} f′(λ) + sin λ = 0

(9) ′( ) = ( ) −
−

( ) = ( )
( ) +

f
f

f
f

f
f

λ λ λ
λ λ

λ λ
λ λ

sin sin

cos cos ( )
tan 

tan 

tan
2

,

since f
f

f
λ λ λ λ

λ
( ) − =

− ( )
( )

cos cos

sin
.

We can see that f′(λ) ≤ 0 so long as f(λ) + λ ≤ π (because tan f(λ) ≤ 0).

For λ = 0, f(λ) + λ = δ < π and f′(λ) + 1 = 1 + tan

tan

δ
δ
2

 = 0.54893386 > 0.

So f(λ) + λ increases from δ so long as f′(λ) ≥ –1. If there exists a value of λ
such that f′(λ) = –1, we have, for that value,

tan tan tanf
f f

( )
( ) ( )λ λ λ π λ λ= − + = − +



2 2

,

hence λ = 2π – 3 f(λ), which makes f(λ) ≤ 2
3
π .

Putting λ = 2π – 3 f(λ) into (8), we have
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(4f(λ) – 2π) sin f(λ) + cos f(λ) – cos 3f(λ) =

2sin f(λ) (2f(λ) – π + sin 2f(λ) ) = 0,

which gives f(λ) = π
2

, so λ  = π
2

, a value for which formula (9) is

indeterminate. Let us put λ = π
2

 + u, f(λ) = π
2

 + v; we have

f′(λ) =
tan

tan 

u v

v

+
2 ,

where v f u≈ ′



π
2

 when u tends to 0. From which it follows, if we look at

the limit, that

 ′

 =

′

 +

′



f
f

f

π
π

π2
2

1

2
2

,

an equation that gives ′

 = −f

π
2

1
2

 (the only negative root). So we conclude

that f′(λ) > –1 and that f(λ) + λ increases from δ to π and thus has an upper

bound π; it follows that f′(λ) ≤ 0 and that f decreases from δ to π
2

 for 0 ≤ λ

≤ π
2

.

We know that ψ is an increasing function of θ if α < β or if α ≥ β and

θ ≤ α – µ; it follows that ψ λ
λ ψ

−
−cos cos

 is a decreasing function of θ if α < β,

λ ≤ π
2

 and λ ≤ ψ ≤ f(λ), or if α ≥ β, θ ≤ α – µ, in which case λ ≤ ψ ≤ψm

≤ π
2

.

In the case where α ≥ β, we can also examine the interval α – µ ≤ θ ≤
β thanks to the expression

ξ = ⋅ ⋅CL

CL

CL

LO

LO

LO
=

ψ λ
ψ λ

ψ λ α θ
ϕ

ϕ

ϕ
−

− ⋅

− −( )
⋅

2
2

2

2

2
2

sin

sin sin

sin

sin
,
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in which the last factor decreases as a function of ϕ, and thus of θ. The first

two factors are decreasing functions of θ if the same is true of ψ, that is, if

α ≥ β and θ ≥ α – µ. Thus, when α ≥ β, ξ decreases as a function of

θ ∈ [–β, β] for 0 ≤ λ ≤ ψ, that is, when the point (θ, λ) is below the curve

for ψ (Figs 2.67 and 2.68).

ψ

−π/3 π/3α−µ0

m

π/3−π/3 0

Fig. 2.67: α π= 5
12

, β π=
3

Fig. 2.68: α = β = 
π
3

α – µ = 0.282288719
ψm = 1.11197574

In the case where α < β, ξ will decrease if λ ≤ π
2

 and ψ ≤ f(λ), that is,

θ ≤ θ–(f(λ)); when θ = θ–(f(λ)), we have d

d

ξ
θ

 < 0, but d

d

ξ
θ

 becomes plus

infinity for θ = 2α – β. So there exists a value θ4 of θ between θ–(f(λ)) and

2α – β for which d

d

ξ
θ

 goes from negative to positive; it can be established

that this value is unique and that ξ decreases in the interval –β ≤ θ ≤ θ4 and

then increases. Similarly, if λ ≥ π
2

, there exists a value θ4 between θ–(λ) and

2α – β such that ξ decreases as far as θ4 and then increases. The region of

the plane (θ, λ) in which Ibn al-Haytham’s statement is true is determined

by the inequality

∂ξ
∂θ

ϕψ ψ λ
ϕ

α θ ψ λ
ϕ

α θ= ′ − + −( ) − − −( ) ≤2 0sin cos ,

or
(10)      ((θ – θ–(λ)) ψ′ – ψ + λ) sin(α – θ) – (θ – θ–(λ))(ψ – λ) cos(α – θ) ≤ 0

and θ4 is determined by the equality in (10).
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Note: If θ ≤ α – µ′, ψ ≤ π
2

 and we have λ ≤ ψ ≤ f(λ), so d

d

ξ
θ

 ≤ 0 and it

follows that θ4 ≥ α – µ′.
We may note that θ4 is a decreasing function of λ. Its minimum value is

θ–(λ) since λ ≤ ψ. Let us write θ = θ–(λ) + u in the equality in (10). We

have ψ λ ψ ψ= + ′ + ′′ + …*
*u u

2
2  and ′ = ′ + ′′ + …ψ ψ ψ* * u  using ′ ′′ψ ψ* *,   to denote

the values of the derivatives for θ = θ–(λ).

Putting these into the first term of (10), we get

u2 1
2

′′ − ( )( ) − ′ − ( )( )





+ …− −ψ α θ λ ψ α θ λ* *sin cos

The minimum value of θ4 is thus given by the equation

(11) ψ ″ sin (α – θ) – 2ψ′ cos (α – θ) = 0.

If we use equation (6) of the commentary on Proposition 14, this
equation can be transformed into

(12) P X

Q X
X A BX

( )
( )

( )= −2

or
R(X) = 2X(A – BX) Q(X) – P(X) = 0.

We have

R(X) = BX4 – 3AB2 X3 + BX2 (3A2 + 2B2 – 2) – A3X + B – B3,

where A  = cos α , B  = cos β  and X  = cos (α  – θ). For θ = α  – µ′, let

X = cosµ′ = B

A
, we have

R
B

A A
B A A B



 = −( ) −( ) >1

1 04
2 2 2 2

and for θ = 2α – β, X = cos(β – α), we get

R(cos(β – α)) = – sin2β sin3(β – α) sin α < 0.
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An investigation like that carried out in the commentary on Proposition

14 shows that R(X) decreases from R
B

A




  to R(cos(β – α)) for B

A
 ≤ X  ≤

cos(β – α). Thus R becomes zero for a determinate value of X = cos (α – θ)

that corresponds to the minimum value of θ4, namely, θ4,m, which is the

value that was required.
Ibn al-Haytham’s statement is true in the case where θ4,m ≥ 0, which is

equivalent to R(cos α) ≥ 0. Now

R(cos α) = R(A) = (1 – B) (A4 (3B – 1) + B(B + 1) (1 – 2A2));

so the required inequality is

A4 (3B – 1) – 2B(B + 1) A2 + B(B + 1) ≥ 0.

Let us put S(x) = (3B – 1) x2 – 2 B(B + 1) x + B(B + 1); we have

S(1) = –(B – 1)2 < 0 and S(B2) = B(B – 1)2 (3B2 + 3B + 1) > 0;

so S has a root x0 between B2 and 1, and θ4,m ≥ 0 is equivalent to x0 ≥ A2 =

cos2α0(β). The condition is α ≥ α0 (β), with

(13)       cos cos
cos cos sin cos

cos sin

cos

2
0

2

2
2

2 2
2

3 1
1

1 2 2 2

α β β β β β β

β β β

β

( ) =
−

−
=

+
tan

,

or

tan
sin

cos
2

0 2 2 2α β

β β

β
( ) =

tan
.

We can see that α0 (0) = 0 and α β
0
2

2 2
4

≈  as β tends to 0; thus

d

d

α
β β

0

0

4 2
2

0 594603558
=

= = .  and d

d

β
α

α0 0 0

4 8 1 68179283
=

= = . .
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We also have α π π
0 2 2




 =

 

and

 

d

d

β
α

β
αα π α π

0
2 2

0
0 0

0
= →

= =lim
cos
cos

.

In Fig. 2.50 we have drawn the graph of α0; Fig. 2.51 shows the

corresponding limit for the point Ω.

The maximum value of θ4, namely θ4,m, is obtained for λ = 0; it is the

value that was denoted simply by θ4 in the commentary on Proposition 14.

Fourth part: examples
We have chosen the same numerical values as in the commentary on

Proposition 14: β π=
3

 and α π= 5
12

, π
3

, 1, 0.8, 0.75, π
5

, 0.55, 0.524 and π
12

(Figs 2.67 to 2.75).

We have α π
0 3




 = 0.649766287 which lies between 0.75 and π

5
 and

α π
1 3




  = 0.932458266, between 1 and 0.8. In Figs 2.69 to 2.75, we have

drawn three curves numbered I, II and III respectively. Curve I is the graph
of ψ as a function of θ; it goes from the point (–β, 0) to (2α – β, π), the

function being an increasing one. Curve II is the graph of λ1 as a function of

θ; it goes from the point of inflection (θ0, λ0) of curve I to the point

(2α – β, λ1,m) and it ends in the vertical segment θ = 2α – β, 0 ≤ λ ≤ λ1,m.

The tangent to curve I at the point with ordinate λ1 cuts the curve again at

the point with abscissa θ (Figs 2.69 to 2.71); the function λ1 of θ decreases.

Curve III is the locus of points (θ4, λ); it runs between the points (θ4,m, λ4,m)

and (θ4,M, 0) and λ is a decreasing function of θ4.

Ibn al-Haytham’s first inequality holds for points (θ, λ) below curves I

and III while his second inequality holds for points (θ, λ) below curves I and

II. So the two inequalities both hold in the convex region below the three
curves I, II and III.
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Fig. 2.69: α = 1, β π=
3

; θ0 = 0.220685446, λ0 = 1.37400009

θ1,m = –0.833589085,  λ1,m = 0.663153782
θ4,m = 0.876987428,  λ4,m = 1.92921309
θ4,M = 0.9500790346

Fig. 2.70: α = 0.8, β π=
3

; θ0 = –0.237427409, λ0 = 1.333256925

θ1,m = –0.8722605915,  λ1,m = 0.644350074
θ4,m = 0.349257621,   λ4,m = 1.98972898
θ4,M = 0.537776499
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Fig. 2.71: α = 0.75, β π=
3

; θ0 = 0.306153376

λ0 = 1.33286849,  θ1,m = –0.881787545
λ1,m = 0.642761272,  θ4,m = 0.4346042281
λ4,m = 1.97974742,   θ4,M = 0.229510063

Fig. 2.72: α = 
π
5

, β π=
3

; θ0 = –0.450887379, λ0 = 1.3408219

θ1,m = –0.904851513,  λ1,m = 0.644432659
θ4,m = –0.0472107752,  λ4,m = 1.93620825
θ4,M = 0.1831447956
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Fig. 2.73: α = 0.55, β π=
3

; θ0 = –0.53311435, λ0 = 1.35133667

θ1,m = –0.919752538,  λ1,m = 0.649924588
θ4,m = –0.213335252,  λ4,m = 1.89753524
θ4,M = 0.0211388793

Fig. 2.74: α = 0.524, β π=
3

; θ0 = –0.55910491, λ0 = 1.35583723

θ1,m = –0.9247411,  λ1,m = 0.652562409
θ4,m = –0.266150532,  λ4,m = 1.88337596
θ4,M = –0.0326171933
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Fig. 2.75: α = 
π
12

, β π=
3

; θ0 = –0.801761542, λ0 = 1.43427582

θ1,m = –0.978448494,  λ1,m =0.704691461
θ4,m = –0.724212075,  λ4,m = 1.72529646
θ4,M= –0.566379471

This long analytical investigation, illustrated with examples and figures,
shows that Ibn al-Haytham’s statements describe the variation of certain
rather complicated transcendental functions. The validity of his statements
depends on certain conditions that Ibn al-Haytham could not express in
explicit terms; formulating these conditions belongs to a kind of mathematics
that would not appear until eight centuries later.

All the same, the investigation of the variation of trigonometric
functions, as carried out by Ibn al-Haytham, and prompted by research in
astronomy, marks the beginning of work in a new area of mathematical
research, one in which operations combine methods that might be described
as function-oriented and ones that relate to infinitesimals.
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2.2. ASTRONOMY

In the second part of his book, Ibn al-Haytham at once sets out upon an
investigation of the apparent movement of the seven wandering stars,
beginning with the two luminaries.

2.2.1. The apparent movement of the seven wandering stars

The movement of the moon

Ibn al-Haytham begins by mentioning some of the results established by
Ptolemy, although he does not adopt the models Ptolemy proposes in the
Almagest. Ibn al-Haytham had indeed criticized these models in his Doubts
concerning Ptolemy.14 Let us first of all mention some of these results set
out by Ibn al-Haytham.

• In its apparent movement on the celestial sphere, the centre of the
moon always lies in the plane of a great circle; this is the oblique orb.

• The oblique orb cuts the circle of the ecliptic along the line of the
nodes NN′  (see Fig. 2.76) and makes an angle with the plane of the ecliptic.
Ibn al-Haytham considers this angle as fixed. In fact, it varies very slightly,
remaining close to 5°. The oblique orb thus lies within the Zodiac.

The movement of the centre of the moon on its oblique orb is direct,
that is, it is in the same sense as the signs of the Zodiac (the period is one
month).

• The movement of a node along the circle of the ecliptic is retrograde,
that is, it is in the opposite sense to the signs of the Zodiac (the period is
eighteen years and eight months).

• The plane of the oblique orb rotates about the axis defined by the
poles of the ecliptic, and every point of the oblique orb of the moon
describes a circle about that axis.

• If we refer the oblique orb of the moon to the equator, we can show
that the angle the ecliptic makes with the plane of the equator is 24°,
according to Ptolemy; 23°33′ according to the calculations of ninth-century
astronomers, and 23°27′ according to later calculations; and the plane of the
ecliptic cuts the equator along the diameter γγ′ (the line of the equinoxes).

• The oblique orb cuts the plane of the equator along a diameter MM′.
• Since the nodes N and N′ move along the ecliptic, the inclination of the

oblique orb to the equator is variable.

14 Al-Shukºk ‘alæ Ba†lamiyºs (Doubts concerning Ptolemy), ed. A. Sabra and
N. Shehaby, Cairo, 1971, pp. 15–19.
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Once these results have been set out as being secure – unlike all the
other results put forward by Ptolemy – and the terminology has been
defined, Ibn al-Haytham proceeds to construct his models for the movement
of the wandering stars, starting with the moon. But in order to do this he
introduces a new concept, that of the ‘time required’. This expression is
used to denote the time that elapses during the diurnal motion of the moon
(or of any wandering star), from the equator to the meridian, a time
represented by an arc of a circle. Since all the simple motions involved in
constructing the apparent motions are circular and uniform, that makes it
possible to give a measure for the time required by an arc of a circle, and
the time can thus be handled by means of the theory of proportions.

The apparent motion of the moon is complicated. It is the result of
combining three motions: first, motion in the plane of its oblique orb, from
north to south and back again, with respect to the equator – this motion is
direct, that is, from west to east. The second motion is that of the orb,
inclined at an angle, about the axis of the ecliptic – the motion of the node.
Finally, there is the diurnal motion.

This composition of motions produces a phenomenon that Ibn al-
Haytham finds extremely interesting. Let us suppose that the moon is at the
point B in its orb. The point B is a point on the celestial sphere, and thus
participates in the diurnal motion, that is it moves round a circle parallel to
the circle of the equator. The moon also participates in this motion. The
point B is a point on the oblique orb, and is thus subject to the motion of the
node along a circle parallel to the ecliptic. The moon is also subject to this
motion. But in addition the moon has its own motion along its oblique orb.
Thus, after a time t, the point reached by the point B and that reached by
the moon cannot be identical. It is the distance between B and the moon
that we need to be able to find, and it will be the main subject of Ibn al-
Haytham’s investigation, as we shall soon see.

Proposition 16. — Let O be the centre of the universe, P the north pole of
the ecliptic, H the north pole of the equator. The great circle PH is called the
circle of the poles.

If X is the north pole of the oblique orb, the angle POX is equal to the
inclination of the orb to the plane of the ecliptic, so POXˆ  ≅ 5°, an angle Ibn

al-Haytham considers to be constant. So when the node N moves round the
ecliptic, the pole X describes a circle round the axis OP; this circle cuts the
circle of the poles in two points, the point A between P and H, and the point
B beyond P. Considering arcs of great circles, we have for all positions of X

PA PB PX= =   and  HA HX HB< < .
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Fig. 2.76

In the course of one revolution, HX  increases from HA  to HB, then
decreases from HB  to HA.

HB ≅ 23°27′ + 5°,

HA  ≅ 23°27′ – 5°, with today’s values.

The oblique orb cuts the circle of the equator in a diameter MM′; so a
semicircle of the oblique orb is north of the equator and a semicircle is south
of the equator. The midpoint of the northern semicircle gives the maximum
northern inclination of the moon, and the midpoint of the southern
semicircle gives the maximum southern inclination. These points, Q and Q′,
are the points of intersection of the oblique orb and the great circle that
passes through the pole H of the equator and the pole X of the oblique orb.
So the positions of these points are variable and the inclinations that
correspond to them also vary.

The motion of the moon on its orb takes place in the direction of the
succession of the signs of the Zodiac, whereas the motion of the node N, like
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that of a general point in the oblique orb about the axis OP of the ecliptic, is
in the opposite direction to that of the signs of the Zodiac.15

Investigation of the motion of the moon between its rising and its the
meridian transit

Let ABC be the eastern half of the circle of the horizon, BED the half of
the orb of the moon that is below the horizon and let H be the north pole of
the equator (Fig. 2.77).

We suppose that the moon starts at the point B and that on its orb it
moves from north to south, from the point B towards the point E. (Each
day the moon describes an arc of about 13° in direct motion.)

Through the point B we draw the circle BIO16 with pole H (Fig. 2.77).
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Fig. 2.77
ABC horizon, AHC meridian, BED oblique orb of the moon
H pole of the equator, BIO parallel circle

a) In the course of the diurnal motion (which is rapid), the point B of
the orb describes this circle in retrograde motion and passes across the
meridian at the point I. The moon participates in the diurnal motion, but
does not remain at the point B of the orb. When the moon reaches the
meridian at the point N, the point B has passed the point I and is at point O
of the parallel circle BI; thus on its orb the moon has traversed the arc BB1

15 West to east —> direction of the signs of the Zodiac, direct motion about the axis
of the world.

East to west —> direction contrary to that of the signs of the Zodiac, retrograde
motion, direction of the diurnal motion.

16 The letter O does not mean the same thing here as it did in Fig. 2.76.
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which has reached the position ON to the west of the meridian and south of
the parallel circle BIO.

b) This assumes that the point B remains on the parallel circle BI, that is
that its declination is constant. But B, a point on the orb, is carried along by
the motion of the ascending node on the ecliptic (in a retrograde direction).
We draw through B an arc of a circle BQ whose pole is the pole of the
circle of the ecliptic – the circle BQ is parallel to the circle of the ecliptic; so
B moves on the arc BQ while still participating in the diurnal motion; it thus
reaches a point that in general is not the same as point O.

In the figure, we assume the poles H and P are above the horizon, and
that points I and Q are on the meridian and above the horizon of the point
B.

Position of the circle BQ with respect to the circle BI

• If the great circle from H, the north pole of the equator, to the point B
passes through the pole P of the ecliptic, then the circles BI and BQ touch
one another at B (Fig. 2.78).

If P lies between H and B, BP BH< , then the circle BQ is north of
circle BI.

If BP BH> , then the circle BQ is south of the circle BI.
In either case, the circle HPB is orthogonal to the two circles BI and

BQ.

I

Q
H

P

B

O

Fig. 2.78: BP BH<

• If the great circle from H to the point B does not pass through the
pole P of the ecliptic, the circles BI and BQ intersect at B and at a second
point B′ (Fig. 2.79).



MATHEMATICAL COMMENTARY 179

B

B

Q

I

P H

′

                

I

Q
H

B

P

B′

    Fig. 2.79   Fig. 2.80

• If the great circle from the pole P to the point B makes an acute angle
with the arc BI, that is if PBIˆ  is acute, then PBIˆ  < HBIˆ  (right angle); the
arc BQB′, which cuts the meridian above the horizon, is thus south of the

arc BI (Fig. 2.80).
If the angle PBIˆ  is obtuse, then PBIˆ  > HBIˆ ; the arc BQB′, which cuts

the meridian above the horizon, is thus north of the circle BI.

Let t be the time the moon takes to move from B to N, and let X be the
arc corresponding to the motion of the node17 in this time t. The arc X,
which is an arc of the circle BQ, is very small. Let B′  be the second point of
intersection of the circles BQ and BI.

• If X = BB′ , then O is at B′ and the arc ON is the arc traversed by the

moon on the oblique orb in the time t (ON  = BB1 ) (see Fig. 2.77).

• If X < BB′ , then after time t, B will not have reached B′, it will not

have returned to the circle BI.
• If X > BB′ , then B describes the arc BB′ of the circle BQ, reaches B′

on the circle BI, then goes past B′.
In these last two cases, the position of B after time t is not at point O.

Let M be the position of the point B on the circle BQ after time t, that is at
the moment when the moon crosses the meridian at N. So in the first case
(O = M = B′ ) the point M can be at O on BI and in all other cases it can be
north or south of the circle BI.

17 We know that the motion of the node corresponds to an arc of 3′ a day in the
direction contrary to that of the signs of the Zodiac (Fî dhikr al-aflæk, in Thæbit ibn Qurra,
Œuvres d’astronomie, ed. R. Morelon, p. 21).
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If t is the time the moon has taken to move from B  to N , t is
represented by the arc BS of the circle BI. The point B of the circle BQ has
arrived at S on the circle BI and the point B of the orb has arrived at M
(Fig. 2.81.1 and 2.81.2).

SM  is the arc traversed by the point B of the orb in time t because of
the motion of the node.

Moreover, the arc MN is the arc traversed by the moon on its orb in the
time t.
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  Fig. 2.81.1             Fig. 2.81.2
a) M to the north of the circle BI b) M to the south of the circle BI

Through H, a pole of the equator, we draw the great circle HM which
cuts the parallel circle BI at the point L. Through M we draw the parallel
circle which cuts the meridian in P.18 In both cases, NP is the inclination of
the arc NM. We have PI  = LM , the inclination of the arc SM.

We suppose that the moon moves from B towards E and that its motion
is from south to north; the arc BED of its orb is thus north of the circle BI
(Fig. 2.82). The arc BED is, by hypothesis, below the horizon. In the course
of the diurnal motion, the point B describes the circle BI. The moon moves
on its orb, away from the circle BI and to the north of it. The moon reaches
the meridian at the point N, north of I; at that moment the point B arrives at
the point O. The arc of the oblique orb described by the moon would then
be in the position ON, if we did not have to take into account the motion of
the node. We might go on to pursue the investigation as in the first case,
taking account of the motion of the node.

18 The letter P does not mean the same as it did before and does not indicate the pole
of the ecliptic.
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Fig. 2.82

To summarize, if the motion of the moon on its orb is from north to
south, then N will be south of the circle BI and M will be north or south of
the circle BI. If the motion of the moon on its orb is from south to north,
then N will be north of the circle BI and M will be north or south of this
circle. So we can give the following definitions:
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Fig. 2.83
I the point where B crosses the meridian
N the point where the moon crosses the meridian
Q point of intersection of the circle BQ (motion of the node) and

the meridian
BI time required: time taken by the point B, carried by the diurnal

motion, to arrive at the meridian
NI  inclination of the motion of the moon
QI  inclination of the motion of the node
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Investigation of the motion of the moon between its passage across the
meridian and its setting in the west

Horizon ABCD, A north, B east, C south, D west (Fig. 2.84).
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Fig. 2.84

The moon is at N on the meridian; let BND be the parallel circle of N,
NE an arc of the orb and NI the arc described by N through the motion of
the node.

When the moon reaches the horizon at the point S, the point N has
moved past the point D and the arc NE described by the moon on its orb is
now in the position SO (the figure shows the arc NE south of the circle
BND, the moon goes from N towards E, so the arc SO is south of the circle
BND).

If we take account of the motion of the node, the position of N when the
moon reaches the horizon is in general not the same as O. Let this position
be M.19
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Fig. 2.85

19 The text continues to use the letter S in this case.
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If we take account of the three motions and if the arc NK is the time the
moon takes to travel from N to the point S on the horizon, then the arc NI
of the motion of the node has assumed the position KM and the arc NE is in
the position SM (Fig. 2.85).

We draw the great circle HS which cuts the circle ND in G and through
M  we draw an hour circle which cuts the arc HS  in Q : the arc N D
represents the time required. SG is the inclination of the arc NS described
by the moon (or the inclination of the motion of the moon). QG  is the
inclination of the arc MK (or the inclination of the motion of the node).

The motion of the sun

Proposition 17. — Here, as for the motion of the moon, Ibn al-Haytham
begins by defining his terms, setting out principles and determining the
various motions that make up the motion of the sun. This time we are
concerned with two motions: the diurnal motion and the proper motion
along the ecliptic. So the model proposed for the motion of the sun is
simpler than that constructed for the motion of the moon.

The sun moves on the ecliptic in the direction of the succession of the
signs of the Zodiac, which is to say it has a direct motion around the axis of
the ecliptic, if we are looking north.

The circle of the ecliptic cuts the circle of the equator in the equinoctial
points γ and γ′. Ibn al-Haytham considers these points γ and γ′ as fixed (see
Note).

The circle of the ecliptic is divided into four equal arcs by the diameter
γγ′ and the diameter perpendicular to it, σσ′, which gives the solstices:

σ, north of the equator, is the summer solstice; it is the point of the
ecliptic with the maximal northern declination.

σ′, south of the equator, is the winter solstice; it is the point of the
ecliptic with the maximal southern declination (σ and σ′ lie in the plane that
contains the poles of the equator and those of the ecliptic).

Note: We may take the plane of the ecliptic as fixed with respect to the stars,
but the same is not true for the plane of the equator. Hence the
phenomenon of the precession of the equinoxes.

The point γ moves along the ecliptic, in retrograde motion, and makes a

complete circuit in 26 000 years, so the equinox occurs earlier.
Thus, after setting out the terms and principles concerned, Ibn al-

Haytham constructs a model for the motion of the sun from its rising at a
general point on the horizon as far as its passage across the meridian. He
considers separately the two following cases.
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Let ABCD be a horizon, BKDL the circle of the ecliptic. First, we
consider a point K below the horizon and a point L above the horizon. The
succession of the signs of the Zodiac is in the order B, K, D, L.

The equator has a diameter AC and its north pole is at the point H. We
suppose the point B is the initial position of the sun. Let the circle BEM be
the parallel through the point B that cuts the meridian in E. In the course of
the diurnal motion the point B describes this parallel circle in a retrograde
direction about the axis ωH  (ω  being the centre of the sphere of the
Universe). In the time that the point B takes to describe the arc BE, the sun
has moved along the ecliptic from B to K; let B1 be the position of the sun
on the ecliptic when the point B reaches the point E. So the sun lags behind
the point B in the diurnal motion; when the sun crosses the meridian at the
point I, the point B has reached the point G on the circle BEM, G being
west of the meridian. At that moment the arc BB1 of the ecliptic has
assumed the position IG, where I is south of E. The arc BB1 of the ecliptic
has thus assumed the position IG to the west of the meridian circle. So on
the celestial sphere the sun has described an arc BI lying between the two
parallel circles BE and B1I. The arc BG represents the time in which the sun
has moved from the point B to the point I. The arc IE is the inclination of
the arc GI with respect to the parallel circle BEM; the arc IE is also the
inclination of the motion of the sun from the point B to the point I. The arc
BE is called the required time.
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Fig. 2.86

We suppose the semicircle BKD is above the horizon and the proper
motion of the sun is from B to L. In this case, the succession of the signs of
the Zodiac is in the order B, L, D, K.
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The point B reaches the meridian at the point E, and is at point G when
the sun reaches the meridian at the point S. The arc SG which is the arc
traversed by the sun on the ecliptic will lie to the west of the meridian and to
the north of the parallel circle BEM. The arc BE is the time required, the arc
ES is the inclination of the motion of the sun with respect to the hour circle
BEM.

The motion of the planets

Proposition 18. — For Mars, Jupiter and Saturn, the inclination of the orb
with respect to the plane of the ecliptic shows no noticeable variation.

For Mercury and Venus, the inclination of the orb with respect to the
plane of the ecliptic changes. The plane of the orb oscillates about the line of
nodes on either side of the ecliptic. The inclination varies between 0° and a
limiting angle.20

In all cases, that is for the five planets, the inclination – whether variable
for Mercury and Venus or taken as constant for Mars, Jupiter and Saturn –
is a small fraction of the inclination of the ecliptic to the equator.

As in the case of the moon, the inclination of each of the orbs with
respect to the equator is variable, and none of the orbs could be placed in
the plane of the equator.

Each of the orbs cuts the plane of the ecliptic along a line of nodes, and
has a very slow rotation about the axis of the ecliptic.

20 The maximum of the inclination of the inclined orb with respect to the ecliptic is 7°
for Mercury and 3°24′ for Venus. For the superior planets, the inclination is nearly
constant, 1°51′ for Mars, 1°19′ for Jupiter and 2°30′ for Saturn.
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Motion of each of the five planets on its inclined orb, referred to the circle
of the ecliptic

If the motion is direct, that is, if it takes place in the direction of the
succession of the signs of the Zodiac, the planet moves from west to east,
from north to south and from south to north with respect to the poles of the
equator, as is the case for the motion of the moon on its orb. But there is a
difference between the motion of a planet and that of the moon which arises
from the fact that the epicycle of a planet is at an angle to the plane of the
orb: because of this, the centre of the planet does not lie in the plane of the
orb but to the north or south of it.

If the motion of the planet is retrograde, that is, if its motion with
respect to the ecliptic is in the direction contrary to the succession of the
signs of the Zodiac, then the planet moves from east to west.

This has no effect on the investigation of the inclination with respect to
the equator or with respect to an hour circle.

Halt between retrograde and direct motion (station)

During the halt, we see no motion in longitude, either direct or
retrograde, but we may perhaps observe a variation in the latitude caused
by the inclination of the epicycle.

If ABC is a horizon, B a point on the inclined orb, the position of the
planet at a given instant, BED the hour circle of the point B, for all forms of
the figure, the planet is moving on its orb towards the meridian circle
because of the diurnal motion, and it also has its proper motion on its orb.
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If the planet’s motion is direct from B to B1, then the point B arrives at
the meridian circle at the point E before the planet. When the point B1 of
the inclined orb reaches the meridian at H, the point B has reached G, the
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arc BB1 of the orb has assumed the position HG to the west of the point H,
to the north or south of the circle BED.

The position of the planet on the epicycle is given by the arc HI to the
north or south of the arc GH. In the time BG, the planet has moved from
the point B to the point I; the required time is BE, the inclination of the
motion is IE.

If the motion of the planet is retrograde, it reaches the meridian before
the point B does so.
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The arc described on the orb is in the position HG, east of the point H
and north or south of the circle BED. The position of the epicycle is given
by the arc HS, with S north or south of H.

If the point B corresponds to a ‘station’, a halt between direct and
retrograde motion, then for the duration of the halt, the planet departs from
the circle BED only by the distance that corresponds to the inclination of
the epicycle, a distance that may not be perceptible. If the planet reaches the
meridian, it will do so at the point E.

2.2.2. Required time and inclination

Let A be the initial position of a wandering star, at a known time t0; B
the position it has reached after a known time t, that is at the instant t1 =
t0 + t. Let CA and CB be the two great circles through the pole C of the
equator, C, and let AD be the hour circle through points A and D on the
circle CB.



188 CHAPTER II

The case of the sun or one of the seven wandering stars

Proposition 19. — It has a proper motion along the ecliptic, and the ecliptic
rotates about the axis through the poles CC′.

Let A be the position of the sun on the circle of the ecliptic at a known
time t0. The point A is subject to the diurnal motion and describes an arc AG
of an hour circle in the known time t; this time will be measured by the arc
AG. The sun, which was at A, moves along the ecliptic and in the time t it
traverses the arc AA′; but the ecliptic rotates about the axis CC′, and after
time t the arc AA′ is in the position GB.
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B lies on the parallel passing through A′ and the angles the arcs GB and
AA′ make with the parallel AD are equal.

We know the positions of A, G and B; so the arcs CA, CG, CB are
known and CA = CG, so BD = CB – CA is known.

The point G is the position the point A reaches after time t and the point
D corresponds to the point B, the position reached by the sun; so the arc
GD is known and represents how far the point A is ahead of the sun in the
diurnal motion.

On the celestial sphere the sun has traversed an arc AB lying between
the point B and the hour circle AD (that is, between the two parallel circles
AD and A′B). The motion along the arc AB has two components: the proper
motion of the sun on the ecliptic and the diurnal motion.

The arc AB has right ascension AD21 and inclination BD; these two
arcs are known.

21 That is, if δ is the difference between the right ascensions of two points, what we
have here is: δ (A, B) = δ (A, D) = measure of the arc AD.
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In fact, if G and B are two known points on the ecliptic, we know GD
and DB (according to Propositions 5, 6 and 7); as, moreover, we know
AG, from which we can find AD.

The case of the moon or one of the five planets

Proposition 20. — Let A be the initial position of the moon; the great circle
CA cuts the ecliptic in E; and let B be the position of the moon after time t,
the great circle CB cuts the hour circle of A in D and the ecliptic in I. We
know the arcs CA, AE, CB, BI; we have CD = CA, so we know BD and
DI .

In time t, the moon has traversed an arc AA′ of its orb, and this arc has
reached the position GB. The point G is west of B, and in general is north or
south of the circle AD, because of the motion of the node.

The circle CAE has reached the position CRGH, where R is on the circle
AD; we have CR = CA and GH  = AE . The points H and I on the ecliptic
are known.

Let AK  be the arc that measures the known time t, the great circle CK
cuts the ecliptic in N, CK  = CA.

Fig. 2.91: C, the north pole of the equator, and the parallel circle through the
point A, the initial position of the wandering star concerned, are fixed
elements. The circle of the ecliptic and the orb of the wandering star are both
subject to the diurnal motion, the wandering star has a proper motion along its
orb, and, in addition, the orb moves with respect to the ecliptic.
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If it did not share the motion of the node, after time t the point A would
arrive at K; but because of the motion of the node along the ecliptic, A
arrives at G, so K and G have the same ecliptic latitude, the arc KG is
parallel to the ecliptic ( KG  = NH ) and corresponds to the displacement of
the node; the point N is known, so NI  is known. The arc KD is the right
ascension of the arc NI, so KD is known; now AK  is known, so AD, the
required time, is known. And we have seen that BD, the inclination of the
motion of A to B, is known.

The case of the planets

Proposition 21:
a) Inferior planets
For each of these planets, the inclination of the orb with respect to the

ecliptic is variable (see above, p. 185), consequently the point G will in most
cases lie north or south of the hour circle AD.

The arc AA′, which the planet describes on its orb (starting from the
point A) in a known time t, is known, and after time t the arc has reached
the position BG. If the motion of the planet on its orb is direct, A′  is east of
A, so G is west of B, and if the motion is retrograde, G is east of B.

The required time and the inclination of the motion are found as in the
case of the moon using the initial and final positions A and B. The required
time is represented by the arc AD and the inclination is the arc BD.

However, in the case of Mercury and Venus, the position of the body is
defined by its latitude and longitude with respect to the ecliptic. Thus this
position depends on the inclination of the orb with respect to the ecliptic and
the inclination of the epicycle with respect to the orb. When the coordinates
of the planet with respect to the ecliptic are known, its coordinates with
respect to the equator are also known.

b) Superior planets
The motion of the nodes is very slow and has no effect in the course of

a day.
The point G lies on the circle AD
– west of B if the motion of the planet is direct
– east of B if the motion is retrograde.

For these three planets, the inclination of the epicycle to the plane of the
orb needs to be taken into account; but at any known instant, the planet’s
latitude with respect to the ecliptic is known; so arcs such as CA and CB
are known.
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For the five planets:
If the motion of the planet on its orb is direct, then G is west of B, so

the required time is less than the known time, that is, it is less than the time
that has elapsed during the motion (as in the case of the moon).

If the motion of the planet is retrograde, then G is east of B, so the
required time is greater than the known time.

If the planet is at a halt, that is, at station, its position with respect to the
ecliptic does not change during the known time, G is at D. The required
time is equal to the known time.

Inclination of an orb with respect to the equator22

Proposition 22:
Sun: The dihedral angle between the plane of the ecliptic and that of the

equator is constant, α = 23°27′.
α is the maximum inclination of points of the ecliptic with respect to the

equator and corresponds to the solstices:
– summer solstice to the north (first point of Cancer)
– winter solstice to the south (first point of Capricorn).

Moon: The dihedral angle β between the orb of the moon and the
ecliptic varies very little and Ibn al-Haytham takes it as fixed; it is equal to
the maximum inclination, that is, the inclination with respect to the ecliptic
of the point furthest north or south. But the points that are furthest north or
south change position with respect to the circle of the ecliptic; so their
positions with reference to the ecliptic move along the circle of the ecliptic.
This change of position is due to the rotation of the orb of the moon about
the axis of the ecliptic.

Here, Ibn al-Haytham is repeating the explanations he gave for the
moon at the beginning of his treatise (see below, p. 316), explanations
relating to the changes in position of the north pole of the orb with respect
to the north poles of the equator and of the ecliptic.

The inclination of the orb of the moon with respect to the equator
depends on the relative positions of these three poles and the position of the
nodes on the ecliptic.

first point of Aries = γ  (spring equinox)
first point of Cancer = σ  (summer solstice)
first point of Libra = γ′  (autumn equinox).

22 See also p. 369.
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If the ascending node is at either of the points γ or γ′, then the poles H
of the equator, P of the ecliptic and X of the orb lie on a great circle that
cuts the orb at the points N  and S, which are the most northerly and
southerly points of both the equator and the ecliptic.

Let α be the inclination of the ecliptic to the equator
β  the inclination of the orb to the ecliptic
δ  the inclination of the orb to the equator.

• Ascending node at the point γ  (first point of Aries).
In this case, δ  = α + β.

S

X P

H

N

α
β

γ

orb

ecliptic

equator

Fig. 2.92

• Descending node at the point γ (so the ascending node is at the point
γ′ (Libra)).

In this case δ = α – β.
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So in these two cases, the positions of the northernmost point N and
southernmost point S of the inclined orb with respect to the equator are
known.

Investigation of the case in which the ascending node is at neither γ nor γ′

Let ABC be the circle of the ecliptic with pole N , let ADC  be the
inclined orb with pole E, let B and D be the midpoints of the semicircles
with diameter AC. The points N, E, B, D lie on a great circle that cuts the
circle of the equator in K. The equator cuts the ecliptic in M and L, the
points of the equinoxes. The points A and C are the nodes.

<a> Let M be a point on the arc BC. The circle MKL, the circle of the
equator, cuts the inclined orb in H. Let O be the pole of the equator. The
great circle EO cuts the circle of the equator in G, and the arc AD of the
inclined orb in I. We have EO  = GI  and GI  is the extreme inclination of
the inclined orb with respect to the equator.

If O is the north pole, I is the southernmost point of the orb. If O is the
south pole, I is the northernmost point of the orb.

O

E
N

K

D

B

I

S
A

L

H

M C

G

B′

Fig. 2.94

In the figure, we suppose that N, E, O are the north poles of the ecliptic,
the orb and the equator; C  and A  are the descending node and the
ascending node respectively; L and M  are the spring equinox and the
autumn equinox respectively, I is the southernmost point of the orb with
respect to the equator.
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The points A, C, B, D, L, M are known points; the same is true for the
poles E, N, O.

The arc MB of the ecliptic is known, thus the arc MK that corresponds
to it on the equator is known and consequently the arc KB of the circle
perpendicular to the plane of the ecliptic is also known. Moreover, the arc
BD is known, so the arc KD is known too.

Menelaus’ theorem gives

sin
sin

sin
sin

sin
sin

KD

DB

KH

HM

CM

CB
= ⋅ ;

KD, DB, CM and CB are known arcs, so sin
sin

KH

HM
 is known; so

KM KH HM= +  is known.
Ibn al-Haytham deduces from this that HM  is known.

Justification: KH  = KM  – HM ; so we have

sin

sin

KM HM

HM

−( )
= a,  a known ratio

a
KM HM KM HM

HM
= ⋅ − ⋅sin cos cos sin

sin

a KM HM KM= ⋅ −sin coscotan ;

KM  is known, so cotan HM  is known, so HM  is known.

Applying Menelaus’ theorem to the arcs of great circles EG, HKG
which intersect in G, EK and HI which intersect in D, gives us:

sin
sin

sin
sin

sin
sin

EI

IG

ED

DK

KH

HG
= ⋅ ;

the ratios of the second term are known; so the first ratio is also known. But
EI  is a quadrant of a circle, so IG is known and IG is the inclination of the
extreme point I with respect to the equator.

We construct a great circle through N and I; it cuts the circle of the
ecliptic in S. We have

sin
sin

sin
sin

sin
sin

KB

BD

KM

MH

HC

CD
= ⋅ .
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The first two ratios are known and CD is a quadrant of a circle, so HC
is known.

The arcs HI  on the inclined orb and HG  on the equator are quadrants
of circles, because G and I lie in the plane of the great circle that passes
through the poles E and O.

Now CD is a quadrant of a circle, so CH DI= , hence DI  < 1
4

 circle; I

lies between A and D. The great circle through N and I will cut the arc AB
in S, which lies between A and B. We have

sin
sin

sin
sin

sin
sin

CS

SB

CI

ID

DN

NB
= ⋅ .

ID CH=  is known, so CI  is known, DN  and NB are also known, so
sin
sin

CS

SB
 is known and CB is a quadrant of a circle, CS CB BS= + .

Ibn al-Haytham deduces from this that the arc SB is known. In fact
sin
sin

CS

SB
= cotan SB is known, so SB is known and the point S on the ecliptic is

thus known – the position of S gives us the ecliptic longitude of I.

<b> The proof is the same if M, the equinoctial point, lies on the arc AB.

<c> Let us suppose the equinoctial point is at the point B.
The circle of the equator cuts the inclined orb at the point H. Let O be

the pole of the equator. The great circle through E and O cuts the equator
in G and the orb in I. The arc GI is the maximum inclination of the orb with
respect to the equator, and GI  = EO .

C is the point of a solstice, the great circle NO, the circle through the
poles, cuts the equator in K, NC is a quadrant of a circle, KC  is the
inclination of the ecliptic with respect to the equator; so KN  is known.

We have
sin
sin

sin
sin

sin
sin

BD

DN

BH

HK

KC

CN
= ⋅ .

BD and DN  are known, so sin
sin

BH

KH
 is known.

We have BK BH HK= +  = 1
4

 circle, so sin
sin

BH

KH
= tan BH , so BH  and

HK  are known.
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The point H is the pole of the circle EOG, so HG  is a quadrant of a
circle, hence BG HK=  is known.

N E

O

H

K

C

D

A

I

S

B

G

ω

Fig. 2.95
ABC is the ecliptic, with pole N
ADC is the inclined orb, with pole E
BHK is the equator, with pole O

We have
sin
sin

sin
sin

sin
sin

EI

IG

ED

DB

BH

HG
= ⋅ ;

the last two ratios are known, so sin
sin

EI

IG
 is known and the arc EI  is a

quadrant of a circle; so IG is known, and is the maximum inclination of the
inclined orb to the equator.

In the same way,
sin
sin

sin
sin

sin
sin

BN

ND

BK

HK

HC

HD
= ⋅ ,

so HC  and HD are known and the arc HC is equal to the arc DI. In fact, if
we call the centre of the sphere ω, we have Hω ⊥ ωO and Hω ⊥ ωE,

because H is the point of intersection of the orb with the equator, and E and
O are the poles of the equator. So Hω is perpendicular to the plane EωO,

hence Hω ⊥ ωI; so the arc HI is a quadrant of a circle, as is the arc DC.

Consequently, DI  = HC .
Further, the great circle NI cuts the ecliptic in S and we have
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sin
sin

sin
sin

sin
sin

SC

SB

CI

ID

DN

NB
= ⋅ ,

so sin
sin

SC

SB
 is known and the arc CB is a quadrant of a circle; so the arc BS is

known and the point S is known.

Proposition 23. — In this proposition Ibn al-Haytham investigates the
inclinations of the orbs of the inferior planets: Venus and Mercury.

For each of these planets, the inclination of the orb to the plane of the
ecliptic is variable (see Proposition 18).

If the position of the northernmost or southernmost point of the orb
with respect to the circle of the ecliptic is known, then the inclination of the
orb with respect to the equator can be found by the method given for the
moon.

In particular, if the nodes are at the equinoctial points, then the
northernmost and southernmost points of the orb (in relation to the equator
and referred to the ecliptic) are the points of the solstices. In this case, the
values of the inclinations in relation to the equator are found from the
inclinations in relation to the ecliptic, using the method given for the moon
(see p. 192).

If the nodes are not at the equinoxes, we adopt the same method as for
the moon.

A new problem:

The points of intersection of the inclined orb and the equator rotate
about the axis defined by the two nodes.

The inclined orb rotates about this axis; so every point of the inclined
orb describes an arc of a circle that has the nodes as its poles. For a point on
the orb there is an associated point of the ecliptic that has the same
longitude (the position referred to the ecliptic; see section 2.1). Ibn al-
Haytham gives a very detailed description of the motion of this point. On
each orb he considers the four arcs that are the quadrants of circles cut off
by the nodes and the northernmost and southernmost points in relation to
the ecliptic, taking into account that the apogee moves along the eccentric.

Proof: Let ABCD be the circle of the ecliptic and AECG the orb of Venus
or Mercury. The direction of succession of the signs of the Zodiac is the
direction ABCD and H is the north pole of the ecliptic.
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Let E be the southernmost point of the orb of the planet Mercury (if E
were the northernmost point of the orb of Venus, it would be necessary to
take H′ and H as the north and south poles of the ecliptic).

<H >
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Fig. 2.96
In this figure the points A  and C , B  and D , E  and G  are
diametrically opposite one another. The nodes are A and C.

a) arc AE and arc CG
Let I be a point on the arc AE and I′ a point on the arc CG;23 the great

circle HI cuts the arc AB in L, angle ALI is a right angle and AI AL> . The
circle with pole A, which passes through I, cuts the arc AB in K, which lies
between B and L, and the arc HL in R. The arcs HB and HK are quadrants
of circles, since H is the pole of the circle AKB; so the poles of the circles
HB and HK lie on the circle AKB and A is the pole of the circle IKR. So the
plane AKB is a plane of symmetry for each of the circles HKH′ and IKR,
which have a common point K; so their common tangent at K is the straight
line perpendicular to the plane ABC at K. The point K is the midpoint of the
arc IKR and L is the midpoint of the arc ILR.

Let M be a point of the arc KI, the great circle HM cuts the arc KL in N
and the arc KR in J. So the two points J and N have the same ecliptic

23 If we take the point I′ on the arc CG  we may suppose that I and I′ are
diametrically opposite one another on the circle AECG; in that case, the great circle HI
cuts the ecliptic in L on the arc AB , in L ′ on the arc CD  and we have L  and L ′
diametrically opposite one another. The same would happen for the points K, K′, R, R′,
etc. which will be defined later.
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longitude as the point M, and the point I has the same ecliptic longitude as
L.

If the orb rotates about AC until it is superimposed on the ecliptic, the
point I describes the arc IMK and the point with the same longitude on the
ecliptic describes the arc LNK in the direction of the signs of the Zodiac. If
the orb moves on, beyond the circle of the ecliptic, and continues to rotate
about AC, the point I describes the arc KJR and the point with the same
longitude on the ecliptic describes the arc KNL from K to L, that is, in the
direction contrary to that of the signs of the Zodiac.

The arc RL is equal to the arc LI, which was the maximum inclination
of the point I south of the ecliptic; so RL will be the maximum inclination
north of the ecliptic.

If the inclined orb then rotates so as to return to the ecliptic, the point I
describes the arc RK , and the point with the same ecliptic longitude
describes the arc LNK in the direction of the succession of the signs of the
Zodiac.

If the motion of the inclined orb continues, the point I describes the arc
KI and the point with the same ecliptic longitude describes the arc KL in the
direction contrary to that of the signs of the Zodiac.

Ibn al-Haytham then gives a summary, for the point I′ of the arc CG, of
the results he has proved for the point I of the arc AE, and brings in the
points H′, K′, R′.

b) arc EC and arc GA
Let there be a point P on the arc EC and a point P′ on the arc AG; we

may take P and P′ to be at opposite ends of a diameter.
The great circle HP cuts the circle of the ecliptic orthogonally at the

point O, so CP CO>  and AP AO>  > 1
4

 circle. The circle with pole C that

passes through P cuts the circle of the ecliptic in Q and the arc HO between
H and O, at the point T. The great circle HQ, orthogonal to the arc BC at
the point Q, is tangent to the circle PQT at the point Q. We take a general
point S on the arc PQ; the great circle HS cuts the arc QO in U and the arc
QT in Z.

Ibn al-Haytham then repeats, for the point P of the arc EC, the work he
carried out earlier for the point I of the arc EA, when the inclined orb
rotates about AC moving from maximum inclination (southerly) to zero
inclination, then from zero inclination to maximum inclination (northerly).
When the point P describes the arc PQ then the arc QT, Ibn al-Haytham
investigates the change in position of the point of the ecliptic that has the
same longitude as P and describes the arc OQ in the direction contrary to
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that of the signs of the Zodiac, then the arc QO in the direction of the signs
of the Zodiac.

Ibn al-Haytham then investigates what happens when the orb returns to
its initial position: the point P then describes first the arc TQ, then the arc
QP.

The same method could be used to investigate the change in position of
a point P′ of the arc AG.

Conclusion: The investigation carried out for the point I would thus be valid
for any point of the orb AECG. Ibn al-Haytham carries out the investigation
using parallel circles whose poles are the nodes A and C.

For a point I, we consider two motions: the rotation of I about the line
of the nodes and the movement of its position referred to the ecliptic, that is
the movement of the point L.

• in the rotation about the axis AC, the arc IM described by the point I
in a known time is known; this is a result Ibn al-Haytham proves later.

x
α

ω

ω′
m

n

I

E

A

orb
eccentric

Fig. 2.97
ω′  centre of the eccentric E m′ω̂  = x
ω  centre of the orb E n′ω̂ = α E Aω̂  = 1 right angle

The time taken by the inclined orb to move from maximum inclination
to zero inclination is known; it is the time the centre of the epicycle takes to
traverse on the eccentric an arc α that corresponds to a right angle whose
vertex is at ω, the centre of the Universe, thus an arc that corresponds to a
quadrant of a circle on the inclined orb. This arc α is known and the arc EB
that corresponds to the maximum inclination is known (see Fig. 2.96). While
the centre of the epicycle traverses an arc x on the eccentric, starting from
the apogee, the most northerly or most southerly point of the orb traverses
a part EX  of the arc EB and we have
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x EX

EBα
= .

The motion on the eccentric is uniform; if tα is the time that corresponds
to the arc α, and tx the time that corresponds to the arc x, we have

x

α
= tx

tα

.

Moreover if a point such as I reaches the point M when E reaches X,
the points A, M, X lie on a great circle that is a possible position of the orb;
we have

tx

tα

= x

α
 = 

EX

EB

IM

IK
= .

For a known time tx (where tx = 0 for x = 0), the points X of the arc EB
and M of the arc IK are known. Consequently, the arcs EX, XB, IM and
MK are known.

We have AM AI=  which are known arcs; L and N are the points of the
ecliptic that have the same longitudes as I and M respectively.

Let us now show that the arc described on the ecliptic by the point L
that has the same longitude as I (the ecliptic position of I) in a known time is
known.

We return to the preceding figure (Fig. 2.96). The great circle AM cuts
the arc EB in X.

Let I be a point of the orb; the arc EB is the inclination of the orb to the
circle of the ecliptic. Let I be the position of the point under investigation at
a known instant; let m be the position of the centre of the epicycle at that
instant (Fig. 2.97) and let x be the arc that separates m from the apogee;
Em = x is known.

If m  is at the apogee, x = 0, and the arc EB is then the maximum
inclination im which is known.

If m is not at the apogee, then the arc XB = i satisfies

i

im

= α − x

α
,

so the arc XB = i is known.
In a known time, the point I describes the arc IM and the point of the

ecliptic that has the same longitude as I describes the arc LN.
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To specify the point L, we may write

• sin
sin

sin
sin

sin
sin

HB

BE

HL

LI

IA

AE
= ⋅  (triangle EIH and circle ALB).

HB, HL and AE  are quadrants of circles, BE  and IA are known arcs, so
LI  is known.

• We also have sin
sin

sin
sin

sin
sin

HE

EB

HI

IL

AL

AB
= ⋅  (triangle BHL and circle EIA).

The first two ratios are known, so the third one is also known; now

AL LB AB+ =  = 1
4

 circle, so AL is known. So the point L that has the

same longitude as I is known.
To specify the point N, we proceed in the same way as before:

• 
sin
sin

sin
sin

sin
sin

HB

BX

HN

NM

MA

AX
= ⋅ ,

so the arc NM is known, because all the other arcs are known.

•  
sin
sin

sin
sin

sin
sin

HX

XB

HM

MN

NA

AB
= ⋅ ,

so the arc NA is known, the point N, which has the same longitude as M, is
thus known.

Conclusion: If a general point, such as I, moves on a circle whose poles are
the nodes, so as to traverse the known arc IM in the time tx and the known
arc IK in the time tα, then the arcs LN and LK of the ecliptic traversed in the
same times by the point that has the same longitude are also known. The
direction in which these arcs are traversed may be either that of the signs of
the Zodiac or the reverse one, as we have seen in our examination of
successive points on the arcs AE, EC, CG and GA of the inclined orb.

Proposition 24. — In this proposition Ibn al-Haytham investigates the
motion of the planets on their orbs, as well as the upper bounding of the
ratio of a required time to the inclination of the part of the motion proper to
this required time.
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The motion of the sun on its orb from the apogee of the eccentric to its
perigee is an accelerated motion (the motion of the centre of the epicycle on
the eccentric is uniform). The angular speed as seen by an observer on the
earth increases. But the motion on the orb from perigee to apogee will be a
decelerated motion.

In his proof, Ibn al-Haytham distinguishes four cases for the position of
the wandering star. The inclined orb is divided into four arcs by the
diameter in which it cuts the plane of the equator and its northernmost and
southernmost points in relation to the equator.

Let ABC be the inclined orb, CEG the circle of the equator, whose
north pole is D. Let A be the northernmost point (or a point between the
northernmost point and the point C). The wandering star is north of the
equator and moves from A  to B , that is, from north to south, and by
hypothesis from apogee to perigee.

D

I N

AH
MK

C E L
G

B

Fig. 2.98.1

The circles CEG, KMH, INA are parallel and the circles DC, DE, DL,
DG are orthogonal to them, hence

EN AG=  = declination of A
ME HL=  = declination of H
BE  = declination of B

so NB = ∆(A, B) and MB = ∆(H, B) 
24

time IA = (IA) time taken to traverse AB
time KH = (KH) time taken to traverse HB.

24 ∆ indicates the difference of the declinations, that is, of the inclinations with
respect to the equator (see p. 65).
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Since the wandering star concerned is subject to the diurnal motion, the
time required to travel from H to B is KM  = KH  – MH  (Fig. 2.98.2).25

Ibn al-Haytham represents times by arcs of hour circles; as we shall see
later, (IA) and (KH) appear only in terms of their ratio, so we do not need to
know the positions of the points I and K. The argument assumes that the
direction from K to H or from I to A is that of the diurnal motion.

Thus far, Ibn al-Haytham was considering motion starting from a
position on the equator and the required time was measured by an arc of a
great circle. Here, the starting point of the motion is a general point of the
sphere and the required time is measured by an arc of the hour circle of that
point.

We shall show that
IA

NB

KM

MB
( ) > ( ) ;

the arc MB, part of the arc NB, is called a ‘proper’ arc for the time (KM).
Let ω be the centre of the orb, the radii ωA, ωH, ωB cut the eccentric

in the points A1, H1, B1 respectively; then the times shown as (IA) and (KH)
which are the times to traverse the arcs AB and BH of the orb are also the
times taken for mean motion on the arcs A1B1 and B1H1 of the eccentric, so

25 In fact, the wandering star moves from position H to position B on its orb in

known time t, let KH  = t. The arc KH has orientation from K to H in the direction of the
diurnal motion. But the points H and B are subject to the diurnal motion. The points H
and B of the celestial sphere have moved to H1 and B1 respectively after the time t. We

have HH BB t KH1 1≅ ≅ =  (similar arcs). The wandering star has moved from its initial
position H to its final position B; the difference between the right ascensions of these

points is δ H B HM HH H M, 1 1 1 1 1( ) = = − ; but HH KH1 =  and H M HM1 1 = , so

δ H B KH HM KM HM, 1 1( ) = − = = .

K

E

B

MH

A

D

H M

B1

1
1

Fig. 2.98.2

So the time KM corresponds to the difference between the right ascensions of the
initial and final positions of the wandering star in the motion during time KH, which is
the result of the motion on the orb and the diurnal motion. This was the definition of the
required time given at the beginning of the part of the work concerned with astronomy.
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time
time

IA

KH

A B

B H
( )

( )
= 1 1

1 1

because the mean motion is taken as uniform.
But from Propositions 8 and 9

A B

B H

AB

BH
1 1

1 1

> ,

so
IA

KH

AB

BH
( )
( )

> ;

and from Proposition 6
AH

HB
 > 

NM

MB
,

hence
AB

BH
 > 

NB

BM
.

So we have
IA

KH
( )
( )

 > NB

BM
.

The ratio of the times (IA) and (KH) is equal to the ratio of the arcs of
great circles that are similar to the arcs IA and KH, hence

time IA

NB
( )

 >
time KH

BM
( )

 >
time KM

BM
( )

.
2 6

This result is valid for any point H of the arc AB, a point H with which
are associated the required time KM and the arc BM, the difference in
inclination proper to the time KM.

time timeIA

A B

KM

H B
( )

( ) > ( )
( )∆ ∆, ,

.

26 See previous note.
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Fig. 2.99

This inequality can be expressed as follows: the mean speed of variation
of the inclination over the interval AB is less than the mean speed of
variation of the inclination over the part interval HB. This is a way of
stating that the motion of the wandering star over the arc concerned is
accelerated.

In the absence of the concept of instantaneous speed, Ibn al-Haytham
introduces the mean speed over a variable finite interval.

The conclusion required here is that the speed of variation of the incli-
nation has a lower bound that is a positive quantity.

What we have here is a result in celestial kinematics that represents what
Ibn al-Haytham wanted to achieve in his work. The result is expressed in
terms of the variation of the mean speed of the motion of a wandering star.
The mean speed can then be handled within the theory of proportions,
thanks to the fact that the times as well as the distances are represented by
arcs of circles.

In fact, given that all the components of the motion are circular and
uniform, time can always be represented by arcs of circles and it appears
only as a parameter of the motions concerned. Time takes on a quite
different meaning when circular and uniform motions are abandoned, as
happens in astronomy after Kepler. For Kepler himself, considering elliptical
paths, a certain uniformity in the motions is manifested through the area
law. So time can be represented geometrically as an area swept out by a
radius vector and it does not really enter into the mathematics as a para-
meter. It is not until Newton that time takes on its full significance as a
measure of the motion, with the concepts of instantaneous speed and of
acceleration.

Proposition 25. — This proposition deals with the second case for the
preceding proposition. We take the wandering star to be south of the
equator; it moves southwards, from apogee to perigee.
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Let ABC be the inclined orb whose southernmost point is C, let AMG
be the circle of the equator whose north pole is D.

The planet moves from the point B towards the point H (in the direction
from apogee to perigee); it traverses the arc BH in the direction towards the
southernmost point.

D

AMN
O

J
G

FB
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K
Q E
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S

C

Fig. 2.100

PO  = BM  = ∆ (A, B) (∆: difference of the inclinations)

QO = EN  = ∆ (A, E)

HO = ∆ (A, H)

HP = ∆ (B, H) —> corresponds to the time (BI)

HQ = ∆ (E, H) —> corresponds to the time (EK)

(CS) = ∆ (H, C)

BP  = δ (B, H) (δ: difference of the right ascensions)

EQ  = δ (E, H), SH  = δ (H, C).

AC  is a quadrant of a circle, the points B and H are known, so the arcs
HC, HS and SC are known; and the same is true for all the other arcs we
have mentioned.

Let us put
BP

PJ

HS

CS
= .

This defines the point J on PO, so the arc PJ is a known arc and HP

PJ
 is

known.
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Let us also put
FI

IB

HP

PJ
( )
( )

= ;

which defines the point F on IB. The time (FI) is then known.
We shall show that

FI

PH

KQ

QH
( ) > ( )

.

We have seen above that
IB

KE

BH

HE
( )
( )

= .

but from Proposition 7
BH

HE

BP

EQ
> ,

so
IB

KE

BP

EQ
( )
( )

> ,

hence

(1) IB

BP

KE

EQ
( ) > ( ) .

Moreover, from Propositions 6 and 7 we have

HS

SC

EQ

QH
> ,

2 7

so

(2) BP

PJ

EQ

QH
> .

From (1) and (2) we get
IB

PJ

KE

QH
( ) > ( )

;

27 In fact, from Proposition 6, we have HC

HE

SC

HQ
>  and from Proposition 7 HC

HE

HS

EQ
< ,

hence HS

EQ

SC

HQ
> , so HS

SC

EQ

QH
> .
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but
IB

PJ

FI

HP
( ) = ( )

,

so
FI

HP

KE

QH

KQ

QH
( ) > ( ) > ( )

;

FI

HP
( ) , which is a known ratio, is greater than the ratio of the required time

(KQ) to the arc that corresponds to it and which is the part QH  of the arc
PH, the difference of the inclinations of the ends of the arc AB that is
traversed. There exists a time (FI) such that, for any point E of the arc BH,

time timeFI

B H

KQ

E H
( )

( ) > ( )
( )∆ ∆, ,

.

The argument given for the point E, with which is associated the point
Q of the arc HP, is valid for any other point of the arc BH.

Ibn al-Haytham again seeks to find the lower bound of the speed of
variation of the inclination. But, on the arc in question, we do not know
whether the speed of variation of the inclination is increasing, even if we
know that the angular speed is increasing. We cannot treat the mean speed
on the entire arc as a lower bound. That is why Ibn al-Haytham introduces a
suitably defined time (FI).

Ibn al-Haytham then says that the result established in (1) and (2) for an
accelerated motion from the northernmost point to the southernmost one,
that is, from apogee to perigee, remains true if the motion is from the
southernmost point to the northernmost one, that is, from perigee to
apogee, and is accelerated.

Ibn al-Haytham notes that we must exclude the two parts close to the
northernmost and southernmost points of the orb. At these points the speed
we are considering becomes zero. He points out that the upper bound of the
ratio of the required time to the difference between the inclinations can be
found for any interval that does not include the northernmost and
southernmost points of the orb, but that one cannot find an upper bound of
this kind for an interval that includes one of these extreme points. It is clear
that what he is concerned with here is a local maximum that excludes these
two extreme points; the upper bound does not extend over the complete
orb.

In other words, Ibn al-Haytham gives a lower bound for the mean speed
over any closed intervals in which the speed remains non-zero. This kind of



210 CHAPTER II

lower bound cannot be extended over the complete orb because the speed
does become zero at certain points.

Proposition 26. — Ibn al-Haytham next deals with a third case in which
the motion is from perigee to apogee. The motion of the centre of the
epicycle on the eccentric, which is uniform, is seen on the orb as a
decelerated motion; but Ibn al-Haytham assumes that the motion of the
wandering star on the epicycle is accelerated.

In the example he considers, the motion is from south to north.
Let ABC be the inclined orb and DEC the circle of the equator whose

north pole is H.
The wandering star moves from perigee to apogee, and from south to

north, on the arc of the orb that lies south of the equator.

I

K
Q

C

H

N

L

B

E G

M

A

D

Fig. 2.101.1

The point A is the southernmost point of the inclined orb CBA. The
motion of the planet is from A towards B on the orb, from perigee towards
apogee on the eccentric. In this case, if A1, M1 and B1 are the points of the
eccentric that correspond to the points A, M, B on the inclined orb, we
have, from Proposition 9,

 
B M

M A

BM

MA
1 1

1 1

> ,

hence
AM

MB

A M

M B
> 1 1

1 1

.
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If we let α and β denote two arcs of the orb (or of a circle equal to it)

that are similar to A M1 1 , M B1 1 , we have

α
β

 = 
A M

M B
1 1

1 1

,

so
AM

MB
 > 

α
β

,
2 8

a) AM  > α  and BM  > β (these inequalities correspond to the case in
which A1, M1, B1 lie close to perigee). In this case

AM

MB
 > 

α
β

 ⇒ 
AM

BM

−
−

α
β

 > 
α
β

.

We cut off from AM  – α an arc α′  such that

′
−

α
βMB

 = 
α
β

,

hence

 α α+ ′
MB

 = α
β

 α + α′ < AM .

28 If we show the orb with centre ω and the eccentric with centre O. If with the point
A there is associated the perigee A1 (Fig. 2.101.2), we have in this case

A M A OMˆ ˆω > 1 1, hence AM > α
and

A M A OMˆ ˆω < 2 1 1 , hence 2α > AM .

And we have seen (Proposition 9) that for this
case of the figure

AM

MB

A M

M B
> 1 1

1 1

;

that is,
AM

BM
 > 

α
β

.

ω
AA

B

C

C

O

B

1

1

1

1M

Μ

Fig. 2.101.2
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We have AM  – α < α,29 so

α
β

 > 
AM

MB

− α
,

hence
α
β

 + 
α

MB
 > 

AM

MB
,

hence
2α
β

 > 
AM

MB
,

so
2α + β

β
 > 

AM MB

MB

+

and a fortiori
2(α + β )

β
 > 

AB

BM
.

But
α + β

β
 = 

A B

M B
1 1

1 1

 = 
(IA)

(KM)
,

so
2(IA)
(KM)

 > 
AB

BM
.

b) AM  < α and BM  < β (these inequalities correspond to the case in
which A1, M1, B1 are close to apogee), with

AM

MB
 > 

α
β

.

Then we have
α
β

−
−

AM

BM
 < 

α
β

 < 
AM

MB
.

29 In triangle ωOM1, we have Oω < ωM1, so α > M̂1, α  + M̂1 < 2α , so A Mω̂  <

2α. So we have AM  < 2α or AM  – α < α.
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Let β′ be a part of the difference β – BM  such that

       
α

β
−

′
AM

 = 
AM

BM
β′ < β – BM .

We know that BM  < β implies β – BM  < BM ,30 so β′ < BM  < β. If we

add to α an arc α′ such that ′α
′β
 = AM

BM
, we then have α′ < AM , so α′ < α.

Assuming that AM  < α and BM  < β < 2 BM  implies 2α
β

 > AM

MB
, hence

2α + β
β

 > 
AM MB

MB

+

and a fortiori
2(α + β )

β
 > 

AB

MB
,

so, as in part a), we have
2(IA)
(KM)

 > 
AB

MB
.

c) AM  > α and BM  < β; this can happen if the points A1, M1, B1 lie

about midway between perigee and apogee.
We put JM  = α, so AJ  < JM  and AM  < 2 JM .

MQ  = β, so BQ  < BM , because BM  > β
2

.

Let S be such that SM

MB

JM

MQ
= , then we have

JM  > SM   and  JS

BQ

JM

MQ
= .

30 We may note that β – BM < BM  ⇒  BM  > 
β
2

 ⇒ AM

BM

AM< 2

β
  < 

2α
β

, which

Ibn al-Haytham uses later.
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A

M

J

S

B
Q

Fig. 2.101.3

We have AM  < 2 JM , so
AM

MB
 < 

2JM

MB
.

But BQ < BM  ⇒ MQ < 2 BM , so

AM

BM
 < 

2JM

BM
 < 

4JM

MQ
.

So
4JM MQ

MQ

+
 > 

AB

BM
,

that is,
4α + β

β
 > 

AB

BM
;

so a fortiori
4(α + β )

β
 > 

AB

BM
;

but α β
β
+  = ( )

( )
IA

KM
, the ratio of the times taken to traverse the arcs AB and

BM, so
4(IA)
(KM)

 > 
AB

BM
.

So in cases a), b), c), we know how to find a time t such that

t

(KM)
 > 

AB

BM
.
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But
AB

BM
 > 

NB

BL

NB = ∆ (A, B)

BL  = ∆ (B, M)

t

(KM)
 > 

NB

BL
  or  

1
NB

 > 
KM

BL
( )

,

known time t

A B

KM

B M∆ ∆( , )
( )

( , )
> .

In this case also, where the motion is decelerated, we find a positive
lower bound for the speed of variation of the inclination. This case is even
more difficult than the preceding one since the angular speed decreases.

Correction for the epicycle

In investigating the motion of the planet from perigee to apogee, we
have considered the arcs α and β of the eccentric associated with the arcs

AM and MB of the orb, without taking account of the epicycle.
If the planet is at M1 on the eccentric where A M1 1  = α, the observer, at

O, sees it at N on the orb; if the planet is at M2 on the epicycle, the observer
sees it at M.

AN  is the arc that has so far been associated with α

AM  = AN  + c,

c is the correction which, in the text, it is assumed must be additive.

AN  is the arc to be corrected

AN  = AM – c.

AM  is the arc obtained after the correction is made.

Similarly, the arc MB will be the arc obtained after the correction is
made, the arc to be corrected is MB c− ′.
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O ω AA

M

M

M

1

1

2

N

Fig. 2.102.1

Ibn al-Haytham examines three cases:

c

′c
 = 

AM c

BM c

−
− ′

;  
c

′c
 < 

AM c

BM c

−
− ′

;  
c

′c
 > 

AM c

BM c

−
− ′

.

• If c

′c
 = AM c

BM c

−
− ′

, then c

′c
= AM

BM
.

So we have

 
AM

BM
 = 

AM c

BM c

−
− ′

.

This reduces to the preceding case, because AM  – c and BM c− ′ are
the arcs we investigated before.

• If c

′c
 < AM c

BM c

−
− ′

, we then have c

′c
 < AM

BM
 < AM c

BM c

−
− ′

 (we know that

α
β

γ
δ

<  implies α
β

α γ
β δ

γ
δ

< +
+

< ).

We should then have, from the above,

 
AM

BM
 < 

AM c BM c

BM c

−( ) + − ′( )
− ′  

< 
known time
time ( )KM

.

• If c

′c
 > AM c

BM c

−
− ′

, we then have c

′c
 > AM

BM
.

Let AS be the correction for the arc AM, so the arc to be corrected is
MS; and let BO be the correction for the arc MB, the arc to be corrected is
then MO, so the arc that, after the correction is made, gives AB, is SO.
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A

M

U

S

B O

ω

Fig. 2.102.2
We suppose

(1)  
AS

BO
 > 

MS

MO
.

We have established that there exists a known time tc such that

(2) 
tc

(KM)
 > 

SO

MO
.

Let U be such that AU  = BO, then the arc SU AS BO= +  is known

and the arc SO is known, so the ratio US

SO
 is known.

Let t be a general time such that t

tc

 = US

SO
, we have t + tc

tc

 = UO

SO
, so

from (2) we have

 
t + tc

(KM)
 > 

UO

OM
.

But
UO

OM

AO

OM
>  and AO

OM

AB

BM
>

31

and moreover
AB

BM

NB

BL
> ,

so we have

31 Since AM

OM

AM

BM
> .
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t + tc

(KM)
 > 

NB

BL

and by permutation
t t

NB
c+  > KM

BL
( ) .

Proposition 27. — This proposition corresponds to the fourth case of
Proposition 24.

The circle of the equator is ADG with pole E, and the inclined orb is
ABC. The point C is the northernmost point on this orb. The planet moves
on the arc AC. On the eccentric the motion is from perigee to apogee.

G
L

K

D

A

B

E

HIC

S

O

P

N

U

Q

Fig. 2.103

We consider the motion on the arc BI which takes place in a known
time, (BS); H is a known point on the arc BI and the arc HI is traversed in a
known time, (HO). The times taken to traverse it are represented by arcs of
circles parallel to the equator.

The great circles EC, EI, EH and EB cut the circle of the equator in G,
L, K and D.

The circles through H and B parallel to the equator cut the arc IL at the
points U and N; so from Proposition 7 we have

BI

IH

BN

HU
> .
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The hour circle through I cuts the arc CG in P. The arc IC is known, so
IP , the difference between the right ascensions of I and P, and CP, the

difference between their declinations, are known; and IP

PC

HU

UI
> , from

Proposition 14.

Here we are using Proposition 14 with β  = π
2

 and α close to 23°27′, or

0.4092797 radians (the obliquity of the ecliptic), that is, satisfying the

condition that α β π< = = °
2 4

45 . We know that, for Proposition 14 to hold, the

range of θ must be restricted: θ ≤ θ3 (≤ θ4). For α = 23°27′, we find θ3 =

–0.881811255 = –50°31′27″.

The angle ϕ  subtended at the centre by the arc HC is given by

cos
cos cos – cos

sin sin
ϕ α β α θ

α β
= −( )

,

here − −( )cos
sin

α θ
α

 since β = π
2

.

The condition θ ≤ θ3 can be expressed as

cos
cos

sin
.ϕ

α θ
α

≥ −
−( ) = −3 0 6937389,

which gives ϕ ≤ 133°55′36″. On Fig. 2.104 we have shown the value α =

23°27′ and the corresponding value θ3 = –50°31′27″; we have also

indicated the extreme values of α for the case of Mercury, whose orbit is

inclined at 7°14″ to the ecliptic. The corresponding values of θ3 are

–62°16′18″ and –38°48′46″ respectively, which give maximum values of ϕ
of 133°42′49″ and 134°18′17″; the orbits of the other planets have smaller

inclinations to the ecliptic than that of Mercury. In any case, when α

increases from 0 to π
2

, the maximum value of ϕ increases very slowly from

133°33′51″ to 180°.
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Fig. 2.104

Now, HC AC< , which is a quadrant of a circle; so ϕ is always less than
π
2

 < 133°33′51″ and Ibn al-Haytham’s statement is thus correct.

Let Q be the point on the arc IL defined by BN

NQ

IP

PC
> , then we have

BN

NQ

HU

UI
> ,

where NQ  is a known arc.
Let tc be the known time defined above, which satisfies

t

OH

BI

IH
c

( )
> ,

and let t be the time defined by t

t

IN

NQc

= , we have

(1) t

NQ

t

IN
c >
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and the time t is known. But
BI

IH

BN

HU
> ,

so
t

OH

BN

HU
c

( )
> ,

hence
t

BN

OH

HU
c > ( )

.

Moreover
BN

NQ

UH

UI
> ,

(subject to the restriction mentioned above for the width of the arc CH), so

(2) t

NQ

OH

UI
c > ( ) .

From (1) and (2), we obtain

t

NI

OH

UI

OU

UI
> ( ) > ( )

.

OU is the required time associated with the arc UI, the difference
between the declinations of the points H and I. The proof is valid for any
point H lying between B and I (with the restriction noted above).

So we may use the same method to draw similar conclusions when the
motion of the planet is from the southernmost point to the northernmost
one, that is from perigee to apogee, and when the motion of the planet is
from the northernmost point to the southernmost one, that is from apogee
to perigee. In all these cases, we have a lower bound on the mean speed of
change of the right ascension.
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2.2.3. Investigation of the heights of a star above the horizon

The problem is introduced in Propositions 28 and 29. The sphere is
assumed to be right or inclined towards the south, that is, the north pole of
the equator is on the horizon or above the horizon. Ibn al-Haytham assumes
that the star crosses the meridian to the south of the pole of the horizon.

We may note that here Ibn al-Haytham is investigating how the height
of the star varies in the course of its motion, that is, as a function of time, in
the neighbourhood of M; every height less than that of M is reached at two
points of the trajectory. To obtain this result, Ibn al-Haytham appeals to the
continuity of the motion: every height intermediate between that of D and
that of M is attained once between X and M and once again between M and
D. In what follows, he shows that the height of the star decreases after the
meridian transit.

The following proposition provides a corresponding investigation for the
case where the star moves from the southernmost point to the northernmost
one.

In Proposition 30, Ibn al-Haytham proves that the point K at which the
body attains its maximum height is unique. He constructs a sequence of
points on the trajectory along which the body approaches K and employs
arguments from infinitesimal geometry on the sphere to prove that these
points all have height less than that of K. The basis for this reasoning is to
consider an infinitely small spherical triangle (that is, a triangle such that the
diameter of its circumcircle tends to zero) and to suppose it will behave like
a plane triangle with the same vertex.

In Proposition 31, Ibn al-Haytham tries to find a global version of the
property that, in Proposition 28, he proved held locally: each height less than
the maximum one is reached exactly twice. To prove this he makes use of
the same methods as in Proposition 30. We may note that he needs to use
Proposition 15 in a doubtful case, which slightly constrains the generality of
his conclusion.

Proposition 28. — Ibn al-Haytham assumes that, in moving on its orb, the
star goes from the northernmost point towards the southernmost one, but
without reaching the southernmost point.

For the sun, there is no supplementary hypothesis. For the moon we
have an accelerated anomalistic motion or the required additive correction
made by the epicycle. For the planets we have accelerated anomalistic
motion and/or accelerated motion of the epicycle.

In this case, Ibn al-Haytham investigates the heights of the star
a) between its rising and meridian transit, that is, the heights in the east;
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b) between its meridian transit and setting, that is, the heights in the
west.

C

B

A

D

H

GK
K

L

O

M

I
E

South North

S

N

P

′

X

YZ

Fig. 2.105

a) Let ABC be the horizon with AC as a diameter, ADC the meridian of
the place from which the observation is made; one of the seven planets and
luminaries rises at the point B.

Through the point B we draw the circle BE parallel to the equator, this
circle cuts the meridian in E.32 If the star had constant declination, in the
course of the diurnal motion it would describe this parallel circle. But the
star crosses the meridian at the point D. Through D we draw the circle
DHG parallel to the horizon and, through a point H of that circle, we draw a
circle parallel to the circle BE to cut the meridian in I and such that
HI

ID
> SN

NP
, which is a given ratio (Proposition 10).

We have assumed that SN

NP
 is greater than the ratio of the required time

to the inclination of the arc that represents that required time, for every arc

the star traverses between the points B and D (in particular SN

NP
 > BE

ED
).

We assume that I lies between E and D (if it does not, we choose a point
I and from it find another point H; Proposition 11 for the right sphere,
Proposition 12 for the inclined sphere).

The meridian plane ADC passes through the zenith, the pole of the
horizon, and the pole of the equator. So it is perpendicular to the plane
DHG and to the planes of the circles BE and HI.

32 The argument is valid for a right sphere or an inclined sphere. If the sphere is right,
any hour circle (parallel to the equator) is orthogonal to the circle of the horizon.
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HI

ID
> SN

NP
,

so
HI

ID

SN

NP

t

ID
> >  required

,
33

so HI  > required time corresponding to ID.
Let MI  be the required time that corresponds to ID, so M lies on the

arc HI and above the plane DHG. The trajectory of the star cuts the arc HI
at the point M so, before it reaches M, the trajectory has cut the circle DHG
in a point X that has the same height as D (this height is equal to CD). The
point X lies between the two parallel circles BE and HI. At the point M, the
height of the star is greater than CD. Thus, in the eastern part of its motion,
the star reaches a point whose height is greater than that of its meridian
transit.

33 This assumes that HI

ID

HI

DI
> . We know that ED is a very small arc and that

BC ED> , so 
SN

NP
 > 1 and it follows that 

HI

ID
 > 1, HI > DI. Arcs DI and HI belong to

circles with radii R and R′, in general R > R′. For example, for the sun we have R = R′
on the day of the equinox.

D

I

H

ω

α
β

′

Fig. 2.106

So the chord HI subtends an angle at the centre α > β, the angle at the centre subtended
by chord ID. Let us consider the point H′ of the meridian ADC such that I Hω̂ ′  = α. We
know, from Proposition 1, that

IH

ID

IH

ID

′ > ′ , or IH

IH

ID

ID

′
′

> ;

now

IH

IH

IH

IH

′
′

= .

Thus

IH

IH

ID

ID
> ,  or IH

ID

IH

ID
> .
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Let O be a general point between M and H on the circle HI; we draw
through O a circle LOK parallel to DHG, it cuts the meridian in the point L,
which is above D. The point M is above LOK and the points B and D are
below, so the star meets the circle LOK twice: a first time at Y when it is
moving from B to M and a second time at Z when it is moving from M to
D. The points Y and Z have the same height LC  LC DC>( ) .

The points X, Y, M, Z34 of the trajectory all lie to the east of the
meridian ADC. Let h be the height h(X) < h(Y) < h(M), h(X) = h(D) and
h(Y) = h(Z).

In the same way, to every point O′ of the arc HI between O and M
there corresponds a horizontal circle L′O′K′ that the trajectory of the star
meets at Y′ and Z′ such that h(Y′ ) = h(Z′ ), h(Y′ ) > h(Y), h(Z′ ) > h(Z). All the
heights in question are greater than the (common) height of X and D.

b) The motion of the star continues beyond D, that is, from the meridian
towards the western horizon. Here the height h of the star is decreasing
from h(D) to 0.

The hour circle DQ touches the horizontal circle DHG at D (because the
poles of these two circles lie on the meridian of D).

In the diurnal motion the point of the orb that was at the point D
describes the arc DQ, but the star has a proper motion that takes it away
from the circle DQ and towards the south. Let F be one of its positions, let
RFU be the hour circle of F; this circle cuts the meridian in R and
CR CD< ; but if h(F) is the height of F, we have h(F) < CR < CD; now CD
= h(D), so h(F) < h(D).

North South

West

Q

U

T

A C

G

H

F

J

X

D
R

H′

Fig. 2.107

34 X, Y, Z, O′, L′, K′ are not found in the text.
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Let XFT be the horizontal circle through F, it cuts the hour circle DQ in
a point T north of F. We construct through T and H′, the pole of the
equator, the great circle H′T; it cuts the hour circle RFU in a point north of
F; let this point be U. Arcs RU and DT are similar and RF RU< , so the arc
DT is greater than the arc similar to RF.

Arc FR lies east of the meridian H′FJ. The star does not return to this
meridian before setting; since its motion continues to lie south of the circle
RFU, the star will not meet the arc FT, nor the arc FX. It will meet the
horizontal circle XF, only once, at the point F. In the same way we may
show that, when it moves between the point D and setting in the west, the
star meets every horizontal circle between the circle DHG and the horizon,
and meets each of them only once.

Proposition 29. — The celestial sphere in regard to the given horizon is the
same as in Proposition 28. Ibn al-Haytham repeats the hypotheses for the
moon and the five planets and assumes that, on its orb, the star moves from
the southernmost point towards the northernmost point without reaching
the latter.

a) He first investigates the heights of the star between meridian transit
and setting.

Let ABCD be a horizon, ANGC the local meridian.
S
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N
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G
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<X>

<Z>
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Fig. 2.108

The star rose in the east and crossed the meridian at G; we are
investigating its motion from the moment of meridian transit until it sets at
the point D. Let N be the pole of the equator and GHI the horizontal circle
for G. The hour circle for G cuts the great circle ND in L. The arc GL is the
required time and LD is the inclination of the motion of the star between the
points G and D.
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Let SF

FO
 be a given ratio such that SF

FO
 is greater than the ratio of any

required time to the part of the inclination of the motion that is proper to
this required time. We choose a point H on the horizontal circle GHI so that
the hour circle of H cuts the meridian in the point K, which is such that
HK

KG

SF

FO
> . The great circle NH cuts the circle GL in E.

Arcs HK and GE are similar and KG HE= . So

 
GE

EH

SF

FO
> ,

by an argument like that in note 33 (p. 224).

Let GP be the required time corresponding to the inclination EH , we
have GP GE< . The great circle NP cuts the arc HK in M; we have
PM EH= , so in time GP the star has moved from G to M and we have
h(M) > h(G). The star sets at the point D, that is, h(D) = 0, so the star meets
the circle GHI between H and I, because the body is never again south of
the arc KH. Let X be the point of transit across the arc HI of the circle GHI,
we have h(X) = h(G).

We show as in Proposition 28a that on any horizontal circle of height h
such that h(G) < h < h(M), there will be two points where the star crosses it:
one, Y, lying between G and M, and the other, Z, between M and X.

b) Investigation of the height of the star between its rising at B and its
meridian transit at G.

Let BQ be the hour circle of the point B, let Q be a point on the
meridian circle ANGC (we can assume that the point Q lies south of G) and
let GL be the hour circle of G.

The hour circle of G touches the horizontal circle GHI at G. So the
circle GHI does not cut any of the hour circles that lie between GL and GQ.

Let JUT be a horizontal circle with height h(J) < h(G). As it moves from
B to G, the star meets JUT; let it meet it at the point X. Let H′X be the hour
circle of X. We have GU H X> ′  (from Proposition 13), so the great circle
NX cuts the arc GU, the arc XU lies to the east of X. So, in its motion from
X to G, the star will not pass through any point of the arc XU.
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The arc UT lies north of the circle GU and east of the meridian circle, so
the star does not meet this arc either during its motion from B to G, or after
its meridian transit at G.

The arc XJ lies south of the circle H′X, so as the star moves from X to
G it does not return to that arc.

Between rising at B and meridian transit, the star has passed through a
point of height h(J) once and only once. The same holds for any height h <
h(G), so h increases from 0 to h(G).

Proposition 30. — The point of maximum height is unique.
Ibn al-Haytham returns to a problem he has already considered

(Propositions 28 and 29) and pursues his investigation of the heights the star
reaches east of the meridian DC, in the part of its trajectory that lies above
the horizontal plane through D.

We have seen that the star can reach points such as Y and Z, where
h(Z) = h(Y) > h(D) (p. 225).

If hm is the maximum height, a point of height hm that is reached by the
star cannot lie either on the meridian circle or to the west of it.

Let us suppose that the horizontal circle OKI is such that CO = hm. We
draw through the pole N a circle NS that touches the circle OKI at S.

a) The star does not meet the arc SI: let us suppose that the star does
cross SI, say at G; the great circle NG cuts the circle OKI again in a point K.
Let GX  and KL be the hour arcs of G and K, then GX  is the required time
for the arc whose proper inclination is XD as the star moves from G to D.
The arcs GX and KL are similar, the required time whose proper inclination
is LD is part of LK ; let it be LU . In moving from G to D the star thus
meets the arc KL in U, where h(U) > hm; which is impossible, because hm is
the maximum height.
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So the star does not pass through any point of SI .
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Fig. 2.110
ω : centre of the sphere α : Nω̂Σ
Σ : pole of the horizon β : Iω̂Σ
N : pole of the equator

Note: To prove that the star does not pass through the point S, we can
follow the same line of reasoning as for the point G, considering the hour
circle of S.

b) Let us suppose that the point K of the arc SO is a point of meridian
transit of the star, we have h(K) = hm.

Let KL be the hour arc of K where L is a point on the meridian. The
arc KL is the required time whose inclination is LD when the star travels
from K to D. On the hour circle of O, we consider a point M such that OM
is the required time whose inclination is the arc OD. The great circle NM
cuts the arc KL in P and the circle OKI in F, thus the arcs PL and OM are
similar and measure the same time. The arc PL is the required time whose
inclination is the arc OD, so the arc PK is the time whose inclination is the
arc LO; but LO PM=  and M lies below the circle OKI, so h(M) < hm.

In the same way, we draw through the point F an hour circle on which
we take a point J such that FJ  is the required time for the inclination FM
(PM PF> ). The great circle NJ cuts OKS in Q and KL in U. Arcs FJ and
PU are similar, so PU  is the required time whose inclination is FM , so for
the time UK  there is the corresponding inclination PF  which is equal to UJ
and h(J) < hm.

Starting from Q in the same way as we started from F, we draw
through the point Q an hour arc QZ1 equal to the time whose proper
inclination is QJ, where Z1 lies below the circle OKI. The great circle NZ1

cuts KL in X1 and KO in Y1. Thus we have the time KX1 whose proper
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inclination is X1Z1. Starting from Y1, which corresponds to Q, we repeat the
procedure and obtain the points X2, Y2, Z2, which correspond to X1, Y1, Z1,
and so on.

For any i (i = 1, 2 … n), there will be a time KXi  whose proper
inclination is X Zi i , with

KX

X Z

KX

X Y
i

i i

i

i i

<

(with X Z X Yi i i i> , where Zi lies below the circle OK).
From Proposition 15, we have

KX

X Y

KX

X Y
i

i i

i

i i

+

+ +

<1

1 1

.

We make use of the second inequality in the proposition, which is
always true as long as α ≥ β – which is the case here since the pole N is
assumed to lie outside OKI, the horizontal circle of maximum height. Angle
α is Nω̂Σ  and angle β, Iω̂Σ .

So the ratio KX

X Y
i

i i

 decreases.
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Arcs XiYi and KXi are orthogonal, the angle between their tangents at
the point Xi is a right angle.

If we consider the rectilinear triangle KXiYi, with vertex Xi and with
sides the chords KXi and XiYi; in general the angle KXiYi is not a right angle.
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It is only after a certain number of iterations n that, for i > n, the
curvilinear triangle will be so small that the chords XiK and XiYi come to be
sufficiently close to the tangents. The curvilinear triangle KXiYi is then very
close to being a rectilinear and right-angled triangle. In which case,

KX

X Y

KX

X Y
Ki

i i

i

i i

≅ = cotan ˆ .

As the point Xi approaches K, the ratio KX

X Y
i

i i

 decreases and tends to

cotan K̂ .
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When Xi is close to K, the rectilinear triangle YiZi+1Yi+1 is also very close
to a rectilinear triangle similar to KXiYi, and we have XiYi = Xi+1Zi+1 and
Yi+1Zi+1 = XiYi – Xi+1Yi+1. As Xi comes close to K, KXi → 0, so XiYi = KXi

tan K → 0; as a result Yi+1Zi+1 → 0, the point Zi+1 comes closer and closer
to the horizontal circle OKI and approaches the point K.

So we have just proved that while the star passes through the point K, it
never at any point crosses the arc KO.

O

K W S

I

Fig. 2.113

Ibn al-Haytham considers a sequence of points along the trajectory of
the star between D and K; this infinite sequence tends to the point K and the
height of each of its points is less than the maximum height of the star.
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Proposition 31. — Heights in the east
This proposition follows on from Proposition 28. We return to the figure

for Proposition 28 (p. 223), in which B is the point at which the star rises in
the east, D is point of meridian transit and M the point at which the body
crosses the hour circle HI with h(M) > h(D). So the star has crossed the
horizontal circle DHG at a point that lies between the hour circles BE and
HI, let the point be called K. The only points at which the star crosses the
horizontal circle DHG are D and K.
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Fig. 2.114
θ : E1ω̂Σ
λ : angle subtended by the arc E1V at the centre of the hour circle of K

If X is any point on the arc DH and XY is an arc of an hour circle,
where Y lies on DI, then

 XY

YD
> HI

ID
 (Propositions 11 and 12).

Now HI

ID
>  required time

proper inclination
, for any required time when the star is

moving from B to D, H being chosen as in Proposition 28, so for any point
X on the arc DH, we have

XY

YD
> required time

proper inclination
, since XY

YD

XY

YD
> .

35

• So the star does not at any point cross the arc HD.
• Nor does the star meet the arc KG, since that arc lies to the north of K

and the star is moving towards the south.

35 See note 33 (p. 224).
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• Ibn al-Haytham goes on to prove that the star cannot meet the arc
KH.

We imagine a great circle NH higher than the point K. We know that, as
it moves from K to M, the star passes though the point M of the hour arc
HI; the body meets the great circle NH in a point other than H, since the
body cannot cross the hour circle HI at two points M and H. The point
where the body meets the great circle NH cannot lie to the south of the hour
circle HI, since the star could not return from such a southerly point to the
point M; so the point where it crosses the great circle is a point L that lies
between H and the hour circle of K.

The hour circle of L cuts DHG in a point P between H and K. In its
motion from K to L, the star does not pass through P, nor through any
other point of PH. The same is true for the motion of the body from L to
M, since it moves southwards, it cannot return to lie east of the great circle
NLH.

In the same way we prove that the star meets the great circle NP in a
point Q. The hour circle of Q cuts DHG in a point O that lies between P and
K and cuts the great circle NH at the point R. As it moves from K to Q, the
star does not pass through O, nor through any other point of the arc OP.
The arc QR is the required time for the motion of the star from the point Q
to the point L and the proper inclination of this required time is LR  (where
LR PQ HR= < ).

The hour circle of K cuts the great circle NP at the point V, thus the
required time for the star to move from the point K to the point Q is KV
and the inclination proper to it is VQ.

So we have proved that if a star passes through K it does not pass
through any point of the arc KG north of K. We know that it passes through
the points Q, L, M and D, but that it does not meet the arcs DH, HP, PO,
that is, it does not meet the arc DO.

We still need to consider points on the arc OK. For this we repeat the
previous constructions: the great circle NO cuts the arc KV in a point V1,
and the star meets the arc OV1 in a point X1; the hour circle of X1 cuts OK
in Y1 and PN in Z1. Next let X2 be the point where the star crosses the great
circle NY1, let Y2 and Z2 be the points of intersection of the hour circle of X2

with the circles OK and ON, and V2 the point of intersection of the great
circle NY1 with the arc KV. In this way we obtain the points Xi, Yi, Zi, Vi

(i = 1, 2…) such that X1Z1 is the required time for the star to move from X1

to Q; the inclination of the motion is Z1Q, and we have Z Q X O1 1= . In
general, X Zi i  is the required time for the star to move from Xi to Xi–1, the
inclination of the motion is ZiXi–1 and we have
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Z X X Y VYi i i i i i− − −= <1 1 1 .

The star passes through the point Xi, but does not pass through any
point of the arc Yi-1Yi.

When the star moves from the point K to the point Xi, the required time
is KVi, its proper inclination is ViXi and we have ViXi < ViYi-1. The arcs
ViYi-1 – and therefore the arcs ViXi – are smaller and smaller parts of the arc
ED, which is the inclination of the motion of the star from the point B to the
point D; this arc ED is itself very small (close to 4′ for the sun, less than 1°
for the moon, see footnotes p. 396). So, a fortiori, after a certain number of
iterations i, the curvilinear triangles KViYi-1 can be treated as if they were
rectilinear triangles, all right-angled at Vi and similar to one another. Then
we have, for every i:

KV

VY

KV

VY

KV

VP
i

i i

i

i i− −

≈ =
1 1

.

The arcs KVi and KV, the required times, are very small and the arcs
ViXi and VQ, which are their proper inclinations are also very small and are
such that ViXi < ViYi-1 and VQ < VP; Ibn al-Haytham then draws the

conclusion that there is no difference between the ratios KV

V X
i

i i

 and the ratio

KV

VQ
 (see below, p. 397).
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Since all the arcs under consideration are very small they can be treated
as equivalent to the corresponding chords; the conclusion can then be
written, for all values of i,

KV

V X

KV

VQ
i

i i
=

which is the same as saying that the points Xi are very close to the straight
line KQ, that is, that the trajectory of the star between the points K and Q
can be regarded as a straight line. All the points Xi lie above the horizontal
circle KO.

a) We shall show that the star does not pass through any point of the arc
KO.

We assume that the arc NH is above the point K.
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Let S be a point of the arc KO, let the great circle NS cut the arc KV at
the point Z. The curvilinear triangles KVP and KZS are right-angled, since
arcs VP and ZS are orthogonal to arcs VK and ZK respectively. The recti-
linear triangles KVP and KZS, which are very small, differ only very slightly
from the curvilinear triangles.

• If the difference is negligible, we have KVP KZSˆ ˆ=  = 1 right angle and
the rectilinear triangles are similar, so

KV

VP
= KZ

ZS
 and KV

VP

KZ

ZS
= .

• In the general case, we have

   KV

VP

KZ

ZS
> (Proposition 15).
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We are again using the second inequality of Proposition 15; here the
pole N is above the horizontal circle DHG, so that α < β (α = Nω̂Σ ,

β = Σω̂D). So the required inequality is satisfied only in very limited

circumstances: the point with coordinates (θ, λ) must be below the curve II

shown in the figures (Figs 2.21 to 2.27). Since θ is negative, this condition is

fulfilled if α ≥ α1 (β); this inequality excludes a region close to the earth’s

north pole.
In every case,

KV

VP

KZ

ZS
≥ ,

so
KV

VQ

KZ

ZS
> .

VQ is the proper inclination for the time KV  but KZ  < KV ; the proper
inclination for the time KZ  is smaller than SZ ; so in its motion from the
point K to the point Q the star meets the arc SZ somewhere between S and
Z.

The same proof can be given for any point of the arc KO, so the star
does not pass through any point of the arc KO.

So if the pole N is above the circle GHD, the star does not meet this
circle anywhere except at the points K and D.

D

H K

N

G

Fig. 2.116

b) If the circle NH passes through the point K, the arc KH of the
horizontal circle is to the east of K, the star does not return to this arc KH,
because it is moving westwards.

c) If the circle NH passes below K, the great circle NK cuts the hour arc
HM, the arc KH is to the east of the great circle NK.



MATHEMATICAL COMMENTARY 237

D

H

M

N

K

G

Fig. 2.117

For all versions of the figure the star meets the circle DHG at the points
K and D and only at these two points.

• In the east, the star has only a single point of transit across every hori-
zontal circle of height h < h(D).
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Let FXT be a horizontal circle closer to the horizon than the circle
DHG, and cutting the hour circles BE and VK in T and U respectively. In its
motion from B to K the star meets FXT at the point X, between the points
U and T, and meets the circle NU in a point J to the north of U. So the star
does not meet the arc UF, since this arc lies south of the arc KU, and the
body does not meet the arc XT which lies north of X.

We shall prove that the body does not meet the arc XU.
The point J is south of X and north of K, the hour circle of J cuts the

arc UT in H′ which lies between U and X (see Fig. 2.114).
Triangle H′JU is homologous to triangle OQP; we prove that the star

does not meet the arc H′U, as has been proved for the arc OP of the
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triangle OQP; and we prove that the body does not meet the arc H′X, as we
have proved for the arc KO.

• If the great circle NU passed through X or was below X, the arc XU
would lie east of the great circle NX; but the star does not return to lying
east of X. So the body meets the circle FXT only in a single point, the point
X.

Similarly, in each case there is only one point where the star meets any
horizontal circle that is closer to the horizon than the circle DHG.

Proposition 32. — Heights in the east
In this proposition, Ibn al-Haytham continues his investigation of heights

in the east.
If D is the point of meridian transit and K the highest point the star

reaches, then a horizontal circle FXT lying between K and the horizontal
circle DG is met by the star twice and only twice.
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Let I and T be the points of intersection of the hour circles of K and B
with the horizontal circle FXT. As it moves from B to K, the star meets
FXT at a point X that lies between the circles LI and BE, so X is between I
and T. As it moves from K towards D, the star meets the circle FXT in a
point M that lies between I and F.

The star does not meet the circle FXT again in a third point.
a) The star does not meet the arc XT which lies north of X.
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b) We can prove that the star does not meet the arc XI, in the same way
that it was proved in the previous proposition that the body does not meet
the arc KH of the circle DHG (see pp. 232 ff.).

c) Let O be the point of intersection of the great circle NK and the circle
FXT. We shall prove that the star does not meet the arc IM.

The star does not meet the arc IO, since the arc OI lies to the east of the
circle NKO, and the body does not reach O.

The great circle NM cuts the arc KI at the point U: UK  is the required
time and UM  is the inclination proper to this required time. Let P be a point
of the arc OM, the hour circle of P cuts UM in R. We have

PR

RM

IU

UM
=

(as we have seen already for very small arcs).
But

IU

UM

KU

UM
> ,

so
PR

RM

KU

UM
> ,

so the required time whose proper inclination is RM is a time RZ  < RP ,

since PR

RM

IU

UM
=  in the small triangles IUM and PRM. The star, in travelling

from the point K to the point M, meets the arc PR at the point Z, so the
body does not pass through the point P. The same will be true for any point
of the arc OM.

d) We shall prove that the star does not meet the arc MF.
Let S be a point of the arc MF, the great circle NS cuts the hour circle

of M at the point Q. In the very small triangles SQM and MRP we have

MQ

QS

PR

RM

ZR

RM
= > ,

so the inclination proper to the time MQ is greater than QS, the star meets
the great circle NQS in a point below the circle FXT, the body does not pass
through the point S and the same will be true for any point of the arc MF.
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So the star does not meet the circle FXT anywhere except at the two
points X and M.

In this matter Ibn al-Haytham is putting forward an approximate
argument that takes account of the fact that the arc DE is very small and
that the curvilinear triangles concerned are thus close to being rectilinear
triangles.

In fact, in this case the first inequality of Proposition 15 gives

PR

RM

IU

UM
>

(instead of the equality), which is sufficient. Now this inequality is satisfied if
(θ, λ) lies below curves I and III in Figs 2.69–2.75 (see note on Proposition

15); here λ corresponds to the required time LK  and θ corresponds to the

distance from L to the zenith. The fact that DE is small implies that FL  is
also small, measured by β + θ where β measures the distance from F to the

zenith. For the inequality to be satisfied, It is sufficient that, in numerical
terms, θ remains less than θ4,m.

Conclusion for heights in the east: Let hD and hK be the heights of the
points D and K, then any height h that satisfies hD ≤ h < hK is reached twice,
the height hK is reached once and any height h such that 0 < h < hD is
reached once.

Heights in the west (continued)
Proposition 33. — The maximum height is only attained once.

Let OKE be the horizontal circle corresponding to the maximum height,
hm (where O and E lie on the meridian); let NF be the great circle passing
through the pole N and touching the circle OKE in F, and let OP be the
hour circle of O.

We prove, as in the investigation of the heights in the east (Proposition
30), that the star does not pass through any point of the arc EF.

We suppose the star meets the circle OE in a point K to the south of F,
we have hK = hm and we prove that K is then the only point that has height
hm.

The great circle NK cuts the hour circle OP in P, and the hour circle GL
in J, where G is the point of meridian transit. The arc GJ is the required time
for the star to move from G to K and KJ is its proper inclination.
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Arcs OP and GJ are similar, they are the measures of the same time,
but KP KJ< . The required time that corresponds to the inclination KP is
smaller than PO; let PU  be this required time; so, as it moves from G to K
the star passes through the point U. Let KM be the hour circle of K, the
great circle NU cuts KM at the point H and cuts KO at the point S, we have
HS  < HU ; HU  is the inclination of the motion of the star from the point U
to the point K and HK  is the required time, similar to UP  (Ibn al-Haytham
says ‘equal’ instead of ‘similar’, which is not accurate). So we have

KH

HS

KH

HU
> .

The hour circle of S cuts KP in a point <Q> such that HS  = KQ ; to the
inclination KQ there corresponds a required time QR QS< , since the motion
continues west of the great circle NSU, so the star passes through the point
R, which is below the circle OKE.

We could prove, as in the case of the heights in the east, that all the
positions of the star between U and K are below the circle OKE. The star
does not meet the arc KO. It does not pass through any point of the arc FE
(p. 240). We can prove as in note 131 on page 392 that the star does not
pass through any point of the arc KF. So the point where it crosses the
circle OKE of height hm is a unique point, which we have called K.

If the point where the star crosses the circle OE is the point F, it is the
only point of height hm that the body reaches.

Ibn al-Haytham returns to Proposition 29a (Fig. 2.108) to continue his
investigation of the heights in the west.
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Proposition 34. — Let G be the point of meridian transit and GHI the
horizontal circle through G; H and K are the points defined in Proposition
29a.

Assumption: HK

KG
> required time

proper inclination
, for every required time for the star

as it moves from the point G to the point D.
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But
HK

KG

HK

KG
> ,

36

hence
HK

KG
> required time

proper inclination
.

Let KM  be the required time whose proper inclination is KG
KM KH<( ), the star moves from the point G to the point M on the hour

circle HK.
If F is the second point at which the star crosses the horizontal circle

GHI, then G and F are the only points where it crosses GHI.
Let X be a point of the arc HG and let XY be an arc of an hour circle,

then

XY

YG
> HK

KG
;
37

but

36 By an argument analogous to that in note 33 (p. 224).
37 See Proposition 12.
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XY

YG

XY

YG
> ,

38

hence
XY

YG
> required time

proper inclination

for every required time; so the star does not pass through the point X, it
passes through an interior point of the arc XY.

The star does not pass through any point of the arc HG. As it moves
from G to M, it is above the arc HG.

Let FS be the hour circle of F. The star moves from M to F; so it cuts
the circle NH in a point that cannot be either H, or a point south of H, or the
point S, or one north of S. The body cuts the circle NH in a point P lying
between H and S. We then prove that the body cannot pass through any
point of the arc FH (using the same method of proof as before).

I
F

N

G

Fig. 2.122.1

We still need to prove that the star does not pass through any point of
the arc FI.39

I
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N

H G

Fig. 2.122.2

We draw the great circle NF. There are three possible cases:
a) The circle NF touches the circle GHI.
b) The circle NF cuts GHI in two points, F being the more northerly

one.
In these two cases, the star does not pass through any point of the arc

FI.
c) The circle NF cuts GHI in two points, F being the more southerly

one. In this case we draw the great circle NXU to touch the circle GHI at X

38 See note 33 (p. 224).
39 We assume here that the pole N is below the horizontal circle GHI.



244 CHAPTER II

(where U lies on the hour circle SF). The hour arc of X cuts the circle NF in
R. We have

FS

SH

XR

RF
=

(as we have seen in Proposition 31 for very small triangles, F and X being
close to one another).
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Fig. 2.122.3

But
FS

SP

FS

SH
> ,

so
FS

SP

XR

RF
> .

Moreover, if α is the inclination proper to the time XR, we have

FS

SP

XR XR

RF
= >

α
,

(since the required times FS  and XR  are very small and close to one
another), so α < RF ; but XR  is similar to FU  (and has a little difference

since they are quite close, Ibn al-Haytham considers them equal) and
RF  = XU , so α < XU ,

FS

SP

FU=
α

.

Let W be a point between U and X such that UW  = α.
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The star moves from the point F to the point W between X and U. Any
great circle drawn through N and a general point Y on the arc XF cuts the
arc FU in Z, the hour arc of Y cuts the arc RF and the arc XU. To the time
FZ there corresponds an inclination that is a part of the arc ZY (homologous
with WU which is a part of UX); the end of this arc is below the arc XF. So
the star does not pass through any point of XF except F. The star does not
pass through any point of XI, since the arc XI is to the east of the great
circle NU.

Conclusion: The star meets the circle GHI only at the two points G and
F.

Let there be a horizontal circle OUT whose height h is less than the
height of the point G. The star meets OUT in a point H′ north of the hour
circle FSU, H′ is the only point where the star crosses the circle OUT.
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If the great circle NH′ touches the circle OUT at H′ or if it cuts OUT in
a second point south of H′, the star does not meet the arc H′T, which lies to
the south of the point H′.
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If the great circle NH′ cuts the circle OUT in H′ and in a point north of
H′, the great circle NU cuts the circle OU in U and in a point north of H′;
and it cuts the hour circle of H′ in a point J. The star moves from F to the
point H′, so it cuts the circle NU between the two points J and U, say at the
point Y; the hour circle of Y cuts H′U in Z.

Proceeding as before (p. 243), we prove that the star does not pass
through any point of the arc H′U, nor through any point of the arc H′T.
Moreover, the body does not pass through any point of the arc UO, which
lies to the south of the arc FU. So the only point where the body crosses the
circle OT is the point H′.

In the same way we prove that on every horizontal circle of height
h < hG, there is a single point through which the star passes.

Proposition 35. — We then consider a horizontal circle OST whose height
h satisfies the inequality hm > h > hG, hm being the maximum height and U
the point at which the body reaches this height. The star meets this circle at
two points.
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Let DE and GL be the hour circles of D and G. The point U lies
between these two circles, similarly its hour circle lies between these circles
and cuts the circle OST in the point S. The great circle NU cuts the circle OT
in P.

The star has moved from the point G to the point U, so it has cut the
circle OT in a point that cannot be either P, or S, or a point of the arc SP,
but which must lie to the south of the arc UP. So the point of intersection
lies on the arc OP, let it be the point M. The great circle NM cuts GL in F,
so the arc GF is the required time whose inclination is the arc FM.
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The star does not pass through any point of the arc MO, which is east of
M.

The hour circle of M cuts the circle NU at the point R; the arc MR is the
required time whose inclination is RU. The hour circle of U cuts the great
circle NM in J; we have JM UR= ; UJ  and RM  are similar arcs that
measure the same time, so UJ  is the required time whose inclination is JM ;
in reality, if we abide by the conventions adopted thus far, the required time
is measured by the arc RM not by the arc UJ, but these two arcs, which
belong to different circles, subtend the same angle at the centre. We can see
that Ibn al-Haytham is maintaining a degree of ambiguity between angles
and arcs, as we have already noticed in regard to Propositions 14 and 15.
The hour circle of P cuts the circle NJM in X, PX  is similar to UJ  and
JM XM> , so

PX

XM

UJ

JM
> .

We may prove in the same way as before, by using small triangles sim-
ilar to triangle PXM, that any hour arc such as YZ drawn through a point of

the arc PM to meet the arc XM is such that YZ

ZM

PX

XM
=  and that YZ

ZM
 is

greater than the ratio of YZ  to the inclination that is proper to it.
So the star does not pass through any point of the arc PM; so it does

not pass through any point of the arc SM.
Let V be a second point where the star crosses the circle OT, V lies

between the hour circles SU and DE. The hour circle of V cuts the great
circle NS in H′. As it moves from U to V, the star meets the arc H′S. We can
prove as before that the star does not pass through any point of VS or
through any point of VT. The only points at which the body crosses the
circle OT are the points M and V.

Every horizontal circle of height h such that hG < h < hm is crossed by
the star twice and only twice.

Ibn al-Haytham then states a general conclusion relating to the case
where the point at which the star reaches its maximum height lies to the
west of the meridian circle, that is, the case in which the body is moving
from the northernmost point of its orb towards the southernmost one.

From Proposition 28 onwards, the investigation of the heights has been
concerned with heavenly bodies whose point of meridian transit is south of
the pole of the horizon. We have always considered a sphere inclined to the
south, that is, the investigation is conceived for an observer in the northern
hemisphere.
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Proposition 36. — For places on the terrestrial equator, the sphere is right
and the hour circles are orthogonal to the circle of the horizon, since the
pole of the equator lies on the horizon.

To every horizontal circle of diameter DD′, where DD′ is in the
meridian plane, with D′ to the north and D to the south, there correspond
hour arcs that are equal two by two, such as HI H I= ′ ′ and ID = ′ ′I D
(symmetry with respect to OZ).
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In Proposition 28, the investigation assumed that meridian transit took
place at a point such as D south of Z, and we considered an hour arc such as

HI that satisfied the inequality HI

ID
 > k, where k is a given ratio greater than

the ratio of the required time to the inclination proper to this required time
for every arc traversed by the star between rising and meridian transit.

If the meridian transit occurs at the point D′ to the north of Z, we need

to consider the arc H′I′ , symmetrical with HI; this arc has the same property

′ ′
′ ′

H I

I D
 > k.

In the case of the sphere being right, and whether the meridian transit
takes place to the north or to the south of the pole of the horizon, we obtain
results analogous to those found for a sphere inclined towards the south with
the meridian transit south of the pole of the horizon.

If the sphere is inclined to the south, that is, in places in northern
latitudes, the planets cannot cross the meridian at the zenith or north of the
zenith unless the latitude is small.

The star will cross the meridian at the zenith if, at the moment of transit,
the declination of the body is equal to the latitude of the place where the
observation is made; and the transit will occur to the north of the zenith if
the declination is greater than the latitude of the observer.
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Let Z be the zenith, and XX′ the line of intersection of the planes of the
equator and the meridian, the latitude is λ = AN  = XZ . If the transit occurs
at D, the declination of the star is then XD. The point D cannot lie north of
the zenith unless XZ  < XD, that is λ < XD.

Case where meridian transit occurs at the pole of the horizon

Let ABC be the horizon and D its pole, and let EGHI be a horizontal
circle. The hour circle of D cuts this circle in G to the east and in I to the
west. A star that crosses the meridian at D would move along the hour
circle BGDI.
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a) The star rises in the east; if it crosses the meridian at D and if its
motion on its orb is from north to south, it meets the circle EGH in K, north
of G, and between its meridian transit at D and setting the body meets the
circle EGHI in M, to the south of I.
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b) If the body’s motion on its orb is from south to north as it moves
between rising and meridian transit at D, the body meets the circle EGHI in
L to the south of K and as it moves between D and setting, it cuts the circle
again in N to the north of I.

We then prove that the only eastern point where the star meets the
horizontal circle EGHI is, in case a), the point K (see end of Proposition 31)
and, in case b), the point L (see end of Proposition 29). Similarly, the only
western point where the star meets the horizontal circle EGHI is, in case a),
the point M (see end of Proposition 28) and, in case b), the point N (see end
of Proposition 34).

The same reasoning would apply for every horizontal circle, so on the
day that a star crosses the meridian at the point D, the pole of the horizon,
the body will not have either two equal heights in the east or two equal
heights in the west.

Investigation of horizons for northern latitude λ equal to the complement
of the inclination of the orb, and of horizons for latitudes close to λ for
which the star has points of rising and setting

1. Let us suppose that the motion of the star on its orb is from the
northernmost point towards the equator.

Let ABCD be the horizon of a place for which the height of the north
pole of the equator, H, above the horizon – that is, the geographical latitude
of the place – is the complement of the inclination of the orb of the star with
respect to the equator, that is, a place on the polar circle.

The circle of the equator cuts the horizon in A and C – where C is to
the east and A to the west – and cuts the meridian in E and G. The arc DE
is the inclination of the orb. We have DE = BG = HZ  (Z is the pole of the
horizon).

The circle BQI whose pole is H and which passes through B cuts the
meridian in I and we have EI BG= . If we are considering the sun, BQI is
the tropic of Cancer. In the course of the diurnal motion the point B, the
northernmost point of the orb, describes the circle BQI, which touches the
horizon ABCD at B, ABCD being one of the horizons that have BED as a
meridian circle.

Let us suppose that at a given moment the star is at the point B on the
horizon ABCD; in the course of the diurnal motion, the body will move
away from the circle BQI and will come to lie south of that circle (as we
have seen in Propositions 16, 17, 18 when the motion of the star on the orb
is from the northernmost point towards the southernmost one).
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Let K be a point on the horizon and O a point on the meridian such that

the hour arc KO satisfies the inequality KO

OB
> any required time

proper inclination
; in the motion

of the star, starting from B, the inclination proper to the time KO is BP  >
BO. The hour circle of P cuts the great circle HK in L; we have time KO =
time LP  = time BQ (the time is in fact the angle subtended by every one of
the arcs which are all similar) and QL = BP ; so QL is the inclination proper
to the time BQ and the star thus reaches the point L, below the circle of the
horizon ABCD.

Let J be a point on the meridian such that BJ  < BO and BJ  < OP; the
circle AJCS cuts the arc ED of the meridian in S and the great circle HKL in
M, we have KM  < BJ  < OP; but OP = KL, hence KM  < KL; so L is
below the circle AJCS and B is above the same circle AJCS, which is a
horizon that has the circle BED as its meridian; for this horizon the star,
which has travelled from the point B to the point L, has thus set at a point of
the arc JM, that is, in the east.

Let N be the point of the meridian such that IN  is the inclination of the
motion of the star, the inclination proper to the time BQI; so the star will
travel from the point L to the point N and it will rise at a point of the arc
MC, that is, on the eastern part of the horizon AJCS.

Notes:

1) We know that, in the case of the sun, the arc IN that measures the
decrease in declination over half a day is close to 8′ (see footnotes p. 396).
So the arc BP is much smaller than 8′, and all the arcs such as OP, BJ, QK
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are smaller still. So the figure cannot give an exact account of proportions,
but its purpose is to show the points with which the argument is concerned
and their relative positions.

It is clear that the arc BK is extremely small and that the same is true of
the arc between the points where the star rises and sets on the horizon
AJCS; the points of rising and setting are practically identical.

2) If λ is the latitude of the place whose horizon is the circle ABCD, we
have HB = λ. But HJ  > HB, so the latitude of the place with horizon
AJCS is HJ  = λ + ε, where ε is very small, the latitude corresponding to the
horizon AJCS is only slightly greater than λ, that is, only slightly greater
than the complement of the maximum declination of the star.

If the northern latitude becomes a little bit greater still, the sun will not
set but will simply remain below the horizon for the full twenty-four hours.

3) For horizon ABCD, with latitude λ, we know by hypothesis that the
star reaches the point B when its northern declination is at its maximum and
equal to α. Before reaching B its declination was increasing and less than α,
its path came closer and closer to the hour circle BQI and, after passing
through B, the star will move away from the circle BQI once more; Ibn al-
Haytham proves that the star passes through a point L below the horizon
ABCD, so in the course of its motion from L to N the body meets the
horizon ABCD at a point between K and C, that is, in the east.

So, with horizon ABCD, the star has set at B, the north cardinal point
and has risen in the east.

In what we have said so far, the circle BQI corresponds to the
maximum inclination of the star, that is, in the case of the sun its inclination
on the day of the summer solstice. On the following day the star meets the
meridian in a point X of the arc BG, and through that point there passes an
hour circle Γ homologous to the circle BQI; through the point X there
passes a great circle Γ′  that touches Γ; so Γ′ will be the homologue of
ABCD. Starting from the point X and the circles Γ and Γ′, and proceeding
as we did when starting from the point B and the circles BQI and ABCD,
we can find a horizon Γ″, homologous to AJCS, for which the star sets in
the east and then rises in the east.

Each of the horizons we have considered is for a northern latitude, since
the height of the pole above the horizon, that is, the arc HJ or one of its
homologues, is less than a quadrant of a circle.

Any point of the circle BQI may be a point of contact of the circle with
a great circle that can be taken as a horizon. In this way we obtain the
horizons of all points on the Earth with latitude equal to the complement of
the maximum inclination of the star concerned, and the preceding argument
is valid for all of them.
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The star moves from the northernmost point of its orb towards the
equator, so its inclination with respect to the equator decreases. On the day
when meridian transit below the horizon occurs at a point B′ close to G,
such that ′B G  is less than the inclination at meridian transit above the
horizon, the transit takes place at a point N′ close to the point E and to the
south of E.
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For a horizon AJCS such that the arc ES is greater than the inclination
of half a daily revolution, the star will rise in the east at a point of the arc
MC or at a point of the arc CS.

2. The motion of the star on its orb is from the southernmost point
towards the equator.

Let H and H′ be the north and south poles of the equator AGCE, and
ABCD a horizon, with A to the west and C to the east. If Z is the zenith, we
have DE = BG = HZ . We suppose the horizon ABCD touches the hour
circle BQI (which corresponds to the maximum southern inclination of the
star in question) at the point B.

In the case of the sun, BQI is the tropic of Capricorn.
Let K be a point on the horizon and O a point on the meridian such that

the hour arc KO satisfies the inequality KO

OB
>  required time

proper inclination
 during the

motion of the star from B.
The great circle H′K cuts the hour circle of B at the point Q. The time

KO is equal to the time BQ (equal angles) and the inclination proper to this
time is BP  > BO. The hour circle of P cuts the circle H′K in L, we have
QL = BP . So in the time BQ, the star travels from the point B to the
point L.
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As in the previous proposition we take a point J on the meridian (with
BJ  < OP and BJ  < BO) and the great circle AJCS cuts the circle HK in
M; we prove that M lies between K and L, so in its motion in the time BQ
the star has travelled from the point B to the point L and has met the circle
AJCS in a point that lies between B and M; but AJCS is the horizon for a
place that has meridian BHD, B is below the horizon AJCS and L is above
it, so for this horizon, the star rose in the west at a point between J and M.

The motion of the star takes it beyond L to intersect the arc H′E at the
point N, so it meets the arc JA of the horizon AJCS, beyond M, and passes
below the horizon; so the body sets in the west at a point of the arc MA.

Notes:
1) As in the first part, the points of rising and setting are very close to

one another.
2) We have HD = λ, HS  > HD, HS  = λ + ε, where ε is very small. So

the latitude corresponding to the horizon AJCS is only a little greater than
the complement of the maximum declination of the star.

If the northern latitude becomes a little greater still, the sun will remain
below the horizon for the full twenty-four hours.

3) For the horizon ABCD, we could prove as before that the star rises at
B, the south cardinal point, and sets in the west at a point very close to B.

In conclusion, we can see that Ibn al-Haytham establishes that the
motion of a star on the celestial sphere has the following properties. Between
rising and setting, the star passes through a unique point U at which its
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height above the horizon is a maximum hU = hm and any height h < hm is
reached exactly twice. This property depends on the fact that the motion of
the star is always from east to west.

For observers who are not near the poles, the star rises in the observer’s
east and sets in the west; its diurnal course takes the star through a point G
of the meridian. The transit at G can take place before or after the body
passes through U. Let hG be the height of the point G; every height h < hG is
reached once between rising and passing through G, and once between G
and setting. Any height h such that hG < h < hm is reached twice between G
and U.

For observers close to the arctic circle or antarctic circle, the rising and
setting of the star can both be in the east or both in the west, with no
meridian transit in the course of the diurnal motion. Outside the arctic circle
or antarctic circle, the star may not rise or (on the contrary) not set.

2.3. HISTORY OF THE TEXT

Of the three books that made up The Configuration of the Motions of
the Seven Wandering Stars, only the first has survived. We have the book in
which Ibn al-Haytham develops his theory of the motions of these
wandering stars. This book has come down to us in a single manuscript,
which is part of a valuable collection now in the National Library in
St. Petersburg, Arabic new series no. 600. A description of this collection
can be found in the fourth volume of Mathématiques infinitésimales, pp.
24–6, so there is no need for us to repeat it here. Suffice it to recall that the
collection was copied towards the middle of the seventeenth century, on thin
transparent paper, slightly greyish in colour. So it often happens that the
words and figures on the recto of a page show through on the verso. It also
happens, because of the deterioration at the edges of the folios, that some
areas near the margins are difficult to read. Finally, the rather careless
nasta‘lîq script makes some words particularly difficult to read.

The text of The Configuration is by a single hand and occupies folios
368v–420v. But these folios, like those of other treatises in the same
collection – for example The Properties of Circles by Ibn al-Haytham – are
out of order. Thus the text of The Configuration is finally ordered as
follows:

368v, 397v, 397r–401v, 402v, 402r, 403r–408v, 369r–396v, 409r–420v.



256 CHAPTER II

We may note that, in addition to being out of order, some of the folios
are inverted; these accidents most probably occurred when the collection
was bound.

This text has been edited according to the rigorous rules that were
followed in our other critical editions, rules which we have already explained
more than once. There remains, however, the question of how to treat the
figures. The figures in the text are, we know, drawn by the last copyist.
These figures are indicative, but inaccurate and even ambiguous. In most
cases the state of the manuscript renders them illegible. Certain of them are
so complicated that it is difficult to distinguish the lines, straight lines and
planes. In view of this state of affairs, we have been compelled to reconstruct
the figures, partly from the traces in the manuscript, but largely with the
help of the written text. It has sometimes happened that we have made one
figure into two to make it easier to understand (notably the figures for
Propositions 14, 15 and 16). In every case, we have been at pains to make
use of the traces of the figures in the manuscript, however illegible they are,
in order to stay as close as possible to the original.
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In the name of God, the Compassionate the Merciful
From Him comes our help

TREATISE BY SHAYKH ABª ‘ALï IBN AL-HAYTHAM

May God continue his blessing upon him

On the Configuration of the Motions
of Each of the Seven Wandering Stars1

And on the proof that each of the seven wandering stars, can have, in
the east,2 at certain moments of a single day, equal heights at all places on
the Earth where the diurnal <arc> of the star can be divided into two equal
parts; that at certain moments in a single day, in the west,3 there can be
equal heights at all places on the Earth where the diurnal <arc> of the star
can be divided into two equal parts; that at certain places on the Earth, at
certain moments, a wandering star can set on the eastern horizon4 and, in
the course of its day rise on the eastern horizon; and that at certain
moments, at these same places on the Earth, a wandering star can in the
course of its day, rise on the western horizon and set on the western hori-
zon. It is omniscient God who gives [us] success.

Since it is accepted that the knowledge of the motions of each of the
wandering stars, together with the differences between them, forms part of
the art of astronomy; that knowledge of the ascendant from the height of
the moon and of the five planets forms part of the art of astronomy; that
what we have stated concerning the setting of the wandering stars in the
east5 also forms part of the art of astronomy – something about which those
learned in this art must know the truth – we resolved to be even more
especially careful in establishing the truth of the proofs of all the results we
have mentioned, relating to the phenomena that occur among the
wandering stars, so as to be certain that everything we said about them is

1 Lit.: the seven stars; we shall translate al-kawækib al-sab‘a as ‘the seven
wandering stars’; we shall translate al-kawækib al-khamsa as ‘the five planets’.

2 Lit.: in the easterly direction.
3 Lit.: westerly direction.
4 He means heliacal setting.
5 Lit.: in the easterly direction and their rising in the westerly direction



260 CHAPTER II: IBN AL-HAYTHAM

indeed as we said; and we are collecting this together in a single book that
includes all the proofs [of these results]. We follow it with another book in
which we summarize all the calculation procedures that lead [us] to
understand the truth of <each of> these results. Then we accomplish what
this art requires and we spare the specialists in it the trouble of writing
essays on the observation of minutes [of arc] and small parts for the
altitude of the sun and of all the wandering stars, by presenting an
instrument that is easy to handle6 and can be understood by everyone, by
means of which we find the height of the sun and of each of the
[wandering] stars using the minutes and small parts [of the height]. Thanks
to this instrument and to the procedures we explain, all the procedures
followed by astronomers are shown to be correct and an end is put to all the
disputes that arise over principles, because of the fractions that are missed
by observers and that they find almost imperceptible, on account of the
design of the instruments. It is from God that we ask for help in all things.

Everything we have said in places other than this book, concerning the
height of the sun, the heights of the wandering stars and the altitude on the
meridian,7 and where we have not given a precise account of these matters,
employed only the method used by the majority of mathematicians,
following the conventional principles. However, all we have said
concerning heights, in the conventional way, is to be found only in what we
have set out in the books [written] before this one, before this idea occurred
to us; then, once this idea occurred to us and took a precise form, we wrote
this book and in it we have explained these ideas. Thus, if anyone examines
this book and our other books and finds a difference in what we have stated
about heights, let him be aware that the reason for it is what we have
referred to, and that what we have said in this book concerning the heights
of the wandering stars is extremely accurate. And what we have said in our
other books, written before this one, uses the method conventionally
employed by mathematicians.

<1> For two unequal arcs of the same circle, whose sum is not greater
than a semicircle, the ratio of the greater arc to the smaller arc is greater
than the ratio of the chord of the large arc to the chord of the small arc.

Example: The arcs AB and BC have as their sum the arc ABC, which is
not greater than a semicircle, the arc AB is greater than the arc BC and they
are cut off by the two chords AB and BC.

6 See Appendix.
7 Lit.: the height <of the arc> of midday. He means the altitude of meridian passage

for the bodies concerned.
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I say that the ratio of the arc AB to the arc BC is greater than the ratio
of the chord AB to the chord BC.

Proof: We draw the straight line AC and we make the angle CBD equal
to the angle BAC which is smaller than the angle ABC; the angle BDC is
thus equal to the angle ABC and the triangle CBD is similar to the triangle
ABC. So the ratio of AB to BC is equal to the ratio of BD to DC. But the
straight line AB is greater than the straight line BC, because the arc AB is
greater than the arc BC; so the straight line BD is greater than the straight
line DC. In the same way, the ratio of the angle BCA to the angle BAC is
equal to the ratio of the arc AB to the arc BC. So the ratio of the angle BCD
to the angle CBD is equal to the ratio of the arc AB to the arc BC. We take
the point C as centre and with the distance CB we draw an arc of a circle,
let the arc be BHG; so it cuts the straight line CA; let it cut it at the point G.
It is thus clear that the point G lies outside the straight line CD on the same
side as the point A, because the straight line GC is equal to the straight line
BC and the straight line BC is greater than the straight line CD – and this
[is so] because the angle BDC is not smaller than a right angle since it is
equal to the angle ABC; and the straight line BC is smaller than the straight
line CA, so the point G lies between the two points D and A.
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We make the angle DCE equal to the angle CBD; so the point E lies
between B and D, since the angle BCA is greater than the angle CBD. We
draw the straight line CE to meet the arc BG; let it meet it at the point H.
Then the ratio of the arc BG to the arc GH is equal to the ratio of the angle
BCD to the angle DCE which is equal to the angle CBD. Now we have
proved that the ratio of the angle BCD to the angle CBD is equal to the
ratio of the arc AB to the arc BC; so the ratio of the arc BG to the arc GH is
equal to the ratio of the arc AB to the arc BC. We draw the straight line HK
parallel to the straight line DE; since the angle ECD is equal to the angle
CBD  and the angle CDE  is common to the triangles CBD  and CED,
triangle CED is similar to triangle CBD; thus the ratio of BD to DC is equal
to the ratio of CD to DE and is equal to the ratio of BC to CE. But BC is
equal to CH; so the ratio of CD to DE is equal to the ratio of CH to CE. But
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the ratio of CH to CE is equal to the ratio of HK to DE; so the ratio of CD
to DE is equal to the ratio of HK to DE, and HK is equal to CD. Now we
have proved that BD is greater than CD, so BD is greater than HK. We
draw BH and we extend it. It then meets the straight line AC; let it meet it
at the point I. So the ratio of BI to IH is equal to the ratio of BD to HK. But
the ratio of BD to HK is equal to the ratio of BD to DC which is equal to
the ratio of AB to BC; so the ratio of the straight line BI to the straight line
IH is equal to the ratio of the straight line AB to the straight line BC. Thus
we have proved that the ratio of the arc BG to the arc GH is equal to the
ratio of the arc AB to the arc BC. But the ratio of the straight line BI to the
straight line IH is equal to the ratio of triangle CBI to triangle CHI, the ratio
of the arc BG to the arc GH is equal to the ratio of the sector CBG to the
sector CHG, the sector CBH is greater than the triangle CBH and the sector
CHG is smaller than the triangle CHI; the ratio of the sector CBH to the
sector CHG is thus greater than the ratio of the triangle CBH to the triangle
CHI. By composition, the ratio of the sector CBG to the sector CHG is thus
greater than the ratio of the triangle CBI to the triangle CHI. So the ratio of
the arc BG to the arc GH is greater than the ratio of the straight line BI to
the straight line IH. Now we have proved that the ratio of the arc BG to the
arc GH is equal to the ratio of the arc AB to the arc BC and the ratio of the
straight line BI to the straight line IH is equal to the ratio of the straight line
AB to the straight line BC; so the ratio of the arc AB to the arc BC is greater
than the ratio of the chord AB to the chord BC. That is what we wanted to
prove.

Ptolemy established this result in his book The Almagest,8 but using a
method different from this one.

I also say that the ratio of the arc ABC to the arc CB is greater than the
ratio of the straight line AC to the straight line CB.

Proof: The ratio of the arc AB to the arc BC is greater than the ratio of
the straight line AB to the straight line BC. By composition, the ratio of the
arc ABC to the arc CB is thus greater than the ratio of the sum9 of the
straight lines AB and BC to the straight line CB. But the ratio of the sum of
AB and BC to the straight line CB is greater than the ratio of the straight
line AC to the straight line CB, because the sum of the two straight lines AB
and BC is greater than AC. So the ratio of the arc ABC to the arc CB is

8 Book I.10.
9 We sometimes add the word ‘sum’ for clarity in the translation.
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greater than the ratio of the straight line AC to the straight line CB. That is
what we wanted to prove.

<2> If we have two unequal arcs such that one is greater than the arc10

similar to the other, [arcs] belonging either to two equal circles or to two
unequal circles and such that each of them is no greater than a semicircle, if
we divide each of the two arcs into two unequal parts such that the ratio of
the greater part of the greater arc to the smaller part of it is equal to the
ratio of the greater part of the smaller arc to its smaller part and if we draw
the chords of these arcs, then the ratio of the chord of the greater part of the
small arc to the chord of its smaller part is greater than the ratio of the
chord of the greater part of the large arc to the chord of its smaller part.

Example: Let ABC and DEG be two unequal arcs; the arc ABC is
greater than the arc similar to the arc DEG and each of them is no greater
than a semicircle. We divide the two arcs at the points B and E such that
the arc AB is greater than the arc BC and the arc DE greater than the arc EG
and such that the ratio of the arc AB to the arc BC is equal to the ratio of the
arc DE to the arc EG; we draw the chords AB, BC, DE and EG.

I say that the ratio of the chord DE to the chord EG is greater than the
ratio of the chord AB to the chord BC.
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Proof: On the chord AB we construct an arc similar to the arc DE; it
falls inside it because the arc DEG is smaller than the arc similar to the arc
ABC.11 But the ratio of the arc DE to the arc EG is equal to the ratio of the
arc AB to the arc BC; so the arc DE is smaller than the arc similar to the arc
AB, the angle within which it falls is thus greater than the angle within

10 Lit.: the similar; which we have translated throughout as ‘the arc similar’.
11 See Supplementary note [1].
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which the arc AB12 falls and the arc similar to arc DE thus falls within the
arc AB; let it be equal to the arc AIB. We cut off the arc BH equal to the arc
BC and we draw the straight lines BH and AH. Since the arc ABC is not
greater than a semicircle, the arc AB is smaller than a semicircle, so the
angle AHB is obtuse. We take the point B as centre and with the distance
BC we draw an arc of a circle. This arc cuts the angle AHB; let this arc be
the arc HIO. So the arc HIO cuts the arc AIB; let it cut it at the point I. We
draw the straight line BI; it is equal to the straight line BH. We draw the
straight line HI and we extend it to R; the angle BHI is thus equal to the
angle BIH, the angle BHI is acute, the angle BIR is obtuse and the angle
ARI is greater than it, so the angle ARI is obtuse. So the straight line AH is
greater than the straight line AI and the straight line AI is greater than the
straight line AR. We take the point A as centre and with the distance AI we
draw an arc of a circle. This arc cuts the straight line AH in a point between
the two points A and H and cuts the straight line AR in a point beyond the
point R; let this arc be the arc MIN. Since the sector BHI is greater than the
triangle BHI and the triangle BIR is greater than <the sector> BIO, the ratio
of the sector BHI to the sector BIO is greater than the ratio of the triangle
BHI to the triangle BIR. By composition again, the ratio of the sector BHO
to the sector BIO is greater than the ratio of the triangle BHR to the triangle
BIR. So the ratio of the angle HBA to the angle IBA is greater than the ratio
of the straight line HR to the straight line RI. But also from the fact that the
triangle AHI is greater than the sector AMI and the sector AIN is greater
than the triangle AIR, the ratio of the triangle AHI to the triangle AIR is
greater than the ratio of the sector AMI to the sector AIN. By composition
again, the same will hold and we have that the ratio of HR to RI is greater
than the ratio of the angle HAB to the angle IAB. But the ratio of the angle
HBA to the angle IBA is greater than the ratio of the straight line HR to the
straight line RI and the ratio of the straight line HR to the straight line RI is
greater than the ratio of the angle HAB to the angle IAB; the ratio of the
angle HBA to the angle IBA is thus much greater than the ratio of the angle
HAB to the angle IAB. If we permute, the ratio of the angle HBA to the
angle HAB is greater then the ratio of the angle IBA to the angle IAB. So
the ratio of the arc AH to the arc HB is greater than the ratio of the arc AI to
the arc IB. By composition, the ratio of the arc AHB to the arc BH is greater
than the ratio of the arc AIB to the arc BI. So the arc to which the arc AIB
has a ratio equal to the ratio of the arc AHB to the arc BH is smaller than
the arc BI; let it be the arc BK. We draw the straight line BK; it is smaller
than the straight line BI, because the arc BI is smaller than a semicircle, so

12 See Supplementary note [1].
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the straight line BK is smaller than the straight line BH. We complete the
circle AIB and we cut off from it an arc BS equal to the arc BK. We draw
the straight lines AS and BS. So the ratio of the arc AIB to the arc BS is
equal to the ratio of the arc AHB to the arc BH, that is, to the arc BC; but
the ratio of the arc AHB to the arc BC is equal to the ratio of the arc DE to
the arc EG; so the ratio of the arc AIB to the arc BS is equal to the ratio of
the arc DE to the arc EG. But the arc AIB is similar to the arc DE; so the
arc BS is similar to the arc EG, the arc ABS is similar to the arc DEG and
the ratio of the straight line AB to the straight line BS is equal to the ratio of
the straight line DE to the straight line EG. But BS is equal to BK, BK is
smaller than BH and BH is equal to BC; so the straight line BS is smaller
than the straight line BC and the ratio of the straight line AB to the straight
line BS is greater than the ratio of the straight line AB to the straight line
BC. Now we have proved that the ratio of AB to BS is equal to the ratio of
DE to EG; so the ratio of the straight line DE to the straight line EG is
greater than the ratio of the straight line AB to the straight line BC. That is
what we wanted to prove.

I also say that the ratio of the straight line DG to the straight line GE is
greater than the ratio of the straight line AC to the straight line CB.

Now we have proved that the straight line BS is smaller than the
straight line BC. We make the straight line BP equal to the straight line BC,
we join AP and PC and we draw SQ parallel to the straight line AP. Since
CB is equal to BP, the angle BPC is equal to the angle BCP. But the angle
BPC is greater than the angle APC; so the angle BCP is greater than the
angle APC and the angle ACP is much greater than the angle APC. So the
straight line AP is greater than the straight line AC and the ratio of AP to
PB is greater than the ratio of AC to CB. Moreover the angle ABS is obtuse,
because the arc ABS is smaller than a semicircle, since it is equal to the arc
DEG which is smaller than the arc similar to the arc ABC which is not
greater than a semicircle. So the angle AQS is obtuse,13 the straight line AS
is greater than the straight line QS and the ratio of AS to SB is greater than
the ratio of QS to SB. But the ratio of QS to SB is equal to the ratio of AP to
PB; so the ratio of AS to SB is greater than the ratio of AP to PB. But the
ratio of AP to PB is greater than the ratio of AC to CB; so the ratio of AS to
SB is much greater than the ratio of AC to CB. But the ratio of AS to SB is
equal to the ratio of DG to GE, so the ratio of DG to GE is greater than the
ratio of AC to CB. That is what we wanted to prove.

13 Angle AQS is an exterior angle of the triangle QBS, so AQS ABSˆ ˆ> .
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<3> If we have two unequal arcs, such that each is not greater than a
semicircle and one is greater than the arc similar to the other, if these two
arcs belong to two equal circles or to two unequal circles and if in the two
arcs we draw two chords such that the ratio of the chord of the large arc to
the chord drawn in it is equal to the ratio of the chord of the small arc to the
chord drawn in it, then the remaining arc of the large arc is greater than the
arc similar to the remaining arc of the small arc and the ratio of the
remaining arc of the large arc to the arc cut off by the chord is greater than
the ratio of the remaining arc of the small arc to the arc cut off by the
chord.

Example: The two arcs ABC and DEG are unequal and each of them is
no greater than a semicircle, the arc ABC is greater than the arc similar to
the arc DEG; we draw in it the two chords CB and EG and the two chords
AC and DG such that the ratio of the straight line AC to the straight line CB
is equal to the ratio of the straight line DG to the straight line GE.

I say that the arc AB is greater than the arc similar to the arc DE and
that the ratio of the arc AB to the arc BC is greater than the ratio of the arc
DE to the arc EG.
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Proof: On the straight line AC we construct an arc of a circle similar to
the arc DEG; let the arc be AIC. Since the arc ABC is not greater than a
semicircle, the straight line AC is greater than the straight line CB. If we
take the point C as centre and with distance CB we draw an arc of a circle,
then it cuts the straight line AC between the two points A and C, and if it
cuts the straight line AC between the two points A and C, it cuts <the arc>
AIC; let that arc [the one we have drawn] be the arc BIH. We draw the
straight line CI, we extend it to M, we draw the straight line BI and we
extend it to L. We join AB and AI. So the straight line CI is equal to the
straight line CB and the ratio of the straight line AC to the straight line CI is
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equal to the ratio of the straight line AC to the straight line CB. But the
ratio of AC  to CB was equal to the ratio of the straight line DG to the
straight line GE; so the ratio of the straight line AC to the straight line CI is
equal to the ratio of the straight line DG to the straight line GE. But the arc
AIC is similar to the arc DEG, so the arc AI is similar to the arc DE; the arc
IC is similar to the arc EG, the arc AI is similar to the arc AM and the arc
AB is greater than the arc AM, so the arc AB is greater than the arc similar
to the arc DE. But since the straight line CI is equal to the straight line CB,
accordingly the angle BIC is acute and the angle BIM is obtuse, so the
angle AIB is obtuse and the angle LIC is obtuse, because it is equal to the
angle BIM. But the angle ALI is greater than the angle LIC, so the angle
ALI is obtuse, so the straight line BA is greater than the straight line AI and
the straight line AI is greater than the straight line AL. We take the point A
as centre and with the distance AI we draw an arc of a circle. This arc cuts
the straight line AB between the two points A and B and beyond the point
M,14 because the angle AIM is acute. This arc cuts the straight line AL
beyond the point L; let this arc be the arc NIK. Since the sector CBI is
greater than the triangle CBI and the sector CIH is smaller than the triangle
CIL, the ratio of the sector CBI to the sector CIH is greater than the ratio of
the triangle CBI to the triangle CIL. By composition, the ratio of the sector
CBH to the sector CIH is greater than the ratio of the triangle CBL to the
triangle CIL; so the ratio of the angle ACB to the angle ACI is greater than
the ratio of the straight line BL to the straight line LI. Similarly, since the
triangle ABI is greater than the sector ANI and the triangle AIL is smaller
than the sector AIK, the ratio of the triangle ABI to the triangle AIL is
greater than the ratio of the sector ANI to the sector AIK. Similarly, also by
composition, the ratio of the straight line BL to the straight line LI is greater
than the ratio of the angle CAB to the angle CAI. But the ratio of the angle
ACB to the angle ACI is greater than the ratio of the straight line BL to the
straight line LI and the ratio of the straight line BL to the straight line LI is
greater than the ratio of the angle CAB to the angle CAI; so the ratio of the
angle ACB to the angle ACI is much greater than the ratio of the angle CAB
to the angle CAI. If we permute, the ratio of the angle ACB to the angle
CAB is greater than the ratio of the angle ACI to the angle CAI. So the ratio
of the arc AB to the arc BC is greater than the ratio of the arc AI to the arc
IC; but the ratio of the arc AI to the arc IC is equal to the ratio of the arc DE
to the arc EG, because they are similar <two by two>, so the ratio of the arc
AB to the arc BC is greater than the ratio of the arc DE to the arc EG. That
is what we wanted to prove.

14 Beyond the straight line IM.
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<4> Let there be two unequal arcs such that one is greater than the arc
similar to the other and each is no greater than a semicircle. In each of them
we draw two unequal chords such that the ratio of the greater chord of the
greater arc to the smaller chord of the same arc is equal to the ratio of the
greater chord of the smaller arc to the smaller chord of that arc; then the
ratio of the greater of the two arcs of the large arc to the smaller of the two
arcs of the latter is greater than the ratio of the greater of the two arcs of the
smaller arc to the smaller of the two arcs of the latter.

Example: Let the two arcs be ABC and DEG; the arc ABC is greater
than the arc similar to the arc DEG and each of them is no greater than a
semicircle. In these [two arcs] we draw the chords AB, BC, DE  and EG
such that the ratio of the chord AB to the chord BC is equal to the ratio of
the chord DE to the chord EG.15

<a> I say that the ratio of the arc AB to the arc BC is greater than the
ratio of the arc DE to the arc EG.
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Proof: If it were not so, then the ratio of the arc AB to the arc BC would
either be equal to the ratio of the arc DE  to the arc EG or it would be
smaller than the ratio of the arc DE to the arc EG.

If the ratio of the arc AB to the arc BC is equal to the ratio of the arc
DE to the arc EG, then the ratio of the straight line DE to the straight line
EG will be greater than the ratio of the straight line AB to the straight line
BC, as has been proved in the second proposition. But by hypothesis the
ratio of the straight line AB to the straight line BC is equal to the ratio of
the straight line DE to the straight line EG. So the ratio of the arc AB to the
arc BC is not equal to the ratio of the arc DE to the arc EG.

If the ratio of the arc AB to the arc BC is smaller than the ratio of the
arc DE to the arc EG, then, by composition, the ratio of the arc ABC to the
arc CB is smaller than the ratio of the arc DEG to the arc GE, so the ratio of
the arc DEG to the arc GE will be equal to the ratio of the arc ABC to an

15 From the statement of the proposition, we must assume AB > BC and DE > EG.
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arc smaller than the arc BC; let it be the arc CI. So the ratio of the arc AI to
the arc IC will be equal to the ratio of the arc DE to the arc EG. We draw
the straight lines AI and IC. Since the ratio of the arc AI to the arc IC is
equal to the ratio of the arc DE to the arc EG and the arc AIC is greater than
the arc similar to the arc DEG , the ratio of the straight line DE to the
straight line EG is greater than the ratio of the straight line AI to the straight
line IC. But the ratio of the straight line AI to the straight line IC is greater
than the ratio of the straight line AB to the straight line BC , since the
straight line AI is greater than the straight line AB and the straight line IC is
smaller than the straight line BC. But if the ratio of the straight line DE to
the straight line EG is greater than the ratio of the straight line AI to the
straight line IC and if the ratio of the straight line AI to the straight line IC
is greater than the ratio of the straight line AB to the straight line BC, the
ratio of the straight line DE to the straight line EG is much greater than the
ratio of the straight line AB to the straight line BC. But by hypothesis the
ratio of the straight line DE to the straight line EG is equal to the ratio of
the straight line AB to the straight line BC. So the ratio of the arc AB to the
arc BC is not equal to the ratio of the arc DE to the arc EG, nor is it smaller
than the ratio of the arc DE to the arc EG; so the ratio of the arc AB to the
arc BC is greater than the ratio of the arc DE to the arc EG. That is what we
wanted to prove.

<b> It necessarily follows, also, that if the ratio of the straight line AB
to the straight line BC is greater than the ratio of the straight line DE to the
straight line EG, then the ratio of the arc AB to the arc BC will be greater
than the ratio of the arc DE to the arc EG, because the two straight lines
whose ratio one to the other is equal to the ratio of the straight line DE to
the straight line EG  are such that the point they have in common lies
between the two points A, B; and this point divides the arc ABC into two
parts whose ratio one to the other is greater than the ratio of the arc DE to
the arc EG. So the ratio of the arc AB to the arc BC is much greater than the
ratio of the arc DE to the arc EG.

<c> I say also that if the ratio of the straight line AC to the straight line
CB is equal to the ratio of the straight line DG to the straight line GE, then
the ratio of the arc ABC to the arc CB is greater than the ratio of the arc
DEG to the arc GE.

Proof: If the ratio of the arc ABC to the arc CB is not greater than the
ratio of the arc DEG to the arc GE, then the ratio of the arc ABC to the arc
CB is equal to the ratio of the arc DEG to the arc GE or smaller than the
ratio of the arc DEG to the arc GE.
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If the ratio of the arc ABC to the arc CB is equal to the ratio of the arc
DEG to the arc GE, then the ratio of the straight line DG to the straight line
GE will be greater than the ratio of the straight line AC to the straight line
CB , as have been proved at the end of the second proposition of this
treatise. But by hypothesis the ratio of the straight line DG to the straight
line GE is equal to the ratio of AC to CB; so the ratio of the arc ABC to the
arc CB is not equal to the ratio of the arc DEG to the arc GE.

And if the ratio of the arc ABC to the arc CB is smaller than the ratio of
the arc DEG to the arc GE, then the ratio of the arc DEG to the arc GE is
greater than the ratio of the arc ABC to the arc CB. So the ratio of the arc
DEG to the arc GE is equal to the ratio of the arc ABC to an arc smaller
than the arc CB; let that arc be the arc CI. We join AI and IC; the ratio of
DG to GE is greater than the ratio of AC to CI. But the ratio of AC to CI is
greater than the ratio of AC to CB; so the ratio of DG to GE is greater than
the ratio of AC to CB. But by hypothesis the ratio of DG to GE is equal to
the ratio of AC to CB; so the ratio of the arc ABC to the arc CB is not equal
to the ratio of the arc DEG to the arc GE, nor is it smaller than it; so the
ratio of the arc ABC to the arc CB is greater than the ratio of the arc DEG to
the arc GE. That is what we wanted to prove.

<d> It necessarily follows that if the ratio of the straight line AC to the
straight line CB is greater than the ratio of the straight line D G to the
straight line GE, then the ratio of the arc ABC to the arc CB will be greater
than the ratio of the arc DEG to the arc GE.

From all this, it necessarily follows that, if we have two unequal arcs
one of which is greater than the arc similar to the other and the greater of
which is not greater than a semicircle, if we draw two chords in these two
arcs, [chords] such that the ratio of the base of the large arc16 to the chord
drawn in it [the arc] is not smaller than the ratio of the base of the small arc
to the chord drawn in it, then the ratio of the large arc to what the chord
cuts off from it is greater than the ratio of the small arc to what the chord
cuts off from it.

<e> I also say that if the two arcs ABC and DEG are similar and if the
ratio of the straight line AC to the straight line CB is greater than the ratio
of the straight line DG to the straight line GE, then the ratio of the arc ABC
to the arc CB is greater than the ratio of the arc DEG to the arc EG.

Indeed, if the ratio of the arc ABC to the arc CB is equal to the ratio of
the arc DEG to the arc GE, then the ratio of the straight line AC to the
straight line CB is equal to the ratio of the straight line DG to the straight

16 I.e. the chord across the whole arc.
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line GE. So if the ratio of the straight line AC to the straight line CB is
greater than the ratio of the straight line DG to the straight line GE, then the
straight line CB is smaller than the straight line that cuts off the arc propor-
tional to the arc GE; so the arc CB is smaller than the arc proportional to
the arc GE and the ratio of the arc ACB to the arc CB is greater than the
ratio of the arc DEG to the arc GE.

I also say that, if each of the two arcs ABC and DEG is greater than a
semicircle, if each of the two arcs AB and DE is no greater than a semicir-
cle, if the arc AB is no smaller than the arc similar to the arc DE, if the arc
AB is greater than the arc BC and the arc DE is greater than the arc EG and
if the ratio of the straight line AB to the straight line BC is greater than the
ratio of the straight line DE to the straight line EG, then the ratio of the arc
AB to the arc BC is greater than the ratio of the arc DE to the arc EG.

Proof: If the arc AB is greater than the arc BC and the arc DE is greater
than the arc EG, then it is possible to cut off from the arc AB an arc equal
to the arc BC and [to cut off] from the arc DE an arc equal to the arc EG
and to cut off their chords; so the ratio of the straight line AB to the chord
of the part cut off from the arc AB will be greater than the ratio of the
straight line DE to the chord of the part cut off from the arc DE. But the arc
AB is not smaller than the arc similar to the arc DE and each of the two arcs
AB and DE is no greater than a semicircle; so the ratio of the arc AB to the
part cut off from it is greater than the ratio of the arc DE to the part cut off
from it, as has been shown earlier.17 But the part cut off from the arc AB is
equal to the arc BC and the part cut off from the arc DE is equal to the arc
EG; so the ratio of the arc AB to the arc BC is greater than the ratio of the
arc DE to the arc EG. So if each of the two arcs ABC and DEG is greater
than a semicircle, if each of the two arcs AB and DE is no greater than a
semicircle, if the arc AB is greater than the arc BC and the arc DE is greater
than the arc EG, if the arc AB is no smaller than the arc similar to the arc
DE and if the ratio of the straight line AB to the straight line BC is greater
than the ratio of the straight line DE to the straight line EG, then the ratio
of the arc AB to the arc BC is greater than the ratio of the arc DE to the arc
EG. That is what we wanted to prove.

<5> Let there be in a sphere two great circles that cut one another, such
that the distance between their poles is smaller than a quarter of a circle.

<a> We divide a quarter of one of them into an arbitrary number of
equal parts; from the pole of the other circle we draw great circles that pass

17 See <b>, the second part of Proposition 4.
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through the points of division of the quarter that has been divided [circles
that] end on the other circle; then the differences18 between the arcs of
these [arcs of] circles that are cut off between the first two circles and that
are the inclinations of the parts of the quarter that has been divided, are
unequal, and those of them that lie on the side towards the point of
intersection are greater than the differences between those that are further
away from the point of intersection.

Example: Let there be in the sphere two great circles ABC, ADC that
cut one another; let the arc CD be a quarter of the circle ADC and the arc
AB a quarter of the circle ABC. Let us divide up the quarter [circle] CD into
equal parts; let the parts be CE, EG, GH, HI, ID. Let the pole of the circle
ABC be the point K and the pole of the circle ADC the point L. We make a
great circle pass through the two points L, K, then it passes through the two
points D and B, because if the poles of the two circles ABC, ADC lie on the
circle LK, then the pole of the circle LK lies on the two circles ABC, ADC;
so the point C is the pole of the circle LK and every arc of one of the great
circles drawn from the point C to the circle LK is a quarter of a circle. So
the circle LK passes through the two points D and B. Since each of the arcs
LD, KB is a quarter of a circle, the arc LK is equal to the arc DB and the arc
LK is smaller than a quarter of a circle; so the arc DB is smaller than a
quarter of a circle. Let us make a great circle pass through the point K and
through each of the points C, E , G, H , I, let there be circles KC, KEM,
KGN, KHP, KIQ. So the arcs EM, GN, HP, IQ, DB are the inclinations of
the arcs CE, CG, CH, CI, CD and the arc DB will be the greatest of the
inclinations which is the inclination of the quarter [circle] CD. We draw
from the pole K with distances KE, KG, KH, KI and KD arcs of parallel
circles that cut the arc KC; let these arcs be the arcs ES, GO, HU, IF and
DJ; so the arcs JF, FU, UO, OS are the differences for the inclinations of
the arcs CD, CI, CH, CG and CE.19

18 The successive differences between the arcs taken two by two.
19 That is, the successive amounts by which the inclination of each of the arcs CD,

CI, CH, CG, CE exceed the inclination of the arc that follows it.
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I say that the arc JF is smaller than the arc FU, that FU is smaller than
UO, that UO is smaller than OS and that OS is smaller than SC. As for OS
[being] smaller than SC, it is proved as we shall describe.

In fact, it has been proved from the sector figure20 that the ratio of the
chord of twice the arc EC to the chord of twice the arc CD is equal to the
ratio of the chord of twice the arc EM to the chord of twice the arc DB,21

that is, the ratio of the chord of twice the arc SC to the chord of twice the
arc CJ, because the arc KM is equal to the arc KB. Also, in the same way,
the ratio of the chord of twice the arc GC to the chord of twice the arc CD
is equal to the ratio of the chord of twice the arc OC to the chord of twice
the arc CJ. So we have that the ratio of the chord of twice the arc GC to the
chord of twice the arc CE is equal to the ratio of the chord of twice the arc
OC to the chord of twice the arc CS.

Now, given that the ratio of the chord of twice the arc CE to the chord
of twice the arc CD is equal to the ratio of the chord of twice the arc EM to
the chord of twice the arc DB, the ratio of the chord of twice the arc CE to
the chord of twice the arc EM is equal to the ratio of the chord of twice the
arc CD to the chord of twice the arc DB. But the chord of twice the arc CD
is greater than the chord of twice the arc DB, because the arc DB is smaller
than a quarter circle; thus the chord of twice the arc CE is greater than the
chord of twice the arc EM, so twice the arc CE is greater than twice the arc
EM and the arc CE is greater than the arc EM; so the arc CE is greater than
the arc CS. In the same way we prove that the arc CG is greater than the arc

20 This is Menelaus’ theorem.
21 See Mathematical commentary.
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CO. But the ratio of the chord of twice the arc GC to the chord of twice the
arc CE is equal to the ratio of the chord of twice the arc OC to the chord of
twice the arc CS. But twice the arc GC is greater than twice the arc CO and
twice the arc CE is greater than twice the arc CS; the amount by which
twice the arc CG exceeds twice the arc CE, which is equal to twice the arc
GE, is thus greater than the amount by which twice the arc OC exceeds
twice the arc CS, which is equal to twice the arc OS; so the arc GE  is
greater than arc OS, as has been proved in the third proposition of this
treatise, and the ratio of the amount by which twice the arc GC exceeds
twice the arc GE to twice the arc CE is greater than the ratio of the amount
by which twice the arc OC exceeds twice the arc CS to twice the arc CS, as
has also been proved in the third proposition. But the amount by which
twice the arc GC exceeds twice the arc CE is equal to twice the arc CE,
because these arcs are, by hypothesis equal; so the amount by which twice
the arc OC exceeds twice the arc CS is smaller than twice the arc CS; so
twice the arc OS is smaller than twice the arc SC and the arc OS is smaller
than the arc SC.

For the other arcs, the proposition is proved as we shall describe.
We trace a straight line equal to the diameter of the circle ADC; let it

be AB. On it we describe a semicircle, let it be ACB; it will be equal to the
arc ADC. We divide it into two equal parts at the point C; so the arc AC
will be equal to the arc CD, the one in the first case of the figure. We also
draw, on the straight line AB, an arc similar to twice the arc CJ which is the
greatest inclination, let it be ADB; the arc ADB will thus be twice the
inclination of the arc AC.22 Let the point C be the point corresponding to C
in the first case of the figure, which is the point of intersection; so the point
A is the point which corresponds to the point D in the first case of the
figure. Let the two arcs AE, EG be equal and let each of them be equal to
each of the equal parts into which we have divided the arc CD. So the arc
AE will be equal to the arc DI in the first case of the figure and the arc EG
will be equal to the arc IH in the first case of the figure. We join BG. Since
the arc ACB is a semicircle and the arc AC is a quarter circle, the straight
line AB is the chord of twice the arc AC. Since the arc AG is twice the arc
AE, the arc BCG is twice the arc CE; so the straight line BG is the chord of
twice the arc CE; but the straight line BG is smaller than the straight line
BA, since the arc ACB is a semicircle. If we take the point B as centre and
if, with the distance <equal> to the straight line BG, we draw an arc of a
circle, then it cuts the straight line AB between the two points A and B. If it
cuts the straight line AB between the two points A and B, then it cuts the arc

22 That is, twice the inclination of the arc CD in the first figure.
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ADB; let it cut it at the point D. We join BD; it will be equal to the straight
line BG. So the ratio of AB to BG is equal to the ratio of AB to BD; but the
ratio of AB to BG is equal to the ratio of the chord of twice the arc AC to
the chord of twice the arc CE, so it is equal to the ratio of the chord of
twice the inclination of the arc AC to the chord of twice the inclination of
the arc CE in the second case of the figure; so the ratio of AB to BD, which
is equal to BG, is equal to the ratio of the chord of twice the inclination of
the arc AC to the chord of twice the inclination of the arc CE. But for two
similar arcs in which two chords are drawn, the ratio of the chord of one of
the two arcs to the chord drawn in that arc is equal to the ratio of the chord
of the other arc to the chord drawn in that arc. In fact, the two chords drawn
in two similar arcs cut off from them two similar arcs. But the arc BDA is
similar to twice the inclination of the arc AC and the ratio of AB to BD is
equal to the ratio of the chord of twice the inclination of the arc AC to the
chord of twice the inclination of the arc CE. So the arc BD is similar to
twice the inclination of the arc CE – that is, twice the arc CG for the first
case of the figure which is equal to the arc IG – which is the inclination of
the arc IC which is equal to the arc CE in the second case of the figure. But
the arc ADB is similar to twice the arc CJ in the first case of the figure and
the arc DB is similar to twice the arc CF in the first case of the figure. So it
remains that the arc AD is similar to twice the arc JF of the first case of the
figure; so half of the arc AD is similar to the arc JF of the first case of the
figure.
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On the straight line BG, which is equal to the straight line BD, we draw
an arc equal to the arc BD; let the arc be BIG. Let the two arcs GH, HK be
equal to each of the parts of the arc CD of the first figure; so the arc GK is
equal to the arc AG. We draw the straight lines AG, AD, DG, GK, BK; we
cut off from the arc BIG the arc GI equal to the arc AD and we draw the
straight lines BI, GI, KI. Since the arc BCK is smaller than the arc BCG of
the arc GK which is equal to the arc AG, the angle BGK is smaller than the
angle BAG by the angle ABG; and since the arc BIG is equal to the arc BD
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and the arc GI is equal to the arc AD, the arc BI is smaller than the arc BD
of the arc AD; so the angle BGI is smaller than the angle BAD by the angle
ABD. So it remains that the angle KGI is smaller than the angle GAD by the
angle DBG. We make the angle DAM equal to the angle DBG , then it
remains that the angle GAM is equal to the angle KGI. We take the point A
as centre and with distance AD we draw an arc of a circle; that arc lies
inside the angle ADG, because the angle ADG is obtuse. In fact, the straight
line DB is equal to the straight line BG, so the angle BDG is acute, and if
we extend the straight line BD in the direction of D, the exterior angle will
be obtuse. But the straight line BD, if it is extended in the direction of D,
cuts the angle ADG, so the angle ADG is obtuse. So the arc drawn taking
centre A and with distance AD lies inside the angle ADG and it cuts the
straight line AM, if we extend AM; let that arc cut the straight line AM at
the point M. Since the straight line AM lies inside the angle GAD and the
arc that passes through the two points D and M lies inside the angle ADG,
accordingly the point M lies inside the triangle GAD. We draw the straight
line GM; then that straight line lies inside the triangle GAD, so the angle
AGM is smaller than the angle AGD. Since the arc AG is equal to the arc
GK, the straight line AG is equal to the straight line GK. But the straight
line AD is equal to the straight line AM, so the straight line AM is equal to
the straight line GI. So the two straight lines GA, AM are equal to the two
straight lines KG, GI and we have proved that the angle GAM is equal to
the angle KGI; so the straight line GM is equal to the straight line IK and
the triangle GAM is equal to the triangle KGI; so the angle AGM is equal to
the angle GKI; but the angle AGM is smaller than the angle AGD, so the
angle GKI is smaller than the angle AGD. But since the arc BCG is smaller
than the arc BCA, the angle BKG is greater than the angle BGA; but we
have proved that the angle GKI is smaller than the angle AGD , so it
remains that the angle BKI is greater than the angle BGD. But since the arc
AG is equal to the arc GK and the arc AD is equal to the arc GI, the angle
ABG is equal to the angle KBG and the angle ABD is equal to the angle
IBG; so it remains that the angle DBG is equal to angle KBI. Now we have
proved that the angle BKI is greater than the angle BGD, so it remains that
the angle GDB is greater than the angle KIB. But the angle GDB is equal to
the angle BGD, because the straight line BG is equal to the straight line BD,
so the angle BGD is greater than the angle KIB. Now the angle BKI is
greater than the angle BGD, so the angle BKI is much greater than the angle
BIK and the straight line BI is greater than the straight line BK. If we take
the point B as centre and if, with distance BK, we describe an arc of a
circle, then the arc cuts the straight line BI between the two points B, I. But
if it cuts the straight line BI between the two points B and I, it will cut the
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arc BI between the two points B and I; let that arc, whose centre is the point
B, cut the arc BI at the point L. So the point L lies between the two points B
and I, the arc GL is greater than the arc GI and the arc AD will be smaller
than the arc GL. We draw the straight line BL; it is equal to the straight line
BD; so the ratio of the straight line BG to the straight line BK is equal to the
ratio of the straight line BG to the straight line BL. But the straight line BG
is the chord of twice the arc CE, and since the arc BCG is twice the arc CE
and the arc KG is twice the arc GE, the arc BCK is twice the arc CG; so the
straight line BK is the chord of twice the arc CG, the ratio of the straight
line BG to the straight line BL is equal to the ratio of the chord of twice the
arc EC to the chord of twice the arc CG and the ratio of the straight line BG
to the straight line BL is equal to the ratio of the chord of twice the inclina-
tion of the arc CE of the second figure to the chord of twice the inclination
of the arc CG. But the inclination of the arc EC is the arc CF in the first
figure and the inclination of the arc CG is the arc CU of the first figure; so
the ratio of the straight line BG to the straight line BL is equal to the ratio
of the chord of twice the arc CF to the chord of twice the arc CU. But the
arc BLG is similar to twice the arc CF, because it is equal to the arc BD, so
the arc BL is similar to twice the arc CU; so it remains that the arc GL is
similar to twice the arc UF and half of the arc GL is similar to the arc UF;
but half the arc AD is similar to the arc FJ; now we have proved that the arc
AD is smaller than the arc GL, so the arc JF is smaller than the arc FU.

In the same way, we prove that the arc FU is smaller than the arc UO,
if on the straight line BK we construct an arc equal to the arc BL, if we cut
off from the arc KC an arc equal to the arc KG and if we complete the con-
struction as before.

In the same way, it is also proved that the arc UO is smaller than the
arc OS; but it has been proved that the arc OS is smaller than the arc SC.

It is clear from what we have proved that the arc JF is smaller than the
arc FU, that the arc FU is smaller than the arc that follows it and similarly
for all the remaining arcs, that each of them is smaller than the one that
follows it.

So if we divide the arc CD in the first figure into equal parts, of any
number, [and] whether these parts are small or large, then the differences
between their inclinations are unequal; and the smallest of them is on the
side towards the point D which is at the end of the inclination and the larg-
est of them is on the side towards the point C which is the point of
intersection; and for all the remaining arcs, those that are close to the point
D, the difference between the inclinations23 of those that are on the side

23 See Mathematical commentary.
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towards the point D is smaller than the difference between the inclinations
of those that are further from it. That is what we wanted to prove.
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<b> From what we have proved, it is clear that if we have two consecu-
tive equal arcs cut off on the arc CD, which are parts of the arc C D,
commensurable or incommensurable with it, and which are not the two
ends of the arc C D, then the difference in the inclination24 of the one
furthest from the point of intersection is smaller than the difference of the
inclination of the arc that follows it, which is closer to the point of
intersection.

Indeed, the proof for two consecutive equal arcs is the proof that we
have set out because, in that proof, it is not necessary for the arc to be com-
mensurable with the whole quarter [circle], and it is not necessary, either,
that the endpoint of one of the two arcs should be an endpoint of the
quarter [circle]. For any two consecutive equal arcs cut off on a quarter
circle, and inclined to another circle, the two differences of the two
inclinations of two equal arcs are unequal and the smaller difference is the
one that is on the side of the endpoint that has the greater inclination.25

<6> Since all this has been proved, we say that if there are two arcs cut
off on a quarter circle, inclined to another circle, whether they are com-
mensurable with the quarter circle or incommensurable with it,26 whether
the two arcs are contiguous or disjunct, whether they are equal or unequal,
then the ratio of the one that is more distant from the point of intersection
of the two circles, one of which is inclined to the other, to the one that is

24 The ‘difference in the inclination’ means the difference between the inclinations
of the two ends of the arc.

25 See Mathematical commentary, pp. 69–70.
26 See Supplementary note [2].
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closer, is greater than the ratio of the difference in inclination of the more
distant one to the difference in inclination of the closer one.

Example: Let the two arcs be AB, BC cut off on a quarter of a circle,
inclined to another circle, the arc AB being more distant from the point of
intersection than the arc BC; the arc DE is the difference in the inclination
of the arc AB and the arc EG is the difference in the inclination of the arc
BC.

I say that the ratio of the arc AB to the arc BC is greater than the ratio
of the arc DE to the arc EG.

Proof: The two arcs AB, BC are either commensurable or incommen-
surable.27
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If they are commensurable, then they can be divided into equal parts by
the part that is their [common] measure. If we cut off the two arcs DE and
EG, by means of the arcs which are the differences of the inclinations of
these parts, the parts of the two arcs DE and EG will be unequal and the
number of parts in the arc DE will be equal to the number of the equal parts
in the arc AB; number of parts in the arc EG will be equal to the number of
equal parts in the arc BC and the parts of the arc DG that are closer to the
point G will be smaller than those that are further away from it. So the parts
of the arc DE are smaller than the parts of the arc EG. So the ratio of the
number of the parts of the arc DE to the number of parts of the arc EG is
greater than the ratio of the arc DE to the arc EG, because the ratio of the
numbers the one to the other is the ratio of equal parts. But the parts of the
arc DE are unequal and each of them is smaller than each of the parts of the
arc EG; so the ratio of the number of parts of the arc DE to the number of
parts of the arc EG is greater than the ratio of the arc DE to the arc EG. But
the ratio of the number of parts of the arc DE to the number of parts of the

27 See Supplementary note [2].
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arc EG is equal to the ratio of the number of equal parts of the arc AB to the
number of equal parts of the arc BC and the ratio of the number of parts of
the arc AB to the number of parts of the arc BC is the ratio of the arc AB to
the arc BC, because the parts of the two arcs AB, BC are equal; so the ratio
of the arc AB to the arc BC is greater than the ratio of the arc DE to the arc
EG.

But if these two arcs AB, BC are incommensurable, we again say that
the ratio of the arc AB to the arc BC is greater than the ratio of the arc DE
to the arc EG.

Proof: If it were not so, then the ratio of the arc AB to the arc BC would
be either equal to the ratio of the arc DE to the arc EG or smaller than it.

First, let the ratio of the arc AB to the arc BC be equal to the ratio of the
arc DE to the arc EG. We subdivide up the arc AB into any number of
equal parts and we take from among these parts one that is of a magnitude
smaller than the arc BC ; let it be the arc HB . Let the arc IE be the
difference of the inclination of the arc HB; so the ratio of AH to HB is
greater than the ratio of DI to IE, as has been proved in the first part of this
proposition. Again by composition, the ratio of AB to BH is greater than the
ratio of DE to EI. So the ratio of IE to ED is greater than the ratio of HB to
BA. But the ratio of DE to EG is by hypothesis equal to the ratio of AB to
BC; so the ratio of IE to EG is greater than the ratio of HB to BC. Let the
ratio of IE to EG be equal to the ratio of HB to BK. We cut off from BC
parts equal [to one another] and equal to the parts contained in the arc HB
until the parts reach a magnitude greater than the arc BK and less than the
arc BC. If the arc KC is smaller than one of the parts that are in HB, then
we divide up the parts in HB into small parts until each of these is smaller
than KC  and we take a quantity of small parts of BC <whose sum is>
smaller than BC and greater than BK; let this magnitude [the sum] be the
magnitude BM. Let EL be the difference in inclination of the arc BM; so the
arc E L is smaller than the arc EG  because EG  is the difference in
inclination of the arc BC which is greater then BM; the ratio of the arc HB
to the arc BM is greater than the ratio of the arc IE to the arc EL; but the
ratio of the arc IE to the arc EG is greater than the ratio of the arc HB to the
arc BM, because it is equal to the ratio of HB to BK; so the ratio of IE to
EG is greater than the ratio of HB to BM. But the ratio of HB to BM is
greater then the ratio of IE to EL, so the ratio of IE to EG is much greater
than the ratio of IE to EL and the arc EG is smaller than the arc EL; which
is impossible. So the ratio of AB to BC is not equal to the ratio of DE to
EG.

If the ratio of AB to BC were smaller than the ratio of DE to EG, the
ratio of IE to ED would be greater than the ratio of HB to BA. But the ratio
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of DE to EG is greater than the ratio of AB to BC; so the ratio of IE to EG
is much greater than the ratio of HB to BC. We put the ratio of HB to BK
equal to the ratio of IE to EG and the proof is completed as before; the arc
EG would then be smaller than the arc EL; which is impossible.

So the ratio of AB to BC  is not equal to the ratio of DE to EG nor
smaller than it; so the ratio of AB to BC is greater than the ratio of DE to
EG. That is what we wanted to prove.

And by synthesis, the ratio will again have this property.
By this proof we show that, if the two arcs AB and BC are disjunct, the

differences of the inclinations of the arcs that are disjunct are also unequal;
and for those of the arcs that are further away from the point of inter-
section, <the differences> in the inclinations are smaller.

<7> Similarly, let there be two great circles that cut one another on a
sphere; let them be the circles ABC and ADC and let each of the arcs CB
and CD be a quarter circle. We cause to pass through the two points B and
D a quarter of a great circle; let it be BDK. This circle passes through the
poles of the circles ABC and ADC. Let the pole of the circle ADC be the
point K; let us divide the arc CB into equal parts; let these be CM, MN, NP,
PQ, QB. We cause great circles to pass through the points of division and
through the point K; let them be EMK, GNK, HPK, IQK; let the points E,
G, H, I lie on the arc CD. If the circle CDA is the circle of the equator, the
arcs cut off on it between the great circles drawn from the point K are the
right ascensions28 for the equal arcs cut off on the arc CB.
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28 Lit.: are the ascensions on the right orb.
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I say that the arcs DI, IH, HG, GE, EC are unequal, that DI is the larg-
est, that EC is the smallest and that those [arcs] that are closer to DI are
greater than those that are further from it.

Proof: The ratio of the chord of twice the arc CM to the chord of twice
the arc MN is a compound of the ratio of the chord of twice the arc CE to
the chord of twice the arc EG and the ratio of the chord of twice the arc GK
to the chord of twice the arc KN. But the chord of twice the arc CM is equal
to the chord of twice the arc MN, so the ratio compounded of the ratio of
the chord of twice the arc CE to the chord of twice the arc EG and the ratio
of the chord of twice the arc GK to the chord of twice the arc KN is the
ratio of equality.29 But the chord of twice the arc GK is greater than the
chord of twice the arc KN because the chord of twice the arc GK is the
diameter. If the ratio of equality is compounded of two ratios, one of which
is the ratio of the largest to the smallest, then the second ratio is the ratio of
the smallest to the largest; so the chord of twice the arc CE is smaller than
the chord of twice the arc EG, twice the arc CE is smaller than twice the arc
EG and the arc CE is smaller than the arc EG. In the same way, the ratio of
the chord of twice the arc C N  to the chord of twice the arc NP  is
compounded of the ratio of the chord of twice the arc CG to the chord of
twice the arc GH and of the ratio of the chord of twice the arc HK to the
chord of twice the arc KP. But the ratio of the chord of twice the arc CN to
the chord of twice the arc NM is compounded of the ratio of the chord of
twice the arc CG to the chord of twice the arc GE and of the ratio of the
chord of twice the arc EK to the chord of twice the arc KM; but the ratio of
the chord of twice the arc CN to the chord of twice the arc NM is itself the
ratio of the chord of twice the arc CN to the chord of twice the arc NP,
because the arc NM is equal to the arc NP. The ratio compounded of the
ratio of the chord of twice the arc CG to the chord of twice the arc GH and
the ratio of the chord of twice the arc HK to the chord of twice the arc KP
is the ratio compounded of the ratio of the chord of twice the arc CG to the
chord of twice the arc GE and the ratio of the chord of twice the arc EK to
the chord of twice the arc KM. But the arc KP is smaller than the arc KM;
so the chord of twice the arc KP is smaller than the chord of twice the arc
KM and the arc HK is equal to the arc EK; so the ratio of the chord of twice
the arc HK to the chord of twice the arc KP is greater than the ratio of the
chord of twice the arc EK to the chord of twice the arc KM; so it remains
that the ratio of the chord of twice the arc CG to the chord of twice the arc
GH is smaller than the ratio of the chord of twice the arc CG to the chord

29 We obtain a ratio equal to unity.
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of twice the arc GE; so the chord of twice the arc GH is greater than the
chord of twice the arc GE and the arc GH is greater than the arc GE.

In the same way, we prove that the arc HI is greater than the arc HG
and that the arc ID is greater than the arc IH.

In the same way, we prove that for two equal arcs, [that are] contigu-
ous, [and are] cut off on the arc BC, the ascensions30 are unequal and that
the ascension of whichever of the two arcs is closer to the point of
intersection is smaller than the ascension of the one that is further away,
that each of these two equal arcs will have the magnitude of a quarter circle
or it will not be of the magnitude of a quarter circle, whether it is
commensurable with the circle or whether it is not commensurable with it.
The contiguous equal arcs that have been cut off from the inclined circle
have unequal right ascensions and the equal arcs closest to the point of
intersection have the smallest ascensions. That is what we wanted to prove.

This having been proved, then for two contiguous arcs cut off on a
quarter of a circle inclined to the circle of the equator, [arcs that are] equal
or not equal, commensurable with the quarter circle or not commensurable
[with it], the ratio of whichever is closer to the point of intersection to the
one that is further away from the point of intersection is greater than the
ratio of the ascension whichever is the closer to the point of intersection to
the ascension of the one that is the further from the point of intersection.

The proof of this is the same as that for the preceding proposition
concerning the ratio of two arcs and their inclinations; but in this other
one,31 the ratio of the arc that is further from the point of intersection to the
one that is closer to it is greater than the ratio of the difference in
inclination of the one that is further away to the difference in inclination of
the one that is closer, whereas, in this present proposition, the ratio of
whichever of the two arcs is closer to the point of intersection to the one
that is further away is greater than the ratio of the ascension of the closer
one to the ascension of the further one. And by synthesis, the same will
hold for the two ratios.

<8> In any circle we draw one of its diameters, on which we mark a
point that is not the centre; from this point we draw straight lines to the
circumference of the circle, [lines] that cut off on the circumference of the
circle equal arcs each of which has as its chord a straight line smaller than
the complement of the diameter; then the angles formed at the chosen point

30 The ‘ascension of an arc’ means the difference between the ascensions of the
two endpoints of the arc.

31 That is, in the preceding proposition.
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are unequal and the angle that lies on the same side as the greater of the
two parts of the diameter is the smaller, and the angles that are closer to it
are smaller than those that are further from it.

Example: In the circle ABC we have drawn a diameter AC, the centre is
<the point> D and we take any point on the diameter, which is the point E.
From the point E we draw the straight lines EB, EH, EI such that the arcs
AB, BH, HI are equal and each of their chords is smaller than the straight
line EC.

I say that the angle AEB is smaller than the angle BEH and the angle
BEH is smaller than the angle HEI.
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Proof: We draw the straight lines DB, DH, DI, AB, BH, HI. Since the
arcs AB, BH, HI are equal, the triangles ADB, BDH and HDI are equian-
gular, so the angles DAB, DBA, DHB, DBH, DHI, DIH are all equal and the
angle EHB is greater than the angle DHB; so the angle EHB is greater than
the angle EAB. We join HC; the figure ABHC is a quadrilateral inscribed in
a circle, so the angle CAB plus the angle CHB is equal to two right angles,
the angle EAB plus the angle EHB is smaller than two right angles,32 the
angle EHB is greater than the angle EAB and their sum is smaller than two
right angles. On the straight line EB we construct an angle EBK equal to
the angle EAB. But the angle EAB is acute, so the angle EBK is acute. We
make the straight line EK equal to the straight line EB; so the angle EKB
will be equal to the angle EBK. We circumscribe about the triangle EBK a
circle BKE; so the angle BKE plus the angle inscribed in the segment [of
the circle] EB, which is opposite it, is thus equal to two right angles. But
the angle BKE plus the angle EHB is smaller than two right angles, because

32 Because EHB CHBˆ ˆ< .
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the angle BKE is equal to the angle EAB; so the angle EHB is smaller than
the angle inscribed in the segment EB. So the segment of the circle BKE
which is cut off by an angle equal to the angle EHB is greater than the
segment EB; but the angle EHB is greater than the angle EBK, because it is
greater than the angle EAB, which is equal to the angle EBK. But since the
angle EHB is greater than the angle EBK, the segment of the circle BKE in
which is inscribed an angle equal to the angle EHB, is smaller than the
segment EBK. But since the segment EBK is greater than a semicircle, the
segment of the circle BKE intercepted by an angle equal to the angle EHB
is greater than the segment EB and smaller than the segment EBK. Let there
be a segment [of a circle]; let the segment in which is inscribed an angle
equal to the angle EHB be the segment EBN. We join EN, BN; then the
angle ENB is equal to the angle EKB, because they are [inscribed] in the
same segment of a circle. But the angle EKB is equal to the angle EBK, so
the angle ENB is equal to the angle EBK; but the angle EBN is greater than
the angle EBK, so the angle EBN is greater than the angle ENB and the
straight line EN is greater than the straight line EB. If about the triangle
EHB we circumscribe a circle, the segment of this circle cut off by the
straight line EB is similar to the segment EBN and the straight line EB
which is the base of this segment33 is smaller than the straight line EN
which is the base of the segment EBN. The circle circumscribed about the
triangle EHB is thus smaller than the circle BKE and the circle BKE is
equal to the circle circumscribed about the triangle AEB, because the
straight line EB cuts off from the circle circumscribed about the triangle
AEB a segment similar to the segment BKE cut off by the same straight line
EB. So the circle BKE is equal to the circle circumscribed about the triangle
AEB, so the circle circumscribed about the triangle AEB is greater than the
circle circumscribed about the triangle EBH. But each of the angles at the
point E is an acute angle, because any straight line drawn from the point E
to the circumference of the circle is greater than the straight line EC and the
straight line EC is greater than each of the straight lines AB, BH, HI; so the
straight line EB is greater than the straight line BA and the angle EAB is
greater than the angle AEB; but the angle EAB is acute, so the angle AEB is
acute. Similarly, the straight line EH is greater than the straight line EB, so
the angle EBH is greater than the angle BEH; but the angle EBH is acute,
so the angle BEH is acute. We show this in the same way for all the angles
at the point E, so all the angles at the point E are acute. So the arc of the
circle circumscribed about the triangle AEB that is intercepted by the angle
A E B  is smaller than a semicircle; similarly the arc of the circle
circumscribed about the triangle EBH that is intercepted by the angle BEH

33 That is, the chord of the arc.
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is smaller than a semicircle, so the arc cut off by the straight line AB from
the circle circumscribed about the triangle AEB and intercepted by the
angle AEB is smaller than a semicircle, and the arc cut off by the straight
line BH  from the circle circumscribed about the triangle B E H and
intercepted by the angle BEH is smaller than a semicircle. But the straight
line AB is equal to the straight line BH and the circle circumscribed about
the triangle AEB is greater than the circle circumscribed about the triangle
BEH; the arc cut off by the straight line AB from the circle circumscribed
about the triangle AEB and intercepted by the angle AEB is thus smaller
than the arc similar to the arc cut off by the straight line BH from the circle
circumscribed about the triangle BEH and intercepted by the angle BEH; so
the angle AEB is smaller than the angle BEH.

Similarly, we draw the straight line BE to [meet] the circumference of
the circle, let it be the straight line BEG, and we join IG; the figure BHIG is
then a quadrilateral inscribed in a circle; so the angle HBG plus the angle
HIG add up to two right angles and the angle EBH plus the angle EIH add
up to less than two right angles. But the angle EIH is greater than the angle
DIH which is equal to the angle DBH and the angle DBH is greater than the
angle EBH; so the angle EIH is greater than the angle EBH and, in the
triangles BEH and HEI, the angle EIH of the second [triangle] is greater
than the angle EBH of the first. But the angle EBH plus the angle EIH adds
up to less than two right angles. We then prove for these two triangles what
has been proved for the triangles AEB and BEH: that the angle BEH is
smaller than the angle HEI. Similarly for all the angles that follow these
angles until the equal arcs reach the point C, if the arc AB measures the arc
ABC, or until [in sum] the equal arcs add up to an arc smaller than the arc
AB on the side towards the point C.

It is clear from the preceding that the angles at the point E are unequal
in the way that we have established, that each of the equal arcs cut off on
the arc ABC measures the arc ABC or does not measure it, [that is] accord-
ing to whether it is commensurable or incommensurable with it, and it is
also clear by the second proof we set out for the angles BEH, HEI that the
angles at the point E are unequal, even if the equal arcs do not begin at the
point A.

Let there be a general circle in which we draw a diameter, on it we
mark a point that is not the centre and from this point we draw straight
lines to the circumference of the circle that cut off on the circumference of
the circle equal arcs each of which is subtended by a straight line that is
smaller than the complement of the diameter; then the angles formed at the
chosen point will be unequal, the smallest is on the side towards the centre
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and one that is closer to this angle is smaller than one further from it. That
is what we wanted to prove.

<9> From here on, it results from what we have proved that if, with
centre E, we draw a circle, of the arcs cut off by the straight lines drawn
from the point E on the circumference of the circle whose centre is a differ-
ent point, those [arcs] that are on the side towards the diameter AC are
smaller than those that follow them, if the arcs cut off by the straight lines
drawn from the point E on the arc ABC are equal.

Let us again draw the circle ABC; let the centre be <the point> D. Let
the point E be different from the centre. With centre E let us draw a circle
AIG and let us draw from the point E three general straight lines; let them
cut the circle ABC at the points B, K, M and them cut the circle AIN at the
points I, H, N.

I say that the ratio of the arc BK to the arc KM is greater than the ratio
of the arc IH to the arc HN, whether the arcs BK, KM are equal or unequal,
whether each of the two arcs is commensurable or incommensurable with
the arc BAC; whether the two arcs are contiguous or disjunct.

G
C E

D
A

B

K

M

I

H

N

Fig. I.9

Proof: If the two arcs BK  and KM are commensurable,34 we divide
them by the magnitude that is their common measure and we draw from the
point E to the points of division straight lines that we extend until they
meet the circle AIG; these straight lines cut off on the circle AIG unequal
arcs such that the one among them that is closest to the point A is smaller
than one that is further from it. From this we show that the ratio of the arc
BK to the arc KM is greater than the ratio of the arc IH to the arc HN. If the

34 See Supplementary note [2].
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arc BK is not commensurable with the arc KM, then the proof that the ratio
of the arc BK to the arc KM is greater than the ratio of the arc IH to the arc
HN is the same proof as the one used in Proposition 6: the ratio of BK to
KM would either be equal to the ratio of IH to HN, or smaller than it; and
from this impossibility there follows what followed in Proposition 6; the
ratio of the arc BK to the arc KM is accordingly greater than the ratio of the
arc IH to the arc HN.

The same will hold if the two arcs BK  and KM  are disjunct, not
contiguous, because the arcs cut off on the circle AIN are unequal and the
one on the side towards the point A is smaller even if they are disjunct.
That is what we wanted to prove.

<10> Similarly, let there be a known circle ABC in which a diameter
AC has been drawn, and let there be a segment of the circle smaller than a
semicircle such as the segment ADC; let that segment be perpendicular to
the plane of the circle ABC, and let the ratio of GH to HP be known.

We wish to draw in the segment ADC a chord such as the chord CD so
that, if from its endpoint we draw a perpendicular to the diameter AC, such
as the perpendicular DE, if from the foot of this perpendicular we draw a
perpendicular to the diameter AC in the plane of the circle ABC, such as the
perpendicular EB and if we join its endpoint to the endpoint of the first
chord with a straight line such as the straight line BD, the ratio of BD to
DC will be greater than the ratio of GH to HP.
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We take the ratio of GH to HP equal the ratio of HP to HM, we extend
HG in the direction of G and we take GI equal to HM . We divide the
straight line AC at the point K so that the ratio of AK to CK is equal to the
ratio of IM to MH. So AK is greater than CK and IM is greater than MH; in
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fact IM is equal to GH.35 On the straight line KC we construct a semicircle
in the plane of the segment ADC ; let the semicircle be KDC. This
semicircle cuts the arc CDA. In fact, if from the point C we draw a tangent
to the segment CDA, then it [the tangent] makes an acute angle with the
straight line CA, because it encloses with it an angle equal to the angle
contained in the remainder of the circle ADC; but this remainder is greater
than a semicircle, so the angle contained in it is an acute angle, the straight
line [that is a] tangent to the arc CDA at the point C makes an acute angle
with the straight line CA and any straight line drawn from the point C that
makes an acute angle with the straight line CA lies inside the arc CDK; so
the straight line [that is a] tangent to the arc CDA drawn from the point C
lies between the arc CDA and the arc CDK, a part of the arc CDK lies
outside the arc CDA and the point K of the arc CDK lies inside the arc
CDA; so the semicircle CDK cuts the arc CDA; let it cut it at the point D.
We join CD and from the point D we draw a perpendicular to the straight
line CK; let it be DE. We draw EB perpendicular to the straight line CA in
the plane of the circle ABC and we join BD.

I say that the ratio of BD to DC is greater than the ratio of GH to HP.
Proof: We cut off AL equal to KC; the ratio of AK to KC is equal to the

ratio of GH to MH and KC is greater than CE. We take AN equal to CE;
then NE is greater than LK. So the ratio of NE to KC is greater than the
ratio of LK to KC; but the ratio of LK to KC is equal to the ratio of GM to
MH.36 So the ratio of NE to KC is greater than the ratio of GM to MH; but
the ratio of NE to KC is equal to the ratio of the product of NE and EC to
the product of KC and EC; so the ratio of the product of NE and EC to the
product of KC and CE is greater than the ratio of GH to MH. But the
product of NE and EC is the amount by which the product of AE and EC
exceeds the product of AN and EC. But the product of AN and EC is the
square of EC because AN is equal to EC, so the product of NE and EC is
the amount by which the product of AE and EC exceeds the square of EC.
Now the product of AE and EC is the square of EB, so the product of NE
and EC is the amount by which the square of BE exceeds the square of EC.
But the product of KC and CE  is the square of CD, so the ratio of the
product of NE and EC to the product of KC and CE  is the ratio of the
amount by which the square of BE exceeds the square of EC, to the square
of CD. Now the ratio of the product of NE and EC to the product of KC and
CE is greater than the ratio of GM to MH; the ratio of the amount by which

35 So we have AK
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the square of E B exceeds the square of EC  to the square of C D is
accordingly greater than the ratio of GM to MH. But the amount by which
the square of BE exceeds the square of EC is the amount by which the
square of BD exceeds the square of DC because DE is perpendicular to the
plane of the circle ABC; so the ratio of the amount by which the square of
BD exceeds the square of DC to the square of DC is greater than the ratio
of GM to MH. By composition, the ratio of the square of BD to the square
of DC is greater than the ratio of GH to HM which is the ratio of the square
of GH to the square of HP; so the ratio of the square of BD to the square of
DC is greater than the ratio of the square of GH to the square of HP and the
ratio of BD to DC is greater than the ratio of GH to HP. That is what we
wanted to construct.

If we wish the straight line DE to make a known acute angle with the
diameter AC on the side towards the point C, CDK being the right angle,
and the ratio of BD  to DC is to be greater than the given ratio, then we
carry out the construction37 as we did before for the right angle.
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Fig. I.10.2

Let the perpendicular be DS, and the perpendicular drawn from the
point S to the circle ABC be the perpendicular SO; we join OD. So the ratio
of OD to DC is greater than the ratio given before.38 From the point D we
then draw a straight line, let it be DE, that makes an acute angle with the
straight line AC on the side towards the point C. From the point E we draw
a perpendicular to the straight line AC; let it be EB. So the perpendicular
EB is parallel to the perpendicular SO. We join BD; it will be greater than
DO, because <the plane of> the arc ADC is perpendicular to the segment of
a circle ABC. But the arc CD is smaller than the arc DA, so the straight line

37 We construct the point D.
38 That is, the ratio GH

HP
.
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BD is greater than the straight line DO39 and the ratio of BD  to D C is
greater than the ratio of OD to DC. But the ratio of OD to DC is greater
than the given ratio, so the ratio of BD to DC is greater than the given ratio.
That is what we wanted to construct.

If on the straight line OD or on the straight line BD we draw an arc of a
circle equal to the circle ADC, the arc that is on the straight line OD or on
the straight line BD is greater than the arc DC, because each of the straight
lines OD and DB is greater than the straight line DC; the ratio of the arc
that is on the straight line OD (or BD) to the arc DC of the circle ADC is
thus greater than the ratio of the chord OD (or BD) to the chord DC, from
what has been proved in the first proposition of this treatise, because the
arc that is on the chord OD (or BD) is smaller than the arc AD; so the arc
drawn on the chord O D (or BD ), plus the arc DC, is smaller than a
semicircle. If the arc drawn on the straight line OD (or BD) is from a circle
smaller than the circle ADC, it will be greater than the arc similar to the arc
of a circle equal to the circle ADC; so the ratio of the arc that is on the
chord OD (or BD) to the arc DC is much greater than the ratio of the chord
OD (or BD) to the chord DC. But the ratio of the chord OD (or BD) to the
chord DC is greater than the given ratio, let the arc drawn on the straight
line OD (or BD) be from a circle equal to the circle ADC or from a circle
smaller than the circle ADC. That is what we wanted to prove.

<11> Similarly, if the circle ABC is a meridian circle, the diameter AC
the axis of the sphere and the two points A and C the two poles of the
sphere, if the circle DNE is one of the muqan†aræt of altitude – that is, one
of the circles parallel to a horizon – which is parallel to a horizon that
passes through the points A and C, and if parallel circles among those cir-
cles whose two poles are the points A and C – such as the circles HL, IM,
BN, KP – cut this sphere, if among these circles BN is the circle of the
equator, if the semidiameters of these circles are the straight lines HQ, IS,
BG, KF,40 if the straight line DE  is the [line of] intersection of the
muqan†ara DNE and the meridian circle, if this straight line cuts the diame-
ters of the parallel circles at the points X, J, O, U and if we draw the
straight lines LH, MI, NB, PK, HD, ID, BD, KD, then the ratio of LH to HD
is greater than the ratio of MI to ID, the ratio of MI to ID is greater than the
ratio of NB to BD and the ratio of NB to BD is greater than the ratio of PK
to KD.

39 See Mathematical commentary. Ibn al-Haytham provides no justification for the
inequality BD > DO.

40 The points Q, S, G, F are the centres of the circles.
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Proof: We draw the straight lines LX, MJ, NO, PU; these straight lines
are the [lines of] intersection of the planes of the parallel circles with the
plane of the muqan†ara. We draw the straight lines LQ, MS, NG, PF. Since
the poles of the parallel circles are the points A and C, their centres lie on
the straight line AC; since the [lines of] intersection of these parallel circles
with the plane of the circle ABC are the straight lines HQ, IS, BG, KF and
since these parallel circles cut the straight line AC at the points Q, S, G, F,
these points are the centres of these circles and the straight lines LQ, HQ,
MS, IS, NG, GB, PF, KF are semidiameters of these circles; since the two
points A and C are the two poles of these circles, the straight line AC will
be perpendicular to the planes of these circles and since the muqan†ara
DNE is parallel to the horizon that passes through the two points A and C,
the straight line DE will be parallel to the straight line AC because they are
the two [lines of] intersection of the horizon that passes through the points
A and C and the muqan†ara DNE with the <plane> of the meridian circle;
so the straight line DE is perpendicular to the planes of the parallel circles.
Each of the angles DXL, DXH, DJM, DJI, DON, DOB, DUP, DUK is a
right angle and the straight lines Q X , S J, GO, F U  are equal and
perpendicular to the plane of the muqan†ara; in fact they are equal because
they are parallel and the straight line DE is parallel to the straight line CA;
they are perpendicular to the plane of the muqan†ara because they are the
[lines of] intersection of the parallel circles and the meridian circle. Now
the parallel circles are perpendicular to the plane of the horizon that passes
through the points A and C, and the meridian circle is also perpendicular to
that horizon; so these [lines of] intersection are perpendicular to the plane
of that horizon and the plane of the muqan†ara is parallel to the plane of
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that horizon. So these [lines of] intersection are perpendicular to the plane
of the muqan†ara, each of the angles QXL, SJM, GON, FUP is a right
angle, the straight line XL is smaller than the straight line JM and the
straight line JM is smaller than the straight line ON; so the angle XQL is
smaller than the angle JSM and the angle JSM is smaller than the angle
OGN. The points Q, S , G are the centres of the circles; so the arc LH is
smaller than the arc similar to the arc MI and the arc MI is smaller than the
arc similar to the arc NB. If we draw these parallel circles until they cut the
muqan†ara in the other direction, then each of the arcs cut off on each of
them between the muqan†ara and the arc EBD is equal to the corresponding
one among the arcs LH, MI, NB. So the angle HLX is smaller than the angle
IMJ, the angle IMJ is smaller than the angle BNO and each of the angles
HXL, IJM, BON is a right angle. So it remains that the angle LHX is greater
than the angle MIJ and the angle MIJ is greater than the angle NBO. We
draw the angle XHR equal to the angle JIM; thus the triangle XHR will be
similar to the triangle JIM and the ratio of RH to HX is equal to the ratio of
MI to IJ. But the straight line LH  is greater than the straight line RH
because the angle LRH is obtuse; so the ratio of LH to HX is greater than
the ratio of MI to IJ. In the same way, we prove that the ratio of MI to IJ is
greater than the ratio of NB to BO.

In the same way, since the angle HDX is greater than the angle IDX and
each of the two angles HXD and IJD is a right angle, accordingly the angle
DIJ is greater than the angle DHX. We put the angle XHU′ equal to the
angle DIJ; then the triangle XHU′ is similar to the triangle JID, so the ratio
of XH to HU′ is equal to the ratio of JI to ID. But HU′ is greater than HD,
because the angle HDU′ is obtuse; so the ratio of XH to HD is greater than
the ratio of XH to HU′ and the ratio of XH to HD is greater than the ratio of
JI to ID. So the ratio of LH to HX is greater than the ratio of MI to IJ and
the ratio of XH to HD is greater than the ratio of JI to ID, so the ratio of LH
to HD is much greater than the ratio of MI to ID. In the same way, we
prove that the ratio of MI to ID is greater than the ratio of NB to BD. In the
same way, the perpendicular KU is smaller than the perpendicular BO and
the perpendicular UP is smaller than the perpendicular ON; so the straight
line KP is smaller than the straight line BN, the straight line KD is greater
than the straight line BD and the ratio of NB to BD is greater than the ratio
of PK to KD.

We have thus proved that the ratio of the straight line LH to the straight
line HD is greater than the ratio of the straight line MI to the straight line
ID, that the ratio of the straight line MI to the straight line ID is greater than
the ratio of the straight line NB to the straight line BD and that the ratio of
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the straight line NB to the straight line BD is greater than the ratio of the
straight line PK to the straight line KD. That is what we wanted to prove.

<12> In the same way, let us return to the figure; let the pole A be
higher than the horizon and below the zenith, the pole C beneath the hori-
zon, the parallel circles inclined to the plane of the muqan†ara and the point
O the centre of the muqan†ara.

I say that the chords that we have mentioned are as they were [before].
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Proof: If the pole A is above the horizon, the straight line DE meets the
axis AC on the side towards E and the centres of the parallel circles are on
the axis AC; so the straight lines XQ, JS, OG, UF are unequal, the longest
one is the straight line XQ and the shortest is UF.41 Each of the angles DXL,
DJM, DON, DUP, LXH, MJI, NOB, PUK is a right angle, because the
parallel circles are perpendicular to the meridian circle, the muqan†ara is
perpendicular to the meridian circle and the straight lines LX, MJ, NO, PU
are the [lines of] intersection of the parallel circles and the muqan†ara; so
they are perpendicular to the plane of the meridian circle. But the straight
line LX is smaller than the straight line MJ and the straight line MJ is
smaller than the straight line NO, because NO is a semidiameter of the
muqan†ara. Since the straight line QX is greater than the straight line SJ
and the straight line XL is smaller than the straight line JM, the angle XQL

41 In all versions of the figure we have XQ > JS > OG, and if the axis AC cuts DE
at the point E or beyond E, we have OG > FU. But if AC cuts DE between O and E, we
can have OG ≤ FU.
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will be smaller than the angle JSM and the angle HLX that intercepts an arc
equal to the arc HL is half of the angle XQL. Similarly, the angle IMJ is
half of the angle JSM, so the angle HLX is smaller than the angle IMJ. But
each of the angles LXH and MJI is a right angle. We then prove, as was
proved in the preceding proposition, that the ratio of LH to HX is greater
than the ratio of MI to IJ and, in the same way as in the preceding propo-
sition, we also prove that the ratio of XH to HD is greater than the ratio of
JI to ID; so the ratio of LH to HD is greater than the ratio of MI to ID.
Similarly, we prove that the ratio of MI to ID is greater than the ratio of NB
to BD.

The same proof is necessary if the axis AC cuts the straight line DE
inside the meridian circle, because if it cuts it inside the meridian circle, it
cannot cut it only between the points E and O and nothing is changed in the
proof, because if the axis AC passes through the point O, which is the
centre of the muqan†ara, the pole A will be the zenith; now, by hypothesis,
it is lower than the zenith. The same proof is also necessary if the point E is
the upper pole.42 The ratio of NB to BD is also greater than the ratio of PK
to KD. Indeed, either the angle KPU is smaller than the angle BNO, or it is
equal to it, or it is greater than it.

If the angle KPU is smaller than the angle BNO, then the arc PK will be
smaller than the arc similar to the arc BN; but the arc PK belongs to a circle
that is smaller than the circle BN, because the largest of the parallel circles
<situated between the pole A and the equator> is inclined towards D;43 so
the circle BN is smaller than the largest of the parallel circles, the circle KP
is smaller than the circle BN , the straight line KP  is smaller than the
straight line BN and KD is greater than BD; so the ratio of NB to BD is
greater than the ratio of PK to KD.

If the angle KPU is equal to the angle BNO, then the arc KP is similar
to the arc BN; but KP belongs to a smaller circle, so the straight line KP is
smaller than the straight line BN.

If the angle KPU is greater than the angle BNO, then the angle PKU is
smaller than the angle NBO. If from the angle NBO we cut off an angle
equal to the angle PKU, there is formed inside the triangle NBO a triangle
similar to the triangle KPU and the ratio of the straight line that lies inside
the triangle NBO to the straight line BO is equal to the ratio of PK to KU;
so the ratio of NB to BO is greater than the ratio of PK to KU. But the ratio
of OB to BD is greater than the ratio of UK to KD – since this is proved as
we proved it in the preceding proposition. So the ratio of NB  to BD  is

42 By implication the one above the horizon.
43 The largest of the parallel circles we are considering is the one that is closest to

D, that is, the closest to the equator.
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greater than the ratio of PK to KD. Similarly, we prove that the ratio of PK
to KD is greater than the ratio of any chord corresponding to the straight
line PK, more inclined towards the point E than the straight line PK, to the
chord that corresponds to the straight line KD.

Thus we have proved that the ratio of two chords from among the pre-
ceding chords is greater than the ratio of two chords that are further away
than the first two, for all the positions of the parallel circles and all the
positions of the muqan†aræt. That is what we wanted to prove.

<13> Similarly, if the circle ABC is one of the horizons, the circle ADC
the meridian circle, the point D the pole of the horizon, and the circle EH
one of the muqan†aræt of altitude, if the two arcs LG and NM belong to
hour circles, that is to say to circles parallel to the equator, if the two points
L and N lie on the arc DE and if the sphere is right or inclined towards the
point E, then the arc LG is greater than the arc similar to the arc NM.
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Proof: If the sphere is right, then the circle of the equator passes
through the point D , <its diameter> passes through the centre of the
muqan†ara EGH, the two points G and M will lie between the circle of the
equator and the point E and the two poles of the equator will be the points
A  and C; the great circle drawn through the two poles A, C and which
touches the muqan†ara EGH, [but] only at the midpoint of the arc EGH
which is the point of intersection of the muqan†ara EGH with the circle of
the equator; any great circle drawn through the two poles A, C and which
cuts the muqan†ara EGH, cuts off from the muqan†ara two equal arcs on
either side of the point of contact, and the circle closest to the tangent circle
cuts off a smaller arc from the muqan†ara on the side towards the point of
contact. From this we prove that the two great circles drawn through the
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points A and C and which pass through the points M and G cut the mu-
qan†ara in such a way that the circle that passes through the point G is
closer to the tangent circle than the circle that passes through the point M,
because the point G is closer to the midpoint of the arc EGH than the point
M. If this is so, then the great circle that passes through the points M , K
cuts the arc GL; if it cuts the arc GL, then it cuts off from it an arc similar
to the arc MN; consequently the arc GL is greater than the arc similar to the
arc MN.

If the sphere is inclined towards E, then the visible pole is either below
the muqan†ara EGH or on the muqan†ara itself occupies the position of the
point H, or [the visible pole] is above the muqan†ara.

First, let the pole be below the muqan†ara, let it be at the point O. We
cause to pass through the point O a great circle that touches the muqan†ara
EGH, which is the circle whose inclination to the horizon is equal to the
altitude of the muqan†ara; let the circle be OKB.44 Since the circle ADC is
perpendicular to the horizon, accordingly the straight lines drawn from the
point O to the circumference of the horizon are unequal and the greatest is
the chord of the arc OC; so the chord of the arc OC is greater than the
chord of the arc OB and the arc OC is greater than the arc OB. We cause a
great circle to pass through the points D, K; let the circle be DK. Since the
circle OKB touches the circle EGH and the circle DK is a great circle that
passes through the point of contact and through the pole of the circle EGH,
the circle DK passes through the pole of the circle OKB; so the pole of the
circle DK lies on the circumference of the circle OKB and, similarly, the
pole of the circle DK lies on the circumference of the circle ABC; so the
point B is the pole of the circle DK, the arc BK is a quarter of a circle and
the arc DC is a quarter of a circle; so it remains that the arc OD is greater
than the arc OK. Through the point K we draw the hour arc, let the arc be
KI; so the point I lies between the points D and H. From the point O to the
points G and M we draw two great circles – they cut the hour arc KI in two

44 The circle OKB cuts the horizon in B and touches the horizontal circle EGH in
K. The great circle DK cuts the horizon in K′, the arc KK′ indicates the altitude of any
point of the circle EGH. The tangent to the circle BKO at K and the tangent to the circle
CBK′ at K′ are parallel; the straight line Bω (where ω is the centre of the sphere), the
line of intersection of the planes BKO  and CBK ′, is thus parallel to them, and
consequently Kω ⊥ Bω and K′ω ⊥ Bω; the angle KωK′ is the rectilinear of the dihedral
angle formed between the plane BKO and the horizontal plane, so the circle OKB is ‘the
circle whose inclination to the horizon is the altitude of the muqan†ara’.
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different points, because each of them is smaller than a semicircle45 –
which cut one another before the two points M and G and they also cut the
arc KH of the muqan†ara; let the two circles be OG, OM. So the circle OG
is closer to the point of contact than the circle OM, because the point G is
closer to the point of contact than the point M, so the circle OM cuts the arc
GL; let it cut it at the point S. So the arc SL is similar to the arc MN and the
arc GL is thus greater than the arc similar to the arc MN.

If the pole is at the point H, then the great circle that passes through the
two points H, M will be closer to the meridian circle than the great circle
that passes through the two points H and G, so the great circle that passes
through the two points H and M cuts the arc GL.

Similarly, if the pole lies on the arc DH, then the great circle drawn
from the pole to the point M will be closer to the meridian circle than the
great circle drawn from the pole to the point G.

So in all cases the arc GL is greater than the arc similar to the arc MN.
That is what we wanted to prove.

<14> Similarly, let the circle ABC be one of the muqan†aræt parallel to
the horizon. Let the arc AD be part of the meridian circle and let the sphere
be right or inclined towards B. The pole of the equator which is on the side
towards the point A either lies on the circumference of the horizon, or is
above the horizon. Let the arc CDL be the circle of the equator or be
parallel to the circle of the equator. Through the pole of the equator let us
draw a great circle. Let it cut the arc DC and the arc AC; let the circle be
IKQ. Let its intersection with the arc DC be the point K and its intersection
with the arc ACB the point I. Through the point I let us cause to pass an arc
of a circle parallel to the equator, let the arc be IE; let it cut the arc ADB at
the point E and let the arc DB be no greater than half of the arc ADB.

I say that the ratio of the arc IE to the arc EB is greater than the ratio of
the arc CD to the arc DB and that the ratio of the arc CD to the arc DB is
greater than the ratio of the arc CK to the arc KI; I mean by my statement
that ‘the ratio of an arc to an arc in two different circles’ the ratio of the arc
of a circle equal to the circle, to an arc similar to an arc of the first circle; it
is this that I mean in everything that I shall mention later if I make use of
the ratios of arcs one to another.

45 For each of them the arc above the horizon is smaller than a semicircle.
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Proof of what we have referred to: The circle IE is either equal to the
circle CDL, or smaller than it, or greater than it.

<A> First, let the circle IE be smaller than the circle CDL. We draw the
straight lines BE, BD, DE, D C, D K, KC , KI, EI. Let AB be the line of
intersection of the meridian circle and the plane of the muqan†ara, let CGL
be the line of intersection of the muqan†ara and the circle LDC, let DG be
the line of intersection of the meridian circle and the circle LDC, let EH be
the line of intersection of the meridian circle and the circle EI and let HI be
the line of intersection of the circle EI and the muqan†ara. So we have that
DG is perpendicular to GC because each muqan†ara and the circle DC are
perpendicular to the meridian circle and their line of intersection, which is
CG, is thus perpendicular to the meridian circle; so the angle DGC is a
right angle, and similarly for the angle EHI. We draw KM perpendicular to
the straight line LC, it will thus be parallel to the straight line DG. We draw
MN parallel to DK, we have that DN is equal to KM and NM is equal to
DK. Since the two arcs EI and DK are between two of the great circles
drawn from their two poles,46 we have that the arc DK is similar to the arc
EI. But since the circle DKC is greater than the circle EI and the arc DK is
similar to the arc EI, the straight line DK is greater than the straight line EI.

46 That is, the poles of the equator.
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If from the point K we draw a perpendicular to the straight line DG, a tri-
angle is formed that is similar to the triangle EIH, because the straight line
EH is a diameter of the circle EI and the straight line IH is the sine of the
arc EI. Similarly, the straight line DG is a diameter of the circle DKC and
the perpendicular drawn from the point K to the diameter DG is the sine of
the arc DK; but the arc DK is similar to the arc EI, so the triangle formed
by the perpendicular drawn from the point K to the straight line D G is
similar to the triangle EIH. The triangle NMG is similar to the triangle
formed by the perpendicular drawn from the point K, because the straight
line MN is parallel to the straight line DK; so the triangle NMG is similar to
the triangle EIH. But the straight line MN is equal to the straight line DK
and DK is greater than EI; so the straight line NM  is greater than the
straight line EI. But since the triangle NMG is similar to the triangle EIH,
and the straight line NM is greater than the straight line EI, we have that
NG is greater than EH.

We draw the straight line ESP parallel to the straight line HG, so PG is
equal to EH; but NG is greater than EH, so NG is greater than PG and the
point P lies between the two points N and G ; so the straight line PD is
greater than the straight line ND. But since the circle ABC is a muqan†ara
parallel to the horizon, the arc ADB is smaller than a semicircle; so the arc
AD is much smaller than a semicircle, so the angle DBH is acute; but the
angle DSP is equal to the angle DBH; so the angle DSP is acute, so the
angle DSE is obtuse and the straight line DE is thus greater than the straight
line DS. Since the circle DKC is greater than the circle EI, the circle DKC
is either the circle of the equator, or one of the circles that are parallel to it
and that is closer to the hidden pole, or one of the circles parallel to the
equator and that is closer to the visible pole, or closer to the equator than
the circle EI. So if the circle DKC is the circle of the equator, then the part
of this circle that is above the muqan†ara ABC is smaller than a semicircle,
because the part of the equator which is above the horizon is a semicircle,
and the arc CDL is thus smaller than a semicircle.47 Similarly, if the circle
DKC is closer to the hidden pole of the equator, then the part of the circle
which is above the horizon, if the sphere is right, is a semicircle, and if the
sphere is inclined towards B, it is smaller than a semicircle; thus the part of
the circle DKC above the muqan†ara ABC is smaller than a semicircle and
the arc LDK is accordingly much smaller than a semicircle.

If the circle DKC is closer to the visible pole, while still being closer to
the equator than the circle EI, then if the sphere is right, the part of the
circle DKC above the horizon is a semicircle and thus the part above the

47 This arc has been cut off from the semicircle by the straight line CL.
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muqan†ara is smaller than a semicircle; so the arc LDK is much smaller
than a semicircle. If the sphere is inclined towards B, then the part of the
circle DKC above the horizon will be greater than a semicircle; however
the part of this circle that is below the horizon will be greater than the arc
similar to the part of the circle EI that is above the horizon: in fact, this
circle is closer to the equator than the circle EI. But the part of the circle
DKC that is below the muqan†ara is greater than the part of this circle that
is below the horizon, so that part of the circle DKC that is below the
muqan†ara is much greater than the arc similar to the arc of the circle EI,
and the part of the circle EI that is above the horizon is greater than the part
of this circle that is above the muqan†ara. The part of the circle DKC that is
below the muqan†ara is thus much greater than the similar arc of the circle
EI which is above the muqan†ara. But the part of the circle EI above the
muqan†ara is twice the arc EI, so it is twice the arc similar to the arc DK;
so the part of the circle DKC that is below the muqan†ara is greater than
twice the arc DK. We add to each side the arc CK; the part of the circle
DKC that is below the muqan†ara, plus the arc CK, is greater than twice the
arc DK, plus the arc CK; but twice the arc DK, plus the arc CK, is the arc
CD, plus the arc DK, and the arc CD is equal to the arc DL; so the arc CD
plus the arc DK is equal to the arc LK; the part of the circle DKC that is
below the muqan†ara, plus the arc CK, is greater than the arc LK and the
part of the circle DKC that is below the muqan†ara, plus the arc CK, plus
the arc LK, is the whole circle. So the arc LK is smaller than the remainder
of the circle, so the arc LK is smaller than a semicircle, so in all the cases
the arc LK will be smaller than a semicircle, and in all the cases the angle
KCL is an acute angle; so the perpendicular KM falls on the straight line
GC, the point M lies between the two points G and C, and the straight line
DC cuts the perpendicular KM; let it cut it at the point U. If from the point
K we draw a straight line parallel to the straight line UC, it meets MC out-
side the triangle and will be greater than KC, because the angle KCM is
acute, so the angle that is adjacent to it is obtuse, so the ratio of the parallel
straight line drawn from the point K to the straight line KM is greater than
the ratio of the straight line CK to the straight line KM. But the ratio of the
straight line drawn from the point K, parallel to the straight line UC, to the
straight line KM is equal to the ratio of the straight line CU to the straight
line UM , so the ratio of the straight line C U to the straight line UM is
greater than the ratio of CK to KM. But the ratio of CU to UM is equal to
the ratio of CD to DG, so the ratio of CD to DG is greater than the ratio of
CK to KM. But we have also proved that the straight line ED is greater than
the straight line DS and that the straight line ND is smaller than the straight
line PD, so the ratio of PD to DS is greater than the ratio of ND to DE. But



302 CHAPTER II: IBN AL-HAYTHAM

the ratio of PD to DS is equal to the ratio of GD to DB, so the ratio of GD
to DB  is greater than the ratio of ND to DE . But ND is equal to MK ,
because the area KMND is a parallelogram, and the straight line DE is
equal to the straight line KI, because the arc DE is equal to the arc KI, since
they belong to two equal <great> circles drawn through the pole of the two
parallel circles; so the ratio of ND to DE is equal to the ratio of MK to KI;
and the ratio of GD to DB is greater than the ratio of MK to KI. So the ratio
of CD to DG is greater than the ratio of CK to KM and the ratio of GD to
DB is greater than the ratio of MK to KI; so the ratio of CD to DB is much
greater than the ratio of CK to KI; if we permute, the ratio of DC to CK is
greater than the ratio of BD to KI; but KI is equal to DE, so the ratio of the
straight line DC to the straight line CK  is greater than the ratio of the
straight line BD to the straight line DE.

Similarly, if the sphere is right, then the straight line DG is perpendicu-
lar to the straight line AB and the arc DB is not greater than half the arc
ADB; so the straight line AG is not smaller than the straight line GB, and
the straight line AB is a diameter of the muqan†ara ABC; so the straight line
AG is not smaller than the semidiameter of the muqan†ara ABC and the
straight line GC is not greater than the semidiameter of this muqan†ara.
The straight line AG is thus not smaller than the straight line GC, and the
straight line GD is perpendicular to the two straight lines AG, GC, if the
sphere is right. We join the straight line AD, it will not be smaller than the
straight line DC; so the angle DAG is not greater than the angle DCG. So
the arc DB is not greater than the arc similar to the arc DL. But the arc DL
is equal to the arc DKC, so the arc DKC is not smaller than the arc similar
to the arc DB.

If the sphere is inclined towards B, then the perpendicular drawn from
the point D to the straight line AB meets it at a point between the two points
B and G and the part of the straight line AB cut off by the perpendicular on
the side towards the point A is not smaller than the semidiameter. In fact, if
the arc DB is half the arc ADB, then the foot of the perpendicular is at the
centre of the muqan†ara and the point G will lie between the centre and the
point A, because the straight line DG is inclined to the straight line AB; so
the straight line GC is smaller than the semidiameter and the straight line
GD is greater than the perpendicular. The angle DCG is greater than the
angle DAB, so the arc LD, that is, the arc DC, is greater than the arc similar
to the arc DB. But if the arc DB is smaller than half the arc ADB, then the
perpendicular falling from the point D onto the straight line AB, cuts off
from the straight line AB, on the side towards A, a straight line greater than
the semidiameter of the muqan†ara; but the straight line GC is not greater
than the semidiameter of the muqan†ara; the straight line cut off by the
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perpendicular from the straight line AB on the side towards the point A is
thus greater than the straight line GC and the perpendicular itself is smaller
than the straight line DG; so the angle DCG is greater than the angle DAB
and the arc DKC is greater than the arc similar to the arc DB. Thus in all
the cases, the arc DKC is not smaller than the arc similar to the arc DB.

Now we have proved that the ratio of the straight line DC to the
straight line CK is greater than the ratio of the straight line BD  to the
straight line DE; so the ratio of the arc DKC to the arc CK is greater than
the ratio of the arc BED to the arc DE, as has been shown in Proposition 4
of this treatise. If we permute, the ratio of the arc C D to the arc DB is
greater than the ratio of the arc CK to the arc DE, that is, to the arc KI. But
if the ratio of the arc CD to the arc DB is greater than the ratio of the arc
CK to the arc DE, then the ratio of the remaining arc, which is the arc DK –
that is, the arc <similar to the arc> EI – to the remaining arc, which is the
arc EB, is greater than the ratio of the arc CK to the arc DE.48 The ratio of
the arc IE to the arc EB is greater than the ratio of the arc CD to the arc DB
and the ratio of the arc CD to the arc DB is greater than the ratio of the arc
CK to the arc KI. That is what we wanted to prove.

If the circle ABC is a horizon, if the sphere is inclined, if the circle ABC
cuts the circle LDC and if the circle LDC is the circle of the equator or it is
closer to the hidden pole than the equator, the part of this circle above the
horizon is not greater than a semicircle and all that we have said in
connection with the muqan†ara necessarily follows. The proof is the same
as the one we have given for the muqan†ara.

If the circle LDC is closer to the visible pole than the equator is, then
the arc of the circle which is below the horizon is greater than the arc of the
circle EI similar to the arc which is above the horizon and the arc of the
circle LDC which is below the horizon, plus the arc CK, is greater than the
arc LK and the arc LK is thus smaller than a semicircle, so the angle KCG
is acute and we complete the proof, as in what we said before in connection
with the muqan†ara.

If the sphere is right and if the circle ABC is a horizon, then the two
poles are the points A, B and any great circle drawn through the two poles
cuts the two circles DC, EI; it does not cut the arc ACB and does not form
an arc like the arc KI; but the ratio of the arc IE to the arc EB will be
greater than the ratio of the arc CD to the arc DB.
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In fact, if the sphere is right, then the parts of each of the circles CD,
IE, that are above the horizon are equal to a semicircle. But the arc EB is
smaller than the arc DB, so the ratio of the arc IE to the arc EB is greater
than the ratio of the arc CD to the arc DB.

<B> Similarly, if the circle IE is equal to the circle CD, then the two
circles CD, IE are on either side of the equator. But if the two circles LDC,
IE are equal, then the arc of the circle LDC that is below the horizon is
equal to the arc of the circle EI above the horizon, and the arc of the circle
LDC that is below the muqan†ara is greater than the arc of the circle EI
above the muqan†ara – whether the sphere is inclined towards B or is right.
The arc of the circle LDC below the muqan†ara, plus the arc CK, is greater
than the arc LK, so the angle KCG is acute; the point M thus lies between
the two points G and C. If the two circles LDC, IE are equal, then the arcs
DK, EI are equal and the straight line DK will be equal to the straight line
EI; so the straight line NM will be equal to the straight line EI and NG will
be equal to EH; so the point N will be the point P and the straight line ND
will be the straight line PD; so PD will be equal to the straight line MK.
But DE is greater than DS in all cases, because the angle DSE is always
obtuse since the angle DSP is always acute; in fact it is equal to the acute
angle DBA, because the arc AD is always smaller than a semicircle. But
since the straight line DE is greater than the straight line DS, the ratio of
PD to DS is greater than the ratio of PD, which is equal to MK, to DE.
From which it necessarily follows that the ratio of the straight line CD to
the straight line DB is greater than the ratio of the straight line CK to the
straight line KI and we complete the proof as before. Then the ratio of the
arc IE to the arc EB is greater than the ratio of the arc CD to the arc DB and
the ratio of the arc CD to the arc DB is greater than the ratio of the arc CK
to the arc KI.
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If the circle ABC is a horizon and if the sphere is inclined, then the arc
of the circle LDC below the horizon is equal to the arc of the circle EI that
is above the horizon; the arc of the circle LDC which is below the horizon,
plus the arc CK, is thus equal to the arc LK. So the angle KCL is a right
angle, the point C is the point M, the straight line KC is equal to the straight
line PD and the ratio of KC to KI is equal to the ratio of PD to KI; but the
ratio of GD to DB is greater than the ratio of CK to KI, and the ratio of CD
to DB is much greater than the ratio of CK to KI, because CD is greater
than DG; and the proof is completed as before.

If the circle ABC is a horizon, if the circles LDC, EI are equal and if the
sphere is right, then the two circles LDC and EI lie on either side of the
pole of the horizon, the arc DC is equal to the arc EI and the arc EB is
smaller than the arc DB; the ratio of the arc IE to the arc EB is then greater
than the ratio of the arc CD to the arc DB, and the circle drawn through the
two poles passes through the point I and through the point C without
cutting the arc DC.

<C> Let us return to the figure; let the circle EI be greater than the cir-
cle LDC and let the sphere be inclined towards B; then either the circle EI
is the circle of the equator or it is closer to the hidden pole than <the circle
of> the equator; so the circle LDC is closer than the equator is to the visible
pole and the distance from the circle LDC to the equator is greater than the
distance from the circle EI <to the circle of the equator>; or the circles EI,
LDC are both inclined towards the visible pole,49 and the circle LDC is
further from the equator than the circle EI – because the circle EI is not
greater than the circle LDC while the arc DB is not greater than half the arc
ADB, except if the sphere is inclined towards B;50 so the point J is the point
in which the straight line DB cuts the straight line EH.

I say that, if the ratio of the straight line EH to the straight line HJ is
not smaller than the ratio of the semidiameter of the circle EI to the
semidiameter of the <circle> DC51 and if the arc LDC is not greater than a
semicircle – this can happen if the circle ABC is one of the muqan†aræt
parallel to the horizon without being the horizon – then the ratio of the arc
IE to the arc EB is greater than the ratio of the arc CD to the arc DB and the
ratio of the arc CD to the arc DB is greater than the ratio of the arc CK to
the arc KI; and if the arc LDC is greater than a semicircle – this can happen
if the circle ABC is one of the muqan†aræt parallel to the horizon and is

49 Either EI and LDC are both, in relation to the equator, on the side towards the
visible pole.

50 See Supplementary note [3].
51 See Supplementary note [4].
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necessary if the circle ABC is a horizon – then the ratios of the arcs are as
we have said, if the part of the circle EI above the circle ABC is not greater
than twice the arc similar to the arc of the circle LDC below the circle
ABC.52 These conditions apply only in this case, I mean if the circle EI is
greater than the circle DC.
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If the arc LDC is not greater than a semicircle, then the arc LDK is
smaller than a semicircle; so the angle KCL will be acute; and we have the
perpendicular KM inside the arc LDC and the ratio of CU to UM is greater
than the ratio of CK to KM; so the ratio of CD to DG is greater than the
ratio of CK to KM which is equal to the ratio of CK to ND.

If the arc LDC is greater than a semicircle and if the part of the circle
EI above the circle ABC is not greater than twice the arc similar to the arc
of the circle LDC below the circle ABC,53 then we draw the straight line CS
parallel to the straight line GD; so <the arc> DS is equal to half the part of
the circle LDC below the circle ABC. Since the straight line D G is a
diameter of the circle LDC and it is perpendicular to the straight line LGC,
accordingly it divides the part of the circle LDC below the circle ABC into
two equal parts. But the arc EI is half the part of the circle EI above the
circle ABC, so the arc EI is no greater than twice the arc similar to the arc
DS, and the straight line CS is perpendicular to the straight line C D,
because it is parallel to the straight line GD. But if the arc EI is not greater
than twice the arc similar to the arc DS, then the arc EI is either smaller
than the arc similar to the arc DS or equal to the arc similar to the arc DS or
greater than the arc similar to the arc DS.

52 Here Ibn al-Haytham introduces a supplementary hypothesis (see Supplementary
note [5]).

53 See Supplementary note [5].
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If the arc EI is smaller than the arc similar to the arc DS, then the arc
DK is smaller than the arc DS and the point S lies between the two points K
and C; then the angle KCG will be acute, because the angle SCG is a right
angle; so the perpendicular KM will lie inside the arc CDL and the point M
will lie between the two points G, C; so the ratio of CD to DG is greater
than the ratio of CK to KM, as we proved before. But KM is equal to ND,
so the ratio of CD to DG is greater than the ratio of CK to ND.

If the arc EI is equal to the arc similar to the arc DS, then the arc DK is
the arc DS, the point S is the point K and the straight line CK is the straight
line CS; so the straight line CK is perpendicular to the straight line GC and
the point M is the point C; the straight line ND will be equal to the straight
line CK.

If the arc EI is greater than the arc similar to the arc DS, then the arc
DK will be greater than the arc DS and the point S will lie between the two
points D, K; but the arc DK is not greater than twice the arc DS, accord-
ingly the arc SK is not greater than the arc SD and the angle SCK is not
greater than the angle SCD; but the angle SCD is equal to the angle CDG,
because the straight line SC is parallel to the straight line DG; so the angle
SCK is not greater than the angle CDG and the perpendicular drawn from
the point K to the straight line GC has its foot at a point outside the point C,
because it [the perpendicular] will be parallel to the straight line CS since
the straight line CS is perpendicular to the straight line GC; the point M is
outside the straight line GC and the perpendicular drawn from the point K
to the straight line GC is smaller than the straight line GD, because the
straight line GD is the sagitta of the arc LDC and the sagitta of any arc is
the greatest perpendicular from [a point on] the arc to its chord. So the
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perpendicular drawn from the point K to the straight line GC is smaller
than the straight line GD and this perpendicular is equal to the straight line
ND, because the straight line MN is drawn from the foot of the perpendicu-
lar and it is parallel to the straight line KD. If the perpendicular is drawn
from the point K to the straight line GC, then it meets the straight line KC
at the point K making an angle equal to the angle KCS , because the
perpendicular will be parallel to the straight line CS. But the angle KCS is
not greater than the angle CDG, so the angle enclosed by the straight line
CK and the perpendicular drawn from the point K to the straight line GC is
not greater than the angle CDG . But the right angle at the foot of the
perpendicular is equal to the right angle CGD; so if the angle enclosed by
the straight line CK and the perpendicular is equal to the angle CDG, then
the ratio of CD to DG is equal to the ratio of CK to the perpendicular. But
if the angle enclosed by the straight line CK  and the perpendicular is
smaller than the angle CDG, then the ratio of CD to DG is greater than the
ratio of CK to the perpendicular. But the perpendicular drawn from the
point K to the straight line GD is equal to the straight line ND. According-
ly, for both cases, the ratio of CD to DG is not smaller than the ratio of CK
to ND; and in all cases the straight line CK either will be equal to the
straight line ND, or its ratio to the straight line ND will not be greater than
the ratio of the straight line CD to the straight line DG.

In the same way, since the arc DK is similar to the arc EI and the circle
DC is smaller than the circle EI, the straight line DK will be smaller than
the straight line EI; so the straight line MN is smaller than the straight line
EI and the triangle NMG is similar to the triangle EIH; so the straight line
NG is smaller than the straight line EH, the straight line NG is smaller than
the straight line PG, the point N lies between P and G, and the straight line
ND is greater than the straight line PD. But since the arc DK is similar to
the arc EI, the ratio of the straight line EI to the straight line DK is equal to
the ratio of the diameter of the circle EI to the diameter of the circle DC; so
the ratio of the straight line EI to the straight line NM is equal to the ratio of
the diameter of the circle EI to the diameter of the circle DC; but the ratio
of EI to NM is equal to the ratio of EH to NG; so the ratio of EH to NG is
equal to the ratio of the diameter of the circle EI to the diameter of the
circle DC. But the ratio of EH to HJ is not smaller than the ratio of the
diameter of the circle EI to the diameter of the circle DC; so the ratio of EH
to HJ is not smaller than the ratio of EH to NG, and the ratio of EH to HJ is
either equal to the ratio of EH to NG, or greater than the ratio of EH to NG.
If the ratio of EH to HJ is equal to the ratio of EH to NG, then NG is equal
to HJ. But if the ratio of EH to HJ is greater than the ratio of EH to GN,
then NG is greater than HJ. If NG is equal to HJ, then we join NJ; it will be
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parallel to GH and the ratio of ND to DJ will be equal to the ratio of GD to
DB. But if NG is greater than JH, then from the point N we draw a straight
line parallel to the straight line GH; it thus cuts the straight line EJ, because
NG is smaller than EH and greater than JH; let it cut it at the point F. If that
parallel straight line cuts the straight line EJ, it will cut the straight line DJ;
then it will cut it at the point X; let the parallel straight line be the straight
line NX, then the ratio of ND to DX is equal to the ratio of GD to DB and
the ratio of EH to HF is equal to the ratio of the diameter of the circle EI to
the diameter of the circle DC. Similarly, if the ratio of EH to HJ is equal to
the ratio of the diameter of the circle EI to the diameter of the circle DC,
then the ratio of EH to EJ is equal to the ratio of the diameter of the circle
EI to the amount by which it exceeds the diameter of the circle DC. But the
amount by which the diameter of the circle EI exceeds the diameter of the
circle DC is twice what the perpendicular from the point D cuts off on the
straight line EH, on the side towards the point E. But the straight line EH is
smaller than the diameter of the circle EI; so the straight line EJ is smaller
than twice what the perpendicular to the straight line EH from the point D,
cuts off on the side towards the point E . If the straight line EH  is the
semidiameter of the circle EI, then the straight line EJ will be what the
perpendicular from the point D cuts off from the straight line EH. So the
straight line DJ will be the perpendicular and the angle DJE will be a right
angle; the straight line DE will then be greater than the straight line DJ. If
the straight line EH is smaller than the semidiameter of the circle EI, then
the straight line EJ will be smaller than the magnitude cut off by the
perpendicular on the side towards the point E; the angle DJE will then be
obtuse and the straight line DE will be greater than the straight line DJ. If
the straight line EH is greater than the semidiameter of the circle EI, then
the straight line EJ will be greater than the magnitude cut off by the
perpendicular. But, in all the cases, the straight line EH is smaller than the
diameter; so the straight line EJ is smaller than twice what the perpendi-
cular cuts off. The perpendicular drawn from the point D to the straight line
EJ thus divides the straight line EJ into two unequal parts the greater of
which is on the side towards the point E; the straight line DE will then be
greater than the straight line DJ. In all the cases, if the ratio of EH to HJ is
equal to the ratio of the diameter of the circle EI to the diameter of the
circle DC, then the straight line DE is greater than the straight line DJ, and
if the ratio of EH to HJ is equal to the ratio of the diameter of the circle EI
to the diameter of the circle DC, then the straight line NJ is parallel to the
straight line GH and the ratio of ND to DJ is equal to the ratio of GD to
DB. But the ratio of ND to DJ is greater than the ratio of ND to DE, be-
cause DE is greater than DJ; so if the ratio of EH to HJ is equal to the ratio
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of the diameter of the circle EI to the diameter of the circle DC, then the
ratio of GD to DB will be greater than the ratio of ND to DE. But if the
ratio of EH to HJ is greater than the ratio of the diameter of the circle EI to
the diameter of the circle DC, then the ratio of the diameter of the circle EI
to the diameter of the circle DC is equal to the ratio of EH to HF and the
ratio of HE to EF is equal to the ratio of the diameter of the circle EI to the
amount by which it exceeds the diameter of the circle DC, so either the
straight line EF is the magnitude that the perpendicular cuts off, or it is
smaller than it, or it is smaller than twice it, as has been proved for the
straight line EJ; so the straight line DE is greater than the straight line from
the point D to the point F; but the straight line from the point D to the point
F is greater than the straight line DX, because the angle DXF is obtuse, and
this [is so] because the angle DXN is acute, because it is equal to the angle
DBG; so the straight line DE is much greater than the straight line DX and
the ratio of ND to DX is greater than the ratio of ND to DE; but the ratio of
ND to DX is equal to the ratio of GD to DB, because the straight line NX is
parallel to the straight line GHB. So the ratio of GD to DB is greater than
the ratio of ND to DE. So if the ratio of EH to HJ is not smaller than the
ratio of the diameter of the circle EI to the diameter of the circle DC, then
the ratio of GD to DB is greater than the ratio of ND to DE in all cases.

Thus we have proved, from what we said, and in accordance with the
conditions we introduced, that, either the straight line CK is equal to the
straight line ND, or its ratio to it is not greater than the ratio of CD to DG;
and that the ratio of GD to DB is greater than the ratio of ND to DE. But
the straight line DE is equal to the straight line KI; so if the straight line CK
is equal to the straight line ND, then the ratio of ND to DE is equal to the
ratio of CK to KI. But the ratio of GD to DB is greater than the ratio of ND
to DE; so the ratio of GD to DB is greater than the ratio of CK to KI. But
CD is greater than DG because the angle DGC is a right angle; so the ratio
of CD to DB is greater than the ratio of GD to DB and the ratio of CD to
DB is much greater than the ratio of CK to KI.

If the ratio of CK to ND is not greater than the ratio of CD to DG, then
the ratio of CD to D G will be either equal to the ratio of CK  to N D or
greater than the ratio of CK to ND. But the ratio of GD to DB is greater
than the ratio of ND to DE, so the ratio of CD to DB is greater than the
ratio of CK to DE and the ratio of CD to DB is, in all cases, greater than the
ratio of CK to DE. If we permute, the ratio of DC to CK is greater than the
ratio of BD to DE; but the arc DC is not smaller than the arc similar to the
arc DB, as has been proved earlier.54 So the ratio of the arc DC to the arc

54 See p. 302.
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CK is greater than the ratio of the arc BD to the arc DE. If we permute, the
ratio of the arc CD to the arc DB is greater than the ratio of the arc CK to
the arc DE , that is, the arc KI; and the ratio of the remainder to the
remainder will be greater than the ratio of the arc CD to the arc DB. So the
ratio of the arc IE to the arc EB is greater than the ratio of the arc CD to the
arc DB. But the ratio of the arc CD to the arc DB is greater than the ratio of
the arc CK to the arc KI. That is what we wanted to prove.

<15> Similarly, let us return to the figure and from the pole of the
sphere let us draw a great circle that cuts the arcs DK, EI; let the circle be
HLUO.55

I say that if the separation between the circle ABC and the circle LCD
is not greater than a semicircle, then the ratio of the arc UI to the arc UO is
greater than the ratio of the arc CL to the arc LO and the ratio of the arc CL
to the arc LO is greater than the ratio of the arc CK to the arc KI.
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Proof: We draw the intersections; let the intersection of the circle HLO
and the circle ABC be the straight line HO; let the intersection of the circle
QKI and the circle ABC be the straight line QI; let the intersection of the
circle HLO and the circle DLC be the straight line LS; let the intersection of
the circle QKI and the circle DLC be the straight line KT and let the
intersection of the circle HLO and the circle EI be the straight line UP.
Since the pole of the circle DLC is the pole of the equator, the centre of
DLC will lie on the axis of the World and the two circles HL and QK cut
the circle DLC along diameters; so the straight lines LS and KT are two
diameters of the circle DLC and they meet one another at its centre. But the

55 Thus the letter L does no longer represents the same point as in the previous part.
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straight line DG is also a diameter of the circle DLC, so it passes through
its centre.

If the part of the circle DLC that is above the circle ABC is smaller than
a semicircle, then the centre of the circle DLC will be below the circle ABC
and the figure will be the first figure. The diameter DG makes a right angle
with the straight line GC, so with the straight line G C the diameter LS
makes an acute angle on the side towards the point C and the angle LSC is
thus acute; similarly the angle KTC is acute. Now if the diameter KT
reaches as far as the centre, then it forms a triangle that surrounds the
triangle formed by the diameter LS;56 so the angle LSC is an exterior angle
of the triangle enclosed by the diameters LS and KT and with its vertex at
the centre. So the angle LSC is greater than the angle of this triangle that is
at the point T; but the angle of the triangle that is at the point T is equal to
the angle KTC, so the angle LSC is greater than the angle KTC. From the
point K we draw a straight line parallel to the straight line LS; it meets the
straight line GC and it meets the straight line GC in a point that does not lie
on the straight line ST; let this straight line parallel to the straight line LS be
the straight line KM. We draw the straight lines CL, CK, KL, LU, JO, UI
and from the point M we draw a straight line parallel to the straight line
KL; then it cuts the straight line SL. Since the straight line GD is the sagitta
of the arc CLD, it is consequently the greatest perpendicular falling from [a
point on] the arc DC onto the straight line GC; now, of the perpendiculars,
those which are closer to it are greater than those further away; so the
perpendicular drawn from the point K to the straight line GC is smaller
than the perpendicular drawn from the point L to the straight line G C.
Similarly, the straight line KM is smaller than the straight line LS, because
it is parallel to it, so the straight line drawn from the point M parallel to the
straight line KL cuts the straight line LS; let the parallel line be the straight
line MN. Then NL will be equal to the straight line MK. In the same way,
since the arc KL is similar to the arc IU, the ratio of the straight line IU to
the straight line KL is equal to the ratio of the diameter of the circle EI to
the diameter of the circle DC. But MN is equal to KL; so the ratio of IU to
MN is equal to the ratio of the diameter of the circle EI to the diameter of
the circle DC. But, given that the planes of the circles DC, EI are parallel,
and that the plane of the circle HLO cuts them, the straight lines LS and UP
are parallel and the straight lines SC, PI are parallel; so the angle LSC is
equal to the angle UPI. We draw the straight line KF parallel to the straight
line CG, then the angle LKF is equal to the angle NMS, because the straight
line NM is parallel to the straight line LK and the straight line KF is parallel

56 See the Mathematical commentary (plane figures 2.63.1 and 2.63.2).
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to the straight line GC; and if we extend the straight line KF, it meets the
straight line DG and forms a right angle with it, because the angle CGD is a
right angle and the straight line KF is parallel to the straight line CG; this
straight line57 will then be the sine of the arc KD. But the arc KD is similar
to the arc IE, the straight line IH′  is the sine of the arc IE, and the arc KL is
similar to the arc IU; so the angle LKD is equal to the angle UIE. Now it
has been proved that the angle LKF is equal to the angle NMS, so the angle
NMS is equal to the angle UIP; and it has been proved that the angle NSM
is equal to the angle UPI, so the triangle NMS is similar to the triangle UIP.
So the ratio of IU to MN is equal to the ratio of UP to NS; but the ratio of
IU to MN is equal to the ratio of the diameter of the circle EI to the diame-
ter of the circle DC; so the ratio of UP to NS is equal to the ratio of the
diameter of the circle EI to the diameter of the circle DC. If the circle EI is
smaller than the circle DC, then the straight line UP is smaller than the
straight line NS. We then prove, as has been proved earlier for the straight
line DG,58 that the ratio of SL to LO is greater than the ratio of NL to LU.

Similarly, if the circle EI is equal to the circle DC, we prove that the
ratio of SL to LO is greater than the ratio of NL to LU; and if the circle EI is
greater than the circle DC, then, if the ratio of UP to PJ is not smaller than
the ratio of the diameter of the circle EI to the diameter of the circle DC,
the ratio of SL to LO is greater than the ratio of NL to LU, as has been
proved earlier. But the angle KCG is acute, because the part of the circle
DLC that is above the circle ABC is smaller than a semicircle; and the angle
KTC is acute, so the perpendicular dropped from the point K onto the
straight line CG has its foot between the two points T and C; but the angle
KMC is also acute and it is greater than the angle KTC; so the straight line
KM is between the straight line KT and the perpendicular dropped from the
point K onto the straight line TC; so the point M lies between the two
points T and C. The straight line CL cuts the straight line KM; let it cut it at
the point X. From the point X we draw a straight line parallel to the straight
line KC , let it be XO′; the angle XO′C is thus obtuse, because the angle
XO′M is equal to the angle KCM, which is acute, and the straight line CX is
greater than the straight line XO′; so the ratio of CX to XM is greater than
the ratio of O′X to XM; but the ratio of CX to XM is equal to the ratio of CL
to LS and the ratio of O′X to XM is equal to the ratio of CK to KM; so the
ratio of CL to LS is greater than the ratio of CK to KM; but the ratio of SL
to LO is greater than the ratio of NL to LU, that is, the ratio of MK to KI,
because KM is equal to the straight line LN and KI is equal to the straight

57 See the last lines of fol. 369r; with KM || DG, we obtain 
CD
DG

CK
KM> .

58 That is, KF extended to meet the diameter DG.
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line LU; so the ratio of CL to LO is greater than the ratio of CK to KI. Thus
we have proved, as before, that the ratio of the arc CL to the arc LO is
greater than the ratio of the arc CK to the arc KI.
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If the part of the circle DLC that is above the circle ABC is a semicir-
cle, then the figure will be the second figure, because the straight line CG
will be a diameter of the circle DLC and the straight line GD will also be
one of its diameters because the point G is the centre of the circle DLC. But
since the point G is the centre of the circle DLC, the point G will lie on the
axis of the sphere and the point G will thus lie in the planes of all the
circles that pass through the two poles; so the pole of the sphere will be
elevated above the plane of the circle ABC, because a part of the axis will
be above the circle ABC since the sphere is inclined towards B. But the
point G lies on the axis, so the point G lies in the planes of the circles HLO
and QKI; so the straight lines QI, HO cut one another at the point G. But
the point G also lies on the straight line AB, because the part of the circle
DLC above the circle ABC is a semicircle, so the centre of the circle DLC
lies in the plane of the circle ABC; but it is also in the plane of the circle
ADB, because the latter is the meridian circle; so the point G lies on the
[line of] intersection of the circle ABC and the circle ADB, which is the
straight line AB; so the point G lies on the straight line AB; the [line of]
intersection of the circle QKI and the circle DLC is the diameter KG; the
[line of] intersection of the circle HLO and the circle DLC is the diameter
LG, and the [line of] intersection of the circle HLO and the circle EI is the
straight line UP; so the angle KCG is acute, because the straight line GC is
a diameter of the circle DLC and the straight line CK is a chord in it.

But if we extend the straight line CK in the direction of K, it meets the
straight line GL, because it meets the straight line GD; the straight line KM
which is parallel to the straight line LG will thus lie within the arc CD and
the point M lies between the two points C, G. But the straight line KM is
smaller than the straight line LG, as we proved earlier, because the perpen-
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dicular drawn from the point K to the straight line CG is smaller than the
perpendicular drawn from the point L to the straight line CG; so the straight
line MN parallel to the straight line KL cuts the straight line LG and the
straight line CL cuts the straight line KM; let it cut it at the point X. We
prove, as was proved in the first figure, that the ratio of CL to LG is greater
than the ratio of CK to KM, because the angle XO′C is obtuse, since the
angle XO′M is acute. So if the circle EI is not greater than the circle DLC,
then the straight line UP is not greater than the straight line NG, because
the triangle GNM is similar to the triangle PIU and the straight line MN is
equal to the straight line KL. We have thus proved, as was proved in the
first figure, that the ratio of GL to LO is greater than the ratio of NL to LU.

So if the circle EI is greater than the circle DLC and if the ratio of UP
to PJ is not smaller than the ratio of the diameter of the circle EI to the
diameter of the circle DLC, then the ratio of GL to LO is also greater than
the ratio of NL to LU, as has been also proved in the first figure; so the ratio
of GL to LO is greater than the ratio of MK to KI and the ratio of CL to LG
is greater than the ratio of CK to KM. But the ratio of GL to LO is greater
than the ratio of MK to KI, so the ratio of CL to LO is greater than the ratio
of CK to KI. We have thus proved, as was proved earlier, that the ratio of
the arc CL to the arc LO is greater than the ratio of the arc CK to the arc KI.
We have proved in both cases that the ratio of the arc CL to the arc LO is
greater than the ratio of the arc CK to the arc KI, and that the ratio of the
remainder to the remainder, which is the ratio of the arc IU to the arc UO,
is greater than the ratio of the arc CL to the arc LO, which is greater than
the ratio of the arc CK to the arc KI. So the ratio of the arc IU to the arc UO
is greater than the ratio of the arc CL to the arc LO, and the ratio of the arc
CL to the arc LO is greater than the ratio of the arc CK to the arc KI. That is
what we wanted to prove.
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Similarly, from the pole we draw a circle that cuts the arc IE between
the two points U, E in both cases of the figure, and that cuts the arc OB; let
it be XR. We cause to pass through the point O an arc of a circle parallel to
the circle EI; let it be the arc OV. Let the part of the circle LDC above the
circle ABC be no greater than a semicircle and let the circle LDC be greater
than the circle IE. It necessarily follows that the circle IE is greater than the
circle OV. We show, as has been shown earlier from the proof of this
proposition, that the ratio of the arc OV to the arc VX is greater than the
ratio of the arc IR to the arc XR and that the ratio of the arc IR to [the arc]
XR is greater than the ratio of the arc IU to the arc UO; so the ratio of the
arc OV to the arc VX is greater than the ratio of the arc IU to the arc UO.
But the ratio of the arc IU to the arc UO is greater than the ratio of the arc
CK to the arc IK.

Similarly, if we draw circles, any number of them, that cut the arc AB,
and if from their points of intersection we draw arcs parallel to the arc IE,
then all these arcs we have drawn will be in the ratios we have indicated.

<Second part>

After these introductory lemmas, let us now make a start by proving
what we stated concerning what takes place for the seven wandering stars.

<16> Let us begin with the moon.
Let us establish the configuration of the motions of the moon as a

whole, then let us state what necessarily follows. Ptolemy proved in his
book the Almagest that the moon has several motions which are different,
having different diameters and different centres. Nevertheless, despite the
difference in the motions, the position of the centre of the moon does not
depart from the plane of a single circle called the inclined orb. This orb is
one of the great circles that lie on the sphere whose centre is the centre of
the Universe and it cuts each of the great circles that lie on the sphere of the
Universe into two equal parts. So it cuts the circle of the ecliptic, which is
the orb of the sun, in two points diametrically opposite one another, which
are the two points called the nodes (jawzahar),59 and also cuts the circle of
the equator in two points diametrically opposite one another. The moon
moves with all its motions in the plane of that inclined orb, that is to say
that the centre of the moon does not depart from the plane of this inclined
orb. The motion called ‘motion of the moon’ is the motion of the centre of

59 Ascending node or point of passage to the north; descending node or point of
passage to the south.
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the moon. Similarly, the motions of all the [wandering] stars are the
motions of their centres. The apparent motion of the moon, which is what
results from all its motions, is always in the sense of the signs of the Zodiac
and in the plane of the inclined circle, and in equal times, it is of unequal
magnitude since this apparent motion is the result of [adding] different
motions about different centres.60 Ptolemy established this in detail and
gave proofs. However, despite the inequality of its magnitude at various
times, this apparent motion of the moon takes place only in the order of the
signs of the Zodiac61 and in the plane of the inclined orb. Since this is so,
the apparent motion62 of the moon is always from west to east and in the
plane of the inclined orb. But that orb inclined moves as a whole with a
uniform motion about the two poles of the ecliptic and in the sense contrary
to the order of the signs of the Zodiac;63 the entire plane of these circles,
that is to say the inclined orb, thus turns about the two poles of the ecliptic,
in a sense contrary to the order of the signs of the Zodiac. Ptolemy proved
this in his book the Almagest and this motion is called the motion of the
node. If the entire plane of these circles turns about the two poles of the
ecliptic, then all the points we imagine as being on the circumferences of
these circles move along parallel circles whose poles are the two poles of
the circle of the ecliptic. The two points that are the two nodes move on the
circle of the ecliptic itself and do not depart from it, because the motion
takes place about the two poles of the circle of the ecliptic; and, of the
points that remain, every point we can imagine as being on the circumfe-
rence of the inclined orb, moves along a circle parallel to the circle of the
ecliptic. If this is so, then the inclination of the inclined orb of the moon
with respect to the circle of the ecliptic does not change its magnitude by
this motion, but it remains constantly in the same state.

The inclination of the inclined orb with respect to the circle of the
equator changes its magnitude during this motion; it increases and decrea-
ses, because if the inclined orb turns about the two poles of the circle of the
ecliptic, then the pole of the inclined orb turns about the two poles of the
circle of the ecliptic. But the distance from the pole of the circle of the
ecliptic to the pole of the circle of the equator does not change and the
position of the one with respect to the other does not change: they are each
fixed in the same position, and the great circle that passes through the two

60 We are considering motions on the two circles, the eccentric (deferent) and the
epicycle.

61 That is ‘motion in consequence’.
62 The Arabic term translated here as ‘apparent motion’ means ‘the motion that is

visible’.
63 That is, ‘motion in precedence’.
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poles is one and the same circle, which is called the circle of the poles. If
the pole of the inclined orb turns about the pole of the circle of the ecliptic,
and if the pole of the circle of the ecliptic and the pole of the circle of the
equator are each fixed in the same position, then the distances from the
pole of the inclined orb to the pole of the equator vary and the distance
between this pole and the pole of the equator is the magnitude of the
inclination of the inclined orb with respect to the circle of the equator. And
if the pole of the inclined orb turns about the pole of the circle of the
ecliptic, then, in the course of a single rotation, it comes onto the circle of
the poles twice; the distance between the pole of the inclined orb and the
pole of the circle of the ecliptic does not change in magnitude, because its
motion carries it round the pole of the circle of the ecliptic and the distance
between these two poles is the magnitude of the inclination of the inclined
orb with respect to the circle of the ecliptic; this inclination is much smaller
than the inclination of the circle of the ecliptic with respect to the circle of
the equator, from what was proved by Ptolemy. But the pole of the inclined
orb comes onto the circle of the poles twice in the course of each rotation;
for one of them it will be between the pole of the circle of the ecliptic and
the pole of the circle of the equator, and for the other one, the pole of the
circle of the ecliptic will lie between the pole of the inclined orb and the
pole of the equator. If the pole of the inclined orb is between the pole of the
circle of the ecliptic and the pole of the equator, it will, in that case, be as
close as it can be to the pole of the equator; that distance is the magnitude
of the inclination of the inclined orb with respect to the circle of the equator
and it is in this case that the inclination of the inclined orb with respect to
the circle of the equator will be as small as it can be. If then, after that, the
pole of the inclined orb moves away from the circle of the poles, then its
distance from the pole of the equator increases and the inclination of the
inclined orb with respect to the circle of the equator increases, then the
distance from the pole of the inclined orb to the pole of the equator contin-
ues to increase until it reaches the circle of the poles for a second time. If it
comes onto the circle of the poles in this second case, the pole of the circle
of the ecliptic will be intermediate between it and the pole of the equator,
and in this case it will be as far as it can be from the pole of the equator and
the inclination of the inclined orb with respect to the circle of the equator
will be at its greatest. If then, after that situation [has occurred], the pole of
the inclined orb moves away from the circle of the poles, then its distance
from the pole of the equator diminishes and the inclination of the inclined
orb with respect to the circle of the equator diminishes; then the distance
from the pole of the inclined orb to the pole of the equator and the
inclination of the inclined orb with respect to the equator continually
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diminishes until the pole of the inclined orb returns to the circle of the
poles. The inclination of the inclined orb with respect to the equator varies
and is not fixed in a constant state. Half of this inclined orb is always north
of the circle of the equator and half is to the south; the point that is the
midpoint of the half north of the inclined orb is the one that defines the
limit of the inclination of the moon in the northerly direction and the point
that is the midpoint of the south half is the one that defines the limit of the
inclination of the moon in the southerly direction; however these two
points are not [always] the same two points, but change, because every
point of the circumference of the inclined orb moves on a circle parallel to
the circle of the ecliptic and there is thus no point on the circumference of
the inclined orb that moves on the circumference of the circle of the
equator. Since this is so, the two points of intersection of the inclined orb
with the circle of the equator change. But if these two points change, then
the two points at the northern and southern limits of the inclined orb chan-
ge with respect to the equator and the extreme value of the inclination of
the moon in the northerly direction and the extreme value of its inclination
in the southerly direction are not always constant at the same magnitude,
but vary on account of the variation in the magnitude of the inclination of
the inclined orb with respect to the circle of the equator. Nevertheless in all
cases of the figure the centre of the moon moves in the plane of its inclined
orb from north to south until it reaches the midpoint of the southern half of
the inclined orb, that is to say the half of its inclined orb that is cut off by
the circle of the equator – by the midpoint of the southern half I mean the
point that divides the southern half into two equal parts at the instant when
the moon reaches that point – the motion of the moon on the inclined orb
will then be from south to north until it comes to the midpoint of the
northern half of its orb, that is to say to the point that divides the northern
half of its orb into two equal parts at the instant when the moon reaches
that point. It [the moon] then moves from north to south, and so on
continually.

Since this is so, then the moon moves on its inclined orb from north to
south and from south to north. So the motion of the moon in the plane of its
inclined orb is from north to south and from south to north, if it is
considered in regard to its motion towards the two poles of the equator. If it
is considered in relation to the circle of the ecliptic, this same motion will
be in the order of the succession of the signs of the Zodiac, and if it is in
the order of the succession of the signs of the Zodiac, it will be from west
to east. But every point of the inclined orb moves on a circle whose two
poles are the two poles of the circle of the ecliptic and in a sense contrary
to that of the succession of the signs of the Zodiac. But if it is in the sense
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contrary to the signs of the Zodiac, it is thus from east to west. The
apparent motion of the moon is from west to east, in the order of succes-
sion of the signs of the Zodiac and in addition it is inclined towards north
or south with respect to the circle of the equator; any point on the circum-
ference of the inclined orb moves from east to west in the sense contrary to
the succession of the signs of the Zodiac <and its motion has the same>
magnitude as the motion of the ascending node.

This having been proved, let the circle ABC be a horizon and let the
circle AHC be the meridian circle; the arc ABC is the eastern half of the
circle of the horizon; let the inclined orb of the moon be the circle BED; let
the arc BED of this [circle] be below the horizon, let the position of the
moon be the point B, let the motion of the moon on its inclined orb be from
the point B towards the point E, let its motion in this case be from north to
south, let the pole of the equator be the point H. Taking the pole H as
centre we draw an arc of an hour circle that passes through the point B; let
it be the arc BIO; let the point I lie on the meridian circle. If the sphere
moves with the rapid motion,64 then the point B  moves with the rapid
motion. But if the point B moves with the rapid motion, during a certain
time, then with the motion that is proper to it the moon moves along the arc
BE and leaves the point B of its orb; in addition, with the rapid motion, the
moon reaches the meridian circle. Let the position of the moon [when it is]
on the meridian circle be the point N. If the moon reaches the meridian
circle, it will have traversed an arc of its inclined orb and, in this case, it
will be moving towards the south and in addition from west to east in the
direction of the succession of the signs of the Zodiac. If the centre of the
moon arrives at the point N, the arc that the moon has traversed on its
inclined orb will be to the west of the meridian circle, because the motion
of the moon on its inclined orb is from west to east. Thus, the arc it has
traversed on its inclined orb will be to the west of the position which it
occupies, and the arc traversed by the moon on its inclined orb in the time
in which it travelled from the point B to the point N is to the west of the
meridian circle. But that arc is south of the hour circle, because in this case
the motion of the moon is from north to south. Let the arc of the inclined
orb along which the moon has moved at the moment when it is on the
meridian circle be the arc ON. But we have seen earlier that any point of
the inclined orb always moves on a circle whose two poles are the two

64 Rapid motion, that is, the diurnal motion.
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poles of the circle of the ecliptic; the point B of the inclined orb65 is not
fixed on the hour circle BI, but moves on a circle whose two poles are the
two poles of the circle of the ecliptic. Through the point B let us draw an
arc of a circle whose two poles are the two poles of the circle of the
ecliptic; let the arc be BQ. So the point B of the inclined orb moves on the
arc BQ with the motion called the motion of the ascending node. Since this
is so, then the arc traversed by the moon on the inclined orb in the time
during which it has travelled from the point B to the point N is not, in most
cases, the arc ON because the point B of the inclined orb is not moving on
the arc BO, but on the arc BQ; now the two poles of the arc BQ are the two
poles of the circle of the ecliptic.
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But if the two poles of the arc BQ are the two poles of the circle of the
ecliptic and are not the two poles of the circle BI, then, either the circle BQ
touches the circle BI, or it cuts it; in fact, either the great circle drawn from
the pole of the equator, which is the pole of the circle BI, as far as the point
B passes through the pole of the circle of the ecliptic, or it does not pass
through it. If it passes through the pole of the circle of the ecliptic, then the
circle drawn through the point B, whose pole is the pole of the circle of the
ecliptic, will touch the circle BI. If the pole of the circle of the ecliptic is, in
addition, closer to the point B than the pole <of the circle> of the equator,
then the circle drawn through the point B, whose pole is the pole of the

65 The point B is the initial position of the moon. So the letter B indicates both a
point on the celestial sphere and a point on the inclined orb. The first of these is subject
to the diurnal motion and moves along the circle BI parallel to the equator while, on
account of the motion of the node, the second moves along the circle BQ parallel to the
ecliptic.
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circle of the ecliptic, will lie completely to the north of the circle BI. And if
the pole of the circle of the ecliptic is further away from the point B than
the pole of the circle of the equator, then the circle, whose pole is the pole
of the circle of the ecliptic, drawn through the point B, will lie completely
to the south of the circle BI. If the great circle drawn through the pole of the
equator at the point B does not pass through the pole of the circle of the
ecliptic, then the circle whose pole is the pole of the circle of the ecliptic
[and is] drawn through the point B, cuts the circle BI, because two circles
meet one another in a point, either they touch one another or they cut one
another. If the great circle does not pass through the two poles of these two
circles, then these two circles do not touch one another; and if they do not
touch one another, they cut one another. If the circle drawn through the
pole of the equator to the point B does not pass through the pole of the
circle of the ecliptic, then the pole of the circle of the ecliptic is either
above this circle or below it. In saying above and below I mean with
respect to the point I; thus, if the pole of the circle of the ecliptic is above
the great circle drawn from the pole of the equator to the point B, then the
great circle drawn from the pole of the circle of the ecliptic as far as the
point B makes an acute angle with the arc BI on the side towards the point
I, that is to say that it will be inclined towards the circle BI on the side
towards I, because the circle drawn through the pole of the equator to the
point B makes a right angle with the arc BI and is perpendicular to it. If the
circle drawn from the pole of the circle of the ecliptic to the point B makes
an acute angle with the arc BI, then the circle whose pole is the pole of the
circle of the ecliptic, which passes through the point B and which cuts the
circle BI, is such that its upper arc66 is south of the circle BI and its lower
arc is north of the circle BI. If the pole of the circle of the ecliptic is below
the great circle drawn from the pole of the equator to the point B, then the
great circle drawn from the pole of the circle of the ecliptic to the point B
makes an obtuse angle with the arc BI on the side towards the point I. If
that angle is obtuse, then the circle whose pole is the pole of the circle of
the ecliptic that passes through the point B is such that its upper arc is to the
north of the circle BI and its lower arc is to the south of the circle BI.

It is clear, from what we have proved, that the upper arc of the circle
BQ can lie to the north of the arc BI and can lie to the south of it; it can
touch it and it can cut it. If the circle BQ cuts the circle BI, then the [point
of] intersection can be on different parts [of it]. The same holds as for the
preceding circles, if the two circles are not both great circles. The upper arc
of the circle BQ can be a semicircle or greater than a semicircle or smaller

66 Upper arc: the arc that cuts the meridian above the horizon.
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than a semicircle. If the upper arc of the circle BQ can be smaller than a
semicircle without being a specified part,67 then this arc can be extremely
small; so the upper arc of the circle BQ whose endpoints are on the circle
BI can be of a certain magnitude such that, by its motion, the node traverses
this arc in the time during which the moon travels from the point B to the
point N. So if the upper arc of the circle BQ is of this magnitude, then the
point B of the inclined orb moves away from the circle BI, moves on the
circle BQ and returns to the circle BI at the moment when the moon reaches
the point N. If this is so, then, in this configuration, the point O of the
inclined orb is the point B of the inclined orb68 and the arc ON is the arc
traversed by the moon in the time it took to travel from the point B to the
point N.

If the upper arc of the circle BQ, [the arc] whose endpoints are on the
circle BI, is greater than the distance traversed through the motion of the
node in the time in the course of which the moon travels from the point B
to the point N, then the point B moves away from the circle BI and moves
along the circle BQ. When the moon reaches the point N, the point B of the
inclined orb has not returned to the circle BI, but will be on the upper arc of
the circle BQ  not on the circle BI. If the upper arc of the circle BQ is
smaller than the distance traversed through the motion of the node in the
time in the course of which the moon travels from the point B to the point
N, then the point B moves away from the circle BI and moves along the
circle BQ; it returns to the circle BI before the moon reaches the point N;
next it moves away from the circle BI and moves along the large arc that is
the lower arc of the circle BQ. So if the moon reaches the point N, then the
point B of the inclined orb will be on the circle BQ and will not lie on the
circle BI, but will be below it.

If the moon travels from the point B to the point N, then the point B of
the inclined orb can be on the circle BI at the moment when the moon is at
the point N and it can be somewhere else. It is on the circle BI in a single
case of the figure, when the upper arc of the circle BQ  is equal to the
distance traversed by the node in its motion in the time in which the moon
travels from the point B to the point N. It does not lie on the circle BI in any
of the remaining cases for the figure.

If the point B lies on the circle BI at the moment when the moon is at
the point N, then the point B of the inclined orb is the point O; if the point
B does not lie on the circle BI, then it is on the circle BQ, but it is on the

67 See Mathematical commentary.
68 That is, the position reached by the point B.
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inclined orb; so it is the point of intersection of the circle BQ and the
inclined orb.69

So it is clear from what we have proved that the arc ON of the inclined
orb is not, in most cases, the arc traversed by the moon in the time in the
course of which it travels from the point B to the point N; and that the point
O is not, in most cases, the point B. If the point O is not the point B of the
inclined orb, if, at the moment when the moon is at the point N, the point B
of the inclined orb lies outside the circle BI and if the point B is the point of
intersection of the circle BQ and the inclined orb, let the point B, at the
moment when the moon is at the point N, then be a point such as M. The
point M can thus lie north of the circle BI or south of it, because each upper
arc of the circle BQ and each lower arc can be north of the circle BI or
south of it; so the point M can be north of the circle BI and it can be south
of it.

The point B of the circle BQ always moves along the circle BI because
the position of the circle BQ does not change in regard to the circle BI,
since their two poles – which are the pole <of the circle> of the equator and
the pole of the circle of the ecliptic – have positions that do not change
with respect to one another; so the point B of the circle BQ always moves
along the circle BI. Let the arc BS be the time in the course of which the
moon travels from the point B to the point N. So the point S is the point B
of the circle BQ; but the point B of the inclined orb is the point M, so the
points S and M lie on the circle BQ.70 Let the arc SM be an arc of the circle
BQ. The arc SM is thus the arc traversed by the point B of the inclined orb
through the motion of the node in the time in the course of which the moon
travels from the point B to the point N, because the point S is the point B
which was the [point of] intersection of the inclined orb and the circle BQ.
But the point M of the circle BQ is the point reached by the point B which
lies on the inclined orb; so the arc SM is the arc traversed by the point B on
the circle BQ through the motion of the node. But the arc SM is to the west
of the point S, because we have proved that any point on the inclined orb
moves from east to west along a circle whose two poles are the poles of the
circle of the ecliptic, [that is] in a sense contrary to the succession of the
signs of the Zodiac. So the arc SM is to the west of the point S and the arc
MN is the arc traversed by the moon on its inclined orb through its proper
motion in the course of the time in which it travels from the point B to the

69 The position reached by the point B is the point of intersection of the circle BQ
and the inclined orb in the position they have when the moon reaches the point N on the
meridian circle.

70 Throughout this paragraph, ‘the circle BQ’ means the position reached by this
circle when the moon crosses the meridian at the point N.
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point N, because the point M  is the point B of the inclined orb. But the
point M can be to the north of the circle BI, as it can be to the south of it.
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We place it in the figure in the two positions and we cause to pass
through the point M (in each of the two positions) an arc of a great circle
that passes through the point H. This circle cuts the arc BIS; let it cut it at
the point L. We also cause to pass through the point M (in both positions)
an arc of an hour circle; let the arc be MP. The arc NP is thus the inclina-
tion of the arc MN traversed by the moon in the time in the course of which
it travels from the point B to the point N. The arc PI is the inclination of the
arc SM traversed by the point B through the motion of the node in the
course of the time we referred to, because the arc PI is equal to the arc ML
and the point S is to the west of the meridian circle. Since, when the arc BI
is moving with the rapid motion, the point B of the orb ends up at the point
I, the moon will be to the east of the meridian circle, because it is moving,
with the motion proper to it, from west to east; so it will be to the east of
the point B, which will have arrived at the point I; it [the moon] will be to
the east of the meridian circle; and it thus ends up on the meridian circle in
the course of a time that is greater than the time BI; and, in the course of
this increased time, the point B will have moved away from the point I in
the westerly direction, so it will be to the west of the meridian circle. But
the point S is the point B, so the point S is to the west of the meridian circle
and the arc BS is the time in the course of which the moon has travelled
from the point B to the point N, and the arc BI will be the time cut off by
the meridian circle from the time of the motion of the moon. All this refers
to the first case of the figure, in which the motion of the moon on its
inclined orb is from north to south.

If the motion of the moon is from south to north, then the arc BED on
the inclined orb will be to the north with respect to the circle BI and will
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also be below the horizon, because the motion of the moon is from west to
east and the motion of the moon will be from the point B to the point E. If
the moon reaches the meridian circle, the inclined orb will be, like the arc
ON, inclined towards the north with respect to the circle BI in the second
case of the figure. In the second case of the figure, all the remaining arcs
correspond to those found in the first case of the figure. Thus we have
proved that the configuration of the motion of the moon and that the
configuration of the arcs that the moon traverses in all its motions and the
positions the arcs with respect to one another take the two forms shown in
the figures that we have drawn.
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If the motion of the moon on its inclined orb is from north to south, it is
then in accordance with the first case of figure. But if its motion on its
inclined orb is from south to north, that is in accordance with the second
case of figure. If its motion is from north to south and then becomes from
south to north or if it is from south to north and then becomes from north to
south, it [the moon] will be at the end of its motion, in all cases for the
figure, either to the south of the circle BI or to the north of it; or the moon
will be at the end of its motion on the circle BI itself, that is to say that the
moon will have left this circle, to come back to it later on.

If at the end of its motion it [the moon] is to the south of the circle BI,
then this case is the third case of figure. In this third case of figure, the
point M is to the south of the circle BI and it can be to the north of that
circle. If, at the end of its motion, the moon is to the north of the circle BI,
we again have the third case of figure if it is only the point N that is to the
north of the point I and the point M is either to the north of the circle BI or
to the south of it. If, at the end of its motion, the moon is on the circle BI,
then the point N will be the point I and the moon will have no inclination to
the circle BI; this case is the fourth case of the figure and the point M is
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either to the south of the circle BI or to the north of it. The point M can lie
on the circle BI itself at certain moments and this in fact happens if it
leaves the circle BI to then return to it in the course of the time during
which the moon moves from the point B to the point I.

From all that we have explained it follows necessarily [that we have
two possibilities:] that the point B is at a height above the horizon or that it
is below the horizon, because we have not used the horizon anywhere in
what we have explained.

In all cases let us call the arc BI the required time, let us call the arc NI
the inclination of the motion of the moon and let us call the arc QI the
inclination of the motion of the node. All that we shall need to use in what
we shall prove about the properties of the motion of the moon is no more
than the required time, the inclination of the motion of the moon and the
inclination of the motion of the node; we shall not be concerned with the
remaining arcs, or their positions and the variation in their positions. We
shall show later how to find the magnitudes of these arcs over known
periods of time.
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Let the circle ABC also be a horizon, the circle AHC a meridian circle
and let the pole of the equator be the point H. Let the arc ADC be the west-
ern half of the horizon71 and let the moon be at the point N of the meridian
circle. We cause an hour circle to pass through the point N; let it be BND.
Let the arc NE lie on the inclined orb of the moon; let us suppose it is to the
north of the circle BND and to the south of it, that is to say in each of the
two positions. Let the arc NI lie on the circle whose two poles are the two
poles of the circle of the ecliptic; let us suppose that it also is in the two
positions, that is to the north and to the south of the circle BND. With its
proper motion, the moon moves along the arc NE ; the point N of its

71 Lit.: the middle of the day west of the horizon.
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inclined orb moves with the motion of the node along the arc NI, the point
N of the circle NI moves with the rapid motion along the circle ND.
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If the moon reaches the western horizon, the arc traversed by the moon
on its inclined orb will be below the horizon because it will be to the west
of its [the moon’s] position. If the motion of the moon is from north to
south, the arc of its inclined orb will be equal to the southern arc OS. If its
motion is from south to north, it will be equal to the northern arc OS.
Similarly, if its motion is from north to south, then from south to north, or
from south to north then from north to south, and if, at the end of its
motion, it is not on the circle N D, then the position of the arc on the
inclined orb is one of the two given positions, that is, the arc OS south or
north. If at the end of its motion it is on the circle ND, then it will be at the
point D and will have no inclination to the circle ND. If the moon is to the
north or south of the circle ND, at a point such as S, then at most instants
the point N of its inclined orb will be like the point M and at some instants
like the point O, and the arc NI will be equal to the arc KM. So the arc NK
is the time in the course of which the moon travels from the point N to the
point S, at most instants the arc MS will be the arc traversed by the moon
on its inclined orb and the arc KM will be the arc traversed by the point N
which was the position of the moon on the inclined orb with respect to the
arc NI; at some instants the arc OS will be the arc traversed by the moon on
its orb in the time in the course of which the moon travelled from the point
N to the point S. We cause an arc of a great circle to pass through the points
H and S; let it cut the hour circle at the point G. We cause an arc of an hour
circle to pass through the point M; let it cut the arc HS at the point Q. So
the arc ND is the required time, the arc SG is the inclination of the motion
of the moon and the arc QG is equal to the inclination of the motion of the
node.

All these results necessarily hold if the point S is above the horizon.
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But if it is below the horizon, that is to say if the moon moves from one
position to another with the rapid motion, then, in all cases for the figure, it
acquires a required time by this motion; at most instants it has an
inclination with respect to the hour circle which it was on and its position72

has an inclination with respect to the hour circle, namely the inclination
that we called the inclination of the motion of the node.

It is with this configuration, and subject to these distinctions, that the
motion of the moon at its rising and its setting takes place, as also its
motion above the horizon and its motion below the horizon.

<17> As for the sun, its proper motion is a single motion in the order of
succession of the signs of the Zodiac from west to east, since the succes-
sion of the signs of the Zodiac is from west to east and the centre of the sun
is always in the plane of the circle of the ecliptic and is never outside this
plane. However the circle of the ecliptic cuts the circle of the equator in
two points opposite one another which are the two points of the equinoxes;
thus one half of the circle of the ecliptic is always to the north of the circle
of the equator and the other half is to the south. These two halves are
inclined to the circle of the equator and this inclination is fixed at a
constant magnitude that does not change. The two halves on either side of
the equator are two halves that, of themselves, do not change because the

72 We are dealing with the position M reached by the point B of the sphere of the
fixed stars, in the course of the displacement that results from the diurnal motion and
from the motion of the node.
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two points of intersection that are the two points of the equinoxes do not
change and do not alter; they are these same two points. Similarly, the two
points that divide each of the halves of the circle of the ecliptic on either
side of the equator into two halves are [always] the same two points, which
do not change. These two points are called the solstices, the one to the
north is called the summer solstice and the one to the south the winter
solstice. The point of the summer solstice is thus <the point> of maximum
inclination of the circle of the ecliptic towards the north with respect to the
circle of the equator and the point of the winter solstice is <the point> of
maximum inclination of the circle of the ecliptic towards the south with
respect to the circle of the equator. If the sun moves round the circle of the
ecliptic, which cuts the circle of the equator, and half of which is north of
the circle of the equator and half south [of it], then the sun, in its proper
motion on the circle of the ecliptic, has an inclination to the circle of the
equator, to the north and to the south; the point of the summer solstice is
the one that defines the maximum in the declination of the sun in the
northerly direction and the point of the winter solstice is the one that
defines the maximum in the declination of the sun in the southerly
direction. As the sun moves with its proper motion from the summer
solstice towards the winter solstice, then it moves from north to south, if
we refer its motion to the two poles of the equator; and if it moves from the
winter solstice towards the summer solstice, then it moves from south to
north with respect to the two poles of the equator. If this same motion
– that is, the motion of the sun on the circle of the ecliptic – is referred to
the circle of the ecliptic, then the sun moves from west to east because this
motion is in the order of succession of the signs of the Zodiac and the
succession of the signs of the Zodiac is from west to east. The sun moves
with a single motion in the plane of the circle of the ecliptic; this motion is
from west to east and in addition it is inclined to the north or to the south.

This having been stated: let the circle ABCD be a horizon, let the circle
AH be the meridian circle, let the pole of the equator be the point H. Let the
circle of the ecliptic be the circle BKDL, let the arc BKD be below the
horizon and the arc DLB above the horizon; let the order of the signs of the
Zodiac be taken from the point B to the point K and to the points following
it. Let the position of the sun on the circle of the ecliptic be the point B. We
cause an arc of an hour circle to pass through the point B; let it be BEM.
Let this arc cut the meridian circle at the point E.
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If the sphere moves with the rapid motion, then the point B of the circle
of the ecliptic moves along the circle BEM and does not depart from it,
because the position of the circle of the ecliptic does not change with
respect to the equator, nor with respect to any of the circles parallel to the
equator; and this is so because the distance between the pole of the circle of
the ecliptic and the pole of the circle of the equator does not change and the
position of the one with respect to the other does not change; so the point B
of the circle of the ecliptic always moves along the circle BEM. In all cases,
through the rapid motion of the point B, the sun reaches the meridian circle.
But the sun always moves with the motion proper to it in the plane of the
circle of the ecliptic and round the circle of the ecliptic. The sun travels
from the point B to the meridian circle in a certain time; and in that interval
of time the sun, with the motion proper to it, traverses a certain arc on the
circle of the ecliptic. If the sun moves round the circle of the ecliptic in the
order of the signs of the Zodiac, then it moves along the arc BK from the
point B in the direction of the point K; but the arc BK cuts the arc BE, so
the sun, in its proper motion, leaves the circle BE and is inclined southward
if the arc BK lies south of the circle BE. If the sun reaches the meridian
circle, it will be south of the circle BE. Let the position of the sun on the
meridian circle be the point I, then the arc that the sun has traversed on the
circle of the ecliptic will be to the west of the point I, because the motion of
the sun along the circle of the ecliptic is from west to east. But the point B
of the circle of the ecliptic does not move off the circle BEM, the arc of the
circle of the ecliptic that the sun has traversed in the time in the course of
which the sun travelled from the point B  to the point I has the same
position as the arc GI: so the point G is the point B, and that is so because,
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while the point B travels to the point E, the arc BK is to the east of the
meridian circle. But the centre of the sun is on the circle BK and not on the
circle BE and in this case the position of the centre of the sun will be east
of the meridian circle. After that moment the centre of the sun then travels
to the meridian circle, so the centre of the sun reaches the meridian circle a
certain time after the point B has reached the point E. That is why, if the
centre of the sun reaches the meridian circle, then the point B will have
moved along the arc BM and will be west of the meridian circle; so its
position will be at a point such as G. If the sun is at the point B and if its
motion is from north to south, then if it reaches the meridian circle, it will
be to the south of the hour circle that passes through the point B; the same
will be true whether the point B is above the horizon or below the horizon.
Since the arc HI starts from the pole of the equator, the arc IE will be the
inclination of the arc GI of the circle of the ecliptic with respect to the hour
circle BEM and the arc BG is the time in which the sun has travelled from
the point B to the point I. Let us call the arc BE the required time and let us
call the arc IE the inclination of the motion of the sun.

Similarly, we suppose an arc BLD north of the circle of the ecliptic,
above the horizon, and the arc BKD above the horizon and we suppose the
position of the sun is the point B. The proper motion of the sun is along the
arc BL starting from the point B in the direction towards L; if the sun
reaches the meridian circle, then the arc traversed by the sun on the circle
of the ecliptic will be to the west of the meridian circle and to the north of
the circle BEM, and will be the inclination of the arc GS; so the arc BE will
be the required time and the arc SE will be the inclination of the motion of
the sun. The same necessarily holds if the sun starts from the meridian
circle and moves to the western horizon, that is to say that there will be a
required time and an inclination with respect to the hour circle, which <is
the arc> that passes through the point I or through the point S;73 it turns out
that we can prove this as we proved it for the configuration of the motion
of the moon. The same necessarily holds also if the motion of the sun away
from the meridian circle is from a point above the western horizon to a
point below the western horizon.

It is in this way that we obtain the configuration of the motion of the
sun when it rises and when it sets, of its motion above the horizon and of
its motion below the horizon. If the motion of the sun in the time in the
course of which it travels from the point B to the meridian circle is from
north to south then from south to north or from south to north and then
from north to south, at the end of its motion either it will be outside the

73 The inclination with respect to the hour circle BEM is the arc IE or the arc SE; it
is defined by the point I or the point S.
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circle BEG or it will be on this same circle BEG. If it is outside the circle
BEG, it is either to the south or to the north of it; if this is so, then its posi-
tion will be the point I or the point S, the arc BE will be the required time
and the arc IE or the arc SE will be its inclination, at that moment, with
respect to the circle BEG; if at the end of its motion the sun is on the circle
BEG, then its position is the point E, the required time is the arc BE and it
has no inclination with respect to the circle BEG.

<18> As for the five planets, each of them has an inclined orb like the
inclined orb of the moon and each of these orbs cuts the circle of the equa-
tor. However, for some of these orbs the inclination does not vary to a
perceptible degree with respect to the circle of the ecliptic: these are the
orbs of the superior planets, that is Saturn, Jupiter and Mars; and for some
the inclination varies with respect to the circle of the ecliptic: these are the
orbs of Venus and Mercury. In fact, each of the orbs of these two planets
moves as a whole and is inclined to the circle of the ecliptic and becomes
coincident with it, then it is inclined towards the other side and attains a
limiting inclination, to then return to motion towards the circle of the
ecliptic and becomes coincident with it and then becomes inclined in its
original direction, and so on continually, as was stated by Ptolemy in his
book the Almagest. This situation does not, however, prevent each of these
two orbs from cutting the circle of the equator or from having an
inclination with respect to it; by the motion of each of these orbs towards
the circle of the ecliptic and its becoming coincident with it, its inclination
to the other side with respect to it and its return to it, the orb will not
coincide with the circle of the equator, but by that motion it is only its
inclination with respect to the equator that varies, because the inclination of
each of these two orbs with respect to the circle of the ecliptic is a small
inclination, whereas the inclination of the circle of the ecliptic74 is a large
inclination; thus the inclination of each of these two orbs with respect to
the circle of the equator is the inclination with respect to the circle of the
ecliptic multiplied many times;75 thus – because it becomes coincident with
the circle of the ecliptic and its inclination is in both directions – neither
orb will coincide with the circle of the equator, but [what will happen will

74 With respect to the circle of the equator. The maximum value of the inclination
of the inclined orb with respect to the ecliptic is 7° for Mercury and 3°24′ for Venus.
For the superior planets, the inclination is more or less constant: 1°51′ for Mars, 1°19′
for Jupiter, 2°30′ for Saturn.

75 The maximum value of the inclination of Mercury with respect to the ecliptic is
7°, and the maximum value of the inclination ecliptic with respect to the equator is
23°27′.



334 CHAPTER II: IBN AL-HAYTHAM

be that] only the magnitude of its inclination to the circle of the equator
varies. Thus the inclination of the configuration of the orbs of all five
planets with respect to the circle of the equator is like the inclination of the
configuration of the inclined orb of the moon with respect to the circle of
the equator; each of these orbs cuts the circle of the ecliptic in two points
that are opposite [one another]; these two points for each of the orbs of the
five planets are called the nodes. The difference between these nodes and
the two nodes of the moon is that the two nodes of the moon move rapidly,
which becomes perceptible in a single day, whereas the nodes of the
planets move with a slow motion that does not become perceptible either in
a single day, or in several days. In fact, each of the inclined orbs of the five
planets moves as a whole about the two poles of the circle of the ecliptic in
the same configuration as the motion of the inclined orb of the moon;
however, the motion of the orbs of the planets about the two poles of the
circle of the ecliptic is very slow, as Ptolemy and others have proved, and it
is equal to the motion of the fixed stars; in a single day or in several days
this motion does not become perceptible. If each of the five planets moves
around its inclined orb and if we refer its motion around its inclined orb to
the circle of the ecliptic, then its motion will be in the direction of the order
of the signs of the Zodiac if <its motion is> direct. If each of these planets
moves with respect to the circle of the ecliptic in accordance with the order
of the signs of the Zodiac, then it moves from west to east. But if the
inclined orb of each of the five planets cuts the circle of the equator and if
the planet moves around its inclined orb, then each of these planets conse-
quently moves from north to south and from south to north with respect to
the two poles of the equator, in the same way that it happens for the sun
and the moon. The configuration of the motions of each of the five planets,
in its motion from west to east and in its motion from north to south and
from south to north, is like the configuration of the motions of the moon, in
its motion from west to east and in its motion from north to south and from
south to north, except that the configuration of the motions of these five
planets differs from the configuration of the motions of the moon in a
single respect: the epicycle of each of these five planets is inclined to the
plane of the inclined orb towards the north or towards the south; so the
planet departs from the plane of the inclined orb by this inclination,
because the centre of the planet is always on the circumference of the
epicycle; but this is not the case for the moon because the epicycle of the
moon does not depart from the plane of the orb, so the centre of the moon
does not depart from the plane of the inclined orb. Thus the inclination of
these planets with respect to the circle of the equator exceeds the
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inclination of the moon with respect to the circle of the equator only by the
inclination of the epicycles.

If these planets are in retrograde motion, then the configuration of their
motions, when they are in retrograde motion, is no different from the
configuration of their motions when they are in the direct sense, except that
their motion, which was from west to east with respect to the circle of the
ecliptic is [now] from east to west with respect to the circle of the ecliptic;
and that difference does not change the form of their inclinations with
respect to the circle of the equator or with respect to the hour circles that
pass through their centres.

Similarly, if these planets are stationary between retrograde and direct
motion, it can happen, for these planets and in particular for two of the
superior planets,76 that there is a halt lasting a perceptible time between the
retrograde and the direct motion, that is to say that we find by sight and
observation a certain length of time [passes] without the two planets
appearing [to have] a motion from west to east or from east to west;
however, during this interval of time their inclination can increase or
decrease with respect to the circle of the equator. Thus, at the time during
which the planet is at station without appearing to have a motion in
longitude, it may have a visible motion from north to south or from south
to north on account of the inclination of its epicycle; and it will in addition
be moving with the rapid motion, while its position on its inclined orb stays
the same, as far as is perceptible.

These results having been put in place, let the circle ABC be a horizon
and let one of the five planets be at the point B; let it be in direct motion.
We cause one of the hour circles to pass through the point B; let <the
circle> be BED. If the sphere moves, then in all cases for the figure the
planet travels towards the meridian circle; but with its proper motion the
planet moves about its inclined orb, so it departs from the circle BED and
has an inclination to the north or to the south. If the planet reaches the
meridian circle, then the arc that it has traversed on its orb will be to the
west of its position on its inclined orb. If its epicycle is inclined with
respect to its inclined orb and if the planet has an inclination on account of
its inclination, then the planet will lie to the north of its inclined orb or to
the south of it. If this is so, then the position of its inclined orb will be the
position of the arc GH that we drew in the first case for the figure, whether
north of the circle BED or south of it, and the position of the epicycle will
be like the position of the arc HI either north of the arc GH or south of it.
For these planets the inclination of the motion of the node is not perceptible
over this interval of time, so the point G is the point B. But the arc BG is

76 Lit.: the two superior planets (see p. 337: allusion to Jupiter and Saturn).
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the time in the course of which the planet travelled from the point B to the
point I, the arc BE is the required time and the arc IE is the inclination of
the motion of the planet; all this applies in the first case for the figure.
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Fig. I.18.1

If the planet is in retrograde motion, then the arc traversed by the planet
on its orb is to the east of its position on its orb, and it is to the north of the
circle BE or to the south of it; the epicycle will be to the north of the
inclined orb or to the south of it. The configuration refers to the second
case for the figure. If the motion of the planet is from north to south then
from south to north, or from south to north then from north to south, then
its position will be like the point I or the point S and the required time will
be the arc BE in all cases for the figure, as is the case for the sun and the
moon.
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But if the planet is at station between retrograde and direct motion and
if its motion on its inclined orb is imperceptible, then its position on its
inclined orb is moving along the circle BED; the planet has an inclination
with respect to the circle BED whose magnitude is only that of the inclina-
tion of the epicycle with respect to the inclined orb and this inclination is
either to the north or to the south. If this motion is also very slow, that is,
the motion of the inclination of the epicycle with respect to the inclined
orb, and the magnitude of that inclination is imperceptible, because its
magnitude is so small – this can happen for the two planets Saturn and
Jupiter –, then the planet does not depart from the circle BED. If it reaches
the meridian circle, then it will be at the point E and the arc BE will be the
required time, which is the time in the course of which the planet moved
from the point B to the point E. In this case the motion of the planet has no
inclination.

So it is clear from all that we have proved for the configuration of the
motions of the seven wandering stars that if each of the seven wandering
stars moves with the rapid motion in a certain interval of time, then it will
acquire, in that interval of time, a required time, which is the arc cut off, on
the hour circle the star was on at the start of the time of its motion, by the
circle itself starting from the pole of the equator [and going] to the position
of the star at the end of the time of its motion, between the circle drawn
from the pole of the equator and the position of the star at the beginning of
the time of its motion; and that in this interval of time, in most cases, the
star will have an inclination with respect to the hour circle which it was on
at the beginning of the time of its motion, which is the arc of the circle
drawn from the pole of the equator to the position of the star at the end of
the time of its motion, the arc between the position of the star at the end of
the time of its motion and the hour circle the star was on at the beginning of
the time of its motion.

This having been proved, we say: if each of the seven wandering stars
is moving at a known moment in a known interval of time, then the arc that
is its required time will be known and the arc that is the inclination of its
motion will be known.

<19> Let the position of one of the seven wandering stars at a known
instant be the point A; let this star move in the course of a known time and
let its position at the end of the known time be the point B; let the north
pole of the equator be the point C. We cause an arc of a great circle to pass
through the points C and A; let the arc be CA. We cause an arc of a great
circle to pass through the points C and B; let the arc be CB. We cause an
arc of an hour circle to pass through the point A; let the arc be AD. So the
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arc AD is the required time and the arc DB is the inclination of the motion
of the star.

I say that the arc AD is known and that the arc DB is known.
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Proof: The point A is the known position of a star at a known moment.
If that star is the sun, then the point A is on the circle of the ecliptic and it
[the point] is known, because it is the position of the sun at a known
moment. Similarly, the point B is a known point of the circle of the ecliptic
because the instant when the sun reaches the point B is a known instant
since the time between the instant when the sun is located at the point A,
which is a known instant, and the instant when it reaches the point B, is a
known time, by hypothesis. But since the point A is a known point on the
circle of the ecliptic, the arc CA is known because the inclination of the
point A with respect to the circle of the equator is known; similarly, the arc
CB is known. But since the time between these two instants is known, the
arc traversed by the sun on the circle of the ecliptic is known and it is to the
west of the point B. But the point A of the circle of the ecliptic moves on
the circle AD without departing from it; the arc traversed by the sun on the
circle of the ecliptic, in the time in the course of which it travelled from the
point A to the point B, is thus between the point B and the circle AD and its
inclination is the arc BD as seen in the first case for the figure. But the arc
GA is known because it is the time in the course of which the sun has
moved from the point A to the point B, because the point G of the circle of
the ecliptic was at the point A and has travelled from the point A to the
position reached by the sun in the course of the time of its movement from
the point A to the point B; so the arc AG is the known time in the course of
which the sun has moved from the point A to the point B, and the arc AD is
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the right ascension of the arc AB;77 now the arc GD is known; there
remains the known arc AD which is the required time. Since the arc CA is
known and the arc CB is known, accordingly the difference between them
is known; it is the arc BD, which is the inclination of the motion of the sun;
so the arc BD is known. If at a given instant the sun is moving, during a
known interval of time, then its required time is known and the inclination
of its motion in this known time is known.

<20> If the wandering star which is at the point A is the moon or one of
the five planets, then its position in relation to the circle of the ecliptic78 is
known, because by hypothesis the instant is known; the wandering star’s
distance from the equator is known and the point where it crosses the circle
of the ecliptic is known – the point where it crosses the circle of the ecliptic
is the point of intersection of the circle of the ecliptic and the circle that
passes through the pole of the equator and through the position of the
centre of the wandering star, which in this case is the circle CA; thus the
point at which it crosses [the ecliptic] lies on the circle CA.
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Let the point at which it crosses [the ecliptic] be the point E. If the dis-
tance from the wandering star that is at the point A to the circle of the
equator is known, then its distance from the pole of the equator is known;
so the arc CA is known and the point E of the circle of the ecliptic is

77 The right ascension of an arc means the difference δ between the right
ascensions of the endpoints of the arc; so we have δ(A, B) = δ(A, D) and δ(A, D) =
meas.( AD) (Proposition 7).

78 See Supplementary note [6].
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known. But since the wandering star was at the point A at a known instant
and it then moves, in the course of a known time, so that it travels to point
B, the instant at which the wandering star reaches the point B is a known
instant; the position of the wandering star in relation to the circle of the
ecliptic at the instant when the wandering star arrives at the point B is thus
known, its distance from the circle of the equator at that instant is also
known and the point at which it crosses [the ecliptic] is also known; but in
this case the point at which it crosses lies on the circle CB; let the point at
which it crosses be the point I. If the distance from the wandering star to
the circle of the equator is known, then its distance from the pole of the
equator is known and the arc CB is known, so the point I of the circle of the
ecliptic is known. But since the wandering star moves from the point A to
the point B in a certain time, accordingly in that interval of time it will have
traversed a certain arc on its own orb which is the inclined orb; now that
arc is to the west of the point B; for the moon, that is [true] at all times; for
the five planets, if they are moving [uniformly], then the point the
wandering star occupied on its own orb has <travelled> to the west of the
point B. If the wandering star is the moon, then, in most cases, the point of
its inclined orb that was at the point A leaves the hour circle AD and has an
inclination to north or south with respect to it, [the inclination being] of the
magnitude of the inclination of the motion of the node in the known time in
the course of which the moon travelled from the point A to the point B. The
position of the arc of the inclined orb that the moon has traversed in the
course of the time in which it travelled from point A to point B is similar to
the arc BG in the second case of figure. So the point G is to the south of the
circle AD or to the north of it and the endpoint of the known time in the
course of which the moon travelled from the point A to the point B is to the
east of the point G, as we have proved for the configuration of the motions
of the moon. Let the known time be the arc AK. We cause an arc of a great
circle to pass through the two points C and G; let the arc be CG <which
cuts the hour circle AD at the point R>.79 Since the point R of the arc AR
was at the point A and it has moved with the motion along the hour circle
AD, the arc CR will be the arc CA and the crossing point, which is E, has
been displaced by the movement of R to reach the arc CG; let the point for
crossing the arc CG be the point H. So the point H on the circle of the
ecliptic is known, the point I on the circle of the ecliptic is known and the
point H has reached the arc CG at the instant when the point I of the circle
of the ecliptic has reached the arc CB; so the points H  and I are the
endpoints of a known arc of the circle of the ecliptic. We cause to pass

79 See Supplementary note [7].
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through the points H and I the arc of the circle of the ecliptic whose end-
points they are; let the arc be HI. We cause an arc of a great circle to pass
through the points C and K; let <the arc> be CK. Let this circle cut the arc
HI at the point N. But the arc GK is parallel to the circle of the ecliptic and
through the point G there passes a circle [that is] drawn from the pole of
the circle of the ecliptic and80 which passes through the position of the
wandering star when it was at the point A; this position is a known point of
the circle of the ecliptic. The circle drawn from the pole of the circle of the
ecliptic, and that passes through the point K, [also] passes through a known
point of the circle of the ecliptic, because the arc GK is known; in fact, it
has the magnitude of the motion of the node in the known time, which is
the time AK, and the latitude of the point K with respect to the circle of the
ecliptic is known because it is equal to the latitude of the point G, which is
known; so the point K is a point whose position is known with respect to
the circle of the ecliptic, and the crossing point for the point K is known.
But the arc CK is known because it is equal to the arc AC and the crossing
point for the point K is the point N ; so the point N  of the circle of the
ecliptic is known, and the arc NI of the circle of the ecliptic is known. But
the arc KD is the right ascension of the arc NI, so the arc KD is known and
the arc AK is known; so the arc AD is known and it is the required time.
But the arc CD is equal to the arc CA, which is known, and the arc CB is
known; so the arc BD is known and it is the inclination of the motion of the
moon in the known time.

All that we have explained and proved follows necessarily if the point
G is to the south of the circle ADK or if it is to the north of it. If the point B
which is the position of the moon at the second instant is on the circle
ADK, that is to say the position of the moon with respect to the hour circle
is the point D, then the method used to prove the magnitude of the required
time is the same method we have [already] described without any differ-
ence from it for any of the results we have described, except that the
motion of the moon in this known time has no inclination with respect to
the hour circle which it has reached, which is the circle ADK. So if the
moon moves in the course of a known interval of time, beginning at a
known instant, then its required time is known and the inclination of its
motion is known.

80 Ibn al-Haytham means that through the point G there passes a circle drawn from
the pole of the ecliptic, like the circle that passes through the position of the wandering
star when it was at the point A.
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<21> If the planet that is at the point A is Mercury or Venus, then the
figure for its required time is similar to the figure for finding the required
time of the moon. In fact, the inclined orb of these two stars moves towards
the circle of the ecliptic until it is coincident with it and then leaves it and
becomes inclined towards the other side; then it returns to it, later leaving it
and becoming inclined towards the side it was inclined to at first and so on
repeatedly. Thus, on account of this situation, the inclination of the inclined
orb with respect to the circle of the equator is variable. But if the
inclination of the inclined orb with respect to the circle of the equator
varies, then the distance from the point of its inclined orb occupied by the
star to the pole of the equator varies; the point of the orbs of Mercury or of
Venus, which is the point G, will thus in most cases not lie on the circle
AD, but will be to the north or the south of it; however, the pole of this
motion is the point of the node. In the known time, every point of the
inclined orb moves on an arc of a circle that cuts the hour circles because,
for each of these two stars, the node is not situated at the pole of the
equator. So in the course of the known time the point G moves on an arc of
a circle that cuts the circle AD. This motion is sometimes in the order of
succession of the signs of the Zodiac and sometimes in the reverse of the
order of the signs of the Zodiac. We shall prove later at what moments the
motion of the point G and its homologues is in the order of succession of
the signs of the Zodiac and when it is in the reverse to the direction of the
signs of the Zodiac. We shall show the magnitude of this motion in the
known time.
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The arc along which the point A moves in the course of the known
time, [an arc] that belongs to the orbs of Mercury or of Venus, is known
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and its direction is known. This being so, this case reduces to a figure simi-
lar to that for the motion of the moon: the arc of a circle that cuts the hour
circle which is between the point G and the point reached by the point A of
the circle AD, which is the arc G K corresponding to the arc GK in the
motion of the moon, is thus known. The proof to show the magnitude of the
required time for each of these two stars is completed in the same way as
the proof for the required time for the moon. So the required time for the
planets Mercury or Venus is known and the case of figure for these two
planets is the third one.

The inclination of the motion of each of these two stars is the differ-
ence of the two arcs CA and CB, which is the arc BD. This inclination is
made up of the inclination of the inclined orb with respect to the circle of
the ecliptic and the inclination of the epicycle with respect to the inclined
orb; however, resulting from these two inclinations, at any known instant
the star will have a known latitude with respect to the circle of the ecliptic.
If the latitude of the star is known and if its position with respect to the
circle of the ecliptic is known, then the distance from the star to the equator
or to the pole of the equator is known. The two arcs CA and CB, which are
the distances from the star to the pole of the equator at two known instants,
are known. Their difference is known; now this difference is the arc BD,
which is the inclination of the motion of the star with respect to the circle
AD. If the second arc, which is CB, is greater than the first arc, which is
CA, then the inclination is to the south with respect to the circle AD; but if
the first arc, which is CA, is greater than the second arc, which is CB, then
the inclination is to the north. So if each of the two planets, Mercury and
Venus, moves in the course of a known time, starting at a known instant,
then its required time is known. But the required time, for each of the seven
stars, is always to the east of the inclination of the motion of the star,
because the time in the course of which the star moves is always greater
than the right ascension of the arc the star traverses on its inclined orb.81

And if the star that is at the point A is Saturn, Jupiter or Mars, and if the
time in the course of which the star moves from the point A to the point B
is a single circuit of an hour circle or a part of a circuit, then the point G is
on the circle AD since the nodes for these stars do not move in a time that
is a single revolution or a part of a revolution of a perceptible magnitude on
the circles parallel to the circle of the ecliptic that pass through the point G,
and that are homologues of the arc KG in the second case of figure. The
point G, which was at the point A in the course of the time that is a single
revolution or a part of a revolution, does not perceptibly depart from the

81 This conclusion is valid when the motion of the planet on its orb is direct. The
conclusion when the motion is retrograde is given later for the five planets (p. 344).
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circle AD;82 at the instant when the star is at the point B, so the point G will
be on the hour circle AD and the point G will be to the west of the point B
if the star is moving with direct motion. So the arc AG is the known time83

in the course of which the star has moved from the point A to the point B
and the two crossing points which are the points H and I are known, as has
been proved earlier. So the arc HI that belongs to the circle of the ecliptic is
known; but the arc DG is the right ascension of the known arc HI, so the
arc GD is known and the arc AG is known; there remains the known arc
AD  which is the required time. So the required time for each <of the
planets> Saturn, Jupiter and Mars is known.

The inclination of the motion of each of these three planets is in the
same state as that of the inclination of Mercury and of Venus. In fact, the
inclination of these stars is also made up of the inclination of their inclined
orb <with respect to the ecliptic> and of the inclination of their epicycle;
however, their latitude with respect to the circle of the ecliptic is known at
any known instant and the point at which they cross [it] is known; so the
arcs CA and CB are known and their difference is known; but the difference
between these two arcs is the inclination of the motion of these stars, and
the direction of their inclination is like the direction of that of the two
planets Venus and Mercury. So the inclination of the motion of each of
these three stars is known and the direction of their inclination is known. If
each <of the planets> Saturn, Jupiter and Mars moves in the course of a
known time starting at a known instant, then its required time is known and
the inclination of its motion with respect to the hour circle which it was on
at the first instant is known.

If the star that is at the point A is one of the five planets and if it is in
retrograde motion, then the point G will be to the east of the point B and
the arc AG which is the known time will be smaller than the arc AD; and
the proof as a whole will be like the preceding one.

If the star is at station between retrograde motion and direct motion,
and if it appears that it has no motion in longitude, then its second position
with respect to the circle of the ecliptic is [the same as] its first position and
its required time is the known time in the course of which it has moved
from the first position to the second position.

82 The motion of the node is extremely slow, so the great circle CG cuts the hour
circle AD in a point that is identified with D. The arc RG obtained in the case of the
moon is here effectively zero, G ≅ R, so G is identified with a point of the circle AD.
Consequently, G and K are also identified. The known time, which was AK in the case
of the moon, here becomes AG.

83 See preceding note.
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It is clear from what we have proved that if each of the seven wander-
ing stars moves in the course of a known time beginning at a known
instant, then its required time is known and the inclination of its motion
with respect to the hour circle it was on at the first instant is known. That is
what we wanted to prove.

The first case of figure is that for the sun, the second is that for the
moon, the third is that for Venus and Mercury and the fourth is that for
Saturn, Jupiter and Mars.

<22> I also say that the maximum inclination84 of the inclined orb for
each of the seven wandering stars with respect to the circle of the equator is
known for any known instant and the position in which this inclination in
relation to the circle of the ecliptic is a maximum is known.

The inclined orb of the sun is in fact the circle of the ecliptic and the
maximum inclination of the circle of the ecliptic with respect to the circle
of the equator is known; it has the magnitude indicated by Ptolemy. The
magnitude of that inclination is fixed, always the same, and does not vary;
the position of the northern limit is the summer solstice which is the first
point of Cancer and the position of the southern limit is the winter solstice
which is the first point of Capricorn.

For the moon, its inclined orb cuts the circle of the ecliptic and cuts the
circle of the equator, because any great circle on a sphere, cuts any great
circle of the sphere and cuts it into two equal parts. If the inclined orb cuts
the circle of the ecliptic and cuts the circle of the equator, then it is inclined
with respect to the circle of the ecliptic and with respect to the circle of the
equator. As for the relation of the inclined orb to the circle of the ecliptic,
Ptolemy found its magnitude [of the inclination to the ecliptic] and proved
that this magnitude is unchanging and fixed in the same state. However, the
position of the maximum inclination of this orb, that is, the orb of the
moon, with respect to the circle of the ecliptic, is variable; in fact the entire
plane of this inclined orb moves as a whole about the poles of the circle of
the ecliptic, and each point of the circumference of this inclined orb
changes its position with respect to the circle of the ecliptic; the point that
<corresponds to> the northern limit with respect to the circle of the ecliptic
accordingly moves and its position with respect to the circle of the ecliptic
varies; similarly the point that <corresponds to> the southern limit, and
similarly the two points of the nodes; and this motion is in the sense
opposite to that of the succession of the signs of the Zodiac, as Ptolemy has

84 That is, the inclination of the north or south limits of the orb with respect to the
equator.
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proved; it is called the motion of the nodes. The magnitude of the incli-
nation of this orb with respect to the circle of the ecliptic is not changed by
this motion, because this motion is about the poles of the circle of the
ecliptic; so the distance between the pole of this circle and the pole of the
circle of the ecliptic does not vary and this distance is the maximum value
of the inclination of the orb of the moon with respect to the circle of the
ecliptic. If the plane of this orb moves about the poles of the circle of the
ecliptic, then the inclination of this orb with respect to the circle of the
equator varies. In fact, if this entire circle moves and its position changes
with respect to the circle of the ecliptic, then the two poles of this circle
move and rotate about the poles of the circle of the ecliptic and they coin-
cide once with <points on> the circumference of the circle that passes
through the two poles of the circle of the ecliptic and through the two poles
of the circle of the equator, and that is called the circle of the poles; they
move away from them once. The coincidence of the two poles of the incli-
ned orb <with points> of the circle of the poles happens twice for each
revolution. We have mentioned this result earlier and if we have repeated it
here, that is in order to point out the magnitude of the inclination. The
magnitude of the inclination of this orb with respect to the circle of the
ecliptic is smaller than the magnitude of the inclination of the circle of the
ecliptic with respect to the circle of the equator. But the magnitude of the
inclination, one to another, of two great circles that intersect on a sphere is
equal to the magnitude of the arc between their poles, which forms part of
the great circle that passes through their four poles. The magnitude of the
arc between the two poles of the circle of the ecliptic and the pole of the
inclined orb of the moon is smaller than the magnitude of the arc between
the pole of the circle of the ecliptic and the pole of the circle of the equator.
If the pole of the inclined orb moves about the two poles of the circle of the
ecliptic, and if it coincides twice with <a point> of the circle of the poles,
then it will, once, be further from the pole of the equator <than from the
pole of the ecliptic> and, once, closer to the pole of the equator <than to the
pole of the ecliptic>. In fact, if the pole of the inclined orb coincides with
<a point> of the circle of the poles, it will, once, be between the pole of the
circle of the ecliptic and the pole of the circle of the equator, and the pole
of the circle of the ecliptic will, once, be between the pole of the circle of
the equator and the pole of the inclined orb. If the pole of the inclined orb
coincides <with a point> of the circle of the poles and if the three poles
come to lie on a circle, then the maximum inclination of the inclined orb
with respect to the circle of the ecliptic is an arc of this circle and the point
where we find the maximum inclination of the inclined orb with respect to
the circle of the ecliptic is the point where we find the maximum
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inclination of the inclined orb with respect to the circle of the equator. But
we have seen earlier that the magnitude of the maximum inclination
between the two circles is the arc between the two poles. So if the pole of
the inclined orb coincides <with a point> of the circle of the poles and if it
is between the pole of the circle of the ecliptic and the pole of the circle of
the equator, then the magnitude of the maximum inclination of the inclined
orb with respect to the circle of the equator is the magnitude of the
inclination of the circle of the ecliptic with respect to the circle of the
equator, minus the magnitude of the inclination of the inclined orb with
respect to the circle of the ecliptic. If the pole of the inclined orb coincides
<with a point> of the circle of the poles and if the pole of the circle of the
ecliptic is between the pole of the circle of the equator and the pole of the
inclined orb, then the magnitude of the maximum inclination of the
inclined orb with respect to the circle of the equator is the magnitude of the
inclination of the circle of the ecliptic with respect to the circle of the
equator, plus the magnitude of the inclination of the inclined orb with
respect to the circle of the ecliptic. If the pole of the inclined orb coincides
with <a point of the> circle of the poles, the position of the maximum
inclination of the inclined orb with respect to the circle of the equator, in
regard to the circle of the ecliptic, is the point of a solstice, because the
circle that passes through the limiting point for the inclination of the
inclined orb, in this case, passes through the pole of the circle of the
ecliptic; so it is the one that gives the limit for the position of the maximum
inclination in regard to the circle of the ecliptic. But the positions on the
circle of the ecliptic through which the circle of the poles passes at the
instant when the pole of the inclined orb coincides <with a point> of the
circle of the poles, are the two points of the solstices. But since the posi-
tions of the two nodes which are the head and tail85 of the orb of the moon
on the circle of the ecliptic are known, the position of the northern limit of
the inclined orb in regard to the circle of the ecliptic is known and the
position of the southern limit of the orb in regard to the circle of the ecliptic
is known. By the northern limit and the southern limit I mean, here, the
point of the inclined orb that is furthest away from the circle of the ecliptic.
But if the positions of the northern and southern limits of the inclined orb
in regard to the circle of the ecliptic are the two points of the solstices, the
magnitude of the inclination of the inclined orb with respect to the circle of
the equator will be known; in fact, if the northern limit of the inclined orb
in regard to the circle of the ecliptic is at the first point of Cancer, the pole
of the inclined orb will be further away from the pole of the circle of the

85 Head: ascending node; tail: descending node. See Mathematical commentary,
p. 192.
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equator than from the pole of the circle of the ecliptic; in this case the three
poles all lie on a circle, which is the circle of the poles. The pole of the
circle of the ecliptic will thus lie between the pole of the circle of the
equator and the pole of the inclined orb. The magnitude of the inclination
of the inclined orb with respect to the circle of the equator is the magnitude
of the inclination of the circle of the ecliptic with respect to the circle of the
equator, plus the inclination of the inclined orb with respect to the circle of
the ecliptic. If the southern limit in regard to the circle of the ecliptic is at
the first point of Cancer, the pole of the circle of the ecliptic is further away
from the pole of the equator than from the pole of the inclined orb; so the
pole of the inclined orb will lie between the pole of the circle of the equator
and the pole of the circle of the ecliptic. The magnitude of the inclination
of the inclined orb with respect to the circle of the equator is the same as
the magnitude of the inclination of the circle of the ecliptic with respect to
the circle of the equator, from which we subtract the inclination of the
inclined orb with respect to the circle of the ecliptic.

If the northern limit of the inclined orb with respect to the circle of the
ecliptic is at the first point of Cancer, the ascending node will be at the first
point of Aries because the first point of Aries is the pole of the circle of the
poles. So if the point of <maximum> inclination of the inclined orb with
respect to the circle of the ecliptic, which is the northern limit, lies on the
circle of the poles, then the point of the ascending node is the first point of
Aries. If the southern limit of the inclined orb with respect to the circle of
the ecliptic is at the first point of Cancer, the descending node is at the first
point of Aries. So it is clear from this that if the ascending node is at the
first point of Aries, then the magnitude of the inclination of the inclined orb
of the moon with respect to the circle of the equator is the same as the
magnitude of the inclination of the circle of the ecliptic with respect to the
circle of the equator, plus the inclination of the inclined orb with respect to
the circle of the ecliptic. But if the descending node is at the first point of
Aries, then the inclination of the inclined orb of the moon with respect to
the circle of the equator is the same as the magnitude of the inclination of
the circle of the ecliptic with respect to the circle of the equator, from
which we subtract the inclination of the inclined orb with respect to the
circle of the ecliptic. But if the descending node is at the first point of
Aries, then the ascending node will be at the first point of Libra.

It is clear from what we have proved that the magnitude of the inclina-
tion of the inclined orb of the moon with respect to the circle of the
equator, at the two moments at which the ascending node is at the two
points of the equinoxes, is known and that the two positions of the northern
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limit and of the southern limit of the inclined orb with respect to the circle
of the equator at these two moments are known.

It remains to prove that the magnitude of this inclination is known and
that the position of the limit of this inclination is known, if the ascending
node is not at one of the two equinoctial points.

Let ABC be the circle of the ecliptic, ADC the inclined orb and let each
of the arcs CB and CD be a quarter of a circle. We cause a great circle to
pass through the points B and D; let the circle be KBDE. The arc BD will
then be the limit of the inclination of the inclined orb with respect to the
circle of the ecliptic, because the magnitude of this inclination does not
change and the pole of the circle of the ecliptic and the pole of the inclined
orb are on the circle KBE; let the point N be the pole of the circle of the
ecliptic and the point E the pole of the inclined orb. The point D is the most
northerly or southerly position with respect to the circle of the ecliptic
referred to the circle of the ecliptic, and the two points A and C are the two
nodes. So the point B of the circle of the ecliptic is known, because its
distance from the point of the node is a quarter of a circle, and the position
of the node is known. But if the positions of the two nodes are not the two
points of the equinoxes, then the two points A and C are not the two points
of the equinoxes, while still being known. Let the two points of the
equinoxes be the two points L and M.
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Fig. I.22.1

<a> Let the point M lie on the arc CB. We construct the circle of the
equator through L and M; let it be the circle LKMH; let the point K lie on
the circle DB and the point H lie on the circumference of the inclined orb.
Thus the point H will be somewhere other than at the points C  or A ,
because each of the arcs CM and MA is smaller than a semicircle. But since
the point B of the circle of the ecliptic is not the point of a solstice and the
point N is the pole of the circle of the ecliptic, the circle KBNE is not the
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circle of the poles; so the pole of the circle of the equator does not lie on
the circle KBNE. Let the pole of the equator be the point O. We cause a
great circle to pass through the points E and O; let it cut the inclined orb at
the point I and let it cut the circle of the equator at the point G. So the arc
IG is the limit of the inclination of the inclined orb with respect to the
circle of the equator, because the circle EG passes through the pole of the
inclined orb and through the pole of the circle of the equator and is such
that the arc GI is equal to the arc EO and the arc EI is a quarter of a circle:
the point E is in fact the pole of the inclined orb. So each of the arcs HG
and HI is a quarter of a circle. Similarly, since the point B of the circle of
the ecliptic is known, because it is the position of the northern or southern
limit of the inclined orb, <referred to the ecliptic>,86 and the point M is the
point of the equinox, then the arc MB of the circle of the ecliptic is known.
The arc MC is known because the arc CB is a quarter of a circle. But since
the circle KBE passes through the pole of the circle of the ecliptic, it will be
perpendicular to the circle of the ecliptic; but since the circle EBK is per-
pendicular to the circle ABC and the arc MB is known, then if we insert the
arc MB into the table of right ascensions, and if we take the appropriate part
of the circle of the ecliptic,87 that will be equal to the arc MK; so the arc
M K  is known; if we insert the known arc MK  into the table of the
inclination and we take the appropriate part of the inclination, that will be
equal to the arc KB; so the arc KB is known, each of the arcs MK and KB is
known and the arc BD is known because it is the limit of the inclination88

of the inclined orb with respect to the circle of the ecliptic; so the arc KD is
known. But since, between the two arcs KD and CD, two arcs HK and CB
cut one another at the point M, accordingly the ratio of the sine of the arc
KD to the sine of the arc DB, a known ratio, is compounded of the ratio of
the sine of the arc KH to the sine of the arc HM, a known ratio,89 and the
ratio of the sine of the arc CM to the sine of the arc CB. But the arc KM is
known, so the arc HM is known; the complete arc KH is known and the arc
HG is a quarter of a circle; so the arc KG is known. Similarly, we have
proved that the arc KD is known and that the arc DE is a quarter of a circle.
But since, between the two arcs EG and HG, two arcs EK and HI cut one

86 See Supplementary note [6].
87 Since N is taken as the pole, the arc MB of the ecliptic is the right ascension of

the arc MK of the equator and the arc KB is the inclination of the arc MK with respect to
the ecliptic (see Propositions 7 and 5).

88 Here, the inclination of one of the extremities of the orb; so it is the arc of a great
circle that is the measure of the dihedral angle between the plane of the orb and the
plane of the ecliptic, that is, the ecliptic latitude of the limit concerned.

89 See Mathematical commentary for an argument in support of this.
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another at the point D, the ratio of the sine of the arc EI to the sine of the
arc IG is compounded of the ratio of the sine of the arc ED to the sine of
the arc DK, a known ratio, and the ratio of the sine of the arc KH to the sine
of the arc HG, a known ratio; thus the ratio of the sine of the arc EI to the
sine of the arc IG is known. But the arc EI is a quarter of a circle, so the arc
IG is known and it is the limit of the inclination of the inclined orb with
respect to the circle of the equator. The point I is the northern or southern
limit of the inclined orb with respect to the equator: if the point O is the
north pole, the point I will be the northern limit and if the point O is the
south pole, then the point I will be the southern limit.

Similarly, we cause a great circle to pass through the point N, which is
the pole of the circle of the ecliptic, and through the point I, which is the
northern or southern limit of the inclined orb with respect to the circle of
the equator; let the circle be NIS. Let this circle cut the circle of the ecliptic
at the point S. Since the ratio of the sine of the arc KB to the sine of the arc
BD, a known ratio, is compounded of the ratio of the sine of the arc KM to
the sine of the arc MH, a known ratio, and the ratio of the sine of the arc
HC to the sine of the arc CD; the ratio of the sine of the arc HC to the sine
of the arc CD is thus known. But the arc CD is a quarter of a circle, so the
arc HC is known. But since the arc CD is a quarter of a circle and the arc
HI is a quarter of a circle, the arc DI will be equal to the arc CH; so the arc
DI is known. But since the arc DI is equal to the arc HC, the arc DI will be
smaller than a quarter circle; so the point I lies between the two points A
and D and the arc AI is smaller than a quarter of a circle. But since the
circle NI  is a great circle, and it cuts the circle AIC  at the point I, it
accordingly cuts it in another point, between the two points A and C,
opposite the point I. If the circle NI cuts the circle AIC in a point opposite
the point I, then it cuts the arc AB in a point between the two points A and
B; so the point S lies between the two points A and B and the arc CS is
smaller than a semicircle. Since, between the two arcs NS and CS, the two
arcs NB and CI cut one another, the ratio of the sine of the arc CS to the
sine of the arc SB is compounded of the ratio of the sine of the arc CI to the
sine of the arc ID, a known ratio, and the ratio of the sine of the arc DN to
the sine of the arc NB, a known ratio; so the ratio of the sine of the arc CS
to the sine of the arc SB is known. But the arc CB is a quarter of a circle, so
the arc SB is known and the point B on the circle of the ecliptic is known;
so the point S on the circle of the ecliptic is known and it is the position90 of
the point I, which is the northern limit or the southern limit of the inclined
orb. All this proof is concerned with the first case of figure.

90 Referred to the ecliptic.
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<b> If the point M that is the point of the equinox lies on the arc AB,
then the proof is the same as the proof we have just given, except that the
two arcs EG and NI are on the side towards the point C.
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Fig. I.22.2

<c> If the point of the equinox is the point B, then we construct the cir-
cle of the equator to pass through the point B as in the second case of
figure; let it be BH. We cause a great circle to pass through E and O, let it
be EOIG; let there be the point I on the inclined orb and the point G on the
circle of the equator, as in the first case of figure; thus the arc IG will be the
limit of the inclination of the inclined orb with respect to the circle of the
equator and the point I will be the northern or southern limit of the inclined
orb with respect to the circle of the equator. We cause a great circle to pass
through the two points N and I; let it cut the circle of the ecliptic at the
point S, as in the first case of figure. The point S will then be the position of
the northern or southern limit in regard to the circle of the ecliptic. If the
point B is the point of the equinox, then the point C will be the point of the
solstice. We cause a great circle to pass through the two points N and O;
this circle is thus the circle of the poles and accordingly passes through the
point C; let it cut the circle of the equator at the point K. So the arc CK is
the inclination of the circle of the ecliptic with respect to the circle of the
equator, so it is known. The arc NC is a quarter of a circle, there remains
the known arc KN and the ratio of the sine of the arc BD to the sine of the
arc DN, a known ratio, is compounded of the ratio of the sine of the arc BH
to the sine of the arc HK and the ratio of the sine of the arc KC to the sine
of the arc CN, a known ratio; so the ratio of the sine of the arc BH to the
sine of the arc HK is known. But the arc BK is a quarter of a circle; so the
arc HK is known. But the arc HB is known and the arc HG is a quarter of a
circle, because the point H is the pole of the circle GOE; so the arc BG is
equal to the arc HK, which is known. Similarly, the ratio of the sine of the
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arc EI to the sine of the arc IG is compounded of the ratio of the sine of the
arc ED to the sine of the arc DB, a known ratio, and the ratio of the sine of
the arc BH to the sine of the arc HG, a known ratio. So the ratio of the sine
of the arc EI to the sine of the arc IG is known; but the arc EI is known, so
the arc IG is known and it is the limit of the inclination of the inclined orb
with respect to the circle of the equator. Similarly, it being given that the
two arcs BN and ND are known and that the two arcs BK  and KH are
known, the two arcs CH and HD are known from the compounded ratio. So
the arc DI is known because it is equal to the arc HC.91 Similarly, since the
arcs CI and ID are known and the two arcs DN and NB are known, the ratio
of the sine of the arc CS to the sine of the arc SB is known. But the arc CB
is a quarter of a circle; so the arc BS is known and the point B is known
because it is the point of the equinox; so the point S on the circle of the
ecliptic is known and it is the position, referred to the circle of the ecliptic,
of the point I which is the northern or southern limit.

From all that we have explained in this section, it is clear that the posi-
tion of the northern or southern limit of the inclined orb of the moon with
respect to the circle of the equator, referred to the circle of the ecliptic, is
known for any known instant and that the magnitude of the inclination of
this orb with respect to the equator, for any known instant, is known.

By means of the same proof, we find the position of the northern or
southern limit of the inclined orb of each of the three superior planets with
respect to the circle of the equator, referred to the circle of the ecliptic, and
the magnitude of the inclination of each of these orbs with respect to the
circle of the equator; that is what we wanted to prove in this section.

<23> The inclination of the orbs of Venus and Mercury varies with
respect to the circle of the equator as a consequence of the inclination of
these two orbs with respect to the circle of the ecliptic. However the magni-
tude of the inclination of each of these two orbs with respect to the circle of
the equator, at a known instant, is known and the positions of the northern
limit and the southern limit in relation to the circle of the equator, referred
to the circle of the ecliptic, are known. In fact, even though the inclination
of the inclined orb of each of these two planets with respect to the circle of
the ecliptic varies, its variation is nevertheless known; thus its magnitude at
any known instant is known and the position of the limit in relation to the
circle of the ecliptic is known. As for the position of the limit in relation to
the circle of the ecliptic, its distance from the position of the ascending
node is always a quarter of the circle of the ecliptic. But the position of the

91 See Mathematical commentary.
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ascending node on the circle of the ecliptic at each known instant is known;
the positions of the northern and southern limits, referred to the circle of
the ecliptic, for each of the planets Venus and Mercury, at any known
moment, are known. As for the magnitude of the inclination of the inclined
orb with respect to the circle of the ecliptic, it is when the centre of the
epicycle of each of these two planets is at its apogee or at its perigee on the
eccentric that the inclination of the inclined orb with respect to the circle of
the ecliptic is at its maximum. Now its maximum inclination with respect
to the circle of the ecliptic is of known magnitude; Ptolemy in fact
demonstrated it and found its magnitude.

If, on the other hand, the centre of the epicycle is at one of the two
points of intersection, whatever the position of these two points may be,
then, in this case, the inclined orb has no inclination with respect to the
circle of the ecliptic since, in this case, the inclined orb will be coincident
with the circle of the ecliptic, as Ptolemy explained. And if the centre of the
epicycle is between the apogee and the point of intersection, then the
inclination of the inclined orb with respect to the circle of the ecliptic will
be smaller than the maximum inclination and its ratio to the maximum
inclination will be equal to the ratio of the arc of the inclined orb, which
lies between the centre of the epicycle and the point of intersection, to a
quarter of a circle; and that, indeed, because the inclined orb moves from
its maximum inclination until it coincides with the circle of the ecliptic in
the time during which the centre of the epicycle, by the motion in longi-
tude, traverses a quarter of a circle.92 The position of the planet in longi-
tude, which is the mean position, is known at any known instant, its dis-
tance from the position of the apogee, on the eccentric, is known and that
distance is referred to the centre of the Universe. The distance of the centre
of the epicycle, which is the mean position93 of the star starting from the
point of intersection which is the point of the ascending node – by
ascending node I mean the ascending node which shares in the motion in
longitude94 – is in this case of known magnitude at any known instant. So
the ratio of this distance to a quarter of the circle will be a known ratio; this
ratio is the ratio of the magnitude of the inclination of the inclined orb with
respect to the circle of the ecliptic at this known moment to its maximum
inclination with respect to the circle of the ecliptic, which is a known
magnitude. Thus the magnitude of the inclination of the inclined orb for the
planets Venus and Mercury with respect to the circle of the ecliptic at any
known moment, is known. But if the magnitude of the inclination of the

92 See Supplementary note [8].
93 That allows us to find the mean position.
94 See Mathematical commentary, pp. 201ff.
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inclined orb with respect to the circle of the ecliptic is known and if the
position of the maximum inclination in relation to the circle of the ecliptic,
referred to the circle of the ecliptic, is known, then the magnitude of the
inclination of the inclined orb with respect to the circle of the equator is
accordingly known and the position of the northern limit or the southern
limit in relation to the circle of the equator and referred to the circle of the
ecliptic will be determinate by the method we indicated earlier for the orb
of the moon.

If, on the other hand, the two nodes95 are at the two points of the equi-
noxes, then the positions96 of the northern limit and the southern limit of
the inclined orb in relation to the circle of the equator are the two points of
the solstices, as we have proved for the orb of the moon.

As for the magnitude of the inclination of the inclined orb with respect
to the circle of the equator: if the position of the northern limit is the first
point of Cancer, then the magnitude of the inclination is the magnitude of
the inclination of the circle of the ecliptic with respect to the equator, to
which we add the inclination of the inclined orb with respect to the circle of
the ecliptic at the known instant; and if the position of the southern limit is
the first point of Cancer, then the magnitude of the inclination is the
magnitude of the inclination of the circle of the ecliptic with respect to the
circle of the equator, from which we subtract the magnitude of the
inclination of the inclined orb with respect to the circle of the ecliptic at
that known instant.

If the positions of the two nodes are not the two points of the equi-
noxes, then the magnitude of the inclination as well as the two positions of
the northern and southern limits are found by the same method as that we
described, for the orb of the moon.

As for the two points of intersection of the inclined orb with the circle
of the equator, they move about the points of the two nodes, that is why the
two points of intersection vary. Similarly, any point on the circumference
of the inclined orb moves about the points of the two nodes. In fact, if the
inclined orb moves until it is coincident with the circle of the ecliptic, to
[then] separate itself from the circle of the ecliptic and to return to it, and if
the two points of intersection do not move with this motion, then this
motion takes place about the two points of intersection, which are the
nodes, and these two points are the poles of this motion. And if this motion
is about these two poles, then any point of the inclined orb moves with this
motion along a circle whose two poles are the points of the two nodes. So if

95 The ascending and the descending nodes.
96 Understood: referred to the ecliptic.



356 CHAPTER II: IBN AL-HAYTHAM

the planet Venus or the planet Mercury move for a known time with a
<diurnal> temporal motion, then any point on the circumference of the
inclined orb moves along a circle whose poles are the points of the two
nodes. But any point of the quarter of the inclined orb that is between the
point of the head and the apogee on the eccentric – by point of the head I
mean the point after which the centre of the epicycle moves upwards
towards the apogee – and any point of the quarter opposite this quarter,
apart from the points of the limits – which are the two points of the nodes
and the two points of the northern and southern limits – moves according to
the succession of the signs of the Zodiac, if the motion of the apogee on the
eccentric is, for the planet Venus, from the north towards the circle of the
ecliptic and, for the planet Mercury, from the south towards the circle of
the ecliptic. If the inclined orb then moves and leaves the circle of the
ecliptic by going in the other direction, then for the planet Venus the
apogee moves from the circle of the ecliptic towards the south; and for the
planet Mercury it moves from the circle of the ecliptic towards the north;
and in this case, any point of the two quarters we mentioned before moves
in the sense opposite to the succession of the signs of the Zodiac. As for the
two remaining quarters, any point on each of them has a motion contrary to
the motion on the first two quarters. If, on the other hand, the motion of the
apogee for the planet Venus takes place from the north towards the circle of
the ecliptic and for the planet Mercury from the south towards the circle of
the ecliptic, then any point on these last two quarters has a motion opposite
to the succession of the signs of the Zodiac. If the inclined orb later leaves
the plane of the circle of the ecliptic by moving in the other direction, then
any point on these two quarters moves according to the succession of the
signs of the Zodiac. If the inclined orb later moves so as to return to the
circle of the ecliptic and from the circle of the ecliptic to the first limit, then
the motions of the points are in the opposite sense; those of them that move
according to the succession of the signs of the Zodiac thus in this case
move contrary to the succession of the signs of the Zodiac; and those of
them that were moving contrary to the succession of the signs of the Zodiac
in this case move in accordance with the succession of the signs of the
Zodiac.

Let us show all this in a proof. Let the circle of the ecliptic be the circle
ABCD and the inclined orb AECG. Let the point E be the northern limit of
the planet Venus or the southern limit of the planet Mercury. Let the point
G be the southern limit of the planet Venus or the northern limit of the
planet Mercury. Let the succession of the signs of the Zodiac be from the
point A towards the point B and beyond B; so the point A will be the point
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of the head and the point C the point of the tail,97 because the apogee of the
planet Venus is always at the northern limit and that of the planet Mercury
is always at the southern limit. We cause a great circle to pass through the
points E and G and [also] through the pole of the circle of the ecliptic; let
the point H be the pole of the circle of the ecliptic. We take any point on
the arc AE; let the point be I. Similarly, we take any point on the arc CG;
let it be the point I′.98 We cause a great circle to pass through the points I
and H; let the circle be HLI; let this circle cut the circle of the ecliptic at the
point L . This circle is accordingly at right angles to the circle of the
ecliptic; the angle ALI is a right angle and the angle CL′I′ is also a right
angle, so the arc AI is greater than the arc A L and the arc CI′, on the
opposite side, is also greater than the arc CL′. We take the point A as pole
and with distance AI we draw a circle. It cuts the arc AB in a point between
the points L and B; let it cut it at the point K. It also cuts the arc HL in a
point between the points H and L, because the arc AL is perpendicular to
the arc HI. But the arc AL is smaller than a quarter of a circle; let the circle
IK cut the arc HL at the point R. Similarly, if we take the point C as pole
and with distance CI′ we draw a circle, it cuts the arc CD in a point
between the points C and D – let it cut it at the point K′ – and it cuts the arc
HL′ in a point that lies beyond the point L′ – let it cut it at the point R′. We
cause a great circle to pass through the points H and K; let it be HK.
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Since the point H is the pole of the circle of the ecliptic, each of the
arcs HB and HK is a quarter of a circle; and since the point H is the pole of

97 That is, the ascending node and the descending node.
98 See note 23 in the Mathematical commentary, p. 198.
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the circle BK and the point H is on each of the circles HB and HK, the poles
of the circles HB and HK lie on the circle BK. But the point A, which is the
pole of the circle HB, is the pole of the circle IKR; so the circle BK passes
through the pole of the circle IK. But since the circles HK and IKR meet
one another at the point K, a great circle, which is the circle BKA, passes
through the point K and the poles of the circles HK, IKR lie on the circle
BK, [accordingly] the circle HK touches the circle IKR at the point K. But if
the circle HK touches the circle IKR at the point K, then any circle drawn
from the point H to a point of the arc IK between the points I and K, or to a
point of the arc KR between the points K and R, cuts the arc KL. On the arc
IK let us mark an arbitrary point; let the point be M. We cause a great circle
to pass through this point and through the point H; let the circle be HM;
this circle cuts the arc KL and cuts the arc KR; let it cut the arc KL at the
point N and let it cut the arc KR at the point J. The point N, which lies on
the circle of the ecliptic, is the position of the point M <referred to the
ecliptic> and the point L is the position of the point I. So if the inclined orb
is at its maximum inclination, then the position of the point I is the position
which it occupies99 and the position of the point I, referred to the circle of
the ecliptic, is the point L. If the inclined orb next moves towards the circle
of the ecliptic, the point I moves along the circle IKR, because this motion
takes place about the pole A. If the point I reaches the point M, the position
of the point I, referred to the circle of the ecliptic, will be the point N. But
the point N is further away from the point A  than the point L and the
succession of the signs of the Zodiac is from the point A towards the point
B, and beyond B. So, in this case, the motion of the point I is in accordance
with the succession of the signs of the Zodiac. Similarly, if the point I
travels from the point M to the point K, its position100 will be the point K
after having been the point N. The motion of the position of the point I until
it reaches the point K is in accordance with the succession of the signs of
the Zodiac. If the inclined orb next moves in the other direction <with
respect > to the circle of the ecliptic, the point I moves from the point K in
the direction of the point R; then the point I reaches the point J; if it reaches
the point J, its position will be the point N. But given that, when it was at
the point K, its position was the point K, accordingly it will have returned
from the point K to the point N and thus its motion will be contrary to the
succession of the signs of the Zodiac. Similarly, if it reaches the point R, its
position will be the point L, and if it reaches the point R, it will have

99 The initial position of the point I is a point of the arc AE of the inclined orb when
the orb has its maximum inclination.

100 The term position must often be taken to mean ‘position referred to the
ecliptic’.
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attained its maximum inclination, because the arc RL is equal to the arc LI.
In fact, the arc of the great circle drawn from the point A to the point R is
equal to the arc AI since the point A is the pole of the circle IKR and the arc
AI makes right angles with the arc RI; so the arc RL is equal to the arc LI. If
the inclined orb later moves so as to return to the circle of the ecliptic, the
point I moves from the point R towards the point K; thus its position moves
from the point L to the point N and later to the point K. So its position
moves in accordance with the succession of the signs of the Zodiac. If the
inclined orb later moves so as to return in the direction of the point E, then
the point I moves from the point K to the point I; so its position moves
from the point K to the point L. The motion of its position is in the sense
contrary to the succession of the signs of the Zodiac.

Similarly, we prove that, for the arc I′K′R′ cut at the point J′, the circle
H′I′R′ touches the circle I′K′R′; thus, if the point I′ moves along the arc I′K′
from the point I′ to the point K′, its position moves from the point L′ to the
point K′; so its motion will be in accordance with the succession of the
signs of the Zodiac. If the point I′ moves along the arc K′R′, its position
moves from the point K′ to the point L′, so its motion will be in the sense
contrary to the succession of the signs of the Zodiac. If the inclined orb
moves so as to return to the circle of the ecliptic, the point I′ moves from
the point R′ to the point K′; the motion of its position will be in accordance
with the succession of the signs of the Zodiac. If the point I′ moves from
the point K′ to the point I′, the motion of its position will be from the point
K′ to the point L ′, so its motion will be in the sense contrary to the
succession of the signs of the Zodiac.

Similarly, we take an arbitrary point on each of the arcs EC and GA; let
it be the point P.101 We cause a great circle to pass through this point and
through the point H, let it be HP; let this circle cut the circle of the ecliptic
at the point O. So this circle will be set at right angles to the circle of the
ecliptic; so the angle COP is a right angle and the arc CP is greater than the
arc CO. Similarly, the angle AO′P′, on the opposite side, is a right angle
and the arc AP′ is greater than the arc AO′. We take the point C as pole and
with distance CP we draw a circle. This circle cuts the arc CB in a point
between the points O and B; let it cut it at the point Q. But this circle cuts
the circle HO in a point between the points H and O; let it cut it at the point
T. Similarly, we take the point A as pole and with distance AP′ we draw a
circle. This circle cuts the arc O′D in a point between the points O′ and D
and cuts the circle HO′; let it cut the arc O′D at the point Q′ and the arc
HO′ at the point T′. We cause a great circle to pass through the points H

101 We take P on EC and P′ on GA.
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and Q; let the circle be HQ. We prove, as we proved earlier, that the circle
HQ touches the circle PQT. Any circle drawn from the point H to a point of
the arc PQ or to a point of the arc QT cuts the arc QO of the circle of the
ecliptic. We take an arbitrary point on the arc PQ; let it be the point S. We
cause a great circle to pass through it and through the point H; let the circle
be HS. This circle cuts the arc QO, it cuts the arc QP and the arc QT; let it
cut the arc QO at the point U and the arc QP at the point S and let it cut the
arc QT at the point Z. If the inclined orb moves towards the circle of the
ecliptic, the point P moves along the arc PQ from the point P towards the
point Q, so if the point P reaches the point S, the position of the point P,
referred to the circle of the ecliptic, will be the point U. But the position of
the point P when it was in its <initial> position, which is close to its maxi-
mum inclination,102 is the point O of the circle of the ecliptic. The position
of the point P was thus the point O and later travelled to the point U. But
the point U is closer to the point A than the point O; so the motion of the
position of the point P is, in this case, in the sense contrary to the succes-
sion of the signs of the Zodiac; and its condition will be the same until it
reaches the point Q, its position on the circle of the ecliptic will then be the
point Q. If the inclined orb then moves and leaves the circle of the ecliptic,
in the other direction, the point P moves along the arc QT; it travels from
the point Q towards the point Z; its position will then be the point U, after
having been the point Q; in this case, the motion of its position takes place
according to the succession of the signs of the Zodiac and the same will be
true until it arrives at the point T, in this case its position will then be the
point O. If the inclined orb next moves in the direction of the circle of the
ecliptic, the point P moves along the arc TQ, from the point T to the point
Q; if it arrives at the point Z, its position will be the point U, so its position
moves from the point O to the point U , so its motion is in the sense
contrary to the succession of the signs of the Zodiac and the same will be
true until it arrives at the point Q; and if it arrives at the point Q, the
inclined orb will then coincide with the circle of the ecliptic. If the inclined
orb later leaves the circle of the ecliptic in the direction of the point E, the
point P moves from the point Q towards the point P. If it reaches the point
S, its position arrives at the point U; now its position was the point Q, so in
this case the motion of its position takes place in the sense of the
succession of the signs of the Zodiac, and the same will be true until it
returns to the point P. It is in this way that the motion of the point P′ takes
place in the opposite direction, that is <when it is> on the arc AG.

102 The initial position of the point P is a point of the inclined orb when this orb has
its maximum inclination.
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I also say that the motion of any point on the circumference of the
inclined orb about the two points of the nodes will be of known magnitude
in a known time on parallel circles, whose two poles will be the two points
of the nodes; and the motion of its position on the circle of the ecliptic in
the known time will be known.

Proof: The motion of the inclined orb from its maximum inclination
until it coincides with the circle of the ecliptic takes place in a known time
because it occurs in the time during which the centre of the epicycle
traverses a quarter of a circle on the inclined orb.103 If the centre of the
epicycle moves from the apogee of the eccentric in the direction of the
descending node, the inclined orb moves in the direction of the circle of the
ecliptic. If the centre of the epicycle traverses a part of the eccentric, the
point E will have traversed a part of the arc EB whose ratio to the arc EB is
equal to the ratio of the part traversed by the centre of the epicycle on the
eccentric to the arc of the eccentric intercepted by a right angle which has
its vertex at the centre of the Universe. But this arc is known. It follows
necessarily that if the position of the centre of the epicycle on the
circumference of the inclined orb104 is known, the position of any point of
the circumference of the inclined orb on the circle on which this point is
moving, a circle homologous to the circle IKR, is known. If this is so, for
any known time with known starting time, any point of the circumference
of the inclined orb will have traversed a known arc on its circle during this
time. So if in a known time the point I traverses the arc IM, the arc IM will
be known. If the point I later moves during a known time, once it arrives at
the point M, the part it has traversed on the circle IKR will then be a known
arc.

I also say that, during a known time whose starting time is known, the
position of the point I traverses an arc of the circle of the ecliptic of known
magnitude.

Proof: We cause an arc of a great circle to pass through the points A
and M; let it be AMX. If the point I of the arc AE is at the point I of the
circle IK at a given moment that is the starting time of the known time, the
arc EB, which is the inclination of the inclined orb to the circle of the
ecliptic, is known.

103 The centre of the epicycle traverses an arc on the eccentric that corresponds to a
quarter of a circle on the inclined orb. So what we are concerned with here is the
apparent position on the inclined orb. Ibn al-Haytham sometimes speaks of the true
position and sometimes of the apparent position.

104 See previous note.
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If, at that known instant, the centre of the epicycle is at the apogee of
the eccentric, the arc EB is then the maximum inclination; so it is known.
But if it is not at the apogee, it is at a point whose distance from the apogee
is known; so its distance from the point of intersection is a known arc,
because it is the remainder of the arc intercepted by a right angle whose
vertex is the centre of the Universe. The ratio of this remainder to the arc of
the eccentric intercepted by a right angle whose vertex is the centre of the
Universe is a known ratio; so the ratio of the arc EB to the maximum incli-
nation is known and the arc EB is known. If the point I later moves during
a known time so as to traverse the arc IM, then the point E will traverse the
arc EX; so the arc EX will be known and what remains is the known arc
XB. But the arc XE is similar to the arc MI, because the two circles with the
same pole, which is A, are parallel; so the arc IM is known and the arc MK
is known; but the arc AM is equal to the arc AI, so the arc AM is known
because the arc AI is known. If the point I of the inclined orb is known and
the arc EB is known, then the point L of the circle of the ecliptic will be
known. In fact, the ratio of the sine of the arc HB to the sine of the arc BE
is compounded of the ratio of the sine of the arc HL to the sine of the arc LI
and the ratio of the sine of the arc IA to the sine of the arc AE, a known
ratio; so the ratio of the sine of the arc HL  to the sine of the arc LI is
known. But the arc HL  is a quarter of a circle, so the arc LI is known.
Similarly, the ratio of the sine of the arc HE to the sine of the arc EB, a
known ratio, is compounded of the ratio of the sine of the arc HI to the sine
of the arc IL, a known ratio, and the ratio of the sine of the arc LA to the
sine of the arc AB; so the ratio of the sine of the arc LA to the sine of the arc
AB is known. But the arc AB is a quarter of a circle, so the arc AL is known;
but the point A is known, because it is the position of the ascending node,
which is the starting point; so the point L is known and it is the position of
the point I on the circle of the ecliptic at a known instant. Let the point I
later move for a known time and let it traverse the arc IM; so the arc IM
will be known and the arc EX will be known, as has been proved earlier;
there remains the known arc XB. But the arc AM is known because it is
equal to the arc AI; so the ratio of the sine of the arc HB to the sine of the
arc BX, a known ratio, is compounded of the ratio of the sine of the arc HN
to the sine of the arc NM and the ratio of the sine of the arc MA to the sine
of the arc AX, a known ratio. So the ratio of the sine of the arc HN to the
sine of the arc NM is known, and the arc HN is a quarter of a circle, so the
arc NM is known. Similarly, the ratio of the sine of the arc HX to the sine
of the arc XB, a known ratio, is compounded of the ratio of the sine of the
arc HM to the sine of the arc MN, a known ratio, and the ratio of the sine of
the arc NA to the sine of the arc AB; so the ratio of the sine of the arc NA to
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the sine of the arc AB is known; but the arc AB is a quarter of a circle, so
the arc AN is known; then the point A of the circle of the ecliptic is known;
so the point N is known and it is the position of the point M. So if it arrives
at the point M in a known time, the position of the point I is known, and the
arc LN traversed by the position of the point I in the known time is known,
because each of the points L and N of the circle of the ecliptic is known.

It is clear from what we have proved that, in a known time whose start-
ing time is a known instant, any point of the inclined orb traverses a known
arc on the circle whose pole is the point of the ascending node, and that its
position <referred to the ecliptic> traverses a [distance of] known
magnitude on the circle of the ecliptic in a known time.

We have proved that the motions of the points on the circumference of
the inclined orb can take place according to the succession of the signs of
the Zodiac and can take place in the sense contrary to the succession of the
signs of the Zodiac. We have proved when their motion takes place
according to the succession of the signs of the Zodiac and when their
motion takes place in the sense contrary to the succession of the signs of
the Zodiac. That is what we wished to prove in this section, and these are
the results that we promised to prove in Proposition 20.

<24> Similarly, we say that if each of the seven wandering stars moves
in a known time such that its motion starts from the side of the northern
limit [of its inclined orb], with respect to the circle of the equator, towards
the side of the southern limit [of its inclined orb], and if its mean motion is
from the apogee on the eccentric in the direction towards the perigee, and if
its anomalistic motion is accelerated, that is, if its motion during a second
interval of time is faster than in the first interval, then in this case there
exists for this star a known ratio that is greater than any ratio of any
required time for its motion between the two extremities of the interval
during which it moves, to the part of the inclination of its motion proper to
this required time throughout the time during which it moves.

The time during which each of the seven wandering stars moves in the
way that we defined is a known time. For the sun, this occurs if it moves
from the first point of Cancer, where it has its maximum northern
inclination with respect to the circle of the equator, towards the perigee of
its eccentric: if the sun moves on that arc, then it moves from north to south
and in addition it moves from the apogee of its eccentric towards its
perigee; so in equal times it traverses unequal arcs on the circle of the
ecliptic, so that the second of any two arcs is always greater than the first.
We prove this result, that is the inequality of these arcs, from Proposition 8
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of this treatise. The configuration of the motion of the sun from the first
point of Cancer to the perigee of its eccentric is the configuration that we
have defined.

The moon, for its part, completes approximately one circuit on its
inclined orb in the course of each month; in fact in the course of each
month it moves from the northern limit of its inclined orb to the southern
limit; I mean by the two limits the limit of the inclination of its inclined orb
with respect to the equator, to the north and to the south. The apogee of its
eccentric also completes a circuit each month and its motion is in the sense
contrary to the succession of the signs of the Zodiac. It also moves, in the
course of each month, from the southern limit that we mentioned earlier, to
the northern limit. If the mean motion of the moon is from the apogee of
the eccentric towards the perigee, then its motion on its inclined orb is
always accelerated, that is on its inclined orb the moon traverses unequal
arcs in equal times and the second [arc] is always greater than the first. In
fact we have proved this result in Proposition 8.

If the correction made by the epicycle is additive, then the motion of
the moon is accelerated and if the correction made by the epicycle is a
subtraction, while at the same time being smaller than the increase brought
about by the eccentric, then the motion of the moon is likewise accelerated.
So if the mean motion of the moon is from the apogee of the eccentric
towards the perigee, if the motion of the apogee is from the southern limit
towards the northern limit with respect to the circle of the equator and if its
motion is accelerated, then in this case the configuration of its motion is the
configuration that we have defined. But we have proved that the positions
of the northern limit and the southern limit of the inclined orb of the moon,
referred to the equator, are known for every known instant; so, the position
of the apogee, which moves, is also known at any known instant.

For the five planets, we have proved that the northern and southern
limits of their inclined orbs are known in position, as measured from the
circle of the ecliptic, at known instants, and the positions of the apogees of
these planets, that is to say the apogees of their eccentrics, are known at
any known instant. We have proved that the motions of these apogees are
slow and are insensible in short intervals and that for the planets these
apogees can, after a long time, become displaced from their positions, and
that from north to south. So if the centre of the epicycle for each of the five
planets is in motion on the eccentric, away from the apogee in the direction
of the perigee – whose positions we have proved are known – if in addition
the centre of the epicycle moves from north to south and if its motion is
accelerated in the manner we have described for the motion of the moon,
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then in this case the configuration of the motion of the planet is the
configuration that we have defined.

Proof of what we have stated: We take the inclined orb for each of the
seven wandering stars to be the circle ABC, the circle of the equator the
circle GEC and the north pole of the equator the point D. Let the point C be
the point of intersection of the inclined orb and the circle of the equator.
Let A be the point of the northern limit or a point of the arc between the
northern limit and the point of intersection. Let the motion of the star be
from the apogee of its eccentric towards the perigee; let it move from the
point A towards the point B in a known time; let the time be IA; let it be the
arc IA of the hour circle whose pole is the point D. Let its motion be
accelerated, that is to say that what we obtain from its corrections is greater
than the mean motion from the start of its motion in the known time until
its end. In the known time IA let it traverse the arc AB on its inclined orb;
let it traverse the arc HB, part of the arc AB, in the time KH. We cause great
circles to pass through the point D, which is the north pole of the circle of
the equator, and [similarly] through each of the points A, H, B ; let the
circles be DAG, DHL and DBE. Let the circle DBE cut the arcs IA and KH
at the points N and M; so the arc NE is the inclination of the arc CA with
respect to the circle of the equator, because it is equal to the arc AG; the arc
ME is the inclination of the arc CH with respect to the circle of the equator,
because it is equal to the arc HL, and the arc BE is the inclination of the arc
CB with respect to the circle of the equator. So the arc NB is the excess in
inclination of the arc AB105 and the arc MB is the excess in inclination of
the arc HB; so the arc NB is the one that we have called the inclination of
the motion of the star in the time IA, and the arc MB is the inclination of the
motion of the star in the time KH; and the arc KM is the required time for
the motion of the star from the point H to the point B;106 so it is one of the
required times for the star that are between the two extremities of the time
interval IA.

I say that the ratio of the known time IA to the arc NB, which is the
inclination of the motion of the star in the known time – we have proved
earlier that it is known – is greater than the ratio of the arc KM, which is the
required time, to the arc MB, part of the arc NB, proper to the arc KM.

105 That is to say the difference between the inclinations of A and of B.
106 See note 25 on the required time KM, p. 204.
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Proof: The motion of the star is from the apogee of the eccentric
towards the perigee; so if it traverses equal parts in equal times on the
eccentric, on the inclined orb it traverses unequal parts, the smallest of
which is on the side towards the point A  and the greatest on the side
towards the point B, as we have proved in Proposition 8. The ratio of the
arc traversed by the star in its mean motion on its eccentric in the time IA,
which is the arc of the eccentric cut off by the two straight lines drawn
from the centre of the inclined orb to the points A and B, to the arc trav-
ersed by the star in its mean motion on its eccentric in the time KH, which
is the arc of the eccentric cut off by the two straight lines drawn from the
centre of the inclined orb to the points H and B, is greater than the ratio of
the arc AB to the arc BH, as has been proved in Proposition 9 of this
treatise. But the ratio of any arc that the star traverses in its mean motion on
its eccentric in a certain time to any arc that the star traverses in its mean
motion on its eccentric in a different time is equal to the ratio of the time to
the time, because the mean motion on the eccentric is uniform and self
similar, taking place along a circumference of a circle, whose parts are
similar. And for any moving object, in uniform and self similar motion
across an interval whose parts are similar, the ratio of the distance it
traverses in a certain time to the distance it traverses in a different time is
equal to the ratio of the time to the time. The ratio of the arc of the
eccentric traversed with the mean motion of the star, which is the motion of
the centre of the epicycle on the circumference of the eccentric in the time
IA, to that traversed with the mean motion in the time KH, is equal to the
ratio of the time IA to the time KH. But the ratio of the arc that the mean
motion traverses on the eccentric in a time IA to the arc traversed by the
mean motion on the eccentric in a time KH, as we have proved,107 is greater

107 In Proposition 9.
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than the ratio of the arc AB to the arc BH; so the ratio of the time IA to the
time KH is greater than the ratio of the arc AB to the arc BH.

Similarly, we have proved in Proposition 5 that the excesses108 in the
inclinations of the equal parts for two circles that intersect are unequal; and
that <the excess for the arc> further from the point of intersection is
smaller than <the excess for the arc> closer to the point of intersection. We
shall prove in the following proposition that for two arcs of the inclined
circle, the ratio of the one further from the point of intersection to [the one]
closer to the point of intersection is greater than the ratio of the two
excesses in their inclinations one to another. So the ratio of the arc AH to
the arc HB  is greater than the ratio of the arc NM  to the arc MB. By
composition, the ratio of the arc AB to the arc BH is greater than the ratio
of the arc NB to the arc BM. But the ratio of the time IA to the time KH is
greater than the ratio of the arc AB to the arc BH; and the ratio of the arc
AB to the arc BH is greater than the ratio of the arc NB to the arc BM; so the
ratio of the time IA to the time KH is much greater than the ratio of the arc
NB to the arc BM. But the ratio of the arc of the great circle similar to the
arc IA to the arc of a great circle, that is to say the circle of the equator,
similar to the arc KH, is equal to the ratio of the time IA to the time KH; the
ratio of the arc of the great circle similar to the arc IA to the arc of the great
circle similar to the arc KH is thus greater than the ratio of the arc NB to the
arc BM. If we permute, the ratio of the arc of a great circle similar to the arc
IA to the arc NB is greater than the ratio of the arc of a great circle similar
to the arc KH to the arc MB. So the ratio of the time IA to the arc NB is
greater than the ratio of the time KH to the arc MB. And the ratio of the
time KH to the arc MB is greater than the ratio of the time KM to the arc
MB; so the ratio of the time IA to the arc NB is much greater than the ratio
of the time KM to the arc MB.

Similarly, we prove that, for any required time for the star between the
two points A and B, the ratio of IA to NB is greater than the ratio of the
required time to the inclination proper to this required time. But the ratio of
the time IA to the arc NB is known because each of them is known.

<25> Similarly, let the inclined orb be ABC, the circle of the equator
AMG and the north pole of the equator the point D. Let A be the point of
intersection of the inclined orb and the circle of the equator. Let the point C
be the southern limit of the inclined orb with respect to the circle of the
equator. Let the motion of the star be from the apogee towards the perigee
and let it move from the point B towards the point H in a known time; let
the time be IB. Let the arc IB lie on the hour circle whose pole is the point

108 See above, p. 365, note 105.
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D; let the motion of the star be accelerated; in the known time IB let it
traverse the arc BH of the inclined orb and let it traverse the arc EH, which
is a part of the arc BH, in the course of the time KE. We cause great circles
to pass through the point D, which is the north pole of the circle of the
equator, and through each of the points B, E, and H, C; let the great circles
be DMB, DNE, DOH and DGC. Let the circle DOH cut the two arcs IB and
KE at the two points P and Q.
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So the arc PO is the inclination of the arc AB with respect to the circle
of the equator, because it is equal to the arc BM; and the arc QO is the
inclination of the arc AE because it is equal to the arc EN. The arc HO is
the inclination of the arc AH; so the arc HP is the inclination of the motion
of the star in the time IB and the arc HQ is the inclination of the motion of
the star in the time KE. The arc KQ is the required time for the star in its
motion from the point E to the point H; so it is one of the required times for
the star which lie between the two endpoints of the time IB. The arc BP is
the right ascension of the arc BH and the arc EQ is the right ascension of
the arc EH.109 We cause an arc of an hour circle to pass through the point
H; let it cut the arc DC at the point S. The arc HS is thus known, and the arc
SC is known because the arc HC is known. In fact, the point B is known,
because it is the position of the star at the beginning of the known time
during which the star moved, and the point H is known, because it is the
position of the star at the end of the known time. So the arc HC is known,
so its ascension is known. The excess of its inclination110 is known, because

109 The right ascension of an arc must be understood as the difference between the
right ascensions of its two endpoints.

110 See above, p. 365, note 105.
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any great circle cuts the circle of the equator in such a way that its
maximum inclination with respect to it is known; the right ascensions of its
known parts are thus known, and the excesses of the inclinations of its
known parts are known. We in fact proved in Proposition 22 that the incli-
nation of the inclined orb of each of the seven wandering stars with respect
to the circle of the equator is known at any known instant. So the arc HS is
known, because it is the right ascension of the arc HC at the known instant.
But the arc SC is known, because it is the excess of its inclination. But the
arc BP is known, because it is the ascension of the known arc BH; but the
arc PH is known, because it is the excess of the inclination of the known
arc BH. We put the ratio of the known arc BP to the arc PJ equal to the
ratio of <the arc> HS to <the arc> S C, a known ratio; so the arc PJ is
known, and the ratio of <the arc> HP to <the arc> PJ is known. Let us put
the ratio of the arc FI to the arc IB111 equal to the ratio of <the arc> HP to
<the arc> PJ, a known ratio. But the arc IB is known, so the arc FI is
known.

I say that the ratio of the known arc FI to the known arc PH is greater
than the ratio of the time KQ to the arc QH.

Proof: The ratio of the time IB to the time KE is greater than the ratio
of the arc BH to the arc HE, as has been proved in the previous section; but
the ratio of the arc BH to the arc HE is greater than the ratio of the arc BP,
which is the ascension of the arc BH, to the arc EQ, which is the ascension
of the arc EH, from what we proved in Proposition 7. So the ratio of the arc
IB to the arc KE is much greater than the ratio of the arc BP to the arc EQ.
But the ratio of the arc HS to the arc SC is greater than the ratio of the arc
EQ to the arc QH, from Proposition 6,112 because the circle HS is smaller
than the circle IB; the circle DGC  is perpendicular to the circle ABC,
because it passes through its pole. But the ratio of HS to SC is equal to the
ratio of BP to PJ; so the ratio of BP to PJ is greater than the ratio of EQ to
QH; but the ratio of IB to KE is greater than the ratio of BP to EQ. If we
permute, the ratio of IB to BP is greater than the ratio of KE to EQ. But the
ratio of BP to PJ is greater than the ratio of EQ to QH; so the ratio of BI to
PJ is much greater than the ratio of KE to QH. But the ratio of FI to IB is
equal to the ratio of HP to PJ, so the ratio of FI to PH is equal to the ratio
of BI to PJ. But the ratio of BI to PJ is greater than the ratio of KE to QH,
so the ratio of FI to PH is greater than the ratio of KE to QH; but the ratio
of KE to QH is greater than the ratio of KQ to QH, so the ratio of FI to PH

111 By hypothesis IB is the arc that represents the time for motion along the arc BH,
so FI also represents a time.

112 See note 30 in the Mathematical commentary, p. 213.
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is much greater than the ratio of KQ to QH. Now the ratio of FI to PH is a
known ratio, because each of the two arcs FI and PH is known.

Similarly, we prove for any required time, obtained <for a point that
lies> between the two points H and B, that the known ratio is greater than
the ratio of this required time to the part of the inclination of the motion of
the wandering star proper to this required time.

If the wandering star moves on the arc of its inclined orb from the
northern limit towards the point of intersection of the inclined orb and the
circle of the equator, then we prove, as has been proved by the demonstra-
tion set out for the first case, that for the star there can exist a known ratio
greater than the ratio of any required time that it can have between the two
endpoints of the time of its motion, to the part of the inclination of its
motion proper to this required time. And if its motion is from the point of
intersection towards the southern limit, but without actually reaching the
southern limit, we show, by the proof that we set out in the second case that
for the wandering star there can exist a known ratio greater than the ratio of
any required time that it can have between the two endpoints of the time of
its motion, to the part of the inclination of its motion proper to that required
time.

This result necessarily holds for the wandering star in its motion from
the northern limit towards the southern limit, without reaching the southern
limit.

This same result is also necessarily true if the motion of the wandering
star on its inclined orb is from the southern limit towards the northern limit,
without its reaching that same northern limit, but only [progresses] until
there remains a certain distance between the two, even if this latter
[distance] is extremely small; if its motion is on the eccentric, from the
apogee towards the perigee; and if its motion is accelerated, that is to say if,
in this half also, in each part of the time in the course of which it moves on
this half of its inclined orb, it has a known ratio greater than any ratio of
any required time that it can have between the two endpoints of that part of
time to the part of the inclination of the motion of the wandering star
proper to the required time, because the proof we mentioned is necessary,
itself, for the other half of the inclined orb. It follows from this that this
result necessarily holds for the wandering star, in its motion on its inclined
orb, if its motion is accelerated, except for the two parts close to the two
endpoints, even if these two parts are extremely small.

<26> Similarly, let the inclined orb be ABC, the circle of the equator
DEC and the north pole of the equator the point H. Let the point A be the
southern limit of the inclined orb with respect to the circle of the equator,
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let the point C be the point of intersection of the inclined orb and the circle
of the equator, let the motion of the wandering star be from the perigee of
the eccentric towards the apogee and let its motion on its epicycle be
accelerated, that is to say let the correction imposed by its epicycle be
added to its position on its inclined orb.113 Let it move from the point A
towards the point B in a known time; let the time be IA. Let the arc QB
belong to the hour circle. In the time IA let it [the wandering star] traverse
the arc AB on the inclined orb; let it traverse the arc MB which is a part of
the arc AB in the time KM. We cause great circles to pass through the point
H, which is the pole of the circle of the equator, and through each of the
points A, M, B, let the circles be HDA, HGM, HEB. Let the circle HEB cut
the arcs IA and KM at the points N and L. So the arc NB is the inclination of
the motion of the wandering star for the known time in the course of which
the wandering star moved from the point A towards the point B; so the arc
NB is known. The arc LB is the inclination of the motion of the wandering
star in the time in the course of which it [the wandering star] moved from
the point M towards the point B; the arc LK is the required time for the
motion of the wandering star from the point M to the point B.
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I say that there can exist a known ratio greater than the ratio of the time
KL to the arc LB.

Proof: We have proved in Proposition 9 that the ratio of the arc of the
eccentric cut off by the two straight lines drawn from the centre of the
inclined orb to the points B and M to the arc of the eccentric cut off by the
two straight lines drawn from the centre of the inclined orb to the points M
and A, is greater than the ratio of the arc BM to the arc MA. Conversely, the
ratio of the arc AM to the arc MB is greater than the ratio of the arc of the

113 We add this correction to the arc traversed by the wandering star on its orb.
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eccentric cut off together with the arc AM to the arc of the eccentric cut off
together with the arc MB. If on the circle ABC we take two arcs similar to
the two arcs cut off together with the two arcs AM, MB, then the ratio of the
one to the other will be equal to the ratio of the two arcs of the eccentric cut
off together with the arcs AM, MB.

<a> If each of the arcs AM, MB is greater than the arcs cut off together
with them on the eccentric, it then becomes the ratio of the difference
between the arc AM and the arc cut off together with it to the difference
between the arc MB and the arcs cut off together with it, [is] greater than
the ratio of the two arcs cut off together with them on the eccentric, the one
to the other. So if we cut off from the excess of the arc AM an arc whose
ratio to the excess of the arc MB is equal to the ratio of the arc of the eccen-
tric cut off together with the arc AM to the arc cut off together with the arc
MB, from the arc AM we are left with an excess in such a way that the ratio
of what is left of the arc AM after this excess, to the arc MB, is equal to the
ratio of the arc of the eccentric cut off together with the arc AM, to the arc
cut off together with the arc MB. And the difference between any arc
whatsoever cut off on the eccentric and the arc cut off together with it on
the inclined orb is the correction. For each of the orbs of the seven
wandering stars, the correction imposed by the eccentric is always smaller
than the arc of the eccentric that imposed that correction and is smaller than
the arc corrected by that correction.114 That is why the ratio of the arc of the
eccentric cut off together with the arc AM to the arc cut off together with
the arc MB is greater than the ratio of the excess that is left from the arc AM
to the arc MB, because that excess is smaller than the correction for the arc
AM. It necessarily follows that the ratio of twice the arc of the eccentric cut
off together with the arc AM to the arc of the eccentric cut off together with
the arc MB is greater than the ratio of the arc AM to the arc MB. The ratio
of twice the arc cut off on the eccentric together with the arc AM, plus the
arc cut off together with the arc MB, to the arc cut off together with the arc
MB, is greater than the ratio of the arc AB to the arc BM; the ratio of twice
the arc cut off together with the arc AB to the arc cut off together with the
arc MB is accordingly much greater than the ratio of the arc AB to the arc
BM. But we have proved in the preceding proposition that the ratio of each
arc of the eccentric to each arc of the eccentric is equal to the ratio of the
time in the course of which the wandering star moves with a mean motion

114 If α and β are the arcs cut off together with AM  and MB, we know that

| AM  – α | < α and | AM  – α] < AM . If AM  > α, we then have α < AM  < 2α; which is

the case treated in this paragraph. If AM  < α, we then have AM < α < 2 AM .
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along one of the two arcs to the time in the course of which the wandering
star moves with a mean motion along the other arc. So the ratio of twice the
time IA to the time KM is greater than the ratio of the arc AB to the arc BM.

<b> But if the arcs AM, MB are smaller than the two arcs cut off on the
eccentric together with them, the ratio of what is lacking for the arc AM to
what is lacking for the arc MB is smaller than the ratio of the arc of the
eccentric cut off together with the arc AM to the arc cut off together with
the arc MB. The ratio of what is lacking for the arc AM to a certain part of
what is lacking for the arc MB is equal to the ratio of the arc AM to the arc
MB, and what remains will be smaller than all that is lacking from the arc
MB115 with respect to the arc cut off together with it on the eccentric. But
all that is lacking from MB is smaller than MB; so that difference is much
smaller than what remains of the arc MB. So if we add to the arc cut off
together with the arc AM an arc whose ratio to that difference is equal to
the ratio of the arc AM to the arc MB, this last arc is smaller than the arc
AM; so this arc is much smaller than the arc cut off together with the arc
AM on the eccentric; the ratio of twice the arc cut off together with the arc
AM to the arc cut off together with the arc MB is greater than the ratio of
AM to MB;116 the ratio of twice the arc cut off together with the arc AB to
the arc cut off together with the arc MB is accordingly much greater than
the ratio of AB to MB and the ratio of twice the time IA to the time KM is
thus greater than the ratio of AB to BM.

<c> If the difference for AM is additive and the difference for MB is
subtractive, which can occur close to the mean distance, we make <the arc>
JM similar to the arc cut off together with the arc AM; we make <the arc>
MQ similar to the arc cut off together with the arc MB and we make the
ratio of SM to MB equal to the ratio of JM to MQ; so it remains that the
ratio of JS to BQ is equal to the ratio of JM to MQ. But AJ is smaller than
JM because it is the correction to the arc MJ, imposed by the eccentric; so
the whole [arc] AM is smaller than twice JM. So the ratio of twice JM to
MB is greater than the ratio of AM to MB. But the arc BQ is smaller than
the arc BM, since BQ is the correction of the arc MQ. But twice JM is
greater than AM, so the ratio of twice JM to BQ is greater than the ratio of
AM to MB. So the ratio of four times JM to MQ is greater than the ratio of
AM to MB. By composition, the ratio of four times JM plus MQ to MQ is
greater than the ratio of AB to BM, the ratio of four times JQ to QM is thus
much greater than the ratio of AB to BM. But the arc JQ is similar to the arc

115 See Mathematical commentary, pp. 212–13.
116 See note 30 of the Mathematical commentary, p. 213.
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of the eccentric cut off together with the arc AB and the arc MQ is similar
to the arc of the eccentric cut off together with the arc MB. So the ratio of
four times the arc of the eccentric cut off together with the arc AB to the arc
cut off together with the arc MB is greater than the ratio of AB to BM. So
the ratio of four times the time IA, [which is] known, to the time KM is
greater than the ratio of AB to BM.

In the various situations for making the correction, there can exist a
known time whose ratio to the time KM is greater than the ratio of the arc
AB to the arc BM. But the ratio of the arc AB to the arc BM is greater than
the ratio of the arc NB to the arc BL, arcs that are the differences of the two
inclinations; the ratio of the known time, whose magnitude has been
established, to the time KM is thus much greater than the ratio of the arc
NB to the arc BL. If we permute, the ratio of the known time to the arc NB,
a known ratio, is greater than the ratio of the time KM to the arc LB; so the
ratio of the known time to the arc NB, which is a known ratio, is greater
than the ratio of the time KM to the arc LB.

If the circle ABC is the orb of the sun, then we have proved what we
wanted, and if the circle ABC is the inclined orb of the moon or the inclined
orb of one of the five planets, then we have proved what was required in
regard to the correction imposed by the eccentric. But there remains the
correction imposed by the epicycle. Now we have stipulated that the
correction imposed by the epicycle shall be added. If the corrections for the
arcs AM and MB are added, then, either the ratio of the correction for the
arc AM to the correction for the arc MB is equal to the ratio of the two
corrected arcs; or it is greater than the ratio of the two corrected arcs; or it
is smaller than the ratio of the two corrected arcs.

If the ratio of the correction for the arc AM to the correction for the arc
MB is equal to the ratio of the two corrected arcs, then this correction has
no effect on the first ratio established for the two corrected arcs; so the first
ratio established from the correction for the eccentric does not change if the
ratio of the two corrections imposed by the epicycle, the one to the other, is
equal to the ratio of the two corrected arcs.

If the ratio of the correction for AM to the correction for M B, the
corrections imposed by the epicycle, is smaller than the ratio of the two
corrected arcs, then this ratio increases the first ratio, that is to say that the
ratio of the known time to the time KM is much greater than the ratio of AB
to BM, if the ratio of the two corrections imposed by the epicycle is smaller
than the ratio of the two corrected arcs, because this ratio has the effect that
the ratio of the arc AM to the arc MB is smaller than the ratio of the two
corrected arcs.
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If the ratio of the correction for AM to the correction for MB is greater
than the ratio of the two corrected arcs – let the correction of the arc AM be
the arc AS and the correction of the arc MB be the arc BO – we then have
two arcs SM and MO corrected for the two arcs of the inclined orb which
have been corrected by the correction imposed on the eccentric, since the
two corrected arcs on the inclined orb have their beginning at the point
A;117 we have taken only the two arcs SM and MO , which are equal to
them, so that the two corrections shall be separated and in two different
directions, and thus it will be clearer and easier to discuss them. But since
the two arcs SM and MO are equal to the two corrected arcs, accordingly
the ratio of the known time, whose magnitude has been established, to the
time KM, is greater than the ratio of SO to OM. But the ratio of AS to OB is
greater than the ratio of SM to MO. We make AU equal to OB; so the arc
US is known, because it is the correction of the whole known arc SO, and
the ratio of US to SO is known. We put the ratio of some arbitrary time to
the known time – whose ratio to the time KM is greater than the ratio of SO
to OM – equal to the known ratio of US to SO; so this [arbitrary] time will
be known, and the ratio of the sum of the two times to the first time is equal
to the ratio of UO to OS. But the ratio of the first known time to the time
KM is greater than the ratio of SO to OM; the ratio of the sum of the two
known times to the time KM is accordingly greater than the ratio of UO to
OM. But the ratio of UO to OM is greater than the ratio of AO to OM and
the ratio of AO to OM is greater than the ratio of AB to BM; the ratio of the
known time composed of the two known times to the time KM  is
accordingly much greater than the ratio of AB to BM. But the ratio of AB to
BM is greater than the ratio of NB to BL; so the ratio of the known time
composed of the two known times to the time KM is much greater than the
ratio of NB to BL. If we permute, the ratio of the known time composed [of
the two known times] to the arc NB is greater than the ratio of the time KM
to the arc LB; the ratio of the known time composed [of the two known
times] to the arc NB is thus much greater than the ratio of the time KL to
the arc LB.

Similarly, we show that for any required time for the wandering star
between the two points A and B whose inclination is NB, the ratio of the
known time, whose magnitude has been definitely established, to the arc
NB is greater than the ratio of this required time to the <part of that> arc
NB proper to this required time.

117 A is the initial position of the planet which will traverse the two arcs AM and
MB.
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<27> Similarly, let ABC be the inclined orb, ADG the circle of the
equator, the point E the north pole of the circle of the equator. Let A be the
point of intersection of the inclined orb and the circle of the equator, let the
point C be the northern limit of the inclined orb with respect to the circle of
the equator. Let the motion of the wandering star on the inclined orb be
from the point A towards the point C; let its motion on the eccentric be
from the perigee towards the apogee, let its motion on the epicycle be
accelerated and let it move from the point B to the point I in a known time,
let the time be SB; in the time SB let it traverse the arc BI and let it traverse
the arc HI, which is a part of the arc BI, in the time HO. Let the two arcs SB
and OH belong to hour circles, which are parallel to the equator. We cause
great circles to pass through the point E and through each of the points B,
H, I, C; let the circles be EBD, EHK, EIL, ECG. Let the circle EIL cut the
two arcs BS and HO at the two points N  and U. So the arc NI  is the
inclination of the motion of the wandering star in the known time in the
course of which the wandering star has travelled from the point B to the
point I; so the arc NI is known. The arc UI is the inclination of the motion
of the wandering star in the time in the course of which it has travelled
from the point H to the point I; the arc O U is the required time for the
motion of the wandering star from the point H to the point I.

I say that we can find a known ratio greater than the ratio of the time
OU to the arc UI.
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Proof: We prove, as was proved in the preceding proposition, that there
can exist a known time whose ratio to the time OH is greater than the ratio
of the arc BI to the arc IH. But the arc BN is the right ascension of the arc
BI and the arc HU is the right ascension of the arc HI; so the ratio of the arc
BI to the arc IH is greater than the ratio of the arc BN to the arc HU, as we
proved in Proposition 7. We cause an arc of an hour circle to pass through
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the point I; let the arc be IP. So the arc IP is known, and the arc PC is
known, because the arc IC is known and the arc IP is the ascension of the
known arc IC. But the arc PC is the inclination of the arc IC, so the ratio of
the arc IP to the arc PC is known; but the ratio of the arc IP to the arc PC is
greater than the ratio of the arc H U to the arc UI , as we proved in
Proposition 14. We put the ratio of the known arc BN to the arc NQ equal
to the ratio of IP to PC, a known ratio; so the arc NQ is known, and the
ratio of BN to NQ is greater than the ratio of HU to UI. We put the ratio of
an arbitrary time to the known time – whose magnitude has been
demonstrated in the preceding proposition and whose ratio to the time OH
is greater than the ratio of BI to IH – equal to the ratio of the known arc IN
to the known arc NQ; so this time will be known. Since the ratio of the first
known time – whose magnitude has been demonstrated in the preceding
proposition – to the time OH is greater than the ratio of BI to IH and since
the ratio of BI to IH is greater than the ratio of BN to HU, we have that the
ratio of the first known time to OH is much greater than the ratio of BN to
HU. If we permute, we have that the ratio of the first known time to the arc
BN is greater than the ratio of the time OH to the arc HU. But the ratio of
the arc BN to the arc NQ is greater than the ratio of the arc HU to the arc
UI; so the ratio of the first known time to the arc NQ is greater than the
ratio of the time OH to the arc UI. But the ratio of the second known time
to the first known time is equal to the ratio of the arc IN to the arc NQ. If
we permute, we have that the ratio of the second known time to the arc NI
is equal to the ratio of the first known time to the arc NQ; but the ratio of
the first known time to the arc NQ is greater than the ratio of the time OH
to the arc UI; so the ratio of the second known time to the arc NI is greater
than the ratio of the time OH to the arc UI. But the second time is known
and the arc NI is known; so the ratio of the one to the other is known; but
the ratio of OH to UI is greater than the ratio of OU to UI; the ratio of the
second known time to the arc NI, which is a known ratio, is accordingly
greater than the ratio of OU, which is the required time, to the arc UI,
which is the inclination proper to the time OU.

Similarly, we prove that the ratio of the known time to the arc NI, a
known ratio, is greater than the ratio of any required time between the two
points B and I, to the part of the arc NI that is proper to that required time.

We have proved, in this proposition and in the proposition before it,
that if the wandering star is moving on its inclined orb from the southern
limit towards the northern limit, without actually reaching that northern
limit, if its motion on its eccentric is from the perigee towards the apogee
and if its motion on its epicycle is accelerated, then for any part of the time
in the course of which the wandering star moves on that half of its inclined
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orb, there is a known ratio greater than any ratio, for any required time that
there can be between the two endpoints of that time interval to the part of
the inclination of the motion of the wandering star proper to this required
time. This same result is necessary if the motion of the wandering star on
its inclined orb is from the northern limit towards the southern limit, if its
motion on its eccentric is from the perigee towards the apogee and if its
motion on its epicycle is accelerated. Thus this result is necessarily true for
the wandering star in its motion on its complete inclined orb from which
we cut off two parts close to the two limits, even if they are extremely
small.

We have thus proved, in the four propositions that we have established,
that if each of the seven wandering stars moves, for a known time,
whatever the place of its motion on its inclined orb, except for a part close
to the southern limit and a part close to the northern limit, though they are
extremely small, and whatever the place of its motion on its eccentric – for
the sun there is no additional condition; for the moon and for each of the
five planets, the correction imposed by its epicycle is added to its motion –
then the wandering star has a known ratio that is greater than any ratio for
any required time that there can be between the two endpoints of this
known time in the course of which it has moved, to the part of the
inclination proper to that required time, whether the motion of the
wandering star on its eccentric is from the apogee towards the perigee or its
motion is from the perigee towards the apogee. This ratio is the ratio of a
greater magnitude to a lesser magnitude. This result also necessarily holds
for the moon and <each> of the planets, even if the correction imposed by
its epicycle is subtracted from its motion, whatever the place of its motion
on its inclined orb – if the correction imposed by the eccentric is additive,
and if the excess it acquires is that imposed by the eccentric; this result
again necessarily holds if there are numerous corrections, sometimes an
addition and sometimes a subtraction, and if the subtraction is smaller than
the addition imposed by the eccentric.

Similarly if for each of the quarters of the inclined orb we follow the
method we have adopted in the quarter that is next to it, that is to say that if
in the first quarter, which is between the northern limit and the point of
intersection,118 we adopt the method of proof that we adopted in the last
quarter, which is between the point of intersection and the northern limit, if
we adopt in the last quarter the method that we adopted in the first quarter,
if we adopt in the second quarter, which is between the point of intersection
and the southern limit, the method that we adopted in the third quarter,
which is between the southern limit and the point of intersection, and if we

118 That is, the point of intersection of the orb with the equator.
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adopt in the third quarter the method that we adopted in the second quarter,
in each of these quarters we shall obtain a known ratio greater than any
ratio of any required time for the planet between the two endpoints of the
time in the course of which it moves, to the part of the inclination of the
motion of the planet proper to this required time. These inclinations proper
to these required times are on the side towards the beginning of the motion
and the inclinations proper to the required times mentioned before are on
the side towards the parts of the motion.119

If we have proved all that, it necessarily follows that for each of the
seven wandering stars, if it moves in the manner that we have described in
the course of a certain time, whatever time that is, whether we know it or
do not know it, it in fact has a ratio greater than any ratio of any required
time for the wandering star between the endpoints of this time in the course
of which it moved to the inclination proper to that required time, whether
this ratio is known to us or is not known to us, whether we determine this
ratio or whether we do not determine it. And for any ratio that we have
determined and for which we have proved that it is greater than any ratio of
any required time to the inclination proper to that required time, there can
exist numerous ratios greater than it is, because for any ratio there can exist
numerous ratios each of which is greater than this ratio.

If this is the case, then for each star among the seven wandering stars,
if it moves in the manner that we have described, in the course of a certain
time, whatever this time is, then there are numerous ratios whose number is
infinite, [and] each of them is greater than any ratio of any required time
for that wandering star, between the two endpoints of this time in the
course of which it moved, to the inclination proper to this required time.

It is this result that we wanted to prove for the four propositions that we
have established.

<28> That result having been proved, we say: if each of the seven wan-
dering stars moves from the eastern horizon towards the meridian circle for
any horizon where the sphere is inclined towards the south, or is right; and
if the position of the wandering star on the meridian circle has an
inclination to the south with respect to the pole of the horizon and if its
motion on its inclined orb is from the northern limit towards the southern
limit, with respect to the circle of the equator, without its actually reaching
the southern limit – for the sun, that requires no additional condition; for
the moon, it is when its anomalistic motion is accelerated, that is to say that

119 Ibn al-Haytham has proved that, in all cases, there exists a minimum value of
the mean motion of the right ascension. On this conclusion see Mathematical
commentary, p. 221.
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its motion in equal times is of unequal magnitudes so that its magnitude in
the second time is larger than that in the first time or only when the motion
of its epicycle is accelerated, that is to say that the correction imposed by
its epicycle is additive for its motion; for each of the five planets, it is when
its anomalistic motion is accelerated or when the motion of only its
epicycle is accelerated and in addition the motion of the inclination of its
epicycle or the departure of its epicycle [from the plane of the eccentric]
which causes an increase in latitude is inclined in the southerly direction –
then the wandering star has, in the east, equal heights, equal two by two, it
has, in the east, unequal heights such that the second is smaller than the
first and it [the planet] has a height before its meridian passage120 equal to
the height at its meridian passage, and its equal heights are greater than the
height at its meridian passage.

Let the circle ABC be one of the horizons mentioned earlier.
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Let the arc ABC be the western half of the horizon and let the centre of
the sun or the centre of [any] one of the seven wandering stars rise from the
point B; let it reach the meridian circle ACD and let its centre arrive at the
point D on the meridian circle. Let the point D have an inclination to the
south with respect to the pole of the horizon. We cause to pass through the
point B an arc of an hour circle that passes through the point E, let the arc
be BE. We draw from the point D a circle parallel to the horizon; let the
circle be DHG. So the circle DHG will be one of the muqan†aræt of height,
the arc BE will be the required time for the wandering star in its motion
from the point B towards the point D and the arc ED is the inclination of
the motion of the wandering star. Now we have proved that if the
wandering star moves, for a certain time, whatever this time is, we have for
it ratios greater than any ratio, for any required time that it has between the
two endpoints of this time in the course of which it moved, to the

120 In this volume, niÒf nahærihi or intiÒæf nahærihi is translated as the meridian
passage or simply meridian.
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inclination proper to that required time, a part of the inclination of the
motion of the wandering star. Let one of these ratios that are greater than
any ratio for any required time to the inclination that is proper to that
required time be the ratio of SN to NP. Since the circle ADC passes through
the pole of the circle DHG, it cuts it orthogonally into two equal parts; so
the arc ED is perpendicular to the diameter of the circle DHG.121 Let us
draw the arc HI parallel to the arc BE so that the ratio of the chord of the
arc HI to the chord of the arc ID is greater than the ratio of SN to NP, as we
have proved in Proposition 10.122 So if the point I lies between the points E
and D – if it does not we draw any arc parallel to the arc HI between the
points E and D to make the ratio of the chord of this second arc to the
chord of what it cuts off from the arc ED greater than the ratio of the chord
of the first arc to the chord of what it cuts off from the arc ED, as was
proved in Proposition 11 and Proposition 12 –, then the ratio of these
chords, the one to the other, is greater than the ratio of SN to NP and the
ratio of the two arcs subtended by these two chords is greater than the ratio
of the two chords. So the ratio of the two arcs, the one to the other, is
greater than the ratio of SN to NP. Let the ratio of HI to ID be greater than
the ratio of SN to NP, which is greater than any ratio of any required time
for <the motion> that takes place between the two points E and D to the
part of the arc ED proper to this required time. So the ratio of HI to ID is
greater than any ratio of any required time for the wandering star between
the points B and D, to the part of the arc ED proper to this required time.
The required time whose inclination is the arc ID is smaller than the arc HI
and the required time, will always lie to the east with respect to the
inclination of the motion of the wandering star. Let this required time be
the arc MI. Since the wandering star moves from the point B towards the
point D, it will cross any hour circle lying between the two points E and D;
consequently the wandering star will cross the circle HI . But if the
wandering star reaches the circle HI, the arc of the circle HI which lies
between the position of the wandering star and the arc ED is the required
time whose inclination is the arc ID, in the same way that the arc BE is the
required time whose inclination is the arc ED. But the required time, whose
inclination is the arc ID, is the arc MI; consequently if the wandering star
reaches the circle HI, then it reaches the point M. So the wandering star,
which was at the point B, later reaches the point M; but the point B is below
the muqan†ara DHG and the point M is above the muqan†ara DHG. Thus

121 He means that the arc ED is in the plane ADC which is perpendicular to the
plane of the circle DHG.

122 SN

NP
 is a given ratio, we must take SN

NP  
> 1 (see Proposition 10).
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on its motion from the point B to the point M the wandering star will cross
the muqan†ara DHG in a point between the two circles BE and HI, since
the planet moves from being in a northerly direction to being in a southerly
one. The wandering star then in fact travels to the point D of the meridian
circle; but the point D is on the muqan†ara DHG, thus in its motion from
the point B to the point D the wandering star will, on two occasions, come
onto the muqan†ara DHG; its two heights at these two instants are equal
and these two heights are equal to the arc CD of the meridian circle;
however it has reached it in its motion from the eastern horizon towards the
south and from north to south on its inclined orb; in this case its height is to
the east [of the meridian]. So if the wandering star moves from the eastern
horizon towards the meridian circle, it will have a height in the east equal
to the height at its meridian passage. Similarly, we mark an arbitrary point
on the arc MH; let the point be O. We draw through the point O a muqan-
†ara parallel to the muqan†ara DHG; let the muqan†ara be LOK. Since the
point M is higher than the muqan†ara LOK, and the point B is lower than
the muqan†ara LOK and the wandering star has moved from the point B
towards the point M, the wandering star crosses the muqan†ara LOK before
reaching the point M, and it crosses it between the two arcs BE and HI. But
since the point M is higher than the muqan†ara LOK, and the point D is
lower than the muqan†ara LOK and the wandering star has moved from the
point M towards the point D, the wandering star crosses the muqan†ara
LOK before reaching the point D. But in its motion from the point M
towards the point D it does not cross the muqan†ara LOK at the same point
at which it crossed it in its motion from the point B to the point M, because
the hour circle which it will be on at this second instant will be closer to the
point D than the circle HI, since the wandering star is moving from the
north towards the south and the hour circles are parallel. Thus the point of
the circle LOK to which the wandering star came in its motion from the
point M towards the point D is different from the point of the circle LOK to
which the wandering star came in its motion from the point B towards the
point M  and it is not true that the point of the circle LOK to which the
wandering star came in its motion from the point M towards the point D is
to the west of the meridian circle, because, if it were to the west of the
meridian circle, then the wandering star would have crossed the meridian
circle before reaching this point and then later coming to the meridian
circle when it reaches the point D; it would thus have crossed the meridian
circle above the horizon123 twice, in a time shorter than the time for one
complete revolution;124 which is impossible. Indeed for any arc traversed

123 Lit.: above the earth.
124 zamæn nahærihi (lit.: the time of its day).
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by each of the seven wandering stars on its inclined orb, in a certain time,
its right ascensions are much smaller than the time in the course of which
the wandering star traversed the arc of its orb. So if the wandering star
crosses the meridian circle above the horizon,125 it does not return to it
above the horizon126 except in the second revolution. The two points of the
circle LOK at which the wandering star encounters it in its motion from the
point B towards the point D are both to the east of the meridian circle. In
consequence the wandering star has two equal heights that are equal to the
height of the muqan†ara LOK which is the arc LC, and these two heights
are greater than the height at the meridian, which is the arc DC.

Similarly, any muqan†ara cuts the arc MH between the two points M
and H, which arc the wandering star has encountered twice in its motion
from the point B towards the point D; so it [the wandering star] will have
two equal heights that are also equal to the height of this muqan†ara. If the
wandering star reaches a muqan†ara between the two points M and O, then
its height will be greater than its height if it is on the muqan†ara LOK; and
if the wandering star reaches a muqan†ara between the two points M and O,
it reaches it before coming to the muqan†ara LOK a second time. Thus if
the wandering star is on a muqan†ara between the two points M and O and
later reaches the muqan†ara OLK, then its second height will be smaller
than its first height; the two heights are to the east and all its heights that
are above the muqan†ara at its meridian passage are greater than the height
on the meridian.

So we have proved, from what we have established, that each of the
seven wandering stars, if it moves from the eastern horizon towards the
meridian circle, [and] if its motion on its inclined orb is from the northern
limit towards the southern limit and if its motion takes place in the manner
we have defined, it then has equal heights to the east, that is equal two by
two, and it has a height to the east equal to the height on the meridian and it
has unequal heights to the east the second of which is smaller than the first
and, of all its equal heights to the east, each is greater than the height on the
meridian. That is what we wanted to prove.

We say that if the motion of the wandering star is in the manner we
have described and if its heights to the east are as we have explained, then,
if it moves from the meridian circle towards the western horizon, none of
what we have referred to takes place for the wandering star, instead <all>

125 Lit.: above the earth.
126 Lit.: above the earth.
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its heights will be unequal, the second of them always being smaller than
the first.
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Proof: We cause to pass through the point D an arc of an hour circle
that passes through the point Q; let the arc be DQ. Thus the circle DQ will
be tangent to the circle DHG, because their two poles lie on the meridian
circle, which is the circle ADC. So if the sphere moves in its rapid daily
motion, then the point D which is the position of the wandering star on the
higher orb moves on the circle DQ. But if the point D moves on the circle
DQ, then the wandering star moves with its proper motion; so it departs
from the point D, its motion giving it an inclination to the south. If the
wandering star moves, its motion gives it an inclination towards the south,
then it leaves the circle DQ and comes to a circle with a greater inclination
to the south than the circle DQ. But any hour circle among the circles that
lie between the point D and the western horizon, [and] with a greater
inclination to the south than the circle DQ, cuts the arc DC in a point
between the two points D and C. The greatest height for points on this hour
circle is the arc this circle cuts off on the arc DC, and any point on this hour
circle, except the point that is on the arc DC, has a height less than the
height of the point that is on the arc DC, so that the wandering star arrives
at the point F after having left the point D. We cause an hour circle to pass
through the point F; let it be RFU. The greatest height of the points that are
on the arc RU is then the arc RC; so the arc RC is smaller than the arc DC
and the height of the point R is smaller than the height of the point D; so
the height of the point F is much smaller than the height of the point D. But
since the wandering star always has an inclination in the southerly direction
with respect to the circle DQ, and the circle DQ touches the circle DHG,
the wandering star accordingly does not return to the circle DHG. We cause
to pass through the point F a muqan†ara parallel to the plane DHG; let the
muqan†ara be TFX. Let the arc DQ cut this muqan†ara at the point T. Let



ON THE CONFIGURATION OF THE MOTIONS 385

the pole of the equator be the point H′. We cause a great circle to pass
through the points H′  and F  – let the circle be H′FJ – and through the
points H′ and T a great circle – let it be H′T. Since the arcs TD and FR are
to the south with respect to the pole of the horizon, the arc TD will be
greater than the arc similar to the arc FR, as has been proved in Proposition
13. So the circle H′FJ cuts the arc TD; but if it cuts the arc TD, then it cuts
the muqan†ara TFX  at the point F  and the great circle H′T  cuts the
muqan†ara TFX in a point north of the point F. If this is so, the arc FR lies
to the east of the circle H′FJ. But since the wandering star moves with the
diurnal motion from the point F towards the western horizon, accordingly
its proper motion does not bring it back onto the circle H′FJ, because the
circle H′FJ is one of the meridian circles. Now we have proved earlier that
if the wandering star leaves a meridian circle, then it does not return to this
half of the circle <which is above the horizon> except in a second
revolution. But if the wandering star does not return to the circle H′FJ, then
it does not arrive on the arc FT of the muqan†ara. But since the wandering
star has, by its motion, an inclination to the south, accordingly it does not
return to the circle FU; but if it does not return to the circle FU, then it does
not arrive on the arc FX of the muqan†ara; so the wandering star does not
arrive on the muqan†ara TFX except at the point F. Similarly, any
muqan†ara through which the wandering star passes will be lower than the
muqan†ara DHG. So the wandering star passes through it only once. So the
wandering star does not have two equal heights in the westerly direction if
it is moving in the manner we described earlier; but all its heights to the
west are unequal, the second being smaller than the first. That is what we
wanted to prove.

<29> We say similarly that each of the seven wandering stars, if it
moves from the meridian circle towards the western horizon, for any hori-
zon for which the sphere is inclined towards the south or is right, if the
position of the wandering star with respect to the meridian circle has an
inclination to the south with respect to the pole of the horizon, and if its
motion on its inclined orb is from the southern limit towards the northern
limit with respect to the circle of the equator without actually reaching the
northern limit – for the sun that is so without any additional condition; for
the moon, it is so when its anomalistic motion is accelerated or when its
motion on its epicycle is accelerated; for each of the five planets, it is so
according to the same conditions [for the motion] as for the motion of the
moon; and if, in addition, the motion of the inclination of its epicycle or the
departure of its epicycle [from the plane of the eccentric], which causes an
increase in latitude, is inclined in the northerly direction – then it has equal
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heights to the west, equal two by two, and to the west it has unequal
heights, the second of them being larger than the first; it has a height after
its meridian passage equal to the height on the meridian, and its equal
heights to the west are larger than the height on the meridian.
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Let the circle ABCD be one of the horizons and let the circle AGC be
the meridian circle; let the arc ABC be the eastern half of the horizon and
the arc ADC the western half of the horizon. Let the centre of the sun or the
centre of one of the seven wandering stars rises at the point B and reaches
the meridian circle, let the centre E be at the point G of the meridian circle
and let the point G have an inclination towards the south with respect to the
pole of the horizon. Let the centre of that wandering star set at the point D
and let the pole of the equator be the point N. We cause a great circle to
pass through the points N and D, let it be ND. We cause an hour circle to
pass through the point G; let it be the circle GL. Let this circle cut the circle
ND at the point L; the arc GL is the required time for the motion of the
wandering star and the arc DL  is the inclination of the motion of the
wandering star. So the wandering star has numerous ratios [associated with
it], each of which is greater than any ratio of any required time for the
wandering star between the two endpoints of its motion from the point G to
the point D, to the part of the inclination of the motion of the wandering
star proper to this required time, which is LD, on the side towards the
beginning of the motion.127 Let one of these ratios be the ratio of SF to FO.
We draw the arc HK parallel to the arc GL128 in such a way that the ratio of
HK to KG is greater than the ratio of SF to FO. We cause a great circle to

127 The origin for each arc traversed is on the side towards G.
128 We take H on the circle GHI, which is the muqan†ara of G.
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pass through the points N and H, let it be NHE; let this circle cut the arc GL
at the point E, then the arc EG will be similar to the arc HK and the arc EH
will be equal to the arc KG. So the ratio of GE to EH is greater than the
ratio of SF to FO; so the ratio of GE to EH is greater than any ratio of any
required time in the course of which the wandering star moved between the
two endpoints of its motion from the point G to the point D, to the part of
the inclination of the motion of the wandering star proper to any required
time on the side towards the beginning of the motion; so if the wandering
star moves in for the time GE, the inclination of its motion is greater than
the arc EH; the time in the course of which the wandering star moves in
such a way that the inclination of its motion in the course of this time is an
arc equal to the arc EH is thus smaller than the time GE. Let the time in the
course of which the wandering star acquires an inclination of an arc equal
to the arc EH be the time GP. We cause a great circle to pass through the
two points N and P ; let it be NMP. Let this circle cut the arc HK at the
point M. So if the wandering star moves for the time GP, the inclination of
its motion will be the arc PM; so in the course of the time GP the
wandering star has arrived at the point M; so the wandering star travels
from the point G  to the point M . But the point M  is higher than the
muqan†ara GHI , and this wandering star sets at the point D ; so this
wandering star travels from the point M to the point D and it crosses the
muqan†ara GHI; it crosses it in a point between the two points H and I,
because this wandering star moves so as to acquire an inclination towards
the north, and it thus does not return to the circle KH between the points K
and H; so it crosses the muqan†ara in a point between the two points H and
I. But this wandering star was at the point G which is on this muqan†ara, so
this wandering star arrives on the muqan†ara GHI twice; so it will have a
height equal to the height on the meridian.

We prove, as was proved in the preceding proposition, that it arrives
twice on any muqan†ara situated between the two points M and H; it thus
has equal heights to the west, equal two by two; these heights are greater
than the height on the meridian and it [the wandering star] has unequal
heights such that the second of them is greater than the first, and all of them
are to the west. That is what we wanted to prove.

I say that if the wandering star has a motion in the way we have just
described, then, among its heights in the east, there are no two that are
equal, but they are <all> unequal, the second of them being always greater
than the first.

Proof: We cause an arc of an hour circle to pass through the point B; let
it be BQ. So the point Q has a greater inclination towards the south than the
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point G, because by its motion the wandering star acquires an inclination in
the northerly direction; any circle among the hour circles that the
wandering star has crossed from the instant it left the point B  until it
reached the point G is thus to the south of the circle GL. But the circle GL
touches the circle HI; so the circle GHI does not meet any of the hour
circles which have been crossed by the wandering star in its motion from
the point B to the point G. So the wandering star does not have a height in
the east equal to the height of the muqan†ara GHI. So the height GC is the
greatest of its heights in the east.
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Similarly, we draw a muqan†ara closer to the horizon than the
muqan†ara GHI; let the muqan†ara be JXT. In its motion from the point B
to the point G the wandering star crosses any muqan†ara closer to the
horizon than the muqan†ara GHI; so it crosses the muqan†ara JXT; let it
cross it at the point X. We cause an arc of an hour circle to pass through the
point X; let it be XH′. Let this arc cut the meridian circle at the point H′. We
extend the arc LG until it cuts the muqan†ara JXT; let it cut it at the point
U. Since the two arcs UG, XH′ are two arcs of hour circles, which have a
greater inclination towards the south with respect to the pole of the horizon,
the arc GU will be greater than the arc similar to the arc H′X, as has been
proved in Proposition 13. We cause a great circle to pass through the points
N and X; let the circle be NX. This circle cuts the arc GU, because the arc
GU is greater than the arc similar to the arc H′X; so the arc XU lies to the
east of the circle NX, and in its motion from the point X to the point G, the
wandering star does not arrive at any <point> of the arc XU. But the arc UT
lies to the east of the meridian circle; if the wandering star comes to the
point G, it will not return to any <point> of the arc UT, but it does not
arrive at any <point> of the arc UT before reaching the point G, because
the arc UT  lies to the north of the circle UG and the motion of the
wandering star is from south to north. But the arc XJ is to the south of the
arc H′X; the wandering star thus does not return to it, because by its motion
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the wandering star acquires an inclination in the northerly direction. The
wandering star arrives on the arc JXT only at the point X alone. So in the
east it has only one single height equal to the height JC.

Similarly, we prove that, in any muqan†ara through which the
wandering star passes on the eastern side [of the meridian], the wandering
star arrives on it only once; so this wandering star does not have two equal
heights in the east; indeed its heights in the east are unequal, the second of
them being greater than the first. That is what we wanted to prove.

<30> Let us return to the figure of the heights in the east.
We say that the greatest of the heights of the wandering star in the east,

if it has equal heights in the east, is a single height, and that the wandering
star has no other height that is equal to it, and that it [the height] is greater
than the height at its meridian passage.

Proof: It has been proved that the wandering star passes across many
muqan†aræt which are higher than the muqan†ara of the meridian; then,
after having reached these muqan†aræt, the wandering star returns to the
point D, which is on the muqan†ara of the meridian. Thus, either the
wandering star reaches a maximum height, then comes down again from it
to the point D; or [the wandering star] reaches a maximum height only to
go beyond it to <another> higher than it is; so if it only reaches a maximum
height after having gone past <another> higher than it is, it will never
return to the point D, since the point D is the lowest <point> among the
positions to which the wandering star has risen. But the wandering star
returned to the point D ; so it necessarily follows that, in height, the
wandering star reaches a limit from which it comes down again to the point
D. So this limit does not lie on the meridian circle, nor to the west of the
meridian circle, because if the wandering star had crossed the meridian
circle at a point higher than the point D, it would not have returned to the
point D – we have in fact proved that the wandering star does not encounter
any of the meridian circles twice in the time of its day. The limit of its
height is not to the west of the meridian circle because, if it were to the
west, the wandering star would have crossed the meridian circle before
coming west of the meridian circle, and thus the wandering star would have
crossed the meridian circle before reaching the point D, and then later
returning to the point D; which is impossible. So the limit of the height of
the wandering star does not lie on the meridian circle, nor to the west of the
meridian circle. Consequently, it lies to the east of the meridian circle.

Let the limit of the height of the wandering star lie on the muqan†ara
OKI; and let the pole of the equator be the point N. We draw through the
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points N and S a great circle that touches the circle OKI; let the circle be
NS; let the point of contact be the point S.

I say that the wandering star never passes through the arc SI.
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If that were possible, let it pass through the point G of the arc SI. We
cause a great circle to pass through the points N and G; it cuts the
muqan†ara OKI in two points; one is the point G; let the other point be the
point K. We cause to pass through the two points G and K two hour arcs;
let the arcs be GX and KL. If the wandering star passes through the point G,
then the arc GX  is the required time whose inclination is the arc XD,
because the wandering star travels from the point G to the point D. But the
arc GX is similar to the arc KL; the required time whose inclination is LD is
thus a part of the time KL. Let the required time whose inclination is LD be
the time UL; in its motion from the point G to [the point] D the wandering
star crosses the hour circle LK; if it reaches the circle LK, then its distance
from the meridian circle is the required time whose inclination is LD;
consequently, the wandering star passes through the point U, and the point
U is higher than the muqan†ara OKI. Consequently, the wandering star
moves so as to be higher than the muqan†ara OKI; which is impossible,
because the muqan†ara OKI is by hypothesis the highest muqan†ara that
the wandering star reaches. So the wandering star does not pass through the
point G, nor through any other point of the arc SI. So the position of the
wandering star on the muqan†ara OKI is either the point of contact <S> or
<a point> to the south of the point of contact. Let the wandering star pass
through the point K, and let the point K be a point such that the wandering
star has not passed through any other point of the muqan†ara OKI before K.

I say that the wandering star does not arrive on the muqan†ara OKI at
any point other than the point K.

Indeed, we cause an arc of an hour circle to pass through the point K;
let the arc be KL. Let this arc cut the arc of the meridian circle at the point
L. Since the wandering star travels from the point K to the point D, the arc
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KL is the required time whose inclination is the arc LD. We cause an arc of
an hour circle to pass through the point O; let the arc be OM. Let the arc
MO be the required time whose inclination is the arc OD. We cause a great
circle to pass through the point M  and through the pole of the equator,
which is the point N; let the circle be NM. Let this circle cut the arc KL at
the point P and let it cut the arc KO at the point F; so the arc PL is similar
to the arc MO; so the time MO is equal to the time PL and the arc OD is the
inclination of the time PL. But the arc LD is the inclination of the time KL,
accordingly there remains the arc LO, the inclination of the time PK. But
the arc PM is equal to the arc LO, so the arc PM is the inclination of the
time PK.

Similarly, we cause an arc of an hour circle to pass through the point F;
let the arc be FJ. Let the arc FJ be the required time whose inclination is
the arc FM. We cause a great circle to pass through the points N and J; let
this circle cut the arc PK at the point U and cut the arc KF at the point Q.
So the arc FM is the inclination of the time PU, and there remains the arc
PF, the inclination of the time UK. But PF is equal to UJ, so the arc UJ is
the inclination of the time UK.

Similarly, if we cause to pass through the point Q an arc of an hour cir-
cle equal to the time whose inclination is the arc QJ, and if we cause a great
circle to pass through its endpoint and through the point N, [then] on the
side towards the point K, it cuts off from the arc UK an arc whose
inclination is the arc cut off on the great circle between the arc UK and the
arc of an hour circle drawn from the point Q.

If we continue to proceed in this way, we prove from this that for any
arc cut off from the arc KL on the side towards the point K, its own inclina-
tion is greater than the arc cut off on the great circle drawn from the pole of
the equator between the arc KL and the muqan†ara OKI, corresponding to
the two arcs UQ and PF. We prove from this that the ratio of the arcs cut
off on the arc KL to the arcs cut off on the great circles between the two
arcs KL and KO is greater than the ratios of the arcs cut off on the arc KL to
their own inclinations; and if the triangles corresponding to the triangle
KUQ become smaller and smaller, then there will be no difference between
them and the triangles with rectilinear sides, neither in regard to magnitude
nor in regard to ratios. Now if these triangles have rectilinear sides, then
they are similar, because the angles that are at the points P, U and those
that correspond to them are right angles.129 The ratios of the arcs cut off on
the arc KL, to the arcs cut off on the great circles between the two arcs KU
and KQ, are equal to the ratio of the arc KU to the arc UQ. But if the arcs

129 See Mathematical commentary.



392 CHAPTER II: IBN AL-HAYTHAM

of hour circles are small and if they are contiguous and consecutive, then
their ratios to their inclinations are not unequal, because they are so small
and are close to one another. So the ratios of the arcs cut off on the arc UK
to their inclinations are equal to the ratio of KU to UQ.130 But the ratio of
KU to UQ is greater than the ratio of KU to UJ; the ratios of the arcs cut off
on the arc KU to the arcs of great circles cut off between the two arcs KU
and KO are thus greater than the ratios of these same arcs, cut off on the arc
KU, to their own inclinations. Now, it has been proved that the ratios of the
arcs KP and KU and their homologues, to the arcs PF and UQ and their
homologues, are greater than the ratios of the arcs KP, KU and their homo-
logues to the arcs PM, UJ and their homologues, which are the inclinations
of the arcs KP, KU and their homologues. So the ratio of each of the parts
of the arc KL to the arc of a great circle cut off between it and the arc KO is
greater than the ratio of that same part of the arc KL to its proper
inclination. If this is so, then, if the wandering star moves after having
reached the point K, it will always be below the muqan†ara OKI, because,
for each part, among the part of the time during which the wandering star
moves, during these parts of the time it will be on the endpoint of the
inclination proper to this time. But it has been proved that the inclinations
of the parts of the time K L lie below the muqan†ara OKI. So if the
wandering star moves from the point K, then, whatever the amount of time
in the course of which it moves, it will be below the muqan†ara OKI.

So the wandering star does not arrive on the arc K I  of the
muqan†ara,131 because its motion gives the wandering star an inclination in
the southerly direction and the wandering star does not arrive on the
muqan†ara OKI at any point other than the point K. If this is so, the
wandering star does not arrive on the muqan†ara OKI at any points other
than the point K.

Similarly, we prove that, if we suppose the position of the wandering
star is the point S, then the wandering star will not have another height

130 See Mathematical commentary.
131 It has been proved in paragraph a) (p. 228) that the wandering star does not

reach the arc SI. On the other hand, it does not reach the arc KS; in fact, by hypothesis it
passes through the point K and if it arrived at a point W of the arc KS, we could prove,
by an argument like that used for the point K, that the wandering star would not pass
through any point of WO and thus would not pass through the point K; which is contrary
to our hypothesis. So the wandering star does not pass through any point of the arc KI.
The only point of the horizontal circle OKI through which the wandering star passes is
the point K.

If the point S, the point of contact of the circle OI, of height hm, with a great circle
passing through the pole N, is the point where the wandering star reaches the circle OI,
then this point S is the only point of height hm the wandering star reaches.
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equal to the greatest of its heights in the east. That is what we wanted to
prove.

Having proved this, we say that, for any horizon for which it always
rises in the east and sets in the west, [and] if it has equal heights in the east,
equal two by two, the wandering star then does not have a third height
equal to the two equal heights; that if two of the wandering star’s heights in
the east are equal, then they are greater than the height on the meridian; and
that for every height it has in the east, smaller than that on the meridian,
there is no more than one of them.

<31> Let us return to the figure for Proposition 28, in which we
explained the heights in the east. Since the wandering star has travelled
from the point B, at which it rose, towards the point M on the arc HI, whose
ratio to the arc ID is greater than any ratio for any required time for this
wandering star between the two endpoints of its motion, to the part of the
inclination of the motion of the wandering star proper to this required time,
so the wandering star has crossed the muqan†ara DHG in a point between
the two hour circles BE and HI. Let the point where the wandering star
crossed the muqan†ara DHG be the point K. So the wandering star arrived
on the muqan†ara DHG at the points K and D.

I say that it does not arrive on the muqan†ara DHG in any point other
than these two points.
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Proof: If, from any point of the arc HD, we draw a straight line to the
arc ID in a circle parallel to the circle HI, its ratio to the chord of the arc
that the line cuts off from the arc ID is greater than the ratio of the chord of
the arc HI to the chord of the arc ID, as has been proved in Propositions 11
and 12; and the ratio of the chord of the arc HI to the chord of the arc ID is
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greater than any ratio for any required time for the wandering star between
the two endpoints of its motion to the part of the inclination of the motion
of the wandering star proper to that required time. The ratio of any straight
line drawn from the arc HD to the arc ID in a circle parallel to the circle HI
to the chord of the part that straight line cuts off from the arc ID is
accordingly greater than any ratio of any required time for the wandering
star between the endpoints of its motion to the part of the inclination of the
motion of the wandering star proper to this required time; and the ratio of
the arc that is subtended by this straight line to the arc that the line cuts off
from the arc ID is much greater than the ratio of any required time for the
wandering star between the endpoints of its motion to the part of the
inclination of the motion of the wandering star proper to that required time.
So between the arc HD and the arc ID there is no hour arc such that it is
one of the required times for the wandering star. Consequently, the
wandering star does not arrive on the arc HD of the muqan†ara DHG. Nor
does the wandering star arrive on the arc KG of this muqan†ara, because its
motion always gives the wandering star an inclination in the southerly
direction and the arc KG is to the north with respect to the point K; so what
remains from the muqan†ara is the arc KH.

We cause a great circle to pass through the point H and through the
pole of the equator – let the point be N; let the circle be N H. Since the
wandering star travelled from the point K to the point M, accordingly it
crossed the circle NH, and it does not cross it at the point H, because it does
not arrive on the arc HI  twice, since its motion always gives it an
inclination in the southerly direction; so it does not arrive more than once
on any hour circle, and it does not cross the circle NH at the point H. But
on the other hand it does not cross it in a point to the south other than the
point H, because if it travels to the south of the circle HI, it does not return
to it [the circle] in the course of this motion; so it does not return from the
south to the point M. If the wandering star travels from the point K to the
point M, then it crosses the circle NH and it does not cross it either at the
point H or at a point to the south other than the point H; so it crosses it only
in a point of the arc NH; let it cross it at the point L.

We cause an arc of an hour circle to pass through the point L; then this
arc cuts the muqan†ara DHG in a point between the two points K and H,
because the point L is to the south of the point K and to the north of the
point M. Let the hour arc cut the muqan†ara DHG at the point P, which lies
between the two points K and H. Since the wandering star has travelled
from the point K to the point L, accordingly it does not pass through the
point P, because it does not arrive on the arc LP twice; but it does not,
either, pass through the arc PH, because the arc PH is to the south of the
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arc LP; so it does not return from the arc PH  to the point L and the
wandering star thus does not arrive at any point of the arc PH in its motion
from the point K towards the point L. But it does not, either, arrive on the
arc PH in its motion from the point L towards the point M, because after
having reached the circle NH, it cannot move to the east of it. So in its
motion from the point K towards the point M the wandering star does not
arrive at any point of the arc PH.

We cause a great circle to pass through the points N and P, let the circle
be NP. Since the wandering star travelled from the point K to the point L, it
crosses the circle NP and it does not cross it either at the point P or in a
point to the south of the point P, for the reason given for the circle NH; so
it crosses the circle NP in a point of the arc NP, let the point be Q.

We cause an arc of an hour circle to pass through the point Q, then it
cuts the arc KP between the points K and P, for a reason analogous with
that given for the point P; let the arc be QO; let this arc cut the arc NL at
the point R; so the arc QR is the required time whose inclination is the arc
RL.

We cause an arc of an hour circle to pass through the point K; let it cut
the arc NQ at the point V, let the arc be KV; so the arc KV is the required
time whose inclination is the arc VQ. Since the wandering star travelled
from the point K to the point Q, accordingly it does not pass either through
the point O or through the arc OP, for a reason analogous to that given for
the arc PH. So, in its motion from the point K to the point Q, the wandering
star does not arrive at any point of the arc OP.

Similarly, if we draw the arc NO of a great circle, we [can] prove that
the wandering star arrives on the circle NO at a point between N and O. So
if we draw an hour arc through the point at which it arrives on the arc NO,
this arc cuts the arc KO and we prove that the wandering star does not
arrive at any point of the arc of the muqan†ara cut off by the hour arc on
the side towards the point O.

The same is true for all the arcs homologous to the arcs OP, PH, cut off
by the triangles homologous to the triangles OQP, PLH; many triangles
homologous to the triangles OQP, PLH are generated in this way and, as
these triangles approach the point K, they become smaller; and the arc that
remains between them and the point K becomes smaller; and we prove that
the wandering star does not pass through the parts of the arc KH contained
in these triangles. And if these triangles become smaller, there will be no
difference between them and the rectilinear triangles, and thus there will be
no difference between the ratios of the arcs that enclose these triangles and
the ratios of the straight lines, because these triangles are extremely small;
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the arc ED is in fact the inclination of the motion of the wandering star in
the time in the course of which it travelled from the point B to the point D
and this time is a part of the day;132 in the majority of cases, it is a quarter
of a revolution or approximately that, but it never reaches half a revolution.
The inclination of the motion of the sun and of the five planets in a single
day is several minutes; the size of the inclination of the motion of the sun
and the five planets for a quarter of a revolution and for less than half a
revolution is several minutes.133 So for the sun and for the five planets the
size of the arc ED is some of these minutes. As for the moon, the size of
the inclination of its inclined orb with respect to the circle of the equator is
a maximum of twenty-nine degrees, which is the maximum inclination of
the sun, to which we have added the latitude of the moon in relation to the
circle of the ecliptic. This inclination occurs only on rare occasions, but
apart from this instant of time, its inclination is smaller than this magnitude
and the inclination proper to the motion of the moon in a single day never
reaches more than four degrees from the twenty-nine degrees, or something
close to it, either more or less, if we start from the twenty-nine degrees.134

The inclination of the motion of the moon, referred to the circle of the
equator, for a quarter of a day or something close to it, does not reach more
than a single degree with a small addition. So for the moon, the arc ED is at
most approximately a degree, and this on rare occasions and for the places
where the inclination is in the east; for other instants and for the horizons of
habitable latitudes, the inclination does not reach a single degree. The
inclinations, which are HL, PQ and their homologues, are the inclinations
proper to the required times between the two points K and L135 and each of
them [the inclinations] is a small part of the arc ED; the small triangles
generated between the points K and H in the way we have described, and
[which are] homologous with the triangle LPH, are extremely small, and
the same holds for their inclinations and for the required times; because if

132 See notes 133 and 134 below.
133 The inclination of the Sun with respect to the equator goes from 0 to 23°27′ in

approximately 90 days, that is it changes by 15′ to 16′ per day. Between sunrise and
meridian passage, the interval is 6 hours at an equinox; we then have ED  ≅ 4′.

134 The inclination of the orb of the moon with respect to the equator has been
investigated in Propositions 16 and 22. The maximum inclination is close to 29° and is
reached very rarely (periodicity 18 years 8 months). The moon makes a complete circuit
of its orb in a Lunar month, of about 29 days, so the inclination of the moon goes from
0° to 29° in a quarter of that period, so in the course of a day it varies by about 4°; and
in 6 hours, on an equinox, it varies by about 1°.

135 They are the inclinations LR and VQ, which are the inclinations proper to the
required times QR and K V, which correspond, respectively, to the passage of the
wandering star from the point Q to the point L and from the point K to the point Q.
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the inclinations are extremely small, then their required times are equally
small, since there is no difference, in regard to their magnitudes and their
ratios, between the perimeters of these triangles and straight lines. If these
arcs are extremely small, then there is no difference between the ratios of
the arcs that they form,136 [arcs] which are the required times, to the
inclinations which belong to them and the ratio of the time KV  to the
inclination VQ, because the two arcs KV and VQ are among these small
arcs and the arcs that these latter include, which are the sides of the small
triangles; so they are smaller than them. But if the required times are small
and are contiguous, then there is no difference between the ratio of each of
them to the inclination proper to it and the ratio of the required time that
follows it to the inclination proper to it. So there is no difference between
the ratio of the time KV to the arc VQ and the ratios of the required times
that are the sides of the small triangles to the inclinations proper to them.

This being proved, we say: if the wandering star moves from the point
K to the point Q, it will not pass through any point of the arc KO.

Now, we take any point on the arc KO; let the point be S. We cause a
great circle to pass through the point S and through the pole N; let the circle
be NS. This circle cuts the arc KV; let it cut it at the point Z. We form the
triangle KZS; this triangle is right-angled because the circle N Z S is
orthogonal to the circle KV. Similarly, the triangle KVP is right-angled
because the circle NVP is orthogonal to the circle KV. So the angle KVP is
a right angle, the angle KZS is a right angle and there is no difference
between the arcs of the two triangles KVP and KZS and straight lines. But
the triangle KZS is <constructed> on a side of the triangle KVP and the two
angles KZS and KVP are right angles; so the two triangles are similar and
the ratio of KV to VP is equal to the ratio of KZ to ZS. Consequently, in
most cases, the ratio of KV to VP is greater than the ratio of KZ to ZS; and,
in some cases, the ratio of KV to VP is equal to the ratio of KZ to ZS. So in
all cases the ratio of KV to VP is not smaller than the ratio of KZ to ZS. But
the ratio of KV to VQ is greater than the ratio of KV to VP, so the ratio of
KV to VQ is greater than the ratio of KZ to ZS in all circumstances. But the
ratio of the time KZ, which is the required time, to the inclination of the
motion of the wandering star proper to this time KZ, is equal to the ratio of
the time KV to the arc VQ, as has been established earlier; but, among these
arcs, KZ is smaller than VQ; so the ratio of the time KZ to the inclination
proper to the time KZ is greater than the ratio of the time KZ to the arc ZS,
and the inclination proper to the time KZ is smaller than the arc ZS. So, in
its motion from the point K to the point Q, the wandering star crosses the
arc ZS and does not pass through the point S. If it does not pass through the

136 See Mathematical commentary, pp. 232–8.
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point S, then it does not pass through the arc SO, as has been proved for the
arc OP and the arc PH.

Similarly, we have proved, for any point we take on the arc KO, that
the wandering star does not pass through it, as has been proved for the
point S; so the wandering star does not pass through any point of the arc
KO. But we have proved that it does not pass through the arcs OH, HD,
KG; so the wandering star does not pass through any point of the
muqan†ara DHG except the two points K and D; this if the circle NH is
higher than the point K.

But if the circle NH passes through the point K, the arc KH will lie to
the east of the circle NH and the wandering star reaches it at the point K, so
the wandering star does not pass through any point of the arc KH.

If the circle NH is below the point K, then we cause a great circle to
pass through the two points N and K; it cuts the hour arc HM; so the arc KH
will lie to the east in relation to the great circle that passes through the
point K and the wandering star reaches it at the point K, so the wandering
star does not pass through any point of the arc KH.

In all cases of the figure, the wandering star does not arrive on the
muqan†ara DHG except in only two points.

I say that it does not arrive more than once on any of the muqan†aræt
closer to the horizon than the muqan†ara DHG.
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Let the muqan†ara FXT be closer to the horizon than the muqan†ara
DHG. This muqan†ara cuts the circle BE and cuts the circle VZK. Let us
extend the arc VZK until it cuts this muqan†ara; let it cut it at the point U.
In its motion from the point B to the point K, the wandering star crosses the
muqan†ara FXT and crosses it in a point to the south of the arc BE and to
the north of the arc VU; let it cross it at the point X. Let us cause a great
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circle to pass through the points U and N; let the circle be NU. So if the
wandering star moves from the point X to the point K, then it crosses the
circle NU without crossing it at the point U, or in a point to the south of the
circle KU, as was proved earlier; so it crosses it in a point of the arc NU; let
it cross it at the point J. The wandering star does not arrive on the arc UF in
its motion from the point X to the point K, because the arc UF is to the
south of the point K. So if the wandering star has arrived on the arc FU, it
would not have come to the point K. The wandering star does not arrive on
the arc XT of the muqan†ara because it is to the north of the point X; so all
that remains of the muqan†ara is the arc XU.

But, in its motion from the point X to the point K, the wandering star
crosses the circle NU at the point J; so the point J is to the south of the
point X and is to the north of the point F. We cause an arc of an hour circle
to pass through the point J; let it cut the muqan†ara FXT at the point H′; so
this gives rise to the triangle H′JU and we prove that the wandering star
does not arrive on the arc H′U belonging to the triangle H′JU, as has been
proved for the arc OP of the triangle OQP. We prove that it does not arrive
on the arc XH′, as has been proved for the arc KO. If the great circle NU
passed through the point X or under the point X, the arc XU would lie to the
east of the great circle that passes through the point X; then the wandering
star does not pass through the latter, and the wandering star thus does not
arrive on the part of the muqan†ara FXT east of the meridian except at the
point X. Similarly, for any muqan†ara between the horizon and the
muqan†ara DHG, the wandering star arrives on it only in a single point.

<32> Let us return to the figure; let the point K be the highest point
attained by the wandering star. Let the muqan†ara FXT lie below the point
K and above the muqan†ara DGH. We cause an arc of an hour circle to
pass through the point K; let it be KL. This arc cuts the muqan†ara FXT,
because if the circle BE cuts the eastern horizon, then the circle LK cuts the
eastern horizon; and if this circle LK cuts the eastern horizon, then it cuts
the muqan†ara FXT; let the arc LK cut the muqan†ara FXT at the point I.
Since the wandering star has travelled from the point B to the point K,
accordingly it crosses the muqan†ara FXT; let it cross it at the point X. The
point X is to the north of the point K and to the south of the point T; so it
lies between the two circles BE and LI. The wandering star, after having
reached the point K, then returns to the point D; thus the wandering star has
crossed the muqan†ara FXT in a point other than the point X, because the
point X is to the north of the point K and the other point is to the south of
the point K; let the other point be the point M. So the wandering star arrives
on the muqan†ara FXT at the two points X and M.
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Then I say that it does not arrive on this muqan†ara at a third point.
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It is clear that it does not arrive on the arc XT, because the arc XT is to
the north of the point X and its motion always gives the wandering star an
inclination in the southerly direction; accordingly it does not arrive on the
arc XT.

That it does not arrive on the arc XI: this is proved as we proved in the
preceding proposition that it does not arrive on the arc K H of the
muqan†ara DHG, the [arc concerned] in the preceding proposition.

That it does not arrive on the arc IM: this is proved as we shall
describe. We cause a great circle to pass through the points N and K; so it
cuts the arc FI; let it cut it at the point O ; let the circle be NKO. The
wandering star does not arrive on the arc IO, because it will not travel to
the east of the circle NKO; and it will not travel to the point O, because it
will not arrive twice on the circle NK; so the wandering star does not arrive
on the arc IO.

We cause a great circle to pass through the points N and M; let it be
NM; let it cut the arc LK at the point U. So the arc KU is the required time
and the arc UM is the inclination proper to this time KU. We take any point
on the arc OM; let the point be P. We cause an hour arc to pass through the
point P; then it cuts the arc UM; let the arc be PR. The ratio of the arc PR
to the arc RM is equal to the ratio of the arc IU to the arc UM, because
these arcs are extremely small; so there is no difference between them and
the straight lines which are their chords. But the two triangles IUM and
PRM are right-angled, because each of the two angles IUM and PRM is a
right angle; so the ratio of the arc PR to the arc RM is equal to the ratio of
the arc IU to the arc UM. But the ratio of the arc IU to the arc UM is greater
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than the ratio of KU to UM, so the ratio of PR to R M is greater than the
ratio of KU to UM; but the ratio of KU to UM is equal to the ratio of the
time PR to the inclination proper to PR, because these times are close and
extremely small; accordingly there is no difference between their ratios to
their inclinations, so the ratio of PR to RM is greater than the ratio of PR to
the inclination proper to PR; so the inclination proper to PR is greater than
the arc RM and the time whose inclination is the arc RM is smaller than the
time PR. Let this time be the time ZR, the arc ZR is the required time whose
inclination is the arc RM. But the wandering star, in its motion from the
point K to the point M, passed through the circle PR, to arrive later at the
point M. But when the wandering star arrived on the circle PR, then the arc
which lies between it and the circle NRM is the required time whose incli-
nation is RM; but the required time whose inclination is RM is the arc ZR;
consequently, when the wandering star arrives on the circle PR, it arrives at
the point Z. But if the wandering star arrives at the point Z, then it does not
arrive on the circle PR at another point, so the wandering star does not pass
through the point P.

Similarly, for any point of the arc OM, we prove that the wandering
star does not pass through this point, as we have proved for the point P; so
the wandering star does not arrive on the arc OM.

We also mark a point S on the arc MF and we cause a great circle to
pass through the points N and S; let it be NS. We cause an hour arc to pass
through the point M; let it cut the circle NS at the point Q. So we have that
the ratio of MQ to QS is equal to the ratio of PR to RM because of these
triangles being small; thus there is no difference between them and straight
lines. But the ratio of PR to RM is greater than the ratio of ZR to RM, so the
ratio of MQ  to Q S is greater than the ratio of ZR to RM. But Z R is a
required time on account of the inclination of the arc RM; so the ratio of the
time MQ to the inclination proper to it is the ratio of ZR to RM; the ratio of
the time MQ to the arc QS is greater than the ratio of the time MQ to the
inclination proper to the time MQ; so the inclination proper to the time MQ
is greater than the arc QS and the limit in that inclination is below the
muqan†ara TX. So if the wandering star moves from the point M for the
time MQ, its centre arrives on the circle NQS at a point of it below the
point S. And if the wandering star arrives on the circle NQS at a point other
than the point S, then it does not pass through the point S, but passes below
the point S.

Similarly, we prove, for any point of the arc MF, as has been proved
for the point S, that the wandering star does not pass through it but below
it. So the wandering star does not arrive at any point of the arc MF. But if it
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moves from the point M towards the point D, it will always be below the
muqan†ara FXT.

Thus we have proved that the wandering star does not arrive on the arc
IMF except at the point M and does not arrive on the arc IT except at the
point X . So the wandering star does not arrive on the muqan†ara FXT
except at only two points.

Similarly, for any muqan†ara above the muqan†ara DGH and below
the point K, the wandering star does not arrive on it except at only two
points. Among its equal heights in the east, the wandering star has no more
than two equal heights in the east.

So, if it has equal heights in the east, each of the seven wandering stars
will have not more than two equal heights; all these heights will be greater
than the height on the meridian, it [the wandering star] will have another
height that is only equal to the height on the meridian and any height that it
has in the east <before it crosses the meridian> will be smaller than its
height on the meridian. So it has no other height in the east that is equal to
it; that is what we wanted to prove in the last two propositions.

<33> Let us return to the figure for heights in the west.
I say that the greatest of the heights of the wandering star in the west is

a single height.
That the wandering star has a height that is the greatest of its heights in

the west: this is proved as it was proved in the proposition about heights in
the east; that in the west the wandering star does not have a height equal to
the greatest of its heights: this is proved as we shall describe.

Let the highest muqan†ara reached by the wandering star in its motion
from the meridian to the western horizon be the muqan†ara OKE. We cause
an hour arc to pass through the point O; let it be OP. We draw from the
pole of the equator, which is the point N, a great circle that touches the
muqan†ara OKE; let the circle be NF; let this circle touch the muqan†ara
OKE at the point F. We prove, as has been proved in the proposition on the
heights in the east, that the wandering star does not arrive at any point of
the arc FE, because if we draw through any point of the arc FE a great
circle from the point N, then it cuts the muqan†ara OKE in another point
and it cuts the circle OP in such a way that the arc of a great circle that lies
between the point of the arc FE and the arc OP is the inclination of the time
cut off on the arc OP; the two hour arcs drawn from the two points of
intersection of the muqan†ara and the great circle as far as the meridian are
equal. From this there follows the impossibility demonstrated in the
proposition on the heights in the east, which is Proposition 30; so the
wandering star does not arrive at any point of the arc FE. The position of



ON THE CONFIGURATION OF THE MOTIONS 403

the wandering star on the muqan†ara OKE is either the point F or lies to the
south of the point F. Let the position of the wandering star be the point K
and let the point K be the point after which the wandering star does not
arrive at any point of the muqan†ara OKE.

I say that the wandering star does not arrive on the muqan†ara OKE at
any point other than the point K.
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Proof: We cause a great circle to pass through the two points N and K;
let it cut the arc OP at the point P and let this circle cut the arc GL at the
point J.137 Since the wandering star moves from the point G to the point K,
the arc GJ is the required time whose inclination is the arc KJ; but the arc
OP is similar to the arc GJ and the arc KP is a part of the arc KJ; so the
required time whose inclination is the arc KP is smaller than the time OP.
Let this required time be the arc UP; so if the wandering star moves from
the point G to the point K, then it crosses the circle OP; but if it crosses the
circle OP, it crosses it at the point U. We cause an hour arc to pass through
the point K; let the arc be KM. And we cause a great circle to pass through
the points N and U; let the circle be NU. This circle cuts the arcs KM and
KO; let it cut the arc KM at the point H and let it cut the arc KO at the point
S. So the arc HS is smaller than the arc HU and the arc HU is the inclina-
tion of the time HK, which is similar138 to UP; so the ratio of KH to HS is
greater than the ratio of KH to HU. If we cause an hour arc to pass through
the point S, it cuts the arc KP; this hour arc will be similar to the arc UP
and the arc cut off from the arc KP is equal to the arc HS; so the required
time whose inclination is the arc cut off from the arc KP is a part of the
hour arc drawn from the point S as far as the circle KP. So a part of this

137 The arc GL is an arc of the hour circle of G, G is the point where the wandering
star crosses the meridian.

138 Lit.: equal.
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hour arc is the required time whose inclination is the arc cut off from the
arc KP.

We prove, by this procedure, as has been proved in the proposition on
the heights in the east, that, in its motion from the point U to the point K,
the wandering star will always be below the muqan†ara OKE; so the
wandering star does not arrive at any point of the arc KO; but it does not,
either, arrive at any point of the arc KE, because the point K is the point
after which the wandering star does not arrive at any point of the
muqan†ara OKE. So the wandering star does not arrive on the muqan†ara
OKE in any point other than K.

Similarly, if we suppose that the position of the wandering star is the
point F, we prove by an analogous demonstration that the wandering star
does not arrive at any point of the muqan†ara OKE.

So, in all cases for the figure, the wandering star does not arrive on the
muqan†ara OKE in any point other than K, and the wandering star thus has
no other height in the west equal to the greatest of its heights in the west.
That is what we wanted to prove.

This being proved, we say that, for any horizon for which the
wandering star always rises in the east and sets in the west, if it has equal
heights in the west, equal two by two, then it has not got a third height
equal to the two equal heights; and that for any height it has in the west
which is smaller than that on the meridian, it will have no more than a
single one.

<34> Let us return to the proposition on the heights in the west. Let the
ratio of the chord of the arc HK to the chord of the arc KG be greater than
any ratio for any required time that occurs for the wandering star in its
motion from the point G to the point D, to the inclination proper to that
required time on the side towards the beginning of the motion; so the ratio
of the arc HK to the arc KG is much greater than any ratio of any required
time to the inclination proper to that required time; now the ratio of the arc
KH to the arc EH is the ratio of the arc HK to the arc KG. Let the required
time whose inclination is the arc KG, be the time KM; so the wandering
star travels from the point G to the point M. Let the second point of the
muqan†ara GHI through which the wandering star passes be the point F.

I say that the wandering star does not arrive on the muqan†ara GHI
except at the two points G and F.

Proof: If from any point of the arc HG we draw a straight line to the arc
KG in a circle parallel to the circle KH, then its ratio to the chord of the part
it cuts off from the arc KG is greater than the ratio of the chord of the arc
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HK to the chord of the arc KG; the ratio of any arc drawn between the two
arcs HG and KG, parallel to the arc HK, to the arc cut off from the arc KG
is thus greater than any ratio for any required time that occurs for the
wandering star to the inclination proper to this required time; so the
wandering star does not pass through any point of the arc GH, but in its
motion from the point G  to the point M  it will always be above the
muqan†ara HI. We cause an hour circle to pass through the point F; let the
circle be FS. But the wandering star has travelled from the point M to the
point F, so it crosses the circle NH and it does not cross it at the point H,
because it does not arrive twice on the arc KH; it does not cross it in any
point to the south other than the point H, because it does not go below the
arc HG; it does not cross it at the point S, because it does not pass though
the point S of the arc FS and it does not cross it in a point of the arc NS
because it would be to the north of the arc FS and it would not return to the
point F. But since it arrives at the point F, it does not arrive on the circle
NH except in a point between the points S and H; let the point of the arc SH
through which the wandering star passes be the point P. If we draw an hour
arc from the point P, it cuts the arc FH; a triangle is formed on the side
towards the point H. We prove that the wandering star does not arrive at
any point of the arc contained in this triangle on the side towards the point
H, because the arc – a part of the arc FH contained in this triangle – lies to
the south of the hour arc. We prove, by the procedure we employed in the
proposition about heights in the east, that the wandering star does not arrive
at any point of the arc FH.
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Similarly, we cause a great circle to pass through the two points N and
F; let the circle be NF. If this circle touches the muqan†ara GHI at the point
F, then the wandering star, after moving from the point F, does not arrive
at any points of the arc FI, because the arc FI is to the east of the circle FN.
If the circle NF cuts the muqan†ara GHI, then it cuts it in two points. If the
point F is the northern point of these two points of intersection, then the
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wandering star does not arrive at any point of the arc FI, because the arc FI
will lie to the east of the circle NF. But if the point F is the southern point
of the two points of intersection, then we draw through the point N a circle
that touches the muqan†ara IHG; let the circle be NXU; let the point X be
the point of contact. We extend the hour arc SF so that it cuts the circle
NXU and cuts it at the point U. We cause an hour arc to pass through the
point X; let it cut the circle NF at the point R. So we have that the ratio of
the arc FS to the arc SH is equal to the ratio of the arc XR to the arc RF, as
has been proved in Proposition 31. But the ratio of FS to SP, which is the
ratio of the required time to the inclination that is proper to it, is greater
than the ratio of FS to SH; so the ratio of the time FS to the inclination PS
is greater than the ratio of the arc XR to the arc RF. But the ratio of the time
XR to the inclination proper to the time XR is the ratio of FS to SP, because
these times are small and close to one another; so their ratios to their incli-
nations are not unequal and the ratio of the time XR to the inclination that is
proper to it is greater than the ratio of XR to RF. So the inclination proper
to the time XR is smaller than the arc RF; but the time XR is the time FU
and the arc XU is equal to the arc RF; so the ratio of FS to SP is greater
than the ratio of the arc UF to the arc UX; so if the wandering star moves
from the point F for the time FU, then it arrives on the arc UX between the
two points U and X. The same is true for any point of the arc XF; if through
such a point we draw a great circle from the point N, then it cuts the arc
FU. If we cause an hour arc to pass through <each of> these points, then it
cuts the arc RF. Thus we prove, as was proved for the arc RF, that the arc
cut off by the hour arc on the arc RF is greater than the inclination of that
hour arc. It necessarily follows from this that the endpoints of the inclina-
tions that are generated between the point F and the circle NU are all below
the arc FX. From this it is clear that the wandering star does not arrive at
any point of the arc XF. If the wandering star arrives on the circle NU, it
does not arrive at any point of the arc XI, because the arc XI lies to the east
of the circle NU, so the wandering star does not arrive at any point of the
arc FI. But we have proved that it does not arrive at any point of the arc
FG, so the wandering star does not arrive at any point of the muqan†ara
GHI, which is the muqan†ara on the meridian, except in the two points, G
and F.

Similarly, we draw one of the muqan†aræt below the muqan†ara FHI,
let it be the muqan†ara OUT; let the wandering star arrive on this muqan-
†ara at the point H′. It is clear that the point H′ is to the north of the arc SF,
because its motion gives the wandering star an inclination in the northerly
direction.
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I say that the wandering star does not arrive on the muqan†ara OUT at
a point other than the point H′.

Proof: We extend the hour arc SF so as to make it cut the muqan†ara
OUT; let it cut it at the point U. We cause a great circle to pass through the
two points N and H′; let the circle be N H′. Then the circle NH′ either
touches the muqan†ara OUT at the point H′, or cuts it in two points one of
which is the point H′.

If it touches the muqan†ara, then the wandering star does not arrive on
the arc H′T of the muqan†ara, because the arc H′T lies to the east of the
circle NH′. It does not arrive on the arc H′O of the muqan†ara because the
arc H′O lies to the south of the point H′, which is the position of the
wandering star; so the wandering star does not arrive on the muqan†ara
OUT except at the point H′.

Similarly, if the circle NH′ cuts the muqan†ara OUT in a point H′ and
in a point to the south of the point H′, the arc H′T will lie to the east of the
circle NH′ and the arc H′O will lie to the south of the wandering star.

If the circle NH′ cuts the muqan†ara OUT at the point H′ and in another
point to the north of the point H′, as shown in the figure, then we cause a
great circle to pass through the two points N and U; let the circle be NU.
This circle also cuts the muqan†ara OUT in two points, one of which is the
point U and the other lies to the north of the point U, from what is shown in
the figure. We cause an hour arc to pass through the point H′; let it be H′J.
The wandering star travels from the point F to the point H′; so it crosses the
circle NU and it crosses it only in a point to the south of the arc H′J and to
the north of the arc FU; so it crosses it in a point of the arc JU between the
two points J and U. So if we cause an hour arc to pass through this point,
then it cuts the arc H′U. We prove, as has been proved for the arc FX,139 by
considering the small triangles that are formed inside the triangle H′JU,
that the wandering star does not pass through any point of the arc H′U; and
we prove that it does not arrive at any point of the arc H′T, as has been
proved for the arc FI. But the wandering star does not arrive at any point of
the arc UO, because the arc UO lies to the south of the arc FU. So the
wandering star does not arrive at the muqan†ara OUT except only at the
point H′.

139 See Fig. I.34.1.
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140 Figures I.34.2 to I.34.8 are added by the editor.
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Similarly, we prove, for any muqan†ara between the muqan†ara GHI
and the horizon, that the star does not arrive on it except in a single point.
Accordingly, for all heights of the star in the west that are less than that on
the meridian, there will be only a single such height.

<35> Let us return to the figure; let the point U be the highest point
reached by the wandering star. Let the muqan†ara OST be higher than the
muqan†ara GHI and lower than the point U.
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We have proved earlier, for any muqan†ara higher than the muqan†ara
for its meridian passage, that if the wandering star goes above it, then the
wandering star arrives on it at two points. So the wandering star arrives on
the muqan†ara OST in two points. We cause an hour arc to pass through the
point D; then it cuts the meridian circle; let it cut it at the point E; so the
circle DE lies to the north of the point U, because the point D is to the north
of the point U and the circle GL lies to the south of the point U; so the point
U lies between the two circles ED and GL. But these two circles cut the
horizon; so the hour circle that passes through the point U cuts the horizon.
But the point U is higher than the muqan†ara OST; so the hour circle that
passes through the point U cuts the muqan†ara OST. We cause an arc of the
hour circle to pass through the point U; let it cut the muqan†ara OST at the
point S. We cause a great circle to pass through the two points N and S – let
the circle be NS; and a great circle through the points N and U – let the
circle be NU. Let this circle cut the muqan†ara OST at the point P. Since
the wandering star travelled from the point G , which is below the
muqan†ara OST , to the point U, which is above the muqan†ara OST,
accordingly it crosses the muqan†ara OST, and it does not cross it in a point
of the arc SP; indeed if it passed through a point of the arc SP, it would not
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arrive at the point U, because the point U lies to the east of any point of the
arc SP; it does not pass through the point P either, because it does not
arrive on the circle NU at two points and the wandering star does not pass
through the point S either, because it does not arrive on the arc US at two
points. The wandering star does not arrive at any point of the arc SP; but it
crosses the muqan†ara OST before reaching the point U; so it crosses the
muqan†ara on the arc OP; let it cross it at the point M. We cause a great
circle to pass through the points M and N; let the circle be NM. So the arc
GF is the required time whose inclination is the arc FM; let the circle NF
cut the arc SU in a point J. So the wandering star has travelled from the
point G to the point M ; let the point M  be the first point at which the
wandering star arrives on the muqan†ara OST. So the wandering star does
not arrive at any point of the arc MO, because the arc MO lies to the east of
the circle NM. We cause an hour arc to pass through the point M; let it cut
the circle NUR at the point R. So the arc M R will be the required time
whose inclination is the arc RU. So the ratio of UJ to JM is the ratio of the
required time to the inclination that is proper to it. We cause an hour arc to
pass through the point P; let it cut the circle NM at the point X. So the arc
PX is similar to the arc UJ and the arc JM is greater than the arc XM; so we
have that the ratio of PX to XM is greater than the ratio of UJ to JM. If from
any point of the arc MP we draw an hour arc that cuts the arc XM, we prove
that, for the small triangles, as was proved in the earlier proposition, their
ratios to the parts they cut off from the arc XM141 are equal to the ratio of
PX to XM. We prove from this that, for any hour arc drawn from a point of
the arc PM to the arc XM, its ratio to the part it cuts off from the arc XM is
greater than its ratio to the inclination proper to it. If we cause to pass
through the point N, and through a point of the arc PM, a great circle that
cuts off from the arc UJ an arc similar to the arc that is inside the arc PM
and such that the arc of the great circle situated between the two arcs PM
and MR is equal to the arc cut off from the arc XM, then we prove from this
that, for any part among the parts of the time MR, its inclination is greater
than the arc situated between this part142 and the arc MR. So the wandering
star does not pass through any point of the arc MP, but it will pass above it.
It is clear that it does not pass through the arc SM.

Let the second point of the muqan†ara OST  through which the
wandering star passes be the point V. So the point V lies between the two
circles SU and DE. We cause an hour arc to pass through the point V, let it

141 For each of the triangles obtained this way, we consider the ratio of the sides
homologous to the sides PX and XM.

142 Ibn al-Haytham means the hour arc drawn from a point of the arc PM to the arc
XM.
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be VH′. In its motion from the point U to the point V, the wandering star
crosses the arc H′S between the two points H′ and S. We prove, as was
proved in the preceding proposition, that the wandering star does not arrive
at any point of the arc VS except for the point V. We prove, as was proved
in the preceding proposition, that the wandering star does not arrive at any
point of the arc VT, because the great circle that passes through the two
points N and V either touches the muqan†ara at the point V, or cuts it in this
point. We prove, by the same method we followed in the preceding
proposition, that the wandering star does not arrive at any point of the arc
TV; so the wandering star does not arrive at any point of the western part of
the muqan†ara OST except at the points M and V.

Similarly, we prove, for any muqan†ara that is higher than the
muqan†ara GHI and lower than the point U, that the wandering star does
not arrive on it at more than two points.

Thus for each of the seven wandering stars, if it has equal heights in the
west, then it will not have more than two equal heights; and for any height
it has in the west and which is smaller than its height on the meridian, then
it will not have any other height in the west that is equal to it, it will not
have any height in the west equal to its greatest height and all its equal
heights are greater than the height on the meridian. That is what we wanted
to prove.

It is clear from all that we have established that each of the seven wan-
dering stars can have, in a single day, equal heights in the east, equal two
by two, and that it can have, in a single day, equal heights in the west,
equal two by two; and that this happens if its meridian passage is to the
south of the pole of the horizon.

But if the position of its meridian passage is to the north of the pole of
the horizon, then it will be able to have equal heights, in the east and in the
west; it is possible for it not to have any, depending on the horizon
[concerned].

<36> For horizons for which the sphere is right, it is possible that each
of the seven wandering stars has equal heights in the east or equal heights
in the west. In fact, the position of the hour arcs starting from the
muqan†ara after the meridian passage of the wandering star, in the direc-
tion north of the pole of the horizon or in the direction south of the pole of
the horizon, is the same position, because the hour circles are orthogonal to
the plane of the muqan†ara. So for any hour arc that is above the
muqan†ara on the meridian and to the south of the pole of the horizon,
there is, in the direction north of the pole of the horizon, an hour arc above
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the muqan†ara on the meridian, which is equal to it and which, on the side
toward the point of the meridian, cuts off from the meridian circle an arc
equal to the arc of the meridian circle cut off by the hour arc to the south on
the side towards the meridian. It follows that there exist, in the northerly
direction in relation to the pole of the horizon, hour arcs whose ratio to the
part they cut off from the meridian circle on the side towards the point of
the wandering star’s meridian passage is greater than any ratio for any
required time for the wandering star to the inclination of the motion of the
wandering star.

If this is so, then in the northerly direction in relation to the pole of the
horizon, and if [the point of] the wandering star’s meridian passage lies to
the north of the pole of the horizon, what occurs is analogous to what
occurs in the southerly direction. So the wandering star has equal heights in
the east and equal heights in the west for the horizons for which the sphere
is right, whether [the point of] the wandering star’s meridian passage lies to
the south of the pole of the horizon or to the north of the pole of the
horizon.

For horizons for which the sphere is inclined towards the south, then
the wandering star, if its [point of] meridian passage is to the north in rela-
tion to the pole of the horizon, can have equal heights in the east or in the
west, but they will be few and close to one another and this occurs in places
close to the equator for which the sphere is slightly inclined towards the
south. For strongly inclined horizons, that is to say those for which the
sphere is inclined with a large inclination, then this result does not occur.
The cause of this is that, for horizons for which the sphere is inclined
towards the south, with a large inclination, the hour arcs to the south of the
pole of the horizon are inclined towards the south. Thus the arcs of the
meridian circle cut off by the hour arcs are small; so the ratios of the hour
arcs to these latter will be ratios of a considerable size.143 It is possible that
there are among them ratios that are greater than any ratio for any required
time that occurs for the wandering star to the inclination of the motion of
the wandering star. But the hour arcs that lie to the north of the pole of the
horizon, for horizons for which the sphere is inclined with a large
inclination towards the south, are also inclined with a large inclination
towards the south. The arcs cut off by these hour arcs on the meridian
circle on the side towards the northern point of the wandering star’s
meridian passage are much greater than the arcs of the meridian circle cut
off by the hour arcs in the south. In most cases, the ratios of the hour arcs
in the north to the parts they cut off from the meridian circle are not greater

143 Lit.: of a great magnitude.
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than any ratio for any required time for the wandering star to the inclination
of the motion of the wandering star. That is why it rarely happens that the
heights in the east are equal and that the heights in the west are equal for
horizons that are strongly inclined towards the south, if the wandering
star’s [point of] meridian passage is to the north of the pole of the horizon.
Here I mean by ‘for horizons that are strongly inclined’ the horizons whose
inclination, despite its size, remains smaller than the greatest inclination of
the wandering star with respect to the circle of the equator. In these
locations the meridian passage of the wandering star is sometimes to the
north of the pole of the horizon and sometimes to the south of the pole of
the horizon. But the locations for which the meridian passage of the
wandering star is sometimes to the north of the pole of the horizon and
sometimes to the south of the pole of the horizon are the locations for
which the height of the pole above their horizon is smaller than the
inclination of the inclined orb of the wandering star with respect to the
circle of the equator. Indeed, in these locations a part of the inclined orb of
the wandering star turns in accordance with hour circles to the north of the
pole of the horizon, and a part of the inclined orb turns in accordance with
hour circles to the south of the pole of the horizon. For locations for which
the heights of the pole are greater than the inclination of the inclined orb of
the wandering star with respect to the circle of the equator, the inclined orb
of the wandering star, as a whole, turns in accordance with hour circles
[that are] all to the south of the pole of the horizon. In these locations the
meridian passage of the wandering star is always to the south of the pole of
the horizon. For horizons where the height of the pole is greater than the
inclination of the inclined orb of the wandering star, the wandering star
always has some equal heights in the east and some equal heights in the
west in the times that we have determined. For horizons where the height
of the pole is smaller than the inclination of the inclined orb of the
wandering star, for them the wandering star has some equal heights in the
east and some equal heights in the west, if its meridian passage is to the
south of the pole of the horizon. But if its meridian passage is to the north
of the pole of the horizon, then it is possible for this to happen to it, if it is
in the same ratio that occurs when its meridian passage is to the south, and
this [happens] for horizons with a slight inclination. But it is possible that
this result does not occur for it, and this for horizons with a strong
inclination.

But if the meridian passage of the wandering star is at the pole of the
horizon itself, then, in this day, the wandering star will have neither two
equal heights in the east nor two equal heights in the west, whether the
sphere is right or whether it is inclined. We shall establish this by a proof.
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Let the horizon be the circle ABC, let the meridian circle be ADC, and
the pole of the horizon the point D. Let the wandering star reach the merid-
ian at the point D.

I say that in this day the wandering star has neither two equal heights in
the east nor two equal heights in the west, but that any height it has in the
east is always unique and that any height it has in the west is always
unique.

C

B

A

E

L G K

D

M I N H

NorthSouth

Fig. I.36.1

Proof: We draw one of the muqan†aræt of height; let it be EGHI. We
cause an hour arc to pass through the point D; it cuts the muqan†ara EGHI
in two points, one to the east and the other to the west, whether the sphere
is right or inclined. If the wandering star rises in the east and sets in the
west, let it cross the muqan†ara at the two points G and I; let the point G be
to the east and the point I be to the west. So in its motion from the eastern
horizon towards the point D, the wandering star crosses the muqan†ara
EGHI. If its motion is from the north towards the south, then it arrives on
the muqan†ara EGHI in a point to the north of the circle DG; let this point
be the point K. And if the motion of the wandering star is from the south
towards the north, it arrives on the muqan†ara in a point to the south of the
circle DG; let that point be the point L. If the wandering star then descends
towards setting, and if its motion is from the north towards the south, then
it arrives on the muqan†ara in a point to the south of the circle DI; let this
point be the point M. And if its motion is from the south towards the north,
then it arrives on the muqan†ara in a point to the north of the circle DI; let
this point be the point N. So if the position of the wandering star is the
point K, we prove, as was proved at the end of Proposition 31, that the
wandering star arrives on the eastern part of the muqan†ara only in a single
point; if the position of the wandering star is the point L, then we prove, as
was proved at the end of Proposition 29, that the wandering star arrives on
the eastern part of the muqan†ara on it in a single point; for the position of
the wandering star in the west is the point M, we prove, as was proved at
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the end of Proposition 28, that the wandering star arrives on the western
part of the muqan†ara only in a single point; and if the position of the
wandering star is the point N, we prove, as was proved at the end of
Proposition 34, that the wandering star arrives on the western part of the
muqan†ara only in a single point.

The same holds for each of the muqan†aræt of height. The day when the
meridian passage of the wandering star takes place at the pole of the
horizon, then the wandering star has neither two equal heights in the east
nor two equal heights in the west. That is what we wanted to prove.

We also say that each of the seven wandering stars, if it moves from
the northern limit of its inclined orb towards the point of intersection of its
inclined orb and the circle of the equator, and if its motion is accelerated,
then, in the course of each of the days that pass between the limits of its
motion, in certain places on the Earth it sets on the eastern horizon and
later rises from the eastern horizon after having set on that horizon. Let us
establish this by proof.
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Let the circle ABCD be one of the horizons for which the height of the
pole is equal to the complement of the inclination of the orb of the
wandering star with respect to the circle of the equator, that is to say the
magnitude by which a quarter of a circle exceeds the inclination of the orb
of the wandering star. Let the circle BED be the meridian circle. Let the arc
BCD be the eastern half of the horizon and the arc DAB the western half of
the horizon. Let the arc DE be the maximum inclination of the orb of the
wandering star with respect to the circle of the equator; so the circle of the
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equator passes through the point E if the height of the pole is equal to the
complement of the inclination. Let the circle of the equator be the circle
AECG, and let the point G be the intersection of the circle of the equator
and the meridian circle, that is to say the northern intersection. So the arc
BG is equal to the arc DE. Let the pole of the equator be the point H. We
draw an hour circle centred on the pole H and with distance HB; let the
circle be BQI; so the arc IE is equal to the arc BG which is equal to the
inclination of the orb of the wandering star. The circle BQI is the path of
the limit of the inclination of the orb of the wandering star, which for the
orb of the sun is the tropic of Cancer; and for each of the remaining
wandering stars, it will be the circle corresponding to the tropic of Cancer.
So the horizon ABCD touches the circle BQI. Since the circle BQI is one of
the paths on which the wandering star performs its revolution, thus, on the
day when it is at the northern limit of its orb, the wandering star arrives at a
point of the circle BQI. Let the point at which the wandering star arrives on
the circle BQI be the point B. But the circle that passes through the point B
and through the pole of the equator is the circle BED, the circle BED is the
meridian circle for several horizons, and the great circle that touches the
circle BQI at the point B is one of the horizons whose meridian circle is the
circle BED. If the wandering star reaches its maximum inclination with
respect to the circle of the equator, it is then on the circumference of one of
the horizons whose meridian is the circle that passes through the centre of
the wandering star and the pole of the equator; let the circle ABCD be this
horizon. We draw the arc KO parallel to the circle of the equator,144 so that
the ratio of the arc KO to the arc OB is greater than any ratio of any
required time for the wandering star in its motion from the point B to the
point I to the inclination of the motion of the wandering star. Since the ratio
of KO to O B  is greater than any ratio of any required time for the
wandering star in its motion from the point B  to the point I  to the
inclination of the motion of the wandering star, the ratio of KO to OB is
greater than the ratio of the time KO to the inclination proper to the time
KO; so the inclination proper to the time KO is greater than the arc BO; let
the inclination proper to the time KO be the arc BP. We cause an hour arc
to pass through the point P; let it be PL. And we cause a great circle to pass
through the points H and K; let this circle cut the circle PL at the point L
and let it cut the circle BQI at the point Q. So the arc BQ is equal to the
time OK and the arc QL  is equal to the arc BP; so the arc QL  is the
inclination <proper> to the time BQ. If the wandering star passes through
the point B, then moves for a time equal to the arc BQ, then it travels to the

144 K is on the horizon and O on the meridian.
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point L. We make the arc BJ smaller than the arc OP and smaller than the
arc BO and we cause a great circle to pass through the points A, C, J; let the
circle be AJCS. This circle cuts the arc ED; let it cut it at the point S. Thus
the arc SD is equal to the arc BJ; but this circle, that is to say the circle
AJCS, cuts the arc KO and cuts the arc KL; let it cut the arc KL at the point
M. So the point M lies between the two points K and L. In fact, the arc KM
is the inclination of the arc KC with respect to the circle AJC and the arc BJ
is the maximum inclination of the circle ABC with respect to the circle
AJC; so the arc KM is smaller than the arc BJ and the arc BJ is smaller than
the arc OP; so the arc KM is much smaller than the arc OP. But the arc OP
is equal to the arc KL, so the arc KM is much smaller than the arc KL. So
the point M lies between the points K and L, so the point L is below the
circle AJCS and the point B is above the circle CJ. For the place whose
horizon is AJCS, the point B will be above its horizon and the point L
below its horizon. If the wandering star moves from the point B for the
time BQ, it travels to the point L; if the wandering star passes through the
point B that is above the horizon AJCS, then moves for the time BQ, it goes
below the horizon AJCS. But the motion of the wandering star is from the
direction from B towards Q; consequently, the wandering star sets at a
point on the arc JM. But the arc JCS is the eastern half of the horizon;
consequently, the wandering star sets on the eastern horizon.

Similarly, the arc IE is the inclination of the orb of the wandering star
with respect to the circle of the equator; so it is much greater than the
inclination proper to the time in which the wandering star completes half a
revolution. If the wandering star moves for a time equal to the arc BQI,
which is half a revolution, then the inclination of its motion is much
smaller than the arc IE; let the inclination of the motion of the wandering
star in the course of the time BQI be the arc IN. So if the wandering star
moves for the time BQI, it arrives at the point N. Since the wandering star
travels from the point L towards the point N, and the point L is below the
horizon and the point N above the horizon, consequently the wandering star
rises from [a point on] the arc MC, because in the course of this day, it does
not reach the circle of the equator. So if the wandering star reaches the
northern limit of its inclined orb, then it sets on one of the horizons, on the
eastern horizon, then rises from the eastern horizon after having set on it.

Similarly, if it passes through a point of the arc BG close to the point B,
then its state will be the same state [that has just been described]. In fact, if
we cause to pass through this point a horizon which we proceed to deal
with as we dealt with the horizon ABC, we obtain a figure like the figure
that we have explained. Similarly, the behaviour of the wandering star in
the second day, as it descends from the northern limit, passes through a
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point of the meridian circle between the points B and G. If we cause an
hour circle to pass through this point, it will correspond to the circle BQI. If
we cause to pass through the point of the meridian circle through which the
wandering star passes, and the hour circle passes, a great circle that touches
the hour circle, it will correspond to the circle ABCD. If we cause to pass
through <a point of> this great circle an hour arc corresponding to the arc
KO, whose ratio to the arc corresponding to the arc OB is greater than any
ratio for any required time for the wandering star to the inclination of the
motion of the wandering star, and if we suppose there is a point
corresponding to the point J through which we cause a great circle to pass,
as also through the two points A and C, we prove for this figure by similar
reasoning that the wandering star sets on the eastern half of this circle, then
rises on the same eastern half, [and we shall also prove] that this circle that
passes through the point corresponding to the point J is in all cases a
horizon of a place on the Earth, and it is one of the northern horizons since
the north pole is less than a quarter circle above it. So, at this place on the
Earth, the wandering star sets on the eastern horizon and rises from the
eastern horizon. Similarly, for any point of the circle parallel to the plane of
the equator that passes through this position on the Earth, the wandering
star sets to the east of the horizon and rise from it, if the point [on the orb]
for the path of the wandering star to be at its smallest is its point of contact
with the horizon.

This is how the motion of each of the seven wandering stars takes place
on each of the days in the course of which the wandering star moves from
the northern limit towards the circle of the equator until its path comes
close to the equator; between it and the equator there is less than the
inclination of half a revolution. It is in the course of this day that the
meridian passage of the wandering star will be at a point south of the circle
of the equator. So this point will lie on the circle BED and [will be] to the
south of the point E. So if the whole arc that corresponds to the arc ES is
greater than the inclination proper to half a revolution, then the wandering
star rises on the eastern horizon because its point of meridian passage will
be above the horizon, and it will rise either from [a point on] the arc
corresponding to the arc MC, or from [a point on] the arc corresponding to
the arc CS.

Thus we have proved from what we have established that, for each of
the seven wandering stars, if its motion is from the northern limit towards
the circle of the equator, and if its motion is accelerated, then for any day
between the two endpoints of this motion, in certain places in the north of
the Earth, it sets on the eastern horizon and then it rises from the eastern
horizon. That is what we wanted to prove.
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Similarly, we say, for each of the seven wandering stars, that, if it is
moving from the southern limit towards the point of intersection of its
inclined orb and the circle of the equator, and if its motion is accelerated,
then for any day between the two endpoints of its motion, in certain places
on the Earth, it rises from [a pint on] the western horizon and, after its
rising, sets on the western horizon. Let us establish that by means of a
proof.
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Let the circle ABCD be one of the horizons for which the height of the
pole above it is equal to the complement of the inclination of the orb of the
wandering star with respect to the circle of the equator. Let the circle
DEBG be a meridian circle; let the arc DEB be the half below the horizon
ABCD; let the arc BAD be the western half of the horizon; let the south
pole of the equator be the point H′; then the arc H′B is the complement of
the inclination of the orb of the wandering star and the arc H ′B  is the
depression of the pole145 with respect to the horizon. Let the arc BG be the
inclination of the orb of the wandering star, then the point G will lie on the
circle of the equator. Through the point G we draw the circle of the
equator, let the circle be AGCE. We draw the arc KO146 such that the ratio
of the arc KO to the arc OB is greater than any ratio for any required time

145 That is, the negative height of the pole.
146 The arc KO is an arc of an hour circle, K is on the horizon, O is on the meridian.



420 CHAPTER II: IBN AL-HAYTHAM

for the wandering star in its motion from the point B to the complement of
the semicircle to the inclination of the motion of the wandering star on the
side towards the beginning of its motion. We take the point H′ as a pole
and, with distance H′B, we draw an hour circle; let the circle be BQI. This
circle is the path of the southern limit which, for the orb of the sun, is the
tropic of Capricorn and for the orbs of the remaining wandering stars is the
circle corresponding to the tropic of Capricorn. We cause a great circle to
pass through the two points H′ and K; it cuts the circle BQI; let it cut it at
the point Q. So the arc BQ  is similar to the arc OK and the inclination
proper to the time BQ is greater than the arc BO; let the inclination proper
to the time BQ be the arc BP. We cause an hour arc to pass through the
point P; let it be PL; let it cut the circle H′K at the point L. We take the arc
BJ, smaller than the arc OP and smaller than the arc BO. We cause a great
circle to pass through the two points A and C and through the point J; let
the circle be AJCS; let it cut the circle H′KL at the point M. We prove that
the point M lies between the two points K and L, as has been proved in the
preceding proposition. Thus the point L will be above the circle AJC, the
point B will be above the circle AJC, and the arc QL is the inclination of
the time BQ . So if the wandering star passes through the point B, then
moves in the course of the time BQ, it arrives at the point L; but the point K
is above the circle AJC and the point L is above the circle AJC. So if the
wandering star moves in the course of the time BQ, then it crosses the arc
JM; but the arc JAS is the western half. Thus, for the place whose horizon
is the circle AJCS, if the wandering star arrives at the southern limit of its
orb, it rises, on it, from the western horizon, from [a point of] the arc JMS.
Similarly, the arc IH′ is the inclination of the orb of the wandering star
because it is equal to the arc BG; so the arc IH′ is much greater than the
inclination proper to a single half revolution. Let the inclination proper to a
single half revolution be the arc IN. So if the wandering star moves in the
course of the time BQI, it arrives at the point N; so the wandering star
travels from the point L to the point N; but the point L is above the horizon
and the point N is below the horizon; so the wandering star crosses the
horizon and goes below the horizon, and the wandering star sets at [a point
of] the arc MA, because in the course of this day it cannot reach the circle
of the equator. Thus the wandering star, on the day it arrives at the southern
limit, rises on the west of this horizon and sets in the west of this horizon.

Similarly, it rises on the west of each of the horizons of the points of
the circle parallel to the equator, [a circle] that is on the surface of the Earth
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and that passes through the first place of the Earth,147 if the point of the
path that is the smallest of the paths of the wandering star is the point of
contact with this horizon. These horizons are the same as the horizons that
have been used in the preceding proposition.

We prove, as we proved in the preceding proposition, that for any day
between the two endpoints of its motion, from the southern limit towards
the circle of the equator, the wandering star rises on the western horizons of
northern places and sets in the west of these horizons. That is what we
wanted to prove.

We have demonstrated from what we have established in this book, the
configuration of the motions of each of the seven wandering stars and we
have proved that each of the seven wandering stars can, at certain times, in
the same day and [when] in the easterly direction, have equal heights in all
places on the Earth in which the day for the wandering star has been
divided into two halves; that at certain times it can have, in the same day,
in the westerly direction, equal heights in all places in the Earth in which
the day for the wandering star has been divided into two halves; that in
certain places on the Earth, at certain times it sets on the eastern horizon
and on the same day rises on the eastern horizon and that, at certain times
in the same place on the Earth, it rises on the western horizon and in the
same day sets on the western horizon. That is what we wanted to prove.

Completed.

147 This is a place on the Earth chosen initially for the purpose of observation, a
place mentioned earlier (p. 419); but the period of observation is different. The
argument is identical with that for the previous case, concerning rising and setting in the
east.
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CHAPTER III

THE VARIETY OF HEIGHTS: A PROPÆDEUTIC
TO THE CONFIGURATION OF THE MOTIONS

OF THE SEVEN WANDERING STARS

3.1. INTRODUCTION

In The Configuration of the Motions of Each of the Seven Wandering
Stars, Ibn al-Haytham devotes a substantial part of his work to investigating
the variation in height of the wandering star between its rising and setting.
With Ibn al-Haytham, the height of a body in the course of its observed
movement became one of the principal subjects for astronomical research. It is
thus important to retrace the development of his research on this topic, at least
in part – the more so since he himself states in the introduction to The
Configuration of the Motions that he had already begun to investigate this
problem in some writings that were now out of date;1 as he puts it, he wrote on
the height and related questions in ‘the way of mathematicians’ and according
to ‘known principles’. By this he means that in the past he considered heights
using the  method traditional in astronomy and according to its accepted
standards, and that in The Configuration of the Motions he is returning to the
matter of these (now superseded) writings, which he treats using a new
method and new principles.

This puts the historian in a privileged position, and one rarely encountered
in the history of the mathematical sciences in Arabic. The historian would be
able to actually see how far Ibn al-Haytham had travelled between the
obsolete texts and The Configuration of the Motions, and could thus come to a
better understanding of what is new about the latter treatise. In addition it
would be possible to put Ibn al-Haytham’s different versions into order.
However, Ibn al-Haytham does not give any exact title for these earlier
writings, but merely speaks of ‘our books’. We know, however, from the list

1 See above, p. 260.
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of his works supplied by old biobibliographers,2 that he had devoted at least
two treatises to height. For the first one, whose title is On the Ratios of the
Hour Arcs to their Heights (Fî nisab al-qusîy al-zamæniyya ilæ irtifa‘ætihæ), no
copy is known to exist. The second is called On the Variety that Appears in
the Heights of the Wandering Stars (hereafter On the Variety of Heights) and
has come down to us in a single manuscript, which is difficult to read. This
document is the more valuable for being the solitary piece of evidence that
allows us to see something of the development of Ibn al-Haytham’s thought
on the subject of height.

According to what we are told in the lists of the old biobibliographers, Ibn
al-Haytham composed these two treatises before 1038. That would confirm (if
confirmation were needed) that, at the same time that he was writing his books
criticizing Ptolemaic astronomy, he was pursuing an innovative programme of
research on celestial motions – the winding motion, the motion of the Moon –
and on the height of observed motions.

Let us now turn to the book On the Variety of Heights. It does not include
any preliminary material in which Ibn al-Haytham might have explained his
intentions and purpose, instead it begins immediately with definitions. These
are followed by seven propositions in plane geometry – lemmas – all of which
are used later on. After these lemmas we have nine propositions concerning
height. They are interconnected and are proved with the help of the lemmas.
The logical implications provide a coherent structure, and confirm that
nothing extraneous has slipped into this initial part of the text. Nor has
anything been omitted in this preliminary section, except perhaps some kind
of introduction or (which is Ibn al-Haytham’s usual custom) an explanation of
the purpose of the work. But there is no positive reason to support any claim
that such preliminary material has been lost. All the definitions given at the
beginning of the book relate to a given place on the terrestrial sphere, taking it
as known that the radius of this sphere is negligibly small compared to that of
the celestial sphere. We assume, also, that the given place is the centre of the
celestial sphere, and for every place we have an associated horizon and a point
Z on the celestial sphere called the zenith.

2 Ibn al-Haytham and Analytical Mathematics. A History of Arabic Sciences and
Mathematics, vol. 2, Culture and Civilization in the Middle East, London, 2013, pp.
414–15 and 401–2.
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Throughout the investigation in this book, the planes of reference are the
horizon AC and the local meridian plane. In the research he undertakes here,
Ibn al-Haytham does not need to refer to a system of coordinates. It is a
different matter in The Configuration of the Motions, where he has recourse to
several systems of coordinates and in particular to the system of equatorial
coordinates. This is an important difference, which for the moment we shall
merely bear in mind.

Several of the definitions given at the beginning of this treatise relate to
the notion of height (or altitude) of a wandering star. Ibn al-Haytham
considers a general point M on the celestial sphere. With this point, we
associate a great circle ZM of the celestial sphere; this is the altitude circle.
The circle meets the horizon at the point H; the arc HM is called the arc of
altitude, or simply the altitude or height of the point M. The horizontal plane
through M cuts the meridian circle in two points G and H, for which we have
HM CG AE= =  (see Proposition 8). The height of the point M is given by one
of the arcs CG or AE . The height of an arc is the difference between the
heights of its two endpoints.

The definitions are followed by seven propositions in plane geometry. The
propositions are concerned with geometrical properties of the circle that will
allow Ibn al-Haytham to proceed from an equality of areas to an inequality
– or an equality – of arcs. So it is clear that Ibn al-Haytham has proved these
propositions because he intends to compare heights. We shall comment on
them in more detail below, but by way of example let us take a look at the
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fifth one. Ibn al-Haytham proves that if, in a circle, a chord BD is divided at

two points K and E in such a way that KB KD⋅ = 1
4

BD DE⋅ , and if we draw

parallel straight lines KM and EC so that the angle BEC is less than a right
angle (we take M and C on the smaller arc BD), then BM MC <  .

Once he has proved these lemmas, Ibn al-Haytham turns to the real
subject of his book with nine propositions. He considers two positions of a
point that moves on an hour circle. The size of the arc separating the two
positions defines the time the moving point takes to traverse this arc, since the
motion is circular and uniform. From Proposition 9 onwards, Ibn al-Haytham
uses the term ‘time’ to designate the arc, and the expression ‘height of the
time’ to designate the height of the arc. As we have noted, he also measured
time as an arc in The Configuration of the Motions, an identification which
allowed him to apply the theory of proportions.

Ibn al-Haytham considers a point that moves on an hour circle, describing
an arc whose midpoint is given. He compares the height associated with the
first half of the trajectory to the height associated with the second half. He
carries out this investigation for a variety of places. He begins with a place
where the celestial sphere is a right sphere, then one where it is an inclined
sphere. He distinguishes between the various possible positions of the hour
circle: an hour circle that cuts the horizon, an hour circle completely above the
horizon, and the special case where the hour circle passes through the zenith.

From the tenth proposition of the treatise onwards, the statements of the
propositions are in kinematic terms: the wandering star is treated simply as a
point moving on the celestial sphere. Ibn al-Haytham then investigates
increments in height for equal increments of time. In other words, what he is
examining is the fact that the height is a concave function of the time. But he
does not deal with this variation in continuous terms. Here, Ibn al-Haytham
considers only three points: the origin, the endpoint that lies on the meridian
and the midpoint of the corresponding arc. In The Configuration of the
Motions , he was to go beyond this point by point investigation and
deliberately set about engaging in a continuous investigation of the variation.

This is not the only difference between The Variety of Heights and The
Configuration of the Motions. In addition to the ones we have already pointed
out, we may note another one, which is equally important. We have mentioned
that in the first treatise Ibn al-Haytham investigates the uniform motion of a
point that is constrained to describe an hour circle. In contrast, in The
Configuration of the Motions he considers the apparent motion of a planet, a
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motion that is composed from three uniform circular motions. This compound
apparent motion does not take place along an hour circle.

Investigating the variation of this apparent motion in continuous terms
requires mathematical methods that go far beyond those of plane geometry,
employed in The Variety of Heights. For example we find an investigation of

the variation of trigonometrical expressions such as sin x

x
, tan x

x
, sin kx

x
.

A comparison between the two treatises reveals unequivocal evidence of
the lines of development of Ibn al-Haytham’s work on heights and also, indi-
rectly, his work in astronomy. The motion with which he is concerned is no
longer that of a point along an hour circle, but the apparent motion of a
wandering star; the investigation of variations in height is no longer carried
out point by point but continuously; the mathematics to which he appeals is no
longer simple plane geometry but geometry involving infinitesimals.

3.2. MATHEMATICAL COMMENTARY

In this commentary we refer the reader to the actual propositions and to
the figures provided. Here, we shall merely endeavour to indicate what ideas
are to be found in the propositions and what difficulties, if any, are to be
encountered. That is, the commentary is not intended to be read separately
from the propositions presented and translated in this volume. To avoid
repetition, we have decided – because the propositions are straightforward –
not to write them out in detail.

Proposition 1. — The idea behind the proof is as follows: the similarity that
transforms the figure ABC into the figure DEG transforms H to I, since

AH

HC

DI

IG
= .

AHB DIEˆ ˆ> ; so the similarity transforms B to E. It follows that

AB

BC

DE

EG
= .

Proposition 2. — In this proposition, which plays an important part in the
treatise, we assume that
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BG · GD = 1
4

 BD · DE;

and we want to deduce from this that BI HC= . We have

AH2 = 4GH2 = 4BG · GD = BD · BE = BC2,

hence
AH = BC  and  BH AB HC= = .

Conversely, if we have these equalities, we deduce from them that
AH BC= , hence AH = BC and BD · BE = AH2 = 4GH2 = 4BG · GD.

So it is a matter of transforming an equality of arcs into an equivalent
equality of areas; these areas are products of segments cut off on the diameter
by the ends of the arcs in question.

Proposition 3. — The assumptions for this proposition are the same as in the
previous proposition, apart from the fact that BD is now a chord smaller than a
diameter; the conclusion is thus that AP PB> , whereas in the previous case
we had an equality.

In the course of the proof, this proposition is reduced to the previous one
by constructing the semicircle with diameter BD. So we have KI IB=  and the
arcs AP , PB are found from the arcs KI  and IB by projection of BIK  onto
BPA (the projection being orthogonal to BD).

Using another auxiliary construction, we introduce the arc BLK similar to
the arc APB and we now need to prove that KL LB> , that is, that L lies
between Q and B. We first establish that O, on the arc KLB, lies between Q
and B, then that L lies between O and B (see Fig. III.3, p. 444).

To do this it is sufficient to note that angle BHI is obtuse, since angle BHL
is a right angle. Thus we can see that the arc BLK is the transformed version of
the arc BIK, the transformation concerned being a combination of the previous
transformation and a similarity transformation with centre B. We reduce
proving the inequality AP PB>  to proving KL LB> .

In essence, Ibn al-Haytham’s argument in this proof consists of using this
transformation to get two arcs of a circle with the same chord BK.

Proposition 4. — This proposition is analogous to the previous proposition,
with angles HGD and AED being acute instead of being right angles.
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The proof is different. Here we make use of the diameter BK through the
point B, which is perpendicular to the straight lines HM and AL.

We prove that KB · BL = 4HG · GI by appealing to the hypothesis and to
the fact that we have a circle  – using the power of the point G with respect to
the circle. But we know that H G · GI < HM  · MI, so HG · GI < B M · MK
(power of the point M). We then construct the point N on BM such that

KN · NB = 1
4

KB · BL = HG · GI.

In Proposition 2, we have BP PA= , and since H lies between P and A, we
have BH HA> .

Note: In the statement of this proposition Ibn al-Haytham imposes the
following condition: the chord AC cuts off an arc no greater than a semicircle.
This condition is not repeated in the ensuing formal setting-out of the
proposition (ekthesis). Let us look at this latter in detail.

The chord BD cuts AC in E, and the point G on BE is taken in such a way
that

DG · GB = 1
4

DB · BE.
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We project B, G, E into B, M, L on the diameter BK, and we have

KM · MB = 1
4

KB · BL.

If NP is parallel to AC, we know that BP PA=  when N lies between B
and L (Proposition 2). We draw MH parallel to AC; if we know that N lies
between B and M, we can conclude that BH HA> .

Let d = BK the diameter of the circle and let a = BL; the abscissa x = BN
of the point N on the axis BK is determined by the equation

(1) x (d – x) = 1
4

ad.

This equation has two roots between 0 and d.

Since a(d – a) – 1
4

ad = a ( 3
4

d – a), we can see that a is between the two

roots if a ≤ 3
4

d, but lies outside the interval between the roots if a > 3
4

d. Thus,

when a  ≤ 3
4

d, only the smaller root gives us N between B and L, but when

a > 3
4

d, both roots do so.

Let y = BM be the abscissa of M ; the assumption that KM · MB >
1
4

KB · BL can be written y (d – y) – 1
4

ad > 0. Thus y is always between the

roots of equation (1), so we can always choose a point N (determined by the
smaller root of (1)) lying between B  and M , and can thus complete the
argument; and we can see that the condition in the statement of the proposition
is superfluous.

We may also observe that, where a ≤ 3
4

d, that is where AC cuts off an arc

greater than two-thirds of a circle, the condition ‘N lies between B and L’
implies ‘N lies between B and M’.

We may also wonder why Ibn al-Haytham gave this condition in the
statement of the proposition and did not repeat it in the formal setting-out of
the result prior to giving his proof. Did he need it in some of the propositions
that were to follow?
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Proposition 5. — We have already mentioned this proposition (p. 426). All
we need do here is to point out that the data and the hypotheses are analogous
to those in the previous proposition, the only difference being that the lines of
projection CE, MK are no longer perpendicular to the diameter through the
point B.

The proof again consists in reducing this case to the one in which BD is a
diameter of a circle; but this time the circle is not the one we were given and
BD does not change.

Proposition 6. — The proposition establishes that the condition AG < A D
implies CE BE< , that AG = AD implies CE BE=  and that AG > AD implies
that CE BE> .

So we are concerned with a proposition on the variation of the ratio CE

BE
 as

a function of the ratio AG

AD
, where AC is a diameter of the circle, the point B

lies on the upper semicircle, with AB > BC, the point G lies on AB and GE is
parallel to AC.
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We can give an analytic proof of this proposition: let ADBˆ � = ∈





θ π π
2

,

and ADEˆ  = ∈[ ]ϕ θ π, . Let us put r = AD, the radius of the circle, and h = EE′ =

GG′, the distance from EG to AC. We have DABˆ  = π θ
2 2

− , EDCˆ  = π ϕ−  and

BDEˆ  = ϕ θ− ; thus h AG r= =cos sin
θ ϕ
2

.
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The inequality CE EB<  is equivalent to π ϕ ϕ θ− < − , that is π θ ϕ+ < 2 .
Since π θ+  and 2ϕ  are in the interval π π, 2[ ] in which the cosine is an

increasing function, the inequality CE EB<  is equivalent to − <cos cosθ ϕ2 ,

or 0 2 2
2

22 2
2

2 2
2 2< + = −



 = −( )cos cos cos sinθ ϕ θ ϕ h

r AG
r AG  where again AG < r. In

the same way CE EB=  is equivalent to AG = r and CE EB>  is equivalent to
AG > r.

We may also note that, if λ π ϕ
ϕ θ

= = −
−

CE

EB
, then ϕ λθ π

λ
= +

+ 1
, which is a

decreasing function of λ  because θ π< ; since sin ϕ is a decreasing function of

ϕ in the interval π π
2

,




, we can see that AG

r
= sin

cos

ϕ
θ
2

 is an increasing function

of λ  (θ being constant). Thus CE

EB
= λ  and AG

AD

AG

r
=  change in the same

direction. For λ = 1, ϕ θ π= +
2 2

 and AG

r
= 1, so λ < 1 ⇔ AG < r and λ > 1 ⇔

AG > r.

Proposition 7. — In this proposition, the arc ABC is no longer greater than a
semicircle and the chord GE parallel to AC cuts AB and BC in their midpoints
D and K respectively. We then have BE EA>  and BG GC> ; so we can draw
conclusions about inequalities of arcs from equalities of line segments.
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Note: In the statement of this proposition as well as in the formal setting-out

that follows, Ibn al-Haytham gives the condition ABC ≤ 1
2

circle, which

implies that CABˆ  and ACBˆ  are acute.

If ABC > 1
2

circle, it is possible for one of the angles CAB or ACB to be

obtuse or a right angle. If ACBˆ  is obtuse, then KI cuts the arc GC and we have
BG < GC. If ACBˆ  is a right angle, then D is the centre of the circle, the points
G and I coincide and CG = GB.

If ACBˆ  and ABCˆ  are acute, we have, as in the case treated in the pro-
position, CG GB< .

So if ABC > 1
2

circle, we have three possibilities for the arcs BG and GC.

This marks the end of the first group of propositions that are lemmas in
the investigation of height. The second group of propositions to be employed
in the investigation of height is made up of the nine propositions that follow.
These propositions deal with the investigation of the height of a point that
moves on an arc.

Proposition 8. — Ibn al-Haytham first establishes that the height of a point G
on the celestial sphere can be measured along the local meridian, as the arc
between the horizon and the circle through G parallel to the horizon. This
follows from the fact that the local zenith, E, is the pole both of the horizon
and of the parallel circle concerned.

Proposition 9. — Here, Ibn al-Haytham measures the height of an arc of an
hour circle along the local meridian, which is between the circles through the
ends of the arc parallel to the horizon. This follows from the previous
proposition if we consider the difference between two arcs.

Proposition 10. — The statement of this proposition asserts that heights and
times are the same if we have a right sphere. In fact, in this case, the altitude
circle is a meridian circle. The proof considers only the case in which the
point E lies midway between B and D.

We may note here that the statement is in kinematic terms, a wandering
star being treated as a point moving along the equator on the celestial sphere.
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Proposition 11. — In this proposition, Ibn al-Haytham again investigates the
motion of a wandering star, which is treated as a point moving on the celestial
sphere, and supposes the point describes an hour circle BIH parallel to the
equator but not identical with it.

If I is the midpoint of BH , then the height of IH  is greater than the height
of BI . Thus, in equal increments of time the heights decrease from H to B.
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We may note that, here too, Ibn al-Haytham considers only the midpoint I
of the arc BH and, as in Proposition 10, he does not prove that the height is a
concave function of the time, which he could have proved had his
investigation of the variation been carried out in continuous terms, as he was
to do later in The Configuration of the Motions of the Seven Wandering Stars.
The present investigation considers only discrete points in the motion.

Here too, the proof depends on an inequality being implied by an equality.
The equality of the time intervals is transformed into an equality of areas by
the converse of Proposition 2, applied to the circle BHD; then that equality of
areas implies an inequality of arcs, by Proposition 3, applied to the circle
BCD.

Proposition 12. — In this proposition, Ibn al-Haytham considers the motion
of a point moving on an hour circle BIH that is inclined with respect to the
horizon – so the celestial sphere is no longer right; but he supposes that the
point B is at the zenith.
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If I is the midpoint of BH , the height of IH  is less than the height of BI .
Thus, for equal times of travel, the heights increase. As in the previous
proposition, the investigation is carried out in discrete terms rather than
continuous ones. The latter, as in the other cases, will appear only in The
Configuration of the Motions.

The proof is analogous to that of the previous proposition: the equality of
times is expressed as an equality of areas that, by Proposition 4, implies an
inequality of arcs.

We may note that in the proof, but not in the statement of the proposition,
Ibn al-Haytham calls upon the superfluous hypothesis found in Proposition 4
(AC cuts off an arc greater than a semicircle).

Proposition 13. — The statement is analogous to that of the previous
proposition except that the point B is no longer at the zenith. Here we suppose
B is situated between the equator and the zenith. This condition is not made
explicit in the statement, but it is necessary to ensure that AB BC> . We also
suppose that ABC is not greater than a semicircle, so that we can use
Proposition 5. This result allows us to deduce that CG GB> , working from
the equality of areas that, as in the previous propositions, expresses the
equality of the times HI  and IB. Proposition 6 is not used.

Proposition 14. — The motion considered is that of a point starting from a
point H on the horizon and arriving at the point B on the meridian by moving
along an hour circle HIB. The point I is the midpoint of HB, so the times HI
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and IB are equal, but the corresponding heights CG EA=  and GB or EB,
depending on the figure, may be equal or unequal, with either being the
greater. This follows from Proposition 6.

Proposition 15. — The set-up is analogous to that in the previous proposition,
except that this time the hour circle of the motion touches the horizon at the
starting point A. We suppose that AB DB=  and, thanks to Proposition 7, we
can draw the conclusion that the height CH AG=  of AD is less than the
height of DB (which may be HB or GB).

Proposition 16. — In this final proposition, Ibn al-Haytham wishes to
compare the height of the time EI  with that of time IB.

In the first case he investigates ( AB BC< ), we have AG as the height of
the point I and EG  the height of the time EI ; now EG AG< .
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Ibn al-Haytham distinguishes three cases:

1. ME GL= , so AG GB=  and EG GB< ; and GB is the height of the time
IB. So the height of the time EI  is less than that of the time IB; it cannot be
equal to it.

2. ME GL< , so AG GB<  and EG GB< . The height of the time EI  is
less than that of the time IB.
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3. ME GL> , so AG GB> ; we cannot draw any conclusion, because a
comparison between EG  and GB depends on the position of the point E, that
is, on the particular position of the hour circle concerned.

In the second version of the figure ( AB BC> ), the problem is the same.
We have CH  as the height of the point I, NH  the height of the arc EI  and
HB the height of the arc IB. We again have three cases:

1. CN LH= 2 ; here again the height of the time EI  is less than that of the
time BH .

2. CN LH< 2 ; we prove that the height of the time EI  is less than that of
the time BH .

3. CN LH> 2 ; in this case we have CH BH> . We cannot draw any
conclusion because a comparison between NH  and BH  depends on the
position of the point E, that is, on the position of the chosen hour circle.

Thus, in both the first and second versions of the figure, the height of the
time EI  is less than the height of the time IB and in the third case we have
three possibilities, depending on the position of E.

Ibn al-Haytham may have written up this proposition a bit too quickly,
which would explain his accidentally confusing the height of the point I with
that of the arc EI .

3.3. HISTORY OF THE TEXT

In the three old lists that give titles of works Ibn al-Haytham had written
before 1038, lists that are transmitted by al-Qif†î, Ibn Abî UÒaybi‘a and the
anonymous author of the Lahore manuscript, we find the title Fî al-ikhtilæf fî
irtifæ‘æt al-kawækib, ‘On the variety of heights of the <wandering> stars’. This
book has come down to us under a fuller title: Fî mæ ya‘ri≈ min al-ikhtilæf fî
irtifæ‘æt al-kawækib, ‘On the variety that appears in the heights of the
<wandering> stars’.3 This last title is most probably the one that Ibn al-
Haytham wanted to give his book, a title that was then slightly shortened by

3 R. Rashed, Ibn al-Haytham and Analytical Mathematics, p. 400.
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the old biobibliographers – a procedure which is by no means unusual. In any
case, the text exists in only one manuscript. It forms part of the collection
FætiÌ no. 3439 (fols 151r–155r) of the Süleymaniye Library in Istanbul. This
collection contains other texts by Ibn al-Haytham, such as his Exhaustive
Treatise on the Figures of Lunes. The manuscript was copied in
806/1403–1404. The text is difficult to read because the ink is pale, which,
with the passage of time, has made certain parts difficult to decipher. The
copyist’s writing is in rather untidy naskhî, and the text has about twenty
places where a single word has been omitted and five omissions of a group of
more than two words. We have also noticed numerous errors of transcription,
notably of letters for geometrical points, together with a certain number of
errors in Arabic – in particular grammatical ones – which, on examination,
seem to be due to the copyist. Nevertheless, once a text has been established,
these accidents and mistakes do not in any way obscure the meaning.
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In the name of God, the Compassionate the Merciful
Lord, make our task easy and do not raise up difficulties

TREATISE BY AL-ÎASAN IBN AL-ÎASAN
<IBN AL-HAYTHAM>

On the Variety that Appears in the Heights
of the Wandering Stars

The horizon is a great circle that divides the sphere of the Universe into
two equal parts. The meridian circle is the great circle that passes through
the zenith and through the two poles around which the sphere moves; and it
is perpendicular to the horizon. The circles of altitude are great circles that
pass through the zenith and are perpendicular to the horizon.

The two poles of the sphere are two endpoints of one of its diameters,
and the two poles remain fixed while the sphere moves. The pole of a circle
is a point such that all the straight lines that are drawn from it to the
circumference of the circle are equal; and any circle on a sphere has two
poles.

The hour circles are circles of unequal sizes generated by the motion of
the sphere, and among them there is a single great circle. They are all
parallel and their two poles, for all of them, are the two poles of the sphere,
around which it moves; those of them that are the closest to the pole are the
smallest. The hour <arcs> are parts of these circles.

The circle of the equator is the greatest circle that the sphere describes
by its motion.

The arc of altitude of a circle of altitude is <the arc> between the point
that has a height with respect to the horizon, and the horizon.

A right sphere is one whose two poles lie on the circumference of its1

horizon. An inclined sphere is one for which one of the two poles is visible
above the ground,2 and the other hidden beneath it. Any point on the sphere
has a height with respect to the horizon and with respect to any plane

1 That is the horizon of the place considered.
2 He means the horizon of the place considered.
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parallel to the horizon in a given time and at a given altitude;3 I call the
altitude the height for this time. And if its height is more than that altitude,
then I call the excess of the second altitude over the first altitude the height
of the second time.

<Proposition 1>: If we divide the bases of two similar segments of circles
in the same ratio and if we draw from the points of division two straight
lines at equal angles, then they [these lines] divide the two arcs in the same
ratio.

Example: Let ABC, DEG be two similar segments; we put the ratio of
AH to HC equal to the ratio of DI to IG and we draw HB and IE at two
equal angles. I say that the ratio of the arc AB to the arc BC is equal to the
ratio of the arc DE to the arc EG.
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Proof: It cannot be otherwise. If that were possible, then let the ratio of
the arc AB to the arc BC be equal to the ratio of the arc DK to the arc KG.
We join AB, BC, DK, KG. Since the arcs ABC, DEG, which are similar,
have been divided in the same ratio, the arcs BC and KG are similar. So the
angles BAC, KDG  are equal. But the angles ABC and GKD are equal
because the two points B and K are corresponding points. So the two tri-
angles ABC, DKG are similar. So the ratio of BA to AC is equal to the ratio
of DK to DG. But the ratio of AC to AH is equal to the ratio of GD to DI,
by our hypothesis. So, using the ratio of equality, we have that the ratio of
AB to AH is equal to the ratio of KD to DI. But the two angles BAH and
KDI are equal; so the triangles BAH and KDI are similar and their angles
are equal. So the angle AHB is equal to the angle DIK. Which is not
possible.4

So the ratio of the arc DK to the arc KG is not equal to the ratio of the
arc AB to the arc BC; so the ratio of the arc AB to the arc BC is equal to the
ratio of the arc DE to the arc GE. That is what we wanted to prove.

3 The translation is literal. The meaning becomes clearer in what follows.
4 If K ≠ E, because by hypothesis the angles AHB and DIE are equal.
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<Proposition 2>: If in a circle we draw one of the diameters; if we
take any two points such that the product of the two parts cut off by the
first point, one part [multiplied] by the other, is equal to a quarter of the
area enclosed by the whole diameter and the part cut off by the second
point and if we draw from these two points two perpendiculars to the
diameter that end on the circumference, then on the side towards the end of
the diameter they cut off two equal arcs.

Example: In the circle ABCD we draw the diameter BD and on it we
take two points E and G such that the product of BG and GD is equal to a
quarter of the area enclosed by the whole diameter and BE; if we draw GH
and EC at right angles [to BE], I say that the arc BH is equal to the arc HC.
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Proof: We extend HG to A and we join BC. Since BD is a diameter of
the circle and GH is a perpendicular to the diameter, the straight line AG is
equal to the straight line GH; so the square of AH is four times the square
of GH. But the product of DG and GB is equal to the square of GH; so the
square of AH is four times the product of DG and GB. But the product of
DB and BE is four times the product of DG and GB; so the product of DB
and BE is equal to the square of AH. But, since DB is a diameter and CE is
a perpendicular, the product of BD and BE is equal to the square of BC. So
the square of AH is equal to the square of BC and AH is equal to BC. So the
arc AH is equal to the arc BC. If we take away the common arc BH, there
remains the arc AB equal to the arc CH. But the arc BH is half of the arc
AH, because AH is perpendicular to the diameter; so the arc BH is equal to
the arc HC.

Using this method, we prove that, if we cut off from the circumference
two equal arcs and if we draw from them two perpendiculars to the
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diameter, then they [the perpendiculars] divide the diameter in this ratio.5

That is what we wanted to prove.
<Proposition 3>: If in a circle we draw a chord that cuts off from it an arc
smaller than a semicircle; if we take on the chord two points such that the
product of the two parts into which it is cut by the first point, [the product
of] the one and the other, is equal to a quarter of the area enclosed by the
whole straight line and the part cut off by the other point; if we draw from
the two points two perpendiculars that end on the arc, then on the side of
the end of the chord they [the perpendiculars] cut off two unequal arcs such
that the smaller is on the side towards the endpoint <B> of the chord.

Example: In the circle ABCD, there is the chord BD which cuts off
from it an arc BAD that is smaller than a semicircle. We take two points G
and E on the chord in such a way that the product of DG and GB is equal to
a quarter of the area enclosed by DB and BE. We draw from the points E
and G the two perpendiculars AE and GP; I say that the arc AP is greater
than the arc PB.
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Proof: We construct on the straight line BD a semicircle BKD and we
draw EA as far as K and GP as far as I; we join BHK and BNA, AD and DK.

Since BD is a diameter of the circle BKD and we have put the product
of DG and GB equal to a quarter of the area enclosed by DB and BE, and
KE and IG are two perpendiculars, we have that the arc IB is equal to the
arc IK, from what has been shown in the preceding proposition. But since

5 That is, the division has the property described in the statement of the
proposition.
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the angle KDE is greater than the angle ADE, the arc KB is greater than the
arc similar to the arc AB.

We construct on the straight line BK an arc BLK similar to the arc AB.
We draw IM perpendicular to BK; it cuts the straight line KH because the
angle IHK is acute – it is in fact equal to the angle BKE. Since the arc KI is
equal to the arc IB, and IM is a perpendicular, so KM is equal to MB. But
MQ is a perpendicular; so the arc KQ is equal to the arc QB. So the arc KO
is greater than the arc OB; but the angle BHI is greater than the angle BGH
because it is exterior to the triangle. We cut off from it an angle BHL equal
to BGH. So the straight line HL divides the arc OB. But we have proved
that the arc KO is greater than the arc OB; so the arc KL is much greater
than the arc LB. Since the straight line HG is parallel to the straight line
AK, the ratio of KH to HB is equal to the ratio of AN to NB. But the angle
BHL is equal to the angle BGH and the arc KLB is similar to the arc APB.
So the ratio of the arc KL to the arc LB is equal to the ratio of the arc AP to
the arc PB. But the arc K L is greater than the arc LB. So the arc A P is
greater than the arc PB. That is what we wanted to prove.

<Proposition 4>: If in a circle we draw a chord that cuts off from it an arc
that is not greater than a semicircle;6 if we divide the arc into two equal
parts and if we draw from the point of division a straight line that meets the
chord at an acute angle and ends on the circumference of the circle; if on
the straight line we take a point [that lies] between the arc and the first
chord, in such a way that we make the product of the two parts of the
whole straight line one and the other <equal to> a quarter of the area
enclosed by the whole straight line and the part that ends at the chord; and
if we draw from this point a straight line parallel to the initial chord, then it
divides the two arcs that are on either side of it into two unequal parts such
that the greater of them is on the side towards the endpoint <B> of the
segment.

Example: In a circle ABCD we draw the chord AC. We divide the arc
ABC into two equal parts at the point B. We draw the straight line BED, at
an acute angle;7 we take a point G on this line and we make the product of
DG and GB equal to a quarter of the area enclosed by the straight lines DB,
BE. We draw the straight line GHI parallel to CA. I say that the arc BH is
greater than the arc HA.

6 See Mathematical commentary.
7 He means that we draw the straight line BED to be such that the angle BEC is

acute.
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Proof: We draw the straight line BML perpendicular to AC and we
extend it to K; we join DK. Since the arc AB is equal to the arc BC and BL
is a perpendicular, the straight line BK is a diameter of the circle and the
angle BDK is a right angle. But since BL is a perpendicular and the angle
BDK is a right angle, the two triangles BDK, BLE are similar. So the ratio
of KB to BD is equal to the ratio of EB to BL, and the product of DB and
BE is equal to the product of KB and BL. But the product of DB and BE is
four times the product of DG and GB; so it is four times the product of HG
and GI. But since HI is parallel to CA, IM is perpendicular to BK. But BK is
a diameter. So the straight line HM is equal to the straight line MI. So the
product of IM and MH is greater than the product of IG and GH. So the
product of IM and MH is greater than a quarter of the product of KB and
BL. But the product of IM and MH is equal to the product of KM and MB.
So the product of KM and MB is greater than a quarter of the product of KB
and BL. Accordingly, we put the product of KN and NB equal to a quarter
of the product of KB and BL and we draw the straight line NPO parallel to
CA. Since the straight line BK is a diameter of the circle, the product of KB
and BL is four times the product of KN and NB and the straight lines CLA
and ONP are perpendicular to the diameter, [accordingly] the arc CO is
equal to the arc PA and the arc PH is equal to the arc OI. So the arc BH is
greater than the arc HA and the arc BI is greater than the arc IC. That is
what we wanted to prove.

<Proposition 5>: If in a circle we draw a chord that cuts off from it an arc
that is not greater than a semicircle, if we take on this a point that divides
the arc into two unequal parts and if from this point we draw a straight line
that meets the chord at an acute angle on the side of the smaller part; if, on
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that side, this straight line cuts off from the circle a segment that is not
greater than a semicircle, if we then take on that [segment] a point that lies
between the two arcs and the chord, in such a way that we put the product
of the two parts of the whole straight line, the one and the other, [equal to]
a quarter of the area enclosed by the whole straight line and the part that
ends on the chord, and if we draw from this point a straight line parallel to
the chord, then it [the straight line] divides the minor arc into two unequal
parts such that the smaller part is on the side towards the endpoint <B> of
the arc.

Example: In a circle ABCD, there is the chord AC, the arc AC being no
greater than a semicircle. On it we take a point B in such a way that the arc
AB is greater than the arc BC; we draw the straight line BED such that the
angle BEC is acute and the arc BCD is not greater than a semicircle; we put
the product of DK and KB [equal to] a quarter of the area enclosed by DB
and BE and we draw KM parallel to AC. I say that the arc CM is greater
than the arc MB.

Proof: We draw the straight lines EH, KI at a right angle.
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Fig. III.5.1

First of all, let the arc BCD be a semicircle; we extend HE to G and we
join BLC and BPH. Since the product of DK and KB is a quarter of the area
enclosed by D B  and BE and the two straight lines HE and KI are
perpendicular to BD, the arc BI is equal to the arc IH. But the arc BH is
greater than the arc BC. So on the straight line BC we construct an arc
similar to the arc BH. Let the arc be BNC. Since KI is parallel to EH, the
ratio of BP to PH is equal to the ratio of BK to KE. In the same way the
ratio of BL to LC is equal to the ratio of BK to KE. So the ratio of BP to PH
is equal to the ratio of BL to LC. But the arc BG is smaller than the arc AB;
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so the angle BHE is smaller than the angle BCE; so the angle IPH is
smaller than the angle MLC. So we cut off the angle CLN equal to the angle
HPI. Since the arc BH is similar to the arc BNC, the ratio of BP to PH is
equal to the ratio of BL to LC. But the angle HPI is equal to the angle CLN.
So the ratio of the arc BN to the arc NC is equal to the ratio of the arc BI to
the arc IH. But the arc BI is equal to the arc IH; so the arc BN is equal to
the arc NC. But the angle CLN is acute, and the perpendicular drawn from
the point N to the straight line BC divides the arc BC8 into two equal parts;
it follows that the arc B M is smaller than the arc MC . That is what we
wanted to prove.

Alternatively, let the arc BCD be smaller than a semicircle. I say that
the arc BM is smaller than the arc MC.

Proof: On the straight line BD we construct a circle with diameter BD.
It falls outside the arc BCD because the latter is smaller than a semicircle;
and it lies inside the arc BAD because this latter is greater than a semicircle.
We draw EH, KI perpendicular to BD; we extend EH to G and we join DH,
DC, DG, DA, BG, HB, CH, OH.9 So the angle HDB is greater than the
angle CDB; so the arc BIH is greater than <the arc> similar to the arc BMC.
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But the angle GDB is smaller than the angle ADB; so the angle BHE is
smaller than the angle BCE, because they are equal to the first two angles.
So the angle HPI is smaller than the angle COM and the ratio of BP to PH
is equal to the ratio of BO to CO. But the arc BIH is greater than <the arc>
similar to the arc BMC, the ratio of BP to PH is equal to the ratio of BO to

8 This is the arc BC of the given circle.
9 O is the point of intersection of BC and KM; one may note that the segment OH

plays no part in the argument.
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OC and the angle HPI is smaller than the angle COM. So the arc BI is
equal to the arc IH and the arc BM is thus smaller than the arc CM, as was
proved in the preceding proposition. That is what we wanted to prove.

<Proposition 6>: If in a circle we draw one of its diameters, if we take any
point on its circumference, if we join the ends of the greater of the two arcs
with a straight line from which we cut off a segment equal to the
semidiameter of the circle and if from the point of division we draw a
straight line parallel to the diameter, then it divides the other arc into two
equal parts.

Example: In the circle ABC we draw the diameter AC; its centre is D.
On it we take a point B  and we join AB. We cut off AG  equal to the
semidiameter. We draw the straight line EG parallel to CA. I say that the
arc BE is equal to the arc EC.
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Proof: It cannot be otherwise. If it were possible, let them be unequal.
We divide the arc BC into two equal parts at the point H. We draw the

straight line HI parallel to CA and we join BC. Since the arc BH is equal to
the arc CH and D  is the centre of the circle, accordingly D L  is
perpendicular to BC. So the angle DLC is a right angle. But the angle ABC
is a right angle because it is in a semicircle. So the straight line DLH is
parallel to BA. But the straight line HI is parallel to CA. So the straight line
AI is equal to the straight line D H. But D H is a semidiameter; so the
straight line AI is a semidiameter. But AG is a semidiameter. So the arc BE
is equal to the arc EC.

By this proof, we have shown that if A G  is smaller than a
semidiameter, then the arc CE is smaller than the arc EB; and if it is
greater, then the arc is greater. That is what we wanted to prove.
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<Proposition 7>: If in a circle we draw a chord that cuts off from it an arc
not greater than a semicircle; if on the arc we take a point from which we
draw to one end of the chord a straight line that we divide into two equal
parts and we draw from it10 a straight line parallel to the chord, then it
divides each of the two arcs into two unequal parts such that the greater
part is on the side of the vertex of the arc.

Example: In the circle ABC we draw a chord AC <which cuts off from
it an arc that is not greater than a semicircle>. On the arc we take a point B
from which we draw the straight line AB that we divide into two equal parts
at the point D, from which we draw a straight line parallel to CA. I say that
the arc BE is greater than the arc EA, and that the arc BG is greater than the
arc GC.
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Proof: We join BKC with a straight line and we draw from the points D
and K two perpendiculars DH and KI. They then cut the two angles EDB
and GKB,11 because the two angles EDA and GKC are acute. They are in
fact equal to the angles BAC and BCA, which are acute, since each of the
arcs AB and CB is smaller than a semicircle. So the straight lines DH and
KI cut the arcs BE and BG. But the straight line AD is equal to DB and DH
is a perpendicular. So the arc BH is equal to the arc HA and the arc BE is
greater than the arc EA. In the same way the arc BI is equal to the arc IC
and the arc BG is thus greater than the arc GC. That is what we wanted to
prove.

10 That is starting from the point we have obtained, the mid point of the chord.
11 The straight line HD cuts the angle EDB, because EDB ADEˆ ˆ= −π  and KI cuts

the angle GKB because GKB GKCˆ ˆ= −π .
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<Proposition 8>: If the circle ABC is one of the meridian circles and the
arc AHD is the semicircle of the horizon; if the point G lies on the surface
of the sphere and if we draw through it a plane parallel to the horizon that
cuts the meridian circle at the point C, I say that the arc CD is the height of
the point G.
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Proof: We draw from the zenith, let it be E, an arc of a great circle to
the point G; let the arc be EG. Let it meet the horizon at the point H. Since
the circle ABC is a meridian circle and since the circle AHD is the circle of
the horizon, the circle ABCD is perpendicular to the circle AHD and the
point E is the mid point of the arc BEC. So the point E is the pole of the
circle AHD and the arcs drawn from the point E to the arc AHD are equal.
But since the plane drawn through the point G is parallel to the horizon, it
gives us a circle parallel to the circle of the horizon; the point E is its pole
and the arcs drawn from the point E to the circumference of the circle BGC
are equal. So the two arcs EH and ED are equal, because they are drawn
from the pole to the circumference of the circle of the horizon; and the two
arcs EG and EC are equal, because they are drawn from the pole of the
circle BGC to its circumference. It remains that, the arc GH is equal to the
arc CD, and it is the height of the point G because it is an arc of the altitude
circle between the point G and the horizon. So the arc CD is the height of
the point G with respect to the horizon. If the point lies on the
circumference of the meridian circle, as for the point C, we show that the
arc CD is the height of the point C because the meridian circle is one of the
altitude circles – it is in fact drawn from the zenith and ends on the horizon,
and if it passes through the point C, the arc CD is the height of the point C.
That is what we wanted to prove.

<Proposition 9>: If the circle ABC is one of the meridian circles and ADC
is the horizon of this circle; if the arc BD is one of the hour circles and
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from it we cut off the arc LE and if through L and E we draw two planes
parallel to the horizon that cut the meridian circle at the points K and H, I
say that the arc KH is the height for the time LE.
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Proof: The arc HC is the height of the time ED, from what has been
proved in the preceding proposition. But the arc KC is the height of the
time DL. The amount by which the height KC exceeds the height HC is the
height KH. So the height KH is the height of the time EL. That is what we
wanted to prove.

<Proposition 10>: If a point moves on the circle of the equator in the right
sphere, then its height increases by equal amounts in equal times.

Let there be a meridian circle ABC in the right sphere, let the circle
ADC be a horizon, or alternatively parallel to the horizon; let the arc BD be
an arc of the circle of the equator and let the time DE be equal to the time
EB. I say that the point that moves on the arc DB rises in the course of the
time DE by the same amount as it rises in the course of the time EB.
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Proof: The circle ABC is a meridian circle in the right sphere and the
arc DB forms part of the circle of the equator. So the point B is the zenith,
in the right sphere. But we have drawn through this point the arc BC; so it
[the arc] forms part of a great circle. But the arc BD forms part of one of
the altitude circles; thus the height of the point E is the arc ED and the
height of the point B is the arc BD. So the height of the time DE is the arc
DE and the height of the time EB is the arc EB. But they are equal. So the
equal times in the circle of the equator have equal heights. That is what we
wanted to prove.

<Proposition 11>: If in the right sphere a point moves along a circle
parallel to the circle of the equator, and ends on the meridian circle so that
its hour arc is divided into two equal parts, then the height of the first time
is greater than the height of the second time.

Let the circle ABCD be a meridian circle in the right sphere. Let there
be an arc BH which is part of one of the hour circles parallel to the equator.
Let the point I move on it [the hour circle] so that it passes through the time
[i.e. the arc] HB. Let the time BI be equal to the time IH. I say that the
height of the time HI is greater than the height of the time BI.
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Proof: We consider two planes passing through the points I and H and
parallel to the horizon. Let them cut the meridian circle at the points E, G
and A, C. Let their lines of intersection with the meridian circle be EG and
AC. Let the line of intersection of the circle DHB and the meridian circle be
the straight line BKLD and the lines of intersection of this circle and the
circles AHC and EIG be the straight lines HL and IK. Let the point M be
the zenith. Since the circle ABCD is the meridian and since the circle BHD
is parallel to the equator, the arc BHD is a semicircle and the straight line
BD is its diameter. Since the circle ABCD is perpendicular to the horizon
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– because it is the meridian circle – the horizon is perpendicular to this
circle. So the planes parallel to the horizon are perpendicular to this circle
and the planes EIG and AHC are perpendicular to the circle ABCD. But the
circle BHD is also perpendicular to the circle ABCD and it cuts the planes
EIG and AHC. But if these two planes are perpendicular to a [third] plane
and they cut one another, then their line of intersection is perpendicular to
this plane. So the straight lines HL and IK are perpendiculars to the straight
line BD. But the straight line BD is a diameter of the circle BHD and the
arcs BI and IH are equal; and we have proved earlier that, if in a circle we
have a diameter and if we cut off from the circumference two equal arcs
from [points of] which we draw two perpendiculars to the diameter, then
they divide the diameter into parts such that the product of the two parts cut
off by the first perpendicular, [the product of] the one and the other, is
equal to a quarter of the area enclosed by the whole diameter and the
straight line cut of by the second perpendicular. So the product of DB and
BL is four times the product of DK and KB.

In the same way, since the circle BHD is one of the circles parallel to
the equator in the right sphere, it is perpendicular to the horizon and to all
the planes parallel to the horizon. So the circle BHD is perpendicular to the
plane of the circle AHC. In the same way, the circle ABCD is perpendicular
to the plane AHC, so the straight line BL is perpendicular to the plane AHC.
So BL is perpendicular to AC. In the same way, it is perpendicular to GKE
which is parallel to CA. But, since the circle ABCD is the meridian circle
and the point M is the zenith, the point M is the pole of the circle of the
horizon and it is the pole of all the circles that are parallel to it. So the arc
MA is equal to the arc MC. So the arc AB is greater than the arc BC. But we
have drawn BLD to be perpendicular to AC, so the arc BCD is smaller than
a semicircle. But the product of DB and BL is four times the product of DK
and KB; and KG and LC are two perpendiculars, so the arc GC is greater
than the arc BG, as in the third proposition. But, since the planes EIG and
AHC are parallel to the horizon, the arc GC is the height of the time IH and
the arc BG is the height of the time IB, from what we proved in the ninth
proposition. But the arc GC is greater than the arc BG; so the height of the
time HI is greater than the height of the time BI. That is what we wanted to
prove.

<Proposition 12>: If a point moves on one of the hour circles, in the
inclined sphere and such that it passes through the zenith; if this point, by
its motion, reaches the zenith and its hour arc is divided into two equal
parts; then the height of the first time is smaller than the height of the
second time.



THE HEIGHTS OF THE WANDERING STARS 455

Let the circle ABCD be the meridian circle in the inclined sphere, let
the point B be the zenith and the circle BHD an hour circle on which the
point moves to traverse the time [arc] HB. Let the time BI be equal to the
time IH. I say that the height of the time IH is smaller than the height of the
time BI.
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Proof: We draw from the points I and H two planes parallel to the
horizon; let them be EIG and AHC. Let their lines of intersection be EG
and AC. The line of intersection of the circles ABCD and BHD  is the
straight line DLKB, and the two lines of intersection of the circle BHD with
the circles EIG and AHC are the straight lines IK and LH. Since the circles
BHD, EIG and AHC are perpendicular to the plane of the circle ABCD, the
straight lines IK and HL are perpendicular to the plane of the circle; so they
are perpendiculars to the straight line BD. But the straight line BD  is a
diameter of the circle BHD and the arc BI is equal to the arc IH. So the
product of DB and BL is four times the product of DK and KB. But, since
the point B is the zenith and since the circle AHC is parallel to the horizon,
the arc AB is equal to the arc BC. And, since the sphere is inclined, the
circle BHD is inclined to the planes parallel to the horizon and the straight
line BL makes an acute angle with the straight line ALC.

Since the arc ABC is not greater than a semicircle,12 since the arc AB is
equal to the arc BC, since the straight line BL makes an acute angle with
the straight line LC, since the product of DB and BL is equal to four times
the product of DK and KB, since the straight line KG is parallel to the
straight line AC, the arc GC is smaller than the arc BG, as we have proved
in the fourth proposition. Now the arc GC is the height of the time IH and

12 See Note on Proposition 4, pp. 429–30.
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the arc BG is the height of the time BI; so the height of the time IH is
smaller than the height of the time BI. That is what we wanted to prove.

<Proposition 13>: If a point moves in the inclined sphere on one of the
hour circles, either the circle of the equator or a circle that is parallel to it
on the side to which the sphere is inclined; if in the course of its motion it
reaches the meridian circle and its hour arc is divided into two equal parts,
then the height of the first time is greater than the height of the second
time.

Let the circle ABCD be the meridian circle in the inclined sphere and
let the circle BHD be one of the hour circles; let this be either the circle of
the equator or a circle that is parallel to it on the side to which the sphere is
inclined; let the point move on it so as to traverse the time [arc] HB and let
the time BI be equal to the time IH. I say that the height of the time IH is
greater than the height of the time BI.
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Proof: We draw from the points I and H two planes parallel to the
horizon. Since the sphere is inclined, since the circle BHD is one of the
hour circles and since the circle AHC is parallel to the horizon, the circle
BHD is inclined to the plane AHC and the straight line BL makes an acute
angle with the straight line ALC; let the angle be BLC. Since the circle
BHD is either the circle of the equator or is parallel to it on the side to
which the sphere is inclined, the arc BC is smaller than the arc AB; but the
arc BED is not greater than a semicircle and DB is a diameter of the circle
BHD, the arc BI is equal to the arc IH and the two planes AHC and EIG are
parallel and are perpendicular to the circle ABCD; and the product of DB
and BL is four times the product of DK and KB, as we proved earlier. But
the arc ABC is not greater than a semicircle, the arc AB is greater than the
arc BC  and the angle BLC  is acute, the arc BHD is not greater than a
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semicircle, the product of DB and DL is four times the product of DK and
KB and KG is parallel to CA; so the arc GC is greater than the arc GB, as
we have proved in the fifth [and sixth] propositions. But the arc GC is the
height of the time HI and the arc BG is the height of the time BI. So the
height of the time HI is greater than the height of the time BI. That is what
we wanted to prove.

<Proposition 14>: If a point moves in the inclined sphere on one of the
hour circles that is parallel to the equator on the side where the pole is
visible; if in its motion from the horizon it reaches the meridian circle and
if its hour arc is divided into two equal parts, then the height of the first
time can be equal to the height of the second; it can be smaller than its
height and it can be greater.

Let ABCD be the meridian circle in the inclined sphere, let the circle
BHD be parallel to the equator on the side where the pole is visible and let
the circle AHC be a horizon; and let the time BI be equal to the time HI. I
say that the height of the time IH can be equal to the height of the time IB;
it can be less than it and it can be more than it.
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Proof: We draw the chord of whichever is the greater of the two arcs
AB and BC; in the first case for the figure let it be the straight line AMB and
in the second case the straight line BMC. We consider a plane passing
through the point I parallel to the horizon; let its line of intersection13 be the
straight line EMG.

13  That is, the line of intersection of the plane and the meridian circle.
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The straight line MA, or CM, is either equal to the semidiameter of the
circle, or greater than it, or smaller than it. Since the arc A B C is a
semicircle in which we have the chord AB, or BC, and since MG is parallel
to the diameter, accordingly, when the straight line AM, or MC, is equal to
the semidiameter of the circle ABCD, the arc AE, or CG, is equal to the arc
EB or GB; and when the straight line is smaller than a semidiameter, then
the arc is smaller than the arc; when the straight line is greater [than a
semidiameter], then the arc is greater than the arc, as has been proved in
Propositions 6 [and 8]. But the arc CG, or AE, is the height of the time HI;
and the arc GB, or EB, is the height of the time IB. So if the straight line
AM, or CM, is equal to the semidiameter, then the height of the first time is
equal to the height of the second time; if it is smaller then the height of the
first time is smaller; and if it is greater, then the height of the first time is
greater. That is what we wanted to prove.

<Proposition 15>: If in the inclined sphere a point moves along one of the
hour circles parallel to the equator on the side where the pole is visible and
such that the whole circle is visible at the horizon <and raised above it>
and is tangent to it; if the motion of the point takes it to the meridian circle
so that its hour arc is divided into two equal parts, then the height of the
first time is smaller than the height of the second time.

Let the circle ABC be the meridian circle in the inclined sphere, let the
circle AIC be the circle of the horizon and the circle BDA the hour circle on
which the point A moves. Let the arc AD be equal to the arc DB. I say that
the height of the time AD is smaller than the height of the time DB.
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Proof: We take a plane passing through the point D and parallel to the
horizon. Let the plane cut the circle ABC along the straight line GEH; let
the circle ADB cut the circle ACB along the straight line AEB and let DE be
the line of intersection of the circles ADB and GDH. Since the circles ADB,
GDH are perpendicular to the circle ABC, their line of intersection is a
perpendicular to the circle. So the straight line DE is a perpendicular to the
circle ABC; so it is a perpendicular to the straight line AB. But since the arc
AD is equal to the arc DB and since DE is a perpendicular, the straight line
AE is equal to the straight line EB. But since AE is equal to EB and since
the straight line GEH is parallel to the straight line AC, the arc C H is
smaller than the arc HB and the arc AG is smaller than the arc GB, as has
been proved in Proposition 7. So if the arc CB is not greater than the arc
AB, the arc HC is the height of the time AD and the arc HB is the height of
the time DB. And if the arc AB is smaller than the arc BC, the arc AG is the
height of the time AD and the arc GB is the height of the time DB. But the
arcs AG and HC are smaller than the arcs HB and GB; so the height of the
time AD is smaller than the height of the time DB. That is what we wanted
to prove.

<Proposition 16>: If a point moves in the inclined sphere along one of the
hour circles parallel to the equator on the side where the pole is visible, [an
hour circle] such that it is completely visible at the horizon and raised
above it; and if in the course of its motion the point reaches the meridian
circle and its hour arc is divided into two equal parts, then the height of the
first time can be equal to the height of the second time; it can be less than it
or more than it.

Let the circle ABC be a meridian circle in the inclined sphere, let the
circle ADC be the horizon, the circle BIE one of the hour circles; let it be
raised above the horizon by the magnitude of the arc AE; let EI be equal to
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IB. I say that the height of the time EI can be equal to the height of the time
IB; it can be less than it and it can be more than it.
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Proof: We consider a plane passing through the point I and parallel to
the horizon. Let it cut the circle ABC along the straight line GKH; let the
line of intersection of the hour circle and the meridian circle be the straight
line BKE and let the line of intersection of the hour circle and the circle
parallel to the horizon be the straight line IK.

It has been proved in the preceding proposition that the straight line BK
is equal to the straight line KE. First, let the arc AB be smaller than the arc
BC; we draw from the point K a perpendicular line KL, then the arc EL is
equal to the arc LB. But the arc AE is either twice the arc GL, or smaller
than twice it, or greater than it. We divide the arc AE into two equal parts at
the <point> M. If the arc AE is twice the arc GL, then the arc ME is equal to
the arc GL. But the arc GE is common; so the arc MG is equal to the arc
EL.14 But EL is equal to LB; so MG is thus equal to LB. But AM is equal to
GL; so AG is equal to GB. But AG is the height of the time EI15 and GB is
the height of the time IB; so the height of the time EI is equal to the height
of the time IB.

If the arc AE is smaller than twice the arc GL, then the arc M E is
smaller than the arc GL. But EG is common; so MG is smaller than EL. But
EL is equal to LB. So MG is smaller than LB. But AM is smaller than GL;
so AG is smaller than GB. So the height of the time EI is smaller than the
height of the time IB.

14 That is, if we add GE to ME and to GL, we obtain MG = EL.
15 The arc AG if the height of the point I; the height of the time EI is the arc EG, so

the height of the arc EI is smaller than that of the arc IB.
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In the same way, if AE is greater than twice GL, the height of the time
EI is greater than the height of the time IB. That is what we wanted to
prove.

C

H

B

A

I

K
L

G

E

M

N

Fig. III.16.2

In the same way, let the arc BC be smaller than the arc AB. We draw
from the point E a straight line EN parallel to the straight line AC, we join
BMN and we draw the perpendicular ML. Since the straight line EK is
equal to KB, the straight line BM is equal to the straight line MN and the
arc BL is equal to the arc LN. But the arc CN is either twice the arc LH, or
smaller, or greater.

If it is twice it, the arc CH is equal to the arc HB; if it is smaller than
twice it, the arc CH is smaller than the arc HB; and if it is greater, it is
greater, from what has been proved for the first case of the figure. But the
arc CH is the height of the time EI16 and the arc HB is the height of the
time BI; so it can be equal to the height of the time IB, or it can be smaller,
or it can be greater. That is what we wanted to prove.

The treatise on the heights of the wandering stars is completed.
Praise be to God, Lord of the worlds

16 The arc CH is the height of the point I; the height of the time EI is the arc NH, so
the height of the arc EI is smaller than that of the arc IB.
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INTRODUCTION

INSTRUMENTS AND MATHEMATICS:
HOUR LINES, SUNDIALS AND COMPASSES FOR LARGE CIRCLES

Under the rule of the Caliph al-Ma’mºn (813–833), research in
astronomy was pursued with a vigour without precedent since second-
century Alexandria. One of the characteristics of this new beginning is that
it occurred both in mathematical astronomy and in observational astronomy
at the same time. In the early part of this period we find such illustrious
figures as al-Fazærî, YaÌyæ ibn Abî ManÒºr, al-Farghænî and Îabash,
among many others. That is a historical fact, known and described by
historians. But it has not been sufficiently emphasized that this intense
activity set other activities in train, among them research work on
instruments, and in particular on instruments that could be used by
astronomers. The testimony provided by the tenth-century biobibliographer
al-Nadîm is eloquent on the matter. Reading the entries in al-Fihrist that he
devotes to the astronomers from the ninth century onwards, we may remark
that the great majority of them did work on astrolabes, or on sundials, or on
the armillary sphere, or on more than one of these types of instrument. Al-
Nadîm himself points out that there is a close connection between progress
in research in astronomy, notably in observational astronomy, and the study
and making of instruments. He writes:

The domain of makers (of these instruments) has become larger under the Abassid
State from al-Ma’mºn up to our own time <end of the tenth century>. When al-
Ma’mºn wanted astronomical observations to be carried out, he turned to Ibn
Khalaf al-Marwarrºdhî, who constructed for him an armillary sphere that is in the
keeping of certain scholars in our land; al-Marwarrºdhî also constructed an
astrolabe.1

There is a long list of astronomer mathematicians who, from al-Fazærî
onwards, wrote on this subject. We find it in al-Fihrist and in the
biobibliographical books old and modern that derive from it.2 All we need

1 Al-Nadîm, Kitæb al-fihrist, ed. R. Tajaddud, Teheran, 1971, p. 342.
2 C. Brockelmann, Geschichte der arabischen Literatur, 2nd ed., Leiden,

1937–1942 and F. Sezgin, Geschichte des arabischen Schrifttums, vol. V, Leiden, 1976;
vol. VI, 1978.
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to say here is that these astronomer mathematicians formed an established
tradition. But there was another tradition that ran alongside it, one that can
be identified through the names of authors and the titles of their books, a
tradition to which al-Nadîm gave its own separate title: ‘instruments and
their makers’. This is his designation for a complete tradition of artisans
who made scientific instruments, and he even went so far as to give the
name ‘astrolabists’ to practitioners of a new craft that had an independent
existence. The history of this tradition of making scientific instruments
remains to be written.

For the moment, the titles and contents of works help us to identify
some of its characteristics. Some books deal with the art of constructing the
instrument and using it; others describe how the instrument is used, with a
fairly short explanation of the rules governing the way it works; others deal
with the theory of the instrument and set out the mathematical proofs
required; finally, others take this as an occasion to develop mathematical
tools. Thus many books about the astrolabe are of the first two types,
whereas al-Kæmil by al-Farghænî is of the third type, since the author, a
mathematician, begins it with a rigorous study – the earliest we know – on
the subject of stereographic projection. As for the last type, it is represented
by al-Qºhî and by Ibn Sahl, who started from the astrolabe and went on to
develop a serious study of projections, in which stereographic projection is
merely one example. Even from this rapid description, it is obvious that a
dialogue has been set up between research on instruments and on
mathematics, and that it is a dialogue the historian should not neglect.

The study of sundials has the same history as that of astrolabes. In the
ninth century, scholars as distinguished as al-Khwærizmî, Îabash, Banº al-
∑abbæÌ, al-Farghænî, Thæbit ibn Qurra and, later on, al-Mæhænî wrote about
sundials and their use. But there is every indication that it was only with
Ibræhîm ibn Sinæn (296/909–339/946) that the first substantial text on
sundials appeared. Ibn Sinæn sets out a theory of sundials that is solidly
based in geometry.3 As for the astrolabe, the mathematical study of
sundials also became a discipline in which specialists (aÒÌæb al-aÂlæl)
were, as Ibn al-Haytham says, identified by a special name, and the
specialist artisans were recognized as such.

This literature on sundials was already substantial by the end of the
ninth century and the beginning of the tenth, notably in including Ibn
Sinæn’s book.4 Together with the body of craftsmen who constructed
sundials, it constituted the starting point for Ibn al-Haytham. First, let us

3 A detailed account of of Ibn Sinæn’s contribution has been given elsewhere.
4 Fî ælæt al-aÂlæl, in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn. Logique et

géométrie au Xe siècle, Leiden, 2000, Chap. IV.
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note that Ibn al-Haytham, like other great mathematicians of the time, was
willing to write books designed for teaching and for practical uses. This
cultural characteristic is worth emphasizing, because it is a distinctive
feature of the scientific activity of the period. For example, we may note
that Thæbit ibn Qurra wrote an elementary treatise on the measurement of
surfaces and volumes, which is manifestly intended for beginners; that his
grandson Ibn Sinæn wrote a manual without proofs that is addressed to
artisans who make sundials; and that Abº al-Wafæ’ al-Bºzjænî wrote two
treatises for the same readership.5 The list is long and substantial. If we
confine our attention to Ibn al-Haytham, we find he is the author of a
complete treatise on practical geometry addressed to surveyors.6

On the other hand, we may observe that Ibn al-Haytham, like Ibn Sinæn
before him and many others among his predecessors or contemporaries (for
example al-Bîrºnî), took a very particular interest in the study of math-
ematical instruments, and even of the way they were made. It is in this
context that a new type of literature arose: the manual addressed to
craftsmen written by a mathematician. In such works, the author’s concerns
were twofold: to study the instrument for the purpose of constructing a
mathematical theory of it; and gaining a mathematical understanding that
then opened up the possibility of inventing an instrument which might also
be useful to society at large. We find Ibn al-Haytham working on both
these aspects at the same time.

It is very probable that he modelled himself on al-Qºhî and Ibn Sahl in
devoting a complete treatise in two books to the drawing of conic sections.
The work, now lost, probably dealt with an instrument designed to draw the
conic sections, like the perfect compasses of al-Qºhî.7 Indeed, in his book

5 See his book What the Artisan Needs for Geometrical Constructions (Fîmæ
yaÌtæju ilayhi al-Òæni‘ min a‘mæl al-handasa), ms. Istanbul, Aya Sofia 2753, as well as
What Administrators and Functionaries Need to Know of the Art of Calculation (Fîmæ
yaÌtæju ilayhi al-kuttæb wa-al-‘ummæl min ‘ilm al-Ìisæb), ed. A. S. Saidan in Arabic
Arithmetic (‘Ilm al-Ìisæb al-‘arabî), Amman, 1971; see also Seyyed Alireza Jazbi,
Applied Geometry, Teheran, 1991.

6 Fî uÒºl al-misæÌa, in R. Rashed, Les Mathématiques infinitésimales du IXe au XIe

siècle, vol. III: Ibn al-Haytham. Théorie des coniques, constructions géométriques et
géométrie pratique, London, 2000, Chap. IV; English translation by J. V. Field: Ibn al-
Haytham’s Theory of Conics, Geometrical Constructions and Practical Geometry. A
History of Arabic Sciences and Mathematics, vol. 3, Culture and Civilization in the
Middle East, London, Centre for Arab Unity Studies, Routledge, 2013.

7 See R. Rashed, Geometry and Dioptrics in Classical Islam, London, 2005,
Chap. V.
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on parabolic burning mirrors, Ibn al-Haytham makes reference to such an
instrument (æla).8

He also wrote a short treatise on another instrument, compasses for
drawing large circles. This text deals with the geometry of the compasses
and also describes the procedure for making the instrument.

Ibn al-Haytham has also given us two treatises on the sundial, which
exemplify the two forms of interest we referred to earlier. The first treatise
– On Horizontal Sundials (Fî al-rukhæmæt al-ufuqiyya) – is obviously
addressed to artisans who make the dials. Contrary to Ibn al-Haytham’s
usual habits, the book is written in a descriptive style rather than being
concerned with proof. It mainly deals with the procedures for making
sundials, which are given a rational basis in a preliminary account of some
relevant astronomy. In these pages Ibn al-Haytham intends, as he puts it,
‘to explain the subject as a whole and the principles on which the
construction of sundials is based, and to draw attention to the manner of the
construction and the parts where we need these ideas to which reference is
not often made except in the books of specialists on shadows (aÒÌæb al-
aÂlæl)’.9 It is at the end of this book that Ibn al-Haytham promises to write a
second one, on ‘shadow instruments in which we shall give an exhaustive
treatment of all the ideas, as well as their purposes and the constructions
required in this art’.10 This is a book on ‘shadow instruments’, a subject
that echoes the title of the book by Ibn Sinæn. But this time the purpose is
different, because such a book must give proofs. We have every reason to
suppose that the book in question is the treatise called On the Hour Lines
(Fî khu†º† al-sa‘æt), which has come down to us and is presented in this
volume.

8 Ibn al-Haytham, Majmº‘ al-rasæ’il, Osmænia Oriental Publications Bureau,
Hyderabad, 1938–1939, p. 11: ‘We have established in a treatise […] the finding of all
the conic sections by means of the instrument’.

9 Fî al-rukhæmæt al-ufuqiyya, below, p. 581; Arabic text in Les Mathématiques infi-
nitésimales, vol. V, p. 849, 1–3.

10 Ibid., p. 581; Arabic text in Les Mathématiques infinitésimales, vol. V, p. 849,
4–5.
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HOUR LINES

1.1. INTRODUCTION

In his book On the Hour Lines, Ibn al-Haytham is carrying forward a
project of Ibn Sinæn’s whose purpose was, essentially, to develop the theory
of sundials to the highest possible level. And it is indeed clear that Ibn al-
Haytham based this second treatise on the work of Ibn Sinæn, but also direc-
ted remarks against his predecessor. His scientific methods led him to new
results in several fields, among them plane trigonometry. One of the trigo-
nometrical results he obtains here reappears in two other treatises, each of
which is of fundamental importance in its own field: in dioptrics his treatise
on The Burning Sphere, and in astronomy his book on The Configuration
of the Motions of the Seven Wandering Stars.1 So we shall begin with the
book On the Hour Lines, and then return to examine Ibn al-Haytham’s first
book On Sundials.

To understand Ibn al-Haytham’s intentions, but also to see how far he
distanced himself from Ibn Sinæn, we need to look back briefly to the lat-
ter’s treatise On Instruments for Shadows. In this work Ibn Sinæn has seve-
ral purposes: to lay out a geometrical basis for a unified theory of sundials,
no longer, like his predecessors, to be content merely to draw the instru-
ment but instead to give proofs of the principles underlying its construction
and its use, and, finally, to point out the errors of his predecessors. Ibn Sinæn
himself lets us know in concrete terms what he conceived his task to be:

It is said that the ancients, and their successors up to the present day,
constructed a special sundial for each plane, determining the lines by a
method proper to that plane. I have sought and solidly established a
universal method for any plane, using a single proof, which I have
demonstrated.2

In other words, for a given place L, there are several planes that need to
be considered – the plane of the horizon, the plane of the meridian, the

1 See above, Part 1, Chapter I.
2 Fî ælæt al-aÂlæl, in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn. Logique et

géométrie au Xe siècle, Leiden, 2000, p. 342; Arabic text p. 343, 1–3.
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plane of the altitude (the vertical plane) and so on. The idea that allowed Ibn
Sinæn to construct a unified theory is the following: each of the planes
considered for a place L is parallel to the horizontal plane of another place
L′, whose location is to be found, a place lying somewhere in the northern
hemisphere – which is the only hemisphere Ibn Sinæn considers.

There is every indication that he was the first to imagine such an under-
taking. In any case, that is what he himself claims, in no uncertain terms:

He judges correctly who ascribes to us all that we have determined about
this matter; and for him who suspects that we have relied upon what was
done by our predecessors, which is to be found in what they wrote, we
have in addition collected up their writings, which had been scattered, and
we have supplied proofs for them all. Indeed, I know of none of them who
has provided a proof for what they have done, as regards its essentials, but
it was said that they gave a description of how to construct sundials, a mere
description. And we have moreover added interesting things, matters in
which we have no predecessors.3

As far as we know, there is no reason to doubt the truth of these
statements.

The surviving fragment of the second book of Ibn Sinæn’s work inclu-
des a list of contents. This tells us that this second book is made up of seven-
teen chapters, the first of which has the title ‘On the incorrectness of what
preceding mathematicians have used to draw lines for the hours’.4 In this
chapter Ibn Sinæn sets out to show that these predecessors were mistaken
when they stated that, on a sundial, the points that correspond to a particu-
lar hour h for each day of the year lie on a straight line. This criticism had
already been expressed by Ibn Sinæn’s grandfather Thæbit ibn Qurra. This
latter writes in his treatise On Sundials:

In connection with these sundials (set up in the plane of the horizon), we
need to know [the length of] the shadow and the azimuth, for the hours, or
for the hours and their subdivisions, whether the hours are seasonal or equi-
noctial,5 in either case, you have the possibility of drawing them on the dial,
doing this for the first point of Capricorn and the first point of Cancer, then
drawing the lines for the hours, as straight lines between these points, or ins-
tead to do it in the same way for the other signs; the lines for the hours will

3 Fî ælæt al-aÂlæl, p. 340; Arabic text p. 341, 23–28.
4 Ibid., p. 414; Arabic text p. 415, 8–9.
5 Equinoctial hours are such that each one represents the length of time in which the

celestial sphere turns through 15°. Seasonal hours are unequal and each represents one
twelfth of the day and one twelfth of the night. Such hours vary through the year.
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then [that is, in the latter case] be exactly correct, they are not straight
lines.6

So it really seems as if Ibn Sinæn wanted to sharpen up the detail in his
grandfather’s text and prove that the lines are not straight. But we need to
ask who are these predecessors Ibn Sinæn criticizes. Does he mean al-
Mæhænî, Abº Sa‘îd al-⁄arîr, or others such as al-Kindî, or even Diodorus?

We have provided this roll call to help us to put Ibn al-Haytham’s book
into context. Ibn al-Haytham does, in fact, start from what is in Ibn Sinæn’s
book, and goes on to develop a theory regarding a sundial that works
correctly at any geographical latitude (what is now called a ‘universal’
sundial). So his purpose is to go further than Ibn Sinæn did, and also to point
out an error he made in the proof of one proposition in his second book.
Finally, he argues that Ibn Sinæn’s criticisms of his predecessors were unjust.

This orderly plan of action is another example of a tendency we have
already remarked upon in Ibn al-Haytham’s scholarly works, whether we
turn to his researches in infinitesimal geometry or in the geometry of conics,
his studies on analysis and synthesis, or other works. His purpose is to
extend the tradition of research to which he belongs as far as possible, to
exhaust all its logical possibilities and, if possible, to take it to its limit and
complete it. This time the tradition goes back to Ibn Sinæn and, beyond him,
to the mathematicians of the ninth century. Thus the tradition has already
been reshaped by Ibn Sinæn.

1.2. MATHEMATICAL COMMENTARY

Let us now turn to Ibn al-Haytham’s treatise. It is made up of eleven
propositions, which can be divided into two distinct groups. We have a
group of geometrical and trigonometrical propositions that make up very
nearly half the treatise. These are lemmas required in the proofs of the five
propositions of the second group, which constitute Ibn al-Haytham’s theory
of the sundial. To get a better grasp of the part played by the first group of
six lemmas, let us look at what Ibn al-Haytham says:

Before the treatise we have given lemmas that are themselves new results,
results that none of those who preceded us has mentioned – as it seems to

6 Fî ælæt al-sæ‘æt allatî tusammæ rukhæmæt, in Thæbit ibn Qurra, Œuvres
d’astronomie, edited and translated by R. Morelon, Paris, 1987, p. 134; Arabic text
p. 134, 11–16.
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us – and thanks to these lemmas we can go on to derive all the ideas that
we have expressed in this treatise.7

This text is clearly important, since it tells us that these lemmas are new
and original to Ibn al-Haytham, that they constitute a treatise (that is give
new results) within the treatise On the Hour Lines, and they are
fundamental to the theory of sundials. We shall consider these lemmas in
detail later. For the time being we merely need to note that – to use terms
unknown at the time – some of them deal with the variation of
trigonometric functions.

The six lemmas are followed by the five propositions, numbered 7 to 11.
The seventh proposition is one that had been stated and proved by Ibn
Sinæn. He shows, in fact, that the positions of the sun that correspond to a
seasonal hour h on the circle of the equator and on two parallel circles
placed symmetrically with respect to the equator, lie on a great circle. So in
the plane of the sundial they correspond to three points on the same straight
line ∆.

Ibn al-Haytham’s proof is different from the one given by Ibn Sinæn.
We shall discuss it later, noting its divergences from that given by his
predecessor.

The eighth proposition is the one that – according to Ibn al-Haytham
(Ibn Sinæn’s text is lost) – Ibn Sinæn ‘was not able to establish it for every
hour line’.8 Ibn al-Haytham considers an hour circle – let it be Γ – between
the circle of Cancer and the equator, and shows that, if V is the point of Γ
corresponding to the seasonal hour h of the seventh proposition, then, when
the sun is at V, the shadow of the point E, the tip of the gnomon of the
sundial, does not lie on the straight line ∆.

So if we consider the 91 circles of parallels associated with the ecliptic
longitudes in one-degree steps from 0° to 90°, for a given seasonal hour h,
we obtain a point on each of these circles. The point we obtain on the equa-
tor together with any one of the 90 other points defines a great circle,
whose plane cuts the horizontal plane in a straight line ∆. This gives us 90

straight lines for a given hour h: ∆ i h i,( ) =1

90
.

In the ninth proposition, Ibn al-Haytham proves that the angle that the
straight line ∆90,h( ) – associated with the solstices – makes with any general

straight line ∆ i h,( ), is negligibly small. The statement is by no means merely

7 Fî khu†º† al-sæ‘æt, see below, p. 517 ; Arabic text p. 737, 23–26.
8 Fî khu†º† al-sæ‘æt, see below, p. 532; Arabic text in Les Mathématiques

infinitésimales du IXe au XIe siècle. Vol. V: Ibn al-Haytham: Astronomie, géométrie
sphérique et trigonométrie, London, 2006, p. 771, 16–17.



HOUR LINES 473

qualitative, since his calculation is for a particular place, whose latitude is
specified by giving the diurnal arc at the summer solstice as 210°, and
taking the inclination of the ecliptic to the equator to be 24°, and the radius
of the celestial sphere as 60°.

Ibn al-Haytham starts by taking h = 1 and looks at the position of
parallel straight lines to ∆90 1,( ) and ∆ i,1( ), for instance the straight lines EP
and EJ that lie in the horizontal plane and pass through the tip of the gno-
mon, E (see Fig. 1.9.5 and 1.9.6). He first finds the position of EP with
respect to the line of the meridian, EN, by calculating PN and EN. He then

investigates their ratio JP

EP
 and proves that, for h = 1, we have JP

EP
< 1

174
, for

any i.
Ibn al-Haytham then repeats the calculation for h = 5 and proves that

we obtain the same inequality for any i. Finally, he proves that, at the lati-
tude concerned, we have the same inequality for any h. So we conclude that
JP is negligibly small with respect to PE.

This method, using calculation, leads to the same conclusion when
applied to any latitude. Ibn al-Haytham thus arrives at a general result, and,
more importantly, has an inequality of ratios that allows him to note the
degree of the approximation.

The tenth proposition concerns the calculation of the length of the lon-
gest shadow on a horizontal sundial.

In the last two propositions, Ibn al-Haytham deduces that if the point Q
is the shadow of E, the tip of a gnomon, at the end of the first hour of any
day, the distance from Q to the line of intersection of the plane of the dial
and the great circle that marks the first hour on the equator and on the two

circles of Cancer and Capricorn, is less than 1
30

 of the height of the gno-

mon; that is, it is less than ‘a distance whose magnitude is not such as the
senses can perceive’.9 Whatever the value of i, a straight line ∆ i,1( ) drawn on
the plane of the sundial cannot be distinguished from the straight line as
drawn ∆90 1,( ). Although they are distinct as mathematical entities, these two
straight lines are not distinct as physical ones.

In this same Proposition 11, Ibn al-Haytham employs an identical argu-
ment for any non-zero latitude and for any hour. The hour lines are straight
lines ‘such as the senses can perceive’. For places with latitude zero, the
hour lines are all straight lines and parallel to one another.

9 Fî khu†º† al-sæ‘æt, see below, p. 545; Arabic text in Les Mathématiques
infinitésimales du IXe au XIe siècle, vol. V, p. 799, 22–23.
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Accordingly, we can understand the criticism Ibn al-Haytham directs to
the work of Ibn Sinæn:

Similarly, he has not shown what is the magnitude of the distance by which
the tips of the shadows at the seasonal hours depart from the <straight> line
given for that hour. It is possible that the tips of the shadows depart very
little from the straight line given for that hour, so that this deviation is
insensibly small. And the proof indeed depends on the fact that a
mathematical straight line is a length that has no width, whereas the line
drawn on the plane surface of the sundial is one that has a noticeable width,
which could take in the deviation of the shadows, if this deviation is
insensibly small, or is less than it <sc. the width of the line> by some
negligibly small amount.10

Thus, according to Ibn al-Haytham, Ibn Sinæn’s error is to have seen the
lines of the shadows only as mathematical lines. This criticism is indicative of
some of the guiding principles behind what Ibn al-Haytham proposes to do,
as a great mathematician who is also a great natural philosopher. The ruling
principle of this work is indeed that he proposes ‘combining mathematics
and natural philosophy’ when studying nature. We must, of course, use
mathematics in ‘physics’, but we cannot reduce a shadow to a straight line
any more than we can reduce a ray of light to the straight line along which
light is propagated. It is precisely this separation that leads us to accept an
approximate truth. The facts of the matter are, of course, established with all
requisite rigour, but the process includes our permitting some approxima-
tion. The question is thus one of knowing how to assess that approximation
and correct the earlier mistakes. This is precisely what Ibn al-Haytham turns
his attention to doing.

So, to sum it up, in this treatise Ibn al-Haytham develops a general
theory of the sundial and the hour lines drawn on it; he proves that the same
sundial will work in any location if we allow a negligible error. The principal
instruments used by this theory are theorems in plane trigonometry concer-

ning the variation of functions such as sinϕ
ϕ

, and theorems in spherical geo-

metry that lead to certain inequalities of ratios, which are used specifically to
put an upper limit on the error made in the approximations. This concern to
assess errors seems to be unprecedented. So the theoretical, mathematical
and also epistemological implications of the work are very considerable.

We shall now analyse and comment upon each of the propositions in
this book.

10 Fî khu†º† al-sæ‘æt, see below, p. 516; Arabic text Les Mathématiques
infinitésimales du IXe au XIe siècle, vol. V, p. 735, 11–17.
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Lemma 1. — Let there be in a circle two parallel chords EG and BD on
the same side of the centre, EG BD< < π . A perpendicular to these chords
cuts the arc EG in A, the chord EG in H and the chord BD in I; then

(1) AI

IH

AD

DG
<

and

(2) AI

AH

AD

AG
> .

We have BA < BG and BG < BD. The circle (B, BA) cuts BG in K, BD
in L and EG in M, where M lies between A and K.

D
R P LON

I
Q

B

C

G

K

M H E

A

Fig. 1.1

AL is intercepted by the angle at the centre ABLˆ ; that angle is inscribed
in the original circle and intercepts AD; in the same way KL is intercepted
by the angle at the centre GBDˆ  which is inscribed in the original circle and
intercepts GD , so

AL

KL

AD

DG
= .

AK cuts BD in P. We have

sect.
sect.

tr.
tr.

( )
( )

( )
( )

BAK

BKL

BAK

BKP
> ,

so
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AK

KL

AK

KP
> ,

hence
AL

LK

AP

KP
>

 
 and  AL

LK

AI

KO

AI

MN
> >

(KO and MN are perpendicular to BD). So

AL

LK

AI

IH
>

and it follows that

(1) AD

DG

AI

IH
> .

From which we deduce

(2) AI

AH

AD

AG
> .

In the same way we prove that

IA

AH

BA

AE
>   and  AB

BE

IA

IH
> .

Corollary: Let C be the part of AI cut off by the circle

1) If the arc ABC ≤ π and EQ ⊥ DB, then

IB

BQ

AB

BE
> .

2) If the arc ADC ≤ π  and GR ⊥ DB, then

ID

RD

AD

DG
> .

To prove this, we merely need to exchange the parts AC and BD play in
the figure; then Q (with respect to R) plays the part of H.

Here we wish to prove
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AL

LK

AI

IH
> .

Now AI = AB sin ABLˆ  and IH = MN = GB sin KBLˆ ; so the second ratio is
equal to

AI

IH

AB ABL

BG KBL

ABL

KBL

ABL

KBL

AL

KL
= < < =sin ˆ

sin ˆ
sin ˆ

sin ˆ

ˆ

ˆ

because the function ϕ ϕ
ϕ

a
sin  decreases for 0

2
< ≤ϕ π  and from

0 < KBL ABLˆ ˆ<  < π
2

, since EG BD< < π .

We finish with the observation that

AD

DG

AL

KL
= .

We can see that this proposition results from the decrease in sinϕ
ϕ

.

Lemma 2. — On a circle we are given the arcs BA and AD such that

AD AB= 1
2

 and AB ≤ π
2

. If E on the arc BA and G on the arc AD are such

that AB

AE

AD

AG
=  AG

AE=



2

, then

sin
sin

sin
sin

AD

AG

AB

AE
> .

C

B
I

E

A
HMKL

G

D

Fig. 1.2
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If we put AD = α1 and AG = α 2, and if α α π
2 1 4

< < , then the preceding

relation can be written:
sin
sin

sin
sin

α
α

α
α

1

2

1

2

2
2

> ,

and it is accordingly equivalent to cos α2 > cos α1, that is, to cos α decrea-

sing for 0
4

≤ ≤α π  (which also applies for α ≤ π).

Let AC be the diameter from A. The arc AE AB< ⇒  BC < EC < AC.
The circle (C, CE) cuts AC in H and CB in I. We draw BL, IK and EM

perpendicular to AC; we have IK > BL (because CI > CB) and BL > EM
(because AB AE> ), hence

IK

EM

BL

EM
> , IK

EM

HEI

HE
= sin

sin
, BL

EM

AB

AE
= sin

sin
,

so
sin
sin

sin
sin

IH

HE

AB

AE
> .

But IEH  is intercepted by the angle at the centre ICHˆ , which is in-
scribed in the given circle and intercepts the arc BA of that circle; so IEH  is

similar to 1
2

BA which is equal to AD; in the same way HE is similar to

1
2

AE  which is equal to AG, so

sin
sin

sin
sin

IH

HE

AD

AG
= ,

and it follows that
sin
sin

sin
sin

DA

AG

BA

AE
> .

Lemma 3. — On a circle let there be the points A , B , C , such that
π
2

≥ >AB BC; and let there be D on BA and E on BC  such that BD

BE

BA

BC
= ,

then
sin
sin

sin
sin

BD

BE

BA

BC
> .
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This lemma corresponds to Proposition 2 of the Treatise on the Confi-
guration of the Motions of Each of the Seven Wandering Stars.

Let F be the centre of the circle; the straight line FB cuts AC in H, DE
in I and the circle in P. The tangents to the circle at A and C cut one ano-
ther in G, because ABC < π . There are two cases.

1st case: Let us assume AB < π
2

, then AP > π
2

.

L U N J

R B I
W T

V

P

Q

G O

S

I

D

A

F

K

S
La

E

C

′

′
H

M

Fig. 1.3.1

Let us draw FG to cut AC in its midpoint M and AC  in its midpoint K.
We have CP AP> , because BC AB< . Let Q be such that CQ AP= , then

PQ || AC and BHC BPQˆ ˆ= . We have QC AP AB= > , so QB AC> , and it

follows that BPQ GACˆ ˆ>  (angles inscribed in a circle); so BHC GACˆ ˆ> , the
straight line AG meets the extension of HB in L and HL cuts CG in J. We
have

AH

HC

AB

BC
= sin

sin
  and  DI

IE

BD

BE
= sin

sin
.

But
AB

BC

AB

BC
> sin

sin
.

In fact, if we consider the double arcs BA AB′ = 2 , BC BC′ = 2  and their
chords, we have

BC BA′ < ′ < π   and  BA

BC

BA

BC

′
′

> ′
′
.
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This property was proved by Ptolemy.11

Which gives us AB

BC

AH

HC
> ; similarly, BD

BE

DI

IE
> .

Let BS ⊥ AC, then MC

CS

KC

BC
> , from Lemma 1 (in which the points that

here are called C, B, K, M, S correspond to the points called A, G, D, I, H in
Lemma 1), hence

AC

CS

AC

BC
>

 
 and  AS

CS

AB

BC
> .

So the point T of AC such that AT

TC

AB

BC
=  lies between A and S.

Let JLa ⊥ AC; La lies between S and C, hence

AL

L C

AS

SC

AT

TC
a

a

> > .

Let CV || AG, let V be a point on JLa; we have ACV CAG ACGˆ ˆ ˆ= = ,
hence LaV = LaJ and CV = CJ. The straight line VT cuts AG in O; we have

AO

CV

AT

TC

AB

BC
= = ,

hence
AO

CJ

AB

BC

BD

BE

AD

CE
= = = .

The parallel to AC drawn through O meets FL in N, AT > TC; hence
AO > CJ. So the point N lies beyond J. We have ANO NACˆ ˆ= , an acute
angle, hence AONˆ  is obtuse.

Let I′ be the part of AN cut off by the circle. There are three cases in

regard to the point D:

a) D between A and I′.
The straight line AD cuts ON in S′ and FL in U (see Fig. 1.3.1). We have

11 Composition mathématique de Claude Ptolémée, French transl. N. Halma, 2
vols, Paris, 1813, vol. I, pp. 34–5.
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AU > AS′ > AO  and  AU

CJ

AO

CJ
> ,

hence
AU

CJ

AD

CE
> .

The straight line CE cuts FL in R; CBHˆ  is acute, hence CBRˆ  is obtuse,
CRJˆ  is obtuse, CJ > CR, and

AU

CR

AU

CJ

AD

CE

AD

CE

AU

AD

CR

CE

UD

AD

RE

CE

DU

UA

ER

RC
> > > ⇒ > ⇒ > ⇒ > .

The straight line DC cuts BH at the point W . Applying Menelaus’
theorem to the triangle ADC with transversal UWH gives

   HC

HA

UA

UD

WD

WC
⋅ ⋅ = 1;

and we can write

CH

HA

CW

WD

DU

UA
= ⋅

and
CW

WD

CH

HA

UA

UD
= ⋅ .

U

D

A

W
H

C

Fig. 1.3.2

Applying the same theorem to the triangle DEC with transversal RIW
gives

WD

WC

RC

RE

IE

ID
⋅ ⋅ = 1,

hence
WC

WD

IE

ID

RC

RE
= ⋅ .

So we have
ID

IE

ER

RC

AH

HC

DU

UA
⋅ = ⋅ .

But
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DU

UA

ER

RC
> ,

hence
DI

IE

AH

HC
> ;

and it follows that
sin
sin

sin
sin

DB

BE

BA

BC
> .

b) D is at the point I′.
In this case, S′ = N = U and AN > AO, and the proof is as before.

c) D lies between I′ and B.

.

G

O

A

P

Q

C

JU
S

N

D

I

B I W
M

H
T

S

L

F

a

′

′
E

Fig. 1.3.3

In this case, we require to find an integer n such that if BD BDn′ = 2 ,
the point D′ lies between I′ and A; we associate with it the point E′ such

that BE BEn′ = 2 . The argument used before in relation to D′ and E′ gives

sin

sin

sin
sin

BD

BE

BA

BC

′
′

> .

But by applying Lemma 2, we have

sin
sin

sin
sin

...
sin
sin

BD

BE

BD

BE

BD

BE

n

n> > >2
2

2
2

,
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so
sin
sin

sin

sin

sin
sin

BD

BE

BD

BE

BA

BC
> ′

′
> .

2nd case: If AB = π
2

, then AP QC= = π
2

.

The straight line GA, the tangent at A, is then parallel to FB. Whatever
the position of D, the straight line AD meets FB at the point U. The proof is
as before.

AG

D

K

U
B

M
F

H

C

P

Q

Fig. 1.3.4

This is the proof Ibn al-Haytham gives for Lemma 3. For any D such
that BD BA< , we can establish that

ID

IE

RE

RC

HA

HC

UD

UA
⋅ = ⋅ .

But, in conclusion, we need to prove that UD

UA

RE

RC
> .

Ibn al-Haytham distinguishes three cases:

D AI∈ ′; in this case, AU > AO,
D I= ′; we again have AU > AO;

in these two cases, we may draw the required conclusion.
But if D I B∈ ′ , the point S′ lies on the extension of ON and U lies be-

tween N and B; we still have AN > AO, but AU < AN; so we can have
AU < AO, AU = AO or AU > AO, and the argument used in the first case
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does not apply. That is why Ibn al-Haytham tries to get round the difficulty,
as we note in part c).

In addition, the matter of the existence of n raises a new difficulty. If we

put BA = α , then BI ′ = β  β α π< <



2

 and BD = γ. If γ < β, we need to

find an integer n such that γn = 2n · γ satisfies the double inequality

β < γn < α (mod 2π).

Contrary to what Ibn al-Haytham thought, the problem does not always
have a solution. For example let us take γ = 3°; the series (γn)n≥0 = (3 · 2n)

gives: 3, 6, 12, 24, 48, 96, 192, 384… We have γ7 = 3 · 27 = 24 (mod 360),

hence γ8 = 48 (mod 360). If we use the name Dn for the point associated

with γn, we have
D3 = D7, D4 = D8, …, Dn = Dn+4.

Consequently, for whatever β ∈ ]48, α[, α ≤ 90°, for example β = 50°,
it is impossible to find Dn between I′ and A.

These difficulties might explain those later encountered by al-Færisî in
making his edition of this proposition. As he puts it: ‘But since the copy was
badly damaged, I was not able to decipher it: thus I simply recalled the
statement. If I am able to decipher it later on, I will add the wording in this
place’.12

The same al-Færisî was given pause in his commentary by the condition
Ibn al-Haytham formulated in this treatise on Hour Lines, but that he had,
strangely, left out of his treatise on The Burning Sphere, that is

BC AB< ≤ π
2

.

Now this condition is not necessary. Moreover, Ibn al-Haytham himself
uses his Lemma 3 in Propositions 3 and 4 of The Burning Sphere, where

the arc concerned TJ  can be greater than π
2

 for certain values of the angle

of incidence i, because TJ d> 4  (where d  is the angle of deviation –
something he could not fail to notice).

12 Fî al-kura al-muÌriqa, in R. Rashed, Geometry and Dioptrics in Classical
Islam, London, 2005, p. 258; Arabic text p. 259, 10–11.
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Now let us return to the statement of the proposition and put BD = β1 ,

BE k= β1, BA = α1, BC k= α1 with k < 1; the condition set by Ibn al-
Haytham may be rewritten as

β α π
1 1 2

< < .

Now it is sufficient to take α1 = 120°, β1 = 90° and k = 1
2

 – we obtain

sin
sin

β
β

1

1

2
k

= , sin
sin

α
α

1

1

1
k

=  – to see that the condition α π
1 2

<  is overly restric-

tive.
Further, we can show that the proposition remains true for β1 < α1 < π.

Indeed, let us put

f x
x

kx
( )

sin
sin

= , with k < 1;

and prove that the function f defined in the interval ]0, π[ decreases in that

interval. We have

′ = ⋅ − ⋅
f x

x kx k kx x

kx
( )

cos sin cos sin
sin2

       = − + − + −[ ]


sin( ) sin( ) – sin( )
sin

kx x
k

x kx x kx
kx

1
2

1
2 ,

       = + − + − +





1
2

1
2

1
2

k
kx x

k
x kx

kx
sin( ) sin( )

sin

       = − +
+

− −
−







1
2

1
1

1
1

2

2

k

kx

x k

k

x k

ksin
sin ( ) sin ( ) .

Let us put

g x
x k

k

x k

k
( )

sin ( ) sin ( )= +
+

− −
−

1
1

1
1

,

we have g(0) = 0 and g′(x) = –2sin x · sin kx.

But x ∈ ]0, π[, and k < 1, hence kx ∈ ]0, π[, and consequently g′(x) < 0

in the interval ]0, π[; so g decreases if we start from g(0) = 0. So we have

g(x) < 0, hence f′(x) < 0, and consequently f decreases in the interval ]0, π[.

Accordingly, the inequality
sin
sin

sin
sin

β
β

α
α

1

2

1

2

>

is satisfied for β1 < α1 ≤ π, if we put α2 = kα1 and β2 = k β1 (0 < k < 1).
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Finally, we may note that, in this treatise, as in The Configuration of the
Motions of Each of the Seven Wandering Stars, Ibn al-Haytham extends his
proposition to two similar arcs in two different circles. But whereas Ibn al-
Haytham does not repeat this extension in his treatise on The Burning
Sphere, al-Færisî recalls it when making his edition of the work.

• Similar arcs in different circles: they are intercepted by equal angles at
the centre:

sin
sin

sin

sin

BD

BE

B D

B E
= ′ ′

′ ′
.

O

D

D

E

E

BB ′

′

′

Fig. 1.3.5

• Extension of Lemma 3 to arcs of different circles (arcs smaller than a
quarter of the circle):

D

B

E

A

C

D

B

E

′

′

′

Fig. 1.3.6

′ > ′ ′B A B D , ′ ′B D  similar to BD

′ > ′ ′B C B E , ′ ′B E  similar to BE

′
′

= ⇒ ′
′

= ′ ′
′ ′

B A

B C

BD

BE

B A

B C

B D

B E
.

In the second circle, we have
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sin

sin

sin

sin

′ ′
′ ′

> ′
′

B D

B E

B A

B C
,

hence
sin
sin

sin

sin

BD

BE

B A

B C
> ′

′
.

In the treatise on The Configuration of the Motions of Each of the
Seven Wandering Stars, the proof is specifically concerned with similar arcs
in different circles, which may suggest that this latter treatise was written
later than the treatise on The Hour Lines.

Lemma 4. — Let AC and BD be two chords in the same circle which cut

one another in a point E; if AB

ABC

CD

CDA
= , then 

AEBˆ

π
=

AB

ABC

CD

CDA
= .

We have
ACB

CAB

AB

BC

ˆ

ˆ =  and CAD

ACD

CD

DA

ˆ

ˆ = ;

C

B

A

D

E

Fig. 1.4

from this hypothesis we deduce
AB

BC

CD

DA
= ,

and on the other hand CAD CBDˆ ˆ=  and ACD ABDˆ ˆ= , hence

ACB

CAB

CBD

ABD

ACB CBD

CAB ABD

AEB

BEC

ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ= = +
+

= ,
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so
AB

BC
= AEB

BEC

ˆ

ˆ   and  AB

AB BC

AEB

AEB BEC+
=

+

ˆ

ˆ ˆ ,

so
AB

ABC

AEB=
ˆ

π
.

If α and β are the angles at the centre subtended by the arcs AB and

BC, those subtended by the arcs CD and AD are 2πα
α β

α
+

−  and 2πβ
α β

β
+

−

respectively, given the condition AB

AC

CD

CA
= =

+
α

α β
. From what is proved in

the lemma, the size of angle AEB is πα
α β+

, which is simply the mean of α

and 2πα
α β

α
+

− . In other words, AEBˆ = 1
2

AOB CODˆ ˆ+( ), where O  is the

centre of the circle.

Lemma 5. — As in Lemma 4 let there be two chords AC and BD that cut

one another, and are such that AB

ABC

CD

CDA
= ; and a chord GH parallel to AC.

Let there be the points I on the arc GDH and K on the arc GBH such that
IG

GIH

DA

ADC
=  and KH

HKG

BC

CBA
= , then the straight line KI is parallel to BD.

K
B

A

G

DI

H

C

E

N
M

Fig. 1.5
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The hypothesis AB

ABC

CD

CDA
=  is equivalent to BC

ABC

AD

ADC
= ; so we have

IG

GIH

KH

GKH
= ; it follows that, if M is the point of intersection of GH and KI,

we have from Lemma 4
KMH KH

GKH

ˆ

π
= ,

hence
KMH BC

CBA

BECˆ ˆ

π π
= =

and it follows that

KMH BECˆ ˆ= .

The straight line BD cuts HG in N (because AC || GH), so BEC ENHˆ ˆ= ,
hence ENH KMHˆ ˆ= ; so the straight lines BD and KI are parallel.

Lemma 6. — In a circle with centre G let there be two chords AC and BD

that cut one another in E and are such that AB

ABC

CD

CDA
= ; let IK be the dia-

meter perpendicular to AC at its midpoint H. If AB AK< ,13 then E lies
between H and C and BD cuts GH between G and H.

Let PQ be the diameter parallel to AC. GL, the straight line parallel to
BD, cuts AC in M. We have PGL AML AEBˆ ˆ ˆ= = .

From Lemma 4, we know that

AB

ABC

AEB=
ˆ

π
;

but
LP

PLQ

PGL=
ˆ

π
,

hence

13 A specification added so that E lies between H  and C , as required by the
statement of the lemma. If AB AK> , the point E  lies H  and A , but the point of
intersection of BD and GH still lies between G and H.
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BA

ABC

LP

PLQ
=

and it follows that
LP

PLK

AB

ABK
= .

P

B

L
K

Q

C

DI

A

S

G

H

F
N

E

J

M

U
O

Fig. 1.6

Let S be a point on the arc AP such that SP

PA

LP

PLK

AB

ABK
= = , we then

have
AB

ABK

SP LP

AP PLK

SL

APK
= +

+
= ,

hence SL AB=  and AS BL= . But SP

PA

LP

PK
=  gives

PA

AS

PK

KL
= ,

hence
PK

KL

PA

BL
= ;

and since PA PK< , we have

sin
sin

sin
sin

PA

BL

PK

KL
> , sin

sin
PA

BL

HG

BO
= , sin

sin
PK

KL

GK

LU

GL

LU
= = ,
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hence
HG

BO

GL

LU
> .

But GLU and GHN are similar, GL

LU

GH

HN
= , hence

HG

BO

GH

HN
>

and it follows that BO < HN. So the straight line BD cuts GH between G
and H and cuts AC in E between H and C.

We may note that the triangles GHM and EJM are similar, hence

GM

ME

GH

EJ

GH

BO
= =

and
GM

ME

AP

BL

AP

AS
= =sin

sin
sin
sin

.

Proposition 7. — Let ABCD be the horizon plane at the place E, E being a
point in the northern hemisphere. The horizon is cut by the equator in the
line BD, by the circle of Cancer in the line IL and by the circle of Capricorn
in the line UF. These three straight lines are parallel. The meridian plane for
E cuts BD, IL and UF in their respective midpoints E, N and S, which lie on
the meridian line AC. The respective centres of these three circles, E, R and
R′, lie on the axis of the world.

K

H

J
A

F
O

S

U B R I

C
Q

L

N

D

P

E

R′

Fig. 1.7.1



492 CHAPTER I

Let K be a point of the diurnal arc that is the major arc IL of the circle
of Cancer and let Q be the point of the minor arc such that

QI

IQL

KL

LKI
k= = ;

then, from Lemma 6, if k < 1
2

, the straight line KQ cuts the straight line IL

in P which lies between N and I and cuts the straight line RN between R
and N.

K

L

Q

IN
P

R

Fig. 1.7.2

If 1 > k > 1
2

, Ibn al-Haytham proves that the point P lies between N and

L.
Ibn al-Haytham’s approach is, effectively, to consider the point E as a

centre of symmetry in the figure formed by the horizon plane ABCD and
the two parallel circles. Thus we have: EN = ES, IL || UF and IL = UF. The
straight line PE cuts UF in O and we have EP = EO, NP = SO, IP = OF.
The plane KPO contains the centre of symmetry E; so it cuts the circle FJU
in the straight line OJ, which is parallel to QP. In the symmetry with centre
E the points Q, P, I, L have as their respective homologues the points J, O,
F, U, hence the equalities JOF QPIˆ ˆ= ,  JF QI=  and FJU IQL= . So we
have

JF

FJU

QI

IQL
= ,

hence



HOUR LINES 493

JF

FJU

KL

LKI
= .

The two points J and K are associated with homologous seasonal hours.
The plane KPO which contains E is a diametral plane of the sphere of the
Universe. It cuts the plane of the equator in the straight line EH and we
have EH || KP || JO . Moreover, we know that ED  || NL  || SF , hence
HED KPL JOFˆ ˆ ˆ= = .

From Lemma 4, we have
KL

LKI

KPL=
ˆ

π
;

moreover, HED HD

DHB

ˆ

π
= , because DHB is a semicircle, so

HD

DHB

KL

LKI
= .

J
S

O
F U

D

H

E B

L

K

N

R
P

Q
I

Fig. 1.7.3

So the three points K, J and H correspond to homologous seasonal
hours. They lie on a great circle with centre E whose plane cuts the horizon
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plane in the straight line OEP and cuts any plane parallel to the horizon
plane in a straight line parallel to EP.

If the plane of a sundial is parallel to the horizon at E, it is cut by the
plane KHJ in a straight line ∆ parallel to EP.

When the sun is at one of the points K, H or J, the shadow cast by the
tip of the gnomon on the plane of the sundial lies on the straight line ∆.

Note: The proof Ibn al-Haytham gives for this Proposition 7 may be compa-
red with the proof by Ibn Sinæn.14 We have just seen that, in order to show
that the three points that correspond to the same seasonal hour on the cir-
cles of Cancer, the equator and Capricorn, points that lie on the same great
circle, Ibn al-Haytham takes a general point K on the diurnal arc of Cancer
and by using Lemma 4 – a lemma in plane trigonometry – specifies a great
circle on the celestial sphere passing through K. This great circle cuts the
diurnal arc of the equator in H and that of Capricorn in J. He shows that the
three points J, K and H satisfy

LK

LKI

FJ

FJU

DH

DHB
= = ;

so they correspond to the same seasonal hour. The fact that the two parallel
circles concerned are those of Cancer and Capricorn plays no part in the
proof, which is valid for any two parallel circles symmetrical with respect to
the equator.

This is the hypothesis Ibn Sinæn makes for the first proposition of his
second book. He first proved a lemma, a case of an equality for two spheri-
cal triangles drawn on the same sphere or on two equal spheres, and uses
this lemma to prove that if three points E, I, K correspond to the same
seasonal hour on the equator and on the two parallel circles concerned, then
E, I and K lie on the same great circle.

In short, Ibn al-Haytham works this way:

point K and Lemma 4 → great circle → J and H giving the same seasonal hour as K

whereas Ibn Sinæn works this way:

14 Fî ælæt al-aÂlæl, in R. Rashed and H. Bellosta, Ibræhîm ibn Sinæn. Logique et
géométrie au Xe siècle, pp. 330–1 and pp. 416 ff.
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the points E, I, K correspond to the same seasonal hour + lemma (in spherical trigo-

nometry) → there exists a great circle passing through E, I, K.

Proposition 8. — Let MVF be an hour circle situated between the circle of
Cancer and the equator and let it cut the plane of the horizon in MF. The
centre of this circle O lies on the straight line ER, the axis of the Universe;
U, the midpoint of MF, lies on EN and we have OU ⊥ MF; the straight line

EP cuts MF in W. The point V is defined by FV

FVM

LK

LKI
= . If T is the point

on the arc that completes the arc FVM and satisfies the equation

MT

MTF

FV

FVM
= ,

then the straight line VT cuts FM at the point Q between U and M and we
have VQF KPLˆ ˆ= , so VQ || KP.

A

X

<V >

H

D
V

F

K

L

C

N

G

B

M

<T>

IJ
R

P

O

U W Q
S

E

H

′

′

Fig. 1.8
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Let the point J on NI be such that RJ || KP,15 then VQ || RJ, the straight
line EJ cuts MF in S and we have OS || RJ || VQ. We assumed that the arc
FVM  is smaller than the arc similar to LKI , meas meas. .FVM LKI< .

Let α be a part of VF  defined by the relation α
VF

LK

LKI
= 1

2

 and β the

part of KL such that α β
VF LK

= , then

meas meas.. VF KL−( ) < −( )α β .

But
sin

sin

VF

VF

OS

SQ−( ) =
α

  and  sin

sin

KL

KL

RJ

JP−( ) =
β

,

(from the end of Lemma 6), hence

OS

SQ

RJ

JP
> .

Moreover, the right-angled triangles OSU and RJN are similar, hence

OS

SU

RJ

JN
= .

So we have
US

SQ

JN

JP
> ,

hence
JN

NP

SU

UQ
> ,

or by permutation
JN

SU

NP

UQ
> .

15 We shall see later (pp. 498–9) that if the diurnal arc LKI measures 210°, the point
J coincides with the point I. Here no assumptions are made about the arc LKI.
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But
JN

SU

RN

OU

EN

EU

NP

UW
= = = ,

so
NP

UW

NP

UQ
>

and it follows that UW < UQ; the point Q does not lie on PE. In the horizon
plane, the straight line EP, which is the straight line associated with the sea-
sonal hour that corresponds to the point K, is thus distinct from the straight
line EQ associated with the point V.

The plane of the hour circle symmetrical with the circle MVF with res-
pect to E is cut by the horizon plane in the straight line GX, and by the
plane VQE in the straight line HV′, which is parallel to the straight line VQ
and passes through the point H, the point of intersection of QE and GX. The
plane VQE cuts the sphere of the Universe in a great circle whose cir-
cumference passes through the points V, H′ and V′ that lie, respectively, on
the circles MVF, DH′B and XV′G; these points correspond to the same sea-
sonal hour for the days identified by these three circles.

The two planes VQE and KPE that pass, respectively, through the
parallel straight lines VQ and KP, cut one another in a straight line parallel
to these two straight lines, the straight line EH′ that lies in the plane of the
equator.

To summarize: if to the hour h there correspond, on the one hand, the
points K, H, J of the first figure and, on the other hand, the points V, H′ =
H, V′ of the second figure, then with the points K, H, J there is associated
the straight line EP, with the points V, H′, V′ there is associated the straight
line EQ, which is distinct from EP.

Proposition 9. — We consider four arcs of the ecliptic cut off between the
points γ, γ′ (the equinoxes), and σ and σ′  (the solstices). If with each degree
i, from 0 to 90, of the arc γσ we associate a point α i where α0 = γ and
α90 = σ, then there is an hour circle that corresponds to each point αi.

To a given hour h taken on each of the 91 hour circles there correspond
91 points that are the shadows of the tip of the gnomon on the plane of the
sundial, let w0·h be the associated point when i = 0.

For two points αi and α′i symmetrical with respect to σσ′, the hour cir-
cle is the same; so the sun describes it twice in the year.
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ii

i

α′α

σ

β

γ′γ

σ′

Fig. 1.9.1

For two points αi and βi symmetrical with respect to γγ′, the hour cir-
cles Cαi and Cβi are symmetrical with respect to the equator.

For i ≠ 0, with the 4 points αi, α′i, βi, β′i of the ecliptic there are asso-
ciated two circles Cαi and Cβi

, and to a given hour h on these circles there
corresponds a single straight line ∆i·h in the plane of the sundial.

For i between 0 and 90, with an hour h there are associated the point
w0·h and 90 straight lines ∆ i h i⋅ =( ) 1

90  which all pass through the point w0·h.
For a given hour h, w0·h corresponds to two days, the equinoxes, ∆90·h

also corresponds to two days, the solstices, and any other straight line ∆i·h

corresponds to four days, one day in each season.

It remains for us to show that, for an hour h, the angle ∆90·h makes with
any straight line ∆i·h is negligible.

Ibn al-Haytham returns to the figure for his investigation of the first
hour, h = 1, when the sun is on the circle of Cancer, to fix the position of
the point P.

He supposes that the arc LKJ measures 210°, which he calls fourteen
hours; which is to take one hour as corresponding to 15° as is the case for
an equinoctial hour

210
180
12

14° = ° × .

But he then takes KL = ° = °210
12

17 5.  as the arc for one hour.
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The value given for the arc LKJ = °210  allows us to calculate the lati-
tude of the place concerned.16 We shall take α = 23°27′ for the angle bet-
ween the equator and the plane of the ecliptic. Later on (p. 507), Ibn al-
Haytham says that the latitude of the place concerned is 30°.

In the calculations that follow, Ibn al-Haytham takes α = 24° as the incli-
nation of the ecliptic.

Let us put EH = r (Fig. 1.9.3). Taking r = 60, we have

ER = r sin α = 60 × 0.4069366 = 24.4022 = 24.24.15

RH = RI = r cos α = 60 × 0.91354545 = 54.812727 = 54.48.46

RN = RI sin 15° = 14.186577 = 14.11.11*.

16 Calculation of λ  the latitude of the place of observation: the arc of the circle of

Cancer above the horizon is given: 210°, hence HRLˆ  = 105°, LRNˆ  = 75°,

(1) RN = RH cos 75°.

Let α the inclination of the ecliptic to
the equator.

• If E H  = r  is the radius of the
universe,

ER = r sin α.
RN = ER tan λ = r sin α tan λ.

(2)            RH = r cos α.

(1) and (2) ⇒ = °
tan

cos75

tan
λ

α
.

75¡
15¡

H

C M

K
W

L
N P I

K

R

′

Fig. 1.9.2

• If α = 23°27′, we have

tan
cos75

tan 3 27
λ = °

° ′2
= =0 258819

0 433775
0 59666

.

.
.

λ = 30°49′43″.

• If α = 24°, tan 24° = 0.445228

tan λ = 0.58131788

λ = 33°18′25″.

α

α

λ
E

H

N

Equator

i

R

Fig. 1.9.3
Baghdad 33°14′

* The text gives 14.10.10.
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We have

LC = °30

LW = ° − °( ) = °1
2

210 180 15

LK = °17 5.

KC LW LW= − = − = °1
6

15 2 5 12 5. . ,

so RW bisects CRLˆ , so RW || IL and the straight line CR passes through I.

Position of P: from the preceding, if K ′ is defined by the equation

LK IK

210 150
= ′ , the straight line KK′ cuts LI in P.

IK ′ = × =17 5 5
7

12 5
.

. ,

so IK KC′ = , hence KK′ || CI and we have

CRW KPLˆ ˆ=  and KC

LK
= 5

7
.

If CM ⊥ RH, then RN = RM and CM = IN.

Calculation of CM: CM = IN

  CM = RH sin 75° = RI sin 75° = RI × 0.96592

= 54.812727 × 0.96592 = 52.94471 = 52.56.40.

Calculation of IP: from Lemma 6, we have

IP

IR

KC

LW
= = °

°
= =sin

sin
sin .
sin

.

.
.

12 5
15

0 216439
0 258819

0 836259

IP = RI × 0.836259 = 54.812727 × 0.836259 = 45.8371 = 45.50.13



HOUR LINES 501

PN = NI – IP = 52.56.40 – 45.50.13 = 7.6.27.

Note: IP

IR
= 0 836259. ,  5

6
0 8333= . , hence IP

IR
> 5

6
, a result Ibn al-Haytham

proves later.

Calculation of EN:

EN2 = ER2 + RN2 = (24.4042)2 + (14.186577)2

= 595.5650 + 201.2632 = 796.8282
EN  = 28.228.

E

H

M

R

I

K
PNL

W
K

C

′

Fig. 1.9.4

Let there be a general hour circle with centre R′, lying between the cir-
cle of Cancer, centre R, and the circle of the equator, centre E; the points E,
R and R′ are collinear. The plane ELI cuts the plane of the hour circle with
centre R′ in the straight line L′I′, the straight lines EI, EP and EN cut that
straight line in I′, P′ and N′ respectively. The triangles ENI and EN′I′ are
similar, as are the triangles EPI and EP′I′. At the same time, the triangles
RNI and R′N′I′ are similar. We have



502 CHAPTER I

EN

EN

ER

ER

EP

EP

EI

EI

′ = ′ = ′ = ′

and
RI

IN

R I

I N
= ′ ′

′ ′
  and  RI

IP

R I

I P
= ′ ′

′ ′
.

E

N

R

P J
I

L N P J I

L

R

′
′

′ ′
′

′

Fig. 1.9.5

But
RI

IP

LW

KC
= sin

sin
;

we have

LW = °15  and KC = °12 5. , LW KC= +



1

1
5

,

hence
LW

KC
= +1

1
5

  and  RI

IP

LW

KC
= < +sin

sin
1

1
5

,

hence

RI IP< +



1

1
5

or

IP RI> +





1
2

1
3

.
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This result holds true whatever hour circle we choose.

We had IP RI> +





1
2

1
3

. Let J be a point on IN such that IJ RI= +





1
2

1
3

;

we have IJ < IP. The straight line EJ cuts any straight line I′P′ homologous

to IP, in a point J′ and we have

′ ′ = +



 ′ ′I J R I

1
2

1
5

 (Fig. 1.9.5).

Each of the great circles associated with the first seasonal hour cuts the
plane of the horizon in a straight line enclosed between EP and EJ, for hour
circles between the circle of Cancer and the equator, and in a straight line
enclosed between EH and EF for hour circles between the equator and the
circle of Capricorn.

X F H G

D E B

L N P J I

Fig. 1.9.6

Calculation of the ratio PJ

PE
:

In decimal form, we have RI = 54.8127, IJ = 45.6773, IP = 45.8371,
hence

JP = 0.1598,   JP < 1
6

;

PN = NI – IP = 7.1076,17

hence
PN2 = 50.5180

17 Ibn al-Haytham gives PN = 7.6.54, that is, 7.11944, hence PN2 = 50.686 ≅ 50

and 2

3
.
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EN2 = 796.8282 ≅ 797

EP2 = EN2 + PN2 = 847.3462
EP  = 29.10938 (EP > 29),

hence
JP

EP
<

×
1

29 6
  and  JP

EP
< 1

174
.

Note: The point P that corresponds to the end of the first hour is thus such
that PN ≅ 7 and EN ≅ 30

PN

EN
≅ 7

30
;

EN is the meridian line, and we have (tan NEPˆ )1 ≅ 7
30

.

Ibn al-Haytham next considers the point K on the circle of Cancer such
that the arc LK is the arc for the beginning of the fifth hour.

H

M
C

K

W

L N P J U E

R

Fig. 1.9.7

LH = °105 LW = °15 WC = °75 CH = °15

LK = = ° × = °5 hours 17 5 5 87 5. . , WK = °72 5. , so KC = °2 5.  .

We have
RH = CR = 54.812727,
CM = RN = CR sin 15° = 14.11.10 and MR = CR sin 75° (= 57.57.20),
CR

RU

MR

RN
= = °

°
= =sin

sin
.
.

.
75
15

0 965926
0 258819

3 732052

CR = 54.812727,
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hence

RU = = =54 812727
3 732052

14 687029 14 41 13
.

.
. . .

CM = CR × 0.258819

and
CM

NU

CR

RU
RU NU= ⇒ × =0 258819.

NU = 14.687029 × 0.258819 = 3.801282 = 3.48.6.

sin
sin

sin
sin .

.

.
.

LW

KC

RU

UP
= = °

°
= =15

2 5
0 258819
0 043619

5 933629

UP
RU= = = =

5 933629
14 687029
5 933629

2 475218 2 28 30
.

.
.

. . . .

Therefore
PN = 3.48.6 – 2.38.30 = 1.19.34 = 1.326

UJ RU= = =1
6

14 41 13
6

2 27
. .

.

JP = UP – UJ = 2.28.30 – 2.27 = 0.1.30 < 2 minutes.

We know that EN2 ≅ 798 and PN2 < 2, so EP2 ≅ 800, EP = 28,284…

Ibn al-Haytham gives EP = + +28
1
4

1
7

, or 28.264, which he converts into

minutes EP ≅ 1700, hence
JP

EP
< 2

1700
 or JP

EP
< 1

850
.

The ratio JP

EP
, calculated for the fifth hour, is thus less than 1

174
, which

was the ratio associated with the first hour.
The same method can be used for each of the other hours, so, at the lati-

tude concerned, for any hour of the day we have
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JP

EP
< 1

174
.

In applying the same method for any other horizon, that is, for any lati-

tude, we find that the ratio JP

EP
 has a very small value, and JP is thus negli-

gible in relation to EP.

Notes:

1) We have PN2 < 2, EN2 ≅ 800, PN

EN

2

2

1
400

< , PN

EN
< 1

20
, a result that

corresponds to the point P, which is associated with the end of the fifth
hour; we then have

(tan NEPˆ )5  <  1
20

.

2) At the end of the sixth hour, the point C on the circle of Capricorn is
at H, so it is in the meridian plane. The same holds for the point corres-
ponding to C on any of the hour circles. So all these points lead us to the
same straight line EP identified with EN, so (tan NEPˆ )6 = 0.

A different straight line is associated with each hour h.

Proposition 10. — Calculation of the length of the longest shadow in the
plane of the sundial.

For the horizon ABCD that we considered before, the diurnal arc of
Capricorn is 150°, so one seasonal hour is 12.5°.

So we have DGB = °150 , and if DG  is the first seasonal hour and IK
the diameter parallel to BD, we have DG  = 12.5°, BI DK= = °15 ; hence
GK = °27 5. .

Let GL ⊥ IK; GL cuts BD in M, we have, where r is the radius of the

circle of Capricorn:
• GL = r sin 27.5° = r × 0.46174861; putting r = 60, we have GL =

27.42.18;

• ML  = r sin 15° = r ×  0.258819; putting r = 60, we have ML  =

15.31.45.

From this we have GM = 12.10.33 (or GM = r × 0.20293).
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Let GN be perpendicular to (ABCD); GN is parallel to the vertical from
E, so the plane GEN passes through the zenith of E.

A

D

B

<X>

C
EG

N
M

<Y>

axis of 

the world

L
K

I

Fig. 1.10

We have GN ⊥ (ABCD) and GM ⊥ BD, so MN ⊥ BD. So the plane

GMN is parallel to the meridian plane whose position is determined by the
straight line AC and the point X, the culmination of the sun when it is on the
equator, that is, the plane EXY [XY ⊥ (ABCD)]. We have MGNˆ  = EXYˆ ; this

angle is the latitude of the place E. If the latitude is 30°, we have MN =
1
2

MG.

If r = 60, GM = 12.1758, GM2 = 148.2501, GN2 = 3
4

GM2 = 111.1875

and GN = 10.5445 ≅ + +10
1
3

1
4

.

But r ≠ 60, r = 54.48.16 = 54.812727,18 hence

GN
GN

54 812727
10 5445

60
9 6328 9

2
3.

.
.= ⇒ = ≅ + .

EG is a radius of the sphere of the Universe, EG = 60, so EG2 = 3600;

but GN 2
2

9
2
3

93 32= +



 = . , hence EN2 = 3506.68 and EN = 59.22 ≅ 59 + 1

4
.

18 Ibn al-Haytham proved this result in Proposition 9 where he took 24° for the
inclination of the ecliptic on the equator and 60° for the radius of the celestial sphere.
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GN

NE
=

+

+
= =

9
2
3

59
1
4

116
711

1
6 13.

,

so

GN NE< 1
6

.

The ratio GN

NE
 is equal to the ratio of the height h of the gnomon of a

horizontal sundial to the length l of the shadow of the gnomon, when the
sun is at the position G, the first hour of the circle of Capricorn.

h

l
= <1

6 13
1
6,

, l > 6h.

We may note that the ratio h

l
 is the tangent of the angle the ray from

the sun, GE, makes with the plane of the horizon.

Proposition 11. — Conclusion of Propositions 9 and 10.
Let there be a horizontal sundial, let CD be its gnomon, AB the line of

intersection of the plane of the sundial with the great circle that marks the
first hour on the equator and on the two circles of Cancer and Capricorn;
and let GEH be the straight line described by the shadow of D, the tip of the
stylus of the gnomon, on the days of the equinoxes, that is, the days when
the sun describes the equator. The point I, the intersection of AB and EH,
corresponds to the end of the first hour for the days of the equinoxes. Let L
and M be the shadows of the point D at the end of the first hour on the cir-
cles of Capricorn and Cancer respectively. So the shadows of the stylus CD
are CL, CI, CM for the first hour of the days in question. We have seen that
CL is the longest and that CL ≅ 6 CD.

If we turn back to the results proved in Proposition 9 (Fig. 1.9.6), we
draw through I the straight line KN  such that LIK JEPˆ ˆ=  and IBKˆ

= IAN EPJˆ ˆ= .19

We have
BK

BI

PJ

PE
= ≅ 1

174
.

19 That is, the angles JEP and EPJ of Proposition 9.
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The straight line AB corresponds to the straight line PEH of Fig. 1.9.6
and the straight line NIK corresponds to the straight line JEF.

K

B L
T

Q

G

E D

C

I

O
N

M A

H

′

O

Fig. 1.11

From the result established in Proposition 9 it follows that the great cir-
cles that mark the first seasonal hour of the other days of the year cut the
plane of the sundial in straight lines that pass through I and lie between the
straight lines AB and NK.

The straight line HG – associated with the equinoxes – corresponds to
the straight line BD of Proposition 9, so BIEˆ  > 90°; a fortiori, BICˆ  > 90°,
hence CL > LI.

If LO || BK, we have
OL

LI

BK

BI
= ≅ 1

174
.

Moreover, CD CL≅ 1
6

, so we have

CD LI> 1
6

, OL

CD

OL

LI
< ⋅ <6 6

174
 and 6

174
1

30
< ,

hence

OL CD< 1
30

.
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If Q is the shadow of D, the tip of the gnomon, for the first hour of any
day of the year, the point Q will lie inside one of the triangles LIO or IMO′;
so if from Q we draw a line QT parallel to BK, then QT < LO, so

QT

CD
< 1

30
.

If CD = 3 fingers, QT < 1
10

 of a finger.

If CD = 18 sha‘îra, QT < 3
5

 sha‘îra.

The point Q the shadow of D, the tip of the gnomon, is thus never at a
perceptible distance from the straight line LM, that is from the straight line
AB that corresponds to the first hour on the circles of the equator, Cancer
and Capricorn.

The proof carried out for the straight line AB that corresponds to the
first hour, could also be carried out in the same way for any hour, hence the
conclusion: for an ‘inclined horizon’, that is a place with non-zero latitude,
the hour lines on the sundial are straight lines as far as our senses can
perceive, which is to say that, if we take as hour line h on all the hour circles
Cα i

 the straight line ∆90·h marked by the hour h on the circles of the
equator, Cancer and Capricorn, the error we make is negligible; so any
straight line ∆i·h can be regarded as ∆90·h.

For a place with latitude zero, that is, for any point on the terrestrial
equator, the axis of the world is in the plane of the horizon; so the diurnal
arcs are all semicircles and a great circle that marks an hour h on the celes-
tial equator marks the same hour h on any hour circle. This great circle cuts
the horizon in the meridian line and on the plane of the sundial there corres-
ponds to it a straight line parallel to the meridian line. The same holds true
for every hour of the day. In these places the hour lines are parallel straight
lines.

Thus Ibn al-Haytham develops a general theory of the sundial and the
hour lines drawn on it; he proves that the same sundial can be used in any
place if one allows a negligible error.

The theory mainly relies upon theorems in plane trigonometry concer-

ning the variation of functions such as sinϕ
ϕ

 and theorems in spherical geo-
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metry that lead to certain inequalities of ratios that can be used to check the
size of errors.

This concern to keep track of errors seems to be entirely new.

1.3. HISTORY OF THE TEXT

This treatise was cited under the same title – Fî khu†º† al-sæ‘æt – by the
old biobibliographers, al-Qif†î, Ibn Abî UÒaybi‘a,20 in the lists they drew up
of the works of Ibn al-Haytham before 1038. We also know that in his book
The Burning Sphere, Ibn al-Haytham returns to an important proposition
from this book, which he cites. Moreover, in The Configuration of the
Motions of Each of the Seven Wandering Stars, he again returns to a pro-
position in this book, as we have shown.

This treatise exists in two manuscripts:

1. Collection Askari, no. 3025, fols 1v–19v, in the Library of the Military
Museum (Askari Müze), Istanbul.

2. Collection ‘Æ†if, no. 1714, fols 57r–76v, in the Süleymaniye Library,
Istanbul.

We have given a detailed account of the history of these two collections
in Volume 3,21 and we have shown there that the first collection is part of a
larger collection, which was separated into two parts, the first of which is to
be found in the Staatsbibliothek (Oct. 2970) in Berlin. The original collec-
tion, before it was divided into two parts, was copied by the mathematician
Qæ≈î Zædeh at some time around the 1430s. The collection largely consists
of treatises by Ibn al-Haytham. We have established that the ‘Æ†if collection
is simply a copy of this original collection, and of it alone; so that it is of no
value at all in a family tree independently of its predecessor. So in the ‘Æ†if
manuscript, the text of On the Hour Lines has been copied from that in the
Military Museum and from it alone. We note, moreover, that there are 31
omissions of a word and 5 of a phrase, where nothing is missing in the copy
in the Military Museum when it is compared with the ‘Æ†if manuscript.

20 Ibn al-Haytham and Analytical Mathematics. A history of Arabic sciences
and mathematics, vol. 2, Culture and Civilization in the Middle East, London, 2013,
pp. 406–7. The Arabic text is edited in Les Mathématiques infinitésimales, vol. V.

21 Ibn al-Haytham’s Theory of Conics, Geometrical Constructions and Practical
Geometry. A history of Arabic sciences and mathematics, vol. 3, London, 2013,
pp. 269–71.
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TRANSLATED TEXT
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On the Hour Lines



http://taylorandfrancis.com


In the name of God, the Compassionate the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On the Hour Lines

When we examined the book by the geometer Ibræhîm ibn Sinæn On
Instruments for Shadows, we noticed that he criticizes the opinion of earlier
writers who suppose that the lines that define the edges of seasonal hours
on the planes of sundials are straight lines, and who believes that on each
day of the year the tip of the shadow of the gnomon, at the end of the same
seasonal hour and at the beginning of the hour that follows it, lies close to a
straight line. He stated that one straight line in the plane of a horizontal
sundial does not define the edge of the same seasonal hour except for three
of the seasonal circles – one of which is the equator, while the two others
lie on either side of the equator and at equal distances from it; and that the
straight line that lies in the plane of a horizontal sundial and defines the
edge of the same seasonal hour in the three circles we have just mentioned
is the intersection of the plane of the dial and the plane of a great circle that
passes through the tip of the gnomon and through the points that indicate
the edges of the same seasonal hour on the three circles. This statement is
true and cannot be doubted. He went on to state that this great circle does
not cut any of the remaining hour circles in a point that marks the edge of
the seasonal hour associated with the circle in question. This statement is
also a true one; however he was not able to prove it, for when he came to
give a proof of his statement, he showed correctly that one great circle cuts
the circumferences of the three circles in three points that mark the edges of
the same seasonal hour. He next wanted to prove that the great circle that
cuts off a seasonal hour on the three circles, does not cut off this same
seasonal hour on any other remaining hour circle. He then presents a proof
that does not show this idea is true. he has in fact imagined two great cir-
cles that cut off two seasonal hours from the three circles; he went on to
draw a fourth hour circle and he showed that these two great circles cut off
two different arcs on the fourth circle, but he did not show that, of these
two different arcs, neither is a seasonal hour; thus the result <established
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by> his proof is different from what is set out clearly in his statement;
moreover, the result established by the proof does not make it impossible
for one of the two different arcs to be a seasonal hour one of the two differ-
ent arcs from being a seasonal hour. It is as if he had stated that none of the
hour lines is straight, and proved that not all the hour lines are straight. So
what he said about this idea falls short of what he intended, and further-
more does not show the idea is a true one.

Similarly, he has not shown what is the magnitude of the distance by
which the tips of the shadows at the seasonal hours depart from the
<straight> line given for that hour. It is possible that the tips of the shadows
depart very little from the straight line given for that hour, so that this
deviation is insensibly small. And the proof indeed depends on the fact that
a mathematical straight line is a length that has no width, whereas the line
drawn on the plane surface of the sundial is one that has a noticeable width,
which could take in the deviation of the shadows, if this deviation is insen-
sibly small, or is less than it <sc. the width of the line> by some negligibly
small amount.

In the same way, all instruments constructed for <observing> the sun
and the planets are constructed in a manner that is approximate and not
absolutely exact. The astrolabe divides its circles into three hundred and
sixty parts. If we take a height with this instrument, we obtain it only in
whole degrees; now a height is never a whole number of degrees, instead,
on most occasions one can have minutes along with the whole degrees;
now these minutes do not appear on the astrolabe; it is even possible that
the minutes are numerous, but, despite their number, they do not appear. In
the same way the lines that serve to divide the circles of the astrolabe each
have a perceptible width; this width is a part of the degree cut off by each
line, and it is a part that has a magnitude, for the parts of a circle on an
astrolabe are small, and especially so if the astrolabe is small. However we
do not take into account the width of the lines that mark the divisions on an
astrolabe.

These notions apply equally to an armillary sphere, a quadrant used to
observe the sun and all the instruments used to observe the sun and the
planets. It is possible that our predecessors supposed that the hour lines <on
a sundial> are straight lines, while at the same time knowing how far they
deviated <from straight lines>, given that what they are aiming to achieve
by their assumption is an approximation, and not the ultimate exactitude,
that they aimed for in the construction of the astrolabe and of observing
instruments. since we found this idea unclear, because Ibræhîm ibn Sinæn
had not succeeded in showing it was true; and since it can be accepted by
way of approximation, we decided to go deeper into investigating the truth
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of this idea, and to allow ourselves to discuss it, as well as to find out about
the boundaries between seasonal hours on the surfaces of horizontal sun-
dials. So we reflected on these matters and pursued our researches until the
truth was clear. It thus became apparent that our predecessors had been
right to suppose that the hour lines are straight lines, that this is by way of
an approximation, and the best approximation, and that there is no other
way of drawing the boundaries between hours on the surfaces of sundials.

From what we have proved it is clear that Ibræhîm ibn Sinæn had been
right in one respect, and mistaken in another respect, and this in fact hap-
pened because he employed mathematical procedures without thinking
about physical ones; so he was right from the point of view of imagination,
but wrong from the point of view of sensory perception, because he chose
to prove the result he had stated as if the lines drawn on sundials were
imagined lines, that is to say, having length without breadth; but the lines
drawn on sundials have breadth; thus he did not distinguish an imagined
line from one perceived by the senses: so he was completely mistaken.

Once we had come to this idea that we have described, we composed
this treatise to provide a justification for our predecessors’ opinions on the
subject, to give an argument in support of what they had supposed to be
true, and to indicate where Ibræhîm ibn Sinæn went astray.

Before the treatise we have given lemmas that are themselves new
results, results that none of those who preceded us has mentioned – as it
seems to us – and thanks to these lemmas we can go on to derive all the
ideas that we have expressed in this treatise. So let us now begin to speak
of them, with God’s help in everything.

Lemmas

<Lemma 1>: Let there be a circle in which we draw two parallel chords
that cut off from the circle two arcs such that the greater is not greater than
a semicircle. We take an arbitrary point on the smaller of the two arcs and
from this point we draw a line perpendicular to the two chords; thus the
ratio of the complete perpendicular to the part of it cut off by the small arc
is greater than the ratio of the part cut off from the large arc to the part cut
off from the small arc; and the ratio of the part cut off from the large arc to
the part cut off between the two chords is greater than the ratio of the
perpendicular to the part cut off from it between the two chords.

Example: Let there be the circle ABCD in which are drawn the two
parallel chords BD and EG, such that the arc BAD is not greater than half
the circle ABCD. On the arc EAG we take an arbitrary point A and we draw
the perpendicular AHI.
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I say that the ratio of IA to AH is greater than the ratio of the arc DA to
the arc AG and that the ratio of the arc AD to the arc DG is greater than the
ratio of the perpendicular AI to IH.
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Fig. I.1

Proof: We put in the two straight lines BA and BG ; so BA will be
smaller than BG and BG will be smaller than BD. We take B as centre and
with the distance BA we draw an arc of a circle; let the arc be AKL. This arc
cuts the straight line EG before reaching the straight line BG, because the
straight line GB is below the straight line EG; let it (sc. the arc) cut it at the
point M. We draw the two perpendiculars KO and MN. Since the point B is
the centre of the arc AKL and it lies on the circumference of the circle
ABCD, accordingly the arc AL is similar to half of the arc AD and the arc
KL is similar to half of the arc GD; so the ratio of the arc AL to the arc LK
is equal to the ratio of the arc AD to the arc DG. We join AK and extend it
to P. The ratio of the sector BAK to the sector BKL is greater than the ratio
of the triangle BAK to the triangle BKP; so the ratio of the arc AK to the arc
KL is greater than the ratio of the straight line AK to the straight line KP.
By composition, the ratio will be as follows: the ratio of the arc AL to the
arc LK is greater than the ratio of the straight line AP to the straight line
KP, so the ratio of the arc AL to the arc LK is greater than the ratio of the
straight line AI to the straight line KO. But the ratio of AI to KO is greater
than the ratio of AI to MN, so the ratio of the arc AL to the arc LK is greater
than the ratio of AI to IH. So the ratio of the arc AD to the arc DG is greater
than the ratio of AI to IH. So the ratio of <the arc> IA to <the arc> AH is
greater than the ratio of the arc DA to the arc AG.
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Similarly, we prove that the ratio of IA to AH is greater than the ratio
of the arc BA to the arc AE and that the ratio of the arc AB to the arc BE is
greater than the ratio of AI to IH.

If from the point E we draw a perpendicular to the straight line BD, the
ratio of IB to the part that the perpendicular cuts off from the straight line
BD, on the side of the point B, is greater than the ratio of the arc AB to the
arc BE, if the perpendicular AI, when extended until it cuts the circle, cuts
off an arc of it, on the side of the point B, which is not greater than a
semicircle. If from the point G we draw a perpendicular to the straight line
BD, the ratio of ID to the part the perpendicular cuts off from the straight
line BD, on the side of the point D, is greater than the ratio of the arc AD to
the arc DG, if the perpendicular AI, when extended until it cuts the circle,
cuts off an arc from it, on the side of the point D, which is not greater than
a semicircle. That is what we wanted to prove.

<Lemma 2>: If we cut off from a circle two different arcs, one being a half
of the other and the greater one not being greater than a quarter of the
circle, if we then divide the two arcs in the same ratio, then the ratio of the
sine of the small arc to the sine of its part is greater than the ratio of the
sine of the large arc to the sine of the part of it that corresponds to the part
of the small arc.

Example: We cut off from the circle ABCD the two arcs AB and AD,
such that the arc AD is half the arc AB and the arc AB is not greater than a
quarter of the circle. We put the ratio of <the arc> BA to <the arc> AE
equal to the ratio of <the arc> DA to <the arc> AG.
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I say that the ratio of the sine of the arc DA to the sine of the arc AG is
greater than the ratio of the sine of the arc BA to the sine of the arc AE.

Proof: From the point A we draw a diameter of the circle, let it be AC,
and we draw the two straight lines BC, CE. So the straight line BC is
shorter than the straight line EC and the straight line EC is shorter than the
straight line AC. We take the point C as centre and with distance CE we
draw an arc of a circle. That arc cuts the straight line AC inside the circle
and cuts the straight line BC outside the circle; let it cut the straight line AC
at the point H and let it cut the straight line BC at the point I. We draw the
perpendiculars IK, BL, EM. So IK is greater than BL and BL greater than
EM; so the ratio of IK to EM is greater than the ratio of BL to EM. But IK is
the sine of the arc IEH, EM is the sine of the arc EH and the sine of the arc
EA, and B L is the sine of the arc BA, because the straight line AC is a
diameter common to the two arcs. The ratio of the sine of the arc IH to the
sine of the arc EH is greater than the ratio of the sine of the arc BA to the
sine of the arc AE. But the arc IEH is similar to half of the arc BA, because
the angle ACI is at the centre of the circle IEH and it is inscribed in the
circle ABC. In the same way, the arc EH is similar to half the arc EA; so the
arc IEH is similar to the arc AD and the arc EH is similar to the arc AG; so
the ratio of the sine of the arc IEH to the sine of the arc EH is equal to the
ratio of the sine of the arc DA to the sine of the arc AG, so the sine of the
arc DA to the sine of the arc AG is greater than the ratio of the sine of the
arc BA to the sine of the arc AE. That is what we wanted to prove.

<Lemma 3>: If we cut off from a circle two different arcs and if we divide
the two arcs in the same ratio in such a way that the greater part of the
greater arc is not greater than a quarter of the circle, then the ratio of the
sine of the greater part of the small arc to the sine of the small part of this
latter is greater than the ratio of the sine of the large part of the large arc to
the sine of the small part of this latter.

Example: We cut off from the circle ABC the arc ABC which we divide
at the point B in such a way that AB is greater than BC and the arc AB is not
greater than a quarter of the circle. We put the ratio of <the arc> DB to <the
arc> BE equal to the ratio of <the arc> AB to <the arc> BC.

I say that the ratio of the sine of the arc DB to the sine of the arc BE is
greater than the ratio of the sine of the arc AB to the sine of the arc BC.
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Proof: We mark the centre of the circle, let it be F; we join FB and
draw AC and DE; let them be cut by the straight line FB at the points H and
I. We draw from the two points A and C two tangents to the circle. They
meet because the two angles formed at the two points A and C are acute,
since each of them stands on the arc A B C, which is smaller than a
semicircle; let them meet one another at the point G.

Let the arc AB first be smaller than a quarter of the circle. We join FG;
it divides AC into two equal parts; it is perpendicular to it and cuts the arc
ABC into two equal parts; let it cut that arc at the point K and let it cut the
straight line AC at the point M. We extend BF in the direction of F; let it
meet the circle at the point P. Since the arc AB is greater than the arc BC,
the arc CP is greater than the arc AP. We cut off the arc CQ equal to the arc
AP and we join PQ. PQ will then be parallel to the straight line AC; so the
angle BHC is equal to the angle BPQ. But since the arc CQ is equal to the
arc AP and the arc AP is greater than a quarter of the circle, because the arc
AB is smaller than a quarter of the circle, the arc CQ is greater than the arc
AB; thus the arc QCB  is greater than the arc ABC. But the arc QCB  is
intercepted by the angle BPQ and the arc ABC is intercepted by the angle
GAC; so the angle BHC is greater than the angle GAC. If we extend them,
the straight line AG meets the straight line HB; let them be extended and let
them meet one another at the point L. The straight line HL cuts the straight
line CG; let it cut it at the point J. Since the straight line PB is a diameter of
the circle, the ratio of AH to HC is equal to the ratio of the sine of the arc
AB to the sine of the arc BC , because the two sines are the two
perpendiculars dropped from the points A and C onto the diameter PB. So
they will be parallel and the ratio of the one to the other is equal to the ratio
of AH to HC.
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In the same way, we prove that the ratio of DI to IE is equal to the
ratio of the sine of the arc DB to the sine of the arc BE. But the ratio of the
arc to the arc is greater than the ratio of the sine to the sine, so the ratio of
the arc AB to the arc BC is greater than the ratio of AH to HC.

We draw BS perpendicular <to AC>; then the ratio of MC to CS is
greater than the ratio of the arc KC to the arc CB, from what has been
proved in the first proposition of this treatise. So the ratio of AC to CS is
greater than the ratio of the arc ABC to the arc CB. So the ratio of AS to SC
is greater than the ratio of the arc AB to the arc BC and the ratio of AH to
HC is smaller than the ratio of the arc AB to the arc BC. The point that
divides1 the straight line AC in the ratio of the arc AB to the arc BC will
thus lie between the points H and S; let the point of division be the point T.
We draw from the point J the perpendicular JLa; so the point La will lie
between the two points S and C. The ratio of ALa to LaC is much greater
than the ratio of AT to TC. We draw from the point C a straight line parallel
to the tangent AG; let it be CV. The angle ACV is equal to the angle ACG.
Let us extend the perpendicular JLa. It meets the straight line CV; let it
meet it at the point V. So LaV is equal to LaJ and VC is equal to CJ. We join
VT and we extend it. It meets the straight line AL; let it meet it at the point
O. The ratio of AO to CV is equal to the ratio of AT to TC, which is the
ratio of the arc AB to the arc BC; so the ratio of AO to CJ is equal to the
ratio of the arc AB to the arc BC. But the ratio of the arc AB to the arc BC is
equal to the ratio of the arc AD to the arc CE, because it is equal to the ratio
of the arc DB to the arc BE. So the ratio of AO to CJ is equal to the ratio of
the arc AD  to the arc CE. We draw the straight line ON parallel to the
straight line AC. It cuts the straight line HL; let it cut it at the point N. Since
AT is greater than TC, AO is greater than CV; so it is greater than CJ and it
cuts the straight line CJ above the point J; it cuts the straight line HL
beyond the point J; now the angle ANO is acute, because it is equal to the
acute angle NAC, so the angle AON is obtuse. We draw the two chords AD
and CE and we join AN. It cuts the arc AB; let it cut it at the point I′. If the
point D lies between the two points A and I′, then, if we extend AD, it cuts
ON between the two points O and N; let it cut it at the point S′. So the point
S′ is between the two points O and N and the straight line AS′ is greater
than the straight line AO. We extend AS′; it meets the straight line H L
between the two points L and N; let it meet it at the point U. So AU is much
greater than the straight line AO. The ratio of AU to CJ is much greater
than the ratio of the arc AD to the arc CE. We extend CE; it meets the
straight line BJ; let it meet it at the point R. We join CB, then the angle
CBH is acute; so the angle CBR is obtuse, the angle CRJ is obtuse, the

1 Lit.: the separation that divides up.
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straight line CJ is greater than the straight line CR and the ratio of AU to
CR is much greater than the ratio of the arc AD to the arc CE. But the ratio
of the arc AD to the arc CE is greater than the ratio of the chord AD to the
chord CE. If we permute, we have that the ratio of UA to AD is greater than
the ratio of RC to CE; so the ratio of UD to DA is greater than the ratio of
RE to CE and the ratio of DU to UA is greater than the ratio of ER to RC.
We join DC; let it cut the straight line BH at the point W; thus the two
straight lines CD and UH have cut one another, between the two straight
lines UA and AC, at the point W. So the ratio of CH to HA is compounded
of the ratio of CW to WD and the ratio of DU to UA; so the ratio of CW, the
third, to WD, the fourth, is compounded of the ratio of CH, the first, to HA,
the second, and the ratio of AU , the sixth, to UD, the fifth. Indeed, if
between the first and the second we put in an intermediate magnitude and if
we put the ratio of the first magnitude to the intermediate one equal to the
ratio of the third to the fourth, then the ratio of the intermediate to the
second is equal to the ratio of the fifth to the sixth. So the ratio of the first
magnitude to the intermediate one, which is equal to the ratio of the third to
the fourth, is compounded of the ratio of the first to the second and the ratio
of the second to the intermediate one, which is the ratio of the sixth to the
fifth. So the ratio of the third to the fourth is compounded of the ratio of the
first to the second and the ratio of the sixth to the fifth. So the ratio of CW
to WD is compounded of the ratio of CH to HA and the ratio of AU to UD.
So if we invert, the ratio of DW to WC is compounded of the ratio of AH to
HC and the ratio of DU to UA.

In the same way, since the two straight lines DE  and RW cut one
another between the two straight lines DC and CR, at the point I, then the
ratio of DW to WC is compounded of the ratio of DI to IE and the ratio of
ER to RC. But the ratio of DW to WC is compounded of the ratio of AH to
HC and the ratio of DU to UA; so the ratio compounded of the ratio of DI
to IE and the ratio of ER to RC is the ratio compounded of the ratio of AH
to HC and the ratio of DU to UA. But the ratio of DU to UA is greater than
the ratio of ER to RC, so the ratio of DI to IE is greater than the ratio of AH
to HC. But the ratio of DI to IE is the ratio of the sine of the arc DB to the
sine of the arc BE and the ratio of AH to HC is the ratio of the sine of the
arc AB to the sine of the arc BC; so the ratio of the sine of the arc DB to the
sine of the arc DE is greater than the ratio of the sine of the arc AB to the
sine of the arc BC.

If the point D is the point I′, then the point S′ is the point N and the
straight line AN is greater than the straight line AO; the proof is completed
as before.
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If the point D lies between the two points I′ and B, which happens if
the arc DB is extremely small, then we double the arc DB, we repeatedly
double the double until the endpoint of this double lies beyond the point I′,2
and we double the arc BE the same number of times. We reduce this case
for the figure to the case for which the proof has been given. So the ratio of
the sines of doublings of the arc DB to the sines of the doublings of the arc
BE is greater than the ratio of the sine of the arc AB to the sine of the arc
BC. But in Proposition 2 of this treatise we have proved that the ratio of the
sine of any arc to the sine of a part of it is greater than the ratio of the sine
of double this arc to the sine of double the part. So the ratio of the sine of
the arc DB to the sine of the arc BE is greater than the ratio of the sine of
the doublings of the arc DB to the sine of the doublings of the arc BE. But
the ratio of the sine of the doublings of the arc DB  to the sine of the
doublings of the arc BE is greater than the ratio of the sine of the arc AB to
the sine of the arc BC, because the figure for the doublings is like the figure
for Proposition 2. So the ratio of the sine of the arc DB to the sine of the arc
BE is greater than the ratio of the sine of the arc AB to the sine of the arc
BC, whatever the magnitude of the arc DE.

If the arc AB is a quarter of a circle, then the arc AP is also a quarter of
a circle. Then the arc QC is equal to a quarter of a circle and the arc QCB is
equal to the arc ABC; so angle CAG is equal to the angle BPQ, the angle
CAG is equal to the angle CHB and the straight line AG is parallel to the
straight line HB. If we extend AD, it meets the straight line HB in all the
preceding divisions3 and the proof is like the previous one. So if the ratio of
the arc AB to the arc BC is equal to the ratio of the arc DB to the arc BE and
if the arc AB is not greater than a quarter of a circle, then the ratio of the
sine of the arc DB to the sine of the arc BE is greater than the ratio of the
sine of the arc AB to the sine of the arc BC, in all cases of the figure and for
all the forms of division.

It follows necessarily from this ratio between the arcs in different
circles that, if two different arcs of the same circle are similar to two arcs of
another circle, then the ratio of the sine of one of the two arcs to the sine of
the other arc of the same circle is equal to the ratio of the sine of the arc
similar to the other one in the previous circle to the sine of the similar arc
to the second one.

Consequently, for two different arcs of a circle such that the greater is
smaller than a quarter of a circle, the ratio of the sine of the greater of the

2 This condition can be satisfied, but it is not sufficient; in fact we require that the
endpoint in question shall lie between I′ and A (see Mathematical commentary).

3 That is to say, for any position of the point D that divides the arc AB and of the
point E that divides the arc BC.
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two to the sine of the smaller of the two is greater than the ratio of the sine
of any arc greater than the one similar to the greater of the two arcs – if it is
not greater than a quarter of a circle – to the sine of the arc corresponding
to the smaller of the arcs, if they are in the same circle and if they are
proportional to the two small arcs.4 That is what we wanted to prove.

<Lemma 4>: If in a circle we draw a chord that divides it into any two
parts, if we then divide the two arcs in the same ratio, the two homologous
parts being opposite one another, and then if we join the endpoints of the
two opposite arcs with a straight line, it then meets the chord at an angle
such that its ratio to two right angles is equal to the ratio of each of the two
opposite arcs to the arc in which each of them is placed.

Example: In the circle ABCD we draw the chord AC, which divides it
into two parts, we put the ratio of the arc BA to the arc ABC equal to the
ratio of the arc DC to the arc CDA and we join BD.

I say that the ratio of the angle AEB to two right angles is equal to the
ratio of the arc BA to the arc ABC, which is the ratio of the arc DC to the
arc CDA.
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Proof: The straight line BED cuts the straight line AC between the two
points A and C, because the two points B and D are on either side of the
straight line AC; let it cut it at the point E. We draw the straight lines AB,
BC, AD, DC. The ratio of the angle ACB to the angle CAB is equal to the
ratio of the arc AB to the arc BC. In the same way, the ratio of the angle
CAD to the angle ACD is equal to the ratio of the arc CD to the arc DA. But
the ratio of the arc CD to the arc DA is equal to the ratio of the arc AB to
the arc BC, the angle CAD is equal to the angle DBC and the angle ACD is

4 That is to say, the two arcs of the first circle.
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equal to the angle ABD; thus the ratio of the angle ACB to the angle CAB is
equal to the ratio of the angle CBE to the angle EBA and is equal to the
ratio of the whole, which is the angle AEB, to the whole, which is the angle
BEC. The ratio of the angle ACB to the angle CAB is thus equal to the ratio
of the angle AEB to the angle BEC. So the ratio of the angle AEB to the
angle BEC is equal to the ratio of the arc AB to the arc BC. The ratio of the
angle AEB to the sum of the two angles AEB and BEC, which is equal to
two right angles, is equal to the ratio of the arc BA to the arc ABC and the
ratio of the angle BEC to two right angles is equal to the ratio of the arc BC
to the arc ABC. That is what we wanted to prove.

<Lemma 5>: In the same way, let us again draw the circle and the two
arcs. We draw GH parallel to the chord AC, we put the ratio of the arc5 IG
to the arc GIH equal to the ratio of the arc DA to the arc ADC, and we put
the ratio of the arc KH to the arc HKG equal to the ratio of the arc BC to
the arc CBA; the ratio of the arc IG to the arc GIH is thus equal to the ratio
of the arc KH to the arc HKG. Let us join KI.

I say that the straight line IK is parallel to the straight line BD.

K
B

A

G

DI

H

C

E

N
M

Fig. I.5

Proof: The straight line IK cuts the straight line GH; let it cut it at the
point M. The ratio of the angle KMH to two right angles is equal to the
ratio of the arc KH to the arc HKG, as has been proved in the preceding
proposition. So the ratio of the angle KMH to two right angles is equal to
the ratio of the arc CB to the arc CBA. But the ratio of the arc BC to the arc
CBA is equal to the ratio of the angle BEC to two right angles. So the ratio
of the angle KMH to two right angles is equal to the ratio of the angle BEC

5 We have added the word ‘arc’ throughout this paragraph.
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to two right angles; so the angle KMH is equal to the angle BEC and the
straight line BD cuts the straight line GH, because it cuts the straight line
AC, which is parallel to it. Let the straight line BD cut the straight line GH
at the point N. So the angle BEC is equal to the angle ENH, where the point
N lies inside or outside the circle. So the angle ENH is equal to the angle
GMI, <since they are> alternate internal angles, and the two straight lines
IK and BD are parallel. That is what we wanted to prove.

<Lemma 6>: In the same way, let us redraw the circle and the two arcs; let
the point G be the centre of the circle. We draw from the point G a
perpendicular to the straight line AC; let it be GH, which we extend in both
directions to I and K.

I say that the point E lies between the two points H and C, and the
straight line BD cuts the straight line GH between the points G and H.
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Proof: We draw from the point G a diameter parallel to the straight
line AC; let it be PGQ. We draw from the point G a straight line parallel to
the straight line BD; let it meet the arc PKQ at the point L and let it meet
the straight line AC at the point M. The angle PGL is equal to the angle
AML and the angle AML is equal to the angle AEB, so the angle PGL is
equal to the angle AEB. But the ratio of the angle AEB to two right angles
is equal to the ratio of the arc BA to the arc ABC;6 so the ratio of the angle
PGL to two right angles is equal to the ratio of the arc BA to the arc ABC.
But the ratio of the angle PGL to two right angles is equal to the ratio of the
arc LP to the arc PLQ, because the point G is the centre of the circle and

6 From Lemma 4.
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the arc PLQ is a semicircle. So the ratio of the arc LP to the arc PLQ is
equal to the ratio of the arc BA to the arc ABC. So the ratio of the arc LP to
the arc PLK is equal to the ratio of the arc BA to the arc ABK. We put the
ratio of the arc SP to the arc PA equal to the ratio of the arc LP to the arc
PLK; so the ratio of the arc SL to the arc ABK is equal to the ratio of the arc
LP to the arc PK, which is equal to the ratio of the arc BA to the arc ABK.
So the ratio of the arc SL to the arc ABK is the ratio of the arc BA to the arc
ABK, and the arc SL is equal to the arc BA. So the arc AS is equal to the arc
BL, the ratio of the arc PA to the arc AS is the ratio of the arc PA to the arc
BL and the ratio of the arc SP to the arc PA is equal to the ratio of the arc
LP to the arc PK; so the ratio of the arc PK to the arc KL is equal to the
ratio of the arc PA to the arc AS. So the ratio of the arc AP to the arc BL is
equal to the ratio of the arc PK to the arc KL. The ratio of the sine of the arc
AP to the sine of the arc BL is greater than the ratio of the sine of the arc
PK to the sine of the arc KL, since the arc AP is smaller than the arc PK.

We draw the line LU perpendicular <to KH>, HN perpendicular <to
LM>, EJ perpendicular <to MN> and BO perpendicular <to LM>; we have
that LU is the sine of the arc LK and GK the sine of the arc PK. But GL is
equal to GK, HG is the sine of the arc AP and BO is the sine of the arc LB;
so the ratio of GH to BO is greater than the ratio of GL to LU. But the ratio
of GL to LU is equal to the ratio of GM to MH, and the ratio of GM to MH
is equal to the ratio of GH to HN, so the ratio of GH to BO is greater than
the ratio of GH to HN. So the straight line BO is smaller than the straight
line HN. So the straight line BED cuts the perpendicular HN between the
two points H and N; let it cut it at the point F . But if it cuts the
perpendicular HN between the two points H and N, it cuts the straight line
GH between the two points G and H. Now the straight line BED cuts the
straight line AC; if it cuts the straight line GH between the two points G
and H, and if it cuts the straight line AC, it accordingly cuts the straight line
AC between the two points H and C. That is what we wanted to prove.

From this proof, we go on to prove that the ratio of GM to ME is equal
to the ratio of the sine of the arc AP to the sine of the arc BL, because the
ratio of GM  to M E is equal to the ratio of GH to EJ, because of the
similarity of the two triangles GHM and EJM. Now GH is the sine of the
arc AP and EJ is the sine of the arc BL; so the ratio of GM to ME is equal to
the ratio of the sine of the arc AP to the sine of the arc BL.7

7 This paragraph seems to be merely a general comment, not directly related to the
result that has been stated.
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<Proposition 7>: Having proved these lemmas, let us now begin to find
the hour lines.

Let ABCD  be one of the inclined horizon circles, let AC  be the
meridian line and let BED be the <line of> intersection of the horizon and
the circle of the equator. The point E will then be the centre of the world.
Let the arc BHD be a semicircle of the equator and let the arc IKL be the
diurnal arc for the first point of Cancer. So it is greater than a semicircle
and its centre is above the horizon; let the point R be its centre. Let the
intersection with the horizon be the straight line IL and let the straight line
IL cut the straight line AC at the point N. We join RN; it is perpendicular to
the straight line IL, because the two points R and N are in the plane of the
meridian circle and they are in the plane of the circle IKL; thus the straight
line RN is the intersection of the meridian circle and the circle IKL. But
each of the circles ABCD, IKL is perpendicular to the meridian circle; so
the straight line IN is perpendicular to the plane of the meridian circle and
the straight line RN is perpendicular to the straight line INL. We complete
the circle IKL; let the complement be the arc IQL. Let the point K be an
endpoint of one of the seasonal hours. We put the ratio of the arc QI to the
arc IQL equal to the ratio of the arc KL to the arc LKI and we join QK. It
then cuts the straight line IL; let it cut it at the point P. Thus the point P lies
between the points N and I and the straight line KP cuts the straight line RN
between the two points R and N, as has been proved in the lemmas.
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Let the <line of> intersection between the tropic of Capricorn and the
horizon be the straight line UF. UF is thus equal to the straight line IL; let
the straight line UF cut the straight line AC at the point S. Let the diurnal
arc for the first point of Capricorn be the arc UJF. We join PE and we
extend it to meet the straight line UF; let it meet it at the point O. So the
straight line OS is equal to the straight line PN, because EN is equal to ES.
We imagine that the plane containing the straight lines KP and PO cuts the
plane of the circle UJF; let the <line of> intersection of the two <planes>
be the straight line OJ; then the angle JOF is equal to the angle KPL,
because the two straight lines JO and OF are parallel to the two straight
lines KP and PL. Indeed, the two circles UJF and QKI are parallel and are
cut by the plane of the horizon and by the plane of the two straight lines KP
and PO. But since the straight line UF is equal to the straight line IL, SF is
equal to NI and SO is equal to NP, because NE  is equal to ES; so the
straight line OF is equal to the straight line PI and the angle JOF is equal to
the angle KPL. But the angle KPL is equal to the angle IPQ, so the angle
JOF is equal to the angle IPQ. But the straight line OF is equal to the
straight line PI, the arc FJU is equal to the arc IQL and they belong to two
equal circles, and the arc JF is equal to the arc QI; the ratio of the arc JF to
the arc FJU is thus equal to the ratio of the arc QI to the arc IQL. But the
ratio of the arc QI to the arc IQL is equal to the ratio of the arc KL to the
arc LKI; the ratio of the arc JF to the arc FJU is thus equal to the ratio of
the arc KL to the arc LKI. So the point J is the endpoint of the seasonal
hour corresponding to the hour whose endpoint is the point K, and the
straight line JO is parallel to the straight line KQ; so they lie in the same
plane. But the straight line OEP lies in their plane; so the three straight
lines are in the same plane and the point E, which is the centre of the world,
is in the plane of these straight lines. The plane of these straight lines cuts
<the sphere of> the world and in it forms a great circle that passes through
the points J and K. This circle cuts the circle of the equator; let it cut it
along the straight line EH. So the straight line EH is parallel to each of the
straight lines KP and JO. But the straight line ED is parallel to each of the
straight lines NL and SF, so the angle HED is equal to each of the angles
KPL and JOF. But the ratio of the angle KPL to two right angles is equal to
the ratio of the arc KL to the arc LKI, from what was proved in in Lemma 4
of this treatise. So the ratio of the angle HED to two right angles is equal to
the ratio of the arc KL to the arc LKI. But the ratio of the angle HED to two
right angles is equal to the ratio of the arc HD to the arc DHB, and since the
arc DHB is a semicircle whose centre is the point E, accordingly the ratio
of the arc HD to the arc DHB is equal to the ratio of the arc KL to the arc
LKI. So the point H is the endpoint of the seasonal hour corresponding to
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the hour whose endpoint is the point K . But the point H  lies on the
circumference of the great circle that passes through the two points K and
J, and thus through the points K, H and J, there passes a single great circle
whose centre is the point E; let it be the circle JHK. So the <lines of>
intersection of this circle with the circles UJF, BHD  and IKL are the
parallel straight lines JO, HE and KP, and the intersection of the circle JHK
with the horizon is the straight line OEP; so the circle JHK cuts any plane
parallel to the horizon. So if in the place whose horizon is the circle ABCD
we have a plane sundial parallel to the horizon, then the circle JHK cuts
this sundial along a straight line parallel to the straight line PO and the ends
of the shadows of the gnomon of the sundial, whose tip is the point E, fall
on this straight line if the sun is in the plane of the circle JHK. So if the sun
is at the point K, then the ray coming from the point K is directed towards
the point E along a straight line in the plane of the circle JHK; and if it
reaches the plane of the sundial that is parallel to the horizon, then the end
of the ray, that is the tip of the shadow of the gnomon, lies on the <line of>
intersection, which is the straight line formed by the circle JHK on the
plane of the sundial. In the same way, if the sun is at the point H, its ray
travels along the straight line HE and it ends on the line of intersection of
the circle JHK with the plane of the sundial. In the same way, if the sun is
at the point J, its ray travels to the point E and then travels from the point E
to the plane of the sundial while always remaining in the plane of the circle
JHK; so it ends on the straight line that is the intersection. The straight line
that is the intersection of the plane of the sundial with the great circle that
passes through the points J, H, K marks a single seasonal hour on the three
days during which the sun moves along the three circles which are the
paths of Cancer, of Aries and of Capricorn, if the sun comes to the points
on these circles that mark the same hour in regard to each of the three
circles. That is what we wanted to prove.

This is a proposition Ibræhîm ibn Sinæn established, but he established
it in a different way.

<Proposition 8>: Having proved this, we say that the straight line that lies
in the plane of the sundial and marks the same seasonal hour on the three
days on which the sun moves along the paths of Cancer, of Aries and of
Capricorn, does not mark this hour for any other day except these three
days, that is to say that, at the end of the hour corresponding to the hour
whose end was marked by the straight line we described before, the tip of
the shadow of the gnomon is not on that straight line on any day other than
the three days we mentioned before; and that the point which is the
endpoint of the hour corresponding to the hour marked by that straight line
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in regard to any hour circle other than the three circles we mentioned
before, will not be on the circumference of the circle that in the example is
the circle JHK, but will lie outside it: for the hour circles that lie between
the tropic of Cancer and the circle of the equator, the points that are the
ends of this hour are closer to the meridian circle than the circle
corresponding to the circle JHK; for the hour circles that lie between the
circle of the equator and the tropic of Capricorn, the points that are the ends
of this hour are closer to the horizon circle than the circle corresponding to
the circle JHK.

This is a proposition Ibræhîm ibn Sinæn tried to establish, but he was
not able to establish it for every hour line, as we establish it here now.
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Let us return to the figure, without the circle of Capricorn. Let us draw
a diurnal arc of one of the hour circles that lie between the circle of Cancer
and the circle of the equator, let it be the arc MVF; the arc MVF is thus
smaller than the arc similar8 to the arc IKL. We join ER; thus the straight
line ER is the axis of the Universe and the centre of the circle MVF lies on
the straight line ER; let that be the point O . Let us draw the <line of>

8 Lit: ‘the similar’, which we translate throughout as ‘the arc similar’.
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intersection of the circle of the horizon and the circle MVF; let it be MF.
Then the straight line EC cuts it into two equal parts; let it cut it at the point
U. We join OU; it is perpendicular to the straight line MF. We join EP; it
then cuts the straight line MF; let it cut it at the point W. From the point R
let us draw a straight line parallel to the straight line KP – let it be <the
straight line> RJ 9 – and let us put the ratio of the arc VF to the arc FVM
equal to the ratio of the arc KL to the arc LKI. If we complete the circle
MVF, if we cut off from the <added> arc, which is the complement, an arc
<lying> beyond the point M, if we put its ratio to the complement of the
circle equal to the ratio of the arc VF to the arc FVM and if we join the end
of the arc to the point V with a straight line, this cuts the straight line MU in
a point between the two points M and U; let this point be the point Q. Let
us join VQ; the angle VQF is then equal to the angle KPL, because the ratio
of each of the two angles to two right angles is the same ratio as the ratio of
the arc KL to the arc LKI; so VQ is parallel to the straight line KP and it is
parallel to the straight line RJ. We join EJ; let it cut the straight line MU at
the point S. We join OS; it is parallel to the straight line RJ, because OS is
the <line of> intersection of the circle MVF and the plane of the triangle
EJR which cuts the circle MVF and the tropic of Cancer; so OS is parallel
to the straight line VQ. Since the arc MVF is smaller than the arc similar to
the arc IKL, the arc VF is smaller than the arc similar to the arc KL, the arc
cut off from it and whose ratio to it is equal to the ratio of KL to half of LKI
is smaller than the arc similar to the corresponding arc cut off from the arc
KL, and the remaining arc is smaller than the arc remaining from the arc
KL. But the ratio of the sine of the arc VF to the sine of the arc that remains
from it is equal to the ratio of OS to SQ; so the ratio of OS to SQ is greater
than the ratio of RJ to JP, as was proved at the end of Lemma 6. But the
ratio of OS to SU is equal to the ratio of RJ to JN because the two triangles
OSU and RJN are similar. In fact, the angles at the points S and J are equal,
because they are equal to the angles that are at the two points Q and P,
which are equal; now the angles that are at the points U and N are right
angles; so the ratio of OS to SU is equal to the ratio of RJ to JN, so the ratio
of US to SQ is greater than the ratio of NJ to JP and the ratio of JN to NP is
greater than the ratio of SU to UQ. If we permute, we have that the ratio of
JN to SU is greater than the ratio of NP to UQ. But the ratio of NJ to SU is
equal to the ratio of RN to OU, because of the similarity of the triangles
RJN and OSU; so the ratio of RN to OU is greater than the ratio of NP to
UQ. But the ratio of RN to OU is equal to the ratio of NE to EU and the
ratio of NE to EU is equal to the ratio of NP to UW; so the ratio of NP to
UW is greater than the ratio of NP to UQ, the straight line UW is smaller

9 J is on LI.
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than the straight line UQ, the point Q is at the end of the straight line PE
and the straight line PE is the diameter of the circle that marks the seasonal
hour in the course of the days when the sun is moving on the paths of
Cancer, of Aries and of Capricorn. We join QE and in the plane of the
horizon we draw a straight line equal and parallel to the straight line MF,
let it be GX; we extend QE until it meets it; let it meet it at the point H.10 If
in its plane we draw the hour circle as far as the straight line GX and if we
construct the plane that contains the two straight lines VQ and QE, in the
hour circle a straight line is formed that is parallel to the straight line VQ
and on the surface of the <sphere of> the world we form a great circle. This
great circle cuts the circumference of the circle of the equator, so this circle
cuts off from the two circles separated11 by MF and GX and the circle of
the equator three arcs which are the same single seasonal hour correspond-
ing to the seasonal hour for the three days we have already mentioned, as
has been proved in the preceding proposition.

It is clear that the circle whose diameter is QEH is distinct from the
circle whose diameter is PE, that the circle whose diameter is QEH cuts the
equator, and that if the hour whose endpoint is H′12 is the hour whose
endpoint is the point K on the tropic of Cancer, the circle whose diameter is
QEH cuts the equator along the same straight line <as that> along which it
is cut by the first circle corresponding to the circle JHK  and whose
diameter is PE, because the angle formed at the point E is equal to the
angle VQF which is equal to the angle KPL. The point at which the circle
with diameter QEH cuts the circumference of the tropic of Cancer is closer
to the meridian circle than the point K. If the point K  lies between the
horizon and the meridian circle, then the point H′ is closer to the meridian
circle than the first circle whose diameter is PE and the point of the hour
circle that is equal to the circle MVF, <the point> in which it is cut by the
circle whose diameter is QEH, is closer to the horizon than the circle whose
diameter is PE. The circle whose diameter is QEH cuts the plane of the
sundial in a straight line parallel to the straight line QEH. This straight line
cuts the first straight line parallel to the straight line P E in a point
corresponding to the point E which is on the first straight line. This second
straight line marks the same hour, corresponding to the hour marked by the
first straight line and in the course of the three days during which the sun
moves on the circle MVF, and on the circle equal to it, as well as on the
circle of the equator, if the sun comes to the three points that are the
endpoints of that hour, then the tips of the shadows of the gnomon lie on a

10 The point H is not the same one as in Proposition 7.
11 The straight lines MF and GX are their diameters.
12 The point H′ is the point H in Proposition 7. Ibn al-Haytham says so later.
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straight line parallel to the straight line QEH. That is what we wanted to
prove.

If we draw RI and EI,13 we prove, as we proved for the straight line EJ,
that the straight lines drawn from the centres of the hour circles parallel to
the straight line RI all reach the straight line EI, because they all lie in the
plane of the triangle ERI.

It thus becomes clear, from what we have proved in the last two
propositions, that the same seasonal hour is not marked for every day of the
year by a <particular> single straight line lying in the plane of the
horizontal sundial, but by many <different> straight lines; and that for two
circles on either side of the equator a seasonal hour marks out, from them
and from the circle of the equator, a great circle that cuts off from the two
circles two arcs, each of which is a seasonal hour. On the equator let us cut
off an hour like that same hour, then throughout the whole year the same
seasonal hour marks ninety-one <great> circles; if we put in a circle for
each part of the circle of the ecliptic, all these <great> circles cut one
another in a single point on the circle of the equator. These circles generate,
in the plane of the horizontal sundial, ninety-one straight lines that all cut
one another in a point on the <line of> intersection of the plane of the
sundial and the plane of the equator; it is this point that marks the seasonal
hour for the two days of the equinoxes. And the straight line generated by
the circle which intersects the tropic of Cancer and the tropic of Capricorn
marks the seasonal hour for the two days of the solstices. Each of the
remaining straight lines marks a seasonal hour for four days of the year:
two days from the motion of the sun in the northern half of the circle of the
ecliptic and two days from its motion in the southern half, because each of
these circles, apart from the circles of Cancer and Capricorn, cuts the circle
of the ecliptic in two points; the sun then moves on each of these circles in
the course of one day in the year. For each of the seasonal hours, we have
straight lines as has been described, <straight lines> whose number is that
number and which cut one another in a point on the <line of> intersection
of the plane of the sundial and the plane of the circle of the equator. All
these straight lines are imaginary straight lines, so each is a length without
breadth. This is the way the hour lines that mark out the seasonal hours in
the planes of horizontal sundials are generated.

<Proposition 9>: It remains for us to show the distance between the tips of
the shadows at a <specific seasonal> hour for the different days and the
straight line EP that marks the same hour on the tropics of Cancer and
Capricorn and on the circle of the equator.

13 Here I designates the point that earlier was J.
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Let us return to the last figure for the horizon and the tropic of Cancer.
Let the diurnal arc of Cancer be fourteen hours, it is two hundred and ten
parts; let the point H lie on the meridian circle; we join HL; then the arc HL
is one hundred and five parts and the arc LW, which is half the amount by
which the diurnal arc exceeds half the circle, is fifteen parts. Let the arc KL
be the first seasonal hour, then it will be seventeen parts and a half; the arc
KC is twelve parts and a half because if we cut off a sixth from the arc LW,
the remainder is equal to the arc KC, since that has been proved in the sixth
lemma. But the straight line RE is the sine of the maximum inclination, so
it is 24.24.1514

 in terms of the magnitude by which the straight line EH,
which is the semidiameter of the universe, is sixty parts. But the angle EHN
is equal to the angle subtended by the maximum inclination at the centre of
the world, so it is approximately twenty-four parts in terms of the
magnitude by which four right angles are three hundred and sixty parts; so
it is forty-eight parts in terms of the magnitude by which two right angles
are three hundred and sixty parts. The arc cut off by the straight line ER
from the circle that circumscribes the triangle EHR is forty-eight parts,15 so
the arc cut off by the straight line RH is one hundred and thirty-two parts.
So the straight line RH is one hundred and nine parts, thirty-seven minutes
and thirty-two seconds in terms of the magnitude by which the straight line
EH is one hundred and twenty parts. In terms of the magnitude by which
the straight line EH is sixty parts, the straight line RH is 54.48.46. But the

14 This notation designates 24°24′15″ in all the text.
15 If we take angle EHR = 24°, we have arc ER = 48°.
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straight line R N  is equal to the sine of the arc L W. We draw the
perpendicular CM; then MR is the sine of the arc WC and the arc WC is 15
parts, because its ratio to the semicircle is equal to the ratio of the arc KL to
the arc LKI, since the angle CRW is equal to the angle KPL, so the ratio of
each of them to two right angles is the same ratio. The arc WC is fifteen
parts, its sine, which is the straight line RM, is equal to the sine of the arc
LW, which is RN, so, if we extend the straight line CR until it reaches the
straight line IN, it will be equal to the semidiameter of the circle. It
accordingly meets the straight line IN at the point I; let it be like the
straight line CRI. Then the point I in that figure will be the point J of the
preceding figure and the straight line IN is equal to the straight line CM,
because IR is equal to RC. But the straight line CM is the sine of the arc CH
which is seventy-five parts and its sine is 57.57.20 in terms of the
magnitude by which the straight line RI is sixty parts. In terms of the
magnitude by which the straight line RI is 54.48.46, the straight line CM is
thus 52.56.50.16 But the ratio of the sine of the arc LW to the sine of the arc
KC is equal to the ratio of RI to IP, the arc LW is fifteen parts and its sine is
15.31.45 in terms of the magnitude by which the straight line RI is sixty
parts. So in terms of the magnitude by which the straight line R I is
54.48.46, the sine of the arc LW, which is the straight line RN is 14.11.10.
But the arc KC is twelve parts and a half and its sine is 12.59.2117 in terms
of the magnitude by which the straight line RI is sixty; consequently, in
terms of the magnitude by which the straight line RI is 54.48.46, the sine of
the arc KC is 11.51.45; so the ratio of RI to I P is equal to the ratio of
14.11.10 to 11.51.45. But the straight line RI is 54.48.46, so the straight
line IP is 45.50.6. But the straight line IN is 52.57, so the straight line PN is
seven parts, six minutes and fifty-four seconds. But since ER is 24.24.15
and its square is five hundred and ninety-six, approximately, and RN is
14.11.10 and its square is two hundred and two, approximately, and their
sum is 798, whose root is 28 parts and a quarter, accordingly the straight
line EN is 28 parts and a quarter in terms of the magnitude by which the
semidiameter of the universe is sixty parts. Now it is clear that the straight
lines drawn from the centres of the hour circles and which are parallel to
the straight line RI reach the straight line EI, because we have proved this
in the preceding proposition. These straight lines cut off from the planes of
the hour circles triangles similar <to one another> and similar to the
triangle RIN , the ratios of the straight lines that are the bases of the

16 Calculation gives us sin 75 = 0.96592; with r = 60, we obtain CM = 57°57′18″;
with r = 54°48′46″ = 54.812727, we obtain CM = 52.94471 = 52°56′40″. Ibn al-
Haytham later takes CM = 52°57′.

17 Calculation gives 12°59′24″, 11°51′48″, 45°50′13″.
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triangles are equal to the ratio of RI to IN and their ratio to what is cut off
from their bases by the straight line EP is equal to the ratio of RI to IP. But
the ratio of RI to IP is equal to the ratio of the sine of the arc LW to the sine
of the arc KC. But each of the arcs of the hour circles corresponding to the
arc LW that belongs to one of the hour circles that lie between the tropic of
Cancer and the equator is smaller than the arc LW. The same holds for
every arc that is homologous with the arc KC. The ratio of the sine of each
of the arcs of the hour circles corresponding to the arc LW to the sine of
each of the arcs corresponding to the arc KC is thus greater than the ratio of
RI to IP and the tips of the shadows for the same seasonal hour
corresponding to the arc LK will not lie on the straight line EP, that is to
say they will lie between the two straight lines EI and EP. But since the arc
LW is equal to the arc KC plus a fifth of it – the arc KC is in fact a half plus
a third of the arc LW – the straight line RI is smaller than one and a fifth
times the straight line IP. All the straight lines homologous to the straight
line RI, in all the seasonal circles, are smaller than one and a fifth times the
straight lines homologous to the straight line IP. But since the straight line
RI is smaller than one and a fifth times the straight line IP, the straight line
IP is greater than a half plus a third of the straight line RI; in the same way,
each of the straight lines homologous to the straight line IP in all the hour
circles are greater than a half plus a third of the straight line homologous to
the straight line RI.

We put <the straight line> IJ equal to a half plus a third of the straight
line RI and we join EJ; it cuts all the straight lines homologous to the
straight line IP, the segment that the straight line EJ cuts off from each of
the straight lines homologous to the straight line IP is a half plus a third of
the straight line homologous to the straight line RI. The straight line cut off
by the great circles that cut off the same seasonal hour, <which is one> of
the straight lines homologous to the straight line IP on the side nearer the
straight line EI, is always greater than the straight lines cut off by the
straight line EJ, <one> of the straight lines homologous to the straight line
IP on the same side as the straight line EI. The points in which the great
circles – that mark out the first hour on the hour circles lying between the
tropic of Cancer and the circle of the equator – cut off the straight lines
homologous to the straight line IP, always lie between the straight lines EP
and EJ.

Let the <line of> intersection of the horizon and the tropic of
Capricorn be the straight line GX. We extend the straight lines IE, JE, PE
in the direction towards it; let the straight line IE end at the point X, let the
straight line JE end at the point F and let the straight line PE end at the
point H on the straight line GX; then all the intersections of the great circles
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that mark off the first seasonal hour with the horizon lie between the two
straight lines PH and JF and they all cut one another at the point E. But
since the straight line RI is 54.48.46, the straight line IJ is 45.40.28 and the
straight line IP 45.50.6, we have that the straight line JP is 0.9.28, the
square of the straight line EN is seven hundred and ninety-eight, PN is
seven parts and six minutes and fifty-four seconds, its square is fifty parts
and two thirds approximately, and their sum is eight hundred and forty-
eight parts and two thirds, whose root, which is the straight line PE, is
twenty-nine parts plus an eighth approximately; so the straight line PE is
twenty-nine parts plus an eighth approximately, and the straight line JP is
nine minutes and twenty-eight seconds; so it is less than a sixth of a part
and the ratio of the straight line JP to the straight line PE is smaller than
the ratio of a sixth to twenty-nine parts plus an eighth. If we convert the
twenty-nine parts plus an eighth into sixths, the number of the parts is
greater than one hundred and seventy-four; so the ratio of JP to PE is less
than the ratio of unity to one hundred and seventy-four.
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In the same way, let us return to the figure. Let the arc LK be equal to
five hours, so that the point K is the start of the sixth hour. We take WC as
seventy-five parts, we draw the perpendicular CM and we extend CR; let it
meet the straight line IN at the point U; the straight line MR is thus the sine
of seventy-five, the straight line CM is the sine of fifteen, the straight line
RN is the sine of the arc LW and LW is fifteen, as it was <before>. The ratio
of CR to RU is equal to the ratio of MR to RN. But MR is 57.57.20 in terms
of the magnitude by which the semidiameter of the universe is sixty parts,
and in terms of this magnitude the straight line RN is 14.11.10; so the ratio
of CR to RU is equal to the ratio of 57.57.20 to 14.11.10. But the straight
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line CR is 54.48.46, so the straight line RU is 14.41.15. But the ratio of CM
to UN is equal to the ratio of 57.57.20 to 14.11.10 and the straight line CM
is 14.11.10, so the straight line UN is 3.48.14. But the ratio of RU to UP is
equal to the ratio of the sine of the arc LW to the sine of the arc KC, the arc
KC is a sixth of the arc LW since CH is a sixth of WH and the arc LW is
fifteen parts; so the arc KC is 2.30 and its sine is 2.37.17 in terms of the
magnitude by which the straight line RC is sixty parts, and thus in terms of
the magnitude by which the straight line CR is 54.48.46; the sine of the arc
KC  is thus 2.23.27 and the ratio of RU  to UP  is equal to the ratio of
14.11.10 to 2.23.27. But the straight line RU is 14.41.15, so the straight line
UP is 2.28.9 and the straight line PN is 1.19.14. Let us take UJ as a sixth of
RU; then UJ is equal to 2.27. So the straight line JP is less than two
minutes, the straight line EN is twenty-eight and a quarter, its square is
seven hundred and ninety-eight, the straight line PN is 1.19.14, its square is
less than two parts and their sum is less than eight hundred, whose root,
which is the straight line PE, is less than twenty-eight plus a quarter and a
seventh; if we convert it to minutes, we have approximately one thousand
seven hundred; so we have that the ratio of JP to PE is equal to the ratio of
two to one thousand seven hundred, so it is one part of eight hundred and
fifty parts.

So if, for the <hour> lines for each of the remaining hours, we follow
the method we adopted for the two hour lines for these hours, that is to say,
the first and the fifth, we prove that the ratio of the straight line
corresponding to the straight line JP to the straight line corresponding to
the straight line PE is equal to a small ratio that is less than the ratio of
unity to one hundred and seventy-four, which was <that for> the first hour.

In the same way, if for any of the inclined horizons, we follow the
method we adopted for the <previous> horizon, we show that the ratio of
the straight line corresponding to the straight line JP to the straight line
corresponding to the straight line PE is a small ratio, such that, because it is
small, the magnitude of the straight line corresponding to the straight line
JP vanishes in comparison with <the magnitude of> the straight line
corresponding to the straight line PE.

<Proposition 10>: In the same way, let us return to the <previous> horizon
and the tropic of Capricorn; let the horizon be ABCD and its centre E; let
the diurnal arc of Capricorn, be <the arc> BGD ; let the <line of>
intersection between that circle and the horizon be the straight line BD; let
the arc GD be the first seasonal hour; so the arc GD is twelve parts and a
half, because the arc BGD is one hundred and fifty parts since it is equal to
the remainder of the tropic of Cancer.
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We imagine a diameter of this circle BGD drawn through its centre
and parallel to the straight line BD; let it be IK. We complete the semi-
circle, let it be IGK; we have that the sum of the two arcs BI and DK is
equal to thirty parts and they [the arcs] are equal; so the arc DK is fifteen
parts and the arc GK is twenty-seven parts and a half, so its sine is 27.42.18
in terms of the magnitude by which the semidiameter of the tropic of
Capricorn is sixty parts. From the point G we draw the perpendicular GML,
then GL is the sine of the arc GK and ML is equal to the sine of the arc DK;
so the straight line GL is 27.42.18 and the straight line ML is 15.31.45; so
the straight line GM is 12.10.33 in terms of the magnitude by which the
semidiameter of the tropic of Capricorn is sixty parts. Since the arc BGD is
inclined to the horizon, the straight line GM is inclined to the horizon.
From the point G we draw a perpendicular to the plane of the horizon, let it
be GN, and we draw EG and MN. The plane that contains the two straight
lines EG and GN is the plane of the zenith circle that passes through the
point G; the perpendicular GN is the sine of the height of the point G. But
since the straight line GM is perpendicular to the straight line BD and the
straight line GN is perpendicular to the horizon, the straight line NM is per-
pendicular to the straight line BD; so the angle GMN is the angle of incli-
nation and the triangle GMN is similar to the triangle formed in the plane of
the meridian circle, bounded by the semidiameter of the equator and the
sine of the height on the meridian of the first point of Aries; the part of the
straight meridian line cut off between them, that is to say, cut off from the
straight meridian line between the two straight lines we mentioned, is equal
to the sine of the latitude of the place whose longest day is fourteen hours;
but the place whose longest day is fourteen hours has a latitude of thirty
parts in terms of the magnitude by which the semidiameter of the equator is
twice the straight line cut off from the straight meridian line; so the straight
line GM is twice the straight line MN and the square of MN is a quarter of
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the square of GM; but the straight line GM is 12.10.33 and its square is one
hundred and forty-eight parts plus a half plus a quarter.18 If we take away a
quarter of it, what remains is approximately one hundred and eleven and a
quarter, whose root is approximately ten plus a third plus a quarter. So the
perpendicular GN is ten parts plus a third plus a quarter in terms of the
magnitude by which the semidiameter of the circle BGD is sixty parts. In
terms of the magnitude by which the semidiameter of the circle BGD is
54.48.46, and by which half of the diameter of the world is sixty parts, the
perpendicular GN is thus nine parts and two thirds approximately. We join
EG; EG is then the semidiameter of the world because E is the centre of the
world and the point G lies on the surface of the sphere of the world. So the
perpendicular GN is nine parts and two thirds in terms of the magnitude by
which the straight line EG is sixty parts and the square of GN is ninety-
three parts and four ninths of a part and the square of EG is three thousand
six hundred; there remains the square of EN, <which is> three thousand
five hundred and six and five ninths; so its root, which is the straight line
EN, is approximately fifty-nine parts and a quarter. Thus in terms of the
magnitude by which the straight line GN is nine parts and two thirds, the
straight line EN is fifty-nine parts and a quarter. So the ratio of GN to NE is
the ratio of nine plus two thirds to fifty-nine plus a quarter; multiply eve-
rything by twelve, thus GN becomes one hundred and sixteen and NE
seven hundred and eleven. So the ratio of GN to NE is the ratio of one hun-
dred and sixteen to seven hundred and eleven. Let us divide everything by
one hundred and sixteen, we have that GN is equal to one and NE is equal
to six parts and an eighth approximately. So we have that GN is smaller
than approximately a sixth of NE. But the ratio of GN to NE is the ratio of
the gnomon <that is> perpendicular to the plane of the sundial <that is>
parallel to the horizon to the shadow of the gnomon at the end of the first
hour while the motion of the sun is on the tropic of Capricorn, which is the
longest shadow of the gnomon for any time in the year.

<Proposition 11>: Now that all the above has been proved, let the plane of
the horizontal sundial be the plane of <the triangle> ABC, and let the gno-
mon perpendicular to this <plane> be the straight line CD. let the <line of>
intersection of the great circle which marks the first hour on the paths of
Cancer, Aries and Capricorn, with the plane of the sundial be the straight
line AB. Let the base of the gnomon be the point C and the tip of the gno-
mon the point D, the meridian line the straight line CE, and let the straight
line along which the tip of the shadow moves in the course of the two days
of the equinoxes be the straight line GEH; then the straight line AB cuts this

18 Calculation gives 148.2501.
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straight line, because the great circle which marks the first hour cuts the
equator and cuts the plane of the sundial, accordingly cuts their <line of>
intersection; let these two straight lines cut one another at the point I; the
tips of the shadows of the gnomon at the end of the first hour thus lie on the
straight line AB and the tip of the shadow of the gnomon at the end of the
first hour on the two days of the equinoxes will be on the point I. Let the tip
of the shadow at the end of the first hour <when the sun is> on the tropic of
Capricorn be the point L and the tip of the shadow at the end of that hour
<when the sun is> on the tropic of Cancer be the point M. We draw the
straight lines DL, DI, DM, CL, CI, CM; the straight lines DL, DI, DM thus
lie in the plane of the great circle that marks the first hour, and these
straight lines are the straight lines of the rays that travel from the tip of the
gnomon to the plane of the sundial at the end of the first hour, on the days
when the sun moves along the paths of Capricorn, Aries and Cancer. But
the straight lines CL, CI, CM are the lines of the shadow for the three days,
they are called the lines of azimuths.
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It has been shown in the previous proposition that the ratio of DC to
CL is the ratio of one to six. From the point I let us draw the straight line
NIK in the plane of the sundial and such that the angle BIK is equal to the
angle JEP of Proposition 9, which is in the plane of the horizon to which
the plane of the sundial is parallel. We make the angle IBK equal to the
angle EPJ of that proposition; and similarly for the angle IAN; so the trian-
gle IBK is similar to the triangle EPJ of the proposition we mentioned. So
we have that the ratio of KB to BI is equal to the ratio of one to a hundred
and seventy-four. But since the plane of the sundial is parallel to the plane
of the horizon, the straight line AB is parallel to the straight line formed by
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the great circle that marks the first hour in the plane of the horizon and
which is the straight line PEH in the figure we mentioned earlier. So the
straight line NIK is parallel to the straight line JEF of the proposition we
mentioned. But it has been proved in Proposition 9 that all the great circles
that cut off the first hour cut the horizon along straight lines that all lie
between the two straight lines PEH and JEF; so all the great circles that
mark the first hour intersect the plane of the sundial along straight lines that
all lie between the two straight lines AB and NK. But the straight line GH is
parallel to the straight line BD of the proposition we mentioned earlier. So
the angle BIE is obtuse and the angle BIC is even more obtuse; so the
straight line CL is greater than the straight line LI. We draw LO parallel to
the straight line BK, so we have that the ratio of OL to LI is equal to the
ratio of KB to BI, which is equal to the ratio of one to one hundred and
seventy-four. But the straight line LC is greater than the straight line LI and
the straight line CD is a sixth of the straight line CL; so the straight line CD
is much greater than a sixth of LI. But the ratio of LO to LI is the ratio of
one to one hundred and seventy-four; so the ratio of LO to CD is smaller
than the ratio of one to a sixth of one hundred and seventy-four, so the
straight line LO is smaller than a third of a tenth of CD. But since CL is the
shadow for the first hour on the tropic of Capricorn, the tip of the shadow is
at the point L itself; consequently, the tips of the shadows for the first hour
on the remaining days, and which lie outside the straight line BI, are always
closer to the point I; so any one of the straight lines drawn from their tips
parallel to the straight line BK is smaller than <the straight line> LO. So the
ratio of each of these straight lines to the straight line CD is smaller than a
third of a tenth. So if the length of the gnomon is the width of three fingers
of a hand, the straight line LO is smaller than a third of a tenth of three fin-
gers. But a single finger of the hand does not reach a width of six sha‘îra;
so the length of the gnomon does not reach the width <of a third of a tenth
of> eighteen sha‘îra, the straight line LO does not reach three fifths of the
width of a sha‘îra and the straight line LO is of a magnitude that is not per-
ceptible in relation to the length of the straight line ML which is the line of
the first hour.

Now the tip of the shadow for the first hour <when the sun is on> the
tropic of Capricorn is also at the point L itself, and does not lie between the
two straight lines LI and OI; every shadow of the gnomon CD whose tip is
between the two straight lines LI and OI is thus closer to the point I than to
the straight line LO and the straight line drawn from the tip of the shadow,
lying between the two straight lines LI and OI and parallel to the straight
line LO is smaller than <the straight line> LO; so this straight line is a part
of LO  and it is a small part of the length of the gnomon. Each of the
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straight lines drawn from the tips of the shadows to the straight line LI par-
allel to the straight line LO thus has no <perceptible> magnitude in relation
to the length of the gnomon. Thus none of these straight lines has a mag-
nitude that is perceptible in relation to the straight line LM.

If the separation between the tips of the shadows and the straight line
LM has no <perceptible> magnitude, then the tips of the shadows do not
separate themselves from the width of the perceptible line that is drawn in
the plane of the sundial, and if some of them do separate themselves from
it, then it is by a magnitude that the sense does not perceive and its magni-
tude does not affect the time of the hour if the length of the gnomon is three
fingers. But for the majority of sundials, the length of the gnomon is less
than three fingers; thus the lengths of the shadows are shorter and the dis-
tance between the tips of the shadows and the straight line L M is thus
smaller because the ratio of these widths to the length of the gnomon is the
same ratio.

So we have to establish, starting from this proof, that the distance
between the tips of the shadows and the straight line LM that is the line of
the first hour – if we imagine the straight line LM to be a length without
width – is a distance whose magnitude is not such as the senses can per-
ceive and which does not exceed the width of the perceptible straight line
in a way that can affect the time of the hour.

Using a method like the previous one, we can prove that, for each of
the hour lines, the distance between the tips of the shadows and the line is
an imperceptible distance, because the distance between the tips of the
shadows and the line for each of the remaining hours is smaller than the
distance between the tips of the shadows and the line for the first hour,
since the straight line corresponding to the straight line LO has a smaller
ratio to the length of the gnomon, from what was proved in Proposition 10
of this treatise.

Once this is proved, we have then proved that the hour lines are
straight lines as far as the senses can perceive and that earlier scholars were
right when they supposed that these lines are straight lines; and we have
proved that Ibræhîm ibn Sinæn made an error when he claimed that earlier
scholars were mistaken in regard to the hour lines; we have proved that his
error occurred because he carried out an imaginary, mathematical investi-
gation and did not carry out a physical investigation of what is perceived.

All that we have proved holds only for inclined horizons. As for hori-
zons on the equator, the hour lines for them are straight lines, and for each
seasonal hour <there is> a single straight line both in imagination and in
perception. In fact, for horizons on the equator seasonal hours are equinoc-
tial hours, because their horizons pass through the two poles and their
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diurnal arcs are semicircles of the seasonal arcs; the great circle that passes
through the two poles, and cuts off a seasonal hour from the semicircle of
the equator, [this great circle] thus cuts off from halves of the hour circles,
which are parts of the day,19 arcs that are similar to the arc it cuts off from
the circle of the equator. So the same circle that passes through the two
poles marks the same hour for all the days of the year; but this single circle
[that bisects the diurnal arcs] cuts the horizon along the meridian line for
that horizon, because the two poles of the world lie on the circumference of
the horizon; so this circle always cuts the plane of a sundial parallel to the
horizon along the same imaginary straight line parallel to the meridian line
in the plane of the horizon. In the same way, each of the seasonal hours is
cut off by a single great circle that passes through the two poles and cuts
off similar arcs from all the seasonal circles; each of them is the same sea-
sonal hour that is the same equinoctial hour. The <line of> intersection of
each of these circles with the horizon is the meridian line. All the great cir-
cles that cut off the seasonal hours intersect one another on the meridian
line of the horizon and these circles cut the plane of the sundial along
straight lines, each of which marks a single one of the seasonal hours for all
the days of the year. Each of these straight lines is parallel to the meridian
line that lies in the plane of the horizon. The hour lines in horizontal sundi-
als positioned in horizons on the equator are all straight lines, both in per-
ception and in imagination, and they are all parallel. These are the results
we wished to prove in this treatise.

This treatise is completed.
Thanks be given to God, Lord of the worlds.

19 Lit.: partition.



CHAPTER II

HORIZONTAL SUNDIALS

2.1. INTRODUCTION

Horizontal sundials were among the most widely known instruments,
the easiest to make, and also the most effective, since they told the time as
long as the sun was shining. This may explain why Ibn al-Haytham began
his investigations into sundials by considering this type of instrument. His
treatise on horizontal sundials was written before the much more learned
one about hour lines. In any case, there seems to be every indication that
Ibn al-Haytham wanted to straighten out matters concerning this kind of
dial before, in his capacity as a mathematician, embarking upon much more
advanced researches on a general theory of sundials.

The two sundial texts by Ibn al-Haytham are not the same either in
purpose or style. Horizontal Sundials (Fî al-rukhæmæt al-ufuqiyya) is a
workman’s handbook composed by a mathematician who provides no more
explanation than the artisan will actually need in order to construct a
sundial. Composing such handbooks was nothing new. Ibn al-Haytham’s
predecessor, Ibn Sinæn,1 had also written a manual on sundials for artisans.
Ibn al-Haytham himself was not above writing handbooks for craftsmen,
such as the work on geometry that he addressed to people who made
measurements2 (today we would call them surveyors). Here, as in the latter
book, Ibn al-Haytham obviously wanted to provide a sound scientific basis
for the artisan’s practice, so that he would have a proper grasp of how the

1 Ibn Sinæn, Fî ælæt al-aÂlæl, edited with translation and commentary in R. Rashed
and H. Bellosta, Ibræhîm ibn Sinæn. Logique et géométrie au Xe siècle, Leiden, 2000,
Chap. IV.

2 Ibn al-Haytham, Fî uÒºl al-misæÌa, edited with French translation and
commentary in R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol.
III: Ibn al-Haytham. Théorie des coniques, constructions géométriques et géométrie
pratique, London, 2000, Chap. IV. English translation: Ibn al-Haytham’s Theory of
Conics, Geometrical Constructions and Practical Geometry. A History of Arabic
Sciences and Mathematics, vol. 3, London, 2013.
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instrument was constructed. In the following few pages we make some
comments on Ibn al-Haytham’s text.

2.2. MATHEMATICAL COMMENTARY

1. In this treatise, Ibn al-Haytham first turns to the procedures used to
construct horizontal sundials, notably those for drawing the lines on the
dial. Then, from his investigation of the craft practices, he proposes a short
simplified procedure, a method the artisan can adopt, perfectly securely, to
construct a sundial for a place of given latitude. Throughout his discussion,
Ibn al-Haytham tacitly assumes that he has

δ λ δm m< < ° −90 ,

where δm is the maximum declination of the sun and λ the latitude of the
place considered.

First let us explain this condition, before we examine the procedures
for making sundials.

Let us draw a diagram to represent the celestial sphere and let us show
the circle centred on the place O, taken as the centre of the world, the
zenith Z and the axis of the world OP.
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Fig. 2.1



HORIZONTAL SUNDIALS 549

The circle described by the sun in the course of its diurnal motion
– uniform circular motion – lies in a plane parallel to the equator. Let L, C,
H be, respectively, the points of sunrise, sunset and meridian passage
corresponding to a declination δ; we have

EOHˆ = δ , NOP ZOEˆ ˆ= = λ .

The term day designates the interval of time that elapses between
sunrise L and sunset C; its length varies over the course of the year. The
day is determined by the length J of the arc LHC described by the sun
above the horizon. It is divided into twelve seasonal hours, which are of
equal length for a given day. But, from one day to another, the length of the
seasonal hour varies. Each day we have hours with the same number. There
are twelve numbers in order: thus sunrise is numbered 0, sunset is
numbered 12, meridian passage, numbered 6, is called midday.

Ibn al-Haytham states – see below – that the arc LHC is known when
we know δ and λ. He does not prove this result, he merely notes that one
may find ‘proofs in books on astronomy’.3

Thus the artisan needs to know the result but not necessarily how to
prove it. In fact we need to prove that

cos
J

2
= ⋅tan tanδ λ .
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Fig. 2.2

3 See below, p. 571; Arabic text in Les Mathématiques infinitésimales, vol. V,
p. 827, 26.
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Let ω be the centre of the circle described by the apparent motion of
the sun. HH′, the diameter of this circle in the plane of the meridian, cuts
NS, the diameter of the horizon, in I. Let R be the radius of the celestial
sphere, then we have

ωH = R cos δ, Oω = R sin δ, ωI = Oω tan λ = R sin δ tan λ.

The arc HC has the same size J

2
 as the angle at the centre HωC. We

have

cos
J I

C

I

H

R

R2
= ⋅ω

ω
ω

ω
δ λ

δ
δ λ= =

sin tan
cos

= tan tan .

If δ > 0, J > π, cos J

2
 < 0; and if δ < 0, J < π, cos J

2
 > 0.

When the condition imposed on λ is satisfied, we have tan λ > 0, hence

cos J

2
 = –tan δ tan λ.

For example, in a place with latitude λ = 45°, we have tan λ  = 1 and

cos J

2
 = –tan δ; if δ = –δm = –23°27′, we have cos J

2
 = 0.43378 and

J

2
 = 64°18′. The shortest day is measured by Jmin = 128°36′ and the longest

day by Jmax = 231°24′.
Having explained this implicit condition and having given a proof for

it, let us turn to the text by Ibn al-Haytham. From the first paragraphs, he is
concerned with the construction of horizontal sundials. This type of sundial
must be drawn on a surface that is perfectly plane and parallel to the
horizon of the chosen place. The gnomon must be set up to be
perpendicular to this plane. We then find the line for midday, that is the
straight line on which the shadow of the tip of the gnomon falls, on every
day of the year, when the sun passes through the meridian. Finally, in the
course of a day we observe the sun at each seasonal hour of that day and
make a mark to show the position of the shadow of the tip of the gnomon.
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In the course of two similar days – days for which the declination of
the sun is the same – the length of the day is the same and the positions of
the points L and C on the horizon, as well as the position of the point H on
the meridian, are also the same. Observations show that the point we obtain
on the sundial is the same for any hour with the same number n; for 1 ≤ n ≤
11. But for days that correspond to different declinations, the points we
obtain for the hour numbered n are different. This time, observations show
that if we join up these points we obtain a curve that is only very little
different from a straight line. Makers of sundials accordingly considered
they could replace this curve with a straight line, which could be
determined by two points. So that the distance of the other points from the
straight line we draw shall be as little as possible, we determine the straight
line not by means of any two points but by the two end points, which are
the points obtained on the days of the summer solstice and the winter
solstice, which correspond to δ = δm and δ = –δm.

Horizontal plane for the place O

plane of the sundial

S

h O

K M

Fig. 2.3

It remains to draw the straight lines for the hours. For this we need to
determine the lengths of the shadows that correspond to the extreme points.
If we consider SO, the ray from the sun that, at any moment, passes through
the tip of the gnomon OK – the point O being taken to be the centre of the
world – this ray cuts the plane of the sundial at the point M, the tip of the
shadow. If at that same moment, the height of the sun above the horizon is
h, we have h OMK= ˆ  in the right-angled triangle OKM. If O K = d, the
height of the gnomon, we have

KM l
d

h
= =

tan
,
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where l is the length of the shadow, or as Ibn al-Haytham expresses it ‘the
ratio of any gnomon to its shadow is equal to the ratio of the sine of the height
of the sun, at that instant, to its cosine’;4 a formula that, as Ibn al-Haytham
says, is known to those who have written about sundials. We can indeed find it
in Thæbit ibn Qurra, for instance in his book on sundials,5 as well as in the
works of many others.

Let H be the point of meridian passage of the sun, for a declination δ
that can be positive or negative. Let us suppose the circle is in the direction
SEZPN; we have PN EZ= = λ , EH = δ , HZ = −λ δ , and it follows that

the required height SH = π
2

− −( )λ δ . So at the summer solstice, that is on

the day when the sun is at the first point of Cancer, we have δ = δm and

SH = π
2

− +λ δm . At the winter solstice, on the day when the sun is at the

first point of Capricorn, we have δ = –δm and SH ′ = π
2

− −λ δm .
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Fig. 2.4

Ibn al-Haytham next explains that, for each seasonal hour that corre-
sponds to a declination δ, we need to know the right ascension and the
azimuth of the sun. We then take as origins, for measuring right ascension

4 See below, p. 569; Arabic text in Les Mathématiques infinitésimales, vol. V,
p. 825, 1–2.

5 Fî ælæt al-sæ‘æt allatî tusammæ rukhæmæt, in Thæbit ibn Qurra, Œuvres d’astrono-
mie, text edited and translated by R. Morelon, Paris, 1987, pp. 133–4.
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and azimuth, the points of intersection of the circle of the equator and the
circle of the horizon with the local meridian; let these be the points E and S.

We suppose the sun is at the first point of Cancer and that H is the
point at which it crosses the meridian ZSZ′.
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Fig. 2.5

We have seen that we know h , the height of this point; its right
ascension and its azimuth are zero. Ibn al-Haytham then considers the
situation when the position of the sun is H5, that is its position at the fifth
seasonal hour. The size of the arc HH5  on the circle parallel to the equator

is known. In fact, we have HH5 = 1
6

LH  where LH  = J

2
 is defined by

cos J

2
 = ⋅–tan tanδ λ .

The great circle PH5 cuts the equator in ′H5 , so the arc EH ′5  is the right
ascension of H5; and the great circle ZH5 cuts the horizon circle in ′′H5 , so

the arc SH ′′5  is the azimuth of the point H5.

The parallel arcs HH5  and EH ′5  have the same measure in degrees:

EH HH′ = =5 5 5α . So we know the right ascension of H5.

When the first point of Cancer is at the point H5, another point of the

ecliptic is on the meridian circle, say at X. So there is an arc of the ecliptic,
XH5, that has a right ascension EH ′5 , which is known. To a known right
ascension there corresponds a known arc on the ecliptic. So the arc H5X is a
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known arc and the point H5 is known; so SX, its height above the horizon,

is known. We can then determine the azimuth and the height of the point
H5 by applying Menelaus’ theorem. Here again, Ibn al-Haytham does not

consider it necessary to show the use of the theorem or to provide the
proof, neither of which is required by the artisan.

We shall restore the missing proof. Let O be the place concerned; the
circle of the ecliptic and the circle of the horizon for that place cut one
another in a diameter MM′. The arc MXM′ of the ecliptic is a semicircle
that is cut in a point X by the meridian of O, the arc ZS. The point X is
determined by H5, the position of the first point of Cancer at the fifth hour,
and we know the arcs SX and XH5. We also know the arcs MS and MX.

H

H

X

S

M

M

N

5

5

O

Z

′

″

Fig. 2.6

We can apply Menelaus’ theorem in two different ways to determine
the arcs SH ′′5  and H H5 5′′ .

Let us put SH ′′5  = x  the azimuth of H5, H H5 5′′  = y  the height of H5,

MS a= , tanXS c= ; we have MH a x′′= −5 , H Z5 = π
2

 – y and XZ = π
2

− XS.

In the figure MH5ZS Menelaus’ theorem gives

sin

sin

sin
sin

sin
sin

MS

MH

H H

H Z

XZ

XS′′
⋅ ′′ ⋅ =

5

5 5

5

1,

that is,
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(1)           sin
sin( )

a

a x
y c

−
⋅ =tan ;

and by applying the same theorem to the circle ZH H5 5′′   we have

sin
sin

sin

sin

sin

sin

ZS

ZX

H X

H M

MH

H S
⋅ ⋅ ′′

′′
=5

5

5

5

1;

now ZS = π
2

 and SX  is known; so ZX  is also known. Moreover H X5  and

MX  are known; so H M5  is also known. So the first two ratios are known;

let 1
k

 be their product; the previous equality can be rewritten:

sin (a – x) = k · sin x,

which can be rewritten

(2)            tan x
a

k a
=

+
sin

cos

and from that we have the azimuth x = α5.

Thus we know (a – x), and from (1) we have

tan y
c a x

a
c k

x

a
= − = ⋅sin( )

sin
sin
sin

;

from this we can find h5 the height of the position H5 = y.
So we may draw the conclusion that, on the day when the sun is at the

first point of Cancer (the summer solstice), we know the right ascension
and we know how to draw the azimuth and the height of H5, the position of
the sun at the fifth hour, that is one hour before it crosses the meridian of a
given place. For the point H5, we thus know: the right ascension a5, the
azimuth α5 and the height h5. Using the same method, we can find these
three coordinates ai, α i, hi for all the points Hi, where 1 ≤ i ≤ 5. The
positions of the points Hi, for 7 ≤ i ≤ 11, which correspond to the positions
of the first point of Cancer at the hours after midday, are symmetrical with
the points H5, H 4, … , H1 about the meridian circle ZS . Their right
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ascensions are arcs from the origin S and their heights are ZHi; so two
symmetrical points such as H5 and H7 have equal coordinates.

The same method can be used to investigate the points of the circle
described by each of the points of the ecliptic that corresponds to the
beginning of one of the signs of the Zodiac. So we can construct a sundial
for a given horizon, since we can determine the azimuth and the height for
the position of each of the relevant points of the ecliptic at each of the
twelve seasonal hours.

After this investigation of right ascension and height for Cancer (or
Capricorn) at a given hour, Ibn al-Haytham considers the ortive amplitude.

The figure shows the celestial sphere. The circle of the equator and the
circle of the horizon are perpendicular to the meridian plane PZS; so their
line of intersection OΣ is perpendicular to this plane and to any straight line

in it. So we have that ΣO is perpendicular to NS. The point Σ marks due

East for the horizon of the place O; and we have Σ ΣN S= =  π
2

.

S
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H L

E

Z
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″
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Fig. 2.7

The first point of Cancer, with positive declination, rises at the point L
to the North of Σ. The arc ΣL is the ortive amplitude, and we have

LN = π
2

−ΣL  and SL = π
2

 + ΣL . This arc SL is the azimuth of the point L

where Cancer rises. For the first point of Capricorn, which has negative
declination, the point of rising L′  lies South of Σ and we have
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′ = ′ +L N L Σ π
2

  and  SL′ = π
2

− ′L Σ ;

this arc SL′ is the azimuth of the point L′ where Capricorn rises.

2. Once he has explained how to find the azimuth and the height of the
position of the sun at the seasonal hours of each of the days that correspond
to the first point of each of the signs of the Zodiac, Ibn al-Haytham is then
ready to set out the rules of the method the artisan should employ to
construct a horizontal sundial for a given place. He twice refers back to
how to use the results already established to find the position of the tip of
the shadow of the gnomon.

Constructing a sundial in fact reduces to finding the straight lines for
the hours, the hour lines. So it is enough to know two points to fix each of
them. It is better if these two points are extreme ones, that is if, for each
hour, one of the points corresponds to the positions of the first point of
Cancer, and the other to positions of the first point of Capricorn. Ibn al-
Haytham gives a detailed description of the successive stages of making a
dial. First of all, we must draw up a table which, for each of the first points
of signs of the Zodiac, shows its azimuth and its height at each seasonal
hour of the day that corresponds to it.

1 2 3 4 5 6 7Cancer

Leo

Gemini

Taurus Pisces

Aquarius

Scorpio

Capricorn

Libra

Virgo

Aries

Sagittarius

Fig. 2.8.1
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6th hour 5th hour 4th hour 3rd hour 2nd hour 1st hour

h1,6 α1,5 h1,5 Cancer

…

α3,5 h3,5 Taurus
Virgo

…

Fig. 2.8.2

The table has six columns and seven rows. On the rows we mark the
signs of the Zodiac in order of their declinations, starting with Cancer,
which corresponds to the declination δm, and ending with Capricorn, which
has declination –δm. The columns correspond to the seasonal hours. Each
column – apart from the sixth – has two parts; in one is written the azimuth
and in the other the height. At the sixth hour, the azimuth is zero because
this is meridian passage (see also Fig. II.1, p. 575).

We then make a ‘master circle’: on a copper plate we draw a circle
with centre E and two perpendicular diameters AC and BD.

D
H

K

C

N I

E
Bh

x

A

Fig. 2.9

The circle is graduated in degrees. Let d be the height of the gnomon to
be used in the sundial. On AC we mark the point N such that EN = d, and
through N we draw a line parallel to DB; let it be Nx.
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This ‘master circle’ can be used to find the length of the shadow of the
gnomon at a given moment, as follows:

Let h be the height of the sun at the moment in question and K a point
on the circumference such that DK h= . We draw KH ⊥  DB; when

extended, the straight line KE  cuts Nx at the point I. The right-angled

triangles KHE and ENI are similar; we have KH

HE

EN

NI
h= = tan . So if KE

represents the ray of light from the sun, at height h, that reaches E, the tip
of the gnomon, and meets the straight line Nx that represents the plane of
the dial, then NI is the length of the shadow

NI = l = d cot h.

To construct the dial, we take a perfectly plane plate that we fix in
position so that its surface is parallel to the horizontal plane of the place.
On the plate we find the straight line that will be the meridian line. To do
this, we choose a point on the plate, say J; at that point we set up a gnomon
and in the course of the day we find two shadows that are of the same
length, let them be JM and JM′. The line JU that bisects the angle MJM′ is
the meridian line for the point J.

J

M

U

M ′

Fig. 2.10

We then take the point J and on the plate we draw a circle with centre J
equal to the master circle, let UJO be its diameter (the meridian line). It is
clear that, if a gnomon GJ is perpendicular to the plate at the point J, at the
sixth hour the shadow of its tip G will fall on JU.

We first take the sun to be at the first point of Cancer and we
investigate the shadow associated with the fifth hour for a gnomon of
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height d equal to EN the length used for the master circle. We then take
from the table the azimuth α1,5 and the height h1,5 that correspond to this

case (Cancer, fifth hour) and we place on the circle (J, JU) the point P such
that UP = α1 5, . The straight line JP is the straight line of the azimuth.

On the master circle we then carry out the required construction taking
h = h1,5 and we obtain l the length of the shadow of the gnomon of height d.
We place that length l on the azimuth line JP, let it be JN5 = l. The point N5

we obtain in this way is the tip of the shortest shadow for a fifth hour.
We repeat the same process for the fifth hour for Capricorn. The table

gives us the azimuth α7,5 for this case. On the circle on the dial we mark the

point S such that US = α 7 5,  and we draw JS on which we mark out the

length JM5 = l′, a length we obtain on the master circle by taking h = h7,5.

The point M5 is the tip of the longest shadow for a fifth hour. We then draw
the straight line M5N5 on the dial; this is the straight line for the hours
numbered five. At the fifth hour of every day, the tip of the shadow of a
gnomon of height d falls at a point very close to that straight line.

O

J

P
S U

MM

N
N

5

5

6

6

Fig. 2.11

We repeat the same process for every hour of the day for Cancer and
for Capricorn. One by one we mark the points M we obtain. We find that
the points which correspond to two successive hours are very close to one
another. Thus we may regard the points as forming a locus that is a curve.
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Ibn al-Haytham points out that this curve is a conic, but does not pause to
justify the remark.

Let us show that the curve is a hyperbola.
Each day the sun, S, describes a circle parallel to the equator. The point

G, the tip of the gnomon, is taken as the centre of the universe; so, as it
moves, the ray from the sun, SG, sweeps out the surface of a cone whose
axis is the diameter that passes through the poles of the celestial sphere. For
two opposite declinations, for example for the first points of Cancer and
Capricorn, we obtain the two sheets of the surface of the same cone. For
the chosen place, we have, on the intersection of the plane of the sundial
with one of the sheets, the set of points N associated with the first point of
Cancer; and on the intersection with the other sheet we have the points M.

H

S

P
S

G

P ′

Fig. 2.12

If the place considered is at a Northern latitude greater than δm, the

maximum declination of the sun, and less than its complement,

δ λ π δm m< < −
2

, that is, if we are considering a place that lies between the

tropic of Cancer and the Arctic circle, the conic sections we obtain, for the
days when the sun is at the first point of Cancer and that of Capricorn are
the two branches of a hyperbola. We can repeat this procedure for the first
point of each of the signs of the Zodiac. The first point of Leo and that of
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Gemini lie on either side of Cancer and have the same declination δ. The

line of the points N that correspond to these two first points is the same.
The first point of Aquarius and that of Sagittarius lie on either side of

Aries and have the same declination –δ. The line of the points M that
correspond to them is the same.

The lines we obtain in this way for Leo and Gemini, on the one hand,
and for Aquarius and Sagittarius on the other, are the two branches of the
same hyperbola. The same holds for Taurus and Virgo on one side and
Pisces and Scorpio on the other.

The first point of Aries and that of Libra have declination zero. When
the sun is at one of these positions, its diurnal motion lies in the plane of
the equator and in the course of each of these two days the tip of the
shadow of the gnomon describes on the horizontal plane of the sundial a
straight line perpendicular to the straight line UJ.

So we see that each of the hyperbolas we have considered corresponds
to a Solar declination δ, which is the declination of the first point of one of
the signs of the Zodiac. The point N corresponds to a positive declination δ
and the point M  to the opposite declination –δ. It remains to find the
lengths JN and JM associated with δ and –δ for latitude λ.

Let h and h′ be the heights of H and H′, the points of meridian passage,

where EH = δ , EH ′ = −δ  and EZ = λ .
We have

h SH= = π
2

− =HZ π
2

− −( )λ δ ,

so JN  = d  cot h  = d tan (λ – δ ), where d is the height of the gnomon;
moreover

′ = ′ =h SH π
2

− ′ =H Z π
2

− +( )λ δ ,

so
JM = d cot h′ = d tan (λ + δ).

For Aries and Libra we have δ = 0; so M and N coincide at the point M0

such that JM0 = d tan λ.
For the values of |δ | ≠ 0 in question, the points M and N lie on opposite

sides of M0.
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Finally, in the plane perpendicular to the dial, on the straight line JU,
which contains the gnomon J G with tip G, we have JGMˆ

0 = λ ,

NGM M GMˆ ˆ
0 0= = δ  and the ray GM0 bisects the angle between the two

rays GN and GM.
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Fig. 2.13

So Ibn al-Haytham has just set out, as he himself expresses it:

the subject as a whole and the principles on which the construction of
sundials is based, and to draw attention to the manner of the construction and
the parts where we need these ideas to which reference is not often made
except in the books of specialists on shadows.6

In fact it was a matter of setting out the geometrical principles that
underlie, and validate, the instrument makers’ practice. This mathematico-
astronomical understanding is required for making such instruments. Thus
Ibn al-Haytham sets out what is strictly necessary, and does not concern
himself with the mathematical theory of sundials, on which he intended to
write a separate book. Ibn al-Haytham kept this promise and wrote On the
Hour Lines, in which – as we shall see – he provides a magisterial
development of the theory of the subject.

6 See below, p. 581; Arabic text in Les Mathématiques infinitésimales, vol. V, p. 849,
1–4.
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2.3. HISTORY OF THE TEXT

Fî al-rukhæmæt al-ufuqiyya (On Horizontal Sundials) is the title used
by the old biobibliographers – al-Qif†î, Ibn Abî UÒaybi‘a and the
anonymous scholar of Lahore – to designate this treatise in the list of works
by Ibn al-Haytham before 1038.7 Further, Ibn al-Haytham tells us that this
treatise was composed before On the Hour Lines, by referring forward to
the second at the end of the first. So both of them were composed before
The Burning Sphere (Fî al-kura al-muÌriqa).

The treatise has come down to us in two manuscripts:

1. Collection 2970/9, fols 153v–161r, in the Staatsbibliothek in Berlin,8

copied by Qæ≈î Zædeh during the 1430s. This manuscript is identified as B.

2. Collection Tugæbunî 110, fols 1–19, in the Majlis Shºræ in Teheran.
This is a 581-page collection of scientific writings. We know very little
about the history of this collection. This manuscript is identified as I.

A comparison of B and I shows that B is missing a sentence and four
words, whereas in I there are six omissions, each of one word. So we know
that B cannot be the immediate ancestor of I.

We have established the Arabic text from these two manuscripts in Les
Mathématiques infinitésimales, vol. V, pp. 821–49.

7 Ibn al-Haytham and Analytical Mathematics. A History of Arabic Sciences and
Mathematics, vol. 2, Culture and Civilization in the Middle East, London, 2013,
pp. 416–17.

8 We have traced the history of this collection in Ibn al-Haytham’s Theory of
Conics, Geometrical Constructions and Practical Geometry, vol. 3, pp. 423–5.
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In the name of God, the Compassionate the Merciful

TREATISE BY ABª ‘ALï AL-ÎASAN IBN AL-ÎASAN
IBN AL-HAYTHAM

On Horizontal Sundials

A sundial is a plane of known position1 that has a raised gnomon and
lines such that, if the tips of the shadows of the gnomon fall on these lines,
they indicate the seasonal hours that have elapsed so far during that day.
The purpose of having a sundial is to know the hour <of day>. One can put
it to other uses if one adds markings other than hour lines, except that it is
agreed that, among its ordinary uses, one is to let us know, at any moment,
how much of the day has elapsed and how much remains, and the moments
of midday. A seasonal hour is one of the twelve <equal> parts of the
duration of the length of the day to which this hour belongs. Seasonal hours
have a different length each day because the duration of the day is not the
same for every day. The way in which, to begin with, experts on shadows
constructed sundials was as follows: they set up a plane parallel to the
horizon, on which they found the meridian line,2 erected a gnomon
perpendicular [to the plane] and positioned on the meridian line; if its
shadow fell on the meridian line, they deduced that the sun had reached the
meridian circle and that the part of the day that had elapsed was equal to
what remained; they then observed the sun every day with an astrolabe, or
something that could take the place of one, and watched the sun attentively
until one seasonal hour of the day had elapsed, a seasonal hour being one
part of the twelve <equal> parts of the diurnal arc for that day; they
examined the shadow of the gnomon erected on the sundial and made a
mark at the position of the tip of the shadow; then they watched the sun and
the shadow attentively until two hours of the day had passed; then they
similarly made another mark at the tip of the shadow; they proceeded in the
same way for the other hours until they obtained marks for the remaining

1 Later it is specified that the plane is parallel to the horizon.
2 See Mathematical commentary.
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hours on the surface of the sundial. They then did this for every day until
the sun reached its extreme position closest to the zenith and its extreme
position furthest from it [at noon]. In this way they obtained many points,
each of which indicates an hour of one of the days. Then they considered
the shadow and they found that for each day, as an hour passed, the tip of
the shadow fell on the mark they had made on the surface in the course of
the day that was similar [in length] to this day of the year. So these marks
provided a rule that allowed them to know which <seasonal> hour of the
day has <just> elapsed. They next examined these points and they then
found that the points that defined corresponding hours3 for all the days lie
on a line which does not depart much from a straight line; moreover, all the
points defining corresponding hours lay on a line that, as far as could be
perceived, was very close to a straight line; accordingly they later drew
corresponding hours as straight lines. So if the tips of the shadows fell on
them [the lines], that indicated the hours. Since they used that a great deal,
it led them, when they wanted to construct a sundial, to carry out
observations like this for one day of <each of> the parts of the year and for
all the corresponding hours to determine two points that they joined with a
straight line, which they took as the line for corresponding hours; indeed
for a straight line, if we have two points on it, we have the whole line. So
they relied upon this method.

But since they imagined that the points for corresponding hours do not
lie exactly on a straight line, and that if we join two neighbouring
corresponding points by a straight line, and if we extend that straight line,
there is no guarantee that, as it is extended further, the discrepancy does not
increase, thus it seems they looked for the two points that mark the extreme
positions of the corresponding points for the tips <of two shadows> and
they joined them with a straight line which they took as the line for
corresponding hours. Once this was established, then, for each of the
straight lines for hours, the person making the sundial4 looked for the two
points that are the two endpoints of the line. But since it was difficult for
the maker of a dial to wait until the sun reached the extreme point of its
declination and returned to the other extreme point – because it is at these
two extreme points of the sun’s declination that we find the extreme points
on which the tips of the shadows fall – makers of dials turned to
geometrical investigation to find the points that are the ends of the hour

3 Corresponding hours for two different days correspond to the same number of
twelfths of the length of the day for each of the days concerned. So we are considering
hours with the same number.

4 Lit: dial of hours.
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lines. They recognized, by means of a general proof, that the ratio of any
gnomon to its shadow is equal to the ratio of the sine of the height of the
sun, at that instant, to its cosine. So the straight line on which the shadow
lies is either the meridian line or a straight line that makes with the
meridian line an angle that intercepts the arc of the horizon lying between
the meridian line and the arc of the height <of the sun>, which is called the
arc of the azimuth.

Proof: The sun always lies on one of the circles of azimuth5 and the
gnomon is always in <the plane of> each of the azimuth circles, because its
tip serves as the centre of the world;6 it lies on the extension of the straight
line of the mid heaven7 and the ray from the sun to the tip of the gnomon is
always a diameter of the azimuth circle that passes through the sun at that
moment. But since the gnomon and the ray at that moment both lie in the
plane of the azimuth circle, the shadow will lie along a straight line in the
plane of the azimuth circle, because it lies in the same plane with these two
straight lines, that is the gnomon and the ray; so the shadow always lies
along the straight line that is in the plane of the azimuth circle and in the
plane of the horizon; so it8 ends at the endpoint of the arc of the altitude,
because it is the line of intersection of the horizon and the azimuth circle,
which is either the meridian line, or a line such that the arc lying between
its endpoint and the meridian line is the arc that lies between the meridian
line and the arc of the altitude; that is the arc called the arc of the azimuth.

Moreover, since the sine of the height is the perpendicular dropped
from the sun onto the diameter of the azimuth circle that passes through the
tip of the gnomon, and it [this perpendicular] is parallel to the straight line
from the mid heaven drawn as the extension of the gnomon, and since the
diameter of the azimuth circle that passes through the tip of the gnomon is
parallel to the shadow – because they lie in two parallel planes, namely the

5 The shadow lies on the line of intersection of the horizontal plane of the sundial
and the plane of the circle through the zenith defined by S the position of the sun. This
circle through the zenith is sometimes called the altitude circle, because the arc that
measures altitude is part of it; and sometimes the azimuth circle because it cuts the
circle of the horizon in a point that defines the azimuth. Thus, if S is in the plane of the
meridian, the shadow is on the meridian line, if not, it is on a straight line that defines
the azimuth. The azimuth circle is a horizontal circle along which the azimuths of points
on the sphere are measured. We have translated al-dæ’ira al-samtiyya as circle of
azimuth or azimuth circle.

6 That is, it is the centre of our imagined celestial sphere – making the usual
approximations, e.g. taking the radius of the Earth as negligibly small.

7 The vertical at the place concerned.
8 That is the straight line along which the shadow lies.
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horizon, which passes through the tip of the gnomon, and the plane of the
dial – and they lie in the plane of the azimuth circle, accordingly the
straight line of each ray forms with these straight lines two triangles that
are similar, because their sides are parallel; the ratio of the sine of the
height to the cosine, that is the straight line between the foot of the
perpendicular and the tip of the gnomon, is thus equal to the ratio of the
gnomon to the shadow.

Once this had been proved, they wrote it into their books, together with
the proofs, and to find the <positions of the> tips of the shadows they made
use of these two lemmas,9 because these were sufficient for their purpose.
So, to construct the dial, the artisan who made sundials needed to know the
height of the sun at the hours for which he wanted to find the <positions of
the> tips of the shadows, and to know the arc of the circumference of the
horizon that is cut off between the line of the shadow and the meridian line,
[the arc] that is called the arc of the azimuth. This is why someone who
wanted to construct a sundial began by knowing the height and the arcs of
azimuth for each of the moments for which he wanted to make marks on
the dial. The method of finding this is to suppose, to employ the method of
analysis, that the sun is at the extreme point of its declination, that is to say,
at the first point of Cancer or of Capricorn, and that we are at midday. So
the shadow falls on the meridian line. We begin with midday because that
is easier. It is then that the first point of Cancer or of Capricorn lies on the
meridian circle and the height of the sun at this moment is the height of the
first point of Cancer or of Capricorn; but the height of the first point of
Cancer or of Capricorn in the assumed position on the Earth at midday is
known, because it is the arc of the meridian circle that lies between the
point through which the first point of Cancer or Capricorn passes and the
horizon. This arc is known, because the inclination of the first point of
Cancer or Capricorn with respect to the circle of the equator is known, the
distance from the zenith of the known horizon to the equator is known, so
their sum – or the amount by which one exceeds the other – is known,
which is the distance of the first point of Cancer or Capricorn at this
moment in relation to the zenith. If a quarter of a circle is taken away from
it, the remainder is the height of the first point of Cancer or Capricorn at
that moment. If the sun is on the meridian circle10 and it is at the first point
of Cancer or Capricorn, the height of the sun is known. And this is one of

9 First lemma: the points marking the tips of the shadows for corresponding hours
lie on a straight line. Second lemma: the ratio of the height of the gnomon to the length
of its shadow is equal to the ratio of sin h to cos h, where h is the height of the sun at the
moment concerned.

10 Lit.: on the line of midday.
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the moments for which we try to find the shadows. We then suppose that
the sun is at the first point of Cancer and we imagine there is an interval of
a single seasonal hour between it and the meridian circle; now the seasonal
hour for this moment is one of the known parts, because it is one part of the
twelve parts of the diurnal arc at the first point of Cancer for this horizon;
but the diurnal arc for a known degree <of the Zodiac> for a known
horizon is known, because it has been established through proofs in books
on astronomy. The distance between the sun and the meridian circle
<measured> along the circle parallel to the equator is known and is the
seasonal hour; and at this moment, between the sun and the meridian circle
there is an arc of the circle of the ecliptic; so the arc that represents the
seasonal hour of known magnitude is the ascension of this arc11 of the
circle of the ecliptic, which lies between the sun and the meridian circle, at
a place that has the meridian circle as a horizon, <a place> that lies on the
equator.

But the ascensions of the parts of the circle of the ecliptic on the
equator are known; so the known ascensions are ascensions of known parts
of the circle of the ecliptic, on it. Consequently, the arc between the sun
and the meridian circle along the circle of the ecliptic is known, and the sun
is taken to be at the first point of Cancer; so the point of the circle of the
ecliptic that lies on the meridian circle is known from its height which is
the arc of the meridian circle that lies between this point and the horizon,
and which is known, because the inclination of this point is known and the
distance of the zenith from the equator is known. But this point of the circle
of the ecliptic is on the line of the mid heaven12 at this moment. If, on the
line of the mid heaven for a known horizon, a part of the circle of the
ecliptic is known, the ascendant at this moment is known. The arc of the
circle of the ecliptic that lies between the horizon and the meridian circle
for this moment is known and this arc is divided by the position of the sun
in a known ratio; so the arc of the height at this moment is known – that
has been proved from the ‘sector figure’.13 The height of the sun at the
moment when there is a single hour between it and the meridian circle,
when the sun is at the first point of Cancer, is thus known.

11 Ascension of an arc: the difference between the right ascensions of its two
endpoints measured along the circle of the equator from a fixed origin. In this text, one
of the endpoints of the arc concerned is taken as the origin (the point of intersection of
the equator and the meridian south of the place in question): so the ascension of the arc
is the right ascension of its second endpoint.

12 It lies on the meridian circle through the zenith and the pole of the equator; this
circle is called the mid heaven.

13 A proof by Menelaus.
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In the same way, it can be shown that the height is known if there are
two hours, or more, between the sun and the meridian circle, because <for
each> of the hours between the sun and the meridian circle, if the hour is
known, the arc of the circle of the ecliptic that lies between the sun and the
meridian circle is known, since these hours are its right ascensions. The
mid heaven for the circle of the ecliptic is thus a known point, the
ascendant is also known and, as has been proved, the height is known.

In the same way, if we suppose the sun is at the first point of Capricorn
or at an arbitrary given point of the circle of the ecliptic, the heights of the
hours will be known because the inclinations of known points of the circle
of the ecliptic are known and their ascensions are known, and from these
one can find the magnitude of the height. It is by this method that all the
heights have been determined for the moments for which we want to know
the <positions of the> tips of the shadows. As for the azimuths, since it has
been proved that the ascendant, <found> from the circle of the ecliptic, for
the given hour corresponds to a given point, then the ortive amplitude is
known and it is the arc of the horizon between this point and the meridian
circle;14 thus if we take away this arc from a quarter of a circle, what
remains is the arc of the horizon between this point and the meridian circle,
towards the north or the south. And since the circular arc of azimuth,15

which runs between the zenith and the horizon, is a quarter of a circle and
since it is divided by the position of the sun in a known ratio; since the arc
of the circle of the ecliptic that we have introduced is also known and is
divided by the position of the sun in a known ratio, as we have proved,
accordingly the arc of the horizon that lies between the circle of the ecliptic
and the meridian circle – we have proved that it is known – is divided by
the azimuth circle in a known ratio, because this can also be proved by the
‘sector figure’.16 Thus the arc between the azimuth circle and the meridian
circle is known; it is the arc called the azimuth and the straight line drawn
from the centre of the horizon to the endpoint of that arc is what is called
the straight line of the azimuth; this method was also used to find all the
azimuths for the given hours.

Now, when they knew the azimuths and the arcs for heights, they drew
a circle with its centre at the base of the gnomon, which they divided into
three hundred and sixty parts, and <working> from the meridian line, in the
direction towards the position of the azimuth circle at the moment for

14 The meridian circle towards the east.
15 Here, the azimuth circle is the circle through the zenith that passes through the

position of the sun, meeting the horizon at the point that defines the arc that is called the
azimuth.

16 That is to say by Menelaus’ theorem.
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which they took the sun to be at the first point of Cancer, and whose
distance from the meridian circle is a single hour, they marked off the
magnitude of the arc of azimuth for this moment, an arc they had found by
proof17 and calculations. They then joined the centre of the base of the
gnomon to the endpoint of this arc with a straight line; so this straight line
is the line of the azimuth in the plane of the dial for this moment, and it is
on this line that the shadow of the gnomon falls, at this moment, because it
[the shadow] is in the plane of the azimuth circle and the sun and the
gnomon are also in the plane of the azimuth circle. Then, starting from the
centre of the base of the gnomon, they cut off from the azimuth line a
straight line whose ratio to the gnomon was equal to the ratio of the sine of
the height to its cosine – we shall show later how to do this – and thus, by
this procedure, they obtained a point in the plane of the dial, a point that is
the tip of the shadow that marks the fifth hour, because they had assumed
there was a single hour between the sun and the meridian circle; then, also
starting from the meridian line, they took the azimuth arc for the fifth hour
when the sun is at the first point of Capricorn, they drew the straight line
for the azimuth and found the straight line whose ratio to the gnomon is
equal to the ratio of the sine of the height, at this moment, to its cosine;
they then obtained another point on the plane of the dial which also marks
the fifth hour.

We have already said that they believed that the points that mark
corresponding hours lie on a single straight line, as far as the senses can
perceive, and that they set out to find the endpoints of this straight line,
which are the two points that are the endpoints of the straight line that
indicates the fifth hours, and that they joined these points with a straight
line which they put in place as a marker for the fifth hours. They did the
same for each of the remaining hours and in this way they obtained straight
lines indicating the twelve hours.18

This is an account of the method that was used to find the hour lines in
the planes of sundials; now it has been shown that to construct the dial, we
need to know the inclinations, the ortive amplitude,19 the arc of the height,
the arc of the azimuth and the straight azimuth line. These things can be
found by calculation and they can also be found by means of an instrument.

17 The sense may seem to require a term such as ‘mathematical argument’, but the
Arabic term used here is burhæn, which means ‘proof’.

18 The twelfth hour corresponds to sunset; the ray joining the sun to the top of the
gnomon is horizontal so that point has no shadow on the plane of the dial.

19 The ortive amplitude, that is, the arc from the point of rising, has not been used
in the calculations (see Mathematical commentary).
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This has been mentioned in their books by many specialists in the science
of shadows and they have referred to it.

But since what is said about this is repeated in books, we shall dispense
with presenting it again here.

Let us now summarize the method of constructing sundials and let us
set it out so as to make it easily accessible to anyone who wants to apply it.
The first thing, with which the maker of the sundial must start, is to find the
arcs for the height [sc. of the sun] for each of the hours of the day, when
the sun is at the first point of Cancer, for the horizon for which we wish to
construct the sundial, this by means of calculation, as has been shown in
the astronomical tables; he finds that, similarly, when the sun is at the first
point of Capricorn, he also finds, by means of calculation, the azimuth arcs
for these hours and he finds the height and the azimuth for each hour <of
the days> when the sun is taken to be at the first points of all the signs of
the Zodiac. And to make the construction easier, he draws up a table,
whose length he divides into seven parts, and he places in the first part the
first point of Cancer, in the second the first point of Gemini and that of
Leo, in the third the first point of Taurus and that of Virgo, in the fourth the
first point of Aries and that of Libra, in the fifth the first point of Pisces and
that of Scorpio, in the sixth the first point of Aquarius and that of
Sagittarius and in the seventh the first point of Capricorn. The width of the
table is divided into six parts, in which the hours are written, in order, from
the first hour to the sixth hour, which is midday, then each of the parts of
the width, except the sixth part, is divided into two parts; in one of them we
write the height and in the other the azimuth and in the part reserved for the
sixth hour only the height, because for the height for the sixth hour there is
no azimuth arc, given that it is midday. Then this table is filled in with all
the heights and azimuths that have been found by calculation, each in its
place; so we write opposite the first point of Cancer, under the first hour
and in the part reserved for the height, the parts of the arc of the height,20

which has been found for the first hour, when the sun was at the first point
of Cancer. But the first hour is the hour whose distance from the meridian
circle is five hours. Under the first hour we also write, in the part reserved
for the azimuth, the parts of the arc of the azimuth,21 which has been found
for the first hour. We write under the second hour the height and the
azimuth that have been found for it; similarly under the third, fourth and
fifth hours. We write under the sixth hour the height on the meridian; we

20 The measure of the height, in degrees.
21 The measure of the azimuth, in degrees.
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do the same thing for each of the signs of the Zodiac. This is the form of
table we need to use in constructing sundials, which is for example:

first point of Cancer

Gemini and Leo

Taurus and Virgo

Aries and Libra

Pisces and Scorpio

Aquarius and Sagittarius

first point of Capricorn

Signs of the Zodiacsixth hour fifth hour fourth hour third hour  second hour first hour

height az
im

uth

az
im

uth

az
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height
height

height

height

height

Fig. II.1

We draw a circle on a flat piece of copper or on a solid body, in the
circle we draw two diameters that cut one another at right angles, we divide
the circle into three hundred and sixty parts and starting from the centre of
the circle we cut off on one of the diameters that cut one another [at right
angles] a straight line equal to the magnitude of the length of the gnomon
that we wish to erect on the plane of the sundial; from the point where the
cut was made we draw a straight line parallel to the other diameter and we
call this circle the master circle.22 Once all this is done, we then begin by
setting up a smooth surface parallel to the horizon23 or to a known horizon,
and we adjust it as exactly as possible; in this surface we find the meridian
line in the usual way that is by taking <note of> two equal shadows, on the
same day and for a single gnomon, one to the east and the other to the west;
we divide the angle they enclose into two equal parts with a straight line.
That straight line is thus the meridian line, as has been proved, in its place,
in the books of mathematicians. We then choose a point on the meridian
line, and in this plane we draw a circle equal to the master circle, then we
return to the table to find the number of parts in the arc of the azimuth at
the fifth hour when the sun is at the first point of Cancer; then from the
master circle we take off parts equal to these parts, which we measure with
the opening of compasses, then, using these compasses with this opening,

22 For the master circle, our figure will be drawn to show the case in the example
considered by Ibn al-Haytham.

23 Lit.: his horizon. The maker’s horizon.
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we cut off an arc on the circle drawn on the sundial, starting from the
meridian line, using this opening; this arc will be equal to the arc of the
azimuth we found in the table. We join the centre of the circle to the
endpoint of the arc with a straight line, that straight line will then be the
azimuth line for the fifth hour when the sun is at the first point of Cancer,
and it is on this line that the shadow of the gnomon falls at that moment.
We then return to the table, as before, to find the arc of the height for the
fifth hour when the sun is at the first point of Cancer, starting from the
diameter we have not divided, on the circumference of the master circle we
cut off an arc whose magnitude is equal to the number of parts that are in
the height24 at that moment. We then join the endpoint of that arc and the
centre of the circle with a straight line that we extend until it meets the
straight line drawn from the point of division parallel to the diameter. The
ratio of the length of the gnomon to the straight line cut off from the
straight line parallel to the diameter is thus equal to the ratio of the sine of
the height to its cosine.

Proof: On the master circle let us use the letters ABCD, and at the
centre E, and at the point that marks the length of the gnomon, N; at the
point in which the straight line parallel to the diameter was divided, I; at
the endpoint of the arc that is equal to the arc of the height on the azimuth
circle, the point K, and starting from K the perpendicular KH; then KH is
the sine of the height and HE its cosine; but the ratio of KH to HE is equal
to the ratio of EN to NI, because the two triangles are similar, EN is the
length of the gnomon, and NI is the length of the shadow because the point
K stands for the position of the sun, the straight line KEI indicates the ray
and the straight line EN indicates the gnomon; so the straight line NI is the
shadow.

K
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N I

C

B
E

Fig. II.2

24 That is the measure of the height in degrees.
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So if we find that straight line, we take its measure with compasses and
from the azimuth line in the <plane of> the sundial, starting from the centre
of the circle drawn on the surface of the sundial, using the two legs of the
compasses, we cut off a straight line equal to the straight line that has been
found; that straight line is accordingly the length of the shadow at that
moment. Thus we obtain on the surface of the dial a point that is one end of
the straight line that marks the fifth hours, because this shadow is the
shadow associated with one of the two extreme points for the declination of
the sun, and the sun does not exceed this declination. This straight line is
the shortest shadow for the fifth hours because at this moment the sun is
closest to the zenith and the shadow shortens only if the sun moves closer
to the zenith. Then, again on the circumference of the master circle, we
take an arc equal to the arc of the azimuth, at the fifth hour, when the sun is
at the first point of Capricorn; we measure it with compasses and, starting
from the meridian line, we cut off an equal arc from the circle on the dial.
Starting from the centre we draw a straight line to the endpoint of the arc.
This straight line will be the line of the azimuth at that moment; we then
return to the master circle, from which we cut off an arc equal, <measured>
in parts, to the arc of the height at this moment, parts which are to be found
in the table. We join the endpoint of the arc to the centre, thus we have the
straight line that is the length of the shadow. We cut off a piece equal to it
from the line of the azimuth, we thus obtain the final point of the straight
line on which the shadow falls at the fifth hours. Now we join the two
points with a straight line; accordingly this straight line will be the straight
line that marks the fifth hours. We do the same thing for the remaining
hours, so as to find the straight line that marks each of the fourth, third,
second and first hours. In this way we obtain, on one of the two sides of the
sundial, five straight lines that indicate five hours and the meridian line that
indicates the sixth hours.

In the same way, on the master circle, we again take a <number of>
parts equal to the <number of> parts of the height on the meridian, starting
from the first point of Cancer, an arc that is in the table, and we join its
endpoint to the centre of the master circle. We find the shadow for noon of
the day starting from the first point of Cancer; we cut off this same length
on the meridian line, which on the sundial runs from the centre of the
<master> circle.

Similarly, we find the shadow for noon of the day starting from the first
point of Capricorn. We cut off this same length on the meridian line, by
this means we obtain the straight line that defines the two extreme positions
of <the tips of> the midday shadows on the sundial.
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Then, working in the other direction on the dial, we cut off, from the
circle in the plane of the dial, arcs equal to the azimuth arcs that lie in the
first direction and we join their endpoints to the centre of the circle with
straight lines; these give us the remaining hours because the distance of
each of the hours to the west from the meridian circle is equal to the
distance <from the meridian> of the corresponding hour among those to the
east. So the azimuth, for the hour to the east, is equal to the azimuth for the
hour to the west that corresponds to it. Similarly, it necessarily follows that
the two heights are equal and the two shadows are of equal length. So, on
the azimuth lines in the second direction, we cut off lengths equal to the
lengths of the shadows in the first direction. Again the extreme positions of
each pair of <tips of> shadows, the pairs which mark the endpoints of
corresponding hours, are joined with a straight line. So these straight lines
are those that mark corresponding hours. By this procedure the artisan
obtains the eleven straight lines that mark all the hours in the plane of the
sundial.

For example, for this let there be a circle UPO; let this be the circle
drawn in the plane of the sundial whose centre is J; let the straight lines
drawn in it be the straight lines whose endpoints are M , their other
endpoints N and let the meridian line be UO. Let the arc of the azimuth for
the fifth hour when the sun is at the first point of Cancer be UP; let the
straight line of the azimuth, on which the shadow falls, be JP and let the
length of the shadow determined from the master circle be JN; let the arc of
the azimuth for the fifth hour, again when the sun is at the first point of
Capricorn, let the arc of the azimuth for the fifth hour be US, the straight
line of the azimuth, on which the shadow falls, is JS and the length of the
shadow obtained from the master circle is, for the second time, JN. The two
points that mark the two extreme positions <of the tip of the shadow> for
the fifth hours are N and M; so the straight line MN is the line on which the
<tip of the> shadow falls, approximately, for the fifth hour for every day.
In the same way, each of the remaining straight lines corresponds,
successively, to one of the <following> hours. Let us then join the
endpoints of the hour lines at which we have M, <and then> the endpoints
of the lines at which we have N, using straight lines.25 Thus in a single day,
the tip of the shadow passes through all the points we have marked M, and
this <happens> if the sun is at the first point of Capricorn; in the course of

25 We join successive points M with line segments and similarly for points N.
These are very short segments so the line we obtain from the points M or the points N
may be considered as a curve. This curve, the locus of the points we obtained, is a
hyperbola for places in northern latitudes (if 23°27′ < λ < 66°33′) (see Mathematical
commentary).
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that day, and in the course of every day, the tip of the shadow moves along
the outline of a conic section, except on the day of the equinox. So all the
points M lie on the outline of that conic section. But since there was no
easy way of drawing the outline of a conic section on the surface of the
sundial, they merely drew straight lines to join the points M, lines which,
together, are taken as a substitute for the conic section; thus the whole line
on which the points M appear is called the tropic of Capricorn, because if
the sun is at the first point of Capricorn, the tip of the shadow moves
approximately on that line. In the same way, the whole line on which the
points N appear is, in addition, called the tropic of Cancer, because the tip
of the shadow moves approximately along it if the sun is at the first point
of Cancer.
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Fig. II.3

We then also find the points on the hour lines through which the tip of
the shadow passes when the sun is at the first point of <each of> the
remaining signs of the Zodiac, and this <is done> by returning to the
tables;26 in this way we shall know the azimuth for the fifth hour when the
sun is at the first point of Leo. So, starting from the meridian line, we take
an arc on the circumference of the circle equal to that arc, we place a ruler

26 The reference is to tables, in the plural, because the table that has been drawn up
consists of several tables.
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on the centre of the circle that is in the sundial; and at the endpoint of that
arc, where the ruler cuts the line for the fifth hour, we mark the point; then,
again from the tables, we shall know the azimuth for the fourth hour when
the sun is at the first point of Leo; on the circle we also take an arc equal to
this azimuth and we place a ruler on its endpoint and on the centre; where
the ruler cuts the line for the fourth hour we mark a point. We do the same
for the third hour and for all the remaining hours. By this procedure we
obtain points on the hour lines through which the tip of the shadow passes
on the day when the sun is at the first point of Leo or at the first point of
Gemini. We join them up with straight lines. That is called the path of
Gemini and Leo. We do the same thing for each of the signs of the Zodiac;
we thus obtain in the surface of the sundial, and on the hour lines, seven
paths that are the paths of the first points of the signs of the Zodiac, as in
the figure.

As for the path of Aries and Libra, it is a straight line; indeed, the sun is
on the equator that day,27 the tip of the gnomon is at the centre of the circle
of the equator and on that day all the rays drawn to the tip of the gnomon
are diameters of the circle of the equator; so they all lie in the plane of the
circle of the equator. But they all fall on the surface of the dial and end at
the tips of the shadows; so on that day all the tips of the shadows lie in the
plane of the circle of the equator and they are in the plane of the dial; so
they lie on the intersection of the circle of the equator and the plane of the
dial, and thus lie on a straight line. This straight line cuts the meridian line
at right angles, because it is perpendicular to the plane of the meridian
circle. In fact, each of the planes of the circles of the equator and of the
horizon is perpendicular to the plane of the meridian circle. Their
intersection, which is the straight line on which the tips of the shadows fall,
is perpendicular to any straight line lying in the meridian circle; so it makes
right angles with the meridian line; that is why, for finding that line, the
line that is the path of Aries and of Libra, it is enough to know the height
on the meridian of the first point of Aries, from tables. A height equal to
that one is taken on the master circle and the length of the shadow is found
in the manner already described. We take a length equal to that on the
meridian line that is on the surface of the dial, starting from the centre of
the circle, then from the endpoint of that straight line we draw a
perpendicular straight line to meet the lines for all the hours. This straight
line will be the path of Aries and Libra.

Once all this has been completed, we try to have a conical gnomon
made of material that is solid and not susceptible to decay and we make its

27 That is the day when the sun is at the first point of Aries or of Libra.
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height the same size as the length of the straight line that has been cut off
from the diameter of the master circle; we put a small additional piece on
the side of its circular end [i.e. its base], then we fix it at the centre of the
circle on the sundial, as the gnomon PJ, and we set it up so that the base of
the gnomon rests on the plane of the circle and the centre of its base rests
on the centre of the circle and we drive the additional piece into the body of
the sundial so that it [the gnomon] stands perpendicularly and perfectly
securely.

What we have explained is what specialists on shadows use to
construct sundials, and they find it sufficient. Using the same construction,
we can draw lines that indicate parts of hours, and also mark on all the lines
points that indicate the paths of all the parts of the circle of the ecliptic. We
can also add to these sundials lines that indicate equinoctial hours, right
ascension, the mid heaven [meridian], as well as other kinds of construc-
tions considered by specialists on shadows. It is also possible to give
details for the construction of sundials, and explanations of how they work,
for every plane, for every horizon [i.e. geographical latitude] and for every
position of the plane <of the dial> for each of the horizons. But our
purpose, in this treatise, is to explain the subject as a whole and the
principles on which the construction of sundials is based, and to draw
attention to the manner of the construction and the parts where we need
these ideas to which reference is not often made except in the books of
specialists on shadows. After that, we shall begin with a book concerning
shadow instruments in which we shall give an exhaustive treatment of all
the ideas, as well as their purposes and the constructions required in this
art. It is from God that there comes help and success in this <endeavour>.
God is all we need, the excellent protector!

The treatise of Abº ‘Alî al-Îasan ibn al-Îasan ibn al-Haytham
on horizontal sundials is completed.

Praise be to God, Lord of the worlds. May the blessing of God be upon
his messenger MuÌammad and all that are his.
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CHAPTER III

COMPASSES FOR LARGE CIRCLES

3.1. INTRODUCTION

The compasses for large circles are a mathematical instrument invented
by Ibn al-Haytham for drawing circles with various radii that may be rather
large. The instrument was, according to its inventor, intended to respond to
the needs of astronomers and engineers. So it was appropriate, in address-
ing such readers, to set out the geometrical basis for the invention and to
explain how the instrument was made. This is exactly what the author has
in mind in the organisation of his short treatise, in which, as he himself puts
it, Ibn al-Haytham consciously combines ‘theory’ (‘ilm) and ‘practice’
(‘amal).

That is not the only interesting thing about the treatise. Like other trea-
tises on mathematical instruments composed by eminent mathematicians,
such as al-Qºhî, Ibn Sahl, al-Sijzî and Ibn al-Haytham himself, this one
sheds light on the geometrical ideas of its time. We have shown that, from
the mid ninth century onwards, geometry was not limited to the study of
figures, but was more and more concerned with transformations of figures.
Not only was Ibn al-Haytham actively engaged in developing this new
outlook, but, more importantly, he also conceived of a new discipline to
provide a solid basis for the use of transformations. This discipline was
given the name ‘The Knowns’.1 The short treatise on his new instrument
confirms the direction in which geometrical research is going.

3.2. MATHEMATICAL COMMENTARY

Ibn al-Haytham begins by proving three geometrical propositions
before turning to the instrument itself. These propositions bear witness to
the part Ibn al-Haytham allows motion to play in geometry. He makes use
of a rotation about a point in the plane as well as a rotation about an axis in

1 R. Rashed, Les Mathématiques infinitésimales du IXe au XIe siècle, vol. IV: Mé-
thodes géométriques, transformations ponctuelles et philosophie des mathématiques,
London, 2002, Chap. II.
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space, and he determines the quantities that are invariant under these rota-
tions as well as the paths of points.

In the first proposition, Ibn al-Haytham proves that the displacement
that takes EB to G C (as defined in Fig. 3.1) is a rotation about a certain
centre. As the endpoints E, G on the one hand and B, C on the other lie,
respectively, on two circles with common centre I, the centre of the rotation
is I.

A B
EI

C
K

D

G

Fig. 3.1

Ibn al-Haytham in fact uses a rotation about the centre I that transforms
E to G; it thus takes B to K  and EB to GK. Moreover, by a displacement
that is not defined, EB is taken to GC; so GK = GC, which makes C = K.

In Proposition 2, Ibn al-Haytham proves that, in a continuous rotation
with centre I, each point of the plane remains at a constant distance from
the fixed point I. So it traces out a circle with centre I.
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Fig. 3.2

In Proposition 3, he considers a continuous rotation of space, with axis
IO. Any point in space M describes a circle whose centre is a point O on
the axis. In fact the plane perpendicular to the axis and passing through M
is invariant under the rotation (a property left implicit in the text); so the
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distance from M to the point O, where this plane meets the axis, remains
constant and M describes a circle with centre O in the plane concerned.
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Fig. 3.3

These three propositions are evidence of the part Ibn al-Haytham
assigns to motion in geometry. Here he uses a rotation about a point in the
plane as well as one about an axis in space and he determines quantities
that are invariant under these rotations and the paths of points.

In the remaining two propositions, Ibn al-Haytham explains the process
of constructing these compasses, as well as the manner of using the
instrument.

In Proposition 4, he explains that the instrument is made up of four
pieces:

• a circular ring with a small diameter;
• a cylindrical rod whose thickness is equal to that of the ring at whose

end there are fixed two conical pins whose separation is the diameter of the
ring;

• two identical plates in the shape of parts of rings with width equal to
the diameter of the first ring. To the two ends of one of them there are fixed
two cylindrical pins whose length is equal to that of the conical pins and
whose tips are filed into the shape of nails; at the tips of the other we bore
two holes corresponding to the two nails just mentioned.

The cylindrical rod is soldered to the ring so as to be aligned along a
diameter. We set up the instrument by attaching the ring onto the plate with
holes bored through it, so that the pins are underneath; so the plate is on
top. We then put the second plate (the lower plate) onto the plane of the
drawing and, using the nails, we fix the upper plate over it.

When the ring slides along the upper plate, its diameter, in line with the
direction of the rod, always points towards the centre of the circles of
which the edges of the upper plate are arcs, from Proposition 1. From
Proposition 2, any point of the rod describes a circle with the same centre
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in the plane of the upper plate. From proposition 3, the tips of the conical
pins trace out circles with the same centre in the plane of the lower plate,
which is the plane of the drawing.

 
Fig. 3.4

In Proposition 5, Ibn al-Haytham proposes to construct a set of annular
plates that will allow us to draw circles with radii that are any multiple of
the length of the rod. We cut out the first plate by pivoting the rod about
the point O of the ring, the point opposite the point O′ where the rod is
attached; the two radii of the ring (inner and outer) are the distances from
the two pins to this point of the ring; let them be r1 and r2. Using this first
ring, now in duplicate, we can then draw two new circular arcs with radii
2r1 and r1 + r2, hence we have a new ring that will allow us to draw new
circles, with radii 3r1 and 2r1 + r2. After n iterations, we have a ring of radii
nr1 and (n – 1)r1 + r2. We can see that is a recursive procedure based on
using Archimedes’ axiom;2 in fact the values of r1 and r2 = r1 + a (where a
is the diameter of the small ring) are fixed in advance and we know that nr1

and (n – 1)r1 + r2 = nr1 + a, can exceed any length given in advance.

2 Ibn al-Haytham is referring to the fifth postulate in Book I of Archimedes’ On the
Sphere and Cylinder, which is of unequal lines and unequal surfaces and unequal solids,
the greater exceeds the less by such a magnitude as, when added to itself, can be made
to exceed any assigned magnitude among those comparable with one another. (Greek
Mathematical Works, vol. II, Aristarchus to Pappus, trans. Ivor Thomas, Loeb Classical
Library, LCL 362, Harvard University Press, 1941, reprinted, pp. 46, 47.) In On the
Sphere and Cylinder Archimedes distinguishes axioms from postulates and lists them
separately, but this postulate has nevertheless come to be known as Archimedes’ axiom.
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OO′ = a = SS′
O′S′ = r1 = OS
OS′ = r2 = r1 + a.

S S

O O′
′

Fig. 3.5

To draw a whole circle, we mount the instrument on an annular upper
plate identical with the lower annular plate. After drawing an arc with the
instrument in a first position, we mark on the plane of the drawing three
points G, M, C, all on BC, the inner edge of the lower plate. We then repo-
sition the instrument so that B is transferred to G and the points M and C of
the plane still lie on the inner edge of the lower plate. Accordingly, this
inner edge, GH, remains on the same circle in the new position and the new
arc of a circle it allows us to draw is an extension of the previous one, since
the two annular plates are fixed together. We repeat this procedure until the
circle is completed.
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Fig. 3.6

This construction derives from the fact that three points serve to define
a circle.

3.3. HISTORY OF THE TEXT

Ibn al-Haytham’s treatise on compasses for drawing large circles has
come down to us in five manuscripts, three of which were transcribed at the
end of the thirteenth century and in the course of the first half of the four-
teenth century. Three of these manuscripts belong to collections that
include other works by Ibn al-Haytham. We have described these collec-
tions in the second volume of A History of Arabic Sciences and
Mathematics (Ibn al-Haytham and Analytical Mathematics). Here we
simply refer the reader to that volume. These manuscripts are:
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[A] Aligarh 678, copied on 5 Jumædæ I, in the year 721 of the Hegira,
that is, 2 June 1321.3 The folios of the text of the treatise are out of order:
29r, 8r–8v–9r. Examining the texts shows that thirteen words, as well as
seven sentences, are missing  specifically in this text. Further, lines 9–13 of
page 9 are merely a summary.

[B] India Office 734, fols 116v–118r.4 We do not know the date of tran-
scription, which may have taken place in the tenth century of the Hegira.
This manuscript presents no omissions that are peculiar to it, but (on the
other hand) includes a very large number of transcription errors.

[R] Rampur 3666, fols 436–442. A page is missing from this manu-
script, between the page numbered 436 and the one numbered 437. It was
probably lost in the course of binding. This manuscript is late; it was
copied on 9 Rabî‘ I, in the year 1281 of the Hegira, that is, 12 August 1864,
in India.

Again there are no omissions that are peculiar to it, but it includes a
very large number of transcription errors.

[L] St. Petersburg B1030. We have made the point5 that this collection
of writings by Ibn al-Haytham is particularly valuable, not only for the
treatises it contains, but also because it was checked against the original in
750 H/1349. The text of the treatise appears on fols 125v–131r. This text is
individual in lacking two phrases, one of two words and the other of seven
words.

[N] Leiden 133/6, fols 106–111, copied in 692 of the Hegira, that is in
1293. Apart from the one he was transcribing, the copyist of this manu-
script had at his disposal another manuscript that he had consulted and
from which he cites four readings. This manuscript is individual in lacking
seven words and for expressions of two or more words.

An investigation of the omissions, additions and other accidents in
copying in these manuscripts, taken two by two, allows us to divide them
into three groups. The first consists only of a single manuscript, [L]; the
second also contains no more than a single manuscript, [N]; and the third
includes manuscripts [A], [B] and [R].

Moreover we can see that [L] and [N] belong to a manuscript tradition
in which the first paragraph, the one in which the author addresses a par-
ticular Prince, is absent. Now this paragraph is of some importance, at least
sociologically, of a kind moreover that copyists enjoyed. It is present in the

3 R. Rashed, Ibn al-Haytham and Analytical Mathematics. A History of Arabic
Sciences and Mathematics, vol. 2, Culture and Civilization in the Middle East, London,
2013, pp. 30–1.

4 Ibid., p. 33.
5 Ibid., pp. 32–3.
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three other manuscripts, including [A], which was transcribed in the same
period as [L] and [N]. Should we see this as the production of two editions
of the text by Ibn al-Haytham himself, or the effect of an accident to the
text that resulted in this paragraph being cut out, or being one more
addition by a copyist in the course of the history of the text? In the current
state of our knowledge, we have no means of constructing a serious argu-
ment in support of one or another of these suggestions. We only know that,
if Ibn al-Haytham frequently wrote for his colleagues, he was not in the
habit of dedicating his writings to princes. Finally, the fact that this prince
is anonymous makes it impossible for us to assess whether the dedication is
plausible. So we shall go no further than to suggest that we have two tex-
tual traditions for this treatise.

Comparing these manuscripts permits us to propose the following
stemma, based on all the variants (which have also been noted in the appa-
ratus criticus).6

L N B R A

x

x
x

x

x

1349 1293 1864 132116th—17th 
centuries

6 See the Arabic edition of this treatise in Les Mathématiques infinitésimales, vol.
V, pp. 861–79.
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In the name of God, the Compassionate the Merciful

TREATISE BY AL-ÎASAN IBN AL-ÎASAN IBN AL-HAYTHAM

On Compasses for Large Circles

One of the ingenious geometrical procedures that occurred to the servant
of our Lord the Minister, the illustrious Prince – may God cause his power to
endure – is the invention of an instrument, small in size, that serves as a pair
of compasses, and which, despite its small size, draws extremely large circles,
circles such that their diameters are many times the size of its opening. I shall
begin by describing how it may be used, and then [explain] how to make it.

Among the variety of ingenious procedures, one example, even if
distinguished by its scientific rank and in this respect equal to another
example, may nevertheless not be its equal in the importance of the benefits it
confers. It may indeed happen that some examples bring greater benefits than
others. The science of astronomy, to understand what is the reality of the
motions of the wandering stars and of the form of their orbs and what are the
shapes of celestial bodies, that science is of the highest rank in honour; and the
benefit derived from the instruments designed for understanding these matters
is of no mean importance. Now, in instruments for observation, there is a great
need to set out large circles, or arcs of large circles that are determinate, so as
to end up by dividing them into the smallest parts. But it will be difficult, if
not impossible, to set out the circles if they become too large, because the
distance between the centre and the circumference must be kept constant; and
achieving that is the aim of the instrument with which circles are drawn, if the
distance between its two points does not change. Thus, if the size of the circle
we need reaches the limit of a very great distance [i.e. radius], it will perhaps
be impossible to find an instrument whose size is that large. Certainly,
instruments can be designed only to work up to a certain limit, and not for any
distance or for any extreme case. Even if it were possible, we should not be
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able to take advantage of the fact, because the instruments1 would need an
interval the same size as the distance [radius] to be free from any obstruction,
so that they could turn – even if what we need is an extremely small arc. If we
obtain an interval corresponding to a very great distance [radius] having the
required property, and an instrument that is extremely long, even if the one
and the other are impossibly perfect, the movement will not be perfectly
precise; indeed, if the instrument becomes too big, one cannot avoid its being
subject to some disturbance when it is set in motion. We may perhaps need to
draw an arc of a large circle on a surface that is not very wide, so we should
not be able to draw it with that instrument.

The need for such circles becomes apparent not only for observation
instruments but also for other purposes, indispensable ones such as the geome-
try of architectural constructions and similar practical arts, and such as
[making] spherical mirrors and other ingenious instruments of that kind
associated with ingenious procedures, when the given conditions involve [the
use of] large circles. So it is necessary for us to attempt to use some ingenious
procedure to devise an instrument for drawing circles, or arcs of circles, whose
diameters are of any size, with extreme accuracy and precision, and that by the
simplest and easiest method. This instrument, and the ease of handling it, are
of no mean interest in the procedures we mentioned earlier. Observers, and
those who pay close attention to the science of ingenious procedures and the
geometry of constructions, assuredly know this.

Let us start by proving the truth concerning what we are looking for, then
we shall come to the manner of constructing an instrument with which we
may draw any circle whatsoever, employing the property we have introduced.

Proposition 1: For two parallel circles, if from their centre we draw a straight
line to the circumference, then we cut off from it the part that lies between the
two parallel circles, and if this part moves in such a way that the two points at
its ends move on the circumferences of the two circles, then, if we extend it
[the part cut off between the circles], it will always go to the centre.

Example: Let the two circles be ABC and DEG and let their common
centre be the point I, from which we draw the straight line IEB. From it we cut
off EB. We move EB until it becomes <a line> such as CG. I say that, if we
extend CG, it necessarily goes to the point I.

1 Lit.: that instrument.
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Proof: If it does not go to the point I, then we
join IG and we extend it to K. So the straight line
IK will be a semidiameter on which there lies the
point G; so the straight line CG is greater than the
straight line GK; but CG is equal to EB, so the
straight line EB would be greater than GK. But BI
is equal to KI. So we should have that EI is smaller
than GI, which is impossible. So, if we extend CG,
it goes to the point I. That is what we wanted to
prove.
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Fig. III.1

Proposition 2: If in two parallel circles we draw a straight line from the centre
to the circumference, if we extend it outside the circle and if we cut off from it
a piece, a part of which lies outside the circle while its other part is the straight
line between the two circles; if we move this segment of the straight line in
such a way that the two points move on the two circumferences of the circles,
then any point of that straight line traces out a circle.

Example: Let ABC, DEG be two circles, with
centre the point I, in which we draw the straight line
IEB that we extend to K. We cut off KE and move it
in such a way that the points B and E move on the
circumferences of the two circles. I say that any point
on the straight line KE  traces out a circle. In the
course of the movement of the straight line, let the
point K trace out the circumference KLN. I say that
the line KLN is a circle.

Proof: During all its movement, the straight line
KE is directed towards the point I; so if we extend it,
in all of its positions, it goes to the point I.
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            Fig. III.2

So the distance between the point K and the point I is always the same,
and the line KLN is a circle. In the same way, any point on the straight line KE
traces out a circle. That is what we wanted to prove.

Proposition 3: If the set-up we have described remains as before, if at the
point K we erect a perpendicular to the plane of the circle and if we move the
straight line KE as before, then any point on the perpendicular traces out a
circle.
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Let the perpendicular be KM and let us move the straight line KE in such a
way that its ends are on the circumferences of the two circles. I say that any
point on KM traces out a circle.
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Fig. III.3

Proof: At the centre of the circle, which is I, we erect the perpendicular
IO, as a vertical line. It will thus be parallel to KM. We cut off from it IO
equal to KM. We have shown in the previous proposition that if we move EK,
then the distance from the point K to the point I is a constant distance. But the
straight line KM is equal to the straight line IO and is parallel to it. So if the
straight line EK  moves, and with it the perpendicular KM, and if the
perpendicular IO is fixed, then the distance between the point M and the point
O will always be the same. So the point M traces out a circle and the same
holds for any point on the perpendicular KM . That is what we wanted to
prove.

This part of the proof is enough for our [present] purpose.

<Proposition 4>: Let us now show how to construct an instrument with which
we can draw circles whose diameters are whatever size we please.

We take an iron ring, circular and of perfect circularity, and of a moderate
size, such that the surface that surrounds its body is a smooth circular surface
and such that its diameter is small in size. We take an iron rod, cylindrical in
shape and uniformly straight and such that its thickness is the thickness of the
body of the ring; we join it to the ring by soldering; let it lie in the direction of
one of the diameters of the ring. Next we take two points, at the end of it, and
at these two points we set up two conical steel pins that we fix onto the rod
with solder; then we file their tips; we reinforce it [each tip] and we polish it
so that it will cut everything over which it passes, in the same way as we
fashion the compasses that cut the plates of an astrolabe, [and all this is done]
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in such a way that the distance between the points of the two tips is equal in
size to the diameter of the ring. Next we make a piece of yellow copper2 or of
red copper, or of some similar material, and rather thin, then we draw on it
[the plate] two arcs of two parallel circles such that the distance between them,
that is to say, the amount by which the semidiameter of one exceeds the
semidiameter of the other, is equal to the diameter of the ring.3 We cut the
plate along these two arcs using sharp-ended compasses, so that we obtain a
piece of the plate similar to a piece of the ring, such that its width is equal to
the diameter of the original [iron] ring. We take a plate of hard material, a
rectangular piece, such that its length is equal to the length of the piece of
ring. On its two ends, we set up <perpendicularly> two small cylindrical pins
that we solder firmly in place, we take away from the tops of them two small
parts so as to obtain two cylindrical nails such that what remains of the height
of these two small cylinders is the same size as the height of the two pins on
the tip of the rod. Next, at the two ends of the original plate, we cut two holes
whose size is the thickness of the two nails and [placed] so that the distance
between them is the size of the distance between the two cylinders.

Fig. III.4.1 Fig. III.4.2

If we wish to draw a circle with this instrument, then we thread the plate
that has the shape of a piece of the ring through the circular iron ring, then we
mount the plate on the two cylinders so that the ends of the two cylinders
thread through the two holes and they fit symmetrically. We put the lower
plate on the surface on which we wish to draw the circle and we move the rod

2 I.e. brass.
3 He means the diameter of the inside circle of the ring.
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that has the two pins at the end of it. The tips of the two pins then draw two
circles on this surface because the diameter of the ring, which is the greatest
dimension it has, is equal to the width of the plate, which is the smallest
dimension it has. So the position of the ring around the plate is always the
same, never changing. Thus the diameter of the ring is always identical with
the width of the plate, which lies along the line of the diameter of its circle. So
the rod, which lies along the line of the diameter of the circular ring, always
lies along the line of the diameter of the circle of the plate, along which the
rod moves. So any point on the rod, and any point on the pin that is perpendi-
cular to the rod, traces out a circle.4

<Proposition 5>: If we want to draw a circle such that its diameter is equal to
a given distance, we shall need to make a plate of copper similar to a piece of
a ring whose diameter is of known magnitude.

For that we shall need to make numerous rings, in the manner we have
described above, until we arrive at the ring we want.

By means of this instrument we can thus make these rings in the most
economical and convenient way.

We take a plate of copper, then we set up the instrument and we fix the
plate on a surface so that the two tips of the two pins are in contact with the
surface; then we hold the circular ring with one hand and the end of the rod
with the other hand,5 we move the rod, we press the two tips of the two pins
onto the plate and we continue with this until the plate is cut along the two
circles. While it may become difficult to cut the plate [right through] by this
movement, it will not be difficult to engrave on it with the two points of the
two pins, and if it is engraved, we then use compasses to cut away the part
beyond the two arcs scribed on the plate in an incomplete manner; then we use
a fine and flexible file [to remove] what remains of the excess and we file
gently and firmly until the file has removed all that is beyond the two arcs, so
as to reach the circumferences of the two arcs. if we work free the piece
enclosed between the two arcs, we are left with a piece of a ring, at whose two
ends have been cut, [and] on which we then mount the instrument and it is
pressed onto another plate, then that produces another piece of a ring such that
the semidiameter of this second ring exceeds the semidiameter of the first ring

4 This follows from Proposition 3.
5 The ring is held in position so as to keep fixed the endpoint of the diameter that is an

extension of the rod. The instrument is rotated about the tangent at that endpoint. See
figure.
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by the length of the rod. If we do this repeatedly, then the diameter of the ring
that is formed is multiplied up, until it reaches the sizes we want. Using this
method, we can make numerous rings in the most economical way, and this so
as to complete the ring we wanted and to achieve our aim.

If we want to draw a complete circle with this instrument, instead of some
piece of a ring we construct two pieces or one substantial piece that we divide
into two halves. We mount one of the two pieces on the two tops of the two
cylinders and we mount the other under the bases of the two cylinders with the
help of two little pegs that are in the base and the two holes that are in the
piece, and we mount them so that their surfaces are parallel and their arcs are
superimposed.6 Each arc of one must be superimposed upon the corresponding
arc of the other; we then apply the surface of the lower piece of the ring to the
given surface, on which we wish to draw the circle.

For example, let us have the piece ABCD. We set up the instrument and
start to make it move. It accordingly draws an arc of a circle. On the given
surface we mark, on the perimeter of the arc BC, on the side towards the point
C, three points close to one another, as the points G, M, C, then we move the
lower ring away from its position and move it along until a part of the arc BC
is applied to the points G, M, C in such a way that the remainder of the arc lies
outside it, as the arc GMCH. Since the arc BC is applied to the points G, M, H
and it will be equal to the arc GMCH, the points G, M , C, H will lie on the
circumference of a circle that is equal to the circle BC. But since the arc GH
met the circumference of the circle that is equal to its circle in three points,
thus the whole arc GH is applied to the circumference of the circle and the arc
GH will have the same curvature as the circumference of the same circle to
which the arc BC is applied. So if we move the rod with one pin in a second
trial too, then the tip of the pin completes the circle that it had [partly] drawn.

Then we also mark on the surface, and on the arc CH, three points on the
side towards the point H. We move the lower ring until a part of the arc is
applied to these points, as we did in the first trial. We continue like this and
we move the instrument until it returns to its initial position. Using this
procedure we draw a complete circle.

6 That is, the arcs are related to one another by an orthogonal projection.
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If we want to draw an arc of a circle of known diameter and such that the
ratio of the arc to the <whole> circle is known, then we make the arc of the
first ring similar to the arc we require and we complete the procedure, that is
to say, the construction of multiple rings.

If the required arc is large in proportion to the <complete> circle and
belongs to a circle that is large in size, we arrange matters so that the first ring
is a very small part of the arc we require, to which it bears a known ratio, and
that it is a measure of it; and we fashion the rings using the method we
described for constructing rings. If we reach the circle we require, we shall
then have a ring that is a known part of the required arc. We mount it in the
instrument and by means of it we fashion the required arc, using the method
that we have explained to make the complete circle.

For all these rings the piece must be of greater
size than the length of the two arcs on one side and
on the other so that the field of the circular ring
grows larger and so that there is a given point in the
circular ring on which to apply the endpoint of the
arc at the start of the movement and on the other
endpoint of the arc when it finishes, in order that
the arc produced by the movement of the tip of the
pin shall be similar to the arc of the ring.

Fig. III.5.3

We have thus completed the explanation of the way to construct the ins-
trument with which we draw large circles, <that is explained in both>
theoretical and practical terms. Which is what we sought to show. And here is
the form of the instrument.



APPENDIX

IBN AL-HAYTHAM’S INSTRUMENT

We have noted that in The Configuration of the Motions Ibn al-
Haytham returns to certain results and problems that he had already
examined in his other writings. Thus we find a theorem that he had already
proved in On the Hour Lines, as well as a question considered earlier in
The Variety of Hours that Appears for the Heights of the Wandering Stars.
There is every indication that, there, Ibn al-Haytham is also returning to the
construction of a useful instrument for determining the heights of
wandering stars, considered in his book On the Correction of Astrological
Operations (Fî taÒÌîÌ al-a‘mæl al-nujºmiyya, ms. Oxford, Bodleian
Library, Seld. A32).

In the introductory section of The Configuration of the Motions, Ibn al-
Haytham indicates that the third part of his book deals with an instrument
that allows one to make a precise calculation, in minutes and parts of
minutes, of the heights of the wandering stars. He writes:

Then we accomplish what this art requires and we spare the specialists in it
the trouble of writing essays on the observation of minutes [of arc] and small
parts for the altitude of the sun and of all the wandering stars, by presenting
an instrument that is easy to handle and can be understood by everyone, by
means of which we find the height of the sun and of each of the [wandering]
stars using the minutes and small parts [of the height]. Thanks to this
instrument and to the procedures we explain, all the procedures followed by
astronomers are shown to be correct and an end is put to all the disputes that
arise over principles, because of the fractions that are missed by observers
and that they find it hard to see, on account of the design of the instruments.1

In his book On the Correction of Astrological Operations, he refers to
this same instrument, and does so in the same terms. Unfortunately, in this
book, as well as in The Configuration of the Motions, the description of the
instrument is missing – but, on the other hand, probably not for the same
reasons. In The Configuration of the Motions, the book concerned with it
has been lost, whereas the copyist of On the Correction of Astrological
Operations says that in his autograph Ibn al-Haytham omitted to describe

1 See above, p. 260.
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the instrument. Perhaps that was because he had not yet perfected it.
Perhaps he had decided to add a description to The Configuration of the
Motions, which he was already planning to write. Or perhaps, more simply,
the passage had disappeared from the autograph manuscript. We have no
means of deciding such matters. For lack of better evidence, let us look at
what Ibn al-Haytham says about the instrument in the introductory section
of On the Correction of Astrological Operations. There Ibn al-Haytham
says:

Second Book of the Correction of Astrological Operations

We have proved in the first book that many of the operations to which
astronomers have recourse in astronomy depart from [perfect] correctness,
and that many of the results they give as approximate are far from exact; and
we have moreover proved things of which none of our predecessors, or
contemporaries, had any idea. We prove in this book how to determine
precisely the results on which astronomers rely in an approximate way; how
to grasp what has escaped them and how to grasp in complete detail the
small fractions that they neglect. The results in astronomy that we wish to
determine precisely are the positions of the stars on the orbs that are proper
to them, their distance from the equator, the magnitude of their heights with
respect to the given horizons and at the given instants also the ascendant
from the circle of the ecliptic on the eastern horizon; how to determine the
ascendant from the height of each of the seven wandering stars, and how to
determine from heights of these stars the circular <line> of the orb and the
hour <lines>. In such matters for which it was possible to establish [results]
with extreme precision, we have set out, without using approximation; and
for matters in which one cannot avoid approximation, we have improved the
approximate value until we arrived at the limit where between it [the
approximate value] and perfect precision there is no difference that might
affect their truth.

We pursue this [purpose] by constructing an instrument of small
dimensions, convenient to handle and easy to use, by means of which we
determine the heights and the positions of the wandering stars to minutes and
seconds – namely the instrument to which we referred in the introduction to
the first book; and we give details of its construction, how it functions and
how it is used.

This instrument is the one that allows the user to find most of what
astronomers have not succeeded in obtaining and were incapable of
determining, in regard to which they resorted to approximation, because they
could not <obtain> the minutes and small fractions, either for heights or for
positions of the wandering stars, when making observations, for lack of
small fractions on their instruments.

None of the ancients or the moderns had thought of this instrument, nor
had imagined it, and none of them made it a target for investigation. This
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instrument is very useful for all the operations in astronomy that are deduced
from the height and from observational instruments, thanks to which we
obtain the positions of the stars at the moments when we observe them.

Towards the end of the book, where Ibn al-Haytham should describe
the instrument and explain how to construct it, he writes:

It remains for us to explain this instrument by means of which we obtain the
height to minutes and seconds, and to explain both how to construct it and
how to use it. We say.

The text stops there and the copyist writes:

The book is completed. This is the end of what I have found that is from his
hand. May God be merciful to him. He did not complete the [text
concerning] the construction of the instrument. Thanks be rendered to God
alone. <The copy> has been checked against the original.2

We note that the manuscript is old. It was copied at the latest before the
beginning of the thirteenth century (before 1235), from an autograph
manuscript by Ibn al-Haytham.

Reading this introduction together with that of The Configuration of the
Motions, points up a commonality of problems and a quasi-identity in the
expressions relating to the instrument, to its construction and to its purpose.
It was to be used to register the minutes and seconds or small fractions
when observing and calculating heights of the wandering stars on their
orbits, for a given horizon. This would allow the user to carry out an exact
calculation, when such a thing was possible, or at least to make a notable
improvement in the approximation. The loss of the second, and above all
the loss of the third book of The Configuration of the Motions, taken
together with the rather abrupt ending of the manuscript of On the
Correction of Astrological Operations and the brevity of Ibn al-Haytham’s
remarks about the instrument in the introductory paragraphs of the two
treatises, leave us with no possibility of working out what the instrument
was like, even very roughly.

2 Ms. Oxford, Bodleian Library, Seld. A32, fol. 132v.
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[1] If 2α, 2α1, 2β, 2β1 are respectively the measures of the angles at the

centre corresponding to the arcs AB, BC, DE, EG, we have by hypothesis:

π
2

> α + α1 > β + β1  and
  

α
α1

=
β
β 1

;

so we have
α

α + α1

=
β

β + β1

and consequently α > β.

But the angle AB makes with the tangent to the arc AB at the point A is
α and the angle DE makes with the tangent to the arc DE at the point D is

β, the angle AB makes with the tangent to the arc AIB (which is similar to

DE) at the point A will also be β; we have α > β, hence the position of the

arc AIB.
T

A

B

X

I

α

β

E

D

T

β

′

Fig. 1

If T is the point of intersection of the tangents to the arc AB at A and B
and T′ the point of intersection of the tangents to the arc DE at D and E, we

have ATBˆ  = π – 2α and DT Eˆ ′  = π – 2β, so DT Eˆ ′  > ATBˆ .
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The arc AIB lies in the angle AXB, the angle between the tangents at A
and B and we have AXBˆ  = DT Eˆ ′  > ATBˆ , so ‘the angle within which it
falls is thus greater than the angle within which the arc AB falls’ (above,
pp. 263–4).

[2] Several times, Ibn al-Haytham makes use of two arcs, commensurable
or incommensurable with a quarter circle, or two arcs commensurable with
one another, or two arcs that are not commensurable.

• If each of the two arcs is commensurable with the quarter circle, they
are commensurable with one another.

• If one of the two arcs is commensurable with the quarter circle and
the other is not commensurable with it, then they are incommensurable
with one another.

• But if each of the two arcs and the quarter circle are incommen-
surable, then the two arcs may be commensurable or incommensurable.

[3] By hypothesis, if BE BD<  < 
1

2
BDA, and if we suppose that the

diameters d1 and d2 of the circles (EI) and (DC) satisfy the condition d1 > d2

and that the circle (DC) cuts the plane through B parallel to the horizon.
This requires that the sphere be inclined to the south, that is, in the

direction of B, which is our hypothesis. If the sphere were right or inclined
in the direction of A, we could not have d1 > d2 with BE BD<  except in the

case where BD > 
1

2
ADB .

[4] The proof will distinguish two cases for the arc LDC:

1) LDC  ≤ 
1

2
 circle.

2) LDC  > 
1

2
 circle.

In the first case, the centre of the circle, ω, is below the horizontal

plane AB, which is not possible unless this plane is not the horizon itself.
In the second case, the centre ω is above the horizontal plane AB,

which then can be the horizon or be above the horizon.

If LDC  > 
1

2
 circle, the proof requires a supplementary hypothesis:

HE

HJ
≥ d1

d2

.
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Investigation of the inequality HE

HJ
≥ d1

d2

, in the case where ω, the centre

of the circle D C, is above the horizontal plane AB. Let O  be the place
concerned, OΠ the axis of the world, ΣΣ′  the diameter of the equator.

Let us put ω′E = r1, ωD = r2 (d1 = 2r1, d2 = 2r2).

E

E

D

D

D

B HOH
G A

J1

1

ω

Σ W

W

J
Π

ω

ω′

ω′

Σ′

′

Fig. 2

1) Case where AB is the horizon. By hypothesis ω is above the horizon.

Let DD1 ⊥ OΣ, E must lie on the arc D1ΣD. The chord HE cuts DD1 in

the point W, between J and E, because the angle GDB is acute and the
angle GDD1 is a right angle. We have ω′E = r1 and ω′W  = ωD = r2 ⇒

′ω E

′ω W
= r1

r2

.

In all cases, we have

 
′ω E

′ω J
> ′ω E

′ω W
,

so
′ω E

′ω J
> r1

r2

.

We have
ω′ E > ω′ J > ω′ H.

In this case, we apply the lemma

a > b > c ⇒ 
a − c

b − c
> a

b
> a + c

b + c
.
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• If E lies on the arc ΣD1, O is between ω′ and ω

HE = ω′ E – ω′ H
HJ = ω′ J – ω′ H,

so
HE

HJ
> ′ω E

′ω J
,

so
HE

HJ
> r1

r2

.

• If E lies at the point Σ, ω′ is in O, H = ω′ = O, so HE

HJ
> r1

r2

.

• If E lies on the arc ΣD, ω′ is between O and ω, we have

HE = ω′E + ω′H
HJ = ω′J + ω′H,

so
′ω E

′ω J
> HE

HJ  
 and  

′ω E

′ω J
> r1

r2

.

We can draw no conclusions regarding the ratio HE

HJ
.

Limiting case: ω′ = ω. H = G, E = J = D, r1 = r2, 
HE

HJ
= r1

r2

 = 1.

2) In the case where AB is above the horizon, the angle GDB may be
acute, a right angle or obtuse.

a) If GDBˆ  ≤ 1 right angle, we have ω′W  ≥ ω′J and ′ω E

′ω J
≥ ′ω E

′ω W
, so

′ω E

′ω J
≥ r1

r2

 and we continue as in 1). So

• if ω′ is below the plane AB, we have HE

HJ
> r1

r2

;

• but if ω′  is above the plane AB, we cannot draw any conclusion.

b) If GDBˆ  > 1 right angle, J is between E  and W , so ′ω E

′ω J
< r1

r2

; we

cannot draw any conclusion.
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GO

B

H

J
W

D

ω

ω′

A

Fig. 3

[5] The proof requires the additional condition EI CD L≤ ′ , which does not
always hold.

Investigation of this condition in the case where ABC is the horizon and

the circle EI the equator. We then have EI  = 
π
2

.

EI CD L≤ ′  ⇔ 
π
2

 ≤ C Lω̂  ⇔ 
π
4

 ≤ C Gω̂  ⇔ 
2

2
 ≥ cos C Gω̂

cos C Gω̂  =
ω
ω

ω
ω

G

C

G

D
= .

If we put ED  = β and make the latitude λ, we have

ωC = ωD = Rcos β, Oω = Rsin β, ωG = Oω tan λ = Rsin β tan λ,

so
cos C Gω̂  = tan β · tan λ.

B

E

J

D

C G

D

A
L

E 

β

λ

ω

π

I O

π′

′

′

Fig. 4
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In this special case, we have

EI CD L≤ ′  ⇔ 2
2

 > tan β · tan λ. (*),

a condition which is not always satisfied.

Example: If λ = 60°, the circle CD cuts the horizon when β < 30°; but

the condition (*) is satisfied only if

tan β ≤ 
2

2 3
,  tan β ≤ 

6
6

,

that is β < 22°12′.

[6] Position referred to the ecliptic
If P and P′ are the poles of the ecliptic, to any point M of the sphere

there corresponds a half of a great circle PMP′ which cuts the ecliptic in

M ′. Thus we define a transformation f in which M ′ = f(M ); M ′ is the

‘position of M  referred to the ecliptic’. If l and λ are respectively the

ecliptic longitude and latitude of M, M′ has longitude l and latitude 0. So

the transformation f preserves the longitude and makes the latitude zero
M′(l, 0) = f[M(l, λ)].

[7] The points lying between the points A and B, which play a part in this
paragraph concerned with the motion of the moon, correspond to the points
lying between the point where it rises, at B, and the point it crosses the
meridian, at N, which play a part in the investigation of the motion of the
moon. The points identified here as A, B, D, G, K correspond to the points
B, N, I, M, S in the figures on p. 180. In the first investigation, the point M
is, in general, in a position below or above the hour circle that passes
through the position called B  and the author has noted that it can,
exceptionally, lie on this circle; in this case M = L. The same observation is
made here for the point G: ‘So the point G is to the south of the circle AD
or to the north of it’ (above, p. 340), so the great circle CG in general cuts
the circle AD in a point R which is different from G. Exceptionally, R and
G may be identical. The point R corresponds to the point L. Here the
argument is given for R ≠ G, because the point K lies on the hour circle AD
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and Ibn al-Haytham writes: ‘the arc GK is parallel to the circle of the
ecliptic’ and ‘it has the magnitude of the motion of the node in the known
time’ (above, p. 341). So the point G is not taken to be on the hour circle of
the point A.

[8] Inclination of the orb of Mercury or Venus with respect to the plane of
the ecliptic

The inclination is at its maximum when the centre of the epicycle is at
its apogee A or at its perigee P on the eccentric. This inclination is known
(Ptolemy).

The inclination becomes zero when the centre of the epicycle reaches n
on the line of intersection of the orb with the plane of the ecliptic; the orb
then coincides with the plane of the ecliptic.

Let m be an intermediate position of the centre of the epicycle on the
eccentric. To the points A, m, n there correspond the points A, M, N on the
orb with centre ω, the centre of the Universe.

When the orb moves from the position of maximum inclination to the
position of zero inclination, the point m describes the arc An  of the
eccentric, with centre ω′, and the point M describes a quarter circle AN on

the circle with centre ω.

The arc NA is a quarter circle, and the arc nA that corresponds to it on
the eccentric is known. nA= α.

Apogee

p

p

M

N

m

n

ω

ω′

′

Fig. 5

At any instant the arcs NM and nm are known.
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Let im be the maximum inclination, which corresponds to the apogee
and let i be the inclination of the orb when the centre of the epicycle is at

m; we have i

i

nm

nAm

=  (see p. 201).

Here the text gives i

i

NM

NAm

= ; which would be correct if the deferent

AmnP were concentric, with ω and ω′ identical; in this case we should have

nm

nA′
 =

NM

NA
.

A

A

M

N

m

n

P

ω

′

Fig. 6

Ibn al-Haytham then gives the ratio of the arcs on the eccentric.

So the ratio i

im

 is a known ratio and the inclination i of the planet

(Mercury or Venus) to the plane of the ecliptic is known at any known
instant.
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Al-™ºsî, NaÒîr al-Dîn: xviii, 10, 11

n. 18–19
Al-™ºsî, Sharaf al-Dîn: xiii

Al-‘Ur≈î: 10, 10 n. 17, 11, 11 n. 19

SUBJECT INDEX

Abduction (method): 20, 71
Abscissa: 19, 22, 102–104, 129, 169,

430
Acceleration: 206
Altitude circle: 425, 433, 451, 453, 569

n. 5
Amplitude (ortive): 556, 572, 573
Angle
– acute: 90, 119, 120, 123, 150–152,

179, 428, 433, 480, 481, 607, 608
– at the centre: 82, 84, 93, 97, 224,

247, 475, 478, 486, 488, 550, 605
– constant: 30, 35, 96, 104, 175, 191
– dihedral: 19, 30, 35, 191, 297, 350
– fixed: 30, 174
– of incidence: 484
– increase: 82, 83, 95
– inscribed: 79, 475, 479
– obtuse: 56, 112, 116, 123, 124, 152,

153, 179, 428, 433, 480, 481, 608
– right: 57, 79, 80, 86, 93, 97, 104,

112, 113, 116, 150, 179, 198, 200,
230, 235, 426, 428, 433, 607, 608

Anomalies (study of —): 13
Apogee: 11 n. 18, 28, 85, 197, 200–

203, 206, 207, 209, 210, 212, 213,
215, 218, 221, 354, 611, 612

Approximation: 33, 473, 474, 516, 517,
602, 603

Area (law): 206

Arc(s)
– of altitude: 425, 441, 451, 569
– commensurable: 20, 22, 71–74, 84,

278–280, 283, 286–288, 606
– contiguous or disjoint: 21, 22, 71
– equal: 20–23, 52, 65, 116
– of the hour circle: 27, 204, 228, 229,

232, 233, 242, 244, 245, 247, 248,
251

– incommensurable: 20, 22, 71, 72, 84,
278–280, 286, 287, 606

– orthogonal: 20, 65, 230, 235
– ‘proper’ for the time: 204, 381
– similar: 52, 54, 57, 59, 62, 63, 67,

69, 107, 109, 112, 114–116, 120–
122, 151, 154 n. 12, 204 n. 25, 205,
211, 226, 227, 229, 244, 247, 478,
486, 487, 496

Aries: 191, 192, 348, 531, 534, 542,
543, 557, 562

Ascension (right:) 18, 19, 22, 23, 27,
29, 32, 34, 69, 74, 75, 77, 78, 188,
190, 204 n. 25, 207, 219, 221, 552,
553, 555, 556, 571 n. 11, 572, 581

Astrolabe: 465, 466, 516, 567, 596
Astronomy
– hellenistic: 29
– mathematical: xvi, xvii, 10, 12, 465
– Ptolemaic: xvi, xvii, 6, 8, 10, 13–16,

28, 46, 424
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Axis
– of circles: 93, 123
– of coordinates: 90, 145
– of the ecliptic: 35, 175, 183, 185, 191
– of the world: 31, 109, 176, 177 n.

15, 249, 491, 507, 510, 541, 548,
607

Axiom of Archimedes: 74, 85, 586, 586
n. 2

Azimuth: 29, 470, 543, 552–558, 560,
569–580

Bisector: 93

Calculation (astronomical): 4, 12
Cancer: 35, 40, 191, 250, 470, 472,

473, 491, 492, 494, 495, 498, 499
n. 16, 501, 503, 504, 508, 510

Capricorn: 35, 191, 253, 470, 473, 491,
494, 503, 506, 508, 510, 552, 556–
558, 560, 561

Centre
– of the celestial sphere: 424
– of the epicycle: 200, 201, 203, 210,

611, 612
– of motions: 44
– of the planet: 186, 334
– of symmetry: 492
– of the world/Universe: 44, 46, 175,

200, 548, 551, 561
Circle(s)
– azimuth: 569, 569 n. 5, 570, 572,

572 n. 15,576
– of the ecliptic: 30, 35, 174, 178, 183,

184, 186, 188, 189, 191, 193, 197,
199, 201, 554, 602, 611

– of the equator: 30, 93, 96, 110, 112,
118, 175, 176, 183, 193, 195, 203,
207, 210, 218, 250, 472, 501, 553,
556

– great: 18, 22, 25, 28, 30, 31, 36, 39,
64, 65, 69, 71, 74, 75, 77, 100, 108,
109, 116, 128, 150, 154, 174, 175,
180, 183, 187, 189, 192–196, 198,
199, 201, 204, 205, 218, 226–229,
233, 235, 236, 238–241, 243, 245–

247, 251–254, 472, 473, 493–495,
497, 503, 508, 510, 583, 610

– of the horizon/horizontal: 25, 31, 93,
107, 115, 177, 223, 225–228, 230–
232, 235–238, 240–243, 245–250,
553, 554, 556, 569 n. 5

– large: 468, 587, 593, 594, 600
– master: 558–560
– meridian: 24, 25, 33, 93, 107–109,

125, 126, 149, 184, 186, 227, 228,
247, 250

– orthogonal: 18, 75, 109, 178, 199,
203, 223 n. 32, 248, 397, 411

– parallel to the ecliptic: 30, 34, 175,
190, 321 n. 65

– parallel to the equator: 25, 26, 69, 93,
107, 109, 116, 126, 149, 218, 223,
434, 549, 553, 561

– parallel to the horizon: 24, 93, 107,
109, 223

– plane: 46
– of the poles/polar: 31, 175, 176, 250,

318, 319, 346–348, 350, 352
– quarter: 66, 67, 70, 486, 606
– tangent: 199, 196, 297, 384
– variable: 100
Colatitude: 101, 126
Compasses
– for large circles: 465, 468, 583, 585
– perfect: 467
Complement
– of the maximum declination: 28, 37,

252
– of the inclination of the orb: 250
Configuration (hay’a): 5, 5 n. 7, 11–14,

27, 44, 45
Conic sections: 467, 468 n. 8, 471, 561,

579
Conjugate (harmonic): 129
Construction (auxiliary): 428
Continuity: 20, 23, 46, 85, 222
Convexity: 82, 85, 130
Coordinates
– ecliptic: 29, 34, 35
– equatorial: 29, 34, 37, 425
– horizontal: 29
– spherical: 29
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Correction for the epicycle (additive):
215, 216, 222, 364, 378, 380

Cosmology: 8 n. 12, 11, 13–15, 44–47;
Aristotelian: 3

Curve: 45, 145, 149, 161, 162, 166,
169, 236, 240, 551, 560, 561, 578
n. 25; limiting: 162

Declination: 19, 29, 34, 37, 40, 42, 43,
65 n. 2, 75, 203, 219, 221, 248,
249, 251, 252, 549, 551, 558, 561,
562

– constant: 178, 223
– maximum: 28, 37, 183, 252, 254,

548, 561
– negative/positive: 552, 556, 562
– zero: 562
Deferent: 28, 317 n. 60, 612
Derivative: 55, 59, 105, 106, 132, 139,

161, 167
Differences (finite): xvii, 13, 18, 71
Distance (constant from the fixed point):

584, 586
Dynamics: 11, 15, 44, 46

Ecliptic: 28–36, 65 n. 2, 174–178, 183–
202, 219, 472, 473, 497–499, 507 n.
18, 553, 554, 556, 610–612

Equality
– of areas: 425, 428, 434, 435
– of arcs: 70, 154 n. 12, 240, 428
– of times: 435
Epicycle: 7, 11 n. 18, 28, 29, 32, 34,

43, 45, 186, 187, 190, 200, 201,
203, 210, 215, 222

Equant: 15, 28, 45
Equator: 19, 25, 26, 29–37, 39–41, 65,

69, 74, 75, 93, 96, 99, 107, 109–
112, 116, 118, 126, 149, 174–178,
180, 183–187, 189–197, 203, 204,
207, 210, 218, 222, 223, 226, 229,
248–250, 253, 425, 433–435, 472,
473, 491, 493–495, 497–499, 501,
503, 507, 508, 510, 602, 607, 609

Equinox: 31, 33–36, 40, 174, 183, 191,
193, 197, 224, 396 n. 134, 497,
498, 508, 509

Eccentric: 28, 36, 43, 85, 197, 200,
201, 203, 204, 210, 211 n. 28, 215,
218, 317 n. 60, 612

Falak (orb): 27 n. 33, 45, 46
Function(s)
– of angles (numerical): 81
– concave: 19, 21, 71, 75, 135, 136,

146, 147, 156, 157, 161, 426, 434
– convex: 22, 78, 83, 85, 136, 156
– decreasing: 83, 103, 127, 128, 140–

143, 145, 156, 161, 163, 165–167,
169, 432

– increasing: 59, 70, 103, 140–142,
145, 156, 165, 169, 432

– transcendental: 173
– trigonometrical: 17, 173, 472

Geometry
– of conic sections: xv, 471
– differential: 39
– infinitesimal: xiii–xvii, 13, 18, 30,

39, 222, 471
– plane: 49, 78, 424–427
– practical: 9, 467
– spherical: xiii, xv, xvii, 30, 39, 43,

49, 64
Gnomon: 472, 473, 494, 497, 508,

510, 550–552, 557, 558–563

Height: 8, 27, 423–425
– of an arc: 425, 426, 436, 437; of an

hour circle: 433
– concave function of the time: 426, 434
– in the east: 39, 222, 228, 232, 238,

240, 241, 250
– of the gnomon: 473, 508, 551, 558,

560, 562
– maximum: 27, 29, 38, 39, 41, 222,

230, 231, 240, 247
– of meridian transit: 27, 29
– of observed motions: 424
– of planets/stars: xvii, 8, 12, 27, 29,

38, 39, 41, 222, 224, 247, 425, 551,
552, 559, 562

– of a point: 245, 255, 425, 433, 436,
437, 553, 554
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– of the time: 425, 426, 436, 437
– in the west: 36, 223, 240, 241, 246,

250
Hemisphere (northern): 26, 40, 43, 247,

470, 491
Hour(s)
– circle: 26, 27, 34, 42, 183, 185–190,

204, 219, 223, 225–227, 229, 232,
233, 237–253, 425–427, 433–437,
472, 495, 497, 501, 503, 506, 510,
610, 611

– equinoctial: 470, 470 n. 5, 498, 545,
581

– fifth: 504–506, 554, 555, 559, 560
– line: xviii, 469, 473, 510, 557
– seasonal: 470, 470 n. 5, 472, 474,

493–495, 503, 506, 549, 550, 552,
553, 556–558

Horizon: 24–29, 31–33, 37, 38, 41–43,
65 n. 2, 93, 96, 100, 107–112, 115,
117, 118, 149, 150, 177–180, 182–
184, 186, 222, 223, 225–229, 237,
238, 247–255, 425, 426, 433–436,
549–551, 553–556, 602

Hyperbola: 561, 562, 578 n. 25

Inclination
– of an arc: 19, 20, 22, 23, 180, 183,

184, 188, 223
– of the ascending node: 30, 32,
– constant: 35
– of the epicycle: 34, 186, 187, 190
– to the ecliptic: 28, 35, 36, 175, 185,

190–192, 197, 201, 219
– to the equator: 30, 31, 34–37, 41,

174, 185, 186, 191–197, 203 n. 24,
250, 253, 473, 499

– to the horizon: 37
– maximum/extreme: 31–35, 176, 185

n. 20, 191, 193–196, 199–201, 252,
612

– of the motion: 30–34, 181, 183, 185,
187, 190, 226, 227, 241

– of the points: 37, 65, 69, 71–74
– proper to the required time: 27, 29,

30, 34, 45, 202, 205, 223, 227–234,
236, 239–247, 251, 253

– variable: 28, 29, 31, 33, 35, 174,
176, 185, 190, 197

– zero: 199, 200
Inequality
– of angles: 81
– of arcs: 434, 435
– of ratios: 64, 473
Infinitesimals: 13, 18, 20, 29, 30, 36,

39, 44, 74, 77, 85, 173, 222, 427,
471

Instruments: xiii, xv, 10, 12, 260, 465–
469, 474, 516, 547, 548, 563, 583,
585, 587, 593–603

Interpolation (method): xv
Interval (variable finite): 29, 206
Invariant (under the rotation): 584, 585

Kinematics (celestial): xviii, 3, 8 n. 12,
10, 11, 13–16, 44, 46, 47, 206

Knowns (the): 583

Latitude: 11, 28, 29, 34, 37, 40–45,
186, 190, 248–250, 252, 254, 471,
473, 499, 507, 510, 548, 550, 561,
562, 578 n. 25, 610

Length
– of the day: 549–551, 567, 568 n. 3
– of the gnomon: 544, 545, 575, 576
– of the shadow: 473, 506, 552, 559,

560, 576–578, 580
Longitude: 11, 29, 34, 36, 186, 190,

195, 197, 199, 201, 202, 472, 610

Magnitudes: 20, 44
Mathematization (of astronomy): 13, 16,

47
Means (geometrical): 26
Meridian: 25, 26, 28, 29, 32, 37–42,

93, 96, 97, 107, 109, 150, 175,
177–187, 222–229, 240, 248–254,
426, 433

– line: 473, 491, 504, 510, 559, 567
– transit (passage): 27–33, 37, 39–41,

177, 222, 226–229, 232, 238, 240,
242, 247, 248–250, 253, 255, 549,
552, 558, 562

Milky Way: 4
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Model(s): 3, 5–7, 10–12, 15 n. 27, 16,
28, 29, 31, 32, 34, 36, 45, 174, 175,
183

Moon: 27–36, 174–177, 179–183, 185,
186, 189–191, 197, 222, 226, 234,
259, 316, 424, 610

Motion
– accelerated: 203, 206, 209, 210, 222;

anomalistic: 222, 363, 379, 380
– from the apogee to the perigee: 85,

203, 206, 207, 209, 221
– apparent: 15, 26–33, 37, 46, 174,

175, 317, 426, 427, 550
– celestial: 5, 15, 43, 44, 424
– decelerated: 203, 210, 215
– of deviation of the apogee and perigee

of the epicycle: 11 n. 18
– direct: 27, 30, 33, 177, 183, 186,

335, 337, 344
– diurnal (rapid): 29, 41, 175, 177,

178, 180, 181, 183, 184, 186, 188,
189, 204, 223, 225, 250, 255, 320
n. 64, 321 n. 65, 329 n. 72, 549,
562

– of the ecliptic: 34
– in geometry: 583, 585
– in latitude: 11 n. 19, 44, 45
– in longitude: 11 n. 19, 186, 335, 344,

354
– mean (uniform): 206
– of the moon: 30–34, 175–177, 181–

183, 186, 316, 424, 610
– of the nodes: 29, 33, 34, 175, 176,

179–183, 189, 190, 317, 312 n. 65,
344 n. 82, 346

– oscillating: 36
– from the perigee to the apogee: 209,

210, 215, 218, 221
– proper: 183, 184, 186, 188, 189,

225, 324, 327, 329–332, 335, 384,
385

– retrograde: 27, 28, 30, 31, 33, 35,
174, 177, 178, 183, 184, 186, 187,
190, 191, 335–337, 343, 344

– slow: 31, 33, 34, 36, 190, 334, 337,
344 n. 82, 364

– uniform circular: 30, 44, 46, 206,
317, 366, 426, 427, 549

– of the wandering stars: 174, 175, 188
– winding: 44, 45, 424
Muqan†aræt: 291–305, 380–395, 398–

407, 409–412, 414, 415

Nodes: 29, 30–36, 174–176, 179–183,
185, 189–193, 197, 198, 200, 316

– ascending/descending: 30, 32, 35,
178, 192, 193, 316 n. 59, 321, 347
n. 85, 348, 349, 353–355, 357, 362,
363

– line of —: 36, 174, 185, 200

Obliquity of the ecliptic: 219
Observation (astronomical): 4, 8 n. 12,

10, 16, 28, 37, 43, 223, 248, 260,
335, 421 n. 147, 465, 499 n. 16,
551, 568, 593, 594, 601, 602

Orb: 26, 27, 29–37, 46, 174–182, 185–
204, 209–211, 218, 222, 225, 226,
247, 249, 250, 253, 593, 602

– inclined/oblique: 29, 30, 32, 35, 36,
85, 174–177, 179, 180, 185, 186,
193, 195–197, 199, 200, 202, 203,
207, 210, 218, 316

– solid: 11 n. 18
Orbit: 27 n. 33, 46, 219, 603

Parabola: 90
Parallaxes: 4
Perigee: 11 n. 18, 28, 85, 203, 206,

207, 209–211, 213, 215, 218, 221,
354, 363–367, 370, 371, 376–378,
611

Pins
– conical: 585, 586, 596
– cylindrical: 585, 597
Plane
– diametral: 493
– of the ecliptic: 30, 35, 174, 175, 183,

185, 191, 194, 197, 350 n. 88, 499,
612

– of the equator: 31, 35, 93, 107, 116,
174, 183, 185, 203, 249, 418, 493,
497, 535, 562
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– of the horizon: 108, 292, 469, 470,
495, 503, 508, 510, 530, 534, 535,
541–544, 546, 569, 606

– of the meridian: 93, 109, 294, 469,
529, 541, 550, 569 n. 5, 580

– perpendicular: 24, 86, 88, 563, 584
– of symmetry: 107, 198
Planets (the five): 13, 27, 29, 33, 35,

44, 45, 185, 186, 189, 197, 226,
259, 333–335, 339, 340, 344, 364,
374, 378, 380, 385, 396

– inferior (Venus and Mercury): 11 n.
18, 29, 34–36, 190, 197

– superior (Mars, Jupiter, Saturn): 11 n.
18, 34, 35, 185, 190, 333 n. 74,
335, 353

Plate(s): 559, 585–587, 596–598
– annular: 586, 587
– of copper: 558, 598
Point(s)
– cardinal of the horizon (north, south):

42, 252, 254
– of contact: 160, 252, 296
– discrete (in the motion): 434, 435
– of division: 65, 75, 77
– of the ecliptic: 183, 197, 199, 553
– equinoctial: 35, 36, 183, 195, 197,

349
– extreme: 209, 551, 568, 570, 577
– fixed: 183, 584
– of inflection: 136, 161, 169
– of intersection: 30, 71, 126, 128,

145, 176, 179, 181, 196, 197, 233,
239, 246, 489, 497, 553, 571 n. 11,
605

– moving: 426, 433, 434
– of the meridian: 96, 251, 412, 418
– of the solstices: 36, 197, 347, 352,

355
– with spherical abscissae: 19, 22
– of transit: 28, 41, 227–229, 232, 237,

238, 240, 242, 247
– unique: 24, 28, 39, 88–90, 143, 160,

163, 166, 222, 228, 241, 254, 414
Pole(s):
– celestial: 24, 93, 548

– of the ecliptic: 29–32, 174–176, 180,
193, 197, 198, 317, 341 n. 80, 346

– of the equator: 32, 109, 175–178,
180, 183, 186, 189, 191, 193, 195,
196, 222, 223, 226, 229, 248, 250,
253, 296, 298, 571 n. 12

– hidden: 112, 300, 303, 305, 441
– of the horizon: 222, 229, 247–250,

296, 379, 380, 385
– visible: 108, 110, 112, 118, 152,

297, 300, 303, 305, 441, 457–459
Precession of the equinoxes: 31, 34, 183
Projection: 108, 431, 466
– orthogonal: 96, 428, 599
– stereographic: 466
Properties(s)
– of the circle (geometrical): 425
–  of the motion: 30, 36
– of the variations in speed: 29
– of points on a parallel on the celestial

sphere: 93

Quadrilateral: 79, 80, 284, 286
Proportional (fourth): 54

Ratio
– of angles: 127
– of arcs: 16, 64, 127, 205, 612
– of chords: 64
– rational: 81, 85
– of the required time: 27, 209, 214,

223, 227, 247, 248
Ray (sun): 508, 543, 551, 559, 561,

563, 569, 573 n. 18
Region: 166, 169
Retrograde: see motion
Revolution: 176, 253, 343, 346, 382,

383, 385, 396, 416–418, 420
Ring (circular): 585, 598, 600
Rising and setting (of the star): 26, 29,

250, 252, 254, 255, 423
Rising and meridian transit: 30, 33, 222,

248, 250
Rod (cylindrical): 585, 596
Rotation: 15, 26, 185, 191, 200, 318,

583–585
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Semicircle: 24 31, 66, 86, 88–90 110,
112, 152, 176, 184, 193, 428, 429,
431, 432, 435, 493, 510

Shadow of gnomon: 473, 508, 510,
515, 531, 542–544, 550, 557, 559,
560, 562, 567, 573, 576

Sheets of the surface of the cone: 561
Sine rule: 18, 65–67, 69, 71, 81
Slope (of the tangent): 161
Sun: 12, 27–29, 33–35, 40, 183–185,

188, 191, 203, 222, 224, 234, 250,
251–254, 494, 497, 498, 507, 508,
548–559, 561–562

Solstice: 33, 35, 183, 195, 197, 330,
347, 349, 352, 355, 472, 497, 498,
535

– summer: 40, 183, 191, 252, 330,
345, 473, 551, 552, 555

– winter: 40, 183, 191, 330, 345, 551,
552

Speed: 28–30, 44
– angular: 203, 209, 215
– instantaneous: 16, 206
– mean: 16, 29, 37, 206, 209, 221
– of variation of the inclination: 29,

206, 209, 215
Sphere
– armillary: 465, 516
– celestial: 25–31, 34, 37, 93, 174,

175, 184, 188, 204, 226, 254, 424–
426, 433, 434, 470 n. 5, 473, 494,
507 n. 18, 548, 550, 556, 561, 569

– inclined: 223, 426, 441, 454–459
– right (sphaera recta): 37, 41, 107,

110, 111, 223 n. 32, 426, 433, 441,
452–454

– terrestrial: 424
– unit: 65 n. 3, 128
– of the Universe: 184, 316, 441, 493,

497, 507
Station: 27, 33, 186, 187, 191, 335,

337, 344
Sundials: xv, 465–474, 494, 497, 498,

506, 508–510, 515–517, 531;
horizontal (construction): 473, 508,
515, 535, 542, 547–550, 557, 567

Tangent: 95, 160–162, 169, 198, 199,
230, 231, 289, 297 n. 44, 384, 458,
479, 483, 508, 521, 522, 598 n. 5,
605, 606

Time: 27, 44, 426, 431, 433–437, 442,
549; required: 16, 27, 29, 30, 32–35,
37, 44, 45, 175, 181, 183–185, 187,
190, 191, 202, 204, 205, 209, 221,
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248, 251, 253, 256, 327
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– of Menelaus: 22, 35, 76, 77, 194,

273, 481, 554, 555, 572 n. 16
– in plane trigonometry: 510, 574
– in spherical geometry: 510–511
Theory
– of the celestial motions (descriptive

phenomenological): 43
– of gravitation: 43
– of material spheres: 15, 47
– planetary: 4, 9, 11–16, 26
– of proportions: 20, 27, 175, 206, 426
– of sundials: 466, 469–474, 510, 547,

563
Transformations (geometrical): xiv, 127,

427, 428, 583
Transversal: 481
Triangle(s)
– curvilinear: 39, 65, 231, 234, 235,

240; infinitesimal: 39
– isosceles: 68, 78
– plane: 222
– rectilinear: 39, 230, 231, 234, 235,

240, 395
– right-angled: 94, 99, 150, 231, 496,

551, 559
– spherical: 20, 222
– similar: 49, 50, 94, 99, 112, 151,

153, 231, 235, 496, 501
– very small (infinitesimal): 235, 239,

244
Trigonometry: xiii, 81
– plane: 349, 64, 469, 474, 510
– spherical: 35, 43, 64, 128

Variation: 13, 16, 17, 426, 427, 434
– of elements of a figure: 13, 82
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– in height: 27, 30, 423, 427
– of the inclinaison: 20, 28, 206, 209,

215, 319
– in latitude: 186
– of magnitudes: xvii, 18, 44
– of ratios: xvii, 13, 18, 24, 104, 105,

431
– in right ascension : 18
– of speed: 29, 30, 37, 206
– of trigonometrical expressions: 13,

26, 427; functions: 17, 71, 173, 472,
474, 510

Vertical: 25, 98, 162, 169, 507, 596

Zenith: 37, 41, 96, 100, 103, 110, 240,
248, 249, 253, 294, 295, 424, 425,
426, 433–435, 451, 453–455, 507,
541, 548, 569 n. 5, 570– 572, 577

Zîjs: 12
Zodiac: 30, 33, 174, 176, 179, 183,

184, 186, 197, 199, 200, 202, 556–
558, 561, 562, 571, 574, 575, 579,
580

– in the direction opposite to that of the
signs: 30, 177, 177 n. 15, 179 n. 17,
186, 199

– in the direction of the signs: 30, 176,
177 n. 15, 183, 186, 199, 200
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