The ongoing search for the graviton—the proposed fundamental particle carrying gravitational force—is a crucial step in physicists’ long journey toward a theory of everything
All the fundamental forces of the universe are known to follow the laws of quantum mechanics, save one: gravity. Finding a way to fit gravity into quantum mechanics would bring scientists a giant leap closer to a “theory of everything” that could entirely explain the workings of the cosmos from first principles. A crucial first step in this quest to know whether gravity is quantum is to detect the long-postulated elementary particle of gravity, the graviton. In search of the graviton, physicists are now turning to experiments involving microscopic superconductors, free-falling crystals and the afterglow of the big bang.
Quantum mechanics suggests everything is made of quanta, or packets of energy, that can behave like both a particle and a wave—for instance, quanta of light are called photons. Detecting gravitons, the hypothetical quanta of gravity, would prove gravity is quantum. The problem is that gravity is extraordinarily weak. To directly observe the minuscule effects a graviton would have on matter, physicist Freeman Dyson famously noted, a graviton detector would have to be so massive that it collapses on itself to form a black hole.
“One of the issues with theories of quantum gravity is that their predictions are usually nearly impossible to experimentally test,” says quantum physicist Richard Norte of Delft University of Technology in the Netherlands. “This is the main reason why there exist so many competing theories and why we haven’t been successful in understanding how it actually works.”
In 2015, however, theoretical physicist James Quach, now at the University of Adelaide in Australia, suggested a way to detect gravitons by taking advantage of their quantum nature. Quantum mechanics suggests the universe is inherently fuzzy—for instance, one can never absolutely know a particle’s position and momentum at the same time. One consequence of this uncertainty is that a vacuum is never completely empty, but instead buzzes with a “quantum foam” of so-called virtual particles that constantly pop in and out of existence. These ghostly entities may be any kind of quanta, including gravitons.
Decades ago, scientists found that virtual particles can generate detectable forces. For example, the Casimir effect is the attraction or repulsion seen between two mirrors placed close together in vacuum. These reflective surfaces move due to the force generated by virtual photons winking in and out of existence. Previous research suggested that superconductors might reflect gravitons more strongly than normal matter, so Quach calculated that looking for interactions between two thin superconducting sheets in vacuum could reveal a gravitational Casimir effect. The resulting force could be roughly 10 times stronger than that expected from the standard virtual-photon-based Casimir effect.
Recently, Norte and his colleagues developed a microchip to perform this experiment. This chip held two microscopic aluminum-coated plates that were cooled almost to absolute zero so that they became superconducting. One plate was attached to a movable mirror, and a laser was fired at that mirror. If the plates moved because of a gravitational Casimir effect, the frequency of light reflecting off the mirror would measurably shift. As detailed online July 20 in Physical Review Letters, the scientists failed to see any gravitational Casimir effect. This null result does not necessarily rule out the existence of gravitons—and thus gravity’s quantum nature. Rather, it may simply mean that gravitons do not interact with superconductors as strongly as prior work estimated, says quantum physicist and Nobel laureate Frank Wilczek of the Massachusetts Institute of Technology, who did not participate in this study and was unsurprised by its null results. Even so, Quach says, this “was a courageous attempt to detect gravitons.”
Although Norte’s microchip did not discover whether gravity is quantum, other scientists are pursuing a variety of approaches to find gravitational quantum effects. For example, in 2017 two independent studies suggested that if gravity is quantum it could generate a link known as “entanglement” between particles, so that one particle instantaneously influences another no matter where either is located in the cosmos. A tabletop experiment using laser beams and microscopic diamonds might help search for such gravity-based entanglement. The crystals would be kept in a vacuum to avoid collisions with atoms, so they would interact with one another through gravity alone. Scientists would let these diamonds fall at the same time, and if gravity is quantum the gravitational pull each crystal exerts on the other could entangle them together.
It’s the moral duty of the country has become a Wi-Fi enabled zone and so internet has become visit now viagra 25 mg nearer to the people.
The researchers would seek out entanglement by shining lasers into each diamond’s heart after the drop. If particles in the crystals’ centers spin one way, they would fluoresce, but they would not if they spin the other way. If the spins in both crystals are in sync more often than chance would predict, this would suggest entanglement. “Experimentalists all over the world are curious to take the challenge up,” says quantum gravity researcher Anupam Mazumdar of the University of Groningen in the Netherlands, co-author of one of the entanglement studies.